WorldWideScience

Sample records for advanced hydrotest facility

  1. Armor Possibilities and Radiographic Blur Reduction for The Advanced Hydrotest Facility

    International Nuclear Information System (INIS)

    Hackett, M

    2001-01-01

    Currently at Lawrence Livermore National Laboratory (LLNL) a composite firing vessel is under development for the Advanced Hydrotest Facility (AHF) to study high explosives. This vessel requires a shrapnel mitigating layer to protect the vessel during experiments. The primary purpose of this layer is to protect the vessel, yet the material must be transparent to proton radiographs. Presented here are methods available to collect data needed before selection, along with a comparison tool developed to aid in choosing a material that offers the best of ballistic protection while allowing for clear radiographs

  2. The scrounge-atron: a phased approach to the advanced hydrotest facility utilizing proton radiography

    International Nuclear Information System (INIS)

    Alford, O.J.; Barnes, P.D. Jr.; Chargin, A.K.; Dekin, W.D.; Hartouni, E.P.; Hockman, J.; Hockman, J.N.; Ladran, A.S.; Libkind, M.A.; Moore, T.L.; Ohnuma, S.; Pastrnak, J.W.; Pico, R.E.; Ruggiero, A.G.; Souza, R.J.; Stoner, J.M.; Wilson, J.H.

    1999-01-01

    The Department of Energy has initiated its Stockpile Stewardship and Management Program (SSMP) to provide a single, integrated technical program for maintaining the continued safety and reliability of the nation's nuclear weapons stockpile in the absence of nuclear testing. Consistent with the SSMP, the Advanced Hydrotest Facility (AHF) has been conceived to provide improved radiographic imaging with multiple axes and multiple time frames. The AHF would be used to better understand the evolution of nuclear weapon primary implosion shape under normal and accident scenarios. There are three fundamental technologies currently under consideration for use on the AHF. These include linear induction acceleration, inductive-adder pulsed-power technology (both technologies using high current electron beams to produce an intense X-ray beam) and high-energy proton accelerators to produce a proton beam. The Scrounge-atron (a proton synchrotron) was conceived to be a relatively low cost demonstration of the viability of the third technology using bursts of energetic protons, magnetic lenses, and particle detectors to produce the radiographic image. In order for the Scrounge-atron to provide information useful for the AHF technology decision, the accelerator would have to be built as quickly and as economically as possible. These conditions can be met by scrounging parts from decommissioned accelerators across the country, especially the Main Ring at Fermilab. The Scrounge-atron is designed to meet the baseline parameters for single axis proton radiography: a 20 GeV proton beam of ten pulses, 10 11 protons each, spaced 250 ns apart

  3. Advanced Microanalysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Microanalysis Facility fully integrates capabilities for chemical and structural analysis of electronic materials and devices for the U.S. Army and DoD....

  4. Advanced reactor experimental facilities

    International Nuclear Information System (INIS)

    Amri, A.; Papin, J.; Uhle, J.; Vitanza, C.

    2010-01-01

    For many years, the NEA has been examining advanced reactor issues and disseminating information of use to regulators, designers and researchers on safety issues and research needed. Following the recommendation of participants at an NEA workshop, a Task Group on Advanced Reactor Experimental Facilities (TAREF) was initiated with the aim of providing an overview of facilities suitable for carrying out the safety research considered necessary for gas-cooled reactors (GCRs) and sodium fast reactors (SFRs), with other reactor systems possibly being considered in a subsequent phase. The TAREF was thus created in 2008 with the following participating countries: Canada, the Czech Republic, Finland, France, Germany, Hungary, Italy, Japan, Korea and the United States. In a second stage, India provided valuable information on its experimental facilities related to SFR safety research. The study method adopted entailed first identifying high-priority safety issues that require research and then categorizing the available facilities in terms of their ability to address the safety issues. For each of the technical areas, the task members agreed on a set of safety issues requiring research and established a ranking with regard to safety relevance (high, medium, low) and the status of knowledge based on the following scale relative to full knowledge: high (100%-75%), medium (75 - 25%) and low (25-0%). Only the issues identified as being of high safety relevance and for which the state of knowledge is low or medium were included in the discussion, as these issues would likely warrant further study. For each of the safety issues, the TAREF members identified appropriate facilities, providing relevant information such as operating conditions (in- or out-of reactor), operating range, description of the test section, type of testing, instrumentation, current status and availability, and uniqueness. Based on the information collected, the task members assessed prospects and priorities

  5. Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Johnson, R.L.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic confinement plasma device under construction at the Oak Ridge National Laboratory (ORNL) that will lead to improvements in toroidal magnetic fusion reactors. The ATF is a type of stellerator, known as a ''torsatron'' which theoretically has the capability to operate at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 2 s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin, helically contoured vacuum vessel inside the coils. The ATF replaces the Impurities Studies Experiment (ISX-B) tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of electron cyclotron heating. The ATF is scheduled to start operation in late 1986. An overview of the ATF device is presented, including details of the construction process envisioned. 9 refs., 7 figs., 3 tabs

  6. Advanced Toroidal Facility (ATF)

    International Nuclear Information System (INIS)

    Thompson, P.B.

    1985-01-01

    The Advanced Toroidal Facility (ATF) is a new magnetic plasma confinement device, under construction at Oak Ridge National Laboratory (ORNL), which will lead to improvements in toroidal magnetic fusion reactors. ATF is a type of stellarator known as a torsatron which theoretically has the capability at greater than or equal to8% beta in steady state. The ATF plasma has a major radius of 2.1 m, an average minor radius of 0.3 m, and a field of 2 T for a 5-s duration or 1 T steady state. The ATF device consists of a helical field (HF) coil set, a set of poloidal field (PF) coils, an exterior shell structure to support the coils, and a thin helically contoured vacuum vessel inside the coils. The ATF replaces the ISX-B tokamak at ORNL and will use the ISX-B auxiliary systems including 4 MW of neutral injection heating and 0.2 MW of electron cyclotron heating. ATF device is scheduled to start operation in the fall of 1986. An overview of the ATF device is presented including details of the construction process envisioned

  7. Why and how acoustic emission in pressure vessel first hydrotest

    International Nuclear Information System (INIS)

    Panzani, C.; Tonolini, F.; Villa, G.; Regis, V.

    1985-01-01

    The main advantages obtained performing the Acoustic Emission (AE) examination during pressure vessel first hydrotest are presented. The characteristics and performance of the AE instrumentation to be used for a correct test are illustrated. The main criteria for AE source characterization (location, typical AE parameters and their correlation with pressure value), the calibration and test procedures are discussed. The ndt post-test examinations and laboratory specimen experiments are also outlined. Personnel qualification requirements are finally indicated. (Author) [pt

  8. Advanced Microscopy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a facility for high-resolution studies of complex biomolecular systems. The goal is an understanding of how to engineer biomolecules for various...

  9. Advanced Polymer Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  10. Dose-Time Effect of Crude Oil and Hydro-test Effluent on Freshwater ...

    African Journals Online (AJOL)

    ) and a brackish water shrimp, Palaemonetes africanus. Test results indicated that the brackish water juvenile shrimps were more sensitive to the mixture of the hydro-test effluent and crude oil than the freshwater habitat. This could be ...

  11. Advanced satellite servicing facility studies

    Science.gov (United States)

    Qualls, Garry D.; Ferebee, Melvin J., Jr.

    1988-01-01

    A NASA-sponsored systems analysis designed to identify and recommend advanced subsystems and technologies specifically for a manned Sun-synchronous platform for satellite management is discussed. An overview of system design, manned and unmanned servicing facilities, and representative mission scenarios are given. Mission areas discussed include facility based satellite assembly, checkout, deployment, refueling, repair, and systems upgrade. The ferrying of materials and consumables to and from manufacturing platforms, deorbit, removal, repositioning, or salvage of satellites and debris, and crew rescue of any other manned vehicles are also examined. Impacted subsytems discussed include guidance navigation and control, propulsion, data management, power, thermal control, structures, life support, and radiation management. In addition, technology issues which would have significant impacts on the system design are discussed.

  12. Acoustic emission monitoring during hydrotest of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1976-01-01

    Results are presented of the acoustic emission monitoring during hydrotests of a thin wall steel pressure vessel. Location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors used for acoustic source location was found to be very useful, and allowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be due mainly to stress release in weld seams

  13. Kaon: an advanced hadron facility

    International Nuclear Information System (INIS)

    Oers, W.T.H. van; Manitoba Univ., Winnipeg, MB

    1990-01-01

    An advanced hadron facility KAON has been proposed to be built in Canada. The report of the Project Definition Study has been presented to both levels of Government (federal and provincial) on May 24, 1990, for action in the near future. A short discussion will be given of the scientific motivation. The physics along the intensity and precision frontier is fully complementary to the physics along the energy frontier. Following, a description will be given of the 100 μA, 30 GeV proton synchrotron proposed. The accelerator will consist of five rings using the present 500 MeV cyclotron as an injector. If the project were funded this year, the accelerators would be completed by 1995 or so, with the experimental program starting a year later

  14. Acoustic emission monitoring during hydrotests of a thin wall pressure vessel

    International Nuclear Information System (INIS)

    Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.

    1975-01-01

    The results are presented of an acoustic emission monitoring performed during hydrotests of a thin wall steel pressure vessel. The location of acoustic sources was based on longitudinal wave front detection. The careful calibration of the three sensors instrumentation system used for acoustic source location was found to be useful, and alllowed an accurate location error analysis. Acoustic emission in the hydrotests was found to be mainly due to stress release in weld seams. (Fontana, E.; Grugni, G.; Panzani, C.; Pirovano, B.; Possa, G.; Tonolini, F.)

  15. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  16. Dose-Time Effect of Crude Oil and Hydro-test Effluent on Freshwater ...

    African Journals Online (AJOL)

    This work was undertaken to investigate the dose-time effect of crude oil and hydro-test effluent on freshwater and brackish water habitats. The species used for the acute toxicity were freshwater fish, Tilapia guineenis (fry) and a brackish water shrimp, Palaemonetes africanus. Test results indicated that the brackish water ...

  17. NASA Advanced Supercomputing Facility Expansion

    Science.gov (United States)

    Thigpen, William W.

    2017-01-01

    The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.

  18. Irradiation facilities at the advanced neutron source

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) is a facility, centered around a new 330MW(f) heavy-water cooled and reflected research reactor, proposed for construction at Oak Ridge. The main scientific justification for the new source is the United States' need for increased capabilities in neutron scattering and other neutron beam research, but the technical objectives of the project also cater for the need to replace the irradiation facilities at the aging High Flux Isotope Reactor and to provide other research capabilities to the scientific community. This document provides a description of the ANS facilities

  19. Materials science at an Advanced Hadron Facility

    International Nuclear Information System (INIS)

    Pynn, R.

    1988-01-01

    The uses of neutron scattering as a probe for condensed matter phenomena are described briefly and some arguments are given to justify the community's desire for more powerful neutron sources. Appropriate design parameters for a neutron source at an Advanced Hadron Facility are presented, and such a source is compared with other existing and planned spallation neutron sources. 5 refs

  20. ETA-II experiments for determining advanced radiographic capabilities of induction linacs

    International Nuclear Information System (INIS)

    Weir, J.T.; Caporaso, G.J.; Clark, J.C.; Kirbie, H.C.; Chen, Y.J.; Lund, S.M.; Westenskow, G.A.; Paul, A.C.

    1997-05-01

    LLNL has proposed a multi-pulsed, multi-line of sight radiographic machine based on induction linac technology to be the core of the advanced hydrotest facility (AHF) being considered by the Department of Energy. In order to test the new technologies being developed for AHF we have recommissioned the Experimental Test Accelerator (ETA II). We will conduct our initial experiments using kickers and large angle bending optics at the ETA II facility. Our current status and our proposed experimental schedule will be presented

  1. An advanced fusion neutron source facility

    International Nuclear Information System (INIS)

    Smith, D.L.

    1992-01-01

    Accelerator-based 14-MeV-neutron sources based on modifications of the original Fusion Materials Irradiation Facility are currently under consideration for investigating the effects of high-fluence high-energy neutron irradiation on fusion-reactor materials. One such concept for a D-Li neutron source is based on recent advances in accelerator technology associated with the Continuous Wave Deuterium Demonstrator accelerator under construction at Argonne National Laboratory, associated superconducting technology, and advances in liquid-metal technology. In this paper a summary of conceptual design aspects based on improvements in technologies is presented

  2. Experimental equipment for an advanced ISOL facility

    International Nuclear Information System (INIS)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    1999-01-01

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting. The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams

  3. Impurity studies in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Horton, L.D.; Crume, E.C.; Howe, H.C.; Voronov, G.S.

    1989-01-01

    Impurities have played an important role in the initial stages of operation of the Advanced Toroidal Facility. Cleanup practices have been adequate enough that plasmas heated by ECH only can be operated in a quasi-steady state; however, neutral beam injected plasmas always collapse to a low temperature. It is not clear whether impurity radiation is actually responsible for initiating the collapse, but at the time the stored energy reaches a maximum, there are indications of poloidal asymmetries in radiation from low ionization stages, such as observed in marfes, which could play a dominant role in the plasma evolution. 3 refs., 5 figs

  4. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  5. ATF [Advanced Toroidal Facility] data management

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1988-01-01

    Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs

  6. Advanced toroidal facility vaccuum vessel stress analyses

    International Nuclear Information System (INIS)

    Hammonds, C.J.; Mayhall, J.A.

    1987-01-01

    The complex geometry of the Advance Toroidal Facility (ATF) vacuum vessel required special analysis techniques in investigating the structural behavior of the design. The response of a large-scale finite element model was found for transportation and operational loading. Several computer codes and systems, including the National Magnetic Fusion Energy Computer Center Cray machines, were implemented in accomplishing these analyses. The work combined complex methods that taxed the limits of both the codes and the computer systems involved. Using MSC/NASTRAN cyclic-symmetry solutions permitted using only 1/12 of the vessel geometry to mathematically analyze the entire vessel. This allowed the greater detail and accuracy demanded by the complex geometry of the vessel. Critical buckling-pressure analyses were performed with the same model. The development, results, and problems encountered in performing these analyses are described. 5 refs., 3 figs

  7. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  8. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  9. Review of the Advanced Toroidal Facility program

    International Nuclear Information System (INIS)

    Lyon, J.F.; Murakami, M.

    1987-01-01

    This report summarizes the history and design goals of the Advanced Toroidal Facility (ATF). The ATF is nearing completion at ORNL with device completion expected in May 1987 and first useful plasma operation in June/July 1987. ATF is a moderate-aspect-ratio torsatron, the world's largest stellarator facility with R = 2.1 m, α bar = 0.3 m and B = 2 T (5-s pulse) or 1 T (steady-state capability). It has been specifically designed to support the US tokamak program by studying important toroidal confinement issues in a similar magnetic geometry that allows external control of the magnetic configuration properties and their radial profiles: transform, shear, well depth, shaping, axis topology, etc. ATF will operate in a current-free model which allows separation of current-driven and pressure-driven plasma behavior. It also complements the world stellarator program in its magnetic configuration (between Heliotron-E and W VII-AS) and its capabilities (large size, good access, steady state capability, second stability access, etc.). For both roles ATF will require high-power long-pulse heating to carry out its physics goals since the high power NBI pulse is limited to 0.3 s. The ATF program focuses on demonstrating the principles of high-beta, steady-state operation in toroidal geometry through its study of: (1) scaling of beta limits with magnetic configuration properties and the plasma behavior in the second stability regime; (2) transport scaling at low collisionality and the role/control of electric field; (3) control of plasma density and impurities using divertors; (4) plasma heating with NBI, ECH, ICH, and plasma fueling with gas puffing and pellet injection; and (5) optimization of the magnetic configuration

  10. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    International Nuclear Information System (INIS)

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology

  11. Evaluation of HFIR vessel surveillance data and hydro-test conditions

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Nanstad, R.K.

    1994-01-01

    Surveillance specimens for the High Flux Isotope Reactor (HFIR) pressure vessel were removed and tested during 1993, after the vessel had accumulated 701,469 MWd of operation. The data agree well with HFIR surveillance data obtained in previous years. In conjunction with this effort, the vessel hydro-test conditions were reevaluated and found to be more than adequate. In view of this result, and because there are economic incentives for reducing the frequency of hydro testing, an analysis was performed to determine the minimum permissible frequency. The value obtained is substantially less than that presently specified. It was also determined that a somewhat lower cooling-tower-basin temperature is acceptable (improves operational flexibility). In 1986, after ∼20 years of reactor operation, it was discovered that the vessel embrittlement rate was substantially greater than expected. Possible reasons for the accelerated rate are reviewed in this report

  12. State waste discharge permit application: Hydrotest, maintenance and construction discharges. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    On December 23, 1991, the US DOE< Richland Operation Office (RL) and the Washington State Department of Ecology (Ecology) agreed to adhere to the provisions of the Department of Ecology Consent Order No. DE91NM-177 (216 Consent Order) (Ecology and US DOE 1991). The 216 Consent Order list regulatory milestones for liquid effluent streams at the Hanford Site and requires compliance with the permitting requirements of Washington Administrative Code. Hanford Site liquid effluent streams discharging to the soil column have been categorized on the 216 Consent Order as follows: Phase I Streams; Phase II Streams; Miscellaneous Streams. Phase I and Phase II Streams were initially addressed in two report. Miscellaneous Streams are subject to the requirements of several milestones identified in the 216 Consent Order. This document constitutes the Categorical State Waste Discharge Permit application for hydrotest,maintenance and construction discharges throughout the Hanford Site. This categorical permit application form was prepared and approved by Ecology.

  13. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  14. Advanced facilities for radiochemistry at Harwell

    International Nuclear Information System (INIS)

    1985-01-01

    The leaflets in this folder describe the latest addition to Harwell's active handling capability. This is a high level alpha, beta, gamma facility designed specifically for undertaking chemical research and development work. It is based on using high integrity containment boxes which are housed in concrete shielded enclosures. The active boxes can be removed and transferred remotely to a support area where they, and any associated equipment, can be decontaminated and serviced whilst a new fully commissioned box can be readily brought into service. The facility fulfills the principle of ALARA and is sufficiently flexible to accommodate a wide range of active handling requirements. It is supported by a suite of medium active handling cells, radiochemical laboratories and, as necessary, facilities of other scientific and engineering disciplines. The leaflets are: report on conceptual aspects; Techsheet 'Remote handling facility - Salient information'; Techsheet 'Project capabilities'; and 4 sheets of diagrams showing details of the facility. (U.K.)

  15. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  16. The magnet measurement facility for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.; Hogrefe, R.; Kim, K.; Merl, R.

    1993-01-01

    A magnet measurement facility has been developed to measure the prototype and production magnets for the Advance Photon Source. The measurement facility is semi-automatic in measurement control and data analysis. One dipole system and three rotating coil measurement systems for quadrupole and sextupole magnets and corresponding probe coils are described

  17. Advances in technology transfer at Federal Facilities

    International Nuclear Information System (INIS)

    Silva, R.R. Jr.

    1994-11-01

    The Hanford Site, located in the southeast portion of the state of Washington, is a 1450-hectare (560 square miles) reservation that was selected by the US Government in 1942 for production of the world's first nuclear weapons materials. For more than 40 years, defense production operations at Hanford generated hazardous and radioactive materials and wastes that for the most part remain there today. Environmental restoration of the Hanford Site is the primary mission of the Westinghouse Hanford Company (WHC) and it is also the thrust of the Tri-Party agreement among the US Environmental Protection Agency, the Washington State Department of Ecology and the US Department of Energy. Restoration will require treatment of about 1400 individual locations that are contaminated by chemically hazardous wastes, radioactive wastes, non-hazardous wastes and mixed hazardous and radioactive wastes. These locations include burial sites, storage facilities, obsolete buildings, settling ponds, waste cribs and large and small areas of near-surface and deep soil contamination. Burial trenches contain an estimated 109,000 cubic meters of low-level solid wastes contaminated with hazardous chemicals and radioactive materials. Approximately 450 sites were contaminated by discharge of liquids to the ground and there are about 250 additional areas where waste materials were spilled. At one time, ditches carried water from processing plants to settling/cooling ponds and 131 cribs were used over the years to dispose of slightly radioactive liquid wastes

  18. The ATF [Advanced Toroidal Facility] Status and Control System

    International Nuclear Information System (INIS)

    Baylor, L.R.; Devan, W.R.; Sumner, J.N.; Alban, A.M.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Status and Control System (SCS) is a programmable controller-based state monitoring and supervisory control system. This paper describes the SCS implementation and its use of a host computer to run a commercially available software package that provides color graphic interactive displays, alarm logging, and archiving of state data

  19. Construction and initial operation of the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Bell, G.L.; Bell, J.D.; Benson, R.D.

    1989-08-01

    The Advanced Toroidal Facility (ATF) torsatron was designed on a physics basis for access to the second stability regime and on an engineering basis for independent fabrication of high-accuracy components. The actual construction, assembly, and initial operation of ATF are compared with the characteristics expected during the design of ATF. 31 refs., 19 figs., 2 tabs

  20. The ATF [Advanced Toroidal Facility] Data Management System: [Final report

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Data Management System (DMG) is a VAX-based software system that provides unified data access for ATF data acquisition and analysis. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. This paper describes the layered architecture of the system design, the system implementation, use, and the data file structure. 3 refs., 1 fig

  1. Do provisions to advance chemical facility safety also advance chemical facility security? - An analysis of possible synergies

    OpenAIRE

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which existing provisions that have been put into existence to advance safety objectives due to synergy effects could be expected advance security objectives as well.The paper provides a conceptual definition of...

  2. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  3. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  4. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  5. Development of Experimental Facilities for Advanced Spent Fuel Management Technology

    Energy Technology Data Exchange (ETDEWEB)

    You, G. S.; Jung, W. M.; Ku, J. H. [and others

    2004-07-01

    The advanced spent fuel management process(ACP), proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel, is under research and development. This technology convert spent fuels into pure metal-base uranium with removing the highly heat generating materials(Cs, Sr) efficiently and reducing of the decay heat, volume, and radioactivity from spent fuel by 1/4. In the next phase(2004{approx}2006), the demonstration of this technology will be carried out for verification of the ACP in a laboratory scale. For this demonstration, the hot cell facilities of {alpha}-{gamma} type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of {beta}-{gamma} type will be refurbished to minimize construction expenditures of hot cell facility. In this study, the design requirements are established, and the process detail work flow was analysed for the optimum arrangement to ensure effective process operation in hot cell. And also, the basic and detail design of hot cell facility and process, and safety analysis was performed to secure conservative safety of hot cell facility and process.

  6. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve ''control loops'' between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  7. Advanced physical protection systems for facilities and transportation

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Sandia Laboratories is developing advanced physical protection safeguards in order to improve the security of special nuclear materials, facilities, and transportation. Computer models are being used to assess the cost-effectiveness of alternative systems for protecting facilities against external attack which may include internal assistance, and against internal theft or sabotage. Physical protection elements such as admittance controls, portals and detectors, perimeter and interior intrusion alarms, fixed and remotely-activated barriers, and secure communications are being evaluated, adapted, and where required, developed. New facilities safeguards concepts which involve (control loops) between physical protection and materials control elements are being evolved jointly between Sandia Laboratories and Los Alamos Scientific Laboratory. Special vehicles and digital communications equipment have been developed for the ERDA safe-secure transportation system. The current status and direction of these activities are surveyed

  8. 10 CFR 611.202 - Advanced Technology Vehicle Manufacturing Facility Award Program.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Advanced Technology Vehicle Manufacturing Facility Award... TECHNOLOGY VEHICLES MANUFACTURER ASSISTANCE PROGRAM Facility/Funding Awards § 611.202 Advanced Technology Vehicle Manufacturing Facility Award Program. DOE may issue, under the Advanced Technology Vehicle...

  9. Construction and engineering report for advanced nuclear fuel development facility

    International Nuclear Information System (INIS)

    Cho, S. W.; Park, J. S.; Kwon, S.J.; Lee, K. W.; Kim, I. J.; Yu, C. H.

    2003-09-01

    The design and construction of the fuel technology development facility was aimed to accommodate general nuclear fuel research and development for the HANARO fuel fabrication and advanced fuel researches. 1. Building size and room function 1) Building total area : approx. 3,618m 2 , basement 1st floor, ground 3th floor 2) Room function : basement floor(machine room, electrical room, radioactive waste tank room), 1st floor(research reactor fuel fabrication facility, pyroprocess lab., metal fuel lab., nondestructive lab., pellet processing lab., access control room, sintering lab., etc), 2nd floor(thermal properties measurement lab., pellet characterization lab., powder analysis lab., microstructure analysis lab., etc), 3rd floor(AHU and ACU Room) 2. Special facility equipment 1) Environmental pollution protection equipment : ACU(2sets), 2) Emergency operating system : diesel generator(1set), 3) Nuclear material handle, storage and transport system : overhead crane(3sets), monorail hoist(1set), jib crane(2sets), tank(1set) 4) Air conditioning unit facility : AHU(3sets), packaged air conditioning unit(5sets), 5) Automatic control system and fire protection system : central control equipment(1set), lon device(1set), fire hose cabinet(3sets), fire pump(3sets) etc

  10. Control system considerations for the AHF [Advanced Hadron Facility

    International Nuclear Information System (INIS)

    Butler, H.S.

    1989-01-01

    This paper identifies some of the more important issues related to the design of a control system for the Advanced Hadron Facility (AHF). It begins with a brief description of the site layout and how the various accelerators operate in tandem to deliver beam to several experimental areas. Then it focuses on the control system by estimating from existing installations the number of data and control channels to be expected for the AHF. The total comes to 50,000. This channel count is converted to manpower and cost estimates for the control system by extrapolating from other accelerator facilities. Finally, special attention is given to two subsystems -- magnets and diagnostic equipment -- and the impact they will have on the control system. 11 refs., 5 figs., 6 tabs

  11. Experimental area plans for an advanced hadron facility

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs. (LEW)

  12. Experimental area plans for an advanced hadron facility

    International Nuclear Information System (INIS)

    Hoffman, E.W.; Macek, R.J.; Tschalear, C.

    1986-01-01

    A brief overview is presented of the current plans for an experimental area for a new advanced hadron facility for the exploration of nuclear and particle physics. The facility, LAMPF II, is presently visualized as consisting of the LAMPF linac sending 800 MeV protons to a 6 GeV booster ring followed by a 45 GeV main ring. Two experimental areas area planned. The first is intended to provide neutrinos via a pair of pulsed focusing horns. The other is designed to accommodate secondary beams that span the range of useful energies up to GeV/c. Beam specification goals are discussed with respect to source brightness, beam purity, and beam-line acceptance and length. The various beam lines are briefly described. Production cross sections and rates are estimated for antiproton production. Problems of thermal energy deposition in both components and targets and of effectiveness of particle separators are discussed. 9 refs

  13. Scientific opportunities with advanced facilities for neutron scattering

    International Nuclear Information System (INIS)

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10 15 n cm -2 s -1 steady state source or a 10 17 n cm -2 s -1 peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee

  14. The advanced neutron source facility: Safety philosophy and studies

    International Nuclear Information System (INIS)

    Greene, S.R.; Harrington, R.M.

    1988-01-01

    The Advanced Neutron Source (ANS) is currently the only new civilian nuclear reactor facility proposed for construction in the United States. Even though the thermal power of this research-oriented reactor is a relatively low 300 MW, the design will undoubtedly receive intense scrutiny before construction is allowed to proceed. Safety studies are already under way to ensure that the maximum degree of safety in incorporated into the design and that the design is acceptable to the Department of Energy (DOE) and can meet the Nuclear Regulatory Commission regulations. This document discusses these safety studies

  15. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  16. Information on the Advanced Plant Experiment (APEX) Test Facility

    International Nuclear Information System (INIS)

    Smith, Curtis Lee

    2015-01-01

    The purpose of this report provides information related to the design of the Oregon State University Advanced Plant Experiment (APEX) test facility. Information provided in this report have been pulled from the following information sources: Reference 1: R. Nourgaliev and et.al, 'Summary Report on NGSAC (Next-Generation Safety Analysis Code) Development and Testing,' Idaho National Laboratory, 2011. Note that this is report has not been released as an external report. Reference 2: O. Stevens, Characterization of the Advanced Plant Experiment (APEX) Passive Residual Heat Removal System Heat Exchanger, Master Thesis, June 1996. Reference 3: J. Reyes, Jr., Q. Wu, and J. King, Jr., Scaling Assessment for the Design of the OSU APEX-1000 Test Facility, OSU-APEX-03001 (Rev. 0), May 2003. Reference 4: J. Reyes et al, Final Report of the NRC AP600 Research Conducted at Oregon State University, NUREG/CR-6641, July 1999. Reference 5: K. Welter et al, APEX-1000 Confirmatory Testing to Support AP1000 Design Certification (non-proprietary), NUREG-1826, August 2005.

  17. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  18. Safeguards System for the Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Kim, Ho-dong; Lee, T.H.; Yoon, J.S.; Park, S.W; Lee, S.Y.; Li, T.K.; Menlove, H.; Miller, M.C.; Tolba, A.; Zarucki, R.; Shawky, S.; Kamya, S.

