WorldWideScience

Sample records for advanced integrated modeling

  1. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  2. Advances in NLTE modeling for integrated simulations

    Science.gov (United States)

    Scott, H. A.; Hansen, S. B.

    2010-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δ n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  3. Advances in NLTE Modeling for Integrated Simulations

    International Nuclear Information System (INIS)

    Scott, H.A.; Hansen, S.B.

    2009-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δn = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  4. Advanced data analysis in neuroscience integrating statistical and computational models

    CERN Document Server

    Durstewitz, Daniel

    2017-01-01

    This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering.  Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerfu...

  5. Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Anthony Halog

    2011-02-01

    Full Text Available The need for integrated methodological framework for sustainability assessment has been widely discussed and is urgent due to increasingly complex environmental system problems. These problems have impacts on ecosystems and human well-being which represent a threat to economic performance of countries and corporations. Integrated assessment crosses issues; spans spatial and temporal scales; looks forward and backward; and incorporates multi-stakeholder inputs. This study aims to develop an integrated methodology by capitalizing the complementary strengths of different methods used by industrial ecologists and biophysical economists. The computational methodology proposed here is systems perspective, integrative, and holistic approach for sustainability assessment which attempts to link basic science and technology to policy formulation. The framework adopts life cycle thinking methods—LCA, LCC, and SLCA; stakeholders analysis supported by multi-criteria decision analysis (MCDA; and dynamic system modelling. Following Pareto principle, the critical sustainability criteria, indicators and metrics (i.e., hotspots can be identified and further modelled using system dynamics or agent based modelling and improved by data envelopment analysis (DEA and sustainability network theory (SNT. The framework is being applied to development of biofuel supply chain networks. The framework can provide new ways of integrating knowledge across the divides between social and natural sciences as well as between critical and problem-solving research.

  6. Advancing population ecology with integral projection models: a practical guide

    DEFF Research Database (Denmark)

    Merow, Cory; Dahlgren, Johan; Metcall, C. Jessica E.

    2014-01-01

    Integral Projection Models (IPMs) use information on how an individual's state influences its vital rates - survival, growth and reproduction - to make population projections. IPMs are constructed from regression models predicting vital rates from state variables (e.g., size or age) and covariates...... a comprehensive guide, with extensive R code, for their construction. IPMs can be applied to any stage-structured population; here we illustrate IPMs for a series of plant life histories of increasing complexity and biological realism, highlighting the utility of various regression methods for capturing...

  7. Integration of Advanced Statistical Analysis Tools and Geophysical Modeling

    Science.gov (United States)

    2012-08-01

    1.56 0.48 Beale: MetalMapper Cued: Beale_MMstat Target: 477 Cell 202 of 1547 (SOI, 2OI) Model 1 of 3 (Inv #1 / 2 = SOI: 1 / 1) Tag...Statistical classification of buried unexploded ordnance using nonparametric prior models. IEEE Trans. Geosci. Remote Sensing, 45: 2794–2806, 2007. T...Bell and B. Barrow. Subsurface discrimination using electromagnetic induction sensors. IEEE Trans. Geosci. Remote Sensing, 39:1286–1293, 2001. S. D

  8. Advancing population ecology with integral projection models: a practical guide

    DEFF Research Database (Denmark)

    Merow, Cory; Dahlgren, Johan; Metcall, C. Jessica E.

    2014-01-01

    (e.g., environment). By combining regressions of vital rates, an IPM provides mechanistic insight into emergent ecological patterns such as population dynamics, species geographic distributions, or life history strategies. Here, we review important resources for building IPMs and provide...... of regression models. Many subtleties arise when scaling from vital rate regressions to population-level patterns, so we provide a set of diagnostics and guidelines to ensure that models are biologically plausible. Moreover, IPMs can exploit a large existing suite of analytical tools developed for Matrix...

  9. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  10. PERFORMANCE STUDIES OF INTEGRATED FUZZY LOGIC CONTROLLER FOR BRUSHLESS DC MOTOR DRIVES USING ADVANCED SIMULATION MODEL

    Directory of Open Access Journals (Sweden)

    C. Subba Rami Reddy

    2011-07-01

    Full Text Available This paper introduces an Integrated fuzzy logic controller (IFLC for brushless dc (BLDC motor drives using advanced simulation model and presents a comparative study of performances of PID controller and IFLC. The dynamic characteristics of speed and torque are effectively monitored and analyzed using the proposed model. The aim of IFLC is to obtain improved performance in terms of disturbance rejection or parameter variation than obtained using PID controller. The IFLC is constructed by using Fuzzy logic controller (FLC and PID controller. A performance comparison of the controllers is also given based on the integral of the absolute value of the error (IAE, the integral of the squared error (ISE, the integral of the time-weighted absolute error (ITAE and the integral of the time-weighted squared error (ITSE. The results show the effectiveness of the proposed controller.

  11. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC): FY10 development and integration

    International Nuclear Information System (INIS)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-01-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  13. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    Energy Technology Data Exchange (ETDEWEB)

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  14. Greening the Grid: Advances in Production Cost Modeling for India Renewable Energy Grid Integration Study

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-07-12

    The Greening the Grid: Pathways to Integrate 175 Gigawatts of Renewable Energy into India's Electric Grid study uses advanced weather and power system modeling to explore the operational impacts of meeting India's 2022 renewable energy targets and identify actions that may be favorable for integrating high levels of renewable energy into the Indian grid. The study relies primarily on a production cost model that simulates optimal scheduling and dispatch of available generation in a future year (2022) by minimizing total production costs subject to physical, operational, and market constraints. This fact sheet provides a detailed look at each of these models, including their common assumptions and the insights provided by each.

  15. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL; Poore III, Willis P. [ORNL; Muhlheim, Michael David [ORNL

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  16. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  17. BALANCED SCORECARD AS AN ADVANCED MANAGEMENT CONCEPT WITHIN THE INTEGRATED QUALITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Stevan Zivojinovic

    2008-03-01

    Full Text Available The significance of >Integratedquality management< (IQM model, originating form St.Gallen-model, is reflected in the need for synergic application of new and advanced concepts of management theory and practise. Balanced score card (BSC within IQM model becomes a catalyst of business success for a modern organization by focusing on organizational variables-business strategy, organization structure and corporate culture. BSC is the leading system of performance tracking and strategy implementation, consistent with other management concepts and methods for managing process improvement. Through BSC, IQM processes' activities correlate with organization business results. BSC management processes enable integration of all decision-making levels, from institutional via strategic to operative, in the process starting from planing, i.e. formulating and implementation of strategy, to feed back by performance measurement and control.

  18. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  19. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    Science.gov (United States)

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  20. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    Science.gov (United States)

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  1. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

    International Nuclear Information System (INIS)

    Rieger, Mathias

    2014-01-01

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  2. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database

    International Nuclear Information System (INIS)

    Quock, D.E.R.; Cianciarulo, M.B.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  3. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  4. Advanced Integrated Traction System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  5. Open-Source Integrated Design-Analysis Environment for Nuclear Energy Advanced Modeling & Simulation Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2014-03-18

    Our proposal described an approach for addressing the barriers of advanced modeling and simulation (M&S) adoption by the nuclear energy industry. This will be achieved by developing a state-of-the-art, open-source integrated design-analysis environment (IDAE) to work on a range of nuclear energy applications, while leveraging best-in-class software created through millions of investment dollars from the Department of Energy (DOE) Office for Nuclear Energy (NE) and from several other funding agencies.

  6. The Attending Nurse Caring Model: integrating theory, evidence and advanced caring-healing therapeutics for transforming professional practice.

    Science.gov (United States)

    Watson, Jean; Foster, Roxie

    2003-05-01

    This paper presents a proposed model: The Attending Nursing Caring Model (ANCM) as an exemplar for advancing and transforming nursing practice within a reflective, theoretical and evidence-based context. Watson's theory of human caring is used as a guide for integrating theory, evidence and advanced therapeutics in the area of children's pain. The ANCM is offered as a programme for renewing the profession and its professional practices of caring-healing arts and science, during an era of decline, shortages, and crises in care, safety, and hospital and health reform. The ANCM elevates contemporary nursing's caring values, relationships, therapeutics and responsibilities to a higher/deeper order of caring science and professionalism, intersecting with other professions, while sustaining the finest of its heritage and traditions of healing.

  7. Advanced integrated safeguards at Barnwell

    Energy Technology Data Exchange (ETDEWEB)

    Bambas, K.J.; Barnes, L.D.

    1980-06-01

    The development and initial performance testing of an advanced integrated safeguards system at the Barnwell Nuclear Fuel Plant (BNFP) is described. The program concentrates on the integration and coordination of physical security and nuclear materials control and accounting at a single location. Hardware and software for this phase have been installed and are currently being evaluated. The AGNS/DOE program is now in its third year of development at the BNFP.

  8. Advancing a Distributive-Bargaining and Integrative-Negotiation Integral System: A Values-Based Negotiation Model (VBM

    Directory of Open Access Journals (Sweden)

    Ivan Gan

    2017-09-01

    Full Text Available The proposed values-based negotiation model (VBM agrees with and extends principled negotiation’s recognition of personal values and emotions as important negotiation elements. First, building upon Martin Buber’s existentialist treatment of religion and secularism, VBM centers on religion as one of many possible sources of personal values that informs respectful and mutually beneficial interactions without needing one to necessarily be religious. Just as one need not be a Buddhist or a Hindu to practice yoga, negotiators of any theological outlook can profit from a model grounded in broad, common tenets drawn from a range of organized religions. Second, VBM distinguishes feelings from emotions because the long-lasting and intrinsically stimulated effects of feelings have greater implications on the perception of negotiated outcomes. VBM negotiators view negotiations as a constitutive prosocial process whereby parties consider the outcome important enough to invest time and energy. Negotiators who use VBM appeal to the goodness of their counterparts by doing good first so that both parties avoid a win-lose outcome. This counterintuitive move contradicts the self-centered but understandably normal human behavior of prioritizing one’s own interests before others’ interests. However, when one appeals to the goodness of one’s Buberian Thou counterparts, he or she stimulates positive emotions that promote understanding. Third, VBM provides a framework that draws upon an individual’s personal values (religious or otherwise and reconfigures the distributive-bargaining-and-integrative-negotiation distinction so that negotiators can freely apply distributive tactics to claim maximum intangible and tangible outcomes without compromising on their personal values or valuable relationships.

  9. An integrated fuzzy-based advanced eutrophication simulation model to develop the best management scenarios for a river basin.

    Science.gov (United States)

    Srinivas, Rallapalli; Singh, Ajit Pratap

    2018-03-01

    Assessment of water quality status of a river with respect to its discharge has become prerequisite to sustainable river basin management. The present paper develops an integrated model for simulating and evaluating strategies for water quality management in a river basin management by controlling point source pollutant loadings and operations of multi-purpose projects. Water Quality Analysis and Simulation Program (WASP version 8.0) has been used for modeling the transport of pollutant loadings and their impact on water quality in the river. The study presents a novel approach of integrating fuzzy set theory with an "advanced eutrophication" model to simulate the transmission and distribution of several interrelated water quality variables and their bio-physiochemical processes in an effective manner in the Ganges river basin, India. After calibration, simulated values are compared with the observed values to validate the model's robustness. Fuzzy technique of order preference by similarity to ideal solution (F-TOPSIS) has been used to incorporate the uncertainty associated with the water quality simulation results. The model also simulates five different scenarios for pollution reduction, to determine the maximum pollutant loadings during monsoon and dry periods. The final results clearly indicate how modeled reduction in the rate of wastewater discharge has reduced impacts of pollutants in the downstream. Scenarios suggesting a river discharge rate of 1500 m 3 /s during the lean period, in addition to 25 and 50% reduction in the load rate, are found to be the most effective option to restore quality of river Ganges. Thus, the model serves as an important hydrologic tool to the policy makers by suggesting appropriate remediation action plans.

  10. Integrated methodological frameworks for modelling agent-based advanced supply chain planning systems: A systematic literature review

    Directory of Open Access Journals (Sweden)

    Luis Antonio Santa-Eulalia

    2011-12-01

    Full Text Available Purpose: The objective of this paper is to provide a systematic literature review of recent developments in methodological frameworks for the modelling and simulation of agent-based advanced supply chain planning systems.Design/methodology/approach: A systematic literature review is provided to identify, select and make an analysis and a critical summary of all suitable studies in the area. It is organized into two blocks: the first one covers agent-based supply chain planning systems in general terms, while the second one specializes the previous search to identify those works explicitly containing methodological aspects.Findings: Among sixty suitable manuscripts identified in the primary literature search, only seven explicitly considered the methodological aspects. In addition, we noted that, in general, the notion of advanced supply chain planning is not considered unambiguously, that the social and individual aspects of the agent society are not taken into account in a clear manner in several studies and that a significant part of the works are of a theoretical nature, with few real-scale industrial applications. An integrated framework covering all phases of the modelling and simulation process is still lacking in the literature visited.Research limitations/implications: The main research limitations are related to the period covered (last four years, the selected scientific databases, the selected language (i.e. English and the use of only one assessment framework for the descriptive evaluation part.Practical implications: The identification of recent works in the domain and discussion concerning their limitations can help pave the way for new and innovative researches towards a complete methodological framework for agent-based advanced supply chain planning systems.Originality/value: As there are no recent state-of-the-art reviews in the domain of methodological frameworks for agent-based supply chain planning, this paper contributes to

  11. Advances in nonhuman primate models of autism: Integrating neuroscience and behavior.

    Science.gov (United States)

    Bauman, M D; Schumann, C M

    2018-01-01

    Given the prevalence and societal impact of autism spectrum disorders (ASD), there is an urgent need to develop innovative preventative strategies and treatments to reduce the alarming number of cases and improve core symptoms for afflicted individuals. Translational efforts between clinical and preclinical research are needed to (i) identify and evaluate putative causes of ASD, (ii) determine the underlying neurobiological mechanisms, (iii) develop and test novel therapeutic approaches and (iv) ultimately translate basic research into safe and effective clinical practices. However, modeling a uniquely human brain disorder, such as ASD, will require sophisticated animal models that capitalize on unique advantages of diverse species including drosophila, zebra fish, mice, rats, and ultimately, species more closely related to humans, such as the nonhuman primate. Here we discuss the unique contributions of the rhesus monkey (Macaca mulatta) model to ongoing efforts to understand the neurobiology of the disorder, focusing on the convergence of brain and behavior outcome measures that parallel features of human ASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. An integrated model of scintillator-reflector properties for advanced simulations of optical transport

    Science.gov (United States)

    Roncali, Emilie; Stockhoff, Mariele; Cherry, Simon R.

    2017-06-01

    Accurately modeling the light transport in scintillation detectors is essential to design new detectors for nuclear medicine or high energy physics. Optical models implemented in software such as Geant4 and GATE suffer from important limitations that we addressed by implementing a new approach in which the crystal reflectance was computed from 3D surface measurements. The reflectance was saved in a look-up-table (LUT) then used in Monte Carlo simulation to determine the fate of optical photons. Our previous work using this approach demonstrated excellent agreement with experimental characterization of crystal light output in a limited configuration, i.e. when using no reflector. As scintillators are generally encapsulated in a reflector, it is essential to include the crystal-reflector interface in the LUT. Here we develop a new LUT computation and apply it to several reflector types. A second LUT that contains transmittance data is also saved to enable modeling of optical crosstalk. LUTs have been computed for rough and polished crystals coupled to a Lambertian (e.g. Teflon tape) or a specular reflector (e.g. ESR) using air or optical grease, and the light output was computed using a custom Monte Carlo code. 3  ×  3  ×  20 mm3 lutetium oxyorthosilicate crystals were prepared using these combinations, and the light output was measured experimentally at different irradiation depths. For all reflector and surface finish combinations, the measured and simulated light output showed very good agreement. The behavior of optical photons at the interface crystal-reflector was studied using these simulations, and results highlighted the large difference in optical properties between rough and polished crystals, and Lambertian and specular reflectors. These simulations also showed how the travel path of individual scintillation photons was affected by the reflector and surface finish. The ultimate goal of this work is to implement this model in Geant4 and

  13. Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

    2010-09-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  14. Challenge problem and milestones for: Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC)

    International Nuclear Information System (INIS)

    Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe Jr.

    2010-01-01

    This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

  15. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  16. Development of PIRT for Advanced Integral Reactor

    International Nuclear Information System (INIS)

    Chung, B.D.; Kim, H.C.; Bae, K.H.

    2004-01-01

    top of the shell side of the vertically mounted SG cassettes. SG is a once through type with helically coiled tubes and it consists of dozen cassettes. The secondary coolant flows inside the helical tubes. As the hot primary coolant transfer heat to the secondary coolant and becomes cold, the secondary coolant boils and turns into superheated steam at the exit. The long-term cooling of the core under emergency conditions is carried out by the Passive Residual Heat Removal System (PRHRS) in which the SG is an integral part. A panel of experts consisting of reactor safety analysts in the design team and safety analysis code development team was formed to decide on various issues in connection with the PIRT generation. The development of the PIRT for the advanced integral reactor was carried out in following steps. As a result of this study, the important thermal hydraulic phenomena for the advanced integral reactor have been identified and ranked. The PIRT shows that the heat transfer and CHFR for the fuel, the heat transfer for SG helical tubes are important in all cases. The results will be utilized in the detailed model development for the thermal-hydraulic code, and the design and data production for the experimental facility. The PIRT will also be used to enhance the reliability of the audit code to solve the safety issues during the audit of integral type reactors. In addition, it will provide guidance on the model development efforts for the safety validation of such reactor designs

  17. Advanced Microgravity Compatible, Integrated Laundry System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Microgravity Compatible, Integrated Laundry (AMCIL) is a microgravity compatible liquid / liquid vapor, two-phase laundry system with water jet...

  18. Advance Payment ACO Model

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Advance Payment Model is designed for physician-based and rural providers who have come together voluntarily to give coordinated high quality care to the...

  19. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tome, Carlos N [Los Alamos National Laboratory; Caro, J A [Los Alamos National Laboratory; Lebensohn, R A [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Arsenlis, A [LLNL; Marian, J [LLNL; Pasamehmetoglu, K [INL

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.

  20. INTEGRATED PLASMA CONTROL FOR ADVANCED TOKAMAKS

    Energy Technology Data Exchange (ETDEWEB)

    HUMPHREYS,D.A; FERRON,J.R; JOHNSON,R.D; LEUER,J.A; PENAFLOR,B.G; WALKER,M.L; WELANDER,A.S; KHAYRUTDINOV,R.R; DOKOUKA,V; EDGELL,D.H; FRANSSON,C.M

    2003-10-01

    OAK-B135 Advanced tokamaks (AT) are distinguished from conventional tokamaks by their high degree of shaping, achievement of profiles optimized for high confinement and stability characteristics, and active stabilization of MHD instabilities to attain high values of normalized beta and confinement. These high performance fusion devices thus require accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating, as well as simultaneous and well-coordinated MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Satisfying the simultaneous demands on control accuracy, reliability, and performance for all of these subsystems requires a high degree of integration in both design and operation of the plasma control system in an advanced tokamak. The present work describes the approach, benefits, and progress made in integrated plasma control with application examples drawn from the DIII-D tokamak. The approach includes construction of plasma and system response models, validation of models against operating experiments, design of integrated controllers which operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and iteration of the design-test loop to optimize performance.

  1. Advanced integrated battery testing and simulation

    Science.gov (United States)

    Liaw, Bor Yann; Bethune, Keith P.; Yang, Xiao Guang

    The recent rapid expansion in the use of portable electronics, computers, personal data assistants, cellular phones, power tools, and even electric and hybrid vehicles creates a strong demand on fast deployment of battery technologies at an unprecedented rate. To facilitate such a development integrated battery testing and simulation (IBTS) using computer modeling is an effective tool to improve our capability of rapid prototyping battery technology and facilitating concurrent product development. In this paper, we will present a state-of-the-art approach to use IBTS for improvements in battery cell design, operation optimization, and even charge control for advanced batteries.

  2. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  3. Integrating advanced 3D Mapping into Improved Hydrogeologic Frameworks, a Future path for Groundwater Modeling? Results from Western Nebraska

    Science.gov (United States)

    Cannia, J. C.; Abraham, J. D.; Peterson, S. M.; Sibray, S. S.

    2012-12-01

    The U.S. Geological Survey and its partners have collaborated to provide an innovative, advanced 3 dimensional hydrogeologic framework which was used in a groundwater model designed to test water management scenarios. Principal aquifers for the area mostly consist of Quaternary alluvium and Tertiary-age fluvial sediments which are heavily used for irrigation, municipal and environmental uses. This strategy used airborne electromagnetic (AEM) surveys, validated through sensitivity analysis of geophysical and geological ground truth to provide new geologic interpretation to characterize the hydrogeologic framework in the area. The base of aquifer created through this work leads to new interpretations of saturated thickness and groundwater connectivity to the surface water system. The current version of the groundwater model which uses the advanced hydrogeologic framework shows a distinct change in flow path orientation, timing and amount of base flow to the streams of the area. Ongoing efforts for development of the hydrogeologic framework development include subdivision of the aquifers into new hydrostratigraphic units based on analysis of geophysical and lithologic characteristics which will be incorporated into future groundwater models. The hydrostratigraphic units are further enhanced by Nuclear Magnetic Resonance (NMR) measurements to characterize aquifers. NMR measures the free water in the aquifer in situ allowing for a determination of hydraulic conductivity. NMR hydraulic conductivity values will be mapped to the hydrostratigraphic units, which in turn are incorporated into the latest versions of the groundwater model. The addition of innovative, advanced 3 dimensional hydrogeologic frameworks, which incorporates AEM and NMR, for groundwater modeling, has a definite advantage over traditional frameworks. These groundwater models represent the natural system at a level of reality not achievable by other methods, which lead to greater confidence in the

  4. Advanced Concept Modeling

    Science.gov (United States)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  5. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  6. Nuclear integrated database and design advancement system

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs.

  7. Nuclear integrated database and design advancement system

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young.

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs

  8. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  9. Summary Report for ASC L2 Milestone #4782: Assess Newly Emerging Programming and Memory Models for Advanced Architectures on Integrated Codes

    Energy Technology Data Exchange (ETDEWEB)

    Neely, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hornung, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Black, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Robinson, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    This document serves as a detailed companion to the powerpoint slides presented as part of the ASC L2 milestone review for Integrated Codes milestone #4782 titled “Assess Newly Emerging Programming and Memory Models for Advanced Architectures on Integrated Codes”, due on 9/30/2014, and presented for formal program review on 9/12/2014. The program review committee is represented by Mike Zika (A Program Project Lead for Kull), Brian Pudliner (B Program Project Lead for Ares), Scott Futral (DEG Group Lead in LC), and Mike Glass (Sierra Project Lead at Sandia). This document, along with the presentation materials, and a letter of completion signed by the review committee will act as proof of completion for this milestone.

  10. Advanced Production Planning Models

    Energy Technology Data Exchange (ETDEWEB)

    JONES,DEAN A.; LAWTON,CRAIG R.; KJELDGAARD,EDWIN A.; WRIGHT,STEPHEN TROY; TURNQUIST,MARK A.; NOZICK,LINDA K.; LIST,GEORGE F.

    2000-12-01

    >This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.

  11. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  12. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are

  13. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  14. Advancing Globally Integrated Logistics Effort 2017 Wargame Report

    Science.gov (United States)

    2017-09-01

    September 2017 Dr. M. Webster Ewell, Jr. Director, Integration and Gaming Team Advanced Technology and Systems Analysis REPORT ...To) 4. TITLE AND SUBTITLE (U) Advancing Globally Integrated Logistics Effort 2017 5a. CONTRACT NUMBER N00014-16-D-5003 Wargame Report 5b. GRANT...DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. Advancing Globally Integrated Logistics Effort

  15. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  16. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  17. Structural integrity analyses: can we manage the advances?

    International Nuclear Information System (INIS)

    Sauve, R.

    2006-01-01

    Engineering has been one of a number of disciplines in which significant advances in analysis procedures has taken place in the last two decades. In particular, advances in computer technology and engineering software have revolutionized the assessment of component structural integrity for a wide range of applications. A significant development in computational mechanics directly related to computer technology that has had a profound impact on the field of structural integrity is the finite element method. The finite element method has re-defined and expanded the role of structural integrity assessments by providing comprehensive modelling capabilities to engineers involved in design and failure analyses. As computer processing speeds and capacity have increased, so has the role of computer modelling in assessments of component structural integrity. With new product development cycles shrinking, the role of initial testing is being reduced in favour of computer modelling and simulation to assess component life and durability. For ageing structures, the evaluation of remaining life and the impact of degraded structural integrity becomes tractable with the modern advances in computational methods. The areas of structural integrity that have derived great benefit from the advances in numerical techniques include stress analysis, fracture mechanics, dynamics, heat transfer, structural reliability, probabilistic methods and continuum mechanics in general. One of the salient features of the current methods is the ability to handle large complex steady state or transient dynamic problems that exhibit highly non-linear behaviour. With the ever-increasing usage of these advanced methods, the question is posed: Can we manage the advances? Better still are we managing the advances? As with all technological advances that enter mainstream use, comes the need for education, training and certification in the application of these methods, improved quality assurance procedures and

  18. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  19. Recent advances in quantum integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F

    2005-07-01

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.

  20. Recent advances in quantum integrable systems

    International Nuclear Information System (INIS)

    Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F.

    2005-01-01

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies

  1. Optical Coherence Tomography: Advanced Modeling

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, Lars; Yura, Harold T.

    2013-01-01

    - and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...

  2. Model integration and a theory of models

    OpenAIRE

    Dolk, Daniel R.; Kottemann, Jeffrey E.

    1993-01-01

    Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...

  3. Foundational development of an advanced nuclear reactor integrated safety code.

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  4. Advances in Integrated Vehicle Health Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Debopam Acharya

    2011-07-01

    Full Text Available One of the fastest growing fields of study in defense market currently is Integrated Vehicle Health Monitoring (IVHM. These systems perform collection and analysis of data concerning operating parameters and damage information of vehicles in real-time and periodically send them to the base station for appropriate action. Recent advances in materials and sensor networks and technologies promise development of such systems for land, water, and aerial vehicles. These IVHM systems are of immense use in defense services which require their vehicles and systems to operate normally even under hostile and harsh environments. This work will discuss various issues related to IVHMs and prominent sensor technologies available to build such systems. It will also include the structure of a general purpose IVHM of a vehicle which can be used to monitor its inner operating parameters and damage information of its components.

  5. INTEGRATED CORPORATE STRATEGY MODEL

    Directory of Open Access Journals (Sweden)

    CATALINA SORIANA SITNIKOV

    2014-02-01

    Full Text Available Corporations are at present operating in demanding and highly unsure periods, facing a mixture of increased macroeconomic need, competitive and capital market dangers, and in many cases, the prospect for significant technical and regulative gap. Throughout these demanding and highly unsure times, the corporations must pay particular attention to corporate strategy. In present times, corporate strategy must be perceived and used as a function of various fields, covers, and characters as well as a highly interactive system. For the corporation's strategy to become a competitive advantage is necessary to understand and also to integrate it in a holistic model to ensure sustainable progress of corporation activities under the optimum conditions of profitability. The model proposed in this paper is aimed at integrating the two strategic models, Hoshin Kanri and Integrated Strategy Model, as well as their consolidation with the principles of sound corporate governance set out by the OECD.

  6. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  7. ADVANCED MIXING MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Dimenna, R; Tamburello, D

    2011-02-14

    height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. One of the main objectives in the waste processing is to provide feed of a uniform slurry composition at a certain weight percentage (e.g. typically {approx}13 wt% at SRS) over an extended period of time. In preparation of the sludge for slurrying, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination?

  8. Coastal Modeling System Advanced Topics

    Science.gov (United States)

    2012-06-18

    22 June 2012 - Day 5  Debugging and Problem solving  Model Calibration  Post-processing Coastal and Hydraulics Laboratory Focus of...Efficiently: • The setup process is fast and without wasted time or effort 3 Coastal and Hydraulics Laboratory 4 Coastal Modeling System (CMS) What...is the CMS? Integrated wave, current, and morphology change model in the Surface- water Modeling System (SMS). Why CMS? Operational at 10

  9. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    Science.gov (United States)

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  10. Advances in Integrated Plasma Control on DIII-D

    International Nuclear Information System (INIS)

    Walker, M.L.; Ferron, J.R.; Humphreys, D.A.

