WorldWideScience

Sample records for advanced hydrogen transport

  1. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  2. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephen; Frank E. Anderson; Shandra Ratnasamy; Jon P. Wagner; Clive Brereton

    2004-01-30

    The objective of this project is to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites with hydrogen permeable alloys. The primary technical challenge in achieving the goals of this project will be to optimize membrane composition to enable practical hydrogen separation rates and chemical stability. Other key aspects of this developing technology include catalysis, ceramic processing methods, and separation unit design operating under high pressure. To achieve these technical goals, Eltron Research Inc. has organized a consortium consisting of CoorsTek, Sued Chemie, Inc. (SCI), Argonne National Laboratory (ANL), and NORAM. Hydrogen permeation rates in excess of 50 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were routinely achieved under less than optimal experimental conditions using a range of membrane compositions. Factors that limit the maximum permeation attainable were determined to be mass transport resistance of H{sub 2} to and from the membrane surface, as well as surface contamination. Mass transport resistance was partially overcome by increasing the feed and sweep gas flow rates to greater than five liters per minute. Under these experimental conditions, H2 permeation rates in excess of 350 mL {center_dot} min{sup -1} {center_dot} cm{sup 2} at {approx}440 C were attained. These results are presented in this report, in addition to progress with cermets, thin film fabrication, catalyst development, and H{sub 2} separation unit scale up.

  3. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Harold A. Wright; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-10-31

    During this quarter composite layered membrane size was scaled-up and tested for permeation performance. Sintering conditions were optimized for a new cermet containing a high permeability metal and seals were developed to allow permeability testing. Theoretical calculations were performed to determine potential sulfur tolerant hydrogen dissociation catalysts. Finally, work was finalized on mechanical and process & control documentation for a hydrogen separation unit.

  4. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-04-30

    During this quarter long term and high pressure hydrogen separation experiments were performed on Eltron's composite layered membranes. Membranes were tested at 400 C and a 300 psig feed stream with 40% hydrogen for up to 400 continuous hours. In addition membranes were tested up to 1000 psig as demonstration of the ability for this technology to meet DOE goals. Progress was made in the development of new hydrogen separation cermets containing high permeability metals. A sulfur tolerant catalyst deposition technique was optimized and engineering work on mechanical and process & control reports was continued.

  5. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Jim Fisher; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangla; Clive Brereton; Warren Wolfs; James Lockhart

    2005-01-28

    During this quarter work was continued on characterizing the stability of layered composite membranes under a variety of conditions. Membrane permeation was tested up to 100 hours at constant pressure, temperature, and flow rates. In addition, design parameters were completed for a scale-up hydrogen separation demonstration unit. Evaluation of microstructure and effect of hydrogen exposure on BCY/Ni cermet mechanical properties was initiated. The fabrication of new cermets containing high permeability metals is reported and progress in the preparation of sulfur resistant catalysts is discussed. Finally, a report entitled ''Criteria for Incorporating Eltron's Hydrogen Separation Membranes into Vision 21 IGCC Systems and FutureGen Plants'' was completed.

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Richard Treglio; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-07-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates as high as 423 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was investigated by comparison to composite alloy membranes. Permeation of alloyed membranes showed a strong dependence on the alloying element. Impedance analysis was used to investigate bulk and grain boundary conductivity in cermets. Thin film cermet deposition procedures were developed, hydrogen dissociation catalysts were evaluated, and hydrogen separation unit scale-up issues were addressed.

  7. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    International Nuclear Information System (INIS)

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur

  8. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; Adam E. Calihman; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Mahendra Sunkara; Jyothish Thangala; Clive Brereton; Warren Wolfs; James Lockhart

    2005-07-29

    During this quarter catalyst stability studies were performed on Eltron's composite layered membranes. In addition, permeation experiments were performed to determine the effect of crystallographic orientation on membrane performance. Sintering conditions were optimized for preparation of new cermets containing high permeability metals. Theoretical calculations were performed to determine potential sulfur tolerant catalysts. Finally, work was continued on mechanical and process & control documentation for a hydrogen separation unit.

  9. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  10. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard T. Treglio; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Clive Brereton; Warren Wolfs; James Lockhart

    2004-10-21

    During this quarter, work was focused on characterizing the stability of layered composite membranes in a one hundred percent permeate environment. Permeation data was also collected on cermets as a function of thickness. A thin film deposition procedure was used to deposit dense thin BCY/Ni onto a tubular porous support. Thin film tubes were then tested for permeation at ambient pressure. Process flow diagrams were prepared for inclusion of hydrogen separation membranes into IGCC power plants under varying conditions. Finally, membrane promoted alkane dehydrogenation experiments were performed.