    2007-01-01

    The advanced spent fuel conditioning process (ACP) which is a part of a pyro-processing has been under development at Korean Atomic Energy Research Institute (KAERI) since 1997 to tackle the problem of an accumulation of spent fuel. The concept is to convert spent oxide fuel into a metallic form in a high temperature molten salt in order to reduce the heat energy, volume, and radioactivity of a spent fuel. Since the inactive tests of the ACP have been successfully implemented to confirm the validity of the electrolytic reduction technology, a lab-scale hot test will be undertaken in a couple of years to validate the concept. For this purpose, the KAERI has built the ACP Facility (ACPF) at the basement of the Irradiated Material Examination Facility (IMEF) of KAERI, which already has a reserved hot-cell area. Through the bilateral arrangement between US Department of Energy (DOE) and Korean Ministry of Science and Technology (MOST) for safeguards R and D, the KAERI has developed elements of safeguards system for the ACPF in cooperation with the Los Alamos National Laboratory (LANL). The reference safeguards design conditions and equipment were established for the ACPF. The ACPF safeguards system has many unique design specifications because of the particular characteristics of the pyro-process materials and the restrictions during a facility operation. For the material accounting system, a set of remote operation and maintenance concepts has been introduced for a non-destructive assay (NDA) system. The IAEA has proposed a safeguards approach to the ACPF for the different operational phases. Safeguards measures at the ACPF will be implemented during all operational phases which include a 'Cold Test', a 'Hot Test' and at the end of a 'Hot test'. Optimization of the IAEA's inspection efforts was addressed by designing an effective safeguards approach that relies on, inter alia, remote monitoring using cameras, installed NDA instrumentation, gate monitors and seals

  19. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  20. Overview of recent results from the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Anabitarte, E.; Hidalgo-Vera, C.; Anderson, F.S.B.; Bell, G.L.; Gandy, R.F.; Bell, J.D.; Charlton, L.A.; Lee, D.K.; Lynch, V.E.; Morris, R.N.; Tolliver, J.S.; Hanson, G.R.; Kwon, M.; Rogers, P.S.; Shaw, P.L.; Wade, M.R.; Kaneko, H.; Sudo, S.; Yamada, H.; Zielinski, J.J.; Murakami, M.; Bigelow, T.S.; Carreras, B.A; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Fisher, P.W.; Glowienka, J.C.; Goulding, R.H.; Harris, J.H.; Haste, G.R.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Hutchinson, D.E.; Isler, R.C.; Jernigan, T.C.; Kannan, K.L.; Langley, R.A.; Leboeuf, J.G.; Lue, J.W.; Lyon, J.F.; Ma, C.H.; Menon, M.M.; Mioduszewski, P.K.; Neilson, G.H.; Rasmussen, D.A.; Schwenterly, S.W.; Shaing, K.C.; Shepard, T.D.; Simpkins, J.E.; Stewart, K.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.

    1989-01-01

    An overview of recent experimental results from the Advanced Toroidal Facility (ATF) is presented. Beam-heated plasmas with bar n e of 10 20 m -3 and τ E * of ∼20 ms have been achieved. Thermal collapse of the plasmas is mitigated by wall conditioning and particle fueling. Confinement time scales positively with density and magnetic field, offsetting deterioration with power. Results fit the LHD scaling and the drift wave turbulence scaling. Bootstrap currents observed during ECH agree with neoclassical theory in magnitude and parameter dependences. Fast reciprocating Langmuir probe measurements show that edge fluctuations in ATF have many similarities to those in the TEXT tokamak. The location of B instabilities has shifted outward in radius, consistent with the broader pressure profiles. 14 refs., 6 figs

  1. Overview of recent results from the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Murakami, M.; Anabitarte, E.; Anderson, F.S.B.; Bell, G.L.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Charlton, L.A.; Clark, T.L.; Colchin, R.J.; Crume, E.C. Jr.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Fisher, P.W.; Gandy, R.F.; Glowienka, J.C.; Goulding, R.H.; Hanson, G.R.; Harris, J.H.; Haste, G.R.; Hidalgo-Vera, C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Hutchinson, D.E.; Isler, R.C.; Jernigan, T.C.; Kannan, K.L.; Kaneko, H.; Kwon, M.; Langley, R.A.; Leboeuf, J.N.; Lee, D.K.; Lue, J.W.; Lynch, V.E.; Lyon, J.F.; Ma, C.H.; Menon, M.M.; Mioduszewski, P.K.; Morris, R.N.; Neilson, G.H.; Qualls, A.L.; Rasmussen, D.A.; Ritz, C.P.; Rogers, P.S.; Schwenterly, S.W.; Shaing, K.C.; Shaw, P.L.; Shepard, T.D.; Simpkins, J.E.; Stewart, K.A.; Sudo, S.; Thomas, C.E.; Tolliver, J.S.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.

    1990-02-01

    An overview of recent experimental results from the Advanced Toroidal Facility (ATF) is presented. Beam-heated plasmas with bar n e of 10 20 m -3 and τ E * of ∼ 20 ms have been achieved. Thermal collapse of the plasmas is mitigated by wall conditioning and particle fueling. Confinement time scales positively with density and magnetic field, offsetting deterioration with power. Results fit the Large Helical Device (LHD) scaling and the drift wave turbulence scaling. Bootstrap currents observed during electron cyclotron heating agree with neoclassical theory in magnitude and parameter dependences. Fast reciprocating Langmuir probe measurements show that edge fluctuations in ATF have many similarities to those in the Texas Experimental Tokamak (TEXT). The location of B instabilities has shifted outward in radius, consistent with the broader pressure profiles. 14 refs., 6 figs

  2. Advances in shock timing experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Robey, H F; Celliers, P M; Moody, J D; Sater, J; Parham, T; Kozioziemski, B; Dylla- Spears, R; Ross, J S; LePape, S; Ralph, J E; Hohenberger, M; Dewald, E L; Berzak Hopkins, L; Kroll, J J; Yoxall, B E; Hamza, A V; Landen, O L; Edwards, M J; Boehly, T R; Nikroo, A

    2016-01-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. (paper)

  3. Advances in shock timing experiments on the National Ignition Facility

    Science.gov (United States)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  4. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  5. Advancement adopted for physical protection system at BARC facilities Tarapur

    International Nuclear Information System (INIS)

    Jaroli, Manish; Ameta, Rohit; Patil, V.H.; Dubey, K.

    2015-01-01

    Considering the prevailing security situation and threat perception to the nuclear installations in particular, it has become essential to strengthen security system at BARC Tarapur in an effective manner to avert any attempt of sabotage and to ensure smooth functioning of security and safety of the nuclear installations. International Atomic Energy Agency (IAEA) and Atomic Energy Regulatory Board (AERB) have provided various security guides for the physical protection system (PPS) for nuclear installations and there has been advancement in physical and personnel protection system due to evolution of new technologies. In line with this, latest technologies have been adopted in PPS for BARC facilities, Tarapur recently. This includes state of art RFID card based access control, visitor and contractor management system, electronic key management system. Digital signature based biometric visitor and contractor management system; Digital signature based leave management system; Distress alarm system (DAS); Guard tour monitoring system (GTMS); Secure network access system (SNAS) as well as multilayered access control system at plant level. This will strengthen the surveillance and monitoring of personnel and visitors at BARC facilities. (author)

  6. The Advanced Test Reactor Irradiation Facilities and Capabilities

    International Nuclear Information System (INIS)

    S. Blaine Grover; Raymond V. Furstenau

    2007-01-01

    The Advanced Test Reactor (ATR) is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These different capabilities include passive sealed capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. The ATR has enhanced capabilities in experiment monitoring and control systems for instrumented and/or temperature controlled experiments. The control systems utilize feedback from thermocouples in the experiment to provide a custom blended flowing inert gas mixture to control the temperature in the experiments. Monitoring systems have also been utilized on the exhaust gas lines from the experiment to monitor different parameters, such as fission gases for fuel experiments, during irradiation. ATR's unique control system provides axial flux profiles in the experiments, unperturbed by axially positioned control components, throughout each reactor operating cycle and over the duration of test programs requiring many years of irradiation. The ATR irradiation positions vary in diameter from 1.6 cm (0.625 inches) to 12.7 cm (5.0 inches) over an active core length of 122 cm (48.0 inches). Thermal and fast neutron fluxes can be adjusted radially across the core depending on the needs of individual test programs. This paper will discuss the different irradiation capabilities available and the cost/benefit issues related to each capability. Examples of different experiments will also be discussed to demonstrate the use of the capabilities and facilities at ATR for performing irradiation experiments

  7. Towards an advanced hadron facility at Los Alamos

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1988-01-01

    In the 1987 workshop, it was pointed out that activation of the accelerator is a serious problem. At this workshop, it was suggested that a new type of slow extraction system is needed to reduce the activation. We report on the response to this need. The Los Alamos plan is reviewed including as elements the long lead-time R and D in preparation for a 1993 construction start, a menu of accelerator designs, improved losses at injection and extraction time, active participation in the development of PSR, and accelerated hardware R and D program, and close collaboration with TRIUMF. We review progress on magnets and power supplies, on ceramic vacuum chambers, and on ferrite-turned rf systems. We report on the plan for a joint TRIUMF-Los Alamos main-ring cavity to be tested in PSR in 1989. The problem of beam losses is discussed in detail and a recommendation for a design procedure for the injection system is made. This recommendation includes taking account of single Coulomb scattering, a painting scheme for minimizing foil hits, and a collimator and dump system for containing the expected spills. The slow extraction problem is reviewed and progress on an improved design is discussed. The problem of designing the accelerators for minimum operation and maintenance cost is briefly discussed. The question of the specifications for an advanced hadron facility is raised and it is suggested that the Los Alamos Proposal of a dual energy machine - 1.6 GeV and 60 GeV - is a better match to the needs of the science program than the single-energy proposals made elsewhere. It is suggested that design changes need be made in all of the world's hadron facility proposals to prepare for high-intensity operation

  8. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  9. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  10. Needs of Advanced Safeguards Technologies for Future Nuclear Fuel Cycle (FNFC) Facilities and a Trial Application of SBD Concept to Facility Design of a Hypothetical FNFC Facility

    International Nuclear Information System (INIS)

    Seya, M.; Hajima, R.; Nishimori, N.; Hayakawa, T.; Kikuzawa, N.; Shizuma, T.; Fujiwara, M.

    2010-01-01

    Some of future nuclear fuel cycle (FNFC) facilities are supposed to have the characteristic features of very large throughput of plutonium, low decontamination reprocessing (no purification process; existence of certain amount of fission products (FP) in all process material), full minor actinides (MA) recycle, and treatment of MOX with FP and MA in fuel fabrication. In addition, the following international safeguards requirements have to be taken into account for safeguards approaches of the FNFC facilities. -Application of integrated safeguards (IS) approach; -Remote (unattended) verification; - 'Safeguards by Design' (SBD) concept. These features and requirements compel us to develop advanced technologies, which are not emerged yet. In order to realize the SBD, facility designers have to know important parts of design information on advanced safeguards systems before starting the facility design. The SBD concept requires not only early start of R and D of advanced safeguards technologies (before starting preliminary design of the facility) but also interaction steps between researchers working on safeguards systems and nuclear facility designers. The interaction steps are follows. Step-1; researchers show images of advanced safeguards systems to facility designers based on their research. Step-2; facility designers take important design information on safeguards systems into process systems of demonstration (or test) facility. Step-3; demonstration and improvement of both systems based on the conceptual design. Step-4; Construction of a FNFC facility with the advanced safeguards systems We present a trial application of the SBD concept to a hypothetical FNFC facility with an advanced hybrid K-edge densitometer and a Pu NDA system for spent nuclear fuel assembly using laser Compton scattering (LCS) X-rays and γ-rays and other advanced safeguards systems. (author)

  11. Advanced light microscopy core facilities: Balancing service, science and career

    Science.gov (United States)

    Hartmann, Hella; Reymann, Jürgen; Ansari, Nariman; Utz, Nadine; Fried, Hans‐Ulrich; Kukat, Christian; Peychl, Jan; Liebig, Christian; Terjung, Stefan; Laketa, Vibor; Sporbert, Anje; Weidtkamp‐Peters, Stefanie; Schauss, Astrid; Zuschratter, Werner; Avilov, Sergiy

    2016-01-01

    ABSTRACT Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM‐CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM‐CF operations elaborated by the workgroups of the German network of ALM‐CFs, German Bio‐Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM‐CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. Microsc. Res. Tech. 79:463–479, 2016. © 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC. PMID:27040755

  12. Wall conditioning and leak localization in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1989-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described; this technique was developed because access to the outside of the vessel is severely restricted by external components. 10 refs., 6 figs., 2 tabs

  13. Wall conditioning and leak localization in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Langley, R.A.; Glowienka, J.C.; Mioduszewski, P.K.; Murakami, M.; Rayburn, T.F.; Simpkins, J.E.; Schwenterly, S.W.; Yarber, J.L.

    1990-01-01

    The Advanced Toroidal Facility (ATF) vacuum vessel and its internal components have been conditioned for plasma operation by baking, discharge cleaning with hydrogen and helium, and gettering with chromium and titanium. The plasma-facing surface of ATF consists mainly of stainless steel with some graphite; the outgassing area is dominated by the graphite because of its open porosity. Since this situation is somewhat different from that in other fusion plasma experiments, in which a single material dominates both the outgassing area and the plasma-facing area, different cleaning and conditioning techniques are required. The situation was aggravated by air leaks in the vacuum vessel, presumably resulting from baking and from vibration during plasma operation. The results of the various cleaning and conditioning techniques used are presented and compared on the basis of residual gas analysis and plasma performance. A technique for detecting leaks from the inside of the vacuum vessel is described. This technique was developed because access to the outside of the vessel is severely restricted by external components

  14. Experimental facilities for gas-cooled reactor safety studies. Task group on Advanced Reactor Experimental Facilities (TAREF)

    International Nuclear Information System (INIS)

    2009-01-01

    In 2007, the NEA Committee on the Safety of Nuclear Installations (CSNI) completed a study on Nuclear Safety Research in OECD Countries: Support Facilities for Existing and Advanced Reactors (SFEAR) which focused on facilities suitable for current and advanced water reactor systems. In a subsequent collective opinion on the subject, the CSNI recommended to conduct a similar exercise for Generation IV reactor designs, aiming to develop a strategy for ' better preparing the CSNI to play a role in the planned extension of safety research beyond the needs set by current operating reactors'. In that context, the CSNI established the Task Group on Advanced Reactor Experimental Facilities (TAREF) in 2008 with the objective of providing an overview of facilities suitable for performing safety research relevant to gas-cooled reactors and sodium fast reactors. This report addresses gas-cooled reactors; a similar report covering sodium fast reactors is under preparation. The findings of the TAREF are expected to trigger internationally funded CSNI projects on relevant safety issues at the key facilities identified. Such CSNI-sponsored projects constitute a means for efficiently obtaining the necessary data through internationally co-ordinated research. This report provides an overview of experimental facilities that can be used to carry out nuclear safety research for gas-cooled reactors and identifies priorities for organizing international co-operative programmes at selected facilities. The information has been collected and analysed by a Task Group on Advanced Reactor Experimental Facilities (TAREF) as part of an ongoing initiative of the NEA Committee on the Safety of Nuclear Installations (CSNI) which aims to define and to implement a strategy for the efficient utilisation of facilities and resources for Generation IV reactor systems. (author)

  15. Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments

    International Nuclear Information System (INIS)

    Tomberlin, T.A.

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed

  16. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  17. Technological Advances, Human Performance, and the Operation of Nuclear Facilities

    Science.gov (United States)

    Corrado, Jonathan K.

    Many unfortunate and unintended adverse industrial incidents occur across the United States each year, and the nuclear industry is no exception. Depending on their severity, these incidents can be problematic for people, the facilities, and surrounding environments. Human error is a contributing factor in many such incidents. This dissertation first explored the hypothesis that technological changes that affect how operators interact within the systems of the nuclear facilities exacerbate the cost of incidents caused by human error. I conducted a review of nuclear incidents in the United States from 1955 through 2010 that reached Level 3 (serious incident) or higher on the International Nuclear Events Scale (INES). The cost of each incident at facilities that had recently undergone technological changes affecting plant operators' jobs was compared to the cost of events at facilities that had not undergone changes. A t-test determined a statistically significant difference between the two groups, confirming the hypothesis. Next, I conducted a follow-on study to determine the impact of the incorporation of new technologies into nuclear facilities. The data indicated that spending more money on upgrades increased the facility's capacity as well as the number of incidents reported, but the incident severity was minor. Finally, I discuss the impact of human error on plant operations and the impact of evolving technology on the 21st-century operator, proposing a methodology to overcome these challenges by applying the systems engineering process.

  18. Recent progress on the National Ignition Facility advanced radiographic capability

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P.; Bowers, M.; Chen, H.; Heebner, J.; Hermann, M.; Kalantar, D.; Martinez, D.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore, this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.

  19. Proceedings of the Advanced Hadron Facility accelerator design workshop

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1989-01-01

    The International Workshop on Hadron Facility Technology was held February 22-27, 1988, at the Study Center at Los Alamos National Laboratory. The program included papers on facility plans, beam dynamics, and accelerator hardware. The parallel sessions were particularly lively with discussions of all facets of kaon factory design. The workshop provided an opportunity for communication among the staff involved in hadron facility planning from all the study groups presently active. The recommendations of the workshop include: the need to use h=1 RF in the compressor ring; the need to minimize foil hits in painting schemes for all rings; the need to consider single Coulomb scattering in injection beam los calculations; the need to study the effect of field inhomogeneity in the magnets on slow extraction for the 2.2 Tesla main ring of AHF; and agreement in principle with the design proposed for a joint Los Alamos/TRIUMF prototype main ring RF cavity

  20. Advanced accounting techniques in automated fuel fabrication facilities

    International Nuclear Information System (INIS)

    Carlson, R.L.; DeMerschman, A.W.; Engel, D.W.

    1977-01-01

    The accountability system being designed for automated fuel fabrication facilities will provide real-time information on all Special Nuclear Material (SNM) located in the facility. It will utilize a distributed network of microprocessors and minicomputers to monitor material movement and obtain nuclear materials measurements directly from remote, in-line Nondestructive Assay instrumentation. As SNM crosses an accounting boundary, the accountability computer will update the master files and generate audit trail records. Mass balance accounting techniques will be used around each unit process step, while item control will be used to account for encapsulated material, and SNM in transit

  1. Unbunched beam electron-proton instability in the PSR and advanced hadron facilities

    International Nuclear Information System (INIS)

    Wang, Tai-Sen; Pisent, A.; Neuffer, D.V.

    1989-01-01

    We studied the possibility of the occurrence of transverse instability induced by trapped electrons in unbunched beams in the Proton Storage Ring and the proposed Advance Hadron Facility (AHF) at Los Alamos, as well as in the proposed Kaon Factory at TRIUMF. We found that the e-p instability may be possible for unbunched beams in the PSR but is unlikely to occur in the advanced hadron facilities. 8 refs., 4 figs

  2. Advanced materials analysis facility at CSIRO HIAF laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M J; Wielunski, L S; Baxter, G R [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.; Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.

    1994-12-31

    The HIAF facility at North Ryde, based on a 3 MV Tandetron accelerator has been operating for several years. Initially three ion sources were in operation:- conventional duoplasmatrons for proton and helium beams and a sputter ion source for heavy ions. An electrostatic focusing system was designed and built in-house for providing microbeams. The research emphasis has been largely on microbeam PIXE with particular reference to the mining industry. An AMS system was added in 1990 which prevented the inclusion of the charge exchange canal required for helium beams. The facility has been operated by CSIRO Division of Exploration and Mining. At the beginning of 1992, the lon Beam Technology Group of CSIRO Division of Applied Physics was relocated at Lindfield and became a major user of the HIAF facility. Because the research activities of this group involved Rutherford Backscattering and Channeling, it was necessary to add a helium ion source and a new high vacuum beam line incorporating a precision goniometer. These facilities became operational in the second quarter of 1992. Currently a PIXE system is being added to the chamber containing the goniometer, making the accelerator an extremely versatile one for a wide range of IBA techniques. 3 refs.

  3. Advanced materials analysis facility at CSIRO HIAF laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, M.J.; Wielunski, L.S.; Baxter, G.R. [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.; Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.

    1993-12-31

    The HIAF facility at North Ryde, based on a 3 MV Tandetron accelerator has been operating for several years. Initially three ion sources were in operation:- conventional duoplasmatrons for proton and helium beams and a sputter ion source for heavy ions. An electrostatic focusing system was designed and built in-house for providing microbeams. The research emphasis has been largely on microbeam PIXE with particular reference to the mining industry. An AMS system was added in 1990 which prevented the inclusion of the charge exchange canal required for helium beams. The facility has been operated by CSIRO Division of Exploration and Mining. At the beginning of 1992, the lon Beam Technology Group of CSIRO Division of Applied Physics was relocated at Lindfield and became a major user of the HIAF facility. Because the research activities of this group involved Rutherford Backscattering and Channeling, it was necessary to add a helium ion source and a new high vacuum beam line incorporating a precision goniometer. These facilities became operational in the second quarter of 1992. Currently a PIXE system is being added to the chamber containing the goniometer, making the accelerator an extremely versatile one for a wide range of IBA techniques. 3 refs.

  4. VEHIL: a test facility for validation of fault management systems for advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, de B.; Verhaegen, M.H.

    2004-01-01

    We present a methodological approach for the validation of fault management systems for Advanced Driver Assistance Systems (ADAS). For the validation process the unique VEHIL facility, developed by TNO Automotive and currently situated in Helmond, The Netherlands, is applied. The VEHIL facility

  5. The development of the advanced cryogenic radiometer facility at NRC

    Science.gov (United States)

    Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.

    2018-02-01

    The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.

  6. Obtaining laser safety at a synchrotron radiation user facility: The Advanced Light Source

    International Nuclear Information System (INIS)

    Barat, K.

    1996-01-01

    The Advanced Light Source (ALS) is a US national facility for scientific research and development located at the Lawrence Berkeley National Laboratory in California. The ALS delivers the world's brightest synchrotron radiation in the far ultraviolet and soft X-ray regions of the spectrum. As a user facility it is available to researchers from industry, academia, and laboratories from around the world. Subsequently, a wide range of safety concerns become involved. This article relates not only to synchrotron facilities but to any user facility. A growing number of US centers are attracting organizations and individuals to use the equipment on site, for a fee. This includes synchrotron radiation and/or free electron facilities, specialty research centers, and laser job shops. Personnel coming to such a facility bring with them a broad spectrum of safety cultures. Upon entering, the guests must accommodate to the host facility safety procedures. This article describes a successful method to deal with that responsibility

  7. Development of Demonstration Facility Design Technology for Advanced Nuclear Fuel Cycle Process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.

    2010-04-01

    The main objective of this R and D is to develop the PRIDE (PyRoprocess Integrated inactive DEmonstration) facility for engineering-scale inactive test using fresh uranium, and to establish the design requirements of the ESPF (Engineering Scale Pyroprocess Facility) for active demonstration of the pyroprocess. Pyroprocess technology, which is applicable to GEN-IV systems as one of the fuel cycle options, is a solution of the spent fuel accumulation problems. PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. The PRIDE evaluation data, such as performance evaluation data of equipment and operation experiences, will be directly utilized for the design of ESPF

  8. Do provisions to advance chemical facility safety also advance chemical facility security? An analysis of possible synergies

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2012-01-01

    The European Commission has launched a study on the applicability of existing chemical industry safety provisions to enhancing security of chemical facilities covering the situation in 18 EU Member States. This paper reports some preliminary analytical findings regarding the extent to which exist...

  9. The use of cluster analysis method for the localization of acoustic emission sources detected during the hydrotest of PWR pressure vessels

    International Nuclear Information System (INIS)

    Liska, J.; Svetlik, M.; Slama, K.

    1982-01-01

    The acoustic emission method is a promising tool for checking reactor pressure vessel integrity. Localization of emission sources is the first and the most important step in processing emission signals. The paper describes the emission sources localization method which is based on cluster analysis of a set of points depicting the emission events in the plane of coordinates of their occurrence. The method is based on using this set of points for constructing the minimum spanning tree and its partition into fragments corresponding to point clusters. Furthermore, the laws are considered of probability distribution of the minimum spanning tree edge length for one and several clusters with the aim of finding the optimum length of the critical edge for the partition of the tree. Practical application of the method is demonstrated on localizing the emission sources detected during a hydrotest of a pressure vessel used for testing the reactor pressure vessel covers. (author)

  10. Advanced Process Control Application and Optimization in Industrial Facilities

    Directory of Open Access Journals (Sweden)

    Howes S.

    2015-01-01

    Full Text Available This paper describes application of the new method and tool for system identification and PID tuning/advanced process control (APC optimization using the new 3G (geometric, gradient, gravity optimization method. It helps to design and implement control schemes directly inside the distributed control system (DCS or programmable logic controller (PLC. Also, the algorithm helps to identify process dynamics in closed-loop mode, optimizes controller parameters, and helps to develop adaptive control and model-based control (MBC. Application of the new 3G algorithm for designing and implementing APC schemes is presented. Optimization of primary and advanced control schemes stabilizes the process and allows the plant to run closer to process, equipment and economic constraints. This increases production rates, minimizes operating costs and improves product quality.

  11. Advanced Control Facility for the CERN-UNICOS Framework

    CERN Document Server

    Pezzetti, M; Coppier, H

    2010-01-01

    CERN, during last decade, has extensively applied the CERN/UNICOS framework to large scale cryoplant control system. An increase of interested to advanced control techniques and innovative simulation environment applied to cryogenic processes has also occur. Since new control algorithm development into UNICOS framework requires significant time, a control testing platform which can be externally connected can improve and simplify the procedure of testing advanced controllers implementation. In this context, the present paper describes the development of a control testing tool at CERN, which allows rapid control strategies implementation through the Matlab/Simulink® environment, coupled with the large scale cryogenics UNICOS control system or with the CERN PROCOS simulation environment. The time delays which are inherently introduced by network links and communication protocols are analyzed and experimentally identified. Security and reliability issues are also discussed.

  12. Planning study for advanced national synchrotron-radiation facilities

    International Nuclear Information System (INIS)

    1984-01-01

    A new generation of synchrotron-radiation sources based on insertion devices offers gains in photon-beam brilliance as large as the gains that present-day synchrotron sources provided over conventional sources. This revolution in synchrotron capability and its impact on science and technology will be as significant as the original introduction of synchrotron radiation. This report recommends that insertion-device technology be pursued as our highest priority, both through the full development of insertion-device potential on existing machines and through the building of new facilities

  13. Operator training facilities for CEGB advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Green, J.F.; Birnie, S.

    1980-01-01

    The facilities provided at the Nuclear Power Training Centre of the CEGB for the training of operators fo the AGR are described. The simulator control desks are replicas of three AGR designs with, in addition, simulation of the Data Processing System for each station. Three modes of operation are envisaged: a.) Demonstration where the simulator is used by the tutor to illustrate lecture on plant behaviour. b.) Interaction where the student carries out normal procedures and experiences plant failure situations. c.) Investigation where engineering staff use the simulator for validation of modified operational procedures, ergonomic studies etc. (orig./HP)

  14. Status of U.S. Plans for an Advanced ISOL Facility. A Brief Report

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1998-01-01

    A brief discussion is provided of the current status of plans to build an advanced ISOL radioactive ion beam facility in the US. Designs for this new facility, which was recommended as the next major construction project of the DOE Nuclear Physics Program Office, have been proposed by two US national laboratories, Argonne National Laboratory and Oak Ridge National Laboratory. The new facility will provide orders-of-magnitude higher radioactive beam currents than existing facilities of this type and will cost in the range of $250 million

  15. Monitoring critical facilities by using advanced RF devices

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hanchung; Liu, Yung Y. [Argonne National Laboratory, Argonne, IL (United States); Shuler, James [U.S. Department of Energy, Washington, D.C. (United States)

    2013-07-01

    developed by Argonne National Laboratory. ARG-US RAMM, powered by on-board battery, can sustain extended autonomous surveillance operation during and following an incident. The benefits could be invaluable to such critical facilities as nuclear power plants, research and test reactors, fuel cycle manufacturing centers, spent-fuel dry-cask storage facilities, and other nuclear installations. (authors)

  16. Advanced ion beam calorimetry for the test facility ELISE

    International Nuclear Information System (INIS)

    Nocentini, R.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Riedl, R.; Ruf, B.; Wünderlich, D.; Bonomo, F.; Pimazzoni, A.; Pasqualotto, R.

    2015-01-01

    The negative ion source test facility ELISE (Extraction from a Large Ion Source Experiment) is in operation since beginning of 2013 at the Max-Planck-Institut für Plasmaphysik (IPP) in Garching bei München. The large radio frequency driven ion source of ELISE is about 1×1 m 2 in size (1/2 the ITER source) and can produce a plasma for up to 1 h. Negative ions can be extracted and accelerated by an ITER-like extraction system made of 3 grids with an area of 0.1 m 2 , for 10 s every 3 minutes. A total accelerating voltage of up to 60 kV is available, i.e. a maximum ion beam power of about 1.2 MW can be produced. ELISE is equipped with several beam diagnostic tools for the evaluation of the beam characteristics. In order to evaluate the beam properties with a high level of detail, a sophisticated diagnostic calorimeter has been installed in the test facility at the end of 2013, starting operation in January 2014. The diagnostic calorimeter is split into 4 copper plates with separate water calorimetry for each of the plates. Each calorimeter plate is made of 15×15 copper blocks, which act as many separate inertial calorimeters and are attached to a copper plate with an embedded cooling circuit. The block geometry and the connection with the cooling plate are optimized to accurately measure the time-averaged power of the 10 s ion beam. The surface of the blocks is covered with a black coating that allows infrared (IR) thermography which provides a 2D profile of the beam power density. In order to calibrate the IR thermography, 48 thermocouples are installed in as many blocks, arranged in two vertical and two horizontal rows. The paper describes the beam calorimetry in ELISE, including the methods used for the IR thermography, the water calorimetry and the analytical methods for beam profile evaluation. It is shown how the maximum beam inhomogeneity amounts to 13% in average. The beam divergence derived by IR thermography ranges between 1° and 4° and

  17. Monitoring critical facilities by using advanced RF devices

    International Nuclear Information System (INIS)

    Tsai, Hanchung; Liu, Yung Y.; Shuler, James

    2013-01-01

    developed by Argonne National Laboratory. ARG-US RAMM, powered by on-board battery, can sustain extended autonomous surveillance operation during and following an incident. The benefits could be invaluable to such critical facilities as nuclear power plants, research and test reactors, fuel cycle manufacturing centers, spent-fuel dry-cask storage facilities, and other nuclear installations. (authors)

  18. JAEA key facilities for global advanced fuel cycle R and D

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Shigeo; Yamamoto, Ryuichi [Nuclear Fuel Cycle Engineering Labos, JAEA, 4-33 Tokai-mura, Ibaraki, 319-1194 (Japan)

    2008-07-01

    Advanced fuel cycle will be realized with the mid and long term R and D during the long-term transition period from LWR cycle to advanced reactor fuel cycle. Most of JAEA facilities have been utilized to establish the current LWR and FBR (Fast Breeder Reactor) fuel cycle by implementing evolutionary R and D. An assessment of today's state experimental facilities concerning the following research issues: reprocessing, Mox fuel fabrication, irradiation and post-irradiation examination, waste management and nuclear data measurement, is made. The revolutionary R and D requests new issues to be studied: the TRU multi-recycling, minor actinide recycling, the assessment of proliferation resistance and the assessment of cost reduction. To implement the revolutionary R and D for advanced fuel cycle, however, these facilities should be refurbished to install new machines and process equipment to provide more flexible testing parameters.