    2006-01-01

    The DIII-D experimental program in advanced tokamak (AT) physics requires extremely high performance from the DIII-D plasma control system (PCS) [B.G.Penaflor, et al., 4 th IAEA Tech. Mtg on Control and Data Acq., San Diego, CA (2003)], including simultaneous and highly accurate regulation of plasma shape, stored energy, density, and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilities. To satisfy these demanding control requirements, we apply the integrated plasma control method, consisting of construction of physics-based plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another as well as with supervisory modules, simulation of control action against off-line and actual machine control platforms, and optimization through iteration of the design-test loop. The present work describes progress in development of physics models and development and experimental application of several new model-based plasma controllers on DIII-D. We discuss experimental use of advanced shape control algorithms containing nonlinear techniques for improving control of steady state plasmas, model-based controllers for optimal rejection of edge localized mode disturbances during resistive wall mode stabilization, model-based controllers for neoclassical tearing mode stabilization, including methods for maximizing stabilization effectiveness with substantial constraints on available power, model-based integrated control of plasma rotation and beta, and initial experience in development of model-based controllers for advanced tokamak current profile modification. The experience gained from DIII-D has been applied to the development of control systems for the EAST and KSTAR tokamaks. We describe the development of the control software, hardware, and model-based control algorithms for these superconducting tokamaks, with emphasis on relevance of

  11. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    Science.gov (United States)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  12. Development of a model for integrated care at the end of life in advanced dementia: A whole systems UK-wide approach

    Science.gov (United States)

    Jones, Louise; Candy, Bridget; Davis, Sarah; Elliott, Margaret; Gola, Anna; Harrington, Jane; Kupeli, Nuriye; Lord, Kathryn; Moore, Kirsten; Scott, Sharon; Vickerstaff, Victoria; Omar, Rumana Z; King, Michael; Leavey, Gerard; Nazareth, Irwin; Sampson, Elizabeth L

    2015-01-01

    Background: The prevalence of dementia is rising worldwide and many people will die with the disease. Symptoms towards the end of life may be inadequately managed and informal and professional carers poorly supported. There are few evidence-based interventions to improve end-of-life care in advanced dementia. Aim: To develop an integrated, whole systems, evidence-based intervention that is pragmatic and feasible to improve end-of-life care for people with advanced dementia and support those close to them. Design: A realist-based approach in which qualitative and quantitative data assisted the development of statements. These were incorporated into the RAND/UCLA appropriateness method to achieve consensus on intervention components. Components were mapped to underlying theory of whole systems change and the intervention described in a detailed manual. Setting/participants: Data were collected from people with dementia, carers and health and social care professionals in England, from expert opinion and existing literature. Professional stakeholders in all four countries of the United Kingdom contributed to the RAND/UCLA appropriateness method process. Results: A total of 29 statements were agreed and mapped to individual, group, organisational and economic/political levels of healthcare systems. The resulting main intervention components are as follows: (1) influencing local service organisation through facilitation of integrated multi-disciplinary care, (2) providing training and support for formal and informal carers and (3) influencing local healthcare commissioning and priorities of service providers. Conclusion: Use of in-depth data, consensus methods and theoretical understanding of the intervention components produced an evidence-based intervention for further testing in end-of-life care in advanced dementia. PMID:26354388

  13. Integrated Assessment Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Janetos, Anthony C.; Kim, Son H.; Wise, Marshall A.; McJeon, Haewon C.

    2012-10-31

    This paper discusses the role of Integrated Assessment models (IAMs) in climate change research. IAMs are an interdisciplinary research platform, which constitutes a consistent scientific framework in which the large-scale interactions between human and natural Earth systems can be examined. In so doing, IAMs provide insights that would otherwise be unavailable from traditional single-discipline research. By providing a broader view of the issue, IAMs constitute an important tool for decision support. IAMs are also a home of human Earth system research and provide natural Earth system scientists information about the nature of human intervention in global biogeophysical and geochemical processes.

  14. The advanced microgrid. Integration and interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Ward Isaac [Ward Bower Innovations, LLC, Albuquerque, NM (United Staes); Ton, Dan T. [U.S. Dept. of Energy, Washington, DC (United States); Guttromson, Ross [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Glover, Steven F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stamp, Jason Edwin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bhatnagar, Dhruv [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reilly, Jim [Reily Associates, Pittston, PA (United States)

    2014-02-01

    This white paper focuses on "advanced microgrids," but sections do, out of necessity, reference today's commercially available systems and installations in order to clearly distinguish the differences and advances. Advanced microgrids have been identified as being a necessary part of the modern electrical grid through a two DOE microgrid workshops, the National Institute of Standards and Technology, Smart Grid Interoperability Panel and other related sources. With their grid-interconnectivity advantages, advanced microgrids will improve system energy efficiency and reliability and provide enabling technologies for grid-independence to end-user sites. One popular definition that has been evolved and is used in multiple references is that a microgrid is a group of interconnected loads and distributed-energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode. Further, an advanced microgrid can then be loosely defined as a dynamic microgrid.

  15. Integrated astrophysical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, T. A.; Eastman, R. G.; Dubois, P.; Eltgroth, P. G.; Gentile, N.; Jedamzik, K.; Wilson, J. R.

    1997-06-03

    In this project, we have developed prototype techniques for defining and extending a variety of astrophysical modeling capabilities, including those involving multidimensional hydrodynamics, complex transport, and flexibly-coupled equation-of state and nuclear reaction networks. As expected, this project is having both near-term payoffs in understanding complex astrophysical phenomena, as well as significant spin-offs in terms of people and ideas to related ASCI code efforts. Most of our work in the first part of this project was focused on the modularization, extension, and initial integration of 4 previously separate and incommensurate codes: the stellar evolution/explosion code KEPLER; the non-LTE spectral line transport code, EDDINGTON, used for modeling supernovae spectra; the 3-D smooth particle hydro code, PIP; and the discontinuous-finite-element, 3D hydro module from the lCF3D code.

  16. Integrated Environmental Assessment Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guardanz, R.; Gimeno, B. S.; Bermejo, V.; Elvira, S.; Martin, F.; Palacios, M.; Rodriguez, E.; Donaire, I. [Ciemat, Madrid (Spain)

    2000-07-01

    This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.

  17. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  18. Implementing the compassion intervention, a model for integrated care for people with advanced dementia towards the end of life in nursing homes: a naturalistic feasibility study.

    Science.gov (United States)

    Moore, Kirsten J; Candy, Bridget; Davis, Sarah; Gola, Anna; Harrington, Jane; Kupeli, Nuriye; Vickerstaff, Victoria; King, Michael; Leavey, Gerard; Nazareth, Irwin; Omar, Rumana Z; Jones, Louise; Sampson, Elizabeth L

    2017-07-10

    Many people with dementia die in nursing homes, but quality of care may be suboptimal. We developed the theory-driven 'Compassion Intervention' to enhance end-of-life care in advanced dementia. To (1) understand how the Intervention operated in nursing homes in different health economies; (2) collect preliminary outcome data and costs of an interdisciplinary care leader (ICL) to facilitate the Intervention; (3) check the Intervention caused no harm. A naturalistic feasibility study of Intervention implementation for 6 months. Two nursing homes in northern London, UK. Thirty residents with advanced dementia were assessed of whom nine were recruited for data collection; four of these residents' family members were interviewed. Twenty-eight nursing home and external healthcare professionals participated in interviews at 7 (n=19), 11 (n=19) and 15 months (n=10). An ICL led two core Intervention components: (1) integrated, interdisciplinary assessment and care; (2) education and support for paid and family carers. Process and outcome data were collected. Symptoms were recorded monthly for recruited residents. Semistructured interviews were conducted at 7, 11 and 15 months with nursing home staff and external healthcare professionals and at 7 months with family carers. ICL hours were costed using Department of Health and Health Education England tariffs. Contextual differences were identified between sites: nursing home 2 had lower involvement with external healthcare services. Core components were implemented at both sites but multidisciplinary meetings were only established in nursing home 1. The Intervention prompted improvements in advance care planning, pain management and person-centred care; we observed no harm. Six-month ICL costs were £18 255. Implementation was feasible to differing degrees across sites, dependent on context. Our data inform future testing to identify the Intervention's effectiveness in improving end-of-life care in advanced dementia

  19. Development and Integration of an Advanced Stirling Convertor Linear Alternator Model for a Tool Simulating Convertor Performance and Creating Phasor Diagrams

    Science.gov (United States)

    Metscher, Jonathan F.; Lewandowski, Edward J.

    2013-01-01

    A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.

  20. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  1. Advanced Microgravity Compatible, Integrated Laundry System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An Advanced Microgravity Compatible, Integrated laundry System (AMCILS) is proposed that uses a two phase water / water vapor system to allow good agitation of...

  2. Advanced multiresponse process optimisation an intelligent and integrated approach

    CERN Document Server

    Šibalija, Tatjana V

    2016-01-01

    This book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi’s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes.

  3. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Final report, September 29, 1993--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.W.; Buckley, J.S.; Ouenes, A.

    1997-05-01

    The goal of this three-year project was to provide a quantitative definition of reservoir heterogeneity. This objective was accomplished through the integration of geologic, geophysical, and engineering databases into a multi-disciplinary understanding of reservoir architecture and associated fluid-rock and fluid-fluid interactions. This interdisciplinary effort integrated geological and geophysical data with engineering and petrophysical results through reservoir simulation to quantify reservoir architecture and the dynamics of fluid-rock and fluid-fluid interactions. An improved reservoir description allows greater accuracy and confidence during simulation and modeling as steps toward gaining greater recovery efficiency from existing reservoirs. A field laboratory, the Sulimar Queen Unit, was available for the field research. Several members of the PRRC staff participated in the development of improved reservoir description by integration of the field and laboratory data as well as in the development of quantitative reservoir models to aid performance predictions. Subcontractors from Stanford University and the University of Texas at Austin (UT) collaborated in the research and participated in the design and interpretation of field tests. The three-year project was initiated in September 1993 and led to the development and application of various reservoir description methodologies. A new approach for visualizing production data graphically was developed and implemented on the Internet. Using production data and old gamma rays logs, a black oil reservoir model that honors both primary and secondary performance was developed. The old gamma ray logs were used after applying a resealing technique, which was crucial for the success of the project. In addition to the gamma ray logs, the development of the reservoir model benefitted from an inverse Drill Stem Test (DST) technique which provided initial estimates of the reservoir permeability at different wells.

  4. Integrated Medical Model Overview

    Science.gov (United States)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  5. Advances in the theory of box integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, J.M.; Crandall, R.E.

    2009-06-25

    Box integrals - expectations <|{rvec r}|{sup s}> or <|{rvec r}-{rvec q}|{sup s}> over the unit n-cube (or n-box) - have over three decades been occasionally given closed forms for isolated n,s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for n {le} 4 dimensions the box integrals are for any integer s hypergeometrically closed in a sense we clarify herein. For n = 5 dimensions, we show that a single unresolved integral we call K{sub 5} stands in the way of such hyperclosure proofs. We supply a compendium of exemplary closed forms that naturally arise algorithmically from this theory.

  6. Advanced techniques for efficient data integrity checking

    DEFF Research Database (Denmark)

    Martinenghi, Davide

    Integrity constraint checking, understood as the verification of data correctness and well-formedness conditions that must be satisfied in any state of a database, is not fully supported by current database technology. In a typical scenario, a database is required to comply with given semantic...... criteria (the integrity constraints) and to maintain the compliance each time data are updated. Since the introduction of the SQL2 standard, the SQL language started supporting assertions, which allow one to define general data consistency requirements expressing arbitrarily complex “business rules......” that may go beyond predefined constraints such as primary keys and foreign keys. General integrity constraints are, however, far from being widely available in commercial systems; in fact, their usage is commonly not encouraged, since the database management system would not be able to provide...

  7. Advances in urban climate modeling.

    Science.gov (United States)

    Hidalgo, Julia; Masson, Valéry; Baklanov, Alexander; Pigeon, Grégoire; Gimeno, Luis

    2008-12-01

    Cities interact with the atmosphere over a wide range of scales from the large-scale processes, which have a direct impact on global climate change, to smaller scales, ranging from the conurbation itself to individual buildings. The review presented in this paper analyzes some of the ways in which cities influence atmospheric thermodynamics and airborne pollutant transport. We present the main physical processes that characterize the urban local meteorology (the urban microclimate) and air pollution. We focus on small-scale impacts, including the urban heat island and its causes. The impact on the lower atmosphere over conurbations, air pollution in cities, and the effect on meteorological processes are discussed. An overview of the recent principal advances in urban climatology and air quality modeling in atmospheric numerical models is also presented.

  8. Advancing Instructional Communication: Integrating a Biosocial Approach

    Science.gov (United States)

    Horan, Sean M.; Afifi, Tamara D.

    2014-01-01

    Celebrating 100 years of the National Communication Association necessitates that, as we commemorate our past, we also look toward our future. As part of a larger conversation about the future of instructional communication, this essay reinvestigates the importance of integrating biosocial approaches into instructional communication research. In…

  9. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  10. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Parametric study on the glacier advancement and the integrity of a salt diapir

    International Nuclear Information System (INIS)

    Kock, Ingo

    2013-07-01

    In the present work a parameter study on the consequences for geomechanical integrity of glacier advancement above a salt diapir is presented. Different glacier thicknesses as well as speed of advancement and retreat are considered. The parameter study is conducted using a geomechanical numerical model. Results show that relevant criteria (minimum stress criterion and dilatancy criterion) may be violated during advancement of a glacier. The possibility of violating these criteria increases with increasing thickness and increasing speed.

  12. Advanced applications of boundary-integral equation methods

    International Nuclear Information System (INIS)

    Cruse, T.A.; Wilson, R.B.

    1978-01-01

    Numerical analysis has become the basic tool for both design and research problems in solid mechanics. The need for accuracy and detail, plus the availablity of the high speed computer has led to the development of many new modeling methods ranging from general purpose structural analysis finite element programs to special purpose research programs. The boundary-integral equation (BIE) method is based on classical mathematical techniques but is finding new life as a basic stress analysis tool for engineering applications. The paper summarizes some advanced elastic applications of fracture mechanics and three-dimensional stress analysis, while referencing some of the much broader developmental effort. Future emphasis is needed to exploit the BIE method in conjunction with other techniques such as the finite element method through the creation of hybrid stress analysis methods. (Auth.)

  13. Advanced structural integrity assessment procedures. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility practice in the field of methodology for the structural integrity assessment of components including relevant non-codified procedures. The scope of the meeting included deterministic and probabilistic approaches. The papers covered the following topics: Leak-before-break concepts; non-destructive examination (NDE) and surveillance results; statistical evaluation of non-destructive examination data; pressurized thermal shock evaluation; fatigue effects (including vibration); and verification qualification. The meeting was attended by 32 specialists from 8 countries. Refs, figs and tabs

  14. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  15. Advancement of the methodology for automated integration of external hazards into level 1 PSA modeling. Technical report; Weiterentwicklung der Methodik zur automatisierten Integration uebergreifender Einwirkungen in PSA-Modelle der Stufe 1. Technischer Fachbericht

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Nadine; Herb, Joachim

    2017-03-15

    In the course of the research and development project RS1539 funded by the German Federal Ministry for Economics and Energy (BMWi) the methodology for the automated integration of hazards in Level 1 PSA models has been enhanced. Thereby, the analysis tool pyRiskRobot provides the methodological framework for mapping a generic spectrum of internal and external hazards onto complex PSA plant models. The reimplementation of the software tool via the programming language python extends the applicability and facilitates the handling of pyRiskRobot in comparison to the previous Ruby-based version RiskRobot. Moreover, the development of functions to perform the topological modelling of fault trees and the probabilistic specification of modified fault tree elements have been continued. Due to the reimplementation and further developments, the tool enables to systematically generate fault trees of varying complexity, to flexibly integrate fault trees in existing PSA models and to automatically duplicate interconnected topologies. Thus, pyRiskRobot allows the efficient and traceable realization of hazard specific, usually laborious modifications of PSA models. In addition, pyRiskRobot has been extended to serve as a functional interface between the data compilations comprising the potential influences of hazards on PSA relevant components and the data base of a PSA plant model. Based on this conceptual design, additional analyses of the data can be carried out prior to the integration within the PSA model topology. The reimplemented functionalities of pyRiskRobot have been validated with respect to reference applications, such as the modelling of an internal fire scenario, against the previous version RiskRobot. The existing method collection for the automated modification of fault tree topologies has been extended based on the requirements for further applications, among others the modelling of an external flooding scenario. The deduced hazard specific modelling approaches

  16. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Pressey, Robert L; Ban, Natalie C; Brodie, Jon

    2015-01-01

    study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management.

  17. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection

    Science.gov (United States)

    Álvarez-Romero, Jorge G.; Pressey, Robert L.; Ban, Natalie C.; Brodie, Jon

    2015-01-01

    study demonstrates a practical approach to integrating models of catchments, land-use change, and river plumes with conservation planning software to inform prioritisation of catchment management. PMID:26714166

  18. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  19. CFD Analysis for Advanced Integrated Head Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Won Ho; Kang, Tae Kyo; Cho, Yeon Ho; Kim, Hyun Min [KEPCO Engineering and Construction Co., Daejeon (Korea, Republic of)

    2016-10-15

    The Integrated Head Assembly (IHA) is permanently installed on the reactor vessel closure head during the normal plant operation and refueling operation. It consists of a number of systems and components such as the head lifting system, seismic support system, Control Element Drive Mechanism (CEDM) cooling system, cable support system, cooling shroud assemblies. With the operating experiences of the IHA, the needs for the design change to the current APR1400 IHA arouse to improve the seismic resistance and to accommodate the convenient maintenance. In this paper, the effects of the design changes were rigorously studied for the various sizes of the inlet openings to assure the proper cooling of the CEDMs. And the system pressure differentials and required flow rate for the CEDM cooling fan were analyzed regarding the various operating conditions for determining the capacity of the fan. As a part of the design process of the AIHA, the number of air inlets and baffle regions are reduced by simplifying the design of the APR1400 IHA. The design change of the baffle regions has been made such that the maximum possible space are occupied inside the IHA cooling shroud shell while avoiding the interference with CEDMs. So, only the air inlet opening was studied for the design change to supply a sufficient cooling air flow for each CEDM. The size and location of the air inlets in middle cooling shroud assembly were determined by the CFD analyses of the AIHA. And the case CFD analyses were performed depending on the ambient air temperature and fan operating conditions. The size of the air inlet openings is increased by comparison with the initial AIHA design, and it is confirmed that the cooling air flow rate for each CEDM meet the design requirement of 800 SCFM ± 10% with the increased air inlets. At the initial analysis, the fan outlet flow rate was assumed as 48.3 lbm/s, but the result revealed that the less outflow rate at the fan is enough to meet the design requirement

  20. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing...

  1. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  2. Integrability of the Rabi model.

    Science.gov (United States)

    Braak, D

    2011-09-02

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  3. IMMIGRANTS’ INTEGRATION MODELS

    Directory of Open Access Journals (Sweden)

    CARMEN UZLĂU

    2012-05-01

    Full Text Available In the context of the European population aging trend, and while the birth rate is still at a low level, the immigrants may contribute to the support of the EU economy and to finance the national social protection systems. But this would be possible only if they have been fully integrated in the host countries, the integration policies being a task of the national governments. The European Union may still offer support and stimulation through financing, policies coordination and good practices exchange facilitation. The new measures should encourage local level actions, including cooperation between local authorities, employers, migrants’ organizations, service providers and local population. Within the EU, there live 20.1 million immigrants (approximately 4% of the entire population coming from outside European area. An important element of the common EU policy on immigration is the one regarding the development of a policy on immigrants’ integration, which should provide a fair treatment within the member states, and guarantee rights and obligations comparable with the ones of the Union citizens.

  4. The Educational Situation Quality Model: Recent Advances

    Science.gov (United States)

    Doménech-Betoret, Fernando

    2018-01-01

    The purpose of this work was to present an educational model developed in recent years entitled the “The Educational Situation Quality Model” (MOCSE, acronym in Spanish). MOCSE can be defined as an instructional model that simultaneously considers the teaching-learning process, where motivation plays a central role. It explains the functioning of an educational setting by organizing and relating the most important variables which, according to the literature, contribute to student learning. Besides being a conceptual framework, this model also provides a methodological procedure to guide research and to promote reflection in the classroom. It allows teachers to implement effective research-action programs to improve teacher–students satisfaction and learning outcomes in the classroom context. This work explains the model’s characteristics and functioning, recent advances, and how teachers can use it in an educational setting with a specific subject. This proposal integrates approaches from several relevant psycho-educational theories and introduces a new perspective into the existing literature that will allow researchers to make progress in studying educational setting functioning. The initial MOCSE configuration has been refined over time in accordance with the empirical results obtained from previous research, carried out within the MOCSE framework and with the subsequent reflections that derived from these results. Finally, the contribution of the model to improve learning outcomes and satisfaction, and its applicability in the classroom, are also discussed. PMID:29593623

  5. The Educational Situation Quality Model: Recent Advances

    Directory of Open Access Journals (Sweden)

    Fernando Doménech-Betoret

    2018-03-01

    Full Text Available The purpose of this work was to present an educational model developed in recent years entitled the “The Educational Situation Quality Model” (MOCSE, acronym in Spanish. MOCSE can be defined as an instructional model that simultaneously considers the teaching-learning process, where motivation plays a central role. It explains the functioning of an educational setting by organizing and relating the most important variables which, according to the literature, contribute to student learning. Besides being a conceptual framework, this model also provides a methodological procedure to guide research and to promote reflection in the classroom. It allows teachers to implement effective research-action programs to improve teacher–students satisfaction and learning outcomes in the classroom context. This work explains the model’s characteristics and functioning, recent advances, and how teachers can use it in an educational setting with a specific subject. This proposal integrates approaches from several relevant psycho-educational theories and introduces a new perspective into the existing literature that will allow researchers to make progress in studying educational setting functioning. The initial MOCSE configuration has been refined over time in accordance with the empirical results obtained from previous research, carried out within the MOCSE framework and with the subsequent reflections that derived from these results. Finally, the contribution of the model to improve learning outcomes and satisfaction, and its applicability in the classroom, are also discussed.

  6. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/ display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation

  7. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  8. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  9. Design and verification of the integration of simulation environments, models of a nucleo electric plant and advanced computation languages, in the creation of multimedia applications for training and teaching

    International Nuclear Information System (INIS)

    Sanchez B, A.

    2004-01-01

    The design process of a reliable and stable integration system is presented among the models that represent present elements in a nucleo electric plant and advanced programming environments in Windows platform. In particular it is analyzed in the case of the integration of the pattern corresponding to the system of feeding water and their associate controller in a graphic structure and of control of superior graphic capacities to the existent desk simulators, mainly because it gives direct access to the graph area and of maximum speed in their execution. In turn it is proven the capacity of the models to behave chord to the prospective answer for that type of systems and a comparative of the found answers is made directly in the models and that shown graphically. They are also described the characteristics that provide to the execution of real time, and jointly, a panorama of the diverse possibilities of representation of the graphic interface is given. Also, the capacities of the simulation environments are analyzed and of used programming, highlighting the advantages and disadvantages that took to the elected solution, considering the support objective in training and teaching. The design proposes a reliable methodology that can be used in the development of simulators, in graphic demonstration of concepts, prototypes, among other applications. (Author)

  10. Integrated Debugging of Modelica Models

    Directory of Open Access Journals (Sweden)

    Adrian Pop

    2014-04-01

    Full Text Available The high abstraction level of equation-based object-oriented (EOO languages such as Modelica has the drawback that programming and modeling errors are often hard to find. In this paper we present integrated static and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those problems. The goal is an integrated debugging framework that combines classical debugging techniques with special techniques for equation-based languages partly based on graph visualization and interaction. To our knowledge, this is the first Modelica debugger that supports both equation-based transformational and algorithmic code debugging in an integrated fashion.

  11. Advances in the spatially distributed ages-w model: parallel computation, java connection framework (JCF) integration, and streamflow/nitrogen dynamics assessment

    Science.gov (United States)

    AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scala...

  12. Integrated Medical Model – Chest Injury Model

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Medical Capability (ExMC) Element of NASA's Human Research Program (HRP) developed the Integrated Medical Model (IMM) to forecast the resources...

  13. Integrated modeling for the VLTI

    Science.gov (United States)

    Muller, Michael; Wilhelm, Rainer C.; Baier, Horst J.; Koch, Franz

    2004-07-01

    Within the scope of the Very Large Telescope Interferometer (VLTI) project, ESO has developed a software package for integrated modeling of single- and multi-aperture optical telescopes. Integrated modeling is aiming at time-dependent system analysis combining different technical disciplines (optics, mechanical structure, control system with sensors and actuators, environmental disturbances). This allows multi-disciplinary analysis and gives information about cross-coupling effects for system engineering of complex stellar interferometers and telescopes. At the moment the main components of the Integrated Modeling Toolbox are BeamWarrior, a numerical tool for optical analysis of single- and multi-aperture telescopes, and the Structural Modeling Interface, which allows to generate Simulink blocks with reduced size from Finite Element Models of a telescope structure. Based on these tools, models of the various subsystems (e.g. telescope, delay line, beam combiner, atmosphere) can be created in the appropriate disciplines (e.g. optics, structure, disturbance). All subsystem models are integrated into the Matlab/Simulink environment for dynamic control system simulations. The basic output of the model is a complete description of the time-dependent electromagnetic field in each interferometer arm. Alternatively, a more elaborated output can be created, such as an interference fringe pattern at the focus of a beam combining instrument. The concern of this paper is the application of the modeling concept to large complex telescope systems. The concept of the Simulink-based integrated model with the main components telescope structure, optics and control loops is presented. The models for wind loads and atmospheric turbulence are explained. Especially the extension of the modeling approach to a 50 - 100 m class telescope is discussed.

  14. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    of structural modelling and materials concepts will both operational in both identifying important research issues and in answering the ‘real’ needs of society. Integrated materials-structural models will allow synergy to develop between materials and structural research. On one side the structural modelling......Reliable service life models for load carrying structures are significant elements in the evaluation of the performance and sustainability of existing and new structures. Furthermore, reliable service life models are prerequisites for the evaluation of the sustainability of maintenance strategies...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  15. The Integrated Curriculum Model (ICM)

    Science.gov (United States)

    VanTassel-Baska, Joyce; Wood, Susannah

    2010-01-01

    This article explicates the Integrated Curriculum Model (ICM) which has been used worldwide to design differentiated curriculum, instruction, and assessment units of study for gifted learners. The article includes a literature review of appropriate curriculum features for the gifted, other extant curriculum models, the theoretical basis for the…

  16. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  17. CTBT integrated verification system evaluation model supplement

    International Nuclear Information System (INIS)

    EDENBURN, MICHAEL W.; BUNTING, MARCUS; PAYNE, ARTHUR C. JR.; TROST, LAWRENCE C.

    2000-01-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0

  18. Sustaining high energy efficiency in existing processes with advanced process integration technology

    International Nuclear Information System (INIS)

    Zhang, Nan; Smith, Robin; Bulatov, Igor; Klemeš, Jiří Jaromír

    2013-01-01

    Highlights: ► Process integration with better modelling and more advanced solution methods. ► Operational changes for better environmental performance through optimisation. ► Identification of process integration technology for operational optimisation. ► Systematic implementation procedure of process integration technology. ► A case study with crude oil distillation to demonstrate the operational flexibility. -- Abstract: To reduce emissions in the process industry, much emphasis has been put on making step changes in emission reduction, by developing new process technology and making renewable energy more affordable. However, the energy saving potential of existing systems cannot be simply ignored. In recent years, there have been significant advances in process integration technology with better modelling techniques and more advanced solution methods. These methods have been applied to the new design and retrofit studies in the process industry. Here attempts are made to apply these technologies to improve the environmental performance of existing facilities with operational changes. An industrial project was carried out to demonstrate the importance and effectiveness of exploiting the operational flexibility for energy conservation. By applying advanced optimisation technique to integrate the operation of distillation and heat recovery in a crude oil distillation unit, the energy consumption was reduced by 8% without capital expenditure. It shows that with correctly identified technology and the proper execution procedure, significant energy savings and emission reduction can be achieved very quickly without major capital expenditure. This allows the industry to improve its economic and environment performance at the same time.

  19. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  20. Integrated Ecological-Economic Models

    OpenAIRE

    John Tschirhart

    2009-01-01

    Scientific evidence suggests that economic activity is threatening global biodiversity in ways that could severely degrade nature's flow of ecosystem services. Yet, there is relatively little work in economics that addresses biodiversity loss. Some economists have called for better integration of economic and ecological models to address biodiversity and the attendant ecosystem services. Current integrated approaches in economics are discussed, and they take in ecosystem services, ecosystem e...

  1. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.

    2004-01-01

    and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally...

  2. Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Sacit M [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

    2012-06-01

    The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

  3. Enabling model customization and integration

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2003-09-01

    Until fairly recently, the idea of dynamic model content and presentation were treated synonymously. For example, if one was to take a data flow network, which captures the dynamics of a target system in terms of the flow of data through nodal operators, then one would often standardize on rectangles and arrows for the model display. The increasing web emphasis on XML, however, suggests that the network model can have its content specified in an XML language, and then the model can be represented in a number of ways depending on the chosen style. We have developed a formal method, based on styles, that permits a model to be specified in XML and presented in 1D (text), 2D, and 3D. This method allows for customization and personalization to exert their benefits beyond e-commerce, to the area of model structures used in computer simulation. This customization leads naturally to solving the bigger problem of model integration - the act of taking models of a scene and integrating them with that scene so that there is only one unified modeling interface. This work focuses mostly on customization, but we address the integration issue in the future work section.