  11. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Joesph Fadok

    2008-01-01

    advanced hydrogen turbine that meets the aggressive targets set forth for the advanced hydrogen turbine, including increased rotor inlet temperature (RIT), lower total cooling and leakage air (TCLA) flow, higher pressure ratio, and higher mass flow through the turbine compared to the baseline. Maintaining efficiency with high mass flow Syngas combustion is achieved using a large high AN2 blade 4, which has been identified as a significant advancement beyond the current state-of-the-art. Preliminary results showed feasibility of a rotor system capable of increased power output and operating conditions above the baseline. In addition, several concepts were developed for casing components to address higher operating conditions. Rare earth modified bond coat for the purpose of reducing oxidation and TBC spallation demonstrated an increase in TBC spallation life of almost 40%. The results from Phase 1 identified two TBC compositions which satisfy the thermal conductivity requirements and have demonstrated phase stability up to temperatures of 1850 C. The potential to join alloys using a bonding process has been demonstrated and initial HVOF spray deposition trials were promising. The qualitative ranking of alloys and coatings in environmental conditions was also performed using isothermal tests where significant variations in alloy degradation were observed as a function of gas composition. Initial basic system configuration schematics and working system descriptions have been produced to define key boundary data and support estimation of costs. Review of existing materials in use for hydrogen transportation show benefits or tradeoffs for materials that could be used in this type of applications. Hydrogen safety will become a larger risk than when using natural gas fuel as the work done to date in other areas has shown direct implications for this type of use. Studies were conducted which showed reduced CO{sub 2} and NOx emissions with increased plant efficiency. An approach to

  12. Advanced Hydrogen Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Siemens Energy, Inc., Orlando, FL (United States)

    2015-09-30

    Under the sponsorship of the U.S. Department of Energy (DOE) National Energy Technology Laboratories, Siemens has completed the Advanced Hydrogen Turbine Development Program to develop an advanced gas turbine for incorporation into future coal-based Integrated Gasification Combined Cycle (IGCC) plants. All the scheduled DOE Milestones were completed and significant technical progress was made in the development of new technologies and concepts. Advanced computer simulations and modeling, as well as subscale, full scale laboratory, rig and engine testing were utilized to evaluate and select concepts for further development. Program Requirements of: A 3 to 5 percentage point improvement in overall plant combined cycle efficiency when compared to the reference baseline plant; 20 to 30 percent reduction in overall plant capital cost when compared to the reference baseline plant; and NOx emissions of 2 PPM out of the stack. were all met. The program was completed on schedule and within the allotted budget

  13. Spin Transport in Hydrogenated Graphene

    OpenAIRE

    Soriano, David; Van Tuan, Dinh; Dubois, Simon M. -M.; Gmitra, Martin; Cummings, Aron W.; Kochan, Denis; Ortmann, Frank; Charlier, Jean-Christophe; Fabian, Jaroslav; Roche, Stephan

    2015-01-01

    In this review we discuss the multifaceted problem of spin transport in hydrogenated graphene from a theoretical perspective. The current experimental findings suggest that hydrogenation can either increase or decrease spin lifetimes, which calls for clarification. We first discuss the spin-orbit coupling induced by local $\\sigma-\\pi$ re-hybridization and ${\\bf sp}^{3}$ C-H defect formation together with the formation of a local magnetic moment. First-principles calculations of hydrogenated g...

  14. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-04-30

    This is the third quarterly progress report for Year 3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between Jan. 1, 2002 and Mar. 31, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop, progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); and (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Affonso Lourenco; Evren Ozbayoglu; Lei Zhou

    2002-01-30

    This is the second quarterly progress report for Year 3 of the ACTS project. It includes a review of progress made in: (1) Flow Loop development and (2) research tasks during the period of time between Oct 1, 2001 and Dec. 31, 2001. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Collection System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  19. The Palm Desert Renewable Hydrogen Transportation System

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P. [Humboldt State Univ., Arcata, CA (United States)