  19. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  20. Conceptual structure design of experimental facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Joo, J. S.; Koo, J. H.; Jung, W. M.; Jo, I. J.; Kook, D. H.; Yoo, K. S.

    2003-01-01

    A study on the advanced spent fuel conditioning process (ACP) is carring out for the effective management of spent fuels of domestic nuclear power plants. This study presents basic shielding design, modification of IMEF's reserve hot cell facility which reserved for future usage, conceptual and structural architecture design of ACP hot cell and its contents, etc. considering the characteristics of ACP. The results of this study will be used for the basic and detail design of ACP demonstration facility, and utilized as basic data for the safety evaluation as essential data for the licensing of the ACP facility

  1. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charles Park

    2006-01-01

    This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy

  2. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  3. Development of demonstration facility design technology for advanced nuclear fuel cycle process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.; Lee, E. P.; Hong, D. H.; Lee, W. K.; Ku, J. H.; Moon, S. I.; Kwon, K. C.; Lee, K. I. and other

    2012-04-01

    PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. It is essential to develop design technologies for the advanced nuclear fuel cycle demonstration facilities and complete the detailed design of PRIDE facility with capabilities of the stringent inert atmosphere control, fully remote operation which are necessary to develop the high-temperature molten salts technology. For these, it is necessary to design the essential equipment of large scale inert cell structure and the control system to maintain the inert atmosphere, and evaluate the safety. To construct the hot cell system which is appropriate for pyroprocess, some design technologies should be developed, which include safety evaluation for effective operation and maintenance, radiation safety analysis for hot cell, structural analysis, environmental evaluation, HVAC systems and electric equipment

  4. Selected publications related to the experimental facilities of the Advanced Photon Source, 1987--1991

    International Nuclear Information System (INIS)

    1992-01-01

    This report contain papers on work related to the experimental facilities of the Advanced Photon Source. The general topics of these papers are: insertion devices; front ends; high heat load x-ray optics; novel optics and techniques; and radiation safety, interlocks, and personnel safety

  5. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  6. Filling the gaps in SCWR materials research: advanced nuclear corrosion research facilities in Hamilton

    International Nuclear Information System (INIS)

    Krausher, J.L.; Zheng, W.; Li, J.; Guzonas, D.; Botton, G.

    2011-01-01

    Research efforts on materials selection and development in support of the design of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of data on corrosion, creep and other related properties. Summaries of the data on corrosion [1] and stress corrosion cracking [2] have recently been produced. As research on the SCWR advances, gaps and limitations in the published data are being identified. In terms of corrosion properties, these gaps can be seen in several areas, including: 1) the test environment, 2) the physical and chemical severity of the tests conducted as compared with likely reactor service/operating conditions, and 3) the test methods used. While some of these gaps can be filled readily using existing facilities, others require the availability of advanced test facilities for specific tests and assessments. In this paper, highlights of the new materials research facilities jointly established in Hamilton by CANMET Materials Technology Laboratory and McMaster University are presented. (author)

  7. An advanced hadron facility: A combined kaon factory and cold-neutron source

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1987-01-01

    A design concept is presented for an advanced hadron facility consisting of a combined kaon factory and second generation spallation source. Our proposed facility consists of a 1.2 GeV superconducting H - linac to bring the LAMPF energy up to 2 GeV, a multi-ring 2 GeV compressor, a shared cold-neutron and stopped-pion neutrino source, a 60 GeV 25 μAmp 6 Hz proton synchrotron, and kaon and proton experimental areas. We discuss the considerations which led to this design concept. We summarize recent results of r and d work on components for rapid-cycling synchrotrons. Finally, we mention briefly a pion linac, which may be a good way to gain experience with superconducting cavities if advanced hadron facility funding is delayed

  8. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    International Nuclear Information System (INIS)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won

    2008-12-01

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process

  9. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  10. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  11. Radiation and physical protection challenges at advanced nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pickett, Susan E.

    2008-01-01

    Full text: The purpose of this study is to examine challenges and opportunities for radiation protection in advanced nuclear reactors and fuel facilities proposed under the Generation IV (GEN IV) initiative which is examining and pursuing the exploration and development of advanced nuclear science and technology; and the Global Nuclear Energy Partnership (GNEP), which seeks to develop worldwide consensus on enabling expanded use of economical, carbon-free nuclear energy to meet growing energy demand. The International Energy Agency projects nuclear power to increase at a rate of 1.3 to 1.5 percent a year over the next 20 years, depending on economic growth. Much of this growth will be in Asia, which, as a whole, currently has plans for 40 new nuclear power plants. Given this increase in demand for new nuclear power facilities, ranging from light water reactors to advanced fuel processing and fabrication facilities, it is necessary for radiation protection and physical protection technologies to keep pace to ensure both worker and public health. This paper is based on a review of current initiatives and the proposed reactors and facilities, primarily the nuclear fuel cycle facilities proposed under the GEN IV and GNEP initiatives. Drawing on the Technology Road map developed under GEN IV, this work examines the potential radiation detection and protection challenges and issues at advanced reactors, including thermal neutron spectrum systems, fast neutron spectrum systems and nuclear fuel recycle facilities. The thermal neutron systems look to improve the efficiency of production of hydrogen or electricity, while the fast neutron systems aim to enable more effective management of actinides through recycling of most components in the discharged fuel. While there are components of these advanced systems that can draw on the current and well-developed radiation protection practices, there will inevitably be opportunities to improve the overall quality of radiation

  12. Design description of the vacuum vessel for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Chipley, K.K.; Nelson, B.E.; Vinyard, L.M.; Williamson, D.F.

    1983-01-01

    The Advanced Toroidal Facility (ATF) will be a stellarator experiment to investigate improvements in toroidal confinement. The vacuum vessel for this facility will provide the appropriate evacuated region for plasma containment within the helical field (HF) coils. The vessel is designed to provide the maximum reasonable volume inside the HF coils and to provide the maximum reasonable access for future diagnostics. The vacuum vessel design is at an early phase and all of the details have not been completed. The heat transfer analysis and stress analysis completed during the conceptual design indicate that the vessel will not change drastically

  13. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  14. Technology developments for ACIGA high power test facility for advanced interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P [School of Physics, University of Western Australia, Perth, WA 6009 (Australia); Barton, M [California Institute of Technology, LIGO Project, Pasadena, CA 91125 (United States); Blair, D G [School of Physics, University of Western Australia, Perth, WA 6009 (Australia)] [and others

    2005-05-21

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with {approx}200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented.

  15. Technology developments for ACIGA high power test facility for advanced interferometry

    International Nuclear Information System (INIS)

    Barriga, P; Barton, M; Blair, D G

    2005-01-01

    The High Optical Power Test Facility for Advanced Interferometry has been built by the Australian Consortium for Interferometric Gravitational Astronomy north of Perth in Western Australia. An 80 m suspended cavity has been prepared in collaboration with LIGO, where a set of experiments to test suspension control and thermal compensation will soon take place. Future experiments will investigate radiation pressure instabilities and optical spring effects in a high power optical cavity with ∼200 kW circulating power. The facility combines research and development undertaken by all consortium members, whose latest results are presented

  16. Preliminary conceptual design and cost estimation for Korea Advanced Pyroprocessing Facility Plus (KAPF+)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il, E-mail: nwiko@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Ho Hee, E-mail: nhhlee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Sungyeol, E-mail: csy@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Ki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Byung Heung, E-mail: b.h.park@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, In Tae, E-mail: nitkim@kaeri.re.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Han Soo, E-mail: hslee5@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-10-01

    Highlights: • Conceptual design is created for a pilot pyroprocessing plant treating PWR spent fuel. • Pilot-scale design is based on a capacity of 400 tHM/yr with 60 years lifetime. • All individual processes are integrated into a single system from feed to products. • Overall facility design is developed for a pilot pyroprocessing plant. • Unit process cost is estimated for pyroprocessing with uncertainties. - Abstract: Korea has developed pyroprocessing technology as a potential option for recycling spent fuels (SFs) from pressurized water reactors (PWRs). The pyroprocessing consists of various key unit processes and a number of research activities have been focused on each process. However, to realize the whole pyroprocessing concept, there is a critical need for integrating the individual developments and addressing a material flow from feed to final products. In addition, the advancement on overall facility design is an indispensable aspect for demonstration and commercialization of the pyroprocessing. In this study, a facility named as Korea Advanced Pyroprocess Facility Plus (KAPF+) is conceptualized with a capacity of 400 tHM/yr. The process steps are categorized based on their own characteristics while the capacities of process equipment are determined based on the current technical levels. The facility concept with a site layout of 104,000 m{sup 2} is developed by analyzing the operation conditions and materials treated in each process. As an economic approach to the proposed facility, the unit cost (781 $/kgHM denominated in 2009 USD) for KAPF+ is also analyzed with the conceptual design with preliminary sensitivity assessments including decontamination and decommissioning costs, a discount rate, staffing costs, and plant lifetime. While classifying and describing cost details of KAPF+, this study compares the unit cost of KAPF+ treating PWR SF to that of the pyroprocessing facility treating sodium-cooled fast reactor (SFR) SF.

  17. SAMS: The synchronization and monitoring system for ATF [Advanced Toroidal Facility] data acquisition

    International Nuclear Information System (INIS)

    Greenwood, D.E.

    1987-01-01

    SAMS performs much of the synchronization of the distributed data acquisition system for the Advanced Toroidal Facility (ATF). SAMS is responsible for propagating shot information and managing te data system directories and logical names. This paper describes how SAMS communicates with other processes, both within the VAX cluster that supports most of the ATF data acquisition and on VAXes that are connected to the cluster via DECnet. 3 refs

  18. The data acquisition and control system for Thomson Scattering on ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Kindsfather, R.R.; Rasmussen, D.A.

    1989-01-01

    The 2-dimensional Thomson Scattering System measuring electron temperatures and densities in the Advanced Toroidal Facility (ATF) is interfaced to a VAX-8700 computer system running in a clustered configuration. Calibration, alignment, and operation of this diagnostic is under computer control. Extensive CAMAC instrumentation is used for timing control, data acquisition, and laser alignment. This paper will discuss the computer hardware and software, system operations, and data storage and retrieval. 3 refs

  19. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  20. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  1. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    Science.gov (United States)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2009-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.

  2. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  3. Remote Internet access to advanced analytical facilities: a new approach with Web-based services.

    Science.gov (United States)

    Sherry, N; Qin, J; Fuller, M Suominen; Xie, Y; Mola, O; Bauer, M; McIntyre, N S; Maxwell, D; Liu, D; Matias, E; Armstrong, C

    2012-09-04

    Over the past decade, the increasing availability of the World Wide Web has held out the possibility that the efficiency of scientific measurements could be enhanced in cases where experiments were being conducted at distant facilities. Examples of early successes have included X-ray diffraction (XRD) experimental measurements of protein crystal structures at synchrotrons and access to scanning electron microscopy (SEM) and NMR facilities by users from institutions that do not possess such advanced capabilities. Experimental control, visual contact, and receipt of results has used some form of X forwarding and/or VNC (virtual network computing) software that transfers the screen image of a server at the experimental site to that of the users' home site. A more recent development is a web services platform called Science Studio that provides teams of scientists with secure links to experiments at one or more advanced research facilities. The software provides a widely distributed team with a set of controls and screens to operate, observe, and record essential parts of the experiment. As well, Science Studio provides high speed network access to computing resources to process the large data sets that are often involved in complex experiments. The simple web browser and the rapid transfer of experimental data to a processing site allow efficient use of the facility and assist decision making during the acquisition of the experimental results. The software provides users with a comprehensive overview and record of all parts of the experimental process. A prototype network is described involving X-ray beamlines at two different synchrotrons and an SEM facility. An online parallel processing facility has been developed that analyzes the data in near-real time using stream processing. Science Studio and can be expanded to include many other analytical applications, providing teams of users with rapid access to processed results along with the means for detailed

  4. Critical need for MFE: the Alcator DX advanced divertor test facility

    Science.gov (United States)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  5. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  6. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Griffith, Andrew

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  7. Deep Space Thermal Cycle Testing of Advanced X-Ray Astrophysics Facility - Imaging (AXAF-I) Solar Array Panels Test

    National Research Council Canada - National Science Library

    Sisco, Jimmy

    1997-01-01

    The NASA Advanced X-ray Astrophysics Facility - Imaging (AXAF-I) satellite will be exposed to thermal conditions beyond normal experience flight temperatures due to the satellite's high elliptical orbital flight...

  8. Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities

    Science.gov (United States)

    Woodward, Richard P.; Hughes, Christopher E.

    2012-01-01

    A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.

  9. Design and fabrication of the vacuum vessel for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Chipley, K.K.; Frey, G.N.

    1985-01-01

    The vacuum vessel for the Advanced Toroidal Facility (ATF) is a heavily contoured and very complex formed vessel that is specifically designed to allow for maximum plasma volume in a pure stellarator arrangement. The design of the facility incorporates an internal vessel that is closely fitted to the two helical field coils following the winding law theta = 1/6phi. Metallic seals have been incorporated throughout the system to minimize impurities. The vessel has been fabricated utilizing a comprehensive set of tooling fixtures specifically designed for the task of forming 6-mm stainless steel plate to the complex shape. Computer programs were used to develop a series of ribs that essentially form an internal mold of the vessel. Plates were press-formed with multiple compound curves, fitted to the fixture, and joined with full-penetration welds. 7 refs., 8 figs

  10. Operation and utilization of low power research reactor critical facility for Advanced Heavy Water Reactor (AHWR)

    International Nuclear Information System (INIS)

    De, S.K.; Karhadkar, C.G.

    2017-01-01

    An Advanced Heavy Water Reactor (AHWR) has been designed and developed for maximum power generation from thorium considering large reserves of thorium. The design envisages using 54 pin MOX cluster with different enrichment of "2"3"3U and Pu in Thoria fuel pins. Theoretical models developed to neutron transport and the geometrical details of the reactor including all reactivity devices involve approximations in modelling, resulting in uncertainties. With a view to minimize these uncertainties, a low power research reactor Critical Facility was built in which cold clean fuel can be arranged in a desired and precise geometry. Different experiments conducted in this facility greatly contribute to understand and validate the physics design parameters

  11. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  12. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    Briggs, J.L.; Younger, A.F.

    1980-01-01

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  13. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility

    International Nuclear Information System (INIS)

    Açıkkalp, Emin; Aras, Haydar; Hepbasli, Arif

    2014-01-01

    Highlights: • Advanced exergoenvironmental analysis was conducted for an electricity generating facility. • Exergy destructions and environmental effects were divided into parts. • Environmental relations between the components were determined. • Environmental improvement strategies of the system were determined. - Abstract: This paper presents conventional and advanced exergoenvironmental analyses of an electricity generation facility located in the Eskisehir Industry Estate Zone, Turkey. This facility consists of gas turbine and steam cycles, which generate electrical power of approximately 37 MW and 18 MW, respectively. Exergy efficiency of the system is 0.402 and exergy destruction rate of the system is 78.242 MW. Unit exergy cost of electrical power generated by the system is 25.66 $/GJ and total exergoeconomic factor of the system is 0.279. Conventional exergy analysis method was applied to the system first. Next, exergy environmental impacts of exergy destruction rate within the facility’s components were divided into four parts generally, as endogenous, exogenous, avoidable and unavoidable environmental impact of exergy destruction rate. Through this analysis, improvement potential of the environmental impacts of the components and the overall system and the environmental relations between the components were then determined. Finally, exergoenvironmental factor was determined as 0.277 and environmental impact of the electricity was 8.472 (Pts/h). The system has 33% development potential for environmental impacts while its components have weak relations because of big endogenous parts of environmental impacts (80%). It may be concluded that advanced exergoenvironmental analysis indicated that priority should be given to the GT and CC, while defining the improvement strategies

  14. HPCAT: an integrated high-pressure synchrotron facility at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shen, Guoyin; Chow, Paul; Xiao, Yuming; Sinogeikin, Stanislav; Meng, Yue; Yang, Wenge; Liermann, Hans-Peter; Shebanova, Olga; Rod, Eric; Bommannavar, Arunkumar; Mao, Ho-Kwang

    2008-01-01

    The high pressure collaborative access team (HPCAT) was established to advance cutting edge, multidisciplinary, high-pressure (HP) science and technology using synchrotron radiation at sector 16 of the Advanced Photon Source of Argonne National Laboratory. The integrated HPCAT facility has established four operating beamlines in nine hutches. Two beamlines are split in energy space from the insertion device (16ID) line, whereas the other two are spatially divided into two fans from the bending magnet (16BM) line. An array of novel X-ray diffraction and spectroscopic techniques has been integrated with HP and extreme temperature instrumentation at HPCAT. With a multidisciplinary approach and multi-institution collaborations, the HP program at the HPCAT has been enabling myriad scientific breakthroughs in HP physics, chemistry, materials, and Earth and planetary sciences.

  15. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    Science.gov (United States)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  16. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  17. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  18. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  19. Manufacture and installation of reactor auxiliary facilities for advanced thermal prototype reactor 'Fugen'

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Matsushita, Tadashi

    1977-01-01

    The facilities of reactor auxiliary systems for the advanced thermal prtotype reactor ''Fugen'' were manufactured in factories since 1972, and the installation at the site began in November, 1974. It was almost completed in March, 1977, except a part of the tests and inspections, therefore the outline of the works is reported. The ATR ''Fugen'' is a heavy water-moderated, boiling light water reactor, and its reactor auxiliary systems comprise mainly the facilities for handling heavy water, such as heavy water cooling system, heavy water cleaning system, poison supplying system, helium circulating system, helium cleaning system, and carbon dioxide system. The poison supplying system supplies liquid poison to the heavy water cooling system to absorb excess reactivity in the initial reactor core. The helium circulating system covers heavy water surface with helium to prevent the deterioration of heavy water and maintains heavy water level by pressure difference. The carbon dioxide system flows highly pure CO 2 gas in the space of pressure tubes and carandria tubes, and provides thermal shielding. The design, manufacture and installation of the facilities of reactor auxiliary systems, and the helium leak test, synthetic pressure test and total cleaning are explained. (Kako, I.)

  20. Trial operation of the advanced volume reduction facilities for LLW at JAEA

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Higuchi, Hidekazu; Momma, Toshiyuki; Kozawa, Kazushige; Touhei, Toshio; Sudou, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Kou; Ishikawa, Joji; Kato, Mitsugu; Sato, Motoaki

    2007-01-01

    The Japan Atomic Energy Agency (JAEA) constructed the Advanced Volume Reduction Facilities (AVRF), in which volume reduction techniques are applied and achieved high volume reduction ratio, homogenization and stabilization by means of melting or super compaction processes for low level radioactive solid wastes. It will be able to produce waste packages for final disposal and to reduce the volume of stored wastes by operating the AVRF. The AVRF consist of the Waste Size Reduction and Storage Facilities (WSRSF) and the Waste Volume Reduction Facilities (WVRF); the former has cutting installations for large size wastes and the latter has melting units and a super compactor. Cutting installations in the WSRSF have been operating since July 1999. Radioactive wastes treated so far amount to 750 m 3 and the volume reduction ratio is from 1.7 to 3.7. The WVRF has been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation of the pretreatment system in the WVRF with radioactive wastes has partly started in FY2005. (author)

  1. System of the advanced volume reduction facilities for LLW at JAERI

    International Nuclear Information System (INIS)

    Higuchi, Hidekazu; Monma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Touhei, Toshio; Sudou, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Henmi, Kou; Ishikawa, Joji; Kato, Mitsugu; Sato, Motoaki

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) constructed the Advanced Volume Reduction Facilities (AVRF), in which volume reduction techniques are applied and achieved high volume reduction ratio, homogenization and stabilization by means of melting or super compaction processes for low level solid wastes. It will be able to produce waste packages for final disposal and to reduce the amount of the wastes by operating the AVRF. The AVRF consist of the Waste Size Reduction and Storage Facilities (WSRSF) and the Waste Volume Reduction Facilities (WVRF); the former have cutting installations for large size wastes and the latter have melting units and a super compactor. Cutting installations in the WSRSF have been operating since June 1999. Radioactive wastes treated so far amount to 600 m 3 and the volume reduction ratio is from 1/2 to 1/3. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005. (author)

  2. NATO Advanced Research Workshop on Brilliant Light Facilities and Research in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili; Brilliant Light in Life and Material Sciences

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  3. Oregon state university's advanced plant experiment (APEX) AP1000 integral facility test program

    International Nuclear Information System (INIS)

    Reyes, J.N.; Groome, J.T.; Woods, B.G.; Young, E.; Abel, K.; Wu, Q.

    2005-01-01

    Oregon State University (OSU) has recently completed a three year study of the thermal hydraulic behavior of the Westinghouse AP1000 passive safety systems. Eleven Design Basis Accident (DBA) scenarios, sponsored by the U.S. Department of Energy (DOE) with technical support from Westinghouse Electric, were simulated in OSU's Advanced Plant Experiment (APEX)-1000. The OSU test program was conducted within the purview of the requirements of 10CFR50 Appendix B, NQA-1 and 10 CFR 21 and the test data was used to provide benchmarks for computer codes used in the final design approval of the AP1000. In addition to the DOE certification testing, OSU conducted eleven confirmatory tests for the U.S. Nuclear Regulatory Commission. This paper presents the test program objectives, a description of the APEX-1000 test facility and an overview of the test matrix that was conducted in support of plant certification. (authors)

  4. Effects of magnetic geometry, fluctuations, and electric fields on confinement in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Aceto, S.; Baylor, L.R.; Bigelow, T.S.; Bell, G.L.; Bell, J.D.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dory, R.A.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Gandy, R.F.; Glowienka, J.C.; Hanson, G.R.; Harris, J.H.; Hiroe, S.; Horton, L.D.; Jernigan, T.C.; Ji, H.; Langley, R.A.; Lee, D.K.; Likin, K.M.; Lyon, J.F.; Ma, C.H.; Morimoto, S.; Murakami, M.; Okada, H.; Qualls, A.L.; Rasmussen, D.A.; Rome, J.A.; Sato, M.; Schwelberger, J.G.; Shats, M.G.; Simpkins, J.E.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Wilgen, J.B.; Wing, W.R.; Yamada, H.; Zielinski, J.J.

    1992-01-01

    Recent experiments in the Advanced Toroidal Facility (ATF) [Fusion Technol. 10, 179 (1986)] have been directed toward investigations of the basic physics mechanisms that control confinement in this device. Measurements of the density fluctuations throughout the plasma volume have provided indications for the existence of theoretically predicted dissipative trapped electron and resistive interchange instabilities. These identifications are supported by results of dynamic configuration scans of the magnetic fields during which the magnetic well volume, shear, and fraction of confined trapped particles are changed continuously. The influence of magnetic islands on the global confinement has been studied by deliberately applying error fields which strongly perturb the nested flux-surface geometry, and the effects of electric fields have been investigated by means of biased limiter experiments

  5. Highlights from the assembly of the helical field coils for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Benson, R.D.

    1985-01-01

    The helical field (HF) coils in the Advanced Toroidal Facility (ATF) device consist of a set of 24 identical segments connected to form a continuous pair of helical coils wrapped around a toroidal vacuum vessel. Each segment weighs approximately 1364 kg (3000 lb) and is composed of 14 water-cooled copper plate conductors bolted to a cast stainless steel structural support member with a T-shape cross section (known as the structural tee). The segment components are electrically insulated with Kapton adhesive tape, G-10, Tefzel, and rubber to withstand 2.5 kV. As a final insulator and structural support, the entire segment is vacuum impregnated with epoxy. This paper offers a brief overview of the processes used to assemble the component parts into a completed segment, including identification of items that required special attention. 4 figs

  6. Advanced depreciation cost analysis for a commercial pyroprocess facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Youn, Sae Rom; Gao, Ruxing [University of Science and Technology, Daejeon (Korea, Republic of); Chung, Yang Hon; Bang, Sung Sig [Dept. of Business and Technology Management, University of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    The purpose of this study is to present a rational depreciation method for a pyroprocess cost calculation. Toward this end, the so-called advanced decelerated depreciation method (ADDM) was developed that complements the limitations of the existing depreciation methods such as the straight-line method and fixed percentage of declining-balance method. ADDM was used to show the trend of the direct material cost and direct labor cost compared to the straight-line or fixed percentage of the declining-balance methods that are often used today. As a result, it was demonstrated that the depreciation cost of the ADDM, which assumed a pyroprocess facility's life period to be 40 years with a deceleration rate of 5%, takes up 4.14% and 27.74% of the pyroprocess unit cost ($781/kg heavy metal) in the 1st and final years, respectively. In other words, it was found that the ADDM can cost the pyroprocess facility's capital investment rationally every year. Finally, ADDM's validity was verified by confirming that the sum of the depreciation cost by year, and the sum of the purchasing cost of the building and equipment, are the same.

  7. Advanced depreciation cost analysis for a commercial pyroprocess facility in Korea

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Ko, Won Il; Youn, Sae Rom; Gao, Ruxing; Chung, Yang Hon; Bang, Sung Sig

    2016-01-01

    The purpose of this study is to present a rational depreciation method for a pyroprocess cost calculation. Toward this end, the so-called advanced decelerated depreciation method (ADDM) was developed that complements the limitations of the existing depreciation methods such as the straight-line method and fixed percentage of declining-balance method. ADDM was used to show the trend of the direct material cost and direct labor cost compared to the straight-line or fixed percentage of the declining-balance methods that are often used today. As a result, it was demonstrated that the depreciation cost of the ADDM, which assumed a pyroprocess facility's life period to be 40 years with a deceleration rate of 5%, takes up 4.14% and 27.74% of the pyroprocess unit cost ($781/kg heavy metal) in the 1st and final years, respectively. In other words, it was found that the ADDM can cost the pyroprocess facility's capital investment rationally every year. Finally, ADDM's validity was verified by confirming that the sum of the depreciation cost by year, and the sum of the purchasing cost of the building and equipment, are the same

  8. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  9. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  10. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    International Nuclear Information System (INIS)

    Harrop, G.

    2003-01-01

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  11. Status of advanced biofuels demonstration facilities in 2012. A report to IEA Bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina; Ludwiczek, Nikolaus; Ognissanto, Monica; Woergetter, Manfred

    2013-03-18

    the previous edition of this report (2010), advanced biofuels technologies have developed significantly. Hydrotreatment as pursued by e.g. Neste Oil has been commercialized and currently accounts for app. 2,4% of biofuels production worldwide. Fermentation of lignocellulosic raw material to ethanol has also seen a strong development and several large scale facilities are just coming online in Europe and North America. As for thermochemical processes, the development is recently focusing on the production of mixed alcohols rather than BtL-Diesel. Economic reasons are driving this development, and concepts like the integration into existing industries and the production of several products instead of biofuel only (biorefinery concept) receive more attention lately. But, as expected, some of the projects for advanced biofuel production have failed. As a result, companies are now more careful in making announcements of advanced biofuels projects, and several large-scale projects have been postponed recently, some even though public funding would have been granted. Nevertheless, the production capacity for biofuels from lignocellulosic feedstock has tripled since 2010 and currently accounts for some 140 000 tons per year. Hydrotreating capacity for biofuels has multiplied and stands at about 2 190 000 tons per year.

  12. Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities

    NARCIS (Netherlands)

    Mul, Monique F.; Riel, van Johannes; Roy, Lise; Zoons, Johan; Andre, Geert; George, David R.; Meerburg, Bastiaan G.; Dicke, Marcel; Mourik, van Simon; Groot Koerkamp, Peter W.G.

    2017-01-01

    The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting

  13. Measurements of the fast ion distribution during neutral beam injection and ion cyclotron heating in ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Wade, M.R.; Kwon, M.; Thomas, C.E.; Colchin, R.J.; England, A.C.; Gossett, J.M.; Horton, L.D.; Isler, R.C.; Lyon, J.F.; Rasmussen, D.A.; Rayburn, T.M.; Shepard, T.D.; Bell, G.L.; Fowler, R.H.; Morris, R.N.

    1990-01-01

    A neutral particle analyzer (NPA) with horizontal and vertical scanning capability has been used to make initial measurements of the fast ion distribution during neutral beam injection (NBI) and ion cyclotron heating (ICH) on the Advanced Toroidal Facility (ATF). These measurements are presented and compared with the results of modeling codes that predict the analyzer signals during these heating processes. 6 refs., 5 figs

  14. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Morneau, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-09

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.