  4. Advanced remote handling for future applications: The advanced integrated maintenance system

    International Nuclear Information System (INIS)

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System

  5. System design and control integration for advanced manufacturing

    CERN Document Server

    Li, Han-Xiong

    2014-01-01

    Most existing robust design books address design for static systems, or achieve robust design from experimental data via the Taguchi method. Little work considers model information for robust design particularly for the dynamic system. This book covers robust design for both static and dynamic systems using the nominal model information or the hybrid model/data information, and also integrates design with control under a large operating region. This design can handle strong nonlinearity and more uncertainties from model and parameters.

  6. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  7. An architecture for integration of multidisciplinary models

    DEFF Research Database (Denmark)

    Belete, Getachew F.; Voinov, Alexey; Holst, Niels

    2014-01-01

    , Enterprise Application Integration, and Integration Design Patterns. We developed an architecture of a multidisciplinary model integration framework that brings these three aspects of integration together. Service-oriented-based platform independent architecture that enables to establish loosely coupled...

  8. Advances in Probabilistic Model Checking

    NARCIS (Netherlands)

    Katoen, Joost P.; Barthe, G.; Hermenegildo, M.

    Random phenomena occur in many applications: security, communication protocols, distributed algorithms, and performance and dependability analysis, to mention a few. In the last two decades, efficient model-checking algorithms and tools have been developed to support the automated verification of

  9. Integrated assessment models of global climate change

    International Nuclear Information System (INIS)

    Parson, E.A.; Fisher-Vanden, K.

    1997-01-01

    The authors review recent work in the integrated assessment modeling of global climate change. This field has grown rapidly since 1990. Integrated assessment models seek to combine knowledge from multiple disciplines in formal integrated representations; inform policy-making, structure knowledge, and prioritize key uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly between socio-economic and bio-physical processes. They may combine simplified representations of the socio-economic determinants of greenhouse gas emissions, the atmosphere and oceans, impacts on human activities and ecosystems, and potential policies and responses. The authors summarize current projects, grouping them according to whether they emphasize the dynamics of emissions control and optimal policy-making, uncertainty, or spatial detail. They review the few significant insights that have been claimed from work to date and identify important challenges for integrated assessment modeling in its relationships to disciplinary knowledge and to broader assessment seeking to inform policy- and decision-making. 192 refs., 2 figs

  10. Holistic integrative medicine: toward a new era of medical advancement.

    Science.gov (United States)

    Fan, Daiming

    2017-03-01

    Medicine has encountered unprecedented problems associated with changes in nature, society, and environment, as well as with new human quests for survival, longevity, and health. In the meantime, the development of medicine is facing challenges that resulted from the over-division and specialization of disciplines and the fragmentation of medical knowledge. To construct a new medical system that is more suitable for human health and disease treatment, holistic integrative medicine (HIM), which regards the human body as a holistic entity, organically integrates the most advanced knowledge and theories in each medical field and the most effective practices in various clinical specialties to revise and adjust on the basis of social, environmental, and psychological conditions. HIM is the inevitable and necessary direction for the future development of medicine. In this article, we illustrated the connotation of HIM, the differences between HIM and other medical conceptions, and the practice of HIM in recent years.

  11. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    Science.gov (United States)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  12. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  13. Integrated modeling: a look back

    Science.gov (United States)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  14. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  15. -Advanced Models for Tsunami and Rogue Waves

    Directory of Open Access Journals (Sweden)

    D. W. Pravica

    2012-01-01

    Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.

  16. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  17. Mobile impurities in integrable models

    Directory of Open Access Journals (Sweden)

    Andrew S. Campbell, Dimitri M. Gangardt

    2017-08-01

    Full Text Available We use a mobile impurity or depleton model to study elementary excitations in one-dimensional integrable systems. For Lieb-Liniger and bosonic Yang-Gaudin models we express two phenomenological parameters characterising renormalised inter- actions of mobile impurities with superfluid background: the number of depleted particles, $N$ and the superfluid phase drop $\\pi J$ in terms of the corresponding Bethe Ansatz solution and demonstrate, in the leading order, the absence of two-phonon scattering resulting in vanishing rates of inelastic processes such as viscosity experienced by the mobile impurities

  18. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics that was given by Haldane admits a 'statistical interaction' between distinguishable particles (multispecies statistics). For such statistics, thermodynamic quantities can be evaluated exactly; explicit expressions are presented here for cluster coefficients. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models of the Calogero-Sutherland type. The interesting questions of generalizing this correspondence to the higher-dimensional and the multispecies cases remain essentially open; however, our results provide some hints as to searches for the models in question

  19. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  20. Seawater desalination using an advanced small integral reactor - SMART

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Chang, Moon Hee; Lee, Man Ki

    1999-01-01

    A concept of a dual-purpose integrated nuclear desalination plant coupled with the advanced small integral reactor SMART was established. The design concept of the plant aims to produce 40,000m 5 /day of water with the MED process and to generate about 90 MWe of electricity. In order to examine the technical, economic, and safety considerations in coupling SMART with desalination, a preliminary analysis on water production costs and a safety review of potential disturbances of the integrated nuclear desalination plant have been performed. The results of economic evaluation show that the use of SMART for seawater desalination is either comparative to or more economical, with respect to the water production cost, than the use of fossil fuels in comparison with the data published by the IAEA. It was also found that any possible transient event of the desalination plant does not impact on the reactor safety. The key safety parameters of the transient events induced by the potential disturbances of the desalination plant are bounded by the limits of safety analysis of SMART

  1. Seawater desalination using an advanced small integral reactor - SMART

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Chang, Moon Hee; Lee, Man Ki [KAERI, Taejon (Korea, Republic of)

    1999-05-01

    A concept of a dual-purpose integrated nuclear desalination plant coupled with the advanced small integral reactor SMART was established. The design concept of the plant aims to produce 40,000m{sup 5}/day of water with the MED process and to generate about 90 MWe of electricity. In order to examine the technical, economic, and safety considerations in coupling SMART with desalination, a preliminary analysis on water production costs and a safety review of potential disturbances of the integrated nuclear desalination plant have been performed. The results of economic evaluation show that the use of SMART for seawater desalination is either comparative to or more economical, with respect to the water production cost, than the use of fossil fuels in comparison with the data published by the IAEA. It was also found that any possible transient event of the desalination plant does not impact on the reactor safety. The key safety parameters of the transient events induced by the potential disturbances of the desalination plant are bounded by the limits of safety analysis of SMART.

  2. Extending the Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2016-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…

  3. A Contemporary Paradigm: Integrating Spirituality in Advance Care Planning.

    Science.gov (United States)

    Lutz, Katie; Rowniak, Stefan R; Sandhu, Prabjot

    2018-04-01

    In the 25 years since advance care planning first drew the attention of the national healthcare and legal systems, gains in the rate of advance care directive completion have been negligible despite the effort of researchers, ethicists, and lawmakers. With the benefit of sophisticated healthcare technology, patients are living longer. Despite the benefits of increased longevity, it is widely acknowledged that enough has not been done to adequately address end-of-life care decisions at the crossroads between medical futility and quality of life. To arrive at a solution, researchers have focused on patient self-reflection, provider attitudes, health literacy, communication and the logistics of surrogacy, setting, payment, and documentation. However, a survey of the literature reveals one conspicuously absent theme. It is a phenomenon one would expect in the context of end-of-life discussion and decision making, that of spiritual inquiry. This article explores the history leading up and past approaches to advance care planning and then suggests the use of a theoretical model and a body of work concerning spiritual care as a new tack in the ongoing development of advance care planning.

  4. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  5. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    Booth, T.

    2000-01-01

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  6. Integrity evaluation for steam generator tube of system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kim, J. S.; Jin, T. E.; Jeong, M. J.; Choi, Y. H.; Jeo, J. C.

    2003-01-01

    In this study, the structural integrity for SG tube of system integrated modular advanced reactor, which is subjected to dominant external pressure as well as helical type, is evaluated using the commercial finite element package ABAQUS and the American petrochemical industry code API 579 Appendix B. First of all, the crack behavior under the assumption of local heating is assessed using ABAQUS. And, the buckling behavior of tube with 40% wall thinning is assessed using API 579 Appendix B. As a result, it is found that the crack closure phenomenon occurs under external pressure and the buckling doesn't occur even if 40% wall thinning exists in tube

  7. Cotangent Models for Integrable Systems

    Science.gov (United States)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  8. Women's career advancement in organisations: Integrative framework for research

    Directory of Open Access Journals (Sweden)

    Mišić-Andrić Marijana

    2015-01-01

    Full Text Available Contemporary organisations, caught in the middle of global economic and social crisis, are facing different business challenges, having to respond to quick changes in business environment and demographic changes in workforce composed by increasing number of women. Although the number of women in workforce is on the rise, they are still underrepresented in manager positions, especially higher management. This implies that certain barriers are in place which makes difficult for women to develop their careers, especially in reaching manager positions. The aim of this paper is to analyse and present a theoretical framework for further study of professional carrier advancement for women. The paper especially analyse integrative theoretical framework which stresses the equal importance of researching individual factors (personal influence and organisational factors (social inclusion, having in mind how the organisational context can improve or deter women's carrier. The paper presents possible directions for future research based on the analysis of the theoretical framework and especially individual and organisational factors.

  9. Thermal modelling of Advanced LIGO test masses

    International Nuclear Information System (INIS)

    Wang, H; Dovale Álvarez, M; Mow-Lowry, C M; Freise, A; Blair, C; Brooks, A; Kasprzack, M F; Ramette, J; Meyers, P M; Kaufer, S; O’Reilly, B

    2017-01-01

    High-reflectivity fused silica mirrors are at the epicentre of today’s advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors’ performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5–2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered onto the ring heater. (paper)

  10. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  11. Integrated Resource Planning Model (IRPM)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The Integrated Resource Planning Model (IRPM) is a decision-support software product for resource-and-capacity planning. Users can evaluate changing constraints on schedule performance, projected cost, and resource use. IRPM is a unique software tool that can analyze complex business situations from a basic supply chain to an integrated production facility to a distributed manufacturing complex. IRPM can be efficiently configured through a user-friendly graphical interface to rapidly provide charts, graphs, tables, and/or written results to summarize postulated business scenarios. There is not a similar integrated resource planning software package presently available. Many different businesses (from government to large corporations as well as medium-to-small manufacturing concerns) could save thousands of dollars and hundreds of labor hours in resource and schedule planning costs. Those businesses also could avoid millions of dollars of revenue lost from fear of overcommitting or from penalties and lost future business for failing to meet promised delivery by using IRPM to perform what-if business-case evaluations. Tough production planning questions that previously were left unanswered can now be answered with a high degree of certainty. Businesses can anticipate production problems and have solutions in hand to deal with those problems. IRPM allows companies to make better plans, decisions, and investments.

  12. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  13. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  14. The anchor integration model: A descriptive model of anchoring effects.

    Science.gov (United States)

    Turner, Brandon M; Schley, Dan R

    2016-11-01

    Few experimental effects in the psychology of judgment and decision making have been studied as meticulously as the anchoring effect. Although the existing literature provides considerable insight into the psychological processes underlying anchoring effects, extant theories up to this point have only generated qualitative predictions. While these theories have been productive in advancing our understanding of the underlying anchoring process, they leave much to be desired in the interpretation of specific anchoring effects. In this article, we introduce the Anchor Integration Model (AIM) as a descriptive tool for the measurement and quantification of anchoring effects. We develop two versions the model: one suitable for assessing between-participant anchoring effects, and another for assessing individual differences in anchoring effects. We then fit each model to data from two experiments, and demonstrate the model's utility in describing anchoring effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  16. Nuclear fuel: modelling the advanced plutonium assembly

    International Nuclear Information System (INIS)

    Kaoua, Th.; Lenain, R.

    2004-01-01

    The benefits of modeling in the nuclear sector are illustrated by the example of the design study for a new plutonium fuel assembly, APA, capable of ensuring maximum consumption of this fuel in pressurized-water reactors. Beyond the physical design of the assembly and its integration into the reactor, this serves for the working out of a complete materials flow and assists in modeling production from the entire inventory of nuclear power stations. (authors)

  17. THE INTEGRATION PROCESS MERCOSUR IN 2007 BY MODEL OF GLOBAL DIMENSION OF REGIONAL INTEGRATION

    Directory of Open Access Journals (Sweden)

    André Bechlin

    2013-04-01

    Full Text Available This paper aimed to analyze the advance of the regional integration process in the MERCOSUR (Southern Common Market, using a model developed for Professor Mario Ruiz Estrada, of the College of Economy and Administration of the University of Kuala Lumpur in Malaysia, the GDRI (Global Dimension of Regional Integration Model and that as characteristic has differentiated the use of other variable for analysis, that not specifically of economic origin, derivatives of the evolution of the commerce processes. When inferring and comparing the external performance of the economies that compose the Mercosur, evaluating itself the impacts of the advance of the process of regional and commercial integration, are evidents the inequalities that exist in the block. However, a common evolution is observed, in the direction of intensification of the integration between the economies, mainly after the process of opening lived for the continent, beyond the advance of the integration in the context of the Mercosur, from the decade of 1990. The analyzed data show that, in the generality, these economies are if integrating to the world-wide market, and in parallel, accenting the integration degree enters the members of the block.

  18. Towards an Integrative Model of Knowledge Transfer

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call...... of the European Commission to improve the European market for KT between research institutions and industry. Two, various barriers exist that hinder efficient KT in Europe, especially in transition economies that recently joined the EU where the issues of restructuring higher education, building trust between...... business and academia, and implementing the respective legislature are enduring. The research objectives were to explore (i) the process of knowledge transfer in universities, including the nature of tensions, obstacles and incentives, (ii) the relationships between key stakeholders in the KT market...

  19. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  20. The Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2015-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be targeted for…

  1. Advanced field-solver techniques for RC extraction of integrated circuits

    CERN Document Server

    Yu, Wenjian

    2014-01-01

    Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...

  2. Advancing waterborne pathogen modelling: lessons from global nutrient export models

    NARCIS (Netherlands)

    Vermeulen, L.C.; Hofstra, N.; Kroeze, C.; Medema, G.J.

    2015-01-01

    Waterborne pathogens cause health problems worldwide. A global waterborne pathogen model could provide valuable new insights for data-sparse regions, by identifying pathogen hotspots and evaluating global change and risk management scenarios. Global waterborne pathogen modelling is not as advanced

  3. Advanced Small Modular Reactor Economics Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  4. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  5. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  6. [Application of clinical nursing path integrated with holistic nursing in advanced schistosomiasis patients with ascites].

    Science.gov (United States)

    Mei-Zhi, Yuan; Jing-Ru, Sun; Tao, Chen; Xiao-Yu, Zhang; Liang-Cai, He; Jia-Song, Wang

    2016-05-12

    To evaluate the effect of the clinical nursing path integrated with the holistic nursing on advanced schistosomiasis patients with ascites. A total of 226 advanced schistosomiasis patients with ascites were randomly divided into a control group and an experimental group (113 cases each group). The subjects in the experimental group were nursed by the clinical nursing path integrated with the holistic nursing, while those in the control group were nursed only by the holistic nursing. Then the clinical relevant indexes of the two groups were observed, and the quality of life of the patients before and after hospital discharge was assessed. The improvement rate, satisfaction degree, and awareness rate of health knowledge of the patients in the experiment group were 93.8%, 100% and 97.4%, respectively, which were significantly higher than those of the control group (all P holistic nursing can effectively improve the improvement rate and decrease the mortality of the advanced schistosomiasis patients with ascites; meanwhile, it can shorten the hospitalization time and save the hospitalization cost. Therefore, this nursing model is suitable for popularization and application in the treatment and nursing work of the advanced schistosomiasis assistance.

  7. Integrating research and advanced microscopy into the high school curriculum

    Science.gov (United States)

    Queenan, Craig; Calabro, Alyssa; Becker, David

    2012-06-01

    The Bergen County Academies (BCA) is a public magnet high school in New Jersey focused on science, technology, engineering and mathematics (STEM) education. The research program offered at the school offers students the opportunity to conduct, present and defend their own scientific research using advanced tools and techniques, including scientific equipment unavailable in most high schools, such as scanning and transmission electron microscopes. Through their journey into research, students are given a skill set that can be transferred to future education and their careers, and will help shape the next generation of leaders in the fields of science, technology, engineering and math. By serving as an educational model for reformed STEM education, BCA is at the forefront of what STEM education in the United States will look like in the years ahead.

  8. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  9. Advances in statistical models for data analysis

    CERN Document Server

    Minerva, Tommaso; Vichi, Maurizio

    2015-01-01

    This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.

  10. Integrated Control Modeling for Propulsion Systems Using NPSS

    Science.gov (United States)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  11. Advances in Sun-Earth Connection Modeling

    International Nuclear Information System (INIS)

    Ganguli, S.B.; Gavrishchaka, V.V.

    2003-01-01

    Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed

  12. AFDM: An advanced fluid-dynamics model

    International Nuclear Information System (INIS)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices

  13. Advances in transgenic animal models and techniques.

    Science.gov (United States)

    Ménoret, Séverine; Tesson, Laurent; Remy, Séverine; Usal, Claire; Ouisse, Laure-Hélène; Brusselle, Lucas; Chenouard, Vanessa; Anegon, Ignacio

    2017-10-01

    On May 11th and 12th 2017 was held in Nantes, France, the international meeting "Advances in transgenic animal models and techniques" ( http://www.trm.univ-nantes.fr/ ). This biennial meeting is the fifth one of its kind to be organized by the Transgenic Rats ImmunoPhenomic (TRIP) Nantes facility ( http://www.tgr.nantes.inserm.fr/ ). The meeting was supported by private companies (SONIDEL, Scionics computer innovation, New England Biolabs, MERCK, genOway, Journal Disease Models and Mechanisms) and by public institutions (International Society for Transgenic Technology, University of Nantes, INSERM UMR 1064, SFR François Bonamy, CNRS, Région Pays de la Loire, Biogenouest, TEFOR infrastructure, ITUN, IHU-CESTI and DHU-Oncogeffe and Labex IGO). Around 100 participants, from France but also from different European countries, Japan and USA, attended the meeting.

  14. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  15. Advances in electromagnetic models for three-dimensional nondestructive evaluation of advanced composites

    Science.gov (United States)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2016-02-01

    In past work we have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we applied rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. In addition, we have given examples of the solution of forward and inverse problems using these algorithms.

  16. Advances in a Distributed Approach for Ocean Model Data Interoperability

    Directory of Open Access Journals (Sweden)

    Richard P. Signell

    2014-03-01

    Full Text Available An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC Sensor Observation Service (SOS, a metadata standard for unstructured grid model output (UGRID, and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS® Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  17. Advances in a distributed approach for ocean model data interoperability

    Science.gov (United States)

    Signell, Richard P.; Snowden, Derrick P.

    2014-01-01

    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  18. Advances in transitional flow modeling applications to helicopter rotors

    CERN Document Server

    Sheng, Chunhua

    2017-01-01

    This book provides a comprehensive description of numerical methods and validation processes for predicting transitional flows based on the Langtry–Menter local correlation-based transition model, integrated with both one-equation Spalart–Allmaras (S–A) and two-equation Shear Stress Transport (SST) turbulence models. A comparative study is presented to combine the respective merits of the two coupling methods in the context of predicting the boundary-layer transition phenomenon from fundamental benchmark flows to realistic helicopter rotors. The book will of interest to industrial practitioners working in aerodynamic design and the analysis of fixed-wing or rotary wing aircraft, while also offering advanced reading material for graduate students in the research areas of Computational Fluid Dynamics (CFD), turbulence modeling and related fields.

  19. Grid Integration Studies: Advancing Clean Energy Planning and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Integrating significant variable renewable energy (VRE) into the grid requires an evolution in power system planning and operation. To plan for this evolution, power system stakeholders can undertake grid integration studies. This Greening the Grid document reviews grid integration studies, common elements, questions, and guidance for system planners.

  20. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  1. Integration of advanced feedback control techniques on Tore Supra

    International Nuclear Information System (INIS)

    Barana, O.; Basiuk, V.; Bucalossi, J.

    2006-01-01

    Tore Supra tokamak plays an important role in development and optimisation of steady-state scenarios. Its real-time feedback control system is a key instrument to improve plasma performances. For this reason, new feedback control schemes have been recently put into operation and others are being developed. This work deals with the implementation in Tore Supra of these advanced algorithms, reports the technical details and shows the first positive results that have been achieved. For instance, encouraging results have been obtained in the field of profiles control. Controls of the full width at half maximum of the suprathermal electrons local emission profile at very low loop voltage and of the maximum of the thermal Larmor radius, normalised to the characteristic length of the electron temperature gradient, have been attained. While the first quantity can be directly associated to the current profile, the second one characterises the pressure profile. A new feedback control algorithm, employed to maximise a given quantity by means of a '' Search Optimisation '' technique, has been effectively tested too: the hard X-ray width has been maximised with simultaneous use of lower hybrid heating power and wave parallel index as actuators. These and other promising results, whose detailed description will be given in the article, have been obtained thanks to the real-time availability of several diagnostic systems. Using a shared memory network as communication layer, they send their measurements to a central computing unit that, in its turn, dispatches the necessary requirements to the actuators. A key issue is the possibility to integrate these controls in such a way as to cope with different requests at the same time. As an example, simultaneous control of the plasma current by means of the lower hybrid heating power, of the loop voltage by means of the poloidal field system and of the hard X-ray width through the lower hybrid heating phase shift has been successfully

  2. Aeronautical telecommunications network advances, challenges, and modeling

    CERN Document Server

    Musa, Sarhan M

    2015-01-01

    Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...

  3. Integrated soft sensor model for flow control.

    Science.gov (United States)

    Aijälä, G; Lumley, D

    2006-01-01

    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  4. Advanced practice nursing and conceptual models of nursing.

    Science.gov (United States)

    Fawcett, Jacqueline; Newman, Diana M L; McAllister, Margaret

    2004-04-01

    This column focuses on advanced practice nursing. A definition and central competency of advanced practice are given and four roles assumed by advanced practice nurses are identified. Questions related primarily to the advanced practice role of nurse practitioner are raised. Two nurse scholars who teach and practice discuss their experiences as advanced practice nurses, with an emphasis on the importance of using a conceptual model of nursing as a guide for their practice.

  5. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  6. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1990-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specified conversion behavior is ARF's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (1) validation of the submodels by comparison with laboratory data obtained in this program, (2) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (3) development of well documented user friendly software applicable to a workstation'' environment.

  7. Computational methods of the Advanced Fluid Dynamics Model

    International Nuclear Information System (INIS)

    Bohl, W.R.; Wilhelm, D.; Parker, F.R.

    1987-01-01

    To more accurately treat severe accidents in fast reactors, a program has been set up to investigate new computational models and approaches. The product of this effort is a computer code, the Advanced Fluid Dynamics Model (AFDM). This paper describes some of the basic features of the numerical algorithm used in AFDM. Aspects receiving particular emphasis are the fractional-step method of time integration, the semi-implicit pressure iteration, the virtual mass inertial terms, the use of three velocity fields, higher order differencing, convection of interfacial area with source and sink terms, multicomponent diffusion processes in heat and mass transfer, the SESAME equation of state, and vectorized programming. A calculated comparison with an isothermal tetralin/ammonia experiment is performed. We conclude that significant improvements are possible in reliably calculating the progression of severe accidents with further development

  8. Specification of advanced safety modeling requirements (Rev. 0).

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models

  9. Acquisition Integration Models: How Large Companies Successfully Integrate Startups

    Directory of Open Access Journals (Sweden)

    Peter Carbone

    2011-10-01

    Full Text Available Mergers and acquisitions (M&A have been popular means for many companies to address the increasing pace and level of competition that they face. Large companies have pursued acquisitions to more quickly access technology, markets, and customers, and this approach has always been a viable exit strategy for startups. However, not all deals deliver the anticipated benefits, in large part due to poor integration of the acquired assets into the acquiring company. Integration can greatly impact the success of the acquisition and, indeed, the combined company’s overall market success. In this article, I explore the implementation of several integration models that have been put into place by a large company and extract principles that may assist negotiating parties with maximizing success. This perspective may also be of interest to smaller companies as they explore exit options while trying to ensure continued market success after acquisition. I assert that business success with acquisitions is dependent on an appropriate integration model, but that asset integration is not formulaic. Any integration effort must consider the specific market context and personnel involved.

  10. Mobile Technology Integrated Pedagogical Model

    Science.gov (United States)

    Khan, Arshia

    2014-01-01

    Integrated curricula and experiential learning are the main ingredients to the recipe to improve student learning in higher education. In the academic computer science world it is mostly assumed that this experiential learning takes place at a business as an internship experience. The intent of this paper is to schism the traditional understanding…

  11. Advanced computer algebra algorithms for the expansion of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Round, Mark; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-10-15

    Two-point Feynman parameter integrals, with at most one mass and containing local operator insertions in 4+{epsilon}-dimensional Minkowski space, can be transformed to multi-integrals or multi-sums over hyperexponential and/or hypergeometric functions depending on a discrete parameter n. Given such a specific representation, we utilize an enhanced version of the multivariate Almkvist-Zeilberger algorithm (for multi-integrals) and a common summation framework of the holonomic and difference field approach (for multi-sums) to calculate recurrence relations in n. Finally, solving the recurrence we can decide efficiently if the first coefficients of the Laurent series expansion of a given Feynman integral can be expressed in terms of indefinite nested sums and products; if yes, the all n solution is returned in compact representations, i.e., no algebraic relations exist among the occurring sums and products.

  12. An Advanced N -body Model for Interacting Multiple Stellar Systems

    Energy Technology Data Exchange (ETDEWEB)

    Brož, Miroslav [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-18000 Praha 8 (Czech Republic)

    2017-06-01

    We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal, a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).

  13. School Integration Matters: Research-Based Strategies to Advance Equity

    Science.gov (United States)

    Frankenberg, Erica, Ed.; Garces, Liliana M., Ed.; Hopkins, Megan, Ed.

    2016-01-01

    More than 60 years after the "Brown v. Board of Education" decision declared segregated schooling inherently unequal, this timely book sheds light on how and why U.S. schools are experiencing increasing segregation along racial, socioeconomic, and linguistic lines. It offers policy and programmatic alternatives for advancing equity and…

  14. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Sounding Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  15. Advanced Integrated Multi-Sensor Surveillance (AIMS. Operator Machine Interface (OMI) Definition Study

    National Research Council Canada - National Science Library

    Baker, Kevin; Youngson, Gord

    2007-01-01

    To enhance the capability of airborne search and rescue (SAR) and surveillance, particularly at night and in poor weather, a multi sensor electro optical imaging system, the Advanced Integrated Multi sensor Surveillance (AIMS...

  16. NUCare: Advancing research on technological integration for self-management in the aging population.

    Science.gov (United States)

    Lees, Kristin E; Guthrie, Barbara J; Henderson, Elizabeth L; Jimison, Holly B; Sceppa, Carmen; Pavel, Misha; Gordon, Christine; Fulmer, Terry

    2017-11-15

    The Center for Technology in Support of Self-Management and Health (NUCare) is an exploratory research center funded by the National Institute of Nursing Research's P20 mechanism positioned to conduct rigorous research on the integration of technology in the self-management of the older adult population. The purpose of this paper is to describe the development and application of an evaluation plan and preliminary evaluation results from the first year of implementation. This evaluation plan is derived from and is consistent with Dorsey et al.'s (2014) logic model. Dorsey's model provided guidelines for evaluating sustainability, leveraging of resources, and interdisciplinary collaboration within the center. Preliminary results and strategies for addressing findings from the first year of evaluation are discussed. A secondary aim of this paper is to showcase the relevance of this center to the advancement and maintenance of health in the aging population. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  18. Advanced Integrated Multi-Sensor Surveillance (AIMS): Mission, Function, Task Analysis

    Science.gov (United States)

    2007-06-01

    DEFENCE DÉFENSE & Advanced Integrated Multi-sensor Surveillance (AIMS) Mission, Function, Task Analysis Kevin Baker and Gord Youngson CAE...Canada This page intentionally left blank. Advanced Integrated Multi-sensor Surveillance (AIMS) Mission, Function, Task Analysis Kevin Baker...les principaux opérateurs. Il est recommandé d’en tenir compte durant l’intégration du système AIMS aux projets du FWSAR et du CP-140 du PIMPA

  19. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology have used each model component in an offline mode where the models are run in sequential steps and one model serves as a boundary condition or data input source to the other. Within recent years a new field of research has emerged where efforts have been made to dynamically couple existing climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  20. Model Identification of Integrated ARMA Processes

    Science.gov (United States)

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  1. Social Ecological Model Analysis for ICT Integration

    Science.gov (United States)

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  2. Silicon integrated circuits advances in materials and device research

    CERN Document Server

    Kahng, Dawon

    1981-01-01

    Silicon Integrated Circuits, Part B covers the special considerations needed to achieve high-power Si-integrated circuits. The book presents articles about the most important operations needed for the high-power circuitry, namely impurity diffusion and oxidation; crystal defects under thermal equilibrium in silicon and the development of high-power device physics; and associated technology. The text also describes the ever-evolving processing technology and the most promising approaches, along with the understanding of processing-related areas of physics and chemistry. Physicists, chemists, an

  3. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    Science.gov (United States)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  4. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  5. Systems integration and demonstration of advanced reusable structure for ALS

    Science.gov (United States)

    Gibbins, Martin N.