    1996-10-01

    The present paper describes, for purposes of the Department of Energy (DoE) Hydrogen Program Review, Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period January through June 1996. This period represents the first six months of the three year project. The estimated cost over three years is $3.9M, $1.859M of which is funded by the DoE ($600 k for fiscal year 1996). The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project will demonstrate the practical utility of hydrogen as a transportation fuel and proton exchange membrane (PEM) fuel cells as vehicle power plants. This transportation system will be developed in the City of Palm Desert in southern California and will include a fleet of 8 fuel cell powered vehicles, solar and wind powered hydrogen generating facilities, a consumer-ready refueling station, and a service infrastructure. The system holds the promise of a clean environment and an energy supply that is predictable, domestic, safe, and abundant. During, the first part of 1996 SERC has nearly completed building a fuel cell powered personal utility vehicle, which features an upgraded safety and computer system; they have designed and built a test bench that is able to mimic golf cart loads and test fuel cell system auxiliary components; they have begun the design of the solar hydrogen generating station; they have worked with Sandia National Laboratory on an advanced metal hydride storage system; they have increased the power density of the SERC fuel cell by as much as 50%; and they have reached out to the rest of the world with a new fact sheet, world wide web pages, a press release, video footage for a television program. and instruction within the community.

  20. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  1. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  2. Hydrogen in Passenger Transport: A macroeconomic analysis

    OpenAIRE

    Mennel, Tim; Jokisch, Sabine

    2007-01-01

    Hydrogen is often seen as a promising future energy carrier given the major reliance of today?s transport sector on finite fossil fuels. This working paper assesses the macroeconomic effects of introducing hydrogen as fuel in passenger transport within the framework of the computable general equilibrium (CGE) model PACE-T(H2). Our simulation results suggest small improvements in the macroeconomic performance in almost all European countries from the introduction of hydrogen. The magnitude of ...

  3. Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites

    NARCIS (Netherlands)

    Singh, S.; Eijt, S.W.H.

    2008-01-01

    We report ab initio calculations based on density-functional theory, of the vacancy-mediated hydrogen migration energy in bulk NaH and near the NaH(001) surface. The estimated rate of the vacancy mediated hydrogen transport, obtained within a hopping diffusion model, is consistent with the reaction

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  5. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  6. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-04-30

    Experiments on the flow loop are continuing. Improvements to the software for data acquisition are being made as additional experience with three-phase flow is gained. Modifications are being made to the Cuttings Injection System in order to improve control and the precision of cuttings injection. The design details for a drill-pipe Rotation System have been completed. A US Patent was filed on October 28, 2002 for a new design for an instrument that can generate a variety of foams under elevated pressures and temperatures and then transfer the test foam to a viscometer for measurements of viscosity. Theoretical analyses of cuttings transport phenomena based on a layered model is under development. Calibrations of two nuclear densitometers have been completed. Baseline tests have been run to determine wall roughness in the 4 different tests sections (i.e. 2-in, 3-in, 4-in pipes and 5.76-in by 3.5-in annulus) of the flow loop. Tests have also been conducted with aerated fluids at EPET conditions. Preliminary experiments on the two candidate aqueous foam formulations were conducted which included rheological tests of the base fluid and foam stability reports. These were conducted after acceptance of the proposal on the Study of Cuttings Transport with Foam Under Elevated Pressure and Elevated Temperature Conditions. Preparation of a test matrix for cuttings-transport experiments with foam in the ACTF is also under way. A controller for instrumentation to measure cuttings concentration and distribution has been designed that can control four transceivers at a time. A prototype of the control circuit board was built and tested. Tests showed that there was a problem with radiated noise. AN improved circuit board was designed and sent to an external expert to verify the new design. The new board is being fabricated and will first be tested with static water and gravel in an annulus at elevated temperatures. A series of viscometer tests to measure foam properties have

  8. Hydrogen generation in tru waste transportation packages

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B; Sheaffer, M K; Fischer, L E

    2000-03-27

    This document addresses hydrogen generation in TRU waste transportation packages. The potential sources of hydrogen generation are summarized with a special emphasis on radiolysis. After defining various TRU wastes according to groupings of material types, bounding radiolytic G-values are established for each waste type. Analytical methodologies are developed for prediction of hydrogen gas concentrations for various packaging configurations in which hydrogen generation is due to radiolysis. Representative examples are presented to illustrate how analytical procedures can be used to estimate the hydrogen concentration as a function of time. Methodologies and examples are also provided to show how the time to reach a flammable hydrogen concentration in the innermost confinement layer can be estimated. Finally, general guidelines for limiting the hydrogen generation in the payload and hydrogen accumulation in the innermost confinement layer are described.