  15. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    Science.gov (United States)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  16. Advanced Light Source, a 1-2 GeV synchrotron radiation facility

    International Nuclear Information System (INIS)

    Berkner, K.H.

    1985-01-01

    The Advanced Light Source (ALS), a dedicated synchrotron radiation facility optimized to generate soft x-ray and vacuum ultraviolet (XUV) light using magnetic insertion devices, was proposed by the Lawrence Berkeley Laboratory in 1982. It consists of a 1.3-GeV injection system, an electron storage ring optimized at 1.3 GeV (with the capability of 1.9-GeV operation), and a number of photon beamlines emanating from twelve 6-meter-long straight sections. In addition, 24 bending-magnet ports will be available for development. The ALS was conceived as a research tool whose range and power would stimulate fundamentally new research in fields from biology to materials science. The conceptual design and associated cost estimate for the ALS have been completed and reviewed by the US Department of Energy (DOE), but Title I activities have not yet begun. The focus in this study is on the history of the ALS as an example of how a technical construction project was conceived, designed, proposed, and validated within the framework of a national laboratory funded largely by the DOE

  17. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  18. Initial high-power testing of the ATF [Advanced Toroidal Facility] ECH [electron cyclotron heating] system

    International Nuclear Information System (INIS)

    White, T.L.; Bigelow, T.S.; Kimrey, H.D. Jr.

    1987-01-01

    The Advanced Toroidal Facility (ATF) is a moderate aspect ratio torsatron that will utilize 53.2 GHz 200 kW Electron Cyclotron Heating (ECH) to produce nearly current-free target plasmas suitable for subsequent heating by strong neutral beam injection. The initial configuration of the ECH system from the gyrotron to ATF consists of an optical arc detector, three bellows, a waveguide mode analyzer, two TiO 2 mode absorbers, two 90 0 miter bends, two waveguide pumpouts, an insulating break, a gate valve, and miscellaneous straight waveguide sections feeding a launcher radiating in the TE 02 mode. Later, a focusing Vlasov launcher will be added to beam the ECH power to the saddle point in ATF magnetic geometry for optimum power deposition. The ECH system has several unique features; namely, the entire ECH system is evacuated, the ECH system is broadband, forward power is monitored by a newly developed waveguide mode analyzer, phase correcting miter bends will be employed, and the ECH system will be capable of operating short pulse to cw. Initial high-power tests show that the overall system efficiency is 87%. The waveguide mode analyzer shows that the gyrotron mode output consists of 13% TE 01 , 82.6% TE 02 , 2.5% TE 03 , and 1.9% TE 04 . 4 refs

  19. Mechanical testing and development of the helical field coil joint for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Bryan, W.E.; Goranson, P.L.; Warwick, J.E.

    1985-01-01

    The helical field (HF) coil set for the Advanced Toroidal Facility (ATF) is an M = 12, l = 2, constant-ratio torsatron winding consisting of 2 coils, each with 14 turns of heavy copper conductor. The coils are divided into 24 identical segments to facilitate fabrication and minimize the assembly schedule. The segments are connected across through-bolted lap joints that must carry up to 124,000 A per turn for 5 s or 62,500 A steady-state. In addition, the joints must carry the high magnetic and thermal loads induced in the conductor and still fit within the basic 140- by 30-mm copper envelope. Extensive testing and development were undertaken to verify and refine the basic joint design. Tests included assembly force and clamping force for various types of misalignment; joint resistance as a function of clamping force; clamp bolt relaxation due to thermal cycling; fatigue testing of full-size, multiturn joint prototypes; and low-cycle fatigue and tensile tests of annealed CDA102 copper. The required performance parameters and actual test results, as well as the final joint configuration, are presented. 2 refs., 9 figs., 4 tabs

  20. Location and repair of air leaks in the ATF [Advanced Toroidal Facility] vacuum vessel

    International Nuclear Information System (INIS)

    Schwenterly, S.W.; Gabbard, W.A.; Schaich, C.R.; Yarber, J.L.

    1989-01-01

    On the basis of partial pressure rate-of-rise and base pressure measurements, it was determined that the Advanced Toroidal Facility (ATF) vacuum vessel had an air leak in the low 10 -4 mbar-ell/s range. Pinpointing this leak by conventional helium leak-checking procedures was not possible, because large portions of the outside of the vessel are covered by the helcial field coils and a structural shell. Various alternative leak-detection schemes that were considered are summarized and their advantages and disadvantages noted. In the method ultimately employed, gun-rubber patches of various sizes ranging from 12.7 by 12.7 cm to 20.3 by 30.5 cm were positioned on the inside surfaces of the vessel and evacuated by the leak detector (LD). After roughly 5% of the surface was inspected in this way, a leak of > 10 -5 mbar-ell/s was discovered and localized to an area of 5 by 5 cm. Dye penetrant applied to this area disclosed three pinholes. Two small slag pockets were discovered while these points were being ground out. After these were rewelded, no furthered leakage could be found in the repaired area. Global leak rates measured after the machine was reevacuated indicated that this leak was about 30% of the overall leak rate. 1 ref., 5 figs., 1 tab

  1. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  2. Advanced methods comparisons of reaction rates in the Purdue Fast Breeder Blanket Facility

    International Nuclear Information System (INIS)

    Hill, R.N.; Ott, K.O.

    1988-01-01

    A review of worldwide results revealed that reaction rates in the blanket region are generally underpredicted with the discrepancy increasing with penetration; however, these results vary widely. Experiments in the large uniform Purdue Fast Breeder Blanket Facility (FBBF) blanket yield an accurate quantification of this discrepancy. Using standard production code methods (diffusion theory with 50 group cross sections), a consistent Calculated/Experimental (C/E) drop-off was observed for various reaction rates. A 50% increase in the calculated results at the outer edge of the blanket is necessary for agreement with experiments. The usefulness of refined group constant generation utilizing specialized weighting spectra and transport theory methods in correcting this discrepancy was analyzed. Refined group constants reduce the discrepancy to half that observed using the standard method. The surprising result was that transport methods had no effect on the blanket deviations; thus, transport theory considerations do not constitute or even contribute to an explanation of the blanket discrepancies. The residual blanket C/E drop-off (about half the standard drop-off) using advanced methods must be caused by some approximations which are applied in all current methods. 27 refs., 3 figs., 1 tab

  3. ATF [Advanced Toroidal Facility] edge plasma turbulence studies using a fast reciprocating Langmuir probe

    International Nuclear Information System (INIS)

    Uckan, T.; Hidalgo, C.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Dyer, G.R.; Mioduszewski, P.K.; Wilgen, J.B.; Ritz, C.P.; Wootton, A.J.; Rhodes, T.L.; Carter, K.

    1990-01-01

    Electrostatic turbulence on the edge of the Advanced Torodial Facility (ATF) torsatron is investigated experimentally with a fast reciprocating Langmuir probe (FRLP) array. Initial measurements of plasma electron density n e and temperature T e and fluctuations in density (n e ) and plasma floating potential (φ f ) are made in ECH plasmas at 1 T. At the last closed flux surface (LCFS, r/bar a ∼1), T e ∼ 20--40 eV and n e ∼ 10 12 cm -3 for a line-averaged electron density bar n e = (3--6) x 10 12 cm -3 . Relative fluctuation levels, as the FRLP is moved into core plasma where T e > 20 eV, are n e /n e ∼ 5%, and e φ f /T e ∼ 2n e /n e about 2 cm inside the LCFS. The observed fluctuation spectra are broadband (40--300 kHz) with bar kρ s ≤ 0.1, where bar k is the wavenumber of the fluctuations and ρ s is the ion Larmor radius at the sound speed. The propagation direction of the fluctuations reverses to the electron diamagnetic direction around r/bar a ph ∼ v de ). The fluctuation-induced particle flux is comparable to fluxes estimated from the particle balance using the H α spectroscopic measurements. Many of the features seen in these experiments resemble the features of ohmically heated plasmas in the Texas Experimental Tokamak (TEXT). 17 refs., 10 figs

  4. Lambdastation: a forwarding and admission control service to interface production network facilities with advanced research network paths

    Energy Technology Data Exchange (ETDEWEB)

    DeMar, Philip; Petravick, Don; /Fermilab

    2004-12-01

    Over the past several years, there has been a great deal of research effort and funding put into the deployment of optical-based, advanced technology wide-area networks. Fermilab and CalTech have initiated a project to enable our production network facilities to exploit these advanced research network facilities. Our objective is to forward designated data transfers across these advanced wide area networks on a per-flow basis, making use our capacious production-use storage systems connected to the local campus network. To accomplish this, we intend to develop a dynamically provisioned forwarding service that would provide alternate path forwarding onto available wide area advanced research networks. The service would dynamically reconfigure forwarding of specific flows within our local production-use network facilities, as well as provide an interface to enable applications to utilize the service. We call this service LambdaStation. If one envisions wide area optical network paths as high bandwidth data railways, then LambdaStation would functionally be the railroad terminal that regulates which flows at the local site get directed onto the high bandwidth data railways. LambdaStation is a DOE-funded SciDac research project in its very early stage of development.

  5. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Renae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  6. Nuclear facilities maintenance in the core of management-advanced trend in IBM Maximo asset management applications

    International Nuclear Information System (INIS)

    Seino, Satoshi; Ujihara, Satoshi; Kikuyama, Kaoru

    2009-01-01

    European and US plant owners have attached importance to plant maintenance, such as prompt grasp of plant states, implementation of maintenance and planning of maintenance programs, as one of asset management. The US advanced trend was introduced in this feature article through the applications of IBM Maximo Asset Management for nuclear facilities maintenance. World trends of nuclear power and related problems, need of nuclear facilities management, key items for introduction of maintenance management systems, required systems for nuclear maintenance management and introduction of functions of the IBM strategic asset management solution-Maximo were described respectively. (T. Tanaka)

  7. Automated alignment of the Advanced Radiographic Capability (ARC) target area at the National Ignition Facility

    Science.gov (United States)

    Roberts, Randy S.; Awwal, Abdul A. S.; Bliss, Erlan S.; Heebner, John E.; Leach, Richard R.; Orth, Charles D.; Rushford, Michael C.; Lowe-Webb, Roger R.; Wilhelmsen, Karl C.

    2015-09-01

    The Advanced Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a petawatt-class, short-pulse laser system designed to provide x-ray backlighting of NIF targets. ARC uses four NIF beamlines to produce eight beamlets to create a sequence of eight images of an imploding fuel capsule using backlighting targets and diagnostic instrumentation. ARC employs a front end that produces two pulses, chirps the pulses out to 2 ns, and then injects the pulses into the two halves of each of four NIF beamlines. These pulses are amplified by NIF pre- and main amplifiers and transported to compressor vessels located in the NIF target area. The pulses are then compressed and pointed into the NIF target chamber where they impinge upon an array of backlighters. The interaction of the ARC laser pulses and the backlighting material produces bursts of high-energy x-rays that illuminate an imploding fuel capsule. The transmitted x-rays are imaged by diagnostic instrumentation to produce a sequence of radiograph images. A key component of the success of ARC is the automatic alignment system that accomplishes the precise alignment of the beamlets to avoid damaging equipment and to ensure that the beamlets are directed onto the tens-of-microns scale backlighters. In this paper, we describe the ARC automatic alignment system, with emphasis on control loops used to align the beampaths. We also provide a detailed discussion of the alignment image processing, because it plays a critical role in providing beam centering and pointing information for the control loops.

  8. Safeguardability assessment on pilot-scale advanced spent fuel conditioning facility

    International Nuclear Information System (INIS)

    Lee, S.Y.; Li, T.K.; Pickett, S.E.; Miller, M.C.; Ko, W.I.; Kim, H.D.

    2006-01-01

    Full text: In South Korea, approximately 6,000 metric tons of spent nuclear fuel from commercial reactor operation has been accumulated with the expectation of more than 30,000 metric tons, three times the present storage capacity, by the end of 2040. To resolve these challenges in spent fuel management, the Korea Atomic Energy Research Institute (KAERI) has been developing a dry reprocessing technology called Advanced Spent Fuel Conditioning Process (ACP). This is an electrometallurgical treatment technique to convert oxide-type spent fuel into a metallic form, and the electrolytic reduction (ER) technology developed recently is known as a more efficient concept for spent fuel conditioning. The goal of the ACP study is to recover more than 99% of the actinide elements into a metallic form with minimizing the volume and heat load of spent fuel. The significant reduction of the volume and heat load of spent fuel is expected to lighten the burden of final disposal in terms of disposal size, safety, and economics. In the framework of R and D collaboration for the ACP safeguards, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and KAERI. The purpose of this study is to address the safeguardability of the ACP technology, through analysis of material flow and development of a proper safeguards system that meet IAEA's comprehensive safeguards objective. The sub-processes and material flow of the pilot-scale ACP facility were analyzed, and subsequently the relevant material balance area (MBA) and key measurement point (KMP) were designed for material accounting. The uncertainties in material accounting were also estimated with international target values, and design requirements for the material accounting systems were derived

  9. Thermal and electrical joint test for the helical field coils in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Brown, R.L.; Johnson, R.L.

    1985-01-01

    Initial feasibility studies of a number of configurations for the Advanced Toroidal Facility (ATF) resulted in the selection of a resistive copper continuous-coil torsatron as the optimum device considering the physics program, cost, and schedule. Further conceptual design work was directed toward optimization of this configuration and, if possible, a shorter schedule. It soon became obvious that in order to shorten the schedule, a number of design and fabrication activities should proceed in parallel. This was most critical for the vacuum vessel and the helical field (HF) coils. If the HF coils were wound in place on a completed vacuum vessel, the overall schedule would be significantly (greater than or equal to12 months) longer. The approach of parallel scheduel paths requires that the HF coils be segmented into parts of less than or equal to180 0 of poloidal angle and that joints be made on a turn-by-turn basis when the segments are installed. It was obvious from the outset that the compact and complex geometry of the joint design presented a special challenge in the areas of reliability, assembly, maintenance, disassembly, and cost. Also, electrical, thermal, and force excursions are significant for these joints. A number of soldered, welded, brazed, electroplated, and bolted joints were evaluated. The evaluations examined fabrication feasibility and complexity, thermal-electrical performance at approximately two-thirds of the steady-state design conditions, and installation and assembly processes. Results of the thermal-electrical tests were analyzed and extrapolated to predict performance at peak design parameters. The final selection was a lap-type joint clamped with insulated bolts that pass through the winding packing. 3 refs., 4 figs

  10. Materials for advanced reactor facilities: development and application. Materials of School-Conference for young scientists and specialists

    International Nuclear Information System (INIS)

    2012-01-01

    In the collection of works there are the texts, summaries and presentations of lectures delivered by the leading specialists of the branch as well as the abstracts of the students of school-conference for young scientists and specialists Materials for advanced reactor facilities: development and application, which took place on October, 29 - November, 2, 2012 in Zvenigorod. In the materials presented different aspects of development and application of materials of reactor cores and vessels of advanced reactors, computerized simulation of properties of radiation-resistant materials and simulation investigations of material radiation hardness are considered [ru

  11. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Condie, K.G.; Wilkins, S. Curtis

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation's energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  12. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    International Nuclear Information System (INIS)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron

  13. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  14. Proposal to DOE Basic Energy Sciences Ultrafast X-ray science facility at the Advanced Light Source

    CERN Document Server

    Schönlein, R W; Alivisatos, A P; Belkacem, A; Berrah, N; Bozek, J; Bressler, C; Cavalleri, A; Chang, Z; Chergui, M; Falcone, R W; Glover, T E; Heimann, P A; Hepburn, J; Larsson, J; Lee, R W; McCusker, J; Padmore, H A; Pattison, P; Pratt, S T; Robin, D W; Schlüter, Ross D; Shank, C V; Wark, J; Zholents, A A; Zolotorev, M S

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  15. Initial characterization of the ATR [Advanced Test Reactor] Large Gamma Facility

    International Nuclear Information System (INIS)

    Schnitzler, B.G.; Rogers, J.W.

    1986-05-01

    Radiation fields in the ATR Large Gamma Facility test volume are characterized. The preliminary characterization efforts described in this report include total dose rate measurements in the facility, development of a simple methodology for calculating radiation fields from the ATR fuel element power histories, and a comparison of the measured and calculated values

  16. Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System

    International Nuclear Information System (INIS)

    Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi

    2008-01-01

    CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation

  17. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  18. Impact of receipt of coprocessed uranium/plutonium on advanced accountability concepts and fabrication facilities. Addendum 1 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Randall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to assess the effect of coprocessed UO 2 --PuO 2 feed on the observations made in the original Phase I effort and on the proposed Phase II program. The retention of plutonium mixed with uranium throughout the process was also considered. This addendum reports that coprocessed feed would have minimal effect on the DYMAC program, except in the areas of material specifications, starting material delivery schedule, and labor requirements. Each of these areas is addressed, as are the impact of coprocessed feed at a large fuel fabrication facility and the changes needed in the dirty scrap recovery process to maintain the lower plutonium levels which may be required by future nonproliferation philosophy. An amended schedule for Phase II is included

  19. Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities.

    Science.gov (United States)

    Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G

    2017-10-15

    The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  1. Proposal for an Accelerator R&D User Facility at Fermilab's Advanced Superconducting Test Accelerator (ASTA)

    Energy Technology Data Exchange (ETDEWEB)

    Church, M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Edwards, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Harms, E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Henderson, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holmes, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Kephart, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Levedev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Leibfritz, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Nagaitsev, S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Piot, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States); Prokop, C. [Northern Illinois Univ., DeKalb, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sun, Y. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Valishev, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-10-01

    Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support the accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP

  2. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (first of two) included papers on architecture, beam diagnostics, compressors, and linacs. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended

  3. Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1990-04-01

    The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended

  4. Upgrade of MHD data acquisition system from ISX-B [Impurity Study Experiment] to ATF [Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Bell, J.D.; Pare, V.L.

    1987-01-01

    The data acquisition system assembled to study magnetohydrodynamic (MHD) activity on the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) is being revised for use on the Advanced Toroidal Facility (ATF). The new hardware and software architectures are based on ISX-B experience and will feature different modes of operation for storing various subsets of available data, a user interface that requires less routine activity than the earlier system, and continued support of calibration and testing measurement used on ISX-B. The new hardware organization and software components are described in detail. 2 refs., 5 figs., 1 tab

  5. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  6. Experimental research subject and renovation of chemical processing facility (CPF) for advanced fast reactor fuel reprocessing technology development

    International Nuclear Information System (INIS)

    Koyama, Tomozo; Shinozaki, Tadahiro; Nomura, Kazunori; Koma, Yoshikazu; Miyachi, Shigehiko; Ichige, Yoshiaki; Kobayashi, Tsuguyuki; Nemoto, Shin-ichi

    2002-01-01

    In order to enhance economical efficiency, environmental impact and nuclear nonproliferation resistance, the Advanced Reprocessing Technology, such as simplification and optimization of process, and applicability evaluation of the innovative technology that was not adopted up to now, has been developed for the reprocessing of the irradiated fuel taken out from a fast reactor. Renovation of the hot cell interior equipments, establishment and updating of glove boxes, installation of various analytical equipments, etc. in the Chemical Processing Facility (CPF) was done to utilize the CPF more positivity which is the center of the experimental field, where actual fuel can be used, for research and development towards establishment of the Advanced Reprocessing Technology development. The hot trials using the irradiated fuel pins of the experimental fast reactor 'JOYO' for studies on improved aqueous reprocessing technology, MA separation technology, dry process technology, etc. are scheduled to be carried out with these new equipments. (author)

  7. Design concepts and advanced manipulator development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Feldman, M.J.

    1985-01-01

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. The application of advanced manipulation is viewed as an essential part of a series of design directions whose sum describes a somewhat unique blend of old and new technology. A design direction based upon the Teletec concept is explained and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems is feasible through advanced technology. 14 refs., 14 figs

  8. Setting up and running an advanced light microscopy and imaging facility.

    Science.gov (United States)

    Sánchez, Carlos; Muñoz, Ma Ángeles; Villalba, Maite; Labrador, Verónica; Díez-Guerra, F Javier

    2011-07-01

    During the last twenty years, interest in light microscopy and imaging techniques has grown in various fields, such as molecular and cellular biology, developmental biology, and neurobiology. In addition, the number of scientific articles and journals using these techniques is rapidly increasing. Nowadays, most research institutions require sophisticated microscopy systems to cover their investigation demands. In general, such instruments are too expensive and complex to be purchased and managed by a single laboratory or research group, so they have to be shared with other groups and supervised by specialized personnel. This is the reason why microscopy and imaging facilities are becoming so important at research institutions nowadays. In this unit, we have gathered and presented a number of issues and considerations from our own experience that we hope will be helpful when planning or setting up a new facility.

  9. Potential applications of fusion neutral beam facilities for advanced material processing

    International Nuclear Information System (INIS)

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m 2 . Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces

  10. Advanced Education Facilities for Power Electronics and Renewable Energy Systems at Aalborg University

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Lungeanu, Marian; Blaabjerg, Frede

    2005-01-01

    A new approach for the project- and problem-based learning method is achieved at Aalborg University. Two new laboratories called Flexible Drives System Laboratory (FDSL) and Green Power Laboratory (GPL) have been developed. A common feature is that these facilities are using entirely Simulink for...... for programming, a very user-friendly block-oriented tool for designing control and different setups have been realized for practical implementation. Both the hardware and the course content is described in this paper....

  11. Advances in inertial confinement fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2010-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory-temperatures over 100 million K, densities of 1000 g/cm 3 , and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  12. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Moses, E.

    2009-01-01

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  13. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    Science.gov (United States)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  14. The application of advanced remote systems technology to future waste handling facilities: Waste Systems Data and Development Program

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two FWMS major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment. 5 refs., 7 figs

  15. Development of inherent technologies for advanced PWR core - A study on the current status and the construction feasibility of critical facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Won Sik; Yang, Hyun Seok [Chosun University, Kwangju (Korea); Kim, Chang Hyo; Shim, Hyung Jin [Seoul National University, Seoul (Korea)

    1999-03-01

    The objective of this study is to examine the appropriateness of constructing critical facilities in our country and to decide a course of constructing them if necessary by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. We investigated the status and the utilization of foreign critical facilities through literature survey and personal visitation. In our judgement, critical facilities are necessary for developing the advanced reactors and fuels which are being studied as parts of the Nuclear R and D Program by MOST. Considering the construction cost and the current state of domestic economy, however, it is unjustifiable to build three different types of critical facilities (the light water, the heavy water, and the fast critical facility). It appears to be reasonable to build a light water critical, considering the construction cost, degree of utilization, and other constraints. (author). 89 refs., 134 figs., 64 tabs.

  16. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    International Nuclear Information System (INIS)

    Amann, J.; Bane, K.

    2009-01-01

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  17. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  18. Advanced Motor Control Test Facility for NASA GRC Flywheel Energy Storage System Technology Development Unit

    Science.gov (United States)

    Kenny, Barbara H.; Kascak, Peter E.; Hofmann, Heath; Mackin, Michael; Santiago, Walter; Jansen, Ralph

    2001-01-01

    This paper describes the flywheel test facility developed at the NASA Glenn Research Center with particular emphasis on the motor drive components and control. A four-pole permanent magnet synchronous machine, suspended on magnetic bearings, is controlled with a field orientation algorithm. A discussion of the estimation of the rotor position and speed from a "once around signal" is given. The elimination of small dc currents by using a concurrent stationary frame current regulator is discussed and demonstrated. Initial experimental results are presented showing the successful operation and control of the unit at speeds up to 20,000 rpm.

  19. Design of an Experimental Facility for Passive Heat Removal in Advanced Nuclear Reactors

    Science.gov (United States)

    Bersano, Andrea

    With reference to innovative heat exchangers to be used in passive safety system of Gen- eration IV nuclear reactors and Small Modular Reactors it is necessary to study the natural circulation and the efficiency of heat removal systems. Especially in safety systems, as the decay heat removal system of many reactors, it is increasing the use of passive components in order to improve their availability and reliability during possible accidental scenarios, reducing the need of human intervention. Many of these systems are based on natural circulation, so they require an intense analysis due to the possible instability of the related phenomena. The aim of this thesis work is to build a scaled facility which can reproduce, in a simplified way, the decay heat removal system (DHR2) of the lead-cooled fast reactor ALFRED and, in particular, the bayonet heat exchanger, which transfers heat from lead to water. Given the thermal power to be removed, the natural circulation flow rate and the pressure drops will be studied both experimentally and numerically using the code RELAP5 3D. The first phase of preliminary analysis and project includes: the calculations to design the heat source and heat sink, the choice of materials and components and CAD drawings of the facility. After that, the numerical study is performed using the thermal-hydraulic code RELAP5 3D in order to simulate the behavior of the system. The purpose is to run pretest simulations of the facility to optimize the dimensioning setting the operative parameters (temperature, pressure, etc.) and to chose the most adequate measurement devices. The model of the system is continually developed to better simulate the system studied. High attention is dedicated to the control logic of the system to obtain acceptable results. The initial experimental tests phase consists in cold zero power tests of the facility in order to characterize and to calibrate the pressure drops. In future works the experimental results will be

  20. Cladding tube materials for advanced nuclear facilities with closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, I. [Slovenska technicka univerzita v Bratislave, Fakulta elektrotechniky a informatiky, Ustav jadroveho a fyzikalneho inzinierstva, 81219 Bratislava (Slovakia)

    2013-04-16

    The paper is aimed on perspective materials for fuel cladding in advanced nuclear reactors. Samples of Eurofer and ODS Eurofer were studied by various techniques such as Positron Annihilation Lifetime Spectroscopy, Vickers Hardness and Coincidence Doppler Broadening. After studying the samples by these methods, we implanted them by Helium atoms to simulate irradiation damage. Samples were then remeasured by Positron Annihilation Lifetime Spectroscopy to determine the affect of implantation on its behavior. (authors)

  1. Radiogenic lead from poly-metallic thorium ores as a valuable material for advanced nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, Gennady G.; Apse, Vladimir A.; Kulikov, Evgeny G.; Kozhahmet, Bauyrzhan K.; Shkodin, Alexey O.; Shmelev, Anatoly N.

    2017-03-15

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors and accelerator-driven systems (ADS). The following results were obtained: 1. Radiogenic lead with high content of isotope {sup 208}Pb can be extracted from thorium or mixed thorium-uranium ores because {sup 208}Pb is a final product of {sup 232}Th natural decay chain. 2. The use of radiogenic lead with high {sup 208}Pb content in advanced fast reactors and ADS makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high {sup 208}Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high {sup 208}Pb content in advanced fast reactors as a neutron reflector opens a possibility for substantial elongation of prompt neutron lifetime. As a result, chain fission reaction in the reactor core could be slowed down, and the reactor operation could become safer. 5. The use of radiogenic lead with high {sup 208}Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket. Thus, favorable conditions could be formed in the ADS blanket for effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  2. The importance of simulation facilities for the development of review criteria for advanced human system interfaces

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Wachtel, J.

    1994-01-01

    Advanced control room (ACR) concepts are being developed in the commercial nuclear industry as part of future reactor designs. The ACRs will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role (function) in the system, the method of information presentation, the ways in which the operator interacts with the system, and the requirements on the operator to understand and supervise an increasingly complex system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The NRC is developing guidelines to support their review of these advanced designs. As part of this effort, a methodology for guidance development was established, and topics in need of further research were identified. Simulators of various kinds are likely to play important roles in the development of review guidelines and in the evaluation of ACRs. This paper describes a general approach to review criteria development, and discusses the role of simulators in addressing research needs

  3. A management scheme for reducing pollution at air discharge facility in advance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Sung Yong; Lee, Shin Chul [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The developed countries are implementing a policy minimizing damage from environmental pollution by reducing discharge in advance as well as the aftermath of a pollutant. The typical example is to use BAT (Best Available Technology). This is to prevent environmental damage by reducing the discharge of pollutants with available technology and to secure environmental margin to enable industrial activities of future generation. Therefore, the feasibility of introducing BAT requirement system was reviewed by considering foreign examples and Korean situation. 38 refs., 8 figs., 69 tabs.

  4. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube

  5. The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

  6. Advances in technology for the construction of deep-underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  7. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1989-01-01

    The Advanced Light Source (ALS), now under construction at the Lawrence Berkeley Laboratory, is being planned as a national user facility for the production of high-brightness and partially coherent x-ray and ultraviolet synchrotron radiation. The ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in 11 long straight sections and up to 48 bend-magnet ports. High-brightness photon beams, from less than 10 eV to more than 1 keV, will be produced by undulators, thereby providing many research opportunities in materials and surface science, biology, atomic physics and chemistry. Wigglers and bend magnets will provide high-flux, broad-band radiation at energies to 10 keV. 6 refs., 10 figs., 2 tabs

  8. Induction skull melting facility: an advanced system for electromagnetic processing of metals and alloys

    International Nuclear Information System (INIS)

    Sugilal, G.; Agarwal, K.

    2017-01-01

    Induction Skull Melting (ISM) is an advanced technology for processing highly refractory and extremely reactive metals and their alloys to produce ultra-high purity products. In ISM, the metallic charge is melted in a water-cooled, copper crucible. The crucible is segmented so that the magnetic field can penetrate into the metallic charge to be melted. By virtue of the strong electromagnetic stirring, the ISM technology can also be used to homogenize alloys of metals, which are difficult to be combined uniformly in composition due to large difference in specific gravity. In view of various important applications in frontier areas of material research, development and production, Bhabha Atomic Research Centre developed the ISM technology indigenously

  9. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Dae, Dongsun [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Whitehouse, Andrew I. [Applied Photonics Ltd., Unit 8 Carleton Business Park, Skipton, North Yorkshire BD23 2DE (United Kingdom)

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  10. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-01-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  11. The Budapest research reactor as an advanced research facility for the early 21st century

    International Nuclear Information System (INIS)

    Vidovszky, I.