    1991-06-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  6. Development of a generalized integral jet model

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Kessler, A.; Markert, Frank

    2017-01-01

    model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...

  7. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2012-01-01

    This paper critically reviews the ownership, location, and internalization (OLI) model, and the Uppsala internationalization process (UIP) framework. Both the OLI model and the UIP model ignore to incorporate the insights of each other and fail to include corporate entrepreneurship...... such as corporate entrepreneurship, institutional environment, and regulatory focus in an integrated framework helps to explain firm internationalization....

  8. Advances in integrated fire management in central Mexico

    Science.gov (United States)

    Dante Arturo Rodríguez Trejo; Arturo Cruz Reyes

    2013-01-01

    This paper reports on the research and operational results of efforts made by some rural communities, the National Forestry Commission (CONAFOR), the Universidad Autónoma Chapingo (UACH) and other organizations to achieve integrated fire management in central Mexico. The research includes the latest results obtained by UACH's Ajusco Project on the subject, in both...

  9. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    MacLeod, Todd; Gagliano, Larry; Percy, Thomas; Mason, Shane

    2015-01-01

    Effective Space Asset Management is one key to addressing the ever-growing issue of space congestion. It is imperative that agencies around the world have access to data regarding the numerous active assets and pieces of space junk currently tracked in orbit around the Earth. At the center of this issues is the effective management of data of many types related to orbiting objects. As the population of tracked objects grows, so too should the data management structure used to catalog technical specifications, orbital information, and metadata related to those populations. Marshall Space Flight Center's Space Asset Management Database (SAM-D) was implemented in order to effectively catalog a broad set of data related to known objects in space by ingesting information from a variety of database and processing that data into useful technical information. Using the universal NORAD number as a unique identifier, the SAM-D processes two-line element data into orbital characteristics and cross-references this technical data with metadata related to functional status, country of ownership, and application category. The SAM-D began as an Excel spreadsheet and was later upgraded to an Access database. While SAM-D performs its task very well, it is limited by its current platform and is not available outside of the local user base. Further, while modeling and simulation can be powerful tools to exploit the information contained in SAM-D, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. This paper provides a summary of SAM-D development efforts to date and outlines a proposed data management infrastructure that extends SAM-D to support the larger data sets to be generated. A service-oriented architecture model using an information sharing platform named SIMON will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for

  10. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  11. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate......To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  12. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    Science.gov (United States)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  13. Advancing medication infusion safety through the clinical integration of technology.

    Science.gov (United States)

    Gerhart, Donald; O'Shea, Kristen; Muller, Sharon

    2013-01-01

    Adverse drug events resulting from errors in prescribing or administering medications are preventable. Within a hospital system, numerous technologies are employed to address the common sources of medication error, including the use of electronic medical records, physician order entry, smart infusion pumps, and barcode medication administration systems. Infusion safety is inherently risky because of the high-risk medications administered and the lack of integration among the stand-alone systems in most institutions. Intravenous clinical integration (IVCI) is a technology that connects electronic medical records, physician order entry, smart infusion pumps, and barcode medication administration systems. It combines the safety features of an automatically programmed infusion pump (drug, concentration, infusion rate, and patient weight, all auto-programmed into the device) with software that provides visibility to real-time clinical infusion data. Our article describes the characteristics of IVCI at WellSpan Health and its impact on patient safety. The integrated infusion system has the capability of reducing medication errors, improving patient care, reducing in-facility costs, and supporting asset management. It can enhance continuous quality improvement efforts and efficiency of clinical work flow. After implementing IVCI, the institution realized a safer patient environment and a more streamlined work flow for pharmacy and nursing.

  14. Small oilfield integrated production management model

    Directory of Open Access Journals (Sweden)

    Danilović Dušan

    2016-01-01

    Full Text Available In this paper is presented the concept of integrated oil production management model. The model's main objective is to provide more efficient tool for oil production process management in terms of the technological and economical aspects. Integrated oil production management model implies multidisciplinary approach which connects oil reservoir development and production with application of risk analysis. Model's task is to simulate behavior of the whole production system, enabling overcoming the weaknesses of conventional deterministic analysis and significantly enhancing oil production, as well as an investment decision making. In the article is presented shortly the application of integrated oil production management model at the oilfield 'K'. The ultimate goal was techno-economic analysis of managing production process, i.e. determination of production economic limit based on production history data, decline analysis and operating costs.

  15. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.

  16. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  17. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  18. Integrated microfabricated biodevices. New advances in sample preparation (T2)

    International Nuclear Information System (INIS)

    Guttman, A.

    2002-01-01

    Full text: Interdisciplinary science and technologies have converged in the past few years to create exciting challenges and opportunities, which involve novel, integrated microfabricated systems, facilitating large-scale analytical applications. These new devices are referred to as lab-on-a-chip or micro Total Analysis Systems (uTAS). Their development involves both established and evolving technologies, which include microlithography, micromachining, micro-electromechanical systems (MEMS) technology, microfluidics and nanotechnology. The advent of this extremely powerful and rapid analysis technique opens up new horizons in analytical chemistry and molecular biology, capable of revealing global changes in gene expression levels by enabling genome, proteome and metabolome analysis on microchips. This presentation will provide an overview of the key device subject areas and the basic interdisciplinary technologies. It will also give a better understanding of how to utilize these miniaturized technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental. Theoretical and practical aspects of integrating sample preparation/purification and analysis units with chemical and biochemical reactors in monolithic microdevices are going to be thoroughly discussed. Important applications for this novel 'synergized' technology in high throughput analysis of biologically important molecules will also be addressed. (author)

  19. The Integrated Developmental Model of Supervision.

    Science.gov (United States)

    Stoltenberg, Cal D.

    The Integrated Developmental Model (IDM) of supervision builds upon previous models of counselor and psychotherapist development. The IDM incorporates aspects of both a mechanistic view, using the machine as metaphor, and an organismic view, using the organism as metaphor, of development in describing trainee development through three levels and…

  20. The Advancement Value Chain: An Exploratory Model

    Science.gov (United States)

    Leonard, Edward F., III

    2005-01-01

    Since the introduction of the value chain concept in 1985, several varying, yet virtually similar, value chains have been developed for the business enterprise. Shifting to higher education, can a value chain be found that links together the various activities of advancement so that an institution's leaders can actually look at the philanthropic…

  1. Universal Plug-n-Play Sensor Integration for Advanced Navigation

    Science.gov (United States)

    2012-03-22

    7 UML Unified Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . 7 ROS Robot Operating System...7 COTS Commercial Off The Shelf . . . . . . . . . . . . . . . . . . . . . . . . . 8 OOP Object-Oriented Programming...VANNext Generation Vision Aided Navigation . . . . . . . . . . . . . . . . 18 XML eXtensible Markup Language

  2. OLED Luminaire with Panel Integrated Drivers and Advanced Controls

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Michael [Acuity Brands Lighting, Inc., Atlanta, GA (United States); Spindler, Jeff [OLEDWorks, Rochester, NY (United States)

    2017-01-31

    For this DOE award, Acuity Brands Lighting developed a novel OLED luminaire system featuring panel-integrated drivers at each individual OLED panel. The luminaire has a base station that receives user commands and performs AC/DC conversion. A power line communication (PLC) protocol is used to provide both power and digital control to each panel. A 66-panel CanvisTM luminaire using state-of-art OLED panels based on this system was successfully constructed. This is a first demonstration of such a luminaire architecture. It is also the first known implementation of this number of independently addressable nodes with a PLC protocol. This luminaire system architecture has added benefits in the flexibility of using multiple panel vendors for a given product, forward compatibility with future panels, and reduced luminaire wiring complexity and assembly time.

  3. Advanced Machine Learning Emulators of Radiative Transfer Models

    Science.gov (United States)

    Camps-Valls, G.; Verrelst, J.; Martino, L.; Vicent, J.

    2017-12-01

    Physically-based model inversion methodologies are based on physical laws and established cause-effect relationships. A plethora of remote sensing applications rely on the physical inversion of a Radiative Transfer Model (RTM), which lead to physically meaningful bio-geo-physical parameter estimates. The process is however computationally expensive, needs expert knowledge for both the selection of the RTM, its parametrization and the the look-up table generation, as well as its inversion. Mimicking complex codes with statistical nonlinear machine learning algorithms has become the natural alternative very recently. Emulators are statistical constructs able to approximate the RTM, although at a fraction of the computational cost, providing an estimation of uncertainty, and estimations of the gradient or finite integral forms. We review the field and recent advances of emulation of RTMs with machine learning models. We posit Gaussian processes (GPs) as the proper framework to tackle the problem. Furthermore, we introduce an automatic methodology to construct emulators for costly RTMs. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of GPs with the accurate design of an acquisition function that favours sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of our emulators in toy examples, leaf and canopy levels PROSPECT and PROSAIL RTMs, and for the construction of an optimal look-up-table for atmospheric correction based on MODTRAN5.

  4. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  5. Integration of MOOCs in Advanced Mining Training Programmes

    Science.gov (United States)

    Saveleva, Irina; Greenwald, Oksana; Kolomiets, Svetlana; Medvedeva, Elena

    2017-11-01

    The paper covers the concept of innovative approaches in education based on incorporating MOOCs options into traditional classroom. It takes a look at the ways higher education instructors working with the mining engineers enrolled in advanced training programmes can brighten, upgrade and facilitate the learning process. The shift of higher education from in-class to online format has changed the learning environment and the methods of teaching including professional retraining courses. In addition, the need of mining companies for managers of a new kind obligates high school retraining centres rapidly move towards the 21st century skill framework. One of widely recognized innovations in the sphere of e-learning is MOOCs (Massive Open Online Courses) that can be used as an effective teaching tool for organizing professional training of managing staff of mining companies within the walls of a university. The authors share their instructional experience and show the benefits of introducing MOOCs options at the courses designed for retraining mining engineers and senior managers of coal enterprises. Though in recent researches the pedagogical value of MOOCs is highly questioned and even negated this invention of the 21st century can become an essential and truly helpful instrument in the hands of educators.

  6. Integrating autonomous Problem Resolution Models with Remedy

    OpenAIRE

    Marquina, M A; Padilla, J; Ramos, R

    2000-01-01

    This paper briefly defines the concept of Problem Resolution Model and shows possible approaches to the issues which may arise when integrating various PRMs to present a consistent view to the end user, despite of the peculiarities of each physical implementation. Integration refers to various autonomous PRMs having to interact as problems pass from one to another in the resolution flow. This process should be transparent to the user and internally there must be a way to track in which stage ...

  7. Application of advanced non-destructive testing for testing the integrity of concrete foundations

    International Nuclear Information System (INIS)

    Nguyen Le Son; Nguyen Phuoc Lan; Pham The Hung; Vu Huy Thuc

    2004-01-01

    Solid foundations are integral important part of any structures. Obtaining accurate and timely information on the integrity of structural foundations is essential for project progress and success. Cross-hole sonic method has been widely accepted for quality assurance and quality control on projects with deep foundations, and to assess the integrity of other civil engineering structures. Under the framework of the basic VAEC project (2003) and project VIE/8/013, the Cross-hole sonic method (CHM) was evaluated at Center for Nuclear Techniques, Hochiminh City (CNT). Background information on principle and general description of the method as is typically applied in the evaluation of deep foundations are also summarized. A suitable experimental model of the shaft foundations was prepared, where the artificial defects can be controlled for the Cross-hole sonic logging was conducted by measuring the propagation time of ultrasonic signals between two probes in vertical holes in a shaft. The purpose of the test program is to evaluate the ability of the cross-hole sonic method to identify the defects present in the experimental model, to evaluate the capabilities of the method and the equipped system Cs-97, to improve the presentation of test results to meet requirements for interpreting the quality of drilled shafts by processing the data of Cs-97. The cross-hole sonic testing program is describe. Summarizes the results and analysis of the cross-hole sonic logging are presented to highlight both the applicability and limitations of the method. The cross-hole sonic logging evaluation is a valuable non-destructive method in assessing the integrity of deep foundations. The cross-hole sonic logging tests successfully determined the location and extent of the built-in defects on experimental model shaft. Minimum sizes of defects can be detected were about ≥ 10 cm Cs-97. Effects of the directions, detectable sizes and natures of defects were studied. The apparent velocities

  8. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  9. Integrating model of the Project Independence Evaluation System. Volume IV. Model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M L; Allen, B J; Gale, J E; Lutz, M S; O& #x27; Hara, N E; Wood, R K

    1979-02-01

    This volume is the fourth in a series of seven documenting the PIES Integrating Model. It contains detailed descriptions of the basic assumptions behind each of the components of PIES and how they interact with one another. Chapter II of this volume presents the methodology used to integrate supply and demand. It includes a discussion of both the interface between the Demand Model and the equilibrating mechanism and the various supply models via the equilibrating algorithm used by PIES. Chapters III through IX describe each supply submodel in turn: coal, oil, and natural gas supply, utilities, refineries, advanced technologies, and transportation. Code and data documentation are covered elsewhere in this series (Volumes V and VI respectively). PIES is an evolving system. As this document was being prepared, many parts of the model were being modified. This document describes the PIES Integrating Model as of January 1, 1978.

  10. Integrated tokamak modeling: when physics informs engineering and research planning

    Science.gov (United States)

    Poli, Francesca

    2017-10-01

    Simulations that integrate virtually all the relevant engineering and physics aspects of a real tokamak experiment are a power tool for experimental interpretation, model validation and planning for both present and future devices. This tutorial will guide through the building blocks of an ``integrated'' tokamak simulation, such as magnetic flux diffusion, thermal, momentum and particle transport, external heating and current drive sources, wall particle sources and sinks. Emphasis is given to the connection and interplay between external actuators and plasma response, between the slow time scales of the current diffusion and the fast time scales of transport, and how reduced and high-fidelity models can contribute to simulate a whole device. To illustrate the potential and limitations of integrated tokamak modeling for discharge prediction, a helium plasma scenario for the ITER pre-nuclear phase is taken as an example. This scenario presents challenges because it requires core-edge integration and advanced models for interaction between waves and fast-ions, which are subject to a limited experimental database for validation and guidance. Starting from a scenario obtained by re-scaling parameters from the demonstration inductive ``ITER baseline'', it is shown how self-consistent simulations that encompass both core and edge plasma regions, as well as high-fidelity heating and current drive source models are needed to set constraints on the density, magnetic field and heating scheme. This tutorial aims at demonstrating how integrated modeling, when used with adequate level of criticism, can not only support design of operational scenarios, but also help to asses the limitations and gaps in the available models, thus indicating where improved modeling tools are required and how present experiments can help their validation and inform research planning. Work supported by DOE under DE-AC02-09CH1146.

  11. Buried Waste Integrated Demonstration stakeholder involvement model

    International Nuclear Information System (INIS)

    Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94

  12. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  13. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    Science.gov (United States)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  14. A severe accident analysis for the system-integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Jung, Gunhyo; Jae, Moosung

    2015-01-01

    The System-Integrated Modular Advanced Reactor (SMART) that has been recently designed in KOREA and has acquired standard design certification from the nuclear power regulatory body (NSSC) is an integral type reactor with 330MW thermal power. It is a small sized reactor in which the core, steam generator, pressurizer, and reactor coolant pump that are in existing pressurized light water reactors are designed to be within a pressure vessel without any separate pipe connection. In addition, this reactor has much different design characteristics from existing pressurized light water reactors such as the adoption of a passive residual heat removal system and a cavity flooding system. Therefore, the safety of the SMART against severe accidents should be checked through severe accident analysis reflecting the design characteristics of the SMART. For severe accident analysis, an analysis model has been developed reflecting the design information presented in the standard design safety analysis report. The severe accident analysis model has been developed using the MELCOR code that is widely used to evaluate pressurized LWR severe accidents. The steady state accident analysis model for the SMART has been simulated. According to the analysis results, the developed model reflecting the design of the SMART is found to be appropriate. Severe accident analysis has been performed for the representative accident scenarios that lead to core damage to check the appropriateness of the severe accident management plan for the SMART. The SMART has been shown to be safe enough to prevent severe accidents by utilizing severe accident management systems such as a containment spray system, a passive hydrogen recombiner, and a cavity flooding system. In addition, the SMART is judged to have been technically improved remarkably compared to existing PWRs. The SMART has been designed to have a larger reactor coolant inventory compared to its core's thermal power, a large surface area in

  15. Integrated facilities modeling using QUEST and IGRIP

    International Nuclear Information System (INIS)

    Davis, K.R.; Haan, E.R.

    1995-01-01

    A QUEST model and associated detailed IGRIP models were developed and used to simulate several workcells in a proposed Plutonium Storage Facility (PSF). The models are being used by team members assigned to the program to improve communication and to assist in evaluating concepts and in performing trade-off studies which will result in recommendations and a final design. The model was designed so that it could be changed easily. The added flexibility techniques used to make changes easily are described in this paper in addition to techniques for integrating the QUEST and IGRIP products. Many of these techniques are generic in nature and can be applied to any modeling endeavor

  16. Advanced language modeling approaches, case study: Expert search

    NARCIS (Netherlands)

    Hiemstra, Djoerd

    2008-01-01

    This tutorial gives a clear and detailed overview of advanced language modeling approaches and tools, including the use of document priors, translation models, relevance models, parsimonious models and expectation maximization training. Expert search will be used as a case study to explain the

  17. Developing integrated crop knowledge networks to advance candidate gene discovery.

    Science.gov (United States)

    Hassani-Pak, Keywan; Castellote, Martin; Esch, Maria; Hindle, Matthew; Lysenko, Artem; Taubert, Jan; Rawlings, Christopher

    2016-12-01

    The chances of raising crop productivity to enhance global food security would be greatly improved if we had a complete understanding of all the biological mechanisms that underpinned traits such as crop yield, disease resistance or nutrient and water use efficiency. With more crop genomes emerging all the time, we are nearer having the basic information, at the gene-level, to begin assembling crop gene catalogues and using data from other plant species to understand how the genes function and how their interactions govern crop development and physiology. Unfortunately, the task of creating such a complete knowledge base of gene functions, interaction networks and trait biology is technically challenging because the relevant data are dispersed in myriad databases in a variety of data formats with variable quality and coverage. In this paper we present a general approach for building genome-scale knowledge networks that provide a unified representation of heterogeneous but interconnected datasets to enable effective knowledge mining and gene discovery. We describe the datasets and outline the methods, workflows and tools that we have developed for creating and visualising these networks for the major crop species, wheat and barley. We present the global characteristics of such knowledge networks and with an example linking a seed size phenotype to a barley WRKY transcription factor orthologous to TTG2 from Arabidopsis, we illustrate the value of integrated data in biological knowledge discovery. The software we have developed (www.ondex.org) and the knowledge resources (http://knetminer.rothamsted.ac.uk) we have created are all open-source and provide a first step towards systematic and evidence-based gene discovery in order to facilitate crop improvement.

  18. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  19. An integrative model of organizational safety behavior.

    Science.gov (United States)

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  20. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  1. Advanced Integrated Multi-sensor Surveillance (AIMS). Mission, Function, Task Analysis

    Science.gov (United States)

    2007-06-01

    Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Advanced Integrated Multi-sensor Surveillance (AIMS) Mission, Function, Task Analysis Kevin Baker and...sensor Surveillance (AIMS) Mission, Function, Task Analysis Kevin Baker Gord Youngson CAE Professional Services CAE Professional Services 1135...d’en tenir compte durant l’intégration du système AIMS aux projets du FWSAR et du CP-140 du PIMPA. Baker, K. and Youngson, G. 2007. Advanced

  2. Mathematical model of integrated thermal apparatus

    Directory of Open Access Journals (Sweden)

    Katarína Mikulová Polčová

    2010-03-01

    Full Text Available Mathematical model for the integrated thermal apparatus was developed. It consists of program modules from which individualfurnace model can be generated. For the model generation elementary balance method was used. Generation of the individual modelincludes model formulation and parameters determination. Model formulation is based on first principles, heuristics and empirical results.Parameters determination is generally based on priory information, but it has to take into account specific conditions. The developed modelwas adapted for real time applications. For quantitative application developed model has to be calibrated. For the calibration theoperational furnace can be used. For model calibration of not existing furnace the priory knowledge and physical model can be used.Presented model was calibrated on experimental furnace. The results were gained by simulations.

  3. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Bologna, S.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.; Yamane, N.

    1992-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow. (orig.)

  4. Improving safety through an integrated approach for advanced control room development

    International Nuclear Information System (INIS)

    Haugset, K.; Berg, O.; Foerdestroemmen, N.T.; Kvalem, J.; Nelson, W.R.

    1990-01-01

    With the fast development of computer technology, the potential exists for improving operational safety of nuclear plants by using advanced operator tools in the control room. Specific systems are being introduced, such as systems for alarm handling, failure detection, disturbance diagnosis, procedural advice and others, often based on process modeling techniques or expert system technology. To ensure a maximum benefit from the new technology, a careful integration of the various systems must, however, take place, resulting in a well coordinated interface between the operator and the process. The OECD Halden Reactor Project has started the development of an Integrated Surveillance And Control System (ISACS). The basis for the activity is the experience at Halden in developing specific Computerized Operator Support Systems (COSSs), and the activity around the experimental control room HAMMLAB where detailed validations of operator tools have been performed for a number of years. The first goal in the ISACS project is to have a first, limited prototype in operation at the end of 1990. Validation experiments will follow

  5. Integrated Baseline Bystem (IBS) Version 1.03: Models guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Integrated Baseline System)(IBS), operated by the Federal Emergency Management Agency (FEMA), is a system of computerized tools for emergency planning and analysis. This document is the models guide for the IBS and explains how to use the emergency related computer models. This document provides information for the experienced system user, and is the primary reference for the computer modeling software supplied with the system. It is designed for emergency managers and planners, and others familiar with the concepts of computer modeling. Although the IBS manual set covers basic and advanced operations, it is not a complete reference document set. Emergency situation modeling software in the IBS is supported by additional technical documents. Some of the other IBS software is commercial software for which more complete documentation is available. The IBS manuals reference such documentation where necessary.

  6. Renewed mer model of integral management

    Directory of Open Access Journals (Sweden)

    Janko Belak

    2015-12-01

    Full Text Available Background: The research work on entrepreneurship, enterprise's policy and management, which started in 1992, successfully continued in the following years. Between 1992 and 2011, more than 400 academics and other researchers have participated in research work (MER research program whose main orientation has been the creation of their own model of integral management. Results: In past years, academics (researchers and authors of published papers from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Byelorussia, Canada, the Czech Republic, Croatia, Estonia, France, Germany, Hungary, Italy, Poland, Romania, Russia, the Slovak Republic, Slovenia, Switzerland, Ukraine, and the US have cooperated in MER programs, coming from more than fifty institutions. Thus, scientific doctrines of different universities influenced the development of the MER model which is based on both horizontal and vertical integration of the enterprises' governance and management processes, instruments and institutions into a consistently operating unit. Conclusions: The presented MER model is based on the multi-layer integration of governance and management with an enterprise and its environment, considering the fundamental desires for the enterprises' existence and, thus, their quantitative as well as qualitative changes. The process, instrumental, and institutional integrity of the governance and management is also the initial condition for the implementation of all other integration factors.

  7. Advances in modelling of condensation phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.S.; Zaltsgendler, E. [Ontario Hydro Nuclear, Toronto (Canada); Hanna, B. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  8. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects......Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...

  9. Quiver gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  10. The role of computer modelling in structural integrity assessment

    International Nuclear Information System (INIS)

    Sauve, R.G.

    2002-01-01

    There is little doubt that computer technology has spawned extraordinary advances in the traditional fields of science and engineering along with the introduction of new disciplines and technologies. In particular, significant developments directly related to modern computer technology that have had a profound impact on the field of structural integrity include: Computational methods (probabilistic, parametric, data analysis); Finite Element Technique; and, Computer-Aided Design and Engineering. In fact it can be argued that these developments have re-defined and expanded the role of structural integrity assessments by providing comprehensive modelling capabilities to the designer and engineers involved in failure analyses. As computer processing speeds and capacity have increased, so has the role of computer modelling in assessments of component structural integrity. While innovation in these fields has been packaged into various CAE software used by the engineering community, the advantages of simulation have only just begun to be realized. With new product development cycles shrinking with the view to improving time-to-market, the role of initial testing is being reduced in favour of computer modelling and simulation to assess component life and durability. For ageing structures, the evaluation of remaining life and the impact of degraded structural integrity becomes tractable with state-of-the-art computational methods. Needless to say, for complex structures, computer modelling coupled with testing provides a robust method that can avoid costly and sometimes fatal errors in design. Computer modelling brings together a number of disciplines including numerical techniques such as the finite element method, fracture mechanics, continuum mechanics, dynamics, heat transfer, structural reliability and probabilistic methods. One of the salient features of the current methods is the ability to handle large complex steady state or transient dynamic problems that

  11. Which coordinate system for modelling path integration?

    Science.gov (United States)

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd

  12. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  13. Design of integral shutters for the beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chang, J.; Shu, D.; Nian, H.L.; Kuzay, T.M.; Job, P.K.

    1994-01-01

    An integral shutter is a device that integrates a white-beam stop, monochromatic-beam (mono-beam) shutters, a safety stop, and a collimator into one assembly to save space in the photon beamline. Various integral shutters have been developed as standard components for the beamlines at the Advanced Photon Source. The integral shutters are designed to be operated in white-beam mode or mono-beam mode. With regard to safety, each mode of operation is secured by locking certain devices in their up or down positions. Some of the components of the integral shutters share designs similar to the front-end shutters or fixed masks. Design details of the integral shutters are presented

  14. Rethinking School Bullying: Towards an Integrated Model

    Science.gov (United States)

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  15. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...

  16. Transport modeling and advanced computer techniques

    International Nuclear Information System (INIS)

    Wiley, J.C.; Ross, D.W.; Miner, W.H. Jr.

    1988-11-01

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  17. Advanced empirical estimate of information value for credit scoring models

    Directory of Open Access Journals (Sweden)

    Martin Řezáč

    2011-01-01

    Full Text Available Credit scoring, it is a term for a wide spectrum of predictive models and their underlying techniques that aid financial institutions in granting credits. These methods decide who will get credit, how much credit they should get, and what further strategies will enhance the profitability of the borrowers to the lenders. Many statistical tools are avaiable for measuring quality, within the meaning of the predictive power, of credit scoring models. Because it is impossible to use a scoring model effectively without knowing how good it is, quality indexes like Gini, Kolmogorov-Smirnov statisic and Information value are used to assess quality of given credit scoring model. The paper deals primarily with the Information value, sometimes called divergency. Commonly it is computed by discretisation of data into bins using deciles. One constraint is required to be met in this case. Number of cases have to be nonzero for all bins. If this constraint is not fulfilled there are some practical procedures for preserving finite results. As an alternative method to the empirical estimates one can use the kernel smoothing theory, which allows to estimate unknown densities and consequently, using some numerical method for integration, to estimate value of the Information value. The main contribution of this paper is a proposal and description of the empirical estimate with supervised interval selection. This advanced estimate is based on requirement to have at least k, where k is a positive integer, observations of socres of both good and bad client in each considered interval. A simulation study shows that this estimate outperform both the empirical estimate using deciles and the kernel estimate. Furthermore it shows high dependency on choice of the parameter k. If we choose too small value, we get overestimated value of the Information value, and vice versa. Adjusted square root of number of bad clients seems to be a reasonable compromise.

  18. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  19. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  20. Advances in numerical modelling of crash dummies

    NARCIS (Netherlands)

    Verhoeve, R.; Kant, R.; Margerie, L.

    2001-01-01

    Nowadays virtual testing and prototyping are generally accepted methods in crash safety research and design studies. Validated numerical crash dummy models are necessary tools in these methods. Computer models need to be robust, accurate and CPU efficient, where the balance between accuracy and

  1. Modelling environmental dynamics. Advances in goematic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica

    2008-07-01

    Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)

  2. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  3. MixSIAR: advanced stable isotope mixing models in R

    Science.gov (United States)

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  4. Advances and applications of occupancy models

    Science.gov (United States)

    Bailey, Larissa; MacKenzie, Darry I.; Nichols, James D.

    2013-01-01

    Summary: The past decade has seen an explosion in the development and application of models aimed at estimating species occurrence and occupancy dynamics while accounting for possible non-detection or species misidentification. We discuss some recent occupancy estimation methods and the biological systems that motivated their development. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the investigator. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent biological inference and interpretation of model parameters depend on these definitions and the ability to meet model assumptions. We demonstrate the relevance of these definitions by highlighting applications from a single biological system (an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized. Finally, we use these applications to suggest future research and model development.