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test

  10. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  11. Advances in transport phenomena 2011

    CERN Document Server

    2014-01-01

    This new volume of the annual review “Advances in Transport Phenomena” series contains three in-depth review articles on the microfluidic fabrication of vesicles, the dielectrophoresis field-flow fractionation for continuous-flow separation of particles and cells in microfluidic devices, and the thermodynamic analysis and optimization of heat exchangers, respectively.

  12. Advanced compressed hydrogen fuel storage systems

    International Nuclear Information System (INIS)

    Dynetek was established in 1991 by a group of private investors, and since that time efforts have been focused on designing, improving, manufacturing and marketing advanced compressed fuel storage systems. The primary market for Dynetek fuel systems has been Natural Gas, however as the automotive industry investigates the possibility of using hydrogen as the fuel source solution in Alternative Energy Vehicles, there is a growing demand for hydrogen storage on -board. Dynetek is striving to meet the needs of the industry, by working towards developing a fuel storage system that will be efficient, economical, lightweight and eventually capable of storing enough hydrogen to match the driving range of the current gasoline fueled vehicles

  13. Hydrogen transport and storage in engineered microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rambach, G. [Lawrence Livermore National Lab., CA (United States); Hendricks, C. [W.J. Schafer Associates, Livermore, CA (United States)

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  14. Storage of hydrogen in advanced high pressure container. Appendices

    International Nuclear Information System (INIS)

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  15. Hydrogen vacancies facilitate hydrogen transport kinetics in sodium hydride nanocrystallites

    OpenAIRE

    Singh, S.(Panjab University, Chandigarh, India); Eijt, S.W.H.

    2008-01-01

    We report ab initio calculations based on density-functional theory, of the vacancy-mediated hydrogen migration energy in bulk NaH and near the NaH(001) surface. The estimated rate of the vacancy mediated hydrogen transport, obtained within a hopping diffusion model, is consistent with the reaction rates of H-D exchange in nano-NaH at the relatively low temperatures observed in recent neutron studies on TiCl3-doped NaAlH4. We further obtained the formation energy for hydrogen vacancies and in...

  16. Advanced Transport Operating Systems Program

    Science.gov (United States)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  17. Hydrogen for transportation: available Canadian technology

    International Nuclear Information System (INIS)

    To cut greenhouse gas (GHG) emissions deeply while allowing sustainable development, only nuclear power offers an emissions-free way to provide electricity for traditional applications and to provide energy for the transportation sector (using nuclear-produced hydrogen). Applying hydrogen generated from nuclear energy (supplemented where appropriate by other near-zero GHG-emitting energy sources) to transportation doubles or triples nuclear's leverage in reducing GHG emissions. Hydrogen (H2) produced by the steam reforming of natural gas offers little advantage in total cycle GHG emissions over hybrid ICE technology. The technology for replacing hydrocarbons with non-GHG-emitting H2 is available in electrolysis and fuel cells, using existing electric grids to provide distribution. No technical obstacles are evident and the world should be moving urgently towards total emissions-free transportation. (author)

  18. Systematic Discrimination of Advanced Hydrogen Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  19. Hydrogen infrastructure for the transport sector

    International Nuclear Information System (INIS)

    The aim of this paper is to review the factors already discussed in the literature and identify gaps or issues which seem to require further debate in relation of the introduction of hydrogen in the transport sector. Studies in the academic and grey literature have analysed transport systems with a rather wide range of hydrogen penetration rates, utilisation of the infrastructure, hypotheses on the dynamics of the systems, capital costs of the infrastructure and hydrogen price. Most of the issues which could widen the debate in the literature are related to policy instruments. In particular, more attention should be paid to the policy instruments needed to foster co-ordination among stakeholders, persuade drivers to buy hydrogen vehicles despite the existence of a sparse infrastructure; guarantee investment in the early, possibly loss-making, retail stations and to foster financially sustainable government commitments. The effect of limited availability of hydrogen vehicle models on the penetration rates in the literature and the sensitivity of the hydrogen price to taxation from the government are other two issues deserving a more in-depth discussion. (author)

  20. The Palm Desert renewable [hydrogen] transportation system

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlin, C.E.; Lehman, P. [Humboldt State Univ., Arcata, CA (United States). Schatz Energy Research Center

    1998-08-01

    This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehicle diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.