    2001-01-01

    The Budapest Research Reactor, Hungary's first nuclear facility was originally put into operation in 1959. The reactor serves for: basic and applied research, technological and commercial applications, education and training. The main goal of the reactor is to serve neutron research. This unique research possibility is used by a broad user community of Europe. Eight instruments for neutron scattering, radiography and activation analyses are already used, others (e.g. time of flight spectrometer, neutron reflectometer) are being installed. The majority of these instruments will get a much improved utilization when the cold neutron source is put into operation. In 1999 the Budapest Research Reactor was operated for 3129 full power hours in 14 periods. The normal operation period took 234 hours (starting Monday noon and finishing Thursday morning). The entire production for the year 1999 was 1302 MW days. This is a slightly reduced value, due to the installation of the cold neutron source. For the year 2000 a somewhat longer operation is foreseen (near to 4000 hours), as the cold neutron source will be operational. The operation of the reactor is foreseen at least up to the end of the first decade of the 21 st century. (author)

  12. An application of oscillation-damped motion for suspended payloads to the advanced integrated maintenance system in fuel cycle facilities

    International Nuclear Information System (INIS)

    Noakes, M.W.; Petterson, B.J.; Werner, J.C.

    1990-01-01

    The transportation of objects using overhead cranes can induce pendular motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories has shown that oscillation-damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. Initial studies have been completed using a CIMCORP XR6100 gantry robot. The Advanced Integrated Maintenance System (AIMS) is an engineering and operations test bed developed for remote maintenance and handling studies within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory. The goal of CFRP has been to advanced the technology of in-cell systems planned for future nuclear fuel cycle facilities. The AIMS provides the capabilities to examine the needs and constraints necessary for hot-cell remote maintenance and includes a force-reflecting master/slave teleoperator and overhead transporter system. The associated control system provides a flexible programming environment conducive to controls experimentation. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific implementation of the oscillation damping methods for the AIMS transporter. Hardware and software requirements and constraints for proper operation are discussed

  13. Relevance of passive safety testing at the fast flux test facility to advanced liquid metal reactors - 5127

    International Nuclear Information System (INIS)

    Wootan, D.W.; Omberg, R.P.

    2015-01-01

    Significant cost and safety improvements can be realized in advanced liquid metal reactor (LMR) designs by emphasizing inherent or passive safety through crediting the beneficial reactivity feedbacks associated with core and structural movement. This passive safety approach was adopted for the Fast Flux Test Facility (FFTF), and an experimental program was conducted to characterize the structural reactivity feedback. Testing at the Rapsodie and EBR-II reactors had demonstrated the beneficial effect of reactivity feedback caused by changes in fuel temperature and core geometry mechanisms in a liquid metal fast reactor in a holistic sense. The FFTF passive safety testing program was developed to examine how specific design elements influenced dynamic reactivity feedback in response to a reactivity input and to demonstrate the scalability of reactivity feedback results from smaller cores like Rapsodie and EBR-II to reactor cores that were more prototypic in scale to reactors of current interest. The U.S. Department of Energy, Office of Nuclear Energy Advanced Reactor Technology program is in the process of preserving, protecting, securing, and placing in electronic format information and data from the FFTF, including the core configurations and data collected during the passive safety tests. Evaluation of these actual test data could provide insight to improve analytical methods which may be used to support future licensing applications for LMRs. (authors)

  14. A human factors evaluation of advanced control facilities in Korea Next Generation Reactor

    International Nuclear Information System (INIS)

    Byun, Seong Nam; Lee, Dong Hoon; Chung, Sung Hak; Kim, Dong Nam; Hwang, Sang Ho

    2001-07-01

    The objectives of this study are as follows: to evaluate the impacts of advanced MMIs on operator performance; to identify new types of human errors; to present Human Factors Engineering (HFE) issues to support the safety reviews performed by the Korea Institute for Nuclear Safety. General trends in the performance measures of cognitive task demand, mental workload, and situation awareness were analyzed. The results showed that the conventional plant was superior to KNGR on the operator performance. The results of the questionnaire revealed that WDS was the most frequently used MMI resource, followed by CPS, LDP, SC, and AS. The evaluation of operator's satisfaction showed that WDS was the most satisfactory resource, followed by LDP, SC, CPS', and AS, AS was rated as the most worst resource due to inappropriate functional organization and lack of operator's visibility. Stepwise regression analyses showed that human errors of SRO and RO were mainly dominated by the cognitive behavior of 'interpretation' with WDS, while the cognitive behavior of TO was mainly dominated by 'observation' with WDS and AS. The ten HFE issues for the KNGR MCR were presented to address important design deficiencies identified in this study. The issues should be resolved to improve safety of KNGR at least up to the level of the conventional NPPs. Verification and validation activities after implementing those resolutions should be also performed to reach optimal plant safety and other operational goals

  15. A human factors evaluation of advanced control facilities in Korea Next Generation Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Seong Nam; Lee, Dong Hoon; Chung, Sung Hak; Kim, Dong Nam; Hwang, Sang Ho [Kyunghee Univ., Seoul (Korea, Republic of)

    2001-07-15

    The objectives of this study are as follows: to evaluate the impacts of advanced MMIs on operator performance; to identify new types of human errors; to present Human Factors Engineering (HFE) issues to support the safety reviews performed by the Korea Institute for Nuclear Safety. General trends in the performance measures of cognitive task demand, mental workload, and situation awareness were analyzed. The results showed that the conventional plant was superior to KNGR on the operator performance. The results of the questionnaire revealed that WDS was the most frequently used MMI resource, followed by CPS, LDP, SC, and AS. The evaluation of operator's satisfaction showed that WDS was the most satisfactory resource, followed by LDP, SC, CPS', and AS, AS was rated as the most worst resource due to inappropriate functional organization and lack of operator's visibility. Stepwise regression analyses showed that human errors of SRO and RO were mainly dominated by the cognitive behavior of 'interpretation' with WDS, while the cognitive behavior of TO was mainly dominated by 'observation' with WDS and AS. The ten HFE issues for the KNGR MCR were presented to address important design deficiencies identified in this study. The issues should be resolved to improve safety of KNGR at least up to the level of the conventional NPPs. Verification and validation activities after implementing those resolutions should be also performed to reach optimal plant safety and other operational goals.

  16. Approach to the open advanced facilities initiative for innovation (strategic use by industry) at the University of Tsukuba, Tandem Accelerator Complex

    International Nuclear Information System (INIS)

    Sasa, K.; Tagishi, Y.; Naramoto, H.; Kudo, H.; Kita, E.

    2010-01-01

    The University of Tsukuba, Tandem Accelerator Complex (UTTAC) possesses the 12UD Pelletron tandem accelerator and the 1 MV Tandetron accelerator for University's inter-department education research. We have actively advanced collaborative researches with other research institutes and industrial users. Since the Open Advanced Facilities Initiative for Innovation by the Ministry of Education, Culture, Sports, Science and Technology started in 2007, 12 industrial experiments have been carried out at the UTTAC. This report describes efforts by University's accelerator facility to get industrial users. (author)

  17. Advanced nutrient root feeding system for conveyer-type cylindrical plant growth facilities developed for microgravity

    Science.gov (United States)

    Berkovich, Yuliy A.; Smolyanina, Svetlana O.; Krivobok, Anna; Krivobok, Nikolay

    A new brand of cylindrical conveyer-type space plant growth facilities (PGF) has been created to improve of cosmonauts’ diet in the microgravity conditions. Up to date several ground prototypes of the space PGF have been made and tested: “Phytocycle”, “Vitacycle”, “Phytocycle-LED”, “Phytoconveyer”; now the space PGF “Vitacycle-T” for the Russian segment of the ISS is under developing. In the PGFs the ion-exchange salt-saturated fibrous artificial soil (AS) is used as a root medium. We have proposed the system for enrichment of irrigation water by nutrients to decrease of the AS store required for PGF working during the long space mission. The system includes root modules filled in fibrous ion-exchange AS, the enrichment column with crumble salt-saturation ion-exchange resin and the cassette with slow releasing fertilizer (SRF). Both substrates (ion-exchange resin and SRF) are necessary because of the SRF contains mostly N, P and K but another three essential elements S, Ca, Mg are provided by the ion-exchange resin. In the system water goes throw the enrichment column with ion-exchange resin fertilizing by the nutrients and comes into the mixer cell fertilize equipped with the electrical conductivity sensor. When the signal of the conductivity sensor is coming to the controller it turns on the pump directed the water flow throw the cassette with SRF until the electric conductivity of the solution in the mixer cell will reach the setpoint. The nutrient root feeding system was tested during 88 days when Chinese cabbage grew in PGF “Phytocycle-LED”. The crop has been continuously illuminated by red and blue LEDs in the PPF ratio 7 to 1; an integral PPF level has been (240 ± 10) µmol/(m2×s). There was no renewal of the used fibrous AS during the experiment. The PGF total electric power consumption was of 0,45 kW. The average fresh biomass productivity of the PGF during steady state working mode was equal 135×g/day per m2 of the illuminated

  18. Reflectometer end station for synchrotron calibrations of Advanced X-ray Astrophysics Facility flight optics and for spectrometric research applications

    International Nuclear Information System (INIS)

    Graessle, D.E.; Fitch, J.J.; Ingram, R.; Zhang Juda, J.; Blake, R.L.

    1995-01-01

    Preparations have been underway to construct and test a facility for grazing incidence reflectance calibrations of flat mirrors at the National Synchrotron Light Source. The purpose is to conduct calibrations on witness flats to the coating process of the flight mirrors for NASA's Advanced X-ray Astrophysics Facility (AXAF). The x-ray energy range required is 50 eV--12 keV. Three monochromatic beamlines (X8C, X8A, U3A) will provide energy tunability over this entire range. The goal is to calibrate the AXAF flight mirrors with uncertainties approaching 1%. A portable end station with a precision-positioning reflectometer has been developed for this work. We have resolved the vacuum cleanliness requirements to preserve the coating integrity of the flats with the strict grazing-angle certainty requirements placed on the rotational control system of the reflectometer. A precision positioning table permits alignment of the system to the synchrotron beam to within 10 arcsec; the reflectometer's rotational control system can then produce grazing angle accuracy to within less than 2 arcsec, provided that the electron orbit is stable. At 10--12 keV, this degree of angular accuracy is necessary to achieve the calibration accuracy required for AXAF. However the most important energy regions for the synchrotron calibration are in the 2000--3200 eV range, where the M-edge absorption features of the coating element, iridium, appear, and the 300--700 eV range of the Ir N edges. The detail versus energy exhibited in these features cannot be traced adequately without a tunable energy source, which necessitates a synchrotron for this work. We present the mechanical designs, motion control systems, detection and measurement capabilities, and selected procedures for our measurements, as well as reflectance data

  19. CSNI collective statement on support facilities for existing and advanced reactors. The function of OECD/Nea joint projects Nea committee on the safety of nuclear installations (CSNI)

    International Nuclear Information System (INIS)

    2008-01-01

    The NEA Committee on the Safety of Nuclear Installations (CSNI) has recently completed a study on the availability and utilisation of facilities supporting safety studies for current and advanced nuclear power reactors. The study showed that significant steps had been undertaken in the past several years in support of safety test facilities, mainly by conducting multinational joint projects centered on the capability of unique test facilities worldwide. Given the positive experience of the safety research projects, it has been recommended that efforts be made to prioritize technical issues associated with advanced (Generation IV) reactor designs and to develop options on how to efficiently obtain the necessary data through internationally co-ordinated research, preparing a gradual extension of safety research beyond the needs set by currently operating reactors. This statement constitutes a reference for future CSNI activities and for safety authorities, R and D centres and industry for internationally co-ordinated research initiatives in the nuclear safety research area. (author)

  20. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei

    2017-12-01

    In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.

  1. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong.

    Science.gov (United States)

    Woon, K S; Lo, Irene M C

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH4) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH4 recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Greenhouse gas accounting of the proposed landfill extension and advanced incineration facility for municipal solid waste management in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Woon, K.S.; Lo, Irene M.C., E-mail: cemclo@ust.hk

    2013-08-01

    The burgeoning of municipal solid waste (MSW) disposal issue and climate change have drawn massive attention from people. On the one hand, Hong Kong is facing a controversial debate over the implementation of proposed landfill extension (LFE) and advanced incineration facility (AIF) to curb the MSW disposal issue. On the other hand, the Hong Kong Special Administrative Region Government is taking concerted efforts to reduce the carbon intensity in this region. This paper discusses the greenhouse gas (GHG) emissions from four proposed waste disposal scenarios, covering the proposed LFE and AIF within a defined system boundary. On the basis of the data collected, assumptions made, and system boundary defined in this study, the results indicate that AIF releases less GHG emissions than LFE. The GHG emissions from LFE are highly contributed by the landfill methane (CH{sub 4}) emissions but offset by biogenic carbon storage, while the GHG emissions from AIF are mostly due to the stack discharge system but offset by the energy recovery system. Furthermore, parametric sensitivity analyses show that GHG emissions are strongly dependent on the landfill CH{sub 4} recovery rate, types of electricity displaced by energy recovery systems, and the heating value of MSW, altering the order of preferred waste disposal scenarios. This evaluation provides valuable insights into the applicability of a policy framework for MSW management practices in reducing GHG emissions. Highlights: • AIF is better than LFE with regard to GHG emissions in Hong Kong. • Major individual sub-processes of LFE and AIF for GHG emissions are investigated. • GHG emissions for LFE and AIF are strongly dependent on studied parametric sensitivity analyses. • Findings are valuable for sustainable MSW management and GHG reductions in waste sector.

  3. The US Advanced Liquid Metal Reactor and the Fast Flux Test Facility Phase IIA passive safety tests

    International Nuclear Information System (INIS)

    Shen, P.K.; Harris, R.A.; Campbell, L.R.; Dautel, W.A.; Dubberley, A.E.; Gluekler, E.L.

    1992-07-01

    This report discusses the safety approach of the Advanced Liquid Metal reactor program, sponsored by the US Department of Energy, which relies upon passive reactor responses to off-normal condition to limit power and temperature excursions to levels that allow safety margins. Gas expansion modules (GEM) have included in the design to provide negative reactivity to enhance these margins in the extremely unlikely event that pumping power is lost and the highly reliable scram system fails to operate. The feasibility and beneficial features of these devices were first demonstrated in the core of the Fast Flux Test Facility (FFTF) in 1986. Preapplication safety evaluations by the US Nuclear Regulatory Commission have identified areas that must be addressed if these devices are to be relied on. One of these areas is the response of the reactor when it is critical and the pumps are turned on, resulting in positive reactivity being added to the core. Tests to examine such transients have been performed as part of the continuing FFTF program to confirm the passive safety characteristics of liquid metal reactors (LMR). The primary tests consisted of starting the main coolant pumps, which forced sodium coolant into the GEMS, decreasing neutron leakage and adding positive reactivity. The resulting transients were shown to be benign and easily mitigated by the reactivity feedbacks inherent in the FFTF and all LMRs. Steady-state auxiliary tests of the GEM and feedback reactivity worths accurately predicted the transient results. The auxiliary GEM worth tests also demonstrated that the worth can be determined at a subcritical state, which allows for a verification of the GEM's availability prior to ascending to power

  4. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  5. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Schlachter, F.

    1990-01-01

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  6. Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    Science.gov (United States)

    Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.

  7. Development of a Code for the Long Term Radiological Safety Assessment of Radioactive Wastes from Advanced Nuclear Fuel Cycle Facilities in Republic of Korea

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2010-01-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment code based on the Goldsim has been developed. It was designed to compare the environmental impacts from many fuel cycle options such as direct disposal, wet and dry recycling. The code based on the compartment theory can be applied to assess both normal and what if scenarios

  8. Computer programs for capital cost estimation, lifetime economic performance simulation, and computation of cost indexes for laser fusion and other advanced technology facilities

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Three FORTRAN programs, CAPITAL, VENTURE, and INDEXER, have been developed to automate computations used in assessing the economic viability of proposed or conceptual laser fusion and other advanced-technology facilities, as well as conventional projects. The types of calculations performed by these programs are, respectively, capital cost estimation, lifetime economic performance simulation, and computation of cost indexes. The codes permit these three topics to be addressed with considerable sophistication commensurate with user requirements and available data

  9. Factors influencing deprescribing for residents in Advanced Care Facilities: insights from General Practitioners in Australia and Sweden.

    Science.gov (United States)

    Bolmsjö, Beata Borgström; Palagyi, Anna; Keay, Lisa; Potter, Jan; Lindley, Richard I

    2016-11-05

    General Practitioners (GPs) are responsible for primary prescribing decisions in most settings. Elderly patients living in Advanced Care Facilities (ACFs) often have significant co-morbidities to consider when selecting an appropriate drug therapy. Careful assessment is required when considering appropriate medication use in frail older patients as they have multiple diseases and thus multiple medication. Many physicians seem reluctant to discontinue other physicians' prescriptions, resulting in further polypharmacy. Therefore it is relevant to ascertain and synthesise the GP views from multiple settings to understand the processes that might promote appropriate deprescribing medications in the elderly. The aims of this study were to 1) compare and contrast behavioural factors influencing the deprescribing practices of GPs providing care for ACF residents in two separate countries, 2) review health policy and ACF systems in each setting for their potential impact on the prescribing of medications for an older person in residential care of the elderly, and 3) based on these findings, provide recommendations for future ACF deprescribing initiatives. A review and critical synthesis of qualitative data from two interview studies of knowledge, attitudes, and behavioural practices held by GPs towards medication management and deprescribing for residents of ACFs in Australia and Sweden was conducted. A review of policies and health care infrastructure was also carried out to describe the system of residential aged care in the both countries. Our study has identified that deprescribing by GPs in ACFs is a complex process and that there are numerous barriers to medication reduction for aged care residents in both countries, both with similarities and differences. The factors affecting deprescribing behaviour were identified and divided into: intentions, skills and abilities and environmental factors. In this study we show that the GPs' behaviour of deprescribing in two

  10. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I ampersand C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility

  11. Recent Advances in Antenna Measurement Techniques at the DTU-ESA Spherical Near-Field Antenna Test Facility

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Pivnenko, Sergey; Kim, Oleksiy S.

    2014-01-01

    This paper reports recent antenna measurement projects and research at the DTU-ESA Spherical Near-Field Antenna Test Facility at the Technical University of Denmark. High-accuracy measurement projects for the SMOS, SENTINEL-1, and BIOMASS missions of the European Space Agency were driven...

  12. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  13. Validation of Advanced Computer Codes for VVER Technology: LB-LOCA Transient in PSB-VVER Facility

    Directory of Open Access Journals (Sweden)

    A. Del Nevo

    2012-01-01

    Full Text Available The OECD/NEA PSB-VVER project provided unique and useful experimental data for code validation from PSB-VVER test facility. This facility represents the scaled-down layout of the Russian-designed pressurized water reactor, namely, VVER-1000. Five experiments were executed, dealing with loss of coolant scenarios (small, intermediate, and large break loss of coolant accidents, a primary-to-secondary leak, and a parametric study (natural circulation test aimed at characterizing the VVER system at reduced mass inventory conditions. The comparative analysis, presented in the paper, regards the large break loss of coolant accident experiment. Four participants from three different institutions were involved in the benchmark and applied their own models and set up for four different thermal-hydraulic system codes. The benchmark demonstrated the performances of such codes in predicting phenomena relevant for safety on the basis of fixed criteria.

  14. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  15. Evaluation of advanced driver assistance system with the VEHIL test facility: experiences and future developments at TNO automotive

    NARCIS (Netherlands)

    Kusters, L.J.J.; Gietelink, O.J.; Hoof, J.F.A.M. van; Lemmen, P.P.M.

    2004-01-01

    This paper presents the working principle, functionality and the experience during the first operational period of the VEHIL laboratory, dedicated to the development and testing of advanced driver assistance systems. The position of VEHIL and its PC based full software variant PRESCAN is illustrated

  16. High burnup performance of an advanced oxide fuel assembly in FFTF [Fast Flux Test Facility] with ferritic/martensitic materials

    International Nuclear Information System (INIS)

    Bridges, A.E.; Saito, G.H.; Lovell, A.J.; Makenas, B.J.

    1986-05-01

    An advanced oxide fuel assembly with ferritic/martensitic materials has successfully completed its sixth cycle of irradiation in the FFTF, reaching a peak pellet burnup greater than 100 MWd/KgM and a peak fast fluence greater than 15 x 10 22 n/cm 2 . The cladding, wire-wrap, and duct material for the ACO-1 test assembly is the ferritic/martensitic alloy, HT9, which was chosen for use in long-lifetime fuel assemblies because of its good nominal temperature creep strength and low swelling rate. Valuable experience on the performance of HT9 materials has been gained from this test, advancing our quest for long-lifetime fuel. Pertinent data, obtained from the ACO-1 test assembly, will support the irradiation of the Core Demonstration Experiment in FFTF

  17. Advanced accelerator test facility-Final report for the period 9/1/2010 - 8/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay [Yale Univ., New Haven, CT (United States)

    2014-10-27

    This final report summarizes results achieved in the Beam Physics Laboratory at Yale University during the period 9/1/2010 – 8/31//2013, under DoE grant DE-FG02-07 ER 41504. During the period covered by this report, notable progress in technical consolidation of facilities in the Yale Beam Physics Laboratory has occurred; and theory, design, and fabrication for future experiments have been carried out. In the period covered by this grant, 29 scientific publications based on this work and related topics have appeared in the archival literature. Titles, authors, and citations are listed in Section V of this report.

  18. Expected performance and benefits of an advanced containment and surveillance system at the fast critical facility fca of jaeri

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Kuroi, H.

    1981-01-01

    This paper reports on the development and test of a personnel portal monitor for IAEA safeguards at the fast critical facility FCA. The main components of the portal are 1) the walk-through metal detector, 2) the visual surveillance system with CCTV, 3) the tamper indication system using multi sensors and 4) the remote monitoring capability through RECOVER system. The metal detector developed can detect a single coupon of metallic nuclear fuel plate (2 in. *2 in. *1/16 in.) regardless of the orientation of a fuel plate relative to the electromagnetic field generated in the metal detector. 3 refs

  19. Application of life-cycle information for advancement in safety of nuclear fuel cycle facilities. Application of safety information to advanced safety management support system

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Ishida, Michihiko

    2005-08-01

    Risk management is major concern to nuclear energy reprocessing plants to improve plant and process reliability and ensure their safety. This is because we are required to predict potential risks before any accident or disaster occurs. The advancement of safety design and safety systems technologies showed large amount of useful safety-related knowledge that can be of great importance to plant operation to reduce operation risks and ensure safety. This research proposes safety knowledge modeling framework on the basis of ontology technologies to systematically construct plant knowledge model, which includes plant structure, operation, and the associated behaviors. In such plant knowledge model safety related information is defined and linked to the different elements of plant knowledge model. Ontology editor is employed to define the basic concepts and their inter-relations, which are used to capture and construct plant safety knowledge. In order to provide detailed safety knowledgebase, HAZOP results are analyzed and structured so that safety-related knowledge are identified and structured within the plant knowledgebase. The target safety knowledgebase includes: failures, deviations, causes, consequences, and fault propagation as mapped to plant knowledge. The proposed ontology-based safety framework is applied on case study nuclear plant to structure failures, causes, consequences, and fault propagation, which are used to support plant operation. (author)

  20. Design concepts and advanced telerobotics development for facilities in the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Feldman, M.J.

    1987-01-01

    In the Fuel Recycle Division at the Oak Ridge National Laboratory (ORNL), a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. Five areas of the development effort are primary contributors to the goal of higher operating efficiency for major facilities for the back end of the nuclear fuel cycle. These areas are (1) the single-cell concept, (2) the low-flow ventilation concept, (3) television viewing, (4) equipment-mounting racks, and (5) force-reflecting manipulation. These somewhat innovative directions are products of a design process where the technical scenario to be accomplished, the remote equipment to accomplish the scenario, and the facility design to house the equipment, are considered in an iterative design process to optimize performance, maximize long-term costs effectiveness, and minimize initial capital outlay. (author)

  1. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    Science.gov (United States)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  2. Design concepts and advanced telerobotics development for facilities in the back end of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Feldman, M.J.

    1987-01-01

    In the Fuel Recycle Division at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. Five areas of the development effort are primary contributors to the goal of higher operating efficiency for major facilities for the back end of the nuclear fuel cycle. These areas are the single-cell concept, the low-flow ventilation concept, television viewing, equipment-mounting racks, and force-reflecting manipulation. These somewhat innovative directions are products of a design process where the technical scenario to be accomplished, the remote equipment to accomplish the scenario, and the facility design to house the equipment, are considered in an iterative design process to optimize performance, maximize long-term costs effectiveness, and minimize initial capital outlay. 14 refs., 3 figs

  3. Composite Structures Manufacturing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Composite Structures Manufacturing Facility specializes in the design, analysis, fabrication and testing of advanced composite structures and materials for both...

  4. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    Science.gov (United States)

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  5. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    Science.gov (United States)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  6. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    International Nuclear Information System (INIS)

    Gann, E.; Collins, B. A.; Ade, H.; Young, A. T.; Nasiatka, J.; Padmore, H. A.; Hexemer, A.; Wang, C.; Yan, H.

    2012-01-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  7. Operation of beam line facilities for real-time x-ray studies at Sector 7 of the advanced photon source. Final Report

    International Nuclear Information System (INIS)

    Clarke, Roy

    2003-01-01

    This Final Report documents the research accomplishments achieved in the first phase of operations of a new Advanced Photon Source beam line (7-ID MHATT-CAT) dedicated to real-time x-ray studies. The period covered by this report covers the establishment of a world-class facility for time-dependent x-ray studies of materials. During this period many new and innovative research programs were initiated at Sector 7 with support of this grant, most notably using a combination of ultrafast lasers and pulsed synchrotron radiation. This work initiated a new frontier of materials research: namely, the study of the dynamics of materials under extreme conditions of high intensity impulsive laser irradiation

  8. Practice and Perceived Importance of Advance Care Planning and Difficulties in Providing Palliative Care in Geriatric Health Service Facilities in Japan: A Nationwide Survey.

    Science.gov (United States)

    Yokoya, Shoji; Kizawa, Yoshiyuki; Maeno, Takami

    2018-03-01

    The provision of end-of-life (EOL) care by geriatric health service facilities (GHSFs) in Japan is increasing. Advance care planning (ACP) is one of the most important issues to provide quality EOL care. This study aimed to clarify the practice and perceived importance of ACP and the difficulties in providing palliative care in GHSFs. A self-report questionnaire was mailed to head nurses at 3437 GHSFs nationwide. We asked participants about their practices regarding ACP, their recognition of its importance, and their difficulties in providing palliative care. We also analyzed the relationship between these factors and EOL care education. Among 844 respondents (24.5% response rate), approximately 69% to 81% of head nurses confirmed that GHSF residents and their families understood disease conditions and goals of care. There was a large discrepancy between the actual practice of ACP components and the recognition of their importance (eg, asking residents about existing advance directive [AD; 27.5% practiced it, while 79.6% considered it important]; recommending completion of an AD [18.1% vs 68.4%], and asking for designation of a health-care proxy [30.4% vs 76.8%]). The EOL care education was provided at 517 facilities (61.3%). Head nurses working at EOL care education-providing GHSFs practiced ACP significantly more frequently and had significantly fewer difficulties in providing palliative care. A large discrepancy was found between GHSF nurses' practice of ACP and their recognition of its importance. Providing EOL care education in GHSFs may increase ACP practices and enhance respect for resident's preferences concerning EOL care.

  9. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    Science.gov (United States)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  10. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2015-03-01

    © 2014 Elsevier B.V. Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  11. Experimental facility with two-phase flow and with high concentration of non-condensable gases for research and development of emergency cooling system of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2006-01-01

    The development of emergency cooling passive systems of advanced nuclear reactors requires the research of some relative processes to natural circulation, in two-phase flow conditions involving condensation processes in the presence of non-condensable gases. This work describes the main characteristics of the experimental facility called Bancada de Circulacao Natural (BCN), designed for natural circulation experiments in a system with a hot source, electric heater, a cold source, heat exchanger, operating with two-phase flow and with high concentration of noncondensable gas, air. The operational tests, the data acquisition system and the first experimental results in natural circulation are presented. The experiments are transitory in natural circulation considering power steps. The distribution of temperatures and the behavior of the flow and of the pressure are analyzed. The experimental facility, the instrumentation and the data acquisition system demonstrated to be adapted for the purposes of research of emergency cooling passive systems, operating with two-phase flow and with high concentration of noncondensable gases. (author)

  12. Special emission measurements on Riley Stoker's advanced CFB pilot facility co-firing non-recyclable de-inking paper fiber and high sulfur eastern bituminous coal

    International Nuclear Information System (INIS)

    Dixit, V.B.; Mongeon, R.K.; Reicker, E.L.