  5. Design and verification of the integration of simulation environments, models of a nucleo electric plant and advanced computation languages, in the creation of multimedia applications for training and teaching; Diseno y verificacion de la integracion de entornos de simulacion, modelos de una planta nucleoelectrica y lenguajes de computacion avanzados, en la creacion de aplicaciones multimedia para entrenamiento y docencia

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez B, A. [Facultad de Ingenieria, UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: alitet@eresmas.com

    2004-07-01

    The design process of a reliable and stable integration system is presented among the models that represent present elements in a nucleo electric plant and advanced programming environments in Windows platform. In particular it is analyzed in the case of the integration of the pattern corresponding to the system of feeding water and their associate controller in a graphic structure and of control of superior graphic capacities to the existent desk simulators, mainly because it gives direct access to the graph area and of maximum speed in their execution. In turn it is proven the capacity of the models to behave chord to the prospective answer for that type of systems and a comparative of the found answers is made directly in the models and that shown graphically. They are also described the characteristics that provide to the execution of real time, and jointly, a panorama of the diverse possibilities of representation of the graphic interface is given. Also, the capacities of the simulation environments are analyzed and of used programming, highlighting the advantages and disadvantages that took to the elected solution, considering the support objective in training and teaching. The design proposes a reliable methodology that can be used in the development of simulators, in graphic demonstration of concepts, prototypes, among other applications. (Author)

  6. Advanced Spacecraft Thermal Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft developers who spend millions to billions of dollars per unit and require 3 to 7 years to deploy, the LoadPath reduced-order (RO) modeling thermal...

  7. Advanced Stochastic Modeling of Railway Track Irregularities

    Directory of Open Access Journals (Sweden)

    Mengyi Zhu

    2013-01-01

    Full Text Available As an important interference source of railway vibration, track irregularity is studied in this paper. It is presented that irregularities in the vertical profile and alignment can be modeled as a Gaussian random process. The power spectral density (PSD of the irregularity is calculated and discussed. By analyzing the model, level-crossing properties as well as peak statistics are studied and compared with the observed data.

  8. Paradox of integration-A computational model

    Science.gov (United States)

    Krawczyk, Małgorzata J.; Kułakowski, Krzysztof

    2017-02-01

    The paradoxical aspect of integration of a social group has been highlighted by Blau (1964). During the integration process, the group members simultaneously compete for social status and play the role of the audience. Here we show that when the competition prevails over the desire of approval, a sharp transition breaks all friendly relations. However, as was described by Blau, people with high status are inclined to bother more with acceptance of others; this is achieved by praising others and revealing her/his own weak points. In our model, this action smooths the transition and improves interpersonal relations.

  9. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    Science.gov (United States)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  10. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    Science.gov (United States)

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  11. An Integrated Ecological Modeling System for Assessing ...

    Science.gov (United States)

    We demonstrate a novel, spatially explicit assessment of the current condition of aquatic ecosystem services, with limited sensitivity analysis for the atmospheric contaminant mercury. The Integrated Ecological Modeling System (IEMS) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, productivities, and contamination by methylmercury across headwater watersheds. We applied this IEMS to the Coal River Basin (CRB), West Virginia (USA), an 8-digit hydrologic unit watershed, by simulating a network of 97 stream segments using the SWAT watershed model, a watershed mercury loading model, the WASP water quality model, the PiSCES fish community estimation model, a fish habitat suitability model, the BASS fish community and bioaccumulation model, and an ecoservices post-processer. Model application was facilitated by automated data retrieval and model setup and updated model wrappers and interfaces for data transfers between these models from a prior study. This companion study evaluates baseline predictions of ecoservices provided for 1990 – 2010 for the population of streams in the CRB and serves as a foundation for future model development. Published in the journal, Ecological Modeling. Highlights: • Demonstrate a spatially-explicit IEMS for multiple scales. • Design a flexible IEMS for

  12. COGMIR: A computer model for knowledge integration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.X.

    1988-01-01

    This dissertation explores some aspects of knowledge integration, namely, accumulation of scientific knowledge and performing analogical reasoning on the acquired knowledge. Knowledge to be integrated is conveyed by paragraph-like pieces referred to as documents. By incorporating some results from cognitive science, the Deutsch-Kraft model of information retrieval is extended to a model for knowledge engineering, which integrates acquired knowledge and performs intelligent retrieval. The resulting computer model is termed COGMIR, which stands for a COGnitive Model for Intelligent Retrieval. A scheme, named query invoked memory reorganization, is used in COGMIR for knowledge integration. Unlike some other schemes which realize knowledge integration through subjective understanding by representing new knowledge in terms of existing knowledge, the proposed scheme suggests at storage time only recording the possible connection of knowledge acquired from different documents. The actual binding of the knowledge acquired from different documents is deferred to query time. There is only one way to store knowledge and numerous ways to utilize the knowledge. Each document can be represented as a whole as well as its meaning. In addition, since facts are constructed from the documents, document retrieval and fact retrieval are treated in a unified way. When the requested knowledge is not available, query invoked memory reorganization can generate suggestion based on available knowledge through analogical reasoning. This is done by revising the algorithms developed for document retrieval and fact retrieval, and by incorporating Gentner's structure mapping theory. Analogical reasoning is treated as a natural extension of intelligent retrieval, so that two previously separate research areas are combined. A case study is provided. All the components are implemented as list structures similar to relational data-bases.

  13. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  14. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  15. Business Model Concept: An Integrative Framework Proposal

    Directory of Open Access Journals (Sweden)

    Marko Peric

    2017-09-01

    Full Text Available Every firm employs a particular business model seeking competitive advantage. However, this pursuit is difficult, and sometimes unsuccessful. The reasons for failure should be sought in the managers’ lack of understanding of their organisations’ business models, their unique building blocks, and the potential that they have. To help managers better understand business models, this paper reviews the extant literature and identifies the elements of business models cited therein. Further, considering the new needs on the changing markets and the prevailing search for sustainability beyond profit, this paper portrays essential business model elements in an integrated framework. An updated generic business model framework consists of four primary categories, namely, value proposition, value capture, value creation, and value network, and could be useful for a variety of organisations, profit and non-profit, with various mission and vision orientations and interaction with the environment.

  16. A Formal Framework for Integrated Environment Modeling Systems

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhang

    2017-02-01

    Full Text Available Integrated Environment Modeling (IEM has become more and more important for environmental studies and applications. IEM systems have also been extended from scientific studies to much wider practical application situations. The quality and improved efficiency of IEM systems have therefore become increasingly critical. Although many advanced and creative technologies have been adopted to improve the quality of IEM systems, there is scarcely any formal method for evaluating and improving them. This paper is devoted to proposing a formal method to improve the quality and the developing efficiency of IEM systems. Two primary contributions are made. Firstly, a formal framework for IEM is proposed. The framework not only reflects the static and dynamic features of IEM but also covers different views from variant roles throughout the IEM lifecycle. Secondly, the formal operational semantics corresponding to the former model of the IEM is derived in detail; it can be used as the basis for aiding automated integrated modeling and verifying the integrated model.

  17. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30

    The potential to save trillions of BTU’s in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: • While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. • Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. • For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/π, which has additional implications. . • For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack

  18. Advanced techniques for modeling avian nest survival

    Science.gov (United States)

    Dinsmore, S.J.; White, Gary C.; Knopf, F.L.

    2002-01-01

    Estimation of avian nest survival has traditionally involved simple measures of apparent nest survival or Mayfield constant-nest-survival models. However, these methods do not allow researchers to build models that rigorously assess the importance of a wide range of biological factors that affect nest survival. Models that incorporate greater detail, such as temporal variation in nest survival and covariates representative of individual nests represent a substantial improvement over traditional estimation methods. In an attempt to improve nest survival estimation procedures, we introduce the nest survival model now available in the program MARK and demonstrate its use on a nesting study of Mountain Plovers (Charadrius montanus Townsend) in Montana, USA. We modeled the daily survival of Mountain Plover nests as a function of the sex of the incubating adult, nest age, year, linear and quadratic time trends, and two weather covariates (maximum daily temperature and daily precipitation) during a six-year study (1995–2000). We found no evidence for yearly differences or an effect of maximum daily temperature on the daily nest survival of Mountain Plovers. Survival rates of nests tended by female and male plovers differed (female rate = 0.33; male rate = 0.49). The estimate of the additive effect for males on nest survival rate was 0.37 (95% confidence limits were 0.03, 0.71) on a logit scale. Daily survival rates of nests increased with nest age; the estimate of daily nest-age change in survival in the best model was 0.06 (95% confidence limits were 0.04, 0.09) on a logit scale. Daily precipitation decreased the probability that the nest would survive to the next day; the estimate of the additive effect of daily precipitation on the nest survival rate was −1.08 (95% confidence limits were −2.12, −0.13) on a logit scale. Our approach to modeling daily nest-survival rates allowed several biological factors of interest to be easily included in nest survival models

  19. A National Strategy for Advancing Climate Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Dunlea, Edward; Elfring, Chris

    2012-12-04

    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation's capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee's report is a high level analysis, providing a strategic framework to guide progress in the nation's climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  20. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  1. Modelling marine sediment biogeochemistry: Current knowledge gaps, challenges, and some methodological advice for advancement

    DEFF Research Database (Denmark)

    Lessin, Gennadi; Artioli, Yuri; Almroth-Rosell, Elin

    2018-01-01

    -pronged approach for the advancement of benthic and benthic-pelagic modelling, essential for improved understanding, management and prediction of the marine environment. This includes: (A) Development of a traceable and hierarchical framework for benthic-pelagic models, which will facilitate integration among...... models, reduce risk of bias, and clarify model limitations; (B) extended cross-disciplinary approach to promote effective collaboration between modelling and empirical scientists of various backgrounds and better involvement of stakeholders and end-users; (C) a common vocabulary for terminology used...

  2. Introduction: Special issue on advances in topobathymetric mapping, models, and applications

    Science.gov (United States)

    Gesch, Dean B.; Brock, John C.; Parrish, Christopher E.; Rogers, Jeffrey N.; Wright, C. Wayne

    2016-01-01

    Detailed knowledge of near-shore topography and bathymetry is required for many geospatial data applications in the coastal environment. New data sources and processing methods are facilitating development of seamless, regional-scale topobathymetric digital elevation models. These elevation models integrate disparate multi-sensor, multi-temporal topographic and bathymetric datasets to provide a coherent base layer for coastal science applications such as wetlands mapping and monitoring, sea-level rise assessment, benthic habitat mapping, erosion monitoring, and storm impact assessment. The focus of this special issue is on recent advances in the source data, data processing and integration methods, and applications of topobathymetric datasets.

  3. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2016-07-01

    Full Text Available This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  4. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    models determined from flight test data by using parameter estimation methods find extensive use in design/modification of flight control systems, high fidelity flight simulators and evaluation of handling qualitites of aircraft and rotorcraft. R K Mehra et al present new algorithms and results for flutter tests and adaptive notching ...

  5. NIPS Workshop: Advances in Acoustic Models

    DEFF Research Database (Denmark)

    Feng, Ling; Hansen, Lars Kai

    that essentially independent in a reasonable ensemble can be efficiently coded using a sparse independent component representation. This means that supervised and unsupervised learning should result in similar representations. We do indeed find that supervised and unsupervised learning of a model based...

  6. Modeling and Advanced Control for Sustainable Process ...

    Science.gov (United States)

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-inspired, multi-agent-based method. The sustainability and performance assessment of process operating points is carried out using the U.S. E.P.A.’s GREENSCOPE assessment tool that provides scores for the selected economic, material management, environmental and energy indicators. The indicator results supply information on whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous bioethanol fermentation process whose dynamics are characterized by steady-state multiplicity and oscillatory behavior. This book chapter contribution demonstrates the application of novel process control strategies for sustainability by increasing material management, energy efficiency, and pollution prevention, as needed for SHC Sustainable Uses of Wastes and Materials Management.

  7. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  8. Modelling sustainable development: an economy-ecology integrated model

    NARCIS (Netherlands)

    Hofkes, M.W.

    1996-01-01

    This paper analyses sustainable development in an endogenous growth model which integrates a dynamic specification of both economic and ecological relations and all the interactions between the economy and the natural environment. It is common practice to solve growth models by looking at a balanced

  9. Advanced AEM by Comprehensive Analysis and Modeling of System Drift

    Science.gov (United States)

    Schiller, Arnulf; Klune, Klaus; Schattauer, Ingrid

    2010-05-01

    as in flight - show a clear correlation between the drift in raw voltage data and temperatures of critical system components, especially in the transmitter and receiver sections. Further, the correlation with air pressure, humidity, structure geometry and static electricity has been investigated. It shows that in case of a tuned system the dependency of signal phase and amplitude on system component temperatures prevails by far and can explain most of the system drift in the voltage domain. Post-processing for compensating for the drift of HEM-data is done by two different approaches: In the first, temperature dependent transfer functions of the transmitter- and receiver section are modeled on the basis of system temperature data and a correction is derived. In an advanced approach the drift of the system is analyzed by multivariate analysis including a broader set of data (HEM-signal, transmitter-reference signal, system temperatures, humidity, air pressure, height, dynamic loads) and based on an extended model. It proves that such an analysis is able to identify residual drift sources. As a result an integrated modeling scheme is depicted which enables a better separation of signal variations caused by the system or by changes in the measurement geometry from signal variations caused by the source distribution in the ground if critical system parameters are incorporated.

  10. Integrating microbial diversity in soil carbon dynamic models parameters

    Science.gov (United States)

    Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie

    2015-04-01

    Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten

  11. Advances in triaxial constitutive modeling of concrete

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1981-01-01

    The paper describes in a summary fashion recent developments, questions, and trends in the mathematical modeling of short-time nonlinear triaxial behavior of concrete, which is of considerable importance for a realistic and reliable prediction of the behavior of nuclear concrete structures. Attention is focused on the problems of internal friction, dilatancy, effect of microcracking, and path-dependence of response. Some typical responses are illustrated graphically. (orig.)

  12. Site descriptive modelling - strategy for integrated evaluation

    International Nuclear Information System (INIS)

    Andersson, Johan

    2003-02-01

    The current document establishes the strategy to be used for achieving sufficient integration between disciplines in producing Site Descriptive Models during the Site Investigation stage. The Site Descriptive Model should be a multidisciplinary interpretation of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and ecosystems using site investigation data from deep bore holes and from the surface as input. The modelling comprise the following iterative steps, evaluation of primary data, descriptive and quantitative modelling (in 3D), overall confidence evaluation. Data are first evaluated within each discipline and then the evaluations are checked between the disciplines. Three-dimensional modelling (i.e. estimating the distribution of parameter values in space and its uncertainty) is made in a sequence, where the geometrical framework is taken from the geological model and in turn used by the rock mechanics, thermal and hydrogeological modelling etc. The three-dimensional description should present the parameters with their spatial variability over a relevant and specified scale, with the uncertainty included in this description. Different alternative descriptions may be required. After the individual discipline modelling and uncertainty assessment a phase of overall confidence evaluation follows. Relevant parts of the different modelling teams assess the suggested uncertainties and evaluate the feedback. These discussions should assess overall confidence by, checking that all relevant data are used, checking that information in past model versions is considered, checking that the different kinds of uncertainty are addressed, checking if suggested alternatives make sense and if there is potential for additional alternatives, and by discussing, if appropriate, how additional measurements (i.e. more data) would affect confidence. The findings as well as the modelling results are to be documented in a Site Description

  13. Search of novel model for integrative medicine.

    Science.gov (United States)

    Patwardhan, Bhushan; Mutalik, Gururaj

    2014-03-01

    This article provides global and Indian scenario with strengths and limitations of present health care system. Affordability, accessibility and availability of health care coupled with disproportionate growth and double burden of diseases have become major concerns in India. This article emphasizes need for mindset change from illness-disease-drug centric curative to person-health-wellness centric preventive and promotive approaches. It highlights innovation deficit faced pharmaceutical industry and drugs being withdrawn from market for safety reasons. Medical pluralism is a growing trend and people are exploring various options including modern, traditional, complementary and alternative medicine. In such a situation, knowledge from Ayurveda, yoga, Chinese medicine and acupuncture may play an important role. We can evolve a suitable model by integrating modern and traditional systems of medicine for affordable health care. In the larger interest of global community, Indian and Chinese systems should share knowledge and experiences for mutual intellectual enrichments and work together to evolve a novel model of integrative medicine.

  14. Pedagogic process modeling: Humanistic-integrative approach

    Directory of Open Access Journals (Sweden)

    Boritko Nikolaj M.

    2007-01-01

    Full Text Available The paper deals with some current problems of modeling the dynamics of the subject-features development of the individual. The term "process" is considered in the context of the humanistic-integrative approach, in which the principles of self education are regarded as criteria for efficient pedagogic activity. Four basic characteristics of the pedagogic process are pointed out: intentionality reflects logicality and regularity of the development of the process; discreteness (stageability in dicates qualitative stages through which the pedagogic phenomenon passes; nonlinearity explains the crisis character of pedagogic processes and reveals inner factors of self-development; situationality requires a selection of pedagogic conditions in accordance with the inner factors, which would enable steering the pedagogic process. Offered are two steps for singling out a particular stage and the algorithm for developing an integrative model for it. The suggested conclusions might be of use for further theoretic research, analyses of educational practices and for realistic predicting of pedagogical phenomena. .

  15. Advanced Model for Extreme Lift and Improved Aeroacoustics (AMELIA)

    Science.gov (United States)

    Lichtwardt, Jonathan; Paciano, Eric; Jameson, Tina; Fong, Robert; Marshall, David

    2012-01-01

    With the very recent advent of NASA's Environmentally Responsible Aviation Project (ERA), which is dedicated to designing aircraft that will reduce the impact of aviation on the environment, there is a need for research and development of methodologies to minimize fuel burn, emissions, and reduce community noise produced by regional airliners. ERA tackles airframe technology, propulsion technology, and vehicle systems integration to meet performance objectives in the time frame for the aircraft to be at a Technology Readiness Level (TRL) of 4-6 by the year of 2020 (deemed N+2). The proceeding project that investigated similar goals to ERA was NASA's Subsonic Fixed Wing (SFW). SFW focused on conducting research to improve prediction methods and technologies that will produce lower noise, lower emissions, and higher performing subsonic aircraft for the Next Generation Air Transportation System. The work provided in this investigation was a NASA Research Announcement (NRA) contract #NNL07AA55C funded by Subsonic Fixed Wing. The project started in 2007 with a specific goal of conducting a large-scale wind tunnel test along with the development of new and improved predictive codes for the advanced powered-lift concepts. Many of the predictive codes were incorporated to refine the wind tunnel model outer mold line design. The large scale wind tunnel test goal was to investigate powered lift technologies and provide an experimental database to validate current and future modeling techniques. Powered-lift concepts investigated were Circulation Control (CC) wing in conjunction with over-the-wing mounted engines to entrain the exhaust to further increase the lift generated by CC technologies alone. The NRA was a five-year effort; during the first year the objective was to select and refine CESTOL concepts and then to complete a preliminary design of a large-scale wind tunnel model for the large scale test. During the second, third, and fourth years the large-scale wind

  16. Which coordinate system for modelling path integration?

    OpenAIRE

    Vickerstaff, Robert J.; Cheung, Allen

    2012-01-01

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature. Over the past century or so, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural re...

  17. Advanced Chemical Modeling for Turbulent Combustion Simulations

    Science.gov (United States)

    2012-05-03

    Bunsen flame. Proc. Comb. Inst., 31:1291–1298, 2007. [48] J.-H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao...turbulent combustion. Combust. Flame, 143:587–598, 2005. [50] J. A. van Oijen, F. A. Lammers, and L. P. H. de Goey. Modeling of complex premixed burner ... bunsen flames using flamelet-generated manifold reduction. Int. J. of Hydrogen Energy, 34:2778–2788, 2009. [53] K.-J. Nogenmyr, P. Petersson, X. S. Bai

  18. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  19. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    Energy Technology Data Exchange (ETDEWEB)

    Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others

    1997-08-01

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  20. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  1. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  2. Integrated Modelling in CRUCIAL Science Education

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and

  3. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  4. Recent advances in importance sampling for statistical model checking

    NARCIS (Netherlands)

    Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Scheinhardt, Willem R.W.; Haverkort, Boudewijn R.H.M.

    2013-01-01

    In the following work we present an overview of recent advances in rare event simulation for model checking made at the University of Twente. The overview is divided into the several model classes for which we propose algorithms, namely multicomponent systems, Markov chains and stochastic Petri

  5. Monte Carlo simulation models of breeding-population advancement.

    Science.gov (United States)

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  6. Advanced REACH Tool (ART) : Calibration of the mechanistic model

    NARCIS (Netherlands)

    Schinkel, J.; Warren, N.; Fransman, W.; Tongeren, M. van; McDonnell, P.; Voogd, E.; Cherrie, J.W.; Tischer, M.; Kromhout, H.; Tielemans, E.

    2011-01-01

    The mechanistic model of the Advanced Reach Tool (ART) provides a relative ranking of exposure levels from different scenarios. The objectives of the calibration described in this paper are threefold: to study whether the mechanistic model scores are accurately ranked in relation to exposure

  7. ARTEAM - Advanced ray tracing with earth atmospheric models

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  8. An integrated neuromechanical model of insect locomotion

    Science.gov (United States)

    Kukillaya, Raghavendra

    We develop a biologically-plausible feedforward neuromechanical model for running insects that includes a simplified hexapedal leg geometry with agonist-antagonist muscle pairs actuating each leg joint. It is driven by a neural network modeling the central pattern generator (CPG) and the motoneurons which activate the muscles. This final goal is achieved in three stages. First, a relatively simple mechanical hexapedal model is constructed in which the joint torques are produced via actuated linear torsional springs with constant stiffness. In the second stage, this system is upgraded to a muscle-actuated hexapedal model in which each joint is actuated by a pair of agonist-antagonist Hill-type muscles. Muscles are driven by stylized action potentials that are characteristic of fast motoneurons, and modeled using an activation function and nonlinear length and shortening velocity dependence. In the final stage, the full neuromechanical model is obtained by integrating the above muscle-actuated hexapedal model with a CPG-motoneuron complex, feedforward input to the muscles now being supplied by action potentials from motoneurons. Restricting to dynamics in the horizontal plane and neglecting leg masses, we reduce the model (at each stage) to three degrees of freedom describing translational and yawing motions of the body. Collectively for all the models, parameter values are based on measurements from depressor motoneurons and muscles, and observations of kinematics and dynamics of the cockroach Blaberus discoidalis. Specifically, actuation inputs for the mechanical and muscle-actuated models are chosen to approximately achieve joint torques that are consistent with measured ground reaction forces. This is done by optimizing the time-dependent torque-free joint angles in the first model, and by optimizing motoneuronal outputs and muscle force levels in the second and third models. We show that the model (at each stage) has stable double-tripod gaits over the animal

  9. Advancing flood risk analysis by integrating adaptive behaviour in large-scale flood risk assessments

    Science.gov (United States)

    Haer, T.; Botzen, W.; Aerts, J.

    2016-12-01

    In the last four decades the global population living in the 1/100 year-flood zone has doubled from approximately 500 million to a little less than 1 billion people. Urbanization in low lying -flood prone- cities further increases the exposed assets, such as buildings and infrastructure. Moreover, climate change will further exacerbate flood risk in the future. Accurate flood risk assessments are important to inform policy-makers and society on current- and future flood risk levels. However, these assessment suffer from a major flaw in the way they estimate flood vulnerability and adaptive behaviour of individuals and governments. Current flood risk projections commonly assume that either vulnerability remains constant, or try to mimic vulnerability through incorporating an external scenario. Such a static approach leads to a misrepresentation of future flood risk, as humans respond adaptively to flood events, flood risk communication, and incentives to reduce risk. In our study, we integrate adaptive behaviour in a large-scale European flood risk framework through an agent-based modelling approach. This allows for the inclusion of heterogeneous agents, which dynamically respond to each other and a changing environment. We integrate state-of-the-art flood risk maps based on climate scenarios (RCP's), and socio-economic scenarios (SSP's), with government and household agents, which behave autonomously based on (micro-)economic behaviour rules. We show for the first time that excluding adaptive behaviour leads to a major misrepresentation of future flood risk. The methodology is applied to flood risk, but has similar implications for other research in the field of natural hazards. While more research is needed, this multi-disciplinary study advances our understanding of how future flood risk will develop.

  10. Constitutive Modeling of Geomaterials Advances and New Applications

    CERN Document Server

    Zhang, Jian-Min; Zheng, Hong; Yao, Yangping

    2013-01-01

    The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007.   Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geote...

  11. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  12. MODELS OF TECHNOLOGY ADOPTION: AN INTEGRATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    Andrei OGREZEANU

    2015-06-01

    Full Text Available The interdisciplinary study of information technology adoption has developed rapidly over the last 30 years. Various theoretical models have been developed and applied such as: the Technology Acceptance Model (TAM, Innovation Diffusion Theory (IDT, Theory of Planned Behavior (TPB, etc. The result of these many years of research is thousands of contributions to the field, which, however, remain highly fragmented. This paper develops a theoretical model of technology adoption by integrating major theories in the field: primarily IDT, TAM, and TPB. To do so while avoiding mess, an approach that goes back to basics in independent variable type’s development is proposed; emphasizing: 1 the logic of classification, and 2 psychological mechanisms behind variable types. Once developed these types are then populated with variables originating in empirical research. Conclusions are developed on which types are underpopulated and present potential for future research. I end with a set of methodological recommendations for future application of the model.

  13. Integrated Model for E-Learning Acceptance

    Science.gov (United States)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  14. Sparse model selection via integral terms

    Science.gov (United States)

    Schaeffer, Hayden; McCalla, Scott G.

    2017-08-01

    Model selection and parameter estimation are important for the effective integration of experimental data, scientific theory, and precise simulations. In this work, we develop a learning approach for the selection and identification of a dynamical system directly from noisy data. The learning is performed by extracting a small subset of important features from an overdetermined set of possible features using a nonconvex sparse regression model. The sparse regression model is constructed to fit the noisy data to the trajectory of the dynamical system while using the smallest number of active terms. Computational experiments detail the model's stability, robustness to noise, and recovery accuracy. Examples include nonlinear equations, population dynamics, chaotic systems, and fast-slow systems.

  15. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2014-01-01

    Purpose – This paper aims to critically review the ownership, location and internalization (OLI) model and the Uppsala internationalization process (UIP) framework. We suggest that the inclusion of concepts such as corporate entrepreneurship, host country institutions and regulatory focus...... in an integrated framework helps to explain firm internationalization. Design/methodology/approach – This paper is based on a review of the literature on the OLI and UIP models. In addition, it presents a conceptual model that encompasses corporate entrepreneurship, regulatory focus and institutions. Findings...... choice with regard to internationalization. Practical implications – Regulatory focus theory originates from managerial psychology. The model is, therefore, relevant for managers, and it shows how the outcomes and processes of corporate entrepreneurial activity should manifest themselves in managerial...

  16. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Science.gov (United States)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  17. An interdisciplinary clinical advancement program within a patient-centered care model.

    Science.gov (United States)

    D'Avirro, J; Dotson, T; LaPierre, B; Marshall, W; Mishler, M B; Tanger, J L

    1996-01-01

    Restructuring in health care does not have to compromise the pursuit of clinical excellence and quality patient care. The clinical advancement program (CAP) at the Hospital for Special Care is a newly developed multidisciplinary reward and recognition program for clinical staff. The program is integrated into the hospital's structure of service line management and, unlike traditional advancement programs, is open to all levels of care providers: professional personnel, technical staff, and aides. This article describes the basic features of the CAP model and how its was developed by a multidisciplinary task force.

  18. Typological and Integrative Models of Sexual Abuse

    Directory of Open Access Journals (Sweden)

    Demidova L.Y.,

    2014-11-01

    Full Text Available We discuss the basic typological and integrative theoretical models that explain the occurrence of child sexual abuse and the differences detected among the perpetrators of crimes against sexual integrity of minors. A comprehensive review of the theoretical concepts of sexual abuse in our country, in fact has not been carried out, and in this paper for the first time we made such an attempt. It is shown that the existing notions of sexual abuse largely overlap each other, but each of the models somehow takes into account the factors not explicitly addressed in other concepts. Systematic consideration of the theoretical models of sexual abuse can generalize and systematize the available data on the mechanisms of pedophile behavior. This review provides an opportunity to develop a new benchmark in the study of sexual abuse, get closer to building the most accurate and comprehensive model. In turn, this may contribute to solving the questions about the factors, dynamics, and the prevention of criminal sexual conduct against children

  19. Tri-Lab Co-Design Milestone: In-Depth Performance Portability Analysis of Improved Integrated Codes on Advanced Architecture.

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Simon David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Richards, David [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergen, Ben [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-01

    This milestone is a tri-lab deliverable supporting ongoing Co-Design efforts impacting applications in the Integrated Codes (IC) program element Advanced Technology Development and Mitigation (ATDM) program element. In FY14, the trilabs looked at porting proxy application to technologies of interest for ATS procurements. In FY15, a milestone was completed evaluating proxy applications in multiple programming models and in FY16, a milestone was completed focusing on the migration of lessons learned back into production code development. This year, the co-design milestone focuses on extracting the knowledge gained and/or code revisions back into production applications.