    1993-01-01

    Riley Stoker has developed advanced industrial CFB designs that utilize eastern bituminous coals as fuel, and have the potential to use coal in combination with other fuels. Various fiber waste streams in paper recycling processes have sufficient carbonaceous content to be considered as possible sources of such fuels that could fire FBC combustors. The American Paper Institute estimates that by the mid-1990's more than 40% of the waste paper will be recycled, reaching much higher numbers by the year 2000. To evaluate the effectiveness of co-firing such fuels, a test program was conducted on Riley's pilot-scale circulating fluidized bed test facility. A de-inked newsprint derived fiber waste was successfully co-fired with high sulfur coal. The waste fiber material containing approximately 50% moisture had a heating value of 3500 Btu/lb. The coal was strip-mined and contained a lot of clay and excessive quantities of fines making it difficult to burn in conventional boilers. Tests were also conducted with a combination fuel consisting of coal, fiber waste and a high carbon fly ash. In addition to obtaining performance data on combustion efficiency, sulfur capture, and NO x emissions, special emission measurements were also made to quantify the organics, trace metals and hydrochloric acid levels in the flue gas. The co-firing tests achieved a maximum combustion efficiency of 98% and sulfur capture of 90%. The effect of Ca/S mole ratio and temperature is discussed. Although there are no formal regulations in place for FBC systems regarding special emissions, the levels measured were far below the allowable limits for waste incinerators. Materials handling experience on the pilot facility relating to co-firing is also discussed. This is done to identify special considerations for designing commercial facilities. A brief overview of the de-inking waste fiber combustion market is also presented

  13. An Applied Study of Implementation of the Advanced Decommissioning Costing Methodology for Intermediate Storage Facility for Spent Fuel in Studsvik, Sweden with special emphasis to the application of the Omega code

    Energy Technology Data Exchange (ETDEWEB)

    Kristofova, Kristina; Vasko, Marek; Daniska, Vladimir; Ondra, Frantisek; Bezak, Peter [DECOM Slovakia, spol. s.r.o., J. Bottu 2, SK-917 01 Trnava (Slovakia); Lindskog, Staffan [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    2007-01-15

    The presented study is focused on an analysis of decommissioning costs for the Intermediate Storage Facility for Spent Fuel (FA) facility in Studsvik prepared by SVAFO and a proposal of the advanced decommissioning costing methodology application. Therefore, this applied study concentrates particularly in the following areas: 1. Analysis of FA facility cost estimates prepared by SVAFO including description of FA facility in Studsvik, summarised input data, applied cost estimates methodology and summarised results from SVAFO study. 2. Discussion of results of the SVAFO analysis, proposals for enhanced cost estimating methodology and upgraded structure of inputs/outputs for decommissioning study for FA facility. 3. Review of costing methodologies with the special emphasis on the advanced costing methodology and cost calculation code OMEGA. 4. Discussion on implementation of the advanced costing methodology for FA facility in Studsvik together with: - identification of areas of implementation; - analyses of local decommissioning infrastructure; - adaptation of the data for the calculation database; - inventory database; and - implementation of the style of work with the computer code OMEGA.

  14. An Applied Study of Implementation of the Advanced Decommissioning Costing Methodology for Intermediate Storage Facility for Spent Fuel in Studsvik, Sweden with special emphasis to the application of the Omega code

    International Nuclear Information System (INIS)

    Kristofova, Kristina; Vasko, Marek; Daniska, Vladimir; Ondra, Frantisek; Bezak, Peter; Lindskog, Staffan

    2007-01-01

    The presented study is focused on an analysis of decommissioning costs for the Intermediate Storage Facility for Spent Fuel (FA) facility in Studsvik prepared by SVAFO and a proposal of the advanced decommissioning costing methodology application. Therefore, this applied study concentrates particularly in the following areas: 1. Analysis of FA facility cost estimates prepared by SVAFO including description of FA facility in Studsvik, summarised input data, applied cost estimates methodology and summarised results from SVAFO study. 2. Discussion of results of the SVAFO analysis, proposals for enhanced cost estimating methodology and upgraded structure of inputs/outputs for decommissioning study for FA facility. 3. Review of costing methodologies with the special emphasis on the advanced costing methodology and cost calculation code OMEGA. 4. Discussion on implementation of the advanced costing methodology for FA facility in Studsvik together with: - identification of areas of implementation; - analyses of local decommissioning infrastructure; - adaptation of the data for the calculation database; - inventory database; and - implementation of the style of work with the computer code OMEGA

  15. An assessment of potential risk resulting from a maximum credible accident scenario at the proposed explosive waste storage facility (EWSF)

    International Nuclear Information System (INIS)

    Otsuki, K.; Harrach, R.; Berger, R.

    1992-10-01

    Lawrence Livermore National Laboratory (LLNL) proposes to build, permit, and operate a storage facility for explosive wastes at LLNL's Explosive Test Site, Site 300. The facility would consist of four existing magazines, four new magazettes (small concrete vaults), and a new prefabricated metal building. Ash from on-site treatment of explosive waste would also be stored in the prefabricated metal building prior to sampling analysis, and shipment. The magazettes would be installed at each magazine-and would provide segregated storage for explosive waste types including detonators, actuators, and other initiating devices. The proposed facility would be used to store explosive wastes generated by the Hydrotest and Explosive Development Programs at LLNL prior to treatment on-site or shipment to permitted, commercial, off-site treatment facilities. Explosive wastes to be stored in the proposed facility represent a full spectrum of Department of Energy (DOE) and LLNL explosive wastes. This document identifies and evaluates the risk to human health and the environment associated with the operation of the proposed EWSF

  16. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  18. United States Advanced Ultra-Supercritical Component Test Facility for 760°C Steam Power Plants ComTest Project

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Horst [Electric Power Research Institute (EPRI); Purgert, Robert Michael [Energy Industries of Ohio

    2017-12-13

    Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increase cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO2 emissions, compared to CO2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760

  19. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. I. Sector layout and optical design

    Energy Technology Data Exchange (ETDEWEB)

    Eng, P.; Jaski, Y.R.; Lazarz, N.; Murray, P.; Pluth, J.; Rarback, H.; Rivers, M.; Sutton, S. [CARS, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL (United States)

    1996-09-01

    The earth, soil and environmental science component (GSECARS) of the Consortium of Advanced Radiation Sources (CARS), is designing a national research facility to be built at sector 13 of the Advanced Photon Source. The bending magnet beam will be split to allow simultaneous operation of two stations, a monochromatic (8{endash}15 keV) side station and a multipurpose, white beam/monochromatic end station. The undulator beamline will have two white beam stations, which may operate simultaneously using a double-crystal monochromator (cryogenic Si) with a thin first crystal. In this mode, the upstream station will accept the monochromatized (4.5{endash}22 keV) beam deflected horizontally by a third (bendable) Ge crystal, while the end station accepts the high energy component (blue beam) transmitted by the first crystal. The need for small x-ray beams and broad spectral range have led us to base the focusing aspects of the optic design on grazing incidence mirrors. Both our bending magnet and insertion device beamlines will have long ({approximately}1 m), bendable mirrors (demagnification {lt}11, E(cut-off) {approx_gt}70 keV; beam sizes {approx_gt}tens of micrometers). For smaller focal spots, we will use small, dynamically bent Kirpatrick-Baez mirrors (demagnification 100{endash}400; E(cut-off) {lt}70 keV; beam sizes {approximately}1 micrometer). A unique aspect of our insertion device beamline is the ability to deliver focused white beam to the sample, through the incorporation of a power management pinhole in the first optics enclosure. {copyright} {ital 1996 American Institute of Physics.}

  20. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  1. Research on advancement of method for evaluating aseismatic ability of rock discontinuity plane in ground and surrounding slopes of nuclear power facilities

    International Nuclear Information System (INIS)

    Kusunose, Kinichiro; Cho, Akio; Takahashi, Manabu; Kamai, Toshitaka

    1997-01-01

    The purpose of this research is to carry out the technical development required for exploring with high accuracy the distribution and shapes of the discontinuity planes in rocks in the ground and surrounding cut-off slopes of nuclear power facilities, and to advance the techniques of interpreting and evaluating quantitatively the stability against earthquakes of the discontinuity planes. This research consists of two themes: the research on the method of investigating the three-dimensional distribution of the crevices in the ground and the research on the method of evaluating the aseismatic ability in the slopes. As for the first theme, one of the techniques for exploring underground structure with elastic waves, tomography, is explained, and the development of the 12 channel receiver and the program for the multi-channel analysis and processing of waveform are reported. As for the second theme, the stability analysis was carried out on three actual cases of landslide. The equation for stability analysis is shown, and the results are reported. The strength at the time of forming separation plane gives the most proper result. (K.I.)

  2. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  3. Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system

    Energy Technology Data Exchange (ETDEWEB)

    Dautel, W.A.

    1996-10-01

    The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

  4. Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system

    International Nuclear Information System (INIS)

    Dautel, W.A.

    1996-01-01

    The Department of Energy is currently engaged in a dual-track strategy to develop an accelerator and a commercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle'costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Department's purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work together 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay after 2005

  5. Advanced Simulation Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Simulation Center consists of 10 individual facilities which provide missile and submunition hardware-in-the-loop simulation capabilities. The following...

  6. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...

  7. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  8. Advanced Instrumentation, Information and Control (II&C) Research and Development Facility Buildout and Project Execution of LWRS II&C Pilot Projects 1 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Farris; Johanna Oxstrand; Gregory Weatherby

    2011-09-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II&C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II&C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive

  9. Advanced Instrumentation, Information and Control (II and C) Research and Development Facility Buildout and Project Execution of LWRS II and C Pilot Projects 1 and 3

    International Nuclear Information System (INIS)

    Farris, Ronald; Oxstrand, Johanna; Weatherby, Gregory

    2011-01-01

    The U.S. Department of Energy (DOE) is sponsoring research, development, and deployment on light water reactor sustainability (LWRS), in which the Idaho National Laboratory (INL) is working closely with nuclear utilities to develop technologies and solutions to help ensure the safe operational life extension of current reactors. As technologies are introduced that change the operation of the plant, the LWRS pilot projects can help identify their best-advanced uses and help demonstrate the safety of these technologies. In early testing of operator performance given these emerging technologies will ensure the safety and usability of systems prior to large-scale deployment and costly verification and validation at the plant. The aim of these collaborations, demonstrations, and approaches are intended to lessen the inertia that sustains the current status quo of today's II and C systems technology, and to motivate transformational change and a shift in strategy to a long-term approach to II and C modernization that is more sustainable. Research being conducted under Pilot Project 1 regards understanding the conditions and behaviors that can be modified, either through process improvements and/or technology deployment, to improve the overall safety and efficiency of outage control at nuclear facilities. The key component of the research in this pilot project is accessing the delivery of information that will allow researchers to simulate the control room, outage control center (OCC) information, and plant status data. The simulation also allows researchers to identify areas of opportunity where plant operating status and outage activities can be analyzed to increase overall plant efficiency. For Pilot Project 3 the desire is to demonstrate the ability of technology deployment and the subsequent impact on maximizing the 'Collective Situational Awareness' of the various stakeholders in a commercial nuclear power plant. Specifically, the desire is to show positive results

  10. Networking strategies of the microscopy community for improved utilization of advanced instruments: (1) The Australian Microscopy and Microanalysis Research Facility (AMMRF)

    International Nuclear Information System (INIS)

    Ringer, S.P.; Apperley, M.H.

    2014-01-01

    This paper describes the strategy underpinning the formation and operation of the Australian Microscopy and Microanalysis Research Facility (AMMRF). AMMRF is a formal collaboration that links eight Australian Universities together to create a user-focused national capability in microscopy and microanalysis. The AMMRF flagship capabilities include: Cameca IMS-1280 and NanoSIMS-50 ion microprobes (University of Western Australia); High-throughput, high-resolution cryoTEM (University of Queensland); Atom Probe Microscopy (University of Sydney); High-resolution Focussed Ion-Beam and SEM (Universities of Adelaide and NSW); High-resolution SEM microanalysis facility (University of New South Wales); and PHI TRIFT V nanoToF ToF-SIMS (University of South Australia). Secondly, a network of peer support and expert training has been established amongst facility professional support staff. The governance and funding of the organisation are described and the advantages and achievements of a nationally coordinated facility for microscopy and microanalysis are set out. Selected data are presented that benchmark the performance of the facility, describe the economic impact and demonstrate the impact on the quality of research outcomes as a result of operating national collaborative research infrastructure for microscopy and microanalysis

  11. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    OpenAIRE

    Hwang Bae; Dong Eok Kim; Sung-Uk Ryu; Sung-Jae Yi; Hyun-Sik Park

    2017-01-01

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are s...

  12. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  13. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  14. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  15. Power Systems Development Facility

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of the PSDF would be to provide a modular facility which would support the development of advanced, pilot-scale, coal-based power systems and hot gas clean-up components. These pilot-scale components would be designed to be large enough so that the results can be related and projected to commercial systems. The facility would use a modular approach to enhance the flexibility and capability for testing; consequently, overall capital and operating costs when compared with stand-alone facilities would be reduced by sharing resources common to different modules. The facility would identify and resolve technical barrier, as well as-provide a structure for long-term testing and performance assessment. It is also intended that the facility would evaluate the operational and performance characteristics of the advanced power systems with both bituminous and subbituminous coals. Five technology-based experimental modules are proposed for the PSDF: (1) an advanced gasifier module, (2) a fuel cell test module, (3) a PFBC module, (4) a combustion gas turbine module, and (5) a module comprised of five hot gas cleanup particulate control devices. The final module, the PCD, would capture coal-derived ash and particles from both the PFBC and advanced gasifier gas streams to provide for overall particulate emission control, as well as to protect the combustion turbine and the fuel cell

  16. Dance Facilities.

    Science.gov (United States)

    Ashton, Dudley, Ed.; Irey, Charlotte, Ed.

    This booklet represents an effort to assist teachers and administrators in the professional planning of dance facilities and equipment. Three chapters present the history of dance facilities, provide recommended dance facilities and equipment, and offer some adaptations of dance facilities and equipment, for elementary, secondary and college level…

  17. Outline of NUCEF facility

    International Nuclear Information System (INIS)

    Takeshita, Isao

    1996-01-01

    NUCEF is a multipurpose research facility in the field of safety and advanced technology of nuclear fuel cycle back-end. Various experiment facilities and its supporting installations, in which nuclear fuel materials, radio isotopes and TRU elements can be handled, are arranged in more than one hundred rooms of two experiment buildings. Its construction was completed in middle of 1994 and hot experiments have been started since then. NUCEF is located on the site (30,000 m 2 ) of southeastern part in the Tokai Research Establishment of JAERI facing to the Pacific Ocean. The base of Experiment Buildings A and B was directly founded on the rock existing at 10-15 m below ground level taking the aseismatic design into consideration. Each building is almost same sized and composed of one basement and three floors of which area is 17,500 m 2 in total. In the basement, there are exhaust facilities of ventilation system, treatment system of solution fuel and radioactive waste solution and storage tanks of them. Major experiment facilities are located on the first or the second floors in each building. An air-inlet facility of ventilation system for each building is equipped on the third floor. Most of experiment facilities for criticality safety research including two critical facilities: Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) are installed in Experiment Building A. Experiment equipments for research on advanced fuel reprocessing process and on TRU waste management, which are named BECKY (Back End Fuel Cycle Key Elements Research Facility), are installed in laboratories and a-g cells in Experiment Building B. (J.P.N.)

  18. Advanced Missile Signature Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Missile Signature Center (AMSC) is a national facility supporting the Missile Defense Agency (MDA) and other DoD programs and customers with analysis,...

  19. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  20. Component Test Facility (Comtest) Phase 1 Engineering For 760°C (1400°F) Advanced Ultrasupercritical (A-USC) Steam Generator Development

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Paul [Babcock & Wilcox Power Generation Group, Inc., Barberton, OH (United States)

    2016-05-13

    The Babcock & Wilcox Company (B&W) performed a Pre-Front End Engineering Design (Pre-FEED) of an A-USC steam superheater for a proposed component test program achieving 760°C (1400°F) steam temperature. This would lead to follow-on work in a Phase 2 and Phase 3 that would involve detail design, manufacturing, construction and operation of the ComTest. Phase 1 results have provided the engineering data necessary for proceeding to the next phase of ComTest. The steam generator superheater would subsequently supply the steam to an A-USC prototype intermediate pressure steam turbine. The ComTest program is important in that it will place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide the first background experience with hands-on training. The project will provide a means to exercise the complete supply chain events required in order to practice and perfect the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants will then be able to transfer knowledge and recommendations to the industry. ComTest is conceived in the manner of using a separate standalone plant facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the United States. Components at suitable scale in ComTest provide more assurance before putting them into practice in the full size A-USC demonstration plant.

  1. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  2. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  3. Turbine and Structural Seals Team Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Seals Team Facilities conceive, develop, and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. Current projects include...

  4. Waste Facilities

    Data.gov (United States)

    Vermont Center for Geographic Information — This dataset was developed from the Vermont DEC's list of certified solid waste facilities. It includes facility name, contact information, and the materials...

  5. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  6. Fabrication Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Fabrication Facilities are a direct result of years of testing support. Through years of experience, the three fabrication facilities (Fort Hood, Fort Lewis, and...

  7. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  8. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hwang; Ryu, Sung Uk; Yi, Sung Jae; Park, Hyun Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Dong Eok [Dept. of Precision Mechanical Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2017-08-15

    Three small-break loss-of-coolant accident (SBLOCA) tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor), i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  9. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Eng., P.J.; Jaski, Y.R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M. [CARS, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL (United States)

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P{approx_gt}360 GPa and T{approximately}6000 K with the diamond anvil cell and P{approximately}25 GPa and T{approximately}2500{degree}C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers. {copyright} {ital 1996 American Institute of Physics.}

  10. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  11. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  12. Facilities Programming.

    Science.gov (United States)

    Bullis, Robert V.

    1992-01-01

    A procedure for physical facilities management written 17 years ago is still worth following today. Each of the steps outlined for planning, organizing, directing, controlling, and evaluating must be accomplished if school facilities are to be properly planned and constructed. However, lessons have been learned about energy consumption and proper…

  13. Design of the PISCES-Upgrade facility

    International Nuclear Information System (INIS)

    Waganer, L.M.; Doerner, R.

    1994-01-01

    The PISCES-Upgrade facility is currently in the design and fabrication phases for the University of California. McDonnell Douglas is under contract to develop this experimental facility in order to enhance the capability for investigation of fusion materials erosion-redeposition and edge plasma behaviors. The advance in facility capability requires innovative design approaches and application of sophisticated analysis techniques

  14. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Here is given the decree (2000-1065) of the 25. of October 2000 reporting the publication of the convention between the Government of the French Republic and the CERN concerning the safety of the LHC (Large Hadron Collider) and the SPS (Proton Supersynchrotron) facilities, signed in Geneva on July 11, 2000. By this convention, the CERN undertakes to ensure the safety of the LHC and SPS facilities and those of the operations of the LEP decommissioning. The French legislation and regulations on basic nuclear facilities (concerning more particularly the protection against ionizing radiations, the protection of the environment and the safety of facilities) and those which could be decided later on apply to the LHC, SPS and auxiliary facilities. (O.M.)

  15. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  16. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  17. Advanced Light Source Activity Report 2002

    Energy Technology Data Exchange (ETDEWEB)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori (Editors)

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  18. Advanced Light Source Activity Report 2002

    International Nuclear Information System (INIS)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth; Robinson, Arthur; Tamura, Lori

    2003-01-01

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information

  19. Advanced Light Source Activity Report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-04-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself.

  20. Advanced Light Source Activity Report 2000

    International Nuclear Information System (INIS)

    Greiner, A.; Moxon, L.; Robinson, A.; Tamura, L.

    2001-01-01

    This is an annual report, detailing activities at the Advanced Light Source for the year 2000. It includes highlights of scientific research by users of the facility as well as information about the development of the facility itself

  1. 12 CFR 725.23 - Other advances.

    Science.gov (United States)

    2010-01-01

    ... ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.23 Other advances. (a) The NCUA Board may authorize extensions of credit to members of the Facility for purposes other than liquidity needs if the NCUA Board, the Board of...

  2. Advanced Accelerator Test Facility (AATF) upgrade plan

    International Nuclear Information System (INIS)

    Gai, W.; Ho, C.; Konecny, R.

    1989-01-01

    We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs

  3. ATF [Advanced Toroidal Facility]-2 studies

    International Nuclear Information System (INIS)

    Lyon, J.F.; Carreras, B.A.; Dominguez, N.

    1989-10-01

    Design studies for a low-aspect-ratio, large next-generation stellarator, ATF-II, with high-current-density, high-field, stable NbTi/Cu helical windings are described. The design parameters are an average plasma radius of 0.52 m, a major radius of 2 m, and a field on axis of 4-5 T, with 10 to 15 MW of heating power. Such a device would be comparable in scope to other next-generation stellarators but would have roughly the same aspect ratio as the tokamaks without, however, the need for current drive to sustain steady-state operation. A number of low-aspect-ratio physics issues need to be addressed in the design of ATF-II, primarily compromises between high-beta capability and good confinement properties. A six-field-period Compact Torsatron is chosen as a reference design for ATF-II, and its main features and performance predictions are discussed. An integrated (beta capability and confinement) optimization approach and optimization of superconducting windings are also discussed. 36 refs., 13 figs., 2 tabs

  4. An advanced ISOL facility based on ATLAS

    International Nuclear Information System (INIS)

    Nolen, J. A.

    1999-01-01

    The Argonne concept for an accelerator complex for efficiently producing high-quality radioactive beams from ion source energy up to 6-15 MeV/u is described. The Isotope-Separator-On-Line (ISOL) method is used. A high-power driver accelerator produces radionuclides in a target that is closely coupled to an ion source and mass separator. By using a driver accelerator which can deliver a variety of beams and energies the radionuclide production mechanisms can be chosen to optimize yields for the species of interest. To effectively utilize the high beam power of the driver two-step target/ion source geometries are proposed (1) Neutron production with intermediate energy deuterons on a primary target to produce neutron-rich fission products in a secondary 238 U target, and (2) Fragmentation of neutron-rich heavy ion rich fission products in a secondary beams such as 18 O in a target/catcher geometry. Heavy ion beams with total energies in the 1-10 GcV range are also available for radionuclide production via high-energy spallation reactions. At the present time R and D is in progress to develop superconducting resonator structures for a driver linac to cover the energy range up to 100 MeV per nucleon for heavy ions and 200 MeV for protons. The post accelerator scheme is based on using existing ISOL-type 1+ ion source technology followed by CW Radio Frequency Quadruple (RFQ) accelerators and superconducting linacs including the present ATLAS accelerator. A full-scale prototype of the first-stage RFQ has been successfully tested with RF at full design voltage and tests with ion beams are in progress. A benchmark beam, 132 Sn at 7 MeV/u, requires two stripping stages, one a gas stripper at very low velocity after the first RFQ section, and one a foil stripper at higher velocity after a superconducting-linac injector

  5. An advanced ISOL facility based on ATLAS

    CERN Document Server

    Nolen, J A; Pardo, R C; Savard, G; Rehm, K E; Schiffer, J P; Henning, W F; Jiang, C L; Ahmad, L; Back, B B; Kaye, R A; Petra, M; Portillo, M; Greene, J; Clifft, B E; Specht, J R; Janssens, R V F; Siemssen, R H; Gómez, I; Reed, C B; Hassanein, A M

    1999-01-01

    The Argonne concept for an accelerator complex for efficiently producing high-quality radioactive beams from an ion source energy up to 6-15 MeV/u is described. The Isotope-Separator-On-Line (ISOL) method is used. A high-power $9 driver accelerator produces radionuclides in a target that is closely coupled to an ion source and mass separator. By using a driver accelerator which can deliver a variety of beams and energies the radionuclide production mechanisms $9 can be chosen to optimize yields for the species of interest. To effectively utilize the high beam power of the driver two-step target /ion source geometries are proposed: (1) Neutron production with intermediate energy deuterons on $9 a primary target to produce neutron- rich fission products in a secondary /sup 238/U target, and (2) Fragmentation of neutron-rich heavy ion beams such as /sup 18/O in a target/catcher geometry. Heavy ion beams with total energies in $9 the 1-10 GeV range are also available for radionuclide production via high-energy sp...

  6. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  7. European Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Buras, B.

    1985-01-01

    How a European Synchrotron Radiation Facility has developed into a detailed proposal recently accepted as the basis for construction of the facility at Grenoble is discussed. In November 1977, the General Assembly of the European Science Foundation (ESF) approved the report of the ESF working party on synchrotron radiation entitled Synchrotron Radiation - a Perspective View for Europe. This report contained as one of its principal recommendations that work should commence on a feasibility study for a European synchrotron radiation laboratory having a dedicated hard X-ray storage ring and appropriate advanced instrumentation. In order to prepare a feasibility study the European Science Foundation set up the Ad-hoc Committee on Synchrotron Radiation, which in turn formed two working groups: one for the machine and another for instrumentation. This feasibility study was completed in 1979 with the publication of the Blue Book describing in detail the so called 1979 European Synchrotron Radiation Facility. The heart of the facility was a 5 GeV electron storage ring and it was assumed that mainly the radiation from bending magnets will be used. The facility is described

  8. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 9·10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs

  9. The advanced neutron source

    International Nuclear Information System (INIS)

    Raman, S.; Hayter, J.B.

    1990-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 8 x 10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research

  10. Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  11. Budget estimates: Fiscal year 1994. Volume 2: Construction of facilities

    Science.gov (United States)

    1994-01-01

    The Construction of Facilities (CoF) appropriation provides contractual services for the repair, rehabilitation, and modification of existing facilities; the construction of new facilities and the acquisition of related collateral equipment; the acquisition or condemnation of real property; environmental compliance and restoration activities; the design of facilities projects; and advanced planning related to future facilities needs. Fiscal year 1994 budget estimates are broken down according to facility location of project and by purpose.

  12. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  13. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  14. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  15. NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric

    Science.gov (United States)

    Companies | Energy Systems Integration Facility | NREL NREL Evaluates Advanced Solar Inverter Performance for Hawaiian Electric Companies NREL Evaluates Advanced Solar Inverter Performance for Hawaiian performance and impacts of today's advanced solar inverters, as well as proprietary feedback to the inverter

  16. Assessment report of research and development on 'the abolition measures of nuclear facilities and associated technology development' and 'radioactive waste treatment and disposal and associated technology development' (result evaluation, in advance evaluation) and 'technology development related to reprocessing of nuclear fuel material' (In advance evaluation)

    International Nuclear Information System (INIS)

    2015-07-01

    Japan Atomic Energy Agency (hereinafter referred to as 'JAEA') consulted the 'Evaluation Committee for Decommissioning and Radioactive Waste Management ' for result evaluation and in advance evaluation of 'The abolition measures of nuclear facilities and associated technology development' project and 'Radioactive waste treatment and disposal and associated technology development' project and 'Technology development related to reprocessing of nuclear fuel material' project in accordance with the 'Guideline for evaluation of government R and D activities', the 'Guideline for evaluation of R and D in Ministry of Education, Culture, Sports, Science and Technology (MEXT)' and the 'Operational rule for evaluation of R and D activities' by JAEA. In response to the JAEA's request, the Evaluation Committee for Decommissioning and Radioactive Waste Management, in accordance with the evaluation method as defined in the Committee deliberations and oral report and deliberation of material about the R and D project of three was conducted. This report summarizes the results of the assessment by the Committee with the Committee report. (author)

  17. Enforcement and Compliance History Online (ECHO) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide. Its features range from simple to advanced,...

  18. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  19. Support facilities

    International Nuclear Information System (INIS)

    Williamson, F.S.; Blomquist, J.A.; Fox, C.A.

    1977-01-01

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  20. Enclosed Small and Medium Caliber Firing Experimental Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility conducts completely instrumented terminal ballistics experimental tests with small and medium-caliber tungsten alloy penetrators against advanced armor...

  1. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  2. Master Training in Radiological Protection Facilities Radioactive and Nuclear

    International Nuclear Information System (INIS)

    Verdu, G.; Mayo, P.; Campayo, J. M.

    2011-01-01

    The master includes general aspects of radiation protection in nuclear facilities. also an advanced module to acquire a high level training highlights as nuclear decommissioning, shielding calculation using advanced codes, particle accelerators, international law, etc.

  3. Gingin High Optical Power Test Facility

    International Nuclear Information System (INIS)

    Zhao, C; Blair, D G; Barrigo, P

    2006-01-01

    The Australian Consortium for Gravitational Wave Astronomy (ACIGA) in collaboration with LIGO is developing a high optical power research facility at the AIGO site, Gingin, Western Australia. Research at the facility will provide solutions to the problems that advanced gravitational wave detectors will encounter with extremely high optical power. The problems include thermal lensing and parametric instabilities. This article will present the status of the facility and the plan for the future experiments

  4. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  5. ATLAS Facility Description Report

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Moon, Sang Ki; Park, Hyun Sik; Cho, Seok; Choi, Ki Yong

    2009-04-01

    A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), has been constructed at KAERI (Korea Atomic Energy Research Institute). The ATLAS has the same two-loop features as the APR1400 and is designed according to the well-known scaling method suggested by Ishii and Kataoka to simulate the various test scenarios as realistically as possible. It is a half-height and 1/288-volume scaled test facility with respect to the APR1400. The fluid system of the ATLAS consists of a primary system, a secondary system, a safety injection system, a break simulating system, a containment simulating system, and auxiliary systems. The primary system includes a reactor vessel, two hot legs, four cold legs, a pressurizer, four reactor coolant pumps, and two steam generators. The secondary system of the ATLAS is simplified to be of a circulating loop-type. Most of the safety injection features of the APR1400 and the OPR1000 are incorporated into the safety injection system of the ATLAS. In the ATLAS test facility, about 1300 instrumentations are installed to precisely investigate the thermal-hydraulic behavior in simulation of the various test scenarios. This report describes the scaling methodology, the geometric data of the individual component, and the specification and the location of the instrumentations in detail

  6. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other facilities...

  7. Velocimetry Overview for visitors from the DOD

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Matthew E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division; Holtkamp, David Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Physics Division

    2016-08-19

    We are in the midst of a transformative period in which technological advances are making fundamental changes in the measurement techniques that form the backbone of nuclear weapon certification. Optical velocimetry has replaced electrical shorting pins in “Hydrotests,” which measure the dynamic implosion process. This advance has revolutionized nuclear weapons certification during the last 5 years. We can now measure the implosion process that drives a nuclear detonation with many orders of magnitude more resolution in both space and time than was possible just 10 years ago. It has been compared to going from Morse Code to HDTV, resulting in a dozen or more improvements in models of these weapons. These Hydrotests are carried out at LANL, LLNL and the NNSS, with the later holding the important role of allowing us to test with nuclear materials, in sub-critical configurations (i.e., no yield.) Each of these institutions has largely replaced pins with hundreds of channels of optical velocimetry. Velocimetry is non-contact and is used simultaneously with the X-ray capability of these facilities. The U1-a facility at NNSS pioneered this approach in the Gemini series in 2012, and continues to lead, both in channel count and technological advances. Close cooperation among LANL, LLNL and NSTec in these advances serves the complex by leveraging capabilities across sites and accelerating the pace of technical improvements.

  8. Advances by the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  9. 12 CFR 725.22 - Advances to insurance organizations.

    Science.gov (United States)

    2010-01-01

    ... NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.22 Advances to insurance organizations. (a) In accordance with policies established by the NCUA Board, the Facility may advance funds to... not be renewable at maturity, and (4) The funds advanced shall not be relent at an interest rate...

  10. Reactor facility

    International Nuclear Information System (INIS)

    Suzuki, Hiroaki; Murase, Michio; Yokomizo, Osamu.

    1997-01-01

    The present invention provides a BWR type reactor facility capable of suppressing the amount of steams generated by the mutual effect of a failed reactor core and coolants upon occurrence of an imaginal accident, and not requiring spacial countermeasures for enhancing the pressure resistance of the container vessel. Namely, a means for supplying cooling water at a temperature not lower by 30degC than the saturated temperature corresponding to the inner pressure of the containing vessel upon occurrence of an accident is disposed to a lower dry well below the pressure vessel. As a result, upon occurrence of such an accident that the reactor core should be melted and flown downward of the pressure vessel, when cooling water at a temperature not lower than the saturated temperature, for example, cooling water at 100degC or higher is supplied to the lower dry well, abrupt generation of steams by the mutual effect of the failed reactor core and cooling water is scarcely caused compared with a case of supplying cooling water at a temperature lower than the saturation temperature by 30degC or more. Accordingly, the amount of steams to be generated can be suppressed, and special countermeasure is no more necessary for enhancing the pressure resistance of the container vessel is no more necessary. (I.S.)

  11. Nuclear facilities

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    During September and October 2001, 15 events were recorded on the first grade and 1 on the second grade of the INES scale. The second grade event is in fact a re-classification of an incident that occurred on the second april 2001 at Dampierre power plant. This event happened during core refueling, a shift in the operation sequence led to the wrong positioning of 113 assemblies. A preliminary study of this event shows that this wrong positioning could have led, in other circumstances, to the ignition of nuclear reactions. Even in that case, the analysis made by EDF shows that the consequences on the staff would have been limited. Nevertheless a further study has shown that the existing measuring instruments could not have detected the power increase announcing the beginning of the chain reaction. The investigation has shown that there were deficiencies in the control of the successive operations involved in refueling. EDF has proposed a series of corrective measures to be implemented in all nuclear power plants. The other 15 events are described in the article. During this period 121 inspections have been made in nuclear facilities. (A.C.)

  12. Office of Science User Facilities Summary Report, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-01

    The U.S. Department of Energy Office of Science provides the Nation’s researchers with worldclass scientific user facilities to propel the U.S. to the forefront of science and innovation. A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the following conditions: open, accessible, free, collaborative, competitive, and unique.

  13. Decommissioning of nuclear power facilities

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Yashchenko, Ya.V.

    2005-01-01

    This is the first manual in Ukraine giving the complete review of the decommissioning process of the nuclear power facilities including the issues of the planning, design documentation development, advanced technology description. On the base of the international and domestic experience, the issues on the radwaste management, the decontamination methods, the equipment dismantling, the remote technology application, and also the costs estimate at decommissioning are considered. The special attention to the personnel safety provision, population and environment at decommissioning process is paid

  14. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  15. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  16. Irradiation Facilities at CERN

    CERN Document Server

    Gkotse, Blerina; Carbonez, Pierre; Danzeca, Salvatore; Fabich, Adrian; Garcia, Alia, Ruben; Glaser, Maurice; Gorine, Georgi; Jaekel, Martin, Richard; Mateu,Suau, Isidre; Pezzullo, Giuseppe; Pozzi, Fabio; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-01-01

    CERN provides unique irradiation facilities for applications in many scientific fields. This paper summarizes the facilities currently operating for proton, gamma, mixed-field and electron irradiations, including their main usage, characteristics and information about their operation. The new CERN irradiation facilities database is also presented. This includes not only CERN facilities but also irradiation facilities available worldwide.

  17. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  18. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  19. Advanced Worker Protection System

    International Nuclear Information System (INIS)

    1996-04-01

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs

  20. Jupiter Laser Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  1. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  2. Advanced Prosthetic Gait Training Tool

    Science.gov (United States)

    2015-12-01

    modules to train individuals to distinguish gait deviations (trunk motion and lower-limb motion). Each of these modules help trainers improve their...AWARD NUMBER: W81XWH-10-1-0870 TITLE: Advanced Prosthetic Gait Training Tool PRINCIPAL INVESTIGATOR: Dr. Karim Abdel-Malek CONTRACTING...study is to produce a computer-based Advanced Prosthetic Gait Training Tool to aid in the training of clinicians at military treatment facilities

  3. Integrated Facilities and Infrastructure Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Reisz Westlund, Jennifer Jill

    2017-03-01

    Our facilities and infrastructure are a key element of our capability-based science and engineering foundation. The focus of the Integrated Facilities and Infrastructure Plan is the development and implementation of a comprehensive plan to sustain the capabilities necessary to meet national research, design, and fabrication needs for Sandia National Laboratories’ (Sandia’s) comprehensive national security missions both now and into the future. A number of Sandia’s facilities have reached the end of their useful lives and many others are not suitable for today’s mission needs. Due to the continued aging and surge in utilization of Sandia’s facilities, deferred maintenance has continued to increase. As part of our planning focus, Sandia is committed to halting the growth of deferred maintenance across its sites through demolition, replacement, and dedicated funding to reduce the backlog of maintenance needs. Sandia will become more agile in adapting existing space and changing how space is utilized in response to the changing requirements. This Integrated Facilities & Infrastructure (F&I) Plan supports the Sandia Strategic Plan’s strategic objectives, specifically Strategic Objective 2: Strengthen our Laboratories’ foundation to maximize mission impact, and Strategic Objective 3: Advance an exceptional work environment that enables and inspires our people in service to our nation. The Integrated F&I Plan is developed through a planning process model to understand the F&I needs, analyze solution options, plan the actions and funding, and then execute projects.

  4. Aperture area measurement facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has established an absolute aperture area measurement facility for circular and near-circular apertures use in radiometric instruments. The facility consists of...

  5. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  6. Licensed Healthcare Facilities

    Data.gov (United States)

    California Natural Resource Agency — The Licensed Healthcare Facilities point layer represents the locations of all healthcare facilities licensed by the State of California, Department of Health...

  7. Facility Registry Service (FRS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Facility Registry Service (FRS) provides an integrated source of comprehensive (air, water, and waste) environmental information about facilities across EPA,...

  8. The Laboratory for Advanced Materials Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory for Advanced Materials Processing - LAMP - is a clean-room research facility run and operated by Pr. Gary Rubloff's group. Research activities focus...

  9. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  10. Recent advances in insertion devices

    International Nuclear Information System (INIS)

    Gluskin, E.; Moog, E.R.

    1995-01-01

    Demand for more and better insertion devices (IDs) at new third-generation synchrotron radiation facilities has led to significant advances in ID technology at different laboratories around the world. In this overview of this progress, focus is on those results that apply to IDs in general rather than one specific ID or laboratory. The advances fall into two general categories: those that reduce the net effect that the ID has on the particle beam, and those that enhance the quality of the emitted light spectrum. The need for these advances, factors that are most important inaachieving them, and the current state of the art are discussed

  11. Access to major overseas research facilities

    International Nuclear Information System (INIS)

    Bolderman, J. W.

    1997-01-01

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year

  12. Communication grounding facility

    International Nuclear Information System (INIS)

    Lee, Gye Seong

    1998-06-01

    It is about communication grounding facility, which is made up twelve chapters. It includes general grounding with purpose, materials thermal insulating material, construction of grounding, super strength grounding method, grounding facility with grounding way and building of insulating, switched grounding with No. 1A and LCR, grounding facility of transmission line, wireless facility grounding, grounding facility in wireless base station, grounding of power facility, grounding low-tenton interior power wire, communication facility of railroad, install of arrester in apartment and house, install of arrester on introduction and earth conductivity and measurement with introduction and grounding resistance.

  13. The QUASAR facility

    Science.gov (United States)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  14. Radioactive ion beam facilities in Europe

    International Nuclear Information System (INIS)

    Blumenfeld, Y.

    2008-01-01

    The past two decades have seen extraordinarily rapid development of radioactive beam physics throughout the world and in particular in Europe. The important scientific advances have stemmed from a large number of facilities. Previously existing stable beam machines have been adapted to produce rare isotope beams and dedicated facilities have come on-line. This talk gives an overview of the present European installations highlighting their complementary nature. The European roadmap calls for the construction of two next generation facilities: FAIR making use of projectile fragmentation and EURISOL based on the ISOL technique. The future FAIR facility will be described and the path towards EURISOL presented in the light of the construction of 'intermediate' generation facilities SPIRAL2, HIE ISOLDE and SPES and results from the ongoing EURISOL Design Study.

  15. AOV Facility Tool/Facility Safety Specifications -

    Data.gov (United States)

    Department of Transportation — Develop and maintain authorizing documents that are standards that facilities must follow. These standards are references of FAA regulations and are specific to the...

  16. Installation of a Synchrotron Radiation Beamline Facility at the J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices for the Science and Engineering Alliance. Phase I and II. Final Report

    International Nuclear Information System (INIS)

    Gooden, R.

    2000-01-01

    The Johnston Center presents a unique opportunity for scientists and engineers at southern institutions to initiate and carry out original research using synchrotron radiation ranging from visible light to hard x-rays. The Science and Engineering Alliance proposes to carry out a comprehensive new synchrotron radiation research initiative at CAMD in carefully phased steps of increasing risks. (1) materials research on existing CAMD beam lines and end stations; (2) design, construction and installation of end stations on existing CAMD beam lines, and research with this new instrumentation; (3) design, construction and operation of dedicated synchrotron radiation beam lines that covers the full spectral range of the CAMD storage ring and expanded research in the new facility

  17. The Advanced Light Source

    International Nuclear Information System (INIS)

    Jackson, A.

    1991-05-01

    The Advanced Light Source (ALS), a national user facility currently under construction at the Lawrence Berkeley Laboratory (LBL), is a third-generation synchrotron light source designed to produce extremely bright beams of synchrotron radiation in the energy range from a few eV to 10 keV. The design is based on a 1--1.9-GeV electron storage ring (optimized at 1.5 GeV), and utilizes special magnets, known as undulators and wigglers (collectively referred to as insertion devices), to generate the radiation. The facility is scheduled to begin operating in April 1993. In this paper we describe the progress in the design, construction, and commissioning of the accelerator systems, insertion devices, and beamlines. Companion presentations at this conference give more detail of specific components in the ALS, and describe the activities towards establishing an exciting user program. 3 figs., 2 tabs

  18. Higher Education Facilities: The SmartGrid Earns a Doctorate in Economics

    Science.gov (United States)

    Tysseling, John C.; Zibelman, Audrey; Freifeld, Allen

    2011-01-01

    Most higher education facilities have already accomplished some measure of a "microgrid" investment with building control systems (BCS), energy management systems (EMS), and advanced metering infrastructure (AMI) installations. Available energy production facilities may include boilers, chillers, cogeneration, thermal storage, electrical…

  19. Facility approach to tokamak operation

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Gabbard, W.A.

    1981-01-01

    In anticipation of the appearance of more advanced tokamaks and other fusion relevant experiments, program has been established at ORNL to systemically identify the requirements of an effective machine operations group. This program is presently applied to the ISX-B experiment. With its continuing development, it is expected to provide major support in the identification of potential problem areas and to assist in the generation of the necessary procedures for forthcoming devices. The present and future generations of large plasma devices will function as facilities, operated by an operations group as service to the plasma physicists and diagnosticians. The purpose of the program discussed here is to develop and to encourage an orderly transition to the facility-like style of operation

  20. Experimental facilities and simulation means

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2009-01-01

    This paper and its associated series of slides review the experimental facilities and the simulation means used for the development of nuclear reactors in France. These experimental facilities include installations used for the measurement and qualification of nuclear data (mainly cross-sections) like EOLE reactor and Minerve zero power reactor, installations like material testing reactors, installations dedicated to reactor safety experiments like Cabri reactor, and other installations like accelerators (Jannus accelerator, GANIL for instance) that are complementary to neutron irradiations in experimental reactors. The simulation means rely on a series of advanced computer codes: Tripoli-Apollo for neutron transport, Numodis for irradiation impact on materials, Neptune and Cathare for 2-phase fluid dynamics, Europlexus for mechanical structures, and Pleiades (with Alcyone) for nuclear fuels. (A.C.)

  1. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  2. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  3. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  4. Advanced Light Source

    International Nuclear Information System (INIS)

    Sah, R.C.

    1983-03-01

    The Advanced Light Source (ALS) is a new synchrotron radiation source which has been proposed by Lawrence Berkeley Laboratory. The ALS will be a key component in a major new research facility, the National Center for Advanced Materials. The ALS will consist of an electron linear accelerator, a booster synchrotron, a 1.3-GeV electron storage ring, and a number of photon beam lines. Most or all photon beam lines will originate from wiggler and undulator magnets placed in the 12 long straight sections of the ALS. A very low electron beam emittance will provide photon beams of unsurpassed spectral brilliance from specially-designed undulators, and a high radiofrequency will produce very short pulse lengths

  5. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  6. Uncertainty Analyses of Advanced Fuel Cycles

    International Nuclear Information System (INIS)

    Miller, Laurence F.; Preston, J.; Sweder, G.; Anderson, T.; Janson, S.; Humberstone, M.; MConn, J.; Clark, J.

    2008-01-01

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development

  7. Uncertainty Analyses of Advanced Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  8. Proton Testing of Advanced Stellar Compass Digital Processing Unit

    DEFF Research Database (Denmark)

    Thuesen, Gøsta; Denver, Troelz; Jørgensen, Finn E

    1999-01-01

    The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland.......The Advanced Stellar Compass Digital Processing Unit was radiation tested with 300 MeV protons at Proton Irradiation Facility (PIF), Paul Scherrer Institute, Switzerland....

  9. 40 CFR 35.2025 - Allowance and advance of allowance.

    Science.gov (United States)

    2010-07-01

    ... advance of allowance. (a) Allowance. Step 2+3 and Step 3 grant agreements will include an allowance for facilities planning and design of the project and Step 7 agreements will include an allowance for facility... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allowance and advance of allowance. 35...

  10. Data Analysis Facility (DAF)

    Science.gov (United States)

    1991-01-01

    NASA-Dryden's Data Analysis Facility (DAF) provides a variety of support services to the entire Dryden community. It provides state-of-the-art hardware and software systems, available to any Dryden engineer for pre- and post-flight data processing and analysis, plus supporting all archival and general computer use. The Flight Data Access System (FDAS) is one of the advanced computer systems in the DAF, providing for fast engineering unit conversion and archival processing of flight data delivered from the Western Aeronautical Test Range. Engineering unit conversion and archival formatting of flight data is performed by the DRACO program on a Sun 690MP and an E-5000 computer. Time history files produced by DRACO are then moved to a permanent magneto-optical archive, where they are network-accessible 24 hours a day, 7 days a week. Pertinent information about the individual flights is maintained in a relational (Sybase) database. The DAF also houses all general computer services, including; the Compute Server 1 and 2 (CS1 and CS2), the server for the World Wide Web, overall computer operations support, courier service, a CD-ROM Writer system, a Technical Support Center, the NASA Dryden Phone System (NDPS), and Hardware Maintenance.

  11. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  12. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  13. Advanced Electronics

    Science.gov (United States)

    2017-07-21

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0114 TR-2017-0114 ADVANCED ELECTRONICS Ashwani Sharma 21 Jul 2017 Interim Report APPROVED FOR PUBLIC RELEASE...NUMBER Advanced Electronics 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) 5d. PROJECT NUMBER 4846 Ashwani Sharma 5e. TASK NUMBER...Approved for public release; distribution is unlimited. (RDMX-17-14919 dtd 20 Mar 2018) 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Space Electronics

  14. Achievement report for fiscal 1996 on the research and development of micromachine technology. Development of advanced-function maintenance technology for power generation facilities; 1996 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Technologies for integrating functions are studied for a self-propelled surroundings recognition system that travels in a small-diameter tube at power generation facilities. Parameters are analyzed, and piezoelectric locomotion devices are reduced in size. A disk shape microantenna is experimentally built and evaluated, which is for realizing energy supply and communication by means of microwaves. Studies are conducted to improve the performance of optical energy transmission devices and to realize their systematization. Basic specifications are established for the embodiment of CCD (charge coupled device) microcameras to be installed. A high-efficiency, high-reliability micromachine system is constructed, in which multiple machines coordinate with each other for the exterior inspection of groups of small-diameter tubes. Devices which are capable of driving, deceleration, and propulsion prove to be feasible. Basic specifications are established for microconnectors to connect, separate, and combine multiple machines as occasion calls. Also discussed is the development of a micromachine for tube interior check and repair which operates making use of the inspection hole enabling tube interior check and repair without the need of disassembling the equipment to be repaired.

  15. Fiscal 1999 research report. Research on photonic measurement and processing technology (Development of advanced maintenance technology for power plant facilities); 1999 nendo foton keisoku kako gijutsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 research result on R and D of measurement technology, laser welding and surface treatment technology, and generation technology of photon beam, for improvement of the quality and maintenance efficiency for power plant facilities. In the study on fabrication of functional micro-composite circuits, the equipment for forming circuits on substrates by carrying particles with gas was developed whose geometric standard deviation is 1.17 for 26nm particles. In the study on gas concentration measurement technology, development of the variable-wavelength laser beam source for measurement, fabrication of thin films by epitaxial growth equipment, and computer simulation of sensitivities for quantum IR photo- detectors were promoted. In the study on photon wavefront compensation device technology, the technology for fabricating such device with (411)A surface orientations and asymmetric quantum well structures was developed. In the study on high-sensitivity detection technology using short- wavelength photon, to develop a high-energy resolution fluorescent X-ray detector, favorable electric properties of superconducting X-ray detecting devices were confirmed at nearly 0.1K. (NEDO)

  16. 2016 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  17. Intense neutron irradiation facility for fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio; Kato, Yoshio; Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Technical R and D of d-Li stripping type neutron irradiation facilities for development of fusion reactor materials was carried out in Fusion Materials Irradiation Test Facility (FMIT) project and Energy Selective Neutron Irradiation Test Facility (ESNIT) program. Conceptual design activity (CDA) of International Fusion Materials Irradiation Facility (IFMIF), of which concept is an advanced version of FMIT and ESNIT concepts, are being performed. Progress of users` requirements and characteristics of irradiation fields in such neutron irradiation facilities, and outline of baseline conceptual design of IFMIF were described. (author)

  18. ATR National Scientific User Facility 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Julie A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robertson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  19. Greenhouse gas emissions modeling : a tool for federal facility decommissioning

    Science.gov (United States)

    2010-10-21

    The Federal Aviation Administration (FAA) facility inventory is constantly changing as newer systems supplant older infrastructure in response to technological advances. Transformational change embodied by the FAAs Next Generation Air Transportati...

  20. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  1. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  2. Ductile growth of crack like flawing during hydrotest; Propagacao dutil de defeitos planares durante teste hidrostatico

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jose C; Donato, Guilherme V [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Silva, Marcinei S. da; Bastian, Fernando L [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Romulo S. de [PETROBRAS/AB-RE, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this paper effects of hydrostatic testing on ductile propagation of crack like flaw defects were evaluated in API X-60 steel. The model used was based on the J-tearing theory, supported by elastic - plastic fracture mechanics. The J-initiation resistance values (JIc) were determined by fracture mechanic tests using potential drop technique and compact test specimen. The JIc values were also determined from flow stress and Charpy V-notch at plateau, which are both usually available in mill-test data. Despite of being based on small database it seems it could be extended and it will be useful for future analysis. (author)

  3. Fracture behaviour assessment of a flawed pressure vessel in the hydro-test

    Energy Technology Data Exchange (ETDEWEB)

    Sarkimo, M; Rintamac, R

    1988-12-31

    This document deals with the fracture properties of a flawed pressure vessel. The experiment was carried out within the Nordic Countries on a vessel in a Finnish refinery. The instrumentation used included acoustic emission. Some results are provided. (TEC).

  4. A systems approach to nuclear facility monitoring

    International Nuclear Information System (INIS)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-01-01

    Sensor technology for use in nuclear facility monitoring has reached an advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, the authors take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Is one monitoring only the facility itself, or might one also monitor the processing that occurs there (e.g., tank levels and concentrations)? How is one going to combine the outputs from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a system proposed for an actual facility. The focus will be on the data analysis aspect of the problem. Future work in this area should focus on recommendations and guidelines for a monitoring system based upon the type of facility and processing that occurs there

  5. Lesotho - Health Facility Survey

    Data.gov (United States)

    Millennium Challenge Corporation — The main objective of the 2011 Health Facility Survey (HFS) was to establish a baseline for informing the Health Project performance indicators on health facilities,...

  6. Armament Technology Facility (ATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Armament Technology Facility is a 52,000 square foot, secure and environmentally-safe, integrated small arms and cannon caliber design and evaluation facility....

  7. Projectile Demilitarization Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Projectile Wash Out Facility is US Army Ammunition Peculiar Equipment (APE 1300). It is a pilot scale wash out facility that uses high pressure water and steam...

  8. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  9. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  10. Materiel Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CRREL's Materiel Evaluation Facility (MEF) is a large cold-room facility that can be set up at temperatures ranging from −20°F to 120°F with a temperature change...

  11. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  12. Dialysis Facility Compare

    Data.gov (United States)

    U.S. Department of Health & Human Services — Dialysis Facility Compare helps you find detailed information about Medicare-certified dialysis facilities. You can compare the services and the quality of care that...

  13. Energetics Conditioning Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetics Conditioning Facility is used for long term and short term aging studies of energetic materials. The facility has 10 conditioning chambers of which 2...

  14. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  15. Facilities for US Radioastronomy.

    Science.gov (United States)

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  16. Neighbourhood facilities for sustainability

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2013-01-01

    Full Text Available . In this paper these are referred to as ‘Neighbourhood Facilities for Sustainability’. Neighbourhood Facilities for Sustainability (NFS) are initiatives undertaken by individuals and communities to build local sustainable systems which not only improve...

  17. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  18. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  19. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  20. Facility design: introduction

    International Nuclear Information System (INIS)

    Unger, W.E.

    1980-01-01

    The design of shielded chemical processing facilities for handling plutonium is discussed. The TRU facility is considered in particular; its features for minimizing the escape of process materials are listed. 20 figures

  1. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  2. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  3. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  4. Development of Barnwell as a multinational demonstration facility

    International Nuclear Information System (INIS)

    Colby, L.J. Jr.

    1977-01-01

    The author takes an existing private business venture (Barnwell) with its assets of facilities, personnel, technology and domestic business commitments (past, present, and future) and develops a role for it which will be compatible with the advancement of multinational reprocessing facilities under international control

  5. Facility or Facilities? That is the Question.

    Science.gov (United States)

    Viso, M.

    2018-04-01

    The management of the martian samples upon arrival on the Earth will require a lot of work to ensure a safe life detection and biohazard testing during the quarantine. This will induce a sharing of the load between several facilities.

  6. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is to be a multipurpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotope production, materials irradiation, and analytical chemistry. The ANS will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high-intensity research reactor. But this reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users from all parts of the nation and the world, placed in a stimulating environment in which experiments can be effectively conducted and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use

  7. Site and facility transportation services planning documents

    Energy Technology Data Exchange (ETDEWEB)

    Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

  8. Site and facility transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Danese, L.; Schmid, S.

    1990-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab

  9. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  10. POWER SYSTEMS DEVELOPMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  11. A system approach to nuclear facility monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.E.; Doak, J.E.; Howse, J.W.

    1996-09-01

    Sensor technology for use in nuclear facility monitoring has reached and advanced stage of development. Research on where to place these sensors in a facility and how to combine their outputs in a meaningful fashion does not appear to be keeping pace. In this paper, we take a global view of the problem where sensor technology is viewed as only one piece of a large puzzle. Other pieces of this puzzle include the optimal location and type of sensors used in a specific facility, the rate at which sensors record information, and the risk associated with the materials/processes at a facility. If the data are analyzed off-site, how will they be transmitted? Is real-time analysis necessary? Are we monitoring only the facility itself, or might we also monitor the processing that occurs there? How are we going to combine the output from the various sensors to give us an accurate picture of the state of the facility? This paper will not try to answer all these questions, but rather it will attempt to stimulate thought in this area by formulating a systems approach to the problem demonstrated by a prototype system and a systems proposed for an actual facility. Our focus will be on the data analysis aspect of the problem.

  12. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  13. Fusion advanced studies Torus

    International Nuclear Information System (INIS)

    2007-01-01

    The successful development of ITER and DEMO scenarios requires preparatory activities on devices that are smaller than ITER, sufficiently flexible and capable of investigating the peculiar physics of burning plasma conditions. The aim of the Fusion Advanced Studies Torus (FAST) proposal [2.1] (formerly FT3 [2.2]) is to show that the preparation of ITER scenarios and the development of new expertise for the DEMO design and RD can be effectively implemented on a new facility. FAST will a) operate with deuterium plasmas, thereby avoiding problems associated with tritium, and allow investigation of nonlinear dynamics (which are important for understanding alpha particle behaviour in burning plasmas) by using fast ions accelerated by heating and current drive systems; b) work in a dimensionless parameter range close to that of ITER; c) test technical innovative solutions, such as full-tungsten plasma-facing components and an advanced liquid metal divertor target for the first wall/divertor, directly relevant for ITER and DEMO; d) exploit advanced regimes with a much longer pulse duration than the current diffusion time; e) provide a test bed for ITER and DEMO diagnostics; f) provide an ideal framework for model and numerical code benchmarks, their verification and validation in ITER/ DEMO-relevant plasma conditions

  14. Facility transition instruction

    International Nuclear Information System (INIS)

    Morton, M.R.

    1997-01-01

    The Bechtel Hanford, Inc. facility transition instruction was initiated in response to the need for a common, streamlined process for facility transitions and to capture the knowledge and experience that has accumulated over the last few years. The instruction serves as an educational resource and defines the process for transitioning facilities to long-term surveillance and maintenance (S and M). Generally, these facilities do not have identified operations missions and must be transitioned from operational status to a safe and stable configuration for long-term S and M. The instruction can be applied to a wide range of facilities--from process canyon complexes like the Plutonium Uranium Extraction Facility or B Plant, to stand-alone, lower hazard facilities like the 242B/BL facility. The facility transition process is implemented (under the direction of the US Department of Energy, Richland Operations Office [RL] Assistant Manager-Environmental) by Bechtel Hanford, Inc. management, with input and interaction with the appropriate RL division and Hanford site contractors as noted in the instruction. The application of the steps identified herein and the early participation of all organizations involved are expected to provide a cost-effective, safe, and smooth transition from operational status to deactivation and S and M for a wide range of Hanford Site facilities

  15. Facilities inventory protection for nuclear facilities

    International Nuclear Information System (INIS)

    Schmitt, F.J.

    1989-01-01

    The fact that shut-down applications have been filed for nuclear power plants, suggests to have a scrutinizing look at the scopes of assessment and decision available to administrations and courts for the protection of facilities inventories relative to legal and constitutional requirements. The paper outlines the legal bases which need to be observed if purposeful calculation is to be ensured. Based on the different actual conditions and legal consequences, the author distinguishes between 1) the legal situation of facilities licenced already and 2) the legal situation of facilities under planning during the licencing stage. As indicated by the contents and restrictions of the pertinent provisions of the Atomic Energy Act and by the corresponding compensatory regulation, the object of the protection of facilities inventor in the legal position of the facility owner within the purview of the Atomic Energy Act, and the licensing proper. Art. 17 of the Atomic Energy Act indicates the legislators intent that, once issued, the licence will be the pivotal point for regulations aiming at protection and intervention. (orig./HSCH) [de

  16. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  17. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  18. 340 Facility compliance assessment

    International Nuclear Information System (INIS)

    English, S.L.

    1993-10-01

    This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility

  19. Trauma facilities in Denmark

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  20. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  1. Startup of the Whiteshell irradiation facility

    International Nuclear Information System (INIS)

    Barnard, J.W.; Stanley, F.W.

    1989-01-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation. (orig.)

  2. Conducting Computer Security Assessments at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    Computer security is increasingly recognized as a key component in nuclear security. As technology advances, it is anticipated that computer and computing systems will be used to an even greater degree in all aspects of plant operations including safety and security systems. A rigorous and comprehensive assessment process can assist in strengthening the effectiveness of the computer security programme. This publication outlines a methodology for conducting computer security assessments at nuclear facilities. The methodology can likewise be easily adapted to provide assessments at facilities with other radioactive materials

  3. Status of the low frequency facility experiment

    International Nuclear Information System (INIS)

    Bracci, L; Calamai, G; Cuoco, E; Dominici, P; Fabbroni, L; Guidi, G; Losurdo, G; Martelli, F; Mazzoni, M; Stanga, R; Vetrano, F; Porzio, A; Ricciardi, I; Solimeno, S; Ballardin, G; Braccini, S; Bradaschia, C; Casciano, C; Cavalieri, R; Cecchi, R; Cella, G; Dattilo, V; Virgilio, A Di; Fazzi, M; Ferrante, I; Fidecaro, F; Frasconi, F; Gennaro, G; Giazotto, A; Holloway, L; Penna, P La; Lomtadze, T; Nenci, F; Nicolosi, L; Lelli, F; Paoletti, F; Pasqualetti, A; Passaquieti, R; Passuello, D; Poggiani, R; Raffaelli, F; Taddei, R; Vicere, A; Zhang, Z; Frasca, S; Majorana, E; Palomba, C; Perciballi, M; Puppo, P; Rapagnani, P; Ricci, F

    2002-01-01

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress

  4. Startup of the whiteshell irradiation facility

    Science.gov (United States)

    Barnard, J. W.; Stanley, F. W.