  20. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  1. The scientific modeling assistant: An advanced software tool for scientific model building

    Science.gov (United States)

    Keller, Richard M.; Sims, Michael H.

    1991-01-01

    Viewgraphs on the scientific modeling assistant: an advanced software tool for scientific model building are presented. The objective is to build a specialized software tool to assist in scientific model-building.

  2. Shaped e-beam lithography integration work for advanced ASIC manufacturing: progress report

    Science.gov (United States)

    Pain, Laurent; Charpin, Murielle; LaPlanche, Yves; Henry, Daniel

    2002-07-01

    For the sub-90 nm node integrated circuits design rules, ITRS forecasts require minimal gate line width down to 55-35 nm. To reach such aggressive targets, most advanced optical lithography tools combined with all reticle enhancement techniques will be requested inducing important manufacturing cost and mask cycle time increase. In order to address prototyping market and reduce fabrication cost, shaped electron beam lithography may represent a technological alternative for cost reduction due to its high resolution and potential throughput capabilities. This paper is focused on the integration of this technology in standard ASIC plant, including resist process and overlay capabilities.

  3. Nanocarrier-Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drug-Delivery Systems.

    Science.gov (United States)

    Tahara, Yoshiro; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2015-09-09

    A nanocarrier-integrated bottom-up method is a promising strategy for advanced drug-release systems. Self-assembled nanogels, which are one of the most beneficial nanocarriers for drug-delivery systems, are tectonically integrated to prepare nanogel-crosslinked (NanoClik) microspheres. NanoClik microspheres consisting of nanogel-derived structures (observed by STED microscopy) release "drug-loaded nanogels" after hydrolysis, resulting in successful sustained drug delivery in vivo. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  5. Toward an Integrative Model of Global Business Strategy

    DEFF Research Database (Denmark)

    Li, Xin

    fragmentation-integration-fragmentation-integration upward spiral. In response to the call for integrative approach to strategic management research, we propose an integrative model of global business strategy that aims at integrating not only strategy and IB but also the different paradigms within the strategy...

  6. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P

    1991-01-01

    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  7. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  8. Advanced Value Chain Collaboration in Ghana's Cocoa Sector: An Entry Point for Integrated Landscape Approaches?

    Science.gov (United States)

    Deans, Howard; Ros-Tonen, Mirjam A F; Derkyi, Mercy

    2017-04-15

    Value chain analyses have focused mainly on collaboration between chain actors, often neglecting collaboration "beyond the chain" with non-chain actors to tackle food security, poverty and sustainability issues in the landscapes in which these value chains are embedded. Comparing conventional and advanced value chain collaborations involving small-scale cocoa farmers in Ghana, this paper analyzes the merits of a more integrated approach toward value chain collaboration. It particularly asks whether advanced value chain collaboration targeting cocoa-producing areas potentially offers an entry point for implementing a landscape approach. The findings detail current chain actors and institutions and show how advanced value chain collaboration has a greater positive impact than conventional value chain collaboration on farmers' social, human and natural capital. The paper concludes that the integrated approach, focus on learning, and stable relationships with small-scale farmers inherent in advanced value chain collaboration makes it both more sustainable and effective at the local level than conventional approaches. However, its scope and the actors' jurisdictional powers and self-organization are too limited to be the sole tool in negotiating land use and trade-offs at the landscape level. To evolve as such would require certification beyond the farm level, partnering with other landscape stakeholders, and brokering by bridging organizations.

  9. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  10. Conformal theories, integrable models and coadjoint orbits

    International Nuclear Information System (INIS)

    Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1991-01-01

    We discuss the Kirillov-Kostant method of coadjoint orbits and its applications to the construction of actions invariant under the infinite dimensional Lie groups. The use of these techniques to the study of integrable models is discussed, with the case of the Toda field theories receiving a special attention. As an illustration we derive, using these methods, a geometric WZWN action based on the extended two-loop Kac-Moody algebra. We show that under a Hamiltonian reduction procedure, which respects conformal invariance, we obtain a hierarchy of Toda type field theories, which contain as submodels the Toda Molecule and periodic Toda Lattice theories. (author)

  11. Advanced energy technologies and climate change: An analysis using the Global Change Assessment Model (GCAM)

    International Nuclear Information System (INIS)

    Edmonds, J.; Wise, M.; MacCracken, C.

    1994-01-01

    The authors report results from a ''top down'' energy-economy model employing ''bottom up'' assumptions and embedded in an integrated assessment framework, GCAM. The analysis shows that, from the perspective of long-term energy system development, differences in results from the ''top down'' and ''bottom up'' research communities would appear to be more closely linked to differences in assumptions regarding the economic cost associated with advanced technologies than to differences in modeling approach. The adoption of assumptions regarding advanced energy technologies were shown to have a profound effect on the future rate of anthropogenic climate change. The cumulative effect of the five sets of advanced energy technologies is to reduce annual emissions from fossil fuel use to levels which stabilize atmospheric concentrations below 550 ppmv, the point at which atmospheric concentrations are double those that existed in the middle of the eighteenth century. The consideration of all greenhouse gases, and in particular sulfur, leads to some extremely interesting results that the rapid deployment of advanced energy technologies leads to higher temperatures prior to 2050 than in the reference case. This is due to the fact that the advanced energy technologies reduce sulfur emissions as well as those of carbon. The short-term cooling impact of sulfur dominates the long-term warming impact of CO 2 and CH 4 . While all energy technologies play roles, the introduction of advanced biomass energy production technology plays a particularly important role. 16 refs., 12 figs., 3 tabs

  12. Integrating autonomous Problem Resolution Models with Remedy

    CERN Document Server

    Marquina, M A; Ramos, R

    2000-01-01

    This paper briefly defines the concept of Problem Resolution Model and shows possible approaches to the issues which may arise when integrating various PRMs to present a consistent view to the end user, despite of the peculiarities of each physical implementation. Integration refers to various autonomous PRMs having to interact as problems pass from one to another in the resolution flow. This process should be transparent to the user and internally there must be a way to track in which stage of the resolution process any problem is. This means addressing two different issues. On one side PRMs which are to be integrated need to comply with certain interface standards. These standards must ensure that problems exchanged between them can always be traced. On the other side problems owned by different PRMs should be presented to the end user under a homogeneous view. This means having an uniform criteria for automatic notification messages, a single reference point (www) where users can query the status of proble...

  13. Treatment of pathological gambling - integrative systemic model.

    Science.gov (United States)

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan

    2015-03-01

    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  14. Modelling and monitoring of integrated urban wastewater systems: review on status and perspectives

    DEFF Research Database (Denmark)

    Benedetti, L.; Langeveld, J.; Comeau, A.

    2013-01-01

    been investigated and several new or improved systems analysis methods have become available. New/improved software tools coupled with the current high computational capacity have enabled the application of integrated modelling to several practical cases, and advancements in monitoring water quantity......While the general principles and modelling approaches for integrated management/modelling of urban water systems already present a decade ago still hold, in recent years aspects like model interfacing and wastewater treatment plant (WWTP) influent generation as complements to sewer modelling have...

  15. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  16. Advances in Games Technology: Software, Models, and Intelligence

    Science.gov (United States)

    Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai

    2009-01-01

    Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…

  17. Generic Model Predictive Control Framework for Advanced Driver Assistance Systems

    NARCIS (Netherlands)

    Wang, M.

    2014-01-01

    This thesis deals with a model predictive control framework for control design of Advanced Driver Assistance Systems, where car-following tasks are under control. The framework is applied to design several autonomous and cooperative controllers and to examine the controller properties at the

  18. New advances in spatial network modelling: towards evolutionary algorithms

    NARCIS (Netherlands)

    Reggiani, A; Nijkamp, P.; Sabella, E.

    2001-01-01

    This paper discusses analytical advances in evolutionary methods with a view towards their possible applications in the space-economy. For this purpose, we present a brief overview and illustration of models actually available in the spatial sciences which attempt to map the complex patterns of

  19. Advances in Modelling of Large Scale Coastal Evolution

    NARCIS (Netherlands)

    Stive, M.J.F.; De Vriend, H.J.

    1995-01-01

    The attention for climate change impact on the world's coastlines has established large scale coastal evolution as a topic of wide interest. Some more recent advances in this field, focusing on the potential of mathematical models for the prediction of large scale coastal evolution, are discussed.

  20. Learning models for multi-source integration

    Energy Technology Data Exchange (ETDEWEB)

    Tejada, S.; Knoblock, C.A.; Minton, S. [Univ. of Southern California/ISI, Marina del Rey, CA (United States)

    1996-12-31

    Because of the growing number of information sources available through the internet there are many cases in which information needed to solve a problem or answer a question is spread across several information sources. For example, when given two sources, one about comic books and the other about super heroes, you might want to ask the question {open_quotes}Is Spiderman a Marvel Super Hero?{close_quotes} This query accesses both sources; therefore, it is necessary to have information about the relationships of the data within each source and between sources to properly access and integrate the data retrieved. The SIMS information broker captures this type of information in the form of a model. All the information sources map into the model providing the user a single interface to multiple sources.

  1. Building integral projection models: a user's guide.

    Science.gov (United States)

    Rees, Mark; Childs, Dylan Z; Ellner, Stephen P

    2014-05-01

    In order to understand how changes in individual performance (growth, survival or reproduction) influence population dynamics and evolution, ecologists are increasingly using parameterized mathematical models. For continuously structured populations, where some continuous measure of individual state influences growth, survival or reproduction, integral projection models (IPMs) are commonly used. We provide a detailed description of the steps involved in constructing an IPM, explaining how to: (i) translate your study system into an IPM; (ii) implement your IPM; and (iii) diagnose potential problems with your IPM. We emphasize how the study organism's life cycle, and the timing of censuses, together determine the structure of the IPM kernel and important aspects of the statistical analysis used to parameterize an IPM using data on marked individuals. An IPM based on population studies of Soay sheep is used to illustrate the complete process of constructing, implementing and evaluating an IPM fitted to sample data. We then look at very general approaches to parameterizing an IPM, using a wide range of statistical techniques (e.g. maximum likelihood methods, generalized additive models, nonparametric kernel density estimators). Methods for selecting models for parameterizing IPMs are briefly discussed. We conclude with key recommendations and a brief overview of applications that extend the basic model. The online Supporting Information provides commented R code for all our analyses. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  2. Impact of geological model uncertainty on integrated catchment hydrological modeling

    Science.gov (United States)

    He, Xin; Jørgensen, Flemming; Refsgaard, Jens Christian

    2014-05-01

    Various types of uncertainty can influence hydrological model performance. Among them, uncertainty originated from geological model may play an important role in process-based integrated hydrological modeling, if the model is used outside the calibration base. In the present study, we try to assess the hydrological model predictive uncertainty caused by uncertainty of the geology using an ensemble of geological models with equal plausibility. The study is carried out in the 101 km2 Norsminde catchment in western Denmark. Geostatistical software TProGS is used to generate 20 stochastic geological realizations for the west side the of study area. This process is done while incorporating the borehole log data from 108 wells and high resolution airborne transient electromagnetic (AEM) data for conditioning. As a result, 10 geological models are generated based solely on borehole data, and another 10 geological models are based on both borehole and AEM data. Distributed surface water - groundwater models are developed using MIKE SHE code for each of the 20 geological models. The models are then calibrated using field data collected from stream discharge and groundwater head observations. The model simulation results are evaluated based on the same two types of field data. The results show that the differences between simulated discharge flows caused by using different geological models are relatively small. The model calibration is shown to be able to account for the systematic bias in different geological realizations and hence varies the calibrated model parameters. This results in an increase in the variance between the hydrological realizations compared to the uncalibrated models that uses the same parameter values in all 20 models. Furthermore, borehole based hydrological models in general show more variance between simulations than the AEM based models; however, the combined total uncertainty, bias plus variance, is not necessarily higher.

  3. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  4. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  5. Nuclear spectroscopy in large shell model spaces: recent advances

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1995-01-01

    Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs

  6. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Legacy model integration for enhancing hydrologic interdisciplinary research

    Science.gov (United States)

    Dozier, A.; Arabi, M.; David, O.

    2013-12-01

    Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common

  8. Limitation to Advanced Life Support in patients admitted to intensive care unit with integrated palliative care

    Science.gov (United States)

    Mazutti, Sandra Regina Gonzaga; Nascimento, Andréia de Fátima; Fumis, Renata Rego Lins

    2016-01-01

    Objective To estimate the incidence of limitations to Advanced Life Support in critically ill patients admitted to an intensive care unit with integrated palliative care. Methods This retrospective cohort study included patients in the palliative care program of the intensive care unit of Hospital Paulistano over 18 years of age from May 1, 2011, to January 31, 2014. The limitations to Advanced Life Support that were analyzed included do-not-resuscitate orders, mechanical ventilation, dialysis and vasoactive drugs. Central tendency measures were calculated for quantitative variables. The chi-squared test was used to compare the characteristics of patients with or without limits to Advanced Life Support, and the Wilcoxon test was used to compare length of stay after Advanced Life Support. Confidence intervals reflecting p ≤ 0.05 were considered for statistical significance. Results A total of 3,487 patients were admitted to the intensive care unit, of whom 342 were included in the palliative care program. It was observed that after entering the palliative care program, it took a median of 2 (1 - 4) days for death to occur in the intensive care unit and 4 (2 - 11) days for hospital death to occur. Many of the limitations to Advanced Life Support (42.7%) took place on the first day of hospitalization. Cardiopulmonary resuscitation (96.8%) and ventilatory support (73.6%) were the most adopted limitations. Conclusion The contribution of palliative care integrated into the intensive care unit was important for the practice of orthothanasia, i.e., the non-extension of the life of a critically ill patient by artificial means. PMID:27626949

  9. An integrated modeling method for wind turbines

    Science.gov (United States)

    Fadaeinedjad, Roohollah

    To study the interaction of the electrical, mechanical, and aerodynamic aspects of a wind turbine, a detailed model that considers all these aspects must be used. A drawback of many studies in the area of wind turbine simulation is that either a very simple mechanical model is used with a detailed electrical model, or vice versa. Hence the interactions between electrical and mechanical aspects of wind turbine operation are not accurately taken into account. In this research, it will be shown that a combination of different simulation packages, namely TurbSim, FAST, and Simulink can be used to model the aerodynamic, mechanical, and electrical aspects of a wind turbine in detail. In this thesis, after a review of some wind turbine concepts and software tools, a simulation structure is proposed for studying wind turbines that integrates the mechanical and electrical components of a wind energy conversion device. Based on the simulation structure, a comprehensive model for a three-bladed variable speed wind turbine with doubly-fed induction generator is developed. Using the model, the impact of a voltage sag on the wind turbine tower vibration is investigated under various operating conditions such as power system short circuit level, mechanical parameters, and wind turbine operating conditions. It is shown how an electrical disturbance can cause more sustainable tower vibrations under high speed and turbulent wind conditions, which may disrupt the operation of pitch control system. A similar simulation structure is used to model a two-bladed fixed speed wind turbine with an induction generator. An extension of the concept is introduced by adding a diesel generator system. The model is utilized to study the impact of the aeroelastic aspects of wind turbine (i.e. tower shadow, wind shears, yaw error, turbulence, and mechanical vibrations) on the power quality of a stand-alone wind-diesel system. Furthermore, an IEEE standard flickermeter model is implemented in a

  10. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    Science.gov (United States)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated

  11. Integrated modeling of tokamak experiments with OMFIT

    International Nuclear Information System (INIS)

    Meneghini, Orso; Lao, Lang

    2013-01-01

    One Modeling Framework for Integrated Tasks (OMFIT) is a framework that allows data to be easily exchanged among different codes by providing a unifying data structure. The main idea at the base of OMFIT is to treat files, data and scripts as a uniform collection of objects organized into a tree structure, which provides a consistent way to access and manipulate such collection of heterogeneous objects, independent of their origin. Within the OMFIT tree, data can be copied/referred from one node to another and tasks can call each other allowing for complex compound task to be built. A top-level Graphical User Interface (GUI) allowing users to manage tree objects, carry out simulations and analyze the data either interactively or in batch. OMFIT supports many scientific data formats and when a file is loaded into the framework, its data populates the tree structure, automatically endowing it with many potential uses. Furthermore, seamless integration with experimental management systems allows direct manipulation of their data. In OMFIT modeling tasks are organized into modules, which can be easily combined to create arbitrarily-large multi-physics simulations. Modules inter-dependencies are seamlessly defined by variables referencing tree locations among them. Creation of new modules and customization of existing ones is encouraged by graphical tools for their management and an online repository. High level Application Programmer Interfaces (APIs) enable users to execute their codes on remote servers and creation application-specific GUIs. Finally, within OMFIT it is possible to visualize experimental and modeling data for both quick analysis and publication purposes. Examples of application to the DIII-D tokamak are presented. (author)

  12. Integrating Visualizations into Modeling NEST Simulations.

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  13. Integrating Visualizations into Modeling NEST Simulations

    Directory of Open Access Journals (Sweden)

    Christian eNowke

    2015-12-01

    Full Text Available Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  14. Integrating Visualizations into Modeling NEST Simulations

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  15. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    Science.gov (United States)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  16. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  17. Sensors advancements in modeling, design issues, fabrication and practical applications

    CERN Document Server

    Mukhopadhyay, Subhash Chandra

    2008-01-01

    Sensors are the most important component in any system and engineers in any field need to understand the fundamentals of how these components work, how to select them properly and how to integrate them into an overall system. This book has outlined the fundamentals, analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors, electromagnetic, capacitive, ultrasonic, vision, Terahertz, displacement, fibre-optic and so on. The book: addresses the identification, modeling, selection, operation and integration of a wide variety of se

  18. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae; Top, Søren

    2008-01-01

    to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set......Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics...... constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behaviour as a means of computation...

  19. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  20. The impact of IAIMS on the work of information experts. Integrated Advanced Information Management Systems.

    Science.gov (United States)

    Ash, J

    1995-10-01

    Integrated Advanced Information Management Systems (IAIMS) programs differ but have certain characteristics in common. Technological and organizational integration are universal goals. As integration takes place, what happens to those implementing the vision? A survey of 125 staff members, or information experts, involved in information or informatics at an IAIMS-funded institution was conducted during the last year of the implementation phase. The purpose was to measure the impact of IAIMS on the jobs of those in the library and related service units, and the computing, telecommunications, and health informatics divisions. The researchers used newly developed scales measuring levels of integration (knowledge of and involvement with other departments), customer orientation (focus on the user), and informatedness (changes in the nature of work beyond automation of former routines). Ninety-four percent of respondents indicated that their jobs had changed a great deal; the changes were similar regardless of division. To further investigate the impact of IAIMS on librarians in particular, a separate skills survey was conducted. The IAIMS librarians indicated that technology and training skills are especially needed in the new, integrated environment.

  1. Classification of integrable discrete Klein-Gordon models

    International Nuclear Information System (INIS)

    Habibullin, Ismagil T; Gudkova, Elena V

    2011-01-01

    The Lie algebraic integrability test is applied to the problem of classification of integrable Klein-Gordon-type equations on quad graphs. The list of equations passing the test is presented, containing several well-known integrable models. A new integrable example is found; its higher symmetry is presented.

  2. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  3. Modeling renewable energy resources in integrated resource planning

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D.; Neil, C.; Taylor, A. [RCG/Hagler, Bailly, Inc., Boulder, CO (United States)

    1994-06-01

    Including renewable energy resources in integrated resource planning (IRP) requires that utility planning models properly consider the relevant attributes of the different renewable resources in addition to conventional supply-side and demand-side options. Otherwise, a utility`s resource plan is unlikely to have an appropriate balance of the various resource options. The current trend toward regulatory set-asides for renewable resources is motivated in part by the perception that the capabilities of current utility planning models are inadequate with regard to renewable resources. Adequate modeling capabilities and utility planning practices are a necessary prerequisite to the long-term penetration of renewable resources into the electric utility industry`s resource mix. This report presents a review of utility planning models conducted for the National Renewable Energy Laboratory (NREL). The review examines the capabilities of utility planning models to address key issues in the choice between renewable resources and other options. The purpose of this review is to provide a basis for identifying high priority areas for advancing the state of the art.

  4. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    Science.gov (United States)

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society

  5. Toward an Integrated Competence-based System Supporting Lifelong Learning and Employability: Concepts, Model, and Challenges

    NARCIS (Netherlands)

    Miao, Yongwu; Van der Klink, Marcel; Boon, Jo; Sloep, Peter; Koper, Rob

    2009-01-01

    Miao, Y., Van der Klink, M., Boon, J., Sloep, P. B., & Koper, R. (2009). Toward an Integrated Competence-based System Supporting Lifelong Learning and Employability: Concepts, Model, and Challenges. Presentation at the 8th International Conference Advances in Web Based Learning - ICWL 2009. August,

  6. Modelling of Integrated Renewable Energy System

    Science.gov (United States)

    Akella, A. K.; Saini, R. P.; Sharma, M. P.

    2007-10-01

    Energy is supplied in the form of electricity, heat or fuels and an energy supply system must guarantee sufficient production and distribution of energy. An energy supply system based on renewable energy can be utilized as integrated renewable energy system (IRES), which can satisfy the energy needs of an area in appropriate & sustainable manner. Given the key role of renewable energy in rural electrification of remote rural areas, the IRES for a given area can be modeled & optimized for meeting the energy needs. In the present paper, Jaunpur block of Uttaranchal state of India has been selected as remote area. Based upon the data collected, the resource potential and energy demand has been calculated & presented. The model on the basis of unit cost of the energy has been optimized using LINDO software 6.10 version. The results indicated that the optimized model has been found to the best choice for meeting the energy needs of the area. The results further indicated that for the above area, either an IRES consisting of the above sources can provide a feasible solution in terms of energy fulfillments in the range of EPDF from 1.0 to 0.75.

  7. System model of a natural circulation integral test facility

    Science.gov (United States)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  8. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  9. Advanced Breakdown Modeling for Solid-State Circuit Design

    NARCIS (Netherlands)

    Milovanovi?, V.

    2010-01-01

    Modeling of the effects occurring outside the usual region of application of semiconductor devices is becoming more important with increasing demands set upon electronic systems for simultaneous speed and output power. Analog integrated circuit designers are forced to enter regimes of transistor

  10. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-05

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.

  11. Advancing Commercialization of Algal Biofuel through Increased Biomass Productivity and Technical Integration

    Energy Technology Data Exchange (ETDEWEB)

    Anton, David [Cellana, LLC, Kailua-Kona, HI (United States)

    2016-12-31

    The proposed project built on the foundation of over several years years of intensive and ground-breaking R&D work at Cellana's Kona Demonstration Facility (KDF). Phycological and engineering solutions were provided to tackle key cultivation issues and technical barriers limiting algal biomass productivity identified through work conducted outdoors at industrial (1 acre) scale. The objectives of this project were to significantly improve algal biomass productivity and reduce operational cost in a seawater-based system, using results obtained from two top-performing algal strains as the baseline while technically advancing and more importantly, integrating the various unit operations involved in algal biomass production, processing, and refining.

  12. Light Scatter in Optical Materials: Advanced Haze Modeling

    Science.gov (United States)

    2017-03-31

    backside light from the bulb back toward the bowl. The center of the bowl has a clear aperture cut through it, allowing the eye an unobstructed...AFRL-RH-FS-TR-2017-0022 Light Scatter in Optical Materials: Advanced Haze Modeling Michael A. Guevara William R. Brockmeier Thomas K. Kuyk...other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. Qualified

  13. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  14. Advancing Leadership

    OpenAIRE

    Penny L. Tenuto

    2014-01-01

    Preparing students to become active citizens and contributors to a democratic society is premised on teaching democratic principles and modeling standards of democratic practice at all levels of education. The purpose of this integrative literature review is to establish a conceptual framework grounded in literature and a model for cultivating democratic professional practice in education (DPPE) to advance leadership f...

  15. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling Element

    Data.gov (United States)

    National Aeronautics and Space Administration — CIM encompassed computational methods, tools and processes that go into the materials, design, manufacturing and qualification of composite aerospace structures....

  16. Gerontology's Future: An Integrative Model for Disciplinary Advancement

    Science.gov (United States)

    Alkema, Gretchen E.; Alley, Dawn E.

    2006-01-01

    Scholars have debated the legitimacy of gerontology as a discipline since Metchnikoff coined the term more than 100 years ago. Recent developments such as the emergence of interdisciplinary aging theories and consensus on longitudinal research methods suggest that gerontology is materializing as a unique discipline, rather than a subset of another…

  17. Advanced image based methods for structural integrity monitoring: Review and prospects

    Science.gov (United States)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  18. Integrating knowledge across domains to advance the science of health behavior: overcoming challenges and facilitating success.

    Science.gov (United States)

    Klein, William M P; Grenen, Emily G; O'Connell, Mary; Blanch-Hartigan, Danielle; Chou, Wen-Ying Sylvia; Hall, Kara L; Taber, Jennifer M; Vogel, Amanda L

    2017-03-01

    Health behaviors often co-occur and have common determinants at multiple levels (e.g., individual, relational, environmental). Nevertheless, research programs often examine single health behaviors without a systematic attempt to integrate knowledge across behaviors. This paper highlights the significant potential of cross-cutting behavioral research to advance our understanding of the mechanisms and causal factors that shape health behaviors. It also offers suggestions for how researchers could develop more effective interventions. We highlight barriers to such an integrative science along with potential steps that can be taken to address these barriers. With a more nuanced understanding of health behavior, redundancies in research can be minimized, and a stronger evidence base for the development of health behavior interventions can be realized.

  19. The universal, collaborative and dynamic model of specialist and advanced nursing and midwifery practice: A way forward?

    Science.gov (United States)

    O'Connor, Laserina; Casey, Mary; Smith, Rita; Fealy, Gerard M; Brien, Denise O'; O'Leary, Denise; Stokes, Diarmuid; McNamara, Martin S; Glasgow, Mary Ellen; Cashin, Andrew

    2017-07-19

    To inform and guide the development of a future model of specialist and advanced nursing and midwifery practice. There is a sizable body of empirical literature supporting the unique contributions of specialist and advanced practice roles to health care. However, there is very little international evidence to inform the integration of a future model for advanced or specialist practice in the Irish healthcare system. A qualitative study was conducted to initiate this important area of inquiry. Purposive sampling was used to generate a sample of informants (n = 15) for the interviews. Nurses and midwives working in specialist and advanced practice and participants from other areas such as legislative, regulatory, policy, medicine and education were included in the sampling frame. Arguments for a new model of specialist and advanced practice were voiced. A number of participants proposed that flexibility within specialist and advanced practitioner career pathways was essential. Otherwise, there existed the possibility of being directed into specialised "silos," precluding movement to another area of integrated practice. Future specialist and advanced practice education programmes need to include topics such as the development of emotional and political intelligence. The contribution of specialist and advanced practice roles to the health service includes providing rapid access to care, seamless patient flow across services, early discharge and lead coordinator of the patient's care trajectory. There was a recommendation of moving towards a universal model to cultivate specialist and advanced nurse and midwife practitioners. The model design has Universal application in a range of contexts "U." It is Collaborative in its inclusivity of all key stakeholders "C." The model is Dynamic pertinent to accommodating movement of nurses and midwives across health continua rather than plateauing in very specialised "silos" "D." © 2017 John Wiley & Sons Ltd.

  20. Integrated Environmental Modelling: Human decisions, human challenges

    Science.gov (United States)

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  1. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  2. Integrated Environmental Modelling: human decisions, human challenges

    Science.gov (United States)

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  3. Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment

    Science.gov (United States)

    Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.

    2016-01-01

    Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.

  4. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  5. MCNP full-core modeling of the advanced test reactor

    International Nuclear Information System (INIS)

    Kim, S.S.; Jahshan, S.N.; Nielson, R.B.

    1993-01-01

    A full-core Monte Carlo neutron and photon (MCNP) transport model has been completed for the advanced test reactor (ATR) at Idaho National Engineering Laboratory. This new model is a complete three-dimensional model that represents fuel elements, core structures, and target regions in adequate detail. The model can be used in evaluating heating and reaction rates in various target regions of the core. This model is especially useful in physics analysis of an asymmetric experiment loading in the core. The ATR is a light-water-cooled thermal reactor with aluminum/uranium-aluminide fuel plates grouped in arcuate fuel elements that form a serpentine arrangement, as shown in Fig. 1. The core is surrounded by a beryllium reflector. Nine test loops are nestled in the lobes of the serpentine core, and numerous other irradiation holes with varying dimensions and radiation environments are located in the reflector and in the core interior

  6. Improving blood donor recruitment and retention: integrating theoretical advances from social and behavioral science research agendas.