    1989-04-01

    Recently, a 10-MeV, 1-kW electron linear accelerator was installed in a specially designed irradiation facility at the Whiteshell Nuclear Research Establishment. The facility was designed for radiation applications research in the development of new radiation processes up to the pilot scale level. The accelerator is of advanced design. Automatic startup via computer control makes it compatible with industrial processing. It has been operated successfully as a fully integrated electron irradiator for a number of applications including curing of plastics and composites, sterilization of medical disposables and animal feed irradiation. We report here on our experience during the first six months of operation.

  5. Reactor Sharing at Rensselaer Critical Facility

    International Nuclear Information System (INIS)

    D. Steiner, D. Harris, T. Trumbull

    2006-01-01

    This final report summarizes the reactor sharing activities at the Rensselaer Critical Facility. An example of a typical tour is also included. Reactor sharing at the RCF brings outside groups into the facility for a tour, an explanation of reactor matters, and a reactor measurement. It has involved groups ranging from high school classes to advanced college groups and in size from a few to about 50 visitors. The RCF differs from other university reactors in that its fuel is like that of large power reactors, and its research and curriculum are dedicated to power reactor matters

  6. Status of the low frequency facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bracci, L [Dipartimento di Fisica, Universita di Firenze, Florence (Italy); Calamai, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Cuoco, E [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Dominici, P [Dipartimento di Fisica, Universita di Firenze, Firenze (Italy); Fabbroni, L [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Guidi, G [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Losurdo, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Martelli, F [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Mazzoni, M [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Stanga, R [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Vetrano, F [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Porzio, A [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ricciardi, I [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Solimeno, S [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ballardin, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Braccini, S [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Bradaschia, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Casciano, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cavalieri, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cecchi, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Dattilo, V [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Virgilio, A Di [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fazzi, M [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Ferrante, I [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fidecaro, F [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy)] [and others

    2002-04-07

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress.

  7. Synchrotron radiation facilities

    CERN Multimedia

    1972-01-01

    Particularly in the past few years, interest in using the synchrotron radiation emanating from high energy, circular electron machines has grown considerably. In our February issue we included an article on the synchrotron radiation facility at Frascati. This month we are spreading the net wider — saying something about the properties of the radiation, listing the centres where synchrotron radiation facilities exist, adding a brief description of three of them and mentioning areas of physics in which the facilities are used.

  8. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  9. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  10. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  11. Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Materials Characterization Facility enables detailed measurements of the properties of ceramics, polymers, glasses, and composites. It features instrumentation...

  12. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  13. Proximal Probes Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Proximal Probes Facility consists of laboratories for microscopy, spectroscopy, and probing of nanostructured materials and their functional properties. At the...

  14. Geospatial Data Analysis Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Geospatial application development, location-based services, spatial modeling, and spatial analysis are examples of the many research applications that this facility...

  15. Facility Environmental Management System

    Data.gov (United States)

    Federal Laboratory Consortium — This is the Web site of the Federal Highway Administration's (FHWA's) Turner-Fairbank Highway Research Center (TFHRC) facility Environmental Management System (EMS)....

  16. Heated Tube Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Heated Tube Facility at NASA GRC investigates cooling issues by simulating conditions characteristic of rocket engine thrust chambers and high speed airbreathing...

  17. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  18. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  19. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  20. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  1. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  2. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  3. Manufacturing Demonstration Facility (MDF)

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Department of Energy Manufacturing Demonstration Facility (MDF) at Oak Ridge National Laboratory (ORNL) provides a collaborative, shared infrastructure to...

  4. Surplus Facilities Management Program

    International Nuclear Information System (INIS)

    Coobs, J.H.

    1983-01-01

    This is the second of two programs that are concerned with the management of surplus facilities. The facilities in this program are those related to commercial activities, which include the three surplus experimental and test reactors [(MSRE, HRE-2, and the Low Intensity Test Reactor (LITR)] and seven experimental loops at the ORR. The program is an integral part of the Surplus Facilities Management Program, which is a national program administered for DOE by the Richland Operations Office. Very briefly reported here are routine surveillance and maintenance of surplus radioactively contaminated DOE facilities awaiting decommissioning

  5. Imagery Data Base Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Imagery Data Base Facility supports AFRL and other government organizations by providing imagery interpretation and analysis to users for data selection, imagery...

  6. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  7. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  8. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  9. Catalytic Fuel Conversion Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility enables unique catalysis research related to power and energy applications using military jet fuels and alternative fuels. It is equipped with research...

  10. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  11. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Lee, H. H.; Kim, K. H. and others

    2000-03-01

    The objectives of this study are (1) the refurbishment for PIEF(Post Irradiation Examination Facility) and M6 hot-cell in IMEF(Irradiated Material Examination Facility), (2) the establishment of the compatible facility for DUPIC fuel fabrication experiments which is licensed by government organization, and (3) the establishment of the transportation system and transportation cask for nuclear material between facilities. The report for this project describes following contents, such as objectives, necessities, scope, contents, results of current step, R and D plan in future and etc.

  12. Facility effluent monitoring plan determinations for the 400 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-09-01

    This Facility Effluent Monitoring Plan determination resulted from an evaluation conducted for the Westinghouse Hanford Company 400 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans. Two major Westinghouse Hanford Company facilities in the 400 Area were evaluated: the Fast Flux Test Facility and the Fuels Manufacturing and examination Facility. The determinations were prepared by Westinghouse Hanford Company. Of these two facilities, only the Fast Flux Test Facility will require a Facility Effluent Monitoring Plan. 7 refs., 5 figs., 4 tabs

  13. Active shooter in educational facility.

    Science.gov (United States)

    Downs, Scott

    2015-01-01

    The last decade has seen several of the most heinous acts imaginable committed against our educational facilities. In light of the recent shooting in Sandy Hook Elementary School in Monroe (Newtown), CT, which took the lives of 20 children and six employees, a new heightened sense of awareness for safety and security among our educational facilities was created.(1) The law enforcement and public-safety community is now looking to work together with many of the educational representatives across the nation to address this issue, which affects the educational environment now and in the future. The US public and private elementary and secondary school systems' population is approximately 55.2 million students with an additional 19.1 million students attending a 2- and 4-year college or university. These same public and private school and degree-granting institutions employ approximately 7.6 million staff members who can be an enormous threshold of potential targets.(2) A terrorist's act, whether domestic, international, or the actions of a Lone Wolf against one of our educational facilities, would create a major rippling effect throughout our nation. Terrorists will stop at nothing to advance their ideology and they must continue to advance their most powerful tool-fear-to further their agenda and mission of destroying our liberty and the advanced civilization of the Western hemisphere. To provide the safety and security for our children and those who are employed to educate them, educational institutions must address this issue as well as nullify the possible threat to our national security. This thesis used official government reports and data interview methodologies to address various concerns from within our nation's educational system. Educational personnel along with safety and security experts identified, describe, and pinpointed the recommended measures that our educational institutions should include to secure our nation from within. These modifications of

  14. Site and facility waste transportation services planning documents

    International Nuclear Information System (INIS)

    Ratledge, J.E.; Schmid, S.; Danese, L.

    1991-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and maintenance of Site- and Facility-Specific Transportation Services Planning Documents (SPDs) and Site-Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities, with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations

  15. Buildings for advanced technology

    CERN Document Server

    Teague, E; Murday, James

    2015-01-01

    This book deals with the design and construction of buildings for nanoscale science and engineering research. The information provided in this book is useful for designing and constructing buildings for such advanced technologies as nanotechnology, nanoelectronics and biotechnology. The book outlines the technology challenges unique to each of the building environmental challenges outlined below and provides best practices and examples of engineering approaches to address them: • Establishing and maintaining critical environments: temperature, humidity, and pressure • Structural vibration isolation • Airborne vibration isolation (acoustic noise) • Isolation of mechanical equipment-generated vibration/acoustic noise • Cost-effective power conditioning • Grounding facilities for low electrical interference • Electromagnetic interference (EMI)/Radio frequency interference (RFI) isolation • Airborne particulate contamination • Airborne organic and chemical contamination • Environment, safety a...

  16. The advanced photon source

    International Nuclear Information System (INIS)

    Galayda, J.N.

    1995-01-01

    The Advanced Photon Source (APS) is a 7-GeV third-generation synchrotron radiation storage ring and full-energy positron injector. Construction project funding began in 1989, and ground breaking took place on 5 May 1990. Construction of all accelerator facilities was completed in January 1995 and storage ring commissioning is underway. First observation of x-rays from a bending magnet source took place on 26 March 1995. Nearly all performance specifications of the injector have been reached, and first observations indicate that the reliability, dynamic aperture, emittance, and orbit stability in the storage ring are satisfactory. Observation of radiation from the first of 20 insertion device beamlines is scheduled for October 1995. Start of regular operations is expected to take place well before the APS Project target date of December 1996

  17. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  18. Advanced calculus

    CERN Document Server

    Fitzpatrick, Patrick M

    2009-01-01

    Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclide

  19. Advanced trigonometry

    CERN Document Server

    Durell, C V; Robson, A

    1950-01-01

    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  20. Green facility location

    NARCIS (Netherlands)

    Velázquez Martínez, J.C.; Fransoo, J.C.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    Transportation is one of the main contributing factors of global carbon emissions, and thus, when dealing with facility location models in a distribution context, transportation emissions may be substantially higher than the emissions due to production or storage. Because facility location models

  1. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  2. Medical cyclotron facilities

    International Nuclear Information System (INIS)

    1984-09-01

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  3. Global Environment Facility |

    Science.gov (United States)

    environment Countries pledge US$4.1 billion to the Global Environment Facility Ringtail lemur mom with two of paradise Nations rally to protect global environment Countries pledge US$4.1 billion to the Global Environment Facility Stockholm, Sweden birds-eye view Events GEF-7 Replenishment Trung Truong Son Landscapes

  4. Samarbejdsformer og Facilities Management

    DEFF Research Database (Denmark)

    Storgaard, Kresten

    Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges.......Resultater fra en surveyundersøgelse om fordele og ulemper ved forskellige samarbejdsformer indenfor Facilities Management fremlægges....

  5. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Park, J. J.; Lee, H. H.; Kim, K. H.

    2002-03-01

    With starting DUPIC fuel fabrication experiment by using spent fuels, 1) operation and refurbishment for DFDF (DUPIC fuel development facility), and 2) operation and improvement of transportation equipment for radioactive materials between facilities became the objectives of this study. This report describes objectives of the project, necessities, state of related technology, R and D scope, R and D results, proposal for application etc

  6. Economics of reusable facilities

    International Nuclear Information System (INIS)

    Antia, D.D.J.

    1992-01-01

    In this paper some of the different economic development strategies that can be used for reusable facilities in the UK, Norway, Netherlands and in some production sharing contracts are outlined. These strategies focus on an integrated decision analysis approach which considers development phasing, reservoir management, tax planning and where appropriate facility purchase, leasing, or sale and leaseback decisions

  7. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  8. Development of In situ Geological Investigation and Test Equipment in KURT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kweon; Kim, Kyung Su; Park, Kyung Woo; Koh, Yong Kweon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    For establishment of the advanced infrastructures of KURT, geological investigation and in situ test equipment were installed. The optical sensor technique could be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc. The micro-seismic monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an underground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures. The straddle packer system for hydro-testing in a deep borehole will lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project

  9. Advances in nuclear science and technology

    CERN Document Server

    Henley, Ernest J

    1970-01-01

    Advances in Nuclear Science and Technology, Volume 5 presents the underlying principles and theory, as well as the practical applications of the advances in the nuclear field. This book reviews the specialized applications to such fields as space propulsion.Organized into six chapters, this volume begins with an overview of the design and objective of the Fast Flux Test Facility to provide fast flux irradiation testing facilities. This text then examines the problem in the design of nuclear reactors, which is the analysis of the spatial and temporal behavior of the neutron and temperature dist

  10. Advanced fuel fabrication

    International Nuclear Information System (INIS)

    Bernard, H.

    1989-01-01

    This paper deals with the fabrication of advanced fuels, such as mixed oxides for Pressurized Water Reactors or mixed nitrides for Fast Breeder Reactors. Although an extensive production experience exists for the mixed oxides used in the FBR, important work is still needed to improve the theoretical and technical knowledge of the production route which will be introduced in the future European facility, named Melox, at Marcoule. Recently, the feasibility of nitride fuel fabrication in existing commercial oxide facilities was demonstrated in France. The process, based on carbothermic reduction of oxides with subsequent comminution of the reaction product, cold pressing and sintering provides (U, Pu)N pellets with characteristics suitable for irradiation testing. Two experiments named NIMPHE 1 and 2 fabricated in collaboration with ITU, Karlsruhe, involve 16 nitride and 2 carbide pins, operating at a linear power of 45 and 73 kW/m with a smear density of 75-80% TD and a high burn-up target of 15 at%. These experiments are currently being irradiated in Phenix, at Marcoule. (orig.)

  11. The advanced neutron source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    The Advanced Neutron Source (ANS), slated for construction start in 1994, will be a multipurpose neutron research laboratory serving academic and industrial users in chemistry, biology, condensed matter physics, nuclear and fundamental physics, materials science and engineering, and many other fields. It will be centered on the world's highest flux neutron beam reactor, operating at 330 MW, with careful design integration between the neutron source and the experiment systems. Many instruments will be situated in low backgrounds at distances up to 80 m from the reactor, using neutron guides with tailored neutron optical coatings for beam transport. Apart from the many stations for neutron scattering research, specialized stations will also be provided for isotope separation on-line, experiments with liquid hydrogen targets, neutron optical techniques such as interferometry, activation analysis, depth profiling, and positron production. Careful consideration has been given to providing a good research environment for visiting scientists, including easy access to the experimental areas, while maintaining a highly secure nuclear facility. This paper will describe the reactor and experimental facilities and give some examples of the types of research for which ANS has been designed

  12. Translational research on advanced therapies

    Directory of Open Access Journals (Sweden)

    Filippo Belardelli

    2011-01-01

    Full Text Available Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  13. Translational research on advanced therapies.

    Science.gov (United States)

    Belardelli, Filippo; Rizza, Paola; Moretti, Franca; Carella, Cintia; Galli, Maria Cristina; Migliaccio, Giovanni

    2011-01-01

    Fostering translational research of advanced therapies has become a major priority of both scientific community and national governments. Advanced therapy medicinal products (ATMP) are a new medicinal product category comprising gene therapy and cell-based medicinal products as well as tissue engineered medicinal products. ATMP development opens novel avenues for therapeutic approaches in numerous diseases, including cancer and neurodegenerative and cardiovascular diseases. However, there are important bottlenecks for their development due to the complexity of the regulatory framework, the high costs and the needs for good manufacturing practice (GMP) facilities and new end-points for clinical experimentation. Thus, a strategic cooperation between different stakeholders (academia, industry and experts in regulatory issues) is strongly needed. Recently, a great importance has been given to research infrastructures dedicated to foster translational medicine of advanced therapies. Some ongoing European initiatives in this field are presented and their potential impact is discussed.

  14. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  15. Neutron skyshine from nuclear facilities

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Hayashi, Katsumi.

    1984-01-01

    The advance in neutron skyshine research and the significance are first described. Then, skyshine calculation methods in 1980s particularly and the skyshine experiment in Japan with various nuclear facilities (reactors, D-T neutron sources, accelerators) are reviewed. In comparison with such experiment usable as bench mark, the skyshine calculation methods (Monte Carlo method, transport calculation method) are evaluated for their accuracy and merits and demerits. The values by Monte Carlo calculation were in agreement within about 30 % with the experimental values. Those by DOT 3.5 calculation were twice as large as the experimental values. Those by PALLAS calculation were in good agreement in dose with the experimental values, but the spectra were considerably different. The values by SKYSHINE-2 were in good agreement with the experimental values, but since the ground effect was ignored, the values may deviate from the experimental ones if it is taken into account. (Mori, K.)

  16. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  17. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  18. ACP Facility Safety Surveillance System Installation

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-10-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hotcell was built in the IMEF basement. All facilities which treat radioactive materials must manage CCTV system which is under control of Health Physics department. Three main points (including hotcell rear door area) have each camera, but operators who are in charge of facility management need to check the safety of the facility immediately through the network in his office. This needs introduce additional network cameras installation and this new surveillance system is expected to update the whole safety control ability with existing system

  19. The SwissFEL Experimental Laser facility.

    Science.gov (United States)

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described.

  20. Access to major overseas research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bolderman, J. W. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year. 1 fig.

  1. Helical coil alignment in the advanced toroidal facility

    International Nuclear Information System (INIS)

    Taylor, D.J.; Cole, M.J.; Johnson, R.L.; Nelson, B.E.; Warwick, J.E.; Whitson, J.C.

    1985-01-01

    This paper presents a brief overview of the helical coil design concept, detailed descriptions of the method for installation and alignment, and discussions of segment installation and alignment equipment. Alignment is accomplished by optical methods using electronic theodolites connected to a microcomputer to form a coordinate measurement system. The coordinate measurement system is described in detail, along with target selection and fixturing for manipulation of the helical coil segments during installation. In addition, software is described including vendor-supplied software used in the coordinate measurement system and in-house-developed software used to calibrate segment and positioning fixture motion. 2 refs., 8 figs

  2. Overview of the ATF [Advanced Toroidal Facility] Program

    International Nuclear Information System (INIS)

    Lyon, J.F.; Aceto, S.C.; Anderson, F.S.B.

    1989-01-01

    Initial operation of ATF showed narrow pressure profiles and second stability behavior at lower beta than expected and revealed uncompensated dipoles in the HF winding leads that have since been corrected. Energy confinement times obtained with neutral beam injection and electron cyclotron heating roughly follow the LHD scaling. However, a plasma collapse is observed with NBI 6 refs., 9 figs

  3. Fluctuations and stability in the Advanced Toroidal Facility (ATF) torsatron

    International Nuclear Information System (INIS)

    Harris, J.H.; Charlton, L.A.; Bell, J.D.; Bigelow, T.S.; Carreras, B.A.; Colchin, R.J.; Crume, E.C.; Dominguez, N.; Dunlap, J.L.; Dyer, G.R.; England, A.C.; Glowienka, J.C.; Hillis, D.L.; Hiroe, S.; Horton, L.D.; Howe, H.C.; Isler, R.C.; Jernigan, T.C.; Leboeuf, J.N.; Lee, D.K.; Lynch, V.E.; Lyon, J.F.; Menon, M.M.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B.; Wing, W.R.; Bell, G.L.; Crocker, N.A.; Hanson, G.R.; Thomas, C.E.; Wade, M.R.; Ritz, C.P.

    1990-01-01

    We present the results of experimental and theoretical studies of fluctuations and instabilities in the ATF torsatron, a type of stellarator. Measurements of globally coherent magnetic fluctuations in high-β plasmas with narrow pressure profiles produced by a field error show evidence of self-stabilization ('second stability'); the trends are compatible with theoretical analysis of self-stabilization of resistive curvature-driven instabilities, but there are discrepancies between the absolute experimental and theoretical fluctuation amplitudes. Fluctuation measurements in plasma with broad pressure profiles reveal new phenomena--specifically, toroidally localized magnetic fluctuations, whose amplitudes increase with plasma pressure, and coherent density fluctuations with significant radial width

  4. Advanced accountability techniques for breeder fuel fabrication facilities

    International Nuclear Information System (INIS)

    Bennion, S.I.; Carlson, R.L.; DeMerschman, A.W.; Sheely, W.F.

    1978-01-01

    The United States Department of Energy (DOE) has assigned the Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, the project lead in developing a uniform nuclear materials reporting system for all contractors on the Hanford Reservation. The Hanford Nuclear Inventory System (HANISY) is based upon HEDL's real-time accountability system, originally developed in 1968. The HANISY system will receive accountability data either from entry by process operators at remote terminals or from nondestructive assay instruments connected to the computer network. Nuclear materials will be traced from entry, through processing to final shipment through the use of minicomputer technology. Reports to DOE will be formed directly from the realtime files. In addition, HEDL has established a measurement program that will complement the HANISY system, providing direct interface to the computer files with a minimum of operator intervention. This technology is being developed to support the High Performance Fuels Laboratory (HPFL) which is being designed to assess fuel fabrication techniques for proliferation-resistant fuels

  5. Ion confinement and radiation losses in the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Isler, R.C.; Colchin, R.J.; Wade, M.R.; Lyon, J.F.; Fowler, R.H.; Rome, J.A.; Hiroe, S.; Baylor, L.R.; England, A.; Ma, C.H.; Rasmussen, D.A.; Ochando, M.; Paul, S.

    1991-01-01

    Collapses of stored energy are typically observed in low-density (anti n e ∼ 10 13 cm -3 ) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 x 10 13 cm -3 . Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas. Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles

  6. HERCULES Advanced Combustion Concepts Test Facility: Spray/Combustion Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme, Zuerich (Switzerland)

    2004-07-01

    This yearly report for 2004 on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, presents a review of work being done within the framework of HERCULES (High Efficiency R and D on Combustion with Ultra Low Emissions for Ships) - the international R and D project concerning new technologies for ships' diesels. The work involves the use and augmentation of simulation models. These are to be validated using experimental data. The report deals with the development of an experimental set-up that will simulate combustion in large two-stroke diesel engines and allow the generation of reference data. The main element of the test apparatus is a spray / combustion chamber with extensive possibilities for optical observation under variable flow conditions. The results of first simulations confirm concepts and shall help in further work on the project. The potential offered by high-speed camera systems was tested using the institute's existing HTDZ combustion chamber. Further work to be done is reviewed.

  7. Development of Advanced Multizone Facilities for Microgravity Processing

    Science.gov (United States)

    1998-01-01

    NASA has been interested in experimental ground based study to investigate the fundamental processes involved in phase transformation processes during growth of metallic, nonmetallic and electronic materials. Solidification, vapor growth and solution growth techniques of growing crystals are of special interest because of the inherent importance of convection in the nutrient solution. Convection enhances the mass transport through the nutrient and results in faster growth rates. Availability of low gravity environment of space has provided scientists a new variable to control the extent of convection and thus isolate the diffusive phenomena for their better understanding. The thermal gradient at the liquid-solid interface is determined by the alloy characteristics, the hot zone temperature, cold zone temperature and the width of the insulating zone. The thermal profiles get established by the existing material and geometrical constraints of the experimental set up. The major effort under this research was devoted to designing a programmable furnace which can be used to obtain thermal profiles along the length of the sample as per the demands of the scientists. The furnace did not have active cooling of the zones. Only active heating and passive cooling were utilized.

  8. ANURIB – Advanced National facility for Unstable and Rare Ion ...

    Indian Academy of Sciences (India)

    because of the delay in the target diffusion and ionization process. VECC has .... quarter wave resonators (QWRs). There will be two .... A 100 kV, 10 mA DC thermoionic gun will be used as an electron source and the beam will be pulsed at ...

  9. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    International Nuclear Information System (INIS)

    Bossart, Steven J.; Blair, Danielle M.

    2003-01-01

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D and D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials

  10. DUPIC facility engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J S; Choi, J W; Go, W I; Kim, H D; Song, K C; Jeong, I H; Park, H S; Im, C S; Lee, H M; Moon, K H; Hong, K P; Lee, K S; Suh, K S; Kim, E K; Min, D K; Lee, J C; Chun, Y B; Paik, S Y; Lee, E P; Yoo, G S; Kim, Y S; Park, J C

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs.

  11. DUPIC facility engineering

    International Nuclear Information System (INIS)

    Lee, J. S.; Choi, J. W.; Go, W. I.; Kim, H. D.; Song, K. C.; Jeong, I. H.; Park, H. S.; Im, C. S.; Lee, H. M.; Moon, K. H.; Hong, K. P.; Lee, K. S.; Suh, K. S.; Kim, E. K.; Min, D. K.; Lee, J. C.; Chun, Y. B.; Paik, S. Y.; Lee, E. P.; Yoo, G. S.; Kim, Y. S.; Park, J. C.

    1997-09-01

    In the early stage of the project, a comprehensive survey was conducted to identify the feasibility of using available facilities and of interface between those facilities. It was found out that the shielded cell M6 interface between those facilities. It was found out that the shielded cell M6 of IMEF could be used for the main process experiments of DUPIC fuel fabrication in regard to space adequacy, material flow, equipment layout, etc. Based on such examination, a suitable adapter system for material transfer around the M6 cell was engineered. Regarding the PIEF facility, where spent PWR fuel assemblies are stored in an annex pool, disassembly devices in the pool are retrofitted and spent fuel rod cutting and shipping system to the IMEF are designed and built. For acquisition of casks for radioactive material transport between the facilities, some adaptive refurbishment was applied to the available cask (Padirac) based on extensive analysis on safety requirements. A mockup test facility was newly acquired for remote test of DUPIC fuel fabrication process equipment prior to installation in the M6 cell of the IMEF facility. (author). 157 refs., 57 tabs., 65 figs

  12. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  13. Status of the advanced photon source

    International Nuclear Information System (INIS)

    Galayda, J.

    1996-01-01

    This report presents general information on the Advanced Photon Source (APS) and then breaks down the APS project into three categories: accelerator systems, experimental facilities, and conventional facilities. The accelerator systems consist of the 7 GeV APS positron storage ring and a 7 GeV positron injector. The experimental facilities include 20 undulator radiation sources and the x-ray beamline components necessary to transport their extraordinarily intense x-ray beams outside the accelerator enclosure. Also included are x-ray beamline components for 20 bending magnet radiation sources. The conventional facilities consist of the accelerator enclosures, a 35,300 m 2 experimental hall to house the x-ray beamlines, an office building for the APS staff and lab/office facilities for the research groups which will construct and operate the first 40 beamlines. APS users are described, and the properties of synchrotron radiation are discussed

  14. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  15. Advanced Pacemaker

    Science.gov (United States)

    1990-01-01

    Synchrony, developed by St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.) is an advanced state-of-the-art implantable pacemaker that closely matches the natural rhythm of the heart. The companion element of the Synchrony Pacemaker System is the Programmer Analyzer APS-II which allows a doctor to reprogram and fine tune the pacemaker to each user's special requirements without surgery. The two-way communications capability that allows the physician to instruct and query the pacemaker is accomplished by bidirectional telemetry. APS-II features 28 pacing functions and thousands of programming combinations to accommodate diverse lifestyles. Microprocessor unit also records and stores pertinent patient data up to a year.

  16. Prospects for high-power radioactive beam facilities worldwide

    CERN Document Server

    Nolen, Jerry A

    2003-01-01

    Advances in accelerators, targets, ion sources, and experimental instrumentation are making possible ever more powerful facilities for basic and applied research with short-lived radioactive isotopes. There are several current generation facilities, based on a variety of technologies, operating worldwide. These include, for example, those based on the in-flight method such as the recently upgraded National Superconducting Cyclotron Laboratory at Michigan State University, the facility at RIKEN in Japan, GANIL in Caen, France, and GSI in Darmstadt, Germany. Present facilities based on the Isotope-Separator On-Line method include, for example, the ISOLDE laboratory at CERN, HRIBF at Oak Ridge, and the new high-power facility ISAC at TRIUMF in Vancouver. Next-generation facilities include the Radioactive-Ion Factory upgrade of RIKEN to higher energy and intensity and the upgrade of ISAC to a higher energy secondary beam; both of these projects are in progress. A new project, LINAG, to upgrade the capabilities at...

  17. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  18. Sustainable Facilities Management

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Elle, Morten; Hoffmann, Birgitte

    2004-01-01

    The Danish public housing sector has more than 20 years of experience with sustainable facilities management based on user involvement. The paper outlines this development in a historical perspective and gives an analysis of different approaches to sustainable facilities management. The focus...... is on the housing departments and strateies for the management of the use of resources. The research methods used are case studies based on interviews in addition to literature studies. The paper explores lessons to be learned about sustainable facilities management in general, and points to a need for new...

  19. WORKSHOPS: Hadron facilities

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    'Hadron facilities' – high intensity (typically a hundred microamps), medium energy (30-60 GeV) machines producing intense secondary beams of pions, kaons, etc., are being widely touted as a profitable research avenue to supplement what is learned through the thrust for higher and higher energies. This interest was reflected at an International Workshop on Hadron Facility Technology, held in Santa Fe, New Mexico. As well as invited talks describing the various projects being pushed in the US, Europe and Japan, the meeting included working groups covering linacs, beam dynamics, hardware, radiofrequency, polarized beams and experimental facilities

  20. Radioactive facilities classification criteria

    International Nuclear Information System (INIS)

    Briso C, H.A.; Riesle W, J.

    1992-01-01

    Appropriate classification of radioactive facilities into groups of comparable risk constitutes one of the problems faced by most Regulatory Bodies. Regarding the radiological risk, the main facts to be considered are the radioactive inventory and the processes to which these radionuclides are subjected. Normally, operations are ruled by strict safety procedures. Thus, the total activity of the radionuclides existing in a given facility is the varying feature that defines its risk. In order to rely on a quantitative criterion and, considering that the Annual Limits of Intake are widely accepted references, an index based on these limits, to support decisions related to radioactive facilities, is proposed. (author)