    Science.gov (United States)

    Ferguson, Eamonn; France, Christopher R; Abraham, Charles; Ditto, Blaine; Sheeran, Paschal

    2007-11-01

    Increasing blood donor recruitment and retention is of key importance to transfusion services. Research within the social and behavioral science traditions has adopted separate but complementary approaches to addressing these issues. This article aims to review both of these types of literature, examine theoretical developments, identify commonalities, and offer a means to integrate these within a single intervention approach. The social and behavioral science literature on blood donor recruitment and retention focusing on theory, interventions, and integration is reviewed. The role of emotional regulation (anticipated anxiety and vasovagal reactions) is central to both the behavioral and the social science approaches to enhancing donor motivation, yet although intentions are the best predictor of donor behavior, interventions targeting enactment of intentions have not been used to increase donation. Implementation intentions (that is, if-then plans formed in advance of acting) provide a useful technique to integrate findings from social and behavioral sciences to increase donor recruitment and retention. After reviewing the literature, implementation intention formation is proposed as a technique to integrate the key findings and theories from the behavioral and social science literature on blood donor recruitment and retention.

  7. Advancing Exposure Science through Chemical Data Curation and Integration in the Comparative Toxicogenomics Database.

    Science.gov (United States)

    Grondin, Cynthia J; Davis, Allan Peter; Wiegers, Thomas C; King, Benjamin L; Wiegers, Jolene A; Reif, David M; Hoppin, Jane A; Mattingly, Carolyn J

    2016-10-01

    Exposure science studies the interactions and outcomes between environmental stressors and human or ecological receptors. To augment its role in understanding human health and the exposome, we aimed to centralize and integrate exposure science data into the broader biological framework of the Comparative Toxicogenomics Database (CTD), a public resource that promotes understanding of environmental chemicals and their effects on human health. We integrated exposure data within the CTD to provide a centralized, freely available resource that facilitates identification of connections between real-world exposures, chemicals, genes/proteins, diseases, biological processes, and molecular pathways. We developed a manual curation paradigm that captures exposure data from the scientific literature using controlled vocabularies and free text within the context of four primary exposure concepts: stressor, receptor, exposure event, and exposure outcome. Using data from the Agricultural Health Study, we have illustrated the benefits of both centralization and integration of exposure information with CTD core data. We have described our curation process, demonstrated how exposure data can be accessed and analyzed in the CTD, and shown how this integration provides a broad biological context for exposure data to promote mechanistic understanding of environmental influences on human health. Curation and integration of exposure data within the CTD provides researchers with new opportunities to correlate exposures with human health outcomes, to identify underlying potential molecular mechanisms, and to improve understanding about the exposome. Grondin CJ, Davis AP, Wiegers TC, King BL, Wiegers JA, Reif DM, Hoppin JA, Mattingly CJ. 2016. Advancing exposure science through chemical data curation and integration in the Comparative Toxicogenomics Database. Environ Health Perspect 124:1592-1599; http://dx.doi.org/10.1289/EHP174.

  8. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  9. An integrative process model of leadership: examining loci, mechanisms, and event cycles.

    Science.gov (United States)

    Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J

    2013-09-01

    Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice. © 2013 APA, all rights reserved.

  10. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines

    Science.gov (United States)

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-08-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  11. Advancing environmental flow science: Developing frameworks for altered landscapes and integrating efforts across disciplines.

    Science.gov (United States)

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-01-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  12. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  13. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  14. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

  15. Instantiating informatics in nursing practice for integrated patient centred holistic models of care: a discussion paper.

    Science.gov (United States)

    Hussey, Pamela A; Kennedy, Margaret Ann

    2016-05-01

    A discussion on how informatics knowledge and competencies can enable nursing to instantiate transition to integrated models of care. Costs of traditional models of care are no longer sustainable consequent to the spiralling incidence and costs of chronic illness. The international community looks towards technology-enabled solutions to support a shift towards integrated patient-centred models of care. Discussion paper. A search of the literature was performed dating from 2000-2015 and a purposeful data sample based on relevance to building the discussion was included. The holistic perspective of nursing knowledge can support and advance integrated healthcare models. Informatics skills are key for the profession to play a leadership role in design, implementation and operation of next generation health care. However, evidence suggests that nursing engagement with informatics strategic development for healthcare provision is currently variable. A statistically significant need exists to progress health care towards integrated models of care. Strategic and tactical plans that are robustly pragmatic with nursing insights and expertise are an essential component to achieve effective healthcare provision. To avoid exclusion in the discourse dominated by management and technology experts, nursing leaders must develop and actively promote the advancement of nursing informatics skills. For knowledge in nursing practice to flourish in contemporary health care, nurse leaders will need to incorporate informatics for optimal translation and interpretation. Defined nursing leadership roles informed by informatics are essential to generate concrete solutions sustaining nursing practice in integrated care models. © 2016 John Wiley & Sons Ltd.

  16. Image analysis and modeling in medical image computing. Recent developments and advances.

    Science.gov (United States)

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  17. Advanced Approach to Consider Aleatory and Epistemic Uncertainties for Integral Accident Simulations

    International Nuclear Information System (INIS)

    Peschke, Joerg; Kloos, Martina

    2013-01-01

    The use of best-estimate codes together with realistic input data generally requires that all potentially important epistemic uncertainties which may affect the code prediction are considered in order to get an adequate quantification of the epistemic uncertainty of the prediction as an expression of the existing imprecise knowledge. To facilitate the performance of the required epistemic uncertainty analyses, methods and corresponding software tools are available like, for instance, the GRS-tool SUSA (Software for Uncertainty and Sensitivity Analysis). However, for risk-informed decision-making, the restriction on epistemic uncertainties alone is not enough. Transients and accident scenarios are also affected by aleatory uncertainties which are due to the unpredictable nature of phenomena. It is essential that aleatory uncertainties are taken into account as well, not only in a simplified and supposedly conservative way but as realistic as possible. The additional consideration of aleatory uncertainties, for instance, on the behavior of the technical system, the performance of plant operators, or on the behavior of the physical process provides a quantification of probabilistically significant accident sequences. Only if a safety analysis is able to account for both epistemic and aleatory uncertainties in a realistic manner, it can provide a well-founded risk-informed answer for decision-making. At GRS, an advanced probabilistic dynamics method was developed to address this problem and to provide a more realistic modeling and assessment of transients and accident scenarios. This method allows for an integral simulation of complex dynamic processes particularly taking into account interactions between the plant dynamics as simulated by a best-estimate code, the dynamics of operator actions and the influence of epistemic and aleatory uncertainties. In this paper, the GRS method MCDET (Monte Carlo Dynamic Event Tree) for probabilistic dynamics analysis is explained

  18. Integrated concept development of next-step helical-axis advanced stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Warmer, Felix

    2016-04-13

    With the increasing energy demand of mankind and the transformation of our society towards sustainability, nuclear fusion by magnetic confinement is a promising option for the sustainable electricity supply in the future. In view of these prospects this thesis focuses on the concept development of next-step helical-axis advanced stellarator (HELIAS) burning-plasma devices. The HELIAS-line is the continued development of the prototype optimised stellarator Wendelstein 7-X which started operation in 2015. For the integrated concept development of such devices, the approach taken in this work encompasses detailed physics and engineering considerations while also including economic aspects. Starting with physics considerations, the properties of plasma transport and confinement of 3D stellarator configurations are discussed due to their critical importance for the device design. It becomes clear that current empirical confinement time scalings are not sufficient to predict the confinement in future stellarator devices. Therefore, detailed 1D transport simulations are carried out to reduce the uncertainties regarding confinement. Beyond the well-validated neoclassical approach, first attempts are made to include results from state-of-the-art turbulence simulations into the 1D transport simulations to further enhance the predictive capabilities. Next, for the systematic development of consistent design points, stellarator-specific models are developed and implemented in the well-established European systems code PROCESS. This allows a consistent description of an entire HELIAS fusion power plant including physics, engineering, and economic considerations. With the confidence obtained from a verification study, systems studies are for the first time applied for a HELIAS power-plant which shows that the available design window is constrained by the beta-limit. Furthermore, an economic comparison of an exemplary design point to an ''equivalent'' tokamak

  19. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  20. Accessing patient-centered care using the advanced access model.

    Science.gov (United States)

    Tantau, Catherine

    2009-01-01

    Waits and delays for healthcare are legendary. These delays are not only frustrating and potentially hazardous for patients and providers but also represent significant cost to office practices. The traditional medical model that defines urgent care versus routine care is a vain and futile attempt to sort demand. This approach is at constant odds with patients' definition of urgency. Trusting patients to determine when and how they want to access care makes sense from a customer service perspective. If approached systematically using the principles of Advanced Access, patient demand patterns can be tracked to forecast demand. These demand patterns become the template for deploying the resources necessary to meet patients' needs. Although not a simple journey, the transformation to Advanced Access provides an entree to patient-centered care where patients can say, "I get exactly the care I want and need, when I want and need it."

  1. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  2. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  3. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  4. Implementation of skeletal muscle model with advanced activation control

    Directory of Open Access Journals (Sweden)

    Kocková H.

    2009-12-01

    Full Text Available The paper summarizes main principles of an advanced skeletal muscle model. The proposed mathematical model is suitable for a 3D muscle representation. It respects the microstructure of the muscle which is represented by three basic components: active fibers, passive fibers and a matrix. For purposes of presented work the existing material models suitable for the matrix and passive fibers are used and a new active fiber model is proposed. The active fiber model is based on the sliding cross-bridge theory of contraction. This theory is often used in modeling of skeletal and cardiac muscle contractions. In this work, a certain simplification of the cross-bridge distribution function is proposed, so that the 3D computer implementation becomes feasible. The new active fiber model is implemented into our research finite element code. A simple 3D muscle bundle-like model is created and the implemented composite model (involving the matrix, passive and active fibers is used to perform the isometric, concentric and excentric muscle contraction simulations.

  5. Legislative and Policy Developments and Imperatives for Advancing the Primary Care Behavioral Health (PCBH) Model.

    Science.gov (United States)

    Freeman, Dennis S; Hudgins, Cathy; Hornberger, Joel

    2018-03-05

    The Primary Care Behavioral Health (PCBH) practice model continues to gain converts among primary care and behavioral health professionals as the evidence supporting its effectiveness continues to accumulate. Despite a growing number of practices and organizations using the model effectively, widespread implementation has been hampered by outmoded policies and regulatory barriers. As policymakers and legislators begin to recognize the contributions that PCBH model services make to the care of complex patients and the expansion of access to those in need of behavioral health interventions, some encouraging policy initiatives are emerging and the policy environment is becoming more favorable to implementation of the PCBH model. This article outlines the necessity for policy change, exposing the policy issues and barriers that serve to limit the practice of the PCBH model; highlights innovative approaches some states are taking to foster integrated practice; and discusses the compatibility of the PCBH model with the nation's health care reform agenda. Psychologists have emerged as leaders in the design and implementation of PCBH model integration and are encouraged to continue to advance the model through the demonstration of efficient and effective clinical practice, participation in the expansion of an appropriately trained workforce, and advocacy for the inclusion of this practice model in emerging healthcare systems and value-based payment methodologies.

  6. Theories and Frameworks for Online Education: Seeking an Integrated Model

    Science.gov (United States)

    Picciano, Anthony G.

    2017-01-01

    This article examines theoretical frameworks and models that focus on the pedagogical aspects of online education. After a review of learning theory as applied to online education, a proposal for an integrated "Multimodal Model for Online Education" is provided based on pedagogical purpose. The model attempts to integrate the work of…

  7. Integrated Modeling for Road Condition Prediction (IMRCP)

    Science.gov (United States)

    2018-01-17

    Intelligent transportation system deployments have enabled great advances in operational awareness and response based on the data they gather on the current state of the roadways. The next step in decision support is to forecast road conditions and b...

  8. Integrated Modeling for Road Condition Prediction (IMRCP)

    Science.gov (United States)

    2018-01-17

    Intelligent transportation system deployments have enabled great advances in operational awareness and response based on the data they gather on the current state of the roadways. Operators have better access to traffic and weather condition informat...

  9. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  10. Advancement and Implementation of Integrated Computational Materials Engineering (ICME) for Aerospace Applications

    Science.gov (United States)

    2010-03-01

    when combined with advanced cooling configurations, have greatly increased turbine temperature and efficiency while simultaneously increasing...Phase diagrams • Database is generally sound Thermophysical properties 2.0 Material Processing Casting/Solidification ProCAST, Magma • • Commerc ial...London Elevated temperature flow stress Univ of Michigan Yield Model • • University code • Developed by Prof. Pollock Yield stress for ’ superalloys

  11. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    Science.gov (United States)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  12. Integrated modelling requires mass collaboration (Invited)

    Science.gov (United States)

    Moore, R. V.

    2009-12-01

    add, “and are the plans sustainable?” To return to the present, although, it is now possible to ask the first question and obtain an answer through linked modelling; we are still at a very early stage and the associated uncertainties are large. The process of linking and running linked systems is not yet the simple, reliable process needed for widespread uptake. At this point, it is useful to look back over the development process which has taken us from paper maps to GIS and Google Maps; it was the result of tens of thousands of PhD and MSc projects over forty years. During the development of the OpenMI, it was quickly appreciated that to transform integrated modelling from something possible in a research lab to something that had the ease of use and reliability of Google Maps would require a similar process but on a far greater scale; one far larger than any single organisation or state could support. A dramatic change to the research and development process would be needed. Using the OpenMI Association’s strategy as an example, the presentation will describe how through openness, sharing and mass collaboration made possible by inexpensive communications and computing power and adoption of a minimum set of standards, the innovation and enterprise of thousands of individuals across the world can be brought to bear upon the problems.

  13. Numerical time integration for air pollution models

    NARCIS (Netherlands)

    J.G. Verwer (Jan); W. Hundsdorfer (Willem); J.G. Blom (Joke)

    1998-01-01

    textabstractDue to the large number of chemical species and the three space dimensions, off-the-shelf stiff ODE integrators are not feasible for the numerical time integration of stiff systems of advection-diffusion-reaction equations [ fracpar{c{t + nabla cdot left( vu{u c right) = nabla cdot left(

  14. Study on advanced systematic function of the JNC geological disposal technical information integration system. Research document

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Fukui, Hiroshi; Sagawa, Hiroshi; Matsunaga, Kenichi; Ito Takaya

    2004-02-01

    In this study, while attaining systematization about the technical know-how mutually utilized between geology environmental field, disposal technology (design) field and safety assessment field, the share function of general information in which the formation of an information share and the use promotion between the technical information management databases built for every field were aimed at as an advancement of the function of JNC Geological Disposal Technical Information Integration System considered, and the system function for realizing considered in integration of technical information. (1) Since the concrete information about geology environment which is gradually updated with progress of stratum disposal research, or increases in reflected suitable for research of design and safety assessment. After arranging the form suitable for systematizing technical information, while arranging the technical information in both the fields of design and safety assessment with the form of two classes based on tasks/works, it systematized planning adjustment about delivery of technical information with geology environmental field. (2) In order to aim at integration of 3-fields technical information of geological disposal, based on the examination result of systematization of technical information, the function of mutual use of the information managed in two or more databases was considered. Moreover, while considering system functions, such as management of the use history of technical information, connection of information use, and a notice of common information, the system operation windows in consideration of the ease of operation was examined. (author)

  15. Integration of Palliative Care Advanced Practice Nurses Into Intensive Care Unit Teams.

    Science.gov (United States)

    O'Mahony, Sean; Johnson, Tricia J; Amer, Shawn; McHugh, Marlene E; McHenry, Janet; Fosler, Laura; Kvetan, Vladimir

    2017-05-01

    Referrals to palliative care for patients at the end of life in the intensive care unit (ICU) often happen late in the ICU stay, if at all. The integration of a palliative medicine advanced practice nurse (APN) is one potential strategy for proactively identifying patients who could benefit from this service. To evaluate the association between the integration of palliative medicine APNs into the routine operations of ICUs and hospital costs at 2 different institutions, Montefiore Medical Center (MMC) and Rush University Medical Center. The association between collaborative palliative care consultation service programs and hospital costs per patient was evaluated for the 2 institutions. Hospital costs were compared for patients with and without a referral to palliative care using Mann-Whitney U tests. Hospital nonroom and board costs at the Weiler campus of MMC were significantly lower for patients with palliative care compared with those who did not receive palliative care (Median = US$6643 vs US$12 399, P integration of APNs into a palliative care team for case finding may be a promising strategy, but more work is needed to determine whether reductions in cost are significant.

  16. How EU Economic Integration Advances on the Way of Some Important Unions

    Directory of Open Access Journals (Sweden)

    PETRE PRISECARU

    2015-05-01

    Full Text Available Economic union and monetary union are deeply connected: two dimensions of the third stage of European integration. But achieving monetary union without a complete single market in the field of financial services proved the vulnerability of Eurozone to external shocks and the need to a further economic integration. While banking union has advanced quite fast in the last two years, capital markets union is only a project, also the fiscal union, which is the basic foundation of a true political union. A complete financial union will take a long time to accomplish due to many political, financial and bureaucratic obstacles facing such an ambitious project. Energy Union is another important project meant to remove market fragmentation, to enhance energy security and to reduce environmental impact of energy sector. Finally the political union, the last stage of European integration, the dream of many famous politicians and scholars, will be only possible on the long run as a new type of federation of nation states, provided that all components of economic union will be fully attained.

  17. Business Model Evaluation for an Advanced Multimedia Service Portfolio

    Science.gov (United States)

    Pisciella, Paolo; Zoric, Josip; Gaivoronski, Alexei A.

    In this paper we analyze quantitatively a business model for the collaborative provision of an advanced mobile data service portfolio composed of three multimedia services: Video on Demand, Internet Protocol Television and User Generated Content. We provide a description of the provision system considering the relation occurring between tecnical aspects and business aspects for each agent providing the basic multimedia service. Such a techno-business analysis is then projected into a mathematical model dealing with the problem of the definition of incentives between the different agents involved in a collaborative service provision. Through the implementation of this model we aim at shaping the behaviour of each of the contributing agents modifying the level of profitability that the Service Portfolio yields to each of them.

  18. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  19. CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    D. V. Koliesnikov

    2011-01-01

    Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.

  20. Models and algorithms for Integration of Vehicle and Crew Scheduling

    NARCIS (Netherlands)

    R. Freling (Richard); D. Huisman (Dennis); A.P.M. Wagelmans (Albert)

    2000-01-01

    textabstractThis paper deals with models, relaxations and algorithms for an integrated approach to vehicle and crew scheduling. We discuss potential benefits of integration and provide an overview of the literature, which considers mainly partial integration. Our approach is new in the sense that we

  1. A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM)

    Science.gov (United States)

    2017-10-01

    TECHNICAL REPORT 3079 October 2017 A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM...Head 55190 Networks Division iii EXECUTIVE SUMMARY This report summarizes the methodology developed to improve the radar threshold modeling...PHASED ARRAY RADAR CONFIGURATION ..................................................................... 1 3. METHODOLOGY

  2. Health behavior change in advance care planning: an agent-based model

    Directory of Open Access Journals (Sweden)

    Natalie C. Ernecoff

    2016-02-01

    Full Text Available Abstract Background A practical and ethical challenge in advance care planning research is controlling and intervening on human behavior. Additionally, observing dynamic changes in advance care planning (ACP behavior proves difficult, though tracking changes over time is important for intervention development. Agent-based modeling (ABM allows researchers to integrate complex behavioral data about advance care planning behaviors and thought processes into a controlled environment that is more easily alterable and observable. Literature to date has not addressed how best to motivate individuals, increase facilitators and reduce barriers associated with ACP. We aimed to build an ABM that applies the Transtheoretical Model of behavior change to ACP as a health behavior and accurately reflects: 1 the rates at which individuals complete the process, 2 how individuals respond to barriers, facilitators, and behavioral variables, and 3 the interactions between these variables. Methods We developed a dynamic ABM of the ACP decision making process based on the stages of change posited by the Transtheoretical Model. We integrated barriers, facilitators, and other behavioral variables that agents encounter as they move through the process. Results We successfully incorporated ACP barriers, facilitators, and other behavioral variables into our ABM, forming a plausible representation of ACP behavior and decision-making. The resulting distributions across the stages of change replicated those found in the literature, with approximately half of participants in the action-maintenance stage in both the model and the literature. Conclusions Our ABM is a useful method for representing dynamic social and experiential influences on the ACP decision making process. This model suggests structural interventions, e.g. increasing access to ACP materials in primary care clinics, in addition to improved methods of data collection for behavioral studies, e.g. incorporating

  3. Integrated Human Futures Modeling in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fellner, Karen Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silver, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelke, Peter [Atlantic Council, Washington, D.C. (United States); Burrow, Mat [Atlantic Council, Washington, D.C. (United States); Keith, Bruce [United States Military Academy, West Point, NY (United States)

    2016-01-01

    The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on

  4. Advancing LGBT Elder Policy and Support Services: The Massachusetts Model.

    Science.gov (United States)

    Krinsky, Lisa; Cahill, Sean R

    2017-12-01

    The Massachusetts-based LGBT Aging Project has trained elder service providers in affirming and culturally competent care for LGBT older adults, supported development of LGBT-friendly meal programs, and advanced LGBT equality under aging policy. Working across sectors, this innovative model launched the country's first statewide Legislative Commission on Lesbian, Gay, Bisexual, and Transgender Aging. Advocates are working with policymakers to implement key recommendations, including cultural competency training and data collection in statewide networks of elder services. The LGBT Aging Project's success provides a template for improving services and policy for LGBT older adults throughout the country.

  5. Recent advances in animal model experimentation in autism research.

    Science.gov (United States)

    Tania, Mousumi; Khan, Md Asaduzzaman; Xia, Kun

    2014-10-01

    Autism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism. We have reviewed the publications over the last three decades, which are related to animal model study in autism. Animal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism. In this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.

  6. Development of Integrated Real-Time Control of Internal Transport Barriers in Advanced Operation Scenarios on JET

    International Nuclear Information System (INIS)

    Moreau, D.; Crisanti, F.; Laborde, L.

    2005-01-01

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3T/1.7MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones) and different ITB

  7. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  8. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Science.gov (United States)

    Zilitinkevich, S. S.; Esau, I. N.; Baklanov, A.

    2005-03-01

    Turbulent planetary boundary layers (PBLs) control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow). It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral) or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions) depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S were overlooked

  9. Atmospheric boundary layers in storms: advanced theory and modelling applications

    Directory of Open Access Journals (Sweden)

    S. S. Zilitinkevich

    2005-01-01

    Full Text Available Turbulent planetary boundary layers (PBLs control the exchange processes between the atmosphere and the ocean/land. The key problems of PBL physics are to determine the PBL height, the momentum, energy and matter fluxes at the surface and the mean wind and scalar profiles throughout the layer in a range of regimes from stable and neutral to convective. Until present, the PBLs typical of stormy weather were always considered as neutrally stratified. Recent works have disclosed that such PBLs are in fact very strongly affected by the static stability of the free atmosphere and must be treated as factually stable (we call this type of the PBL "conventionally neutral" in contract to the "truly neutral" PBLs developed against the neutrally stratified free flow. It is common knowledge that basic features of PBLs exhibit a noticeable dependence on the free-flow static stability and baroclinicity. However, the concern of the traditional theory of neural and stable PBLs was almost without exception the barotropic nocturnal PBL, which develops at mid latitudes during a few hours in the night, on the background of a neutral or slightly stable residual layer. The latter separates this type of the PBL from the free atmosphere. It is not surprising that the nature of turbulence in such regimes is basically local and does not depend on the properties of the free atmosphere. Alternatively, long-lived neutral (in fact only conditionally neutral or stable PBLs, which have much more time to grow up, are placed immediately below the stably stratified free flow. Under these conditions, the turbulent transports of momentum and scalars even in the surface layer - far away from the PBL outer boundary - depend on the free-flow Brunt-Väisälä frequency, N. Furthermore, integral measures of the long-lived PBLs (their depths and the resistance law functions depend on N and also on the baroclinic shear, S. In the traditional PBL models both non-local parameters N and S

  10. Shared mental models of integrated care: aligning multiple stakeholder perspectives.

    Science.gov (United States)

    Evans, Jenna M; Baker, G Ross

    2012-01-01

    Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.

  11. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L F; Garaizar, F X; Henson, V E; Pope, G

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE and the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.

  12. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  13. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  14. Advanced Fluid Reduced Order Models for Compressible Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Tezaur, Irina Kalashnikova [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maddix, Danielle [Stanford Univ., CA (United States); Mussoni, Erin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balajewicz, Maciej [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2017-09-01

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.

  15. Marketing and Languages: An Integrative Model.

    Science.gov (United States)

    McCall, Ian

    1988-01-01

    A framework is proposed for an integrated course in which knowledge of a language is consciously related to the processes of interpersonal communication and the cultural aspects of marketing and negotiation. (Editor)

  16. Integration and Optimization of Projectile Design Models

    National Research Council Canada - National Science Library

    Farina, Anthony P; Chassapis, Constantin; Chen, Yin M

    2006-01-01

    ... an existing projectile, will be optimized with respect to performance requirement(s). Additionally, the design process will be simplified by the integration between predictive codes in this environment...

  17. Advancing reservoir operation description in physically based hydrological models

    Science.gov (United States)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  18. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  19. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Science.gov (United States)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  20. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    Science.gov (United States)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health-monitoring (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent-throttleable. Only the advanced sensors and some engine-dependent software are not found to be ready for applications to laboratory demonstration. Other systems related to the minimum functions are more developed, bringing the total system readiness to the conceptual design stage. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30-45 million dollars over 6 years.

  1. INTEGRATING TECHNOLOGICAL ADVANCEMENTS IN BEHAVIORAL INTERVENTIONS TO PROMOTE HEALTH: UNPRECEDENTED OPORTUNITIES FOR BEHAVIOR ANALYSTS

    Science.gov (United States)

    KURTI, ALLISON N.; DALLERY, JESSE

    2015-01-01

    The use of mobile devices is growing worldwide in both industrialized and developing nations. Alongside the worldwide penetration of web-enabled devices, the leading causes of morbidity and mortality are increasingly modifiable lifestyle factors (e.g., improving one’s diet and exercising more). Behavior analysts have the opportunity to promote health by combining effective behavioral methods with technological advancements. The objectives of this paper are (1) to highlight the public health gains that may be achieved by integrating technology with a behavior analytic approach to developing interventions, and (2) to review some of the currently, under-examined issues related to merging technology and behavior analysis (enhancing sustainability, obtaining frequent measures of behavior, conducting component analyses, evaluating cost-effectiveness, incorporating behavior analysis in the creation of consumer-based applications, and reducing health disparities). Thorough consideration of these issues may inspire the development, implementation, and dissemination of innovative, efficacious interventions that substantially improve global public health. PMID:25774070

  2. An application of oscillation damped motion for suspended payloads to the advanced integrated maintenance system

    International Nuclear Information System (INIS)

    Noakes, M.W.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    Transportation of objects using overhead cranes can induce pendulum motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories (SNL) has shown that oscillation damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific, full-scale implementation of the damped oscillation methods for the Oak Ridge National Laboratory (ORNL) Advanced Integrated Maintenance System (AIMS). Hardware and software requirements and constraints for proper operation are discussed. Finally, test results and lessons learned are presented. 5 refs., 4 figs

  3. Advanced Recovery and Integrated Extraction System (ARIES) program plan. Rev. 1

    International Nuclear Information System (INIS)

    Nelson, T.O.; Massey, P.W.; Cremers, T.L.

    1996-01-01

    The Advanced Recovery and Integrated Extraction System (ARIES) demonstration combines various technologies, some of which were/are being developed under previous/other Department of Energy (DOE) funded programs. ARIES is an overall processing system for the dismantlement of nuclear weapon primaries. The program will demonstrate dismantlement of nuclear weapons and retrieval of the plutonium into a form that is compatible with long term storage and that is inspectable in an unclassified form appropriate for the application of traditional international safeguards. The success of the ARIES demonstration would lead to the development of a transportable modular or other facility type systems for weapons dismantlement to be used at other DOE sites as well as in other countries

  4. Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-09-01

    Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.

  5. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  6. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  7. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  8. Advance care planning for adults with CKD: a systematic integrative review.

    Science.gov (United States)

    Luckett, Tim; Sellars, Marcus; Tieman, Jennifer; Pollock, Carol A; Silvester, William; Butow, Phyllis N; Detering, Karen M; Brennan, Frank; Clayton, Josephine M

    2014-05-01

    Recent clinical practice guidelines have highlighted the importance of advance care planning (ACP) for improving end-of-life care for people with chronic kidney disease (CKD). We conducted a systematic integrative review of the literature to inform future ACP practice and research in CKD, searching electronic databases in April 2013. Synthesis used narrative methods. We focused on adults with a primary diagnosis of CKD in any setting. We included studies of any design, quantitative or qualitative. ACP was defined as any formal means taken to ensure that health professionals and family members are aware of patients' wishes for care in the event they become too unwell to speak for themselves. Measures of all kinds were considered of interest. 55 articles met criteria reporting on 51 discrete samples. All patient samples included people with CKD stage 5; 2 also included patients with stage 4. Seven interventions were tested; all were narrowly focused and none was evaluated by comparing wishes for end-of-life care with care received. One intervention demonstrated effects on patient and family outcomes in the form of improved well-being and anxiety following sessions with a peer mentor. Insights from qualitative studies that have not been used to inform interventions include the importance of instilling patient confidence that their advance directives will be enacted and discussing decisions about (dis)continuing dialysis therapy separately from "aggressive" life-sustaining treatments (eg, ventilation). Although quantitative and qualitative findings were integrated according to best practice, methods for this are in their infancy. Research on ACP in patients with CKD is limited, especially intervention studies. Interventions in CKD should attend to barriers and facilitators at the levels of patient, caregiver, health professional, and system. Intervention studies should measure impact on compliance with patient wishes for end-of-life care. Copyright © 2014 National

  9. Enterprise Integration: An Experiential Learning Model

    Science.gov (United States)

    Cameron, Brian H.; Purao, Sandeep

    2010-01-01

    With the ceaseless development of new and more advanced technologies, along with their growing influence and control over business and commerce, it is no surprise that the educational community is struggling to come up with programs to educate students to adequately handle these developments. Textbooks are becoming a thing of the past, for…

  10. Irreducible integrable theories form tensor products of conformal models

    International Nuclear Information System (INIS)

    Mathur, S.D.; Warner, N.P.

    1991-01-01

    By using Toda field theories we show that there are perturbations of direct products of conformal theories that lead to irreducible integrable field theories. The same affine Toda theory can be truncated to different quantum integrable models for different choices of the charge at infinity and the coupling. The classification of integrable models that can be obtained in this fashion follows the classification of symmetric spaces of type G/H with rank H = rank G. (orig.)

  11. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    Science.gov (United States)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  12. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae

    2008-01-01

    , communication and constraints, using computational blocks and aggregates for both discrete and continuous behaviour, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite...... to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set...... of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behaviour, and the transformation of the software system into the S-functions. The general aim of this work is the improvement of multi-disciplinary development of embedded systems with the focus on the relation...

  13. Integrated Circuit Conception: A Wire Optimization Technic Reducing Interconnection Delay in Advanced Technology Nodes

    Directory of Open Access Journals (Sweden)

    Mohammed Darmi

    2017-10-01

    Full Text Available As we increasingly use advanced technology nodes to design integrated circuits (ICs, physical designers and electronic design automation (EDA providers are facing multiple challenges, firstly, to honor all physical constraints coming with cutting-edge technologies and, secondly, to achieve expected quality of results (QoR. An advanced technology should be able to bring better performances with minimum cost whatever the complexity. A high effort to develop out-of-the-box optimization techniques is more than needed. In this paper, we will introduce a new routing technique, with the objective to optimize timing, by only acting on routing topology, and without impacting the IC Area. In fact, the self-aligned double patterning (SADP technology offers an important difference on layer resistance between SADP and No-SADP layers; this property will be taken as an advantage to drive the global router to use No-SADP less resistive layers for critical nets. To prove the benefit on real test cases, we will use Mentor Graphics’ physical design EDA tool Nitro-SoC™ and several 7 nm technology node designs. The experiments show that worst negative slack (WNS and total negative slack (TNS improved up to 13% and 56%, respectively, compared to the baseline flow.

  14. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  15. Performance modelling for product development of advanced window systems

    DEFF Research Database (Denmark)

    Appelfeld, David

    The research presented in this doctoral thesis shows how the product development (PD) of Complex Fenestration Systems (CFSs) can be facilitated by computer-based analysis to improve the energy efficiency of fenestration systems as well as to improve the indoor environment. The first chapter defines...... and methods,which can address interrelated performance parameters of CFS, are sought. It is possible to evaluate such systems by measurements, however the high cost and complexity of the measurements are limiting factors. The studies in this thesis confirmed that the results from the performance measurements...... of CFSs can be interpreted by simulations and hence simulations can be used for the performance analysis of new CFSs. An advanced simulation model must be often developed and needs to be validated by measurements before the model can be reused. The validation of simulations against the measurements proved...

  16. Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy

    Directory of Open Access Journals (Sweden)

    Elif Ozdemir-Kaynak

    2018-03-01

    Full Text Available The most lethal form of brain cancer, glioblastoma multiforme, is characterized by rapid growth and invasion facilitated by cell migration and degradation of the extracellular matrix. Despite technological advances in surgery and radio-chemotherapy, glioblastoma remains largely resistant to treatment. New approaches to study glioblastoma and to design optimized therapies are greatly needed. One such approach harnesses computational modeling to support the design and delivery of glioblastoma treatment. In this paper, we critically summarize current glioblastoma therapy, with a focus on emerging nanomedicine and therapies that capitalize on cell-specific signaling in glioblastoma. We follow this summary by discussing computational modeling approaches focused on optimizing these emerging nanotherapeutics for brain cancer. We conclude by illustrating how mathematical analysis can be used to compare the delivery of a high potential anticancer molecule, delphinidin, in both free and nanoparticle loaded forms across the blood-brain barrier for glioblastoma.

  17. An IT perspective on integrated environmental modelling: The SIAT case

    NARCIS (Netherlands)

    Verweij, P.J.F.M.; Knapen, M.J.R.; Winter, de W.P.; Wien, J.J.F.; Roller, te J.A.; Sieber, S.; Jansen, J.M.L.

    2010-01-01

    Policy makers have a growing interest in integrated assessments of policies. The Integrated Assessment Modelling (IAM) community is reacting to this interest by extending the application of model development from pure scientific analysis towards application in decision making or policy context by

  18. Building an Integrative Model for Managing Exploratory Innovation

    DEFF Research Database (Denmark)

    Zarmeen, Parisha; Turri, Vanessa Gina; Sanchez, Ron

    2014-01-01

    ’ (2008) framework for strategically assessing the benefits of segregation versus integration of innovation processes. We develop and apply our model working with managers in two company contexts to assure the ability of our Integrated Model to identify key organizational and strategic variables that need...

  19. Theory and Practice: An Integrative Model Linking Class and Field

    Science.gov (United States)

    Lesser, Joan Granucci; Cooper, Marlene

    2006-01-01

    Social work has evolved over the years taking on the challenges of the times. The profession now espouses a breadth of theoretical approaches and treatment modalities. We have developed a model to help graduate social work students master the skill of integrating theory and social work practice. The Integrative Model has five components: (l) The…

  20. Current advancements and challenges in soil-root interactions modelling

    Science.gov (United States)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  1. Advancing Collaboration through Hydrologic Data and Model Sharing

    Science.gov (United States)

    Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Hooper, R. P.; Maidment, D. R.; Dash, P. K.; Stealey, M.; Yi, H.; Gan, T.; Castronova, A. M.; Miles, B.; Li, Z.; Morsy, M. M.

    2015-12-01

    HydroShare is an online, collaborative system for open sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined primarily by standardized metadata, content data models for each resource type, and an overarching resource data model based on the Open Archives Initiative's Object Reuse and Exchange (OAI-ORE) standard and a hierarchical file packaging system called "BagIt". HydroShare expands the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated to include geospatial and multidimensional space-time datasets commonly used in hydrology. HydroShare also includes new capability for sharing models, model components, and analytical tools and will take advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. It also supports web services and server/cloud based computation operating on resources for the execution of hydrologic models and analysis and visualization of hydrologic data. HydroShare uses iRODS as a network file system for underlying storage of datasets and models. Collaboration is enabled by casting datasets and models as "social objects". Social functions include both private and public sharing, formation of collaborative groups of users, and value-added annotation of shared datasets and models. The HydroShare web interface and social media functions were developed using the Django web application framework coupled to iRODS. Data visualization and analysis is supported through the Tethys Platform web GIS software stack. Links to external systems are supported by RESTful web service interfaces to HydroShare's content. This presentation will introduce the HydroShare functionality developed to date and describe ongoing development of functionality to support collaboration and integration of data and models.

  2. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    Science.gov (United States)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  3. Advanced model for fast assessment of piezoelectric micro energy harvesters

    Directory of Open Access Journals (Sweden)

    Raffaele eArdito

    2016-04-01

    Full Text Available The purpose of this work is to present recent advances in modelling and design of piezoelectric energy harvesters, in the framework of Micro-Electro-Mechanical Systems (MEMS. More specifically, the case of inertial energy harvesting is considered, in the sense that the kinetic energy due to environmental vibration is transformed into electrical energy by means of piezoelectric transduction. The execution of numerical analyses is greatly important in order to predict the actual behaviour of MEMS devices and to carry out the optimization process. In the common practice, the results are obtained by means of burdensome 3D Finite Element Analyses (FEA.The case of beams could be treated by applying 1D models, which can enormously reduce the computational burden with obvious benefits in the case of repeated analyses. Unfortunately, the presence of piezoelectric coupling may entail some serious issues in view of its intrinsically three-dimensional behaviour. In this paper, a refined, yet simple, model is proposed with the objective of retaining the Euler-Bernoulli beam model, with the inclusion of effects connected to the actual three-dimensional shape of the device. The proposed model is adopted to evaluate the performances of realistic harvesters, both in the case of harmonic excitation and for impulsive loads.

  4. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    Science.gov (United States)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  5. Computational brain models: Advances from system biology and future challenges

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-02-01

    Full Text Available Computational brain models focused on the interactions between neurons and astrocytes, modeled via metabolic reconstructions, are reviewed. The large source of experimental data provided by the -omics techniques and the advance/application of computational and data-management tools are being fundamental. For instance, in the understanding of the crosstalk between these cells, the key neuroprotective mechanisms mediated by astrocytes in specific metabolic scenarios (1 and the identification of biomarkers for neurodegenerative diseases (2,3. However, the modeling of these interactions demands a clear view of the metabolic and signaling pathways implicated, but most of them are controversial and are still under evaluation (4. Hence, to gain insight into the complexity of these interactions a current view of the main pathways implicated in the neuron-astrocyte communication processes have been made from recent experimental reports and reviews. Furthermore, target problems, limitations and main conclusions have been identified from metabolic models of the brain reported from 2010. Finally, key aspects to take into account into the development of a computational model of the brain and topics that could be approached from a systems biology perspective in future research are highlighted.

  6. Advanced computational modeling for in vitro nanomaterial dosimetry.

    Science.gov (United States)

    DeLoid, Glen M; Cohen, Joel M; Pyrgiotakis, Georgios; Pirela, Sandra V; Pal, Anoop; Liu, Jiying; Srebric, Jelena; Demokritou, Philip

    2015-10-24

    -affinity binding resulted in faster and eventual complete deposition of material. The advanced models presented provide practical and robust tools for obtaining accurate dose metrics and concentration profiles across the well, for high-throughput screening of ENMs. The DG model allows rapid modeling that accommodates polydispersity, dissolution, and adsorption. Result of adsorption studies suggest that a reflective lower boundary condition is appropriate for modeling most in vitro ENM exposures.

  7. Recent advances in the integrated geophysical exploration of buried archaeological targets

    International Nuclear Information System (INIS)

    Pipan, M.

    2014-01-01

    We propose the integration of magnetic, electromagnetic (groundpenetrating radar, GPR) and seismic methods to study the inner structure of prehistoric funerary mounds. The combination of techniques allows high-resolution imaging and detection of buried targets and characterization of subsurface materials based on magnetic susceptibility, dielectric permittivity, conductivity and seismic velocity/attenuation. The 2012 archaeo-geophysical expedition to Scythian necropoleis in Kazakhstan allowed advancement of the integrated procedure through optimization of the individual techniques. We improve the results of seismic tomography inversion through an ART algorithm with a relaxation parameter which is progressively reduced during the iterative reconstruction process. We use instantaneous attributes and spectral decomposition to improve the interpretation of GPR reflection data. The results obtained from the 2012 dataset allow detailed reconstruction of the inner structure of three kurgans (i.e. funerary mounds) with maximum 7m central elevation. In particular, localized anomalies related to metallic targets smaller than the GPR and seismic resolution limits are identified from magnetic data after high pass filtering; GPR data allow imaging of inner stratigraphy up to a maximum depth of about 250 cm; seismic tomography maps large traveltime anomalies probably related to funerary chambers at the base of the mound.

  8. Advancements in the behavioral modeling of fuel elements and related structures

    International Nuclear Information System (INIS)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs

  9. An eddy-current model for three-dimensional nondestructive evaluation of advanced composites

    Science.gov (United States)

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.

    2015-03-01

    We have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we apply rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. We will give examples of the solution of forward problems using this model.

  10. A Probabilistic Risk Analysis (PRA) of Human Space Missions for the Advanced Integration Matrix (AIM)

    Science.gov (United States)

    Jones, Harry W.; Dillon-Merrill, Robin L.; Thomas, Gretchen A.

    2003-01-01

    The Advanced Integration Matrix (AIM) Project u7ill study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO), through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This paper describes a Probabilistic Risk Analysis (PRA) of human space missions that was developed to help define the direction and priorities for AIM. Risk analysis is required for all major NASA programs and has been used for shuttle, station, and Mars lander programs. It is a prescribed part of early planning and is necessary during concept definition, even before mission scenarios and system designs exist. PRA cm begin when little failure data are available, and be continually updated and refined as detail becomes available. PRA provides a basis for examining tradeoffs among safety, reliability, performance, and cost. The objective of AIM's PRA is to indicate how risk can be managed and future human space missions enabled by the AIM Project. Many critical events can cause injuries and fatalities to the crew without causing loss of vehicle or mission. Some critical systems are beyond AIM's scope, such as propulsion and guidance. Many failure-causing events can be mitigated by conducting operational tests in AIM, such as testing equipment and evaluating operational procedures, especially in the areas of communications and computers, autonomous operations, life support, thermal design, EVA and rover activities, physiological factors including habitation, medical equipment, and food, and multifunctional tools and repairable systems. AIM is well suited to test and demonstrate the habitat, life support, crew operations, and human interface. Because these account for significant crew, systems performance, and science risks, AIM will help reduce mission risk, and missions beyond LEO are far enough in the future that AIM can have significant impact.

  11. Blade element momentum modeling of inflow with shear in comparison with advanced model results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Riziotis, V.; Zahle, Frederik

    2012-01-01

    shear is present in the inflow. This gives guidance to how the BEM modeling of shear should be implemented. Another result from the advanced vortex model computations is a clear indication of influence of the ground, and the general tendency is a speed up effect of the flow through the rotor giving...

  12. Dannie Heineman Prize for Mathematical Physics Prize Lecture: Correlation Functions in Integrable Models II: The Role of Quantum Affine Symmetry

    Science.gov (United States)

    Jimbo, Michio

    2013-03-01

    Since the beginning of 1980s, hidden infinite dimensional symmetries have emerged as the origin of integrability: first in soliton theory and then in conformal field theory. Quest for symmetries in quantum integrable models has led to the discovery of quantum groups. On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields. On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. We shall review these developments which continue up to the present time.

  13. Advanced techniques in reliability model representation and solution

    Science.gov (United States)

    Palumbo, Daniel L.; Nicol, David M.

    1992-01-01

    The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.

  14. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  15. The Kurzweil integral in financial market modeling

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Lamba, H.; Monteiro, Giselle Antunes; Rachinskii, D.

    2016-01-01

    Roč. 141, č. 2 (2016), s. 261-286 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : hysteresis * Prandtl-Ishlinskii operator * Kurzweil integral Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/145715

  16. Human Systems Integration (HSI) Tradeoff Model

    Science.gov (United States)

    2014-03-01

    distribution is unlimited. Release # 88ABW-2014- 1475, dated 7 Apr 2014. on grammatical and software errors and the recommendation to add a screen (Figure 17...SIGNATURE// MATTHEW T. TARANTO, Major, USAF Chief, Human Systems Analysis Division Human Systems Integration Directorate...enhancing the understanding of HSI tradeoffs. At the direction of 711 HPW/HP, the Survivability/ Vulnerability Information Analysis Center (SURVIAC

  17. Toward an Integrative Model of Professional Practice.

    Science.gov (United States)

    Newman, Margaret A.

    1990-01-01

    The cycles of growth of the nursing profession depict subordination of nursing to hospital administration and medicine. Nursing is ready to move into an integrative, collaborative stage of development that places nurses directly responsible to patients, and this would facilitate nursing's response to clients' health concerns wherever they occur.…

  18. Development of Multisensory Integration Approach Model

    Science.gov (United States)

    Kumar, S. Prasanna; Nathan, B. Sami

    2016-01-01

    Every teacher expects optimum level of processing in mind of them students. The level of processing is mainly depends upon memory process. Most of the students have retrieval difficulties on past learning. Memory difficulties directly related to sensory integration. In these circumstances the investigator made an attempt to construct Multisensory…

  19. Age Integrated Learning: A Theoretical Model.

    Science.gov (United States)

    Heckenmueller, Jerome P.; Keller, Ann

    The concept of age integrated learning (AIL) can be derived from Erikson's theory of psychosocial development. Two emphases in his theory that are less well recognized than others are central to Erikson's theory and are the cornerstone of a rationale for AIL. The first is his emphasis on the interdependence of generations for optimal crisis…

  20. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  1. Advanced modelling, monitoring, and process control of bioconversion systems

    Science.gov (United States)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  2. Kenya and distance education: a model to advance graduate nursing.

    Science.gov (United States)

    Mutea, Naomi; Cullen, Deborah

    2012-08-01

    Africa is faced with a myriad of challenges, such as HIV/AIDS, malaria, tuberculosis, and a variety of political and historical complications that have affected the educational system for advanced nursing practice. In Kenya, the current situation in the higher education sector does not give nurses an opportunity to pursue graduate education after they have acquired the basic diploma in nursing due to limited government support and the type of education system existing in the country today. Although distance education has been available in Kenya for professionals such as teachers, in public universities, this kind of opportunity is unreachable for nurses who are working and need to further their education. Nurses desire to have access to advanced practice education to equip them with the relevant knowledge to cope and address the complex health issues arising in the management and care of patients. A collaborative model is presented as a potential solution for this need. Four major constituents are identified including hospitals and agencies, communities of interest, Kenyan universities and international education partners. Each has a part to play including contributions to information, communication of opinion and expertise, money and support, infrastructure and in-kind resources. Distance education is cost-effective and will help in building capacity at various levels of nursing including leadership in clinical practice, teaching, administration and research. © 2012 Blackwell Publishing Asia Pty Ltd.

  3. Modelling the marine advance of the last Cordilleran ice sheet

    Science.gov (United States)

    Seguinot, Julien; Rogozhina, Irina

    2014-05-01

    Marine advance of the last Cordilleran ice sheet onto the north-eastern Pacific continental shelf may have caused rapid fluctuations of sea level and potentially impacted upon human migration into North America. However the position of the former ice front was critically controlled by a process that remains poorly understood: glacier calving. Geomorphological reconstructions show that part of the presently oceanic areas were ice-covered, allowing for downstream formation of the well-studied Puget and Juan de Fuca lobes. Here we use a numerical glacier model (PISM) to reconstruct the former marine front of the Cordilleran ice sheet and its impact on upstream ice dynamics. Our simulations show that the use of a thickness-based calving law leads to a strong deficit of marine ice cover in the areas where existing reconstructions suggest its advance. In contrast, a physically-based parametrization of glacier calving using the main components of the strain rate tensor (eigencalving; A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin, The Cryosphere, 6, 273-286, 2012) reproduces the geomorphologically inferred ice extent.

  4. Advanced X ray Astrophysics Facility-Imaging (AXAF-I) thermal analyses using Integrated Thermal Analysis System (ITAS) program

    Science.gov (United States)

    Ghaffarian, Benny; Cummings, Ramona

    1993-01-01

    The complex geometry and stringent thermal requirements associated with the Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) necessitate a detailed and accurate thermal analysis of the proposed system. A brief description of said geometry and thermal requirements is included. Among the tools considered for the aforementioned analysis is a PC-compatible version of the Integrated Thermal Analysis System (ITAS). Several bench-mark studies were performed to evaluate the capabilities of ITAS and to compare the corresponding results with those obtained using TRASYS and SINDA. Comparative studies were conducted for a typical Space Station module. Four models were developed using various combinations of the available software packages (i.e. ITAS, SINDA, and TRASYS). Orbital heating and heat transfer calculations were performed to determine the temperature distributions along the surfaces of this module. A comparison of the temperature distributions obtained for each of the four cases is presented. Results of this investigation were used to verify the different ITAS modules including those used for model generation, steady state and transient orbital heating analyses, radiative and convective heat flow analyses, and SINDA/TRASYS model translation. The results suggest that ITAS is well suited to subsequent analyses of the AXAF-I.

  5. Data Assimilation in Integrated and Distributed Hydrological Models

    DEFF Research Database (Denmark)

    Zhang, Donghua

    Integrated hydrological models are frequently used in water-related environmental resource management. With our better understanding of the hydrological processes and the improved computational power, hydrological models are becoming increasingly more complex as they integrate multiple hydrological...... to efficient use of traditional and new observational data in integrated hydrological models, as this technique can improve model prediction and reduce model uncertainty. The thesis investigates several challenges within the scope of data assimilation in integrated hydrological models. From the methodological...... point of view, different assimilation methodologies and techniques have been developed or customized to better serve hydrological assimilation. From the application point of view, real data and real-world complex catchments are used with the focus of investigating the models’ improvements with data...

  6. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Truncation of the Series Expressions in the Advanced ENZ-Theory of Diffraction Integrals

    Science.gov (United States)

    van Haver, S.; Janssen, A. J. E. M.

    2014-09-01

    The point-spread function (PSF) is used in optics for design and assessment of the imaging capabilities of an optical system. It is therefore of vital importance that this PSF can be calculated fast and accurately. In the past 12 years, the Extended Nijboer-Zernike (ENZ) approach has been developed for the purpose of semi-analytic evaluation of the PSF, for circularly symmetric optical systems, in the focal region. In the earliest ENZ-years, the Debye approximation of the diffraction integral, by which the PSF is given, was considered for the very basic situation of a low-NA optical system and relatively small defocus values, so that a scalar treatment was allowed with a focal factor comprising a quadratic function in the exponential. At present, the ENZ-method allows calculation of the PSF in low- and high-NA cases, in scalar form and for vector fields (including polarization), for large wave-front aberrations, including amplitude non-uniformities, using a quasi-spherical phase focal factor in a virtually unlimited focal range around the focal plane, and no limitations in the off-axis direction. Additionally, the application range of the method has been broadened and generalized to the calculation of aerial images of extended objects by including the finite distance of the object to the entrance pupil. Also imaging into a multi-layer is now possible by accounting for both forward and backward propagation in the layers. In the advanced ENZ-approach, the generalized, complex-valued pupil function is developed into a series of Zernike circle polynomials, with exponential azimuthal dependence (having cosine/sine azimuthal dependence as special cases). For each Zernike term, the diffraction integral reduces after azimuthal integration to an integral that can be expressed as an infinite double series involving spherical Bessel functions, accounting for the parameters of the optical system and the defocus value, and Jinc functions comprising the radial off-axis value

  8. The dynamics of multimodal integration: The averaging diffusion model.

    Science.gov (United States)

    Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James

    2017-12-01

    We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

  9. QMU in Integrated Spacecraft System Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ACTA and Sandia National Laboratories propose to quantify and propagate substructure modeling uncertainty for reduced-order substructure models to higher levels of...

  10. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  11. Model integration and the economics of nuclear power

    International Nuclear Information System (INIS)

    Lundgren, S.

    1985-01-01

    The author proposes and applies a specific approach to model integration, i.e. the merger of two or several independently developed models. The approach is intended for integrations of activity analysis sector models and applied general equilibrium models. Model integration makes it possible to extend the range of applicability of applied general equilibrium models by exploiting the information contained in sector models. It also makes it possible to evaluate the validity of the partial equilibrium analyses in which sector models often are employed. The proposed approach is used to integrate a sector model of electricity and heat production with a general equilibrium model of the Swedish economy. Both models have been constructed within the research programme. The author uses the integrated model to look at two issues concerning the role of nuclear power on the Swedish electricity market: What are the likely consequences of a nuclear power discontinuation and how does the nuclear power investment programme of the 1970's and the early 1980's compare with a socially efficient one. (Author)

  12. A framework for different levels of integration of computational models into web-based virtual patients.

    Science.gov (United States)

    Kononowicz, Andrzej A; Narracott, Andrew J; Manini, Simone; Bayley, Martin J; Lawford, Patricia V; McCormack, Keith; Zary, Nabil

    2014-01-23

    Virtual patients are increasingly common tools used in health care education to foster learning of clinical reasoning skills. One potential way to expand their functionality is to augment virtual patients' interactivity by enriching them with computational models of physiological and pathological processes. The primary goal of this paper was to propose a conceptual framework for the integration of computational models within virtual patients, with particular focus on (1) characteristics to be addressed while preparing the integration, (2) the extent of the integration, (3) strategies to achieve integration, and (4) methods for evaluating the feasibility of integration. An additional goal was to pilot the first investigation of changing framework variables on altering perceptions of integration. The framework was constructed using an iterative process informed by Soft System Methodology. The Virtual Physiological Human (VPH) initiative has been used as a source of new computational models. The technical challenges associated with development of virtual patients enhanced by computational models are discussed from the perspectives of a number of different stakeholders. Concrete design and evaluation steps are discussed in the context of an exemplar virtual patient employing the results of the VPH ARCH project, as well as improvements for future iterations. The proposed framework consists of four main elements. The first element is a list of feasibility features characterizing the integration process from three perspectives: the computational modelling researcher, the health care educationalist, and the virtual patient system developer. The second element included three integration levels: basic, where a single set of simulation outcomes is generated for specific nodes in the activity graph; intermediate, involving pre-generation of simulation datasets over a range of input parameters; advanced, including dynamic solution of the model. The third element is the

  13. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    Science.gov (United States)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  14. Role of Third Party Logistics Providers with Advanced it to Increase Customer Satisfaction in Supply Chain Integration

    OpenAIRE

    Zaryab Sheikh; Shafaq Rana

    2012-01-01

    The main area of change in organizational strategy is the extensive use of third party logistics providers who are using advanced information technology tools and integration of supply chain to enhance customer satisfaction. By outsourcing the logistics operations, companies can focus on their core competencies and other important areas of organization which can’t be outsourced. The analysis of this paper is conducted by discussing different concepts of supply chain integration, customer sati...

  15. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    Science.gov (United States)

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  16. Integrating 3D modeling, photogrammetry and design

    CERN Document Server

    Foster, Shaun

    2014-01-01

    This book looks at the convergent nature of technology and its relationship to the field of photogrammetry and 3D design. This is a facet of a broader discussion of the nature of technology itself and the relationship of technology to art, as well as an examination of the educational process. In the field of technology-influenced design-based education it is natural to push for advanced technology, yet within a larger institution the constraints of budget and adherence to tradition must be accepted. These opposing forces create a natural balance; in some cases constraints lead to greater creat

  17. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2012-01-01

    This paper critically reviews the ownership, location, and internalization (OLI) model, and the Uppsala internationalization process (UIP) framework. Both the OLI model and the UIP model ignore to incorporate the insights of each other and fail to include corporate entrepreneurship in their analy...

  18. Integration of dispersion and radio ecological modelling in ARGOS NT

    International Nuclear Information System (INIS)

    Hoe, Steen; Mueller, Heinz; Thykier Nielsen, Soeren

    2000-01-01

    The Danish development ARGOS NT system is in operation in Denmark and 5 Baltic Sea states. Based on data from 40 advanced early warning stations - PMS stations - and various other monitoring sources the ARGOS NT system provides an excellent basis for decision. ARGOS NT is a dynamic system that is modified regularly in order to cope with new requirements. The present version of the system includes features such as: dynamical presentation facilities for the EURDEP data exchange format, presentation of high spatial resolution data and isotropic information from the Danish Airborne monitoring systems. The new version of the system includes a module for simulating food chain transfer and dose assessment. It is based on the radioecological model ECOSYS. This model has been initially developed for German conditions; therefore it is necessary to adapt it to the conditions of those countries where ARGOS-NT is applied. Concentration of radioactivity in foodstuffs (crops and animal products) as a function of time is the endpoint of the food chain part. Doses from internal exposure (ingestion, inhalation) and external exposure can be estimated for different age groups. Rough estimations of collective dose can be made if the necessary data is available. Further a new dispersion module called MET-DISP has been integrated. Met-DISP is a comprehensive meteorological dispersion forecast module for emergency response. MET-DISP is designed to provide forecasts of dispersion, gamma doses and deposition from releases of radioactive material on local, national and continental scales. The module enables real-time forecasts via a set of local scale wind and atmospheric dispersion models that are driven by on-line available meteorological information. Meteorological information is made available to the system either via on-line connections to local meteorological observations (met-towers and sodars) or via on-line network connections to Meteorological Services. The system provides forecast

  19. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  20. Integration models: multicultural and liberal approaches confronted

    Science.gov (United States)

    Janicki, Wojciech

    2012-01-01

    European societies have been shaped by their Christian past, upsurge of international migration, democratic rule and liberal tradition rooted in religious tolerance. Boosting globalization processes impose new challenges on European societies, striving to protect their diversity. This struggle is especially clearly visible in case of minorities trying to resist melting into mainstream culture. European countries' legal systems and cultural policies respond to these efforts in many ways. Respecting identity politics-driven group rights seems to be the most common approach, resulting in creation of a multicultural society. However, the outcome of respecting group rights may be remarkably contradictory to both individual rights growing out from liberal tradition, and to reinforced concept of integration of immigrants into host societies. The hereby paper discusses identity politics upturn in the context of both individual rights and integration of European societies.