  1. Hydrogen transport studies using neutron radiography

    International Nuclear Information System (INIS)

    Neutron cross-sections and their angular and energy-dependence as characteristics of neutron interaction with hydrogen isotopes and compounds are presented. It is shown how deuteration and different molecular modifications (e.g. ortho and parahydrogen) affect the cross-sections and hence the beam attenuation. A comparison of neutron radiographic methods with other neutron techniques used for hydrogen detection is made and the necessary formalism to describe diffusion processes is given. The results obtained by neutron radiography on the measurement of hydrogen motion in various substances are reviewed, in particular diffusion measurements made on liquids (water, liquid hydrogen and methanol) and of hydrogen in metals (β-titanium, vanadium, niobium and tantalum). Finally, neutron-radiographic measurements of water transport in concrete and of carburetor icing are discussed. The advantages of the high detection efficiency of hydrogen by neutron radiography and the integral sample scan technique are simultaneously used for such measurements. Some typical results of this detection method in the field of physical and applied research are shown. (author)

  2. Advanced IGCC/Hydrogen Gas Turbine Development

    Energy Technology Data Exchange (ETDEWEB)

    York, William [General Electric Company, Schenectady, NY (United States); Hughes, Michael [General Electric Company, Schenectady, NY (United States); Berry, Jonathan [General Electric Company, Schenectady, NY (United States); Russell, Tamara [General Electric Company, Schenectady, NY (United States); Lau, Y. C. [General Electric Company, Schenectady, NY (United States); Liu, Shan [General Electric Company, Schenectady, NY (United States); Arnett, Michael [General Electric Company, Schenectady, NY (United States); Peck, Arthur [General Electric Company, Schenectady, NY (United States); Tralshawala, Nilesh [General Electric Company, Schenectady, NY (United States); Weber, Joseph [General Electric Company, Schenectady, NY (United States); Benjamin, Marc [General Electric Company, Schenectady, NY (United States); Iduate, Michelle [General Electric Company, Schenectady, NY (United States); Kittleson, Jacob [General Electric Company, Schenectady, NY (United States); Garcia-Crespo, Andres [General Electric Company, Schenectady, NY (United States); Delvaux, John [General Electric Company, Schenectady, NY (United States); Casanova, Fernando [General Electric Company, Schenectady, NY (United States); Lacy, Ben [General Electric Company, Schenectady, NY (United States); Brzek, Brian [General Electric Company, Schenectady, NY (United States); Wolfe, Chris [General Electric Company, Schenectady, NY (United States); Palafox, Pepe [General Electric Company, Schenectady, NY (United States); Ding, Ben [General Electric Company, Schenectady, NY (United States); Badding, Bruce [General Electric Company, Schenectady, NY (United States); McDuffie, Dwayne [General Electric Company, Schenectady, NY (United States); Zemsky, Christine [General Electric Company, Schenectady, NY (United States)

    2015-07-30

    The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CC efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first

  3. Advanced nickel-hydrogen spacecraft battery development

    Science.gov (United States)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-02-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  4. Geometry, stability and thermal transport of hydrogenated graphene nanoquilts

    OpenAIRE

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-01-01

    Geometry, stability, and thermal transport of graphene nanoquilts folded by hydrogenation are studied using molecular dynamics simulations. The hydrogenated graphene nanoquilts show increased thermodynamic stability and better transport properties than folded graphene structures without hydrogenation. For the two-fold graphene nanoquilt, both geometry and thermal conductivity are very sensitive to the adsorbed hydrogen chains, which is interpreted by the red-shift of PDOS. For the multi-fold ...

  5. Recent work in advanced hydrogen production concepts

    Science.gov (United States)

    Lawson, D. D.

    1981-01-01

    The hydrogen photoelectrolytic conversion activity investigated the practicability of semiconductor electrolytic devises that use solar energy to decompose water into hydrogen and oxygen in an apparent single step process. The photocatalytic decomposition of inorganic hydrogen compounds; i.e., hydrobromic and hydriodic acids using rhodium organic bridge complexes were also studied. The feasibility of direct high temperature thermal decompositions of water with diffusion processes for separation of the equilibrium mixture of hydrogen and oxygen into usable energy sources was examined.

  6. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  7. Integrated Hydrogen and Intelligent Transportation Systems Evaluation for the California Department of Transportation

    OpenAIRE

    Lipman, Timothy; Shaheen, Susan

    2005-01-01

    This "Integrated Hydrogen/Intelligent Transportation Systems Evaluation for the California Department of Transportation" project was conceived to investigate hydrogen activities in the State and around the U.S. that might impact the California Department of Transportation's (Caltrans) operations. The project is intended to review these activities and to suggest potential interesting applications of combined hydrogen and intelligent transportation system (ITS) technologies. This project was co...

  8. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  9. Hydrogen from Biomass for Urban Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Boone, William

    2008-02-18

    The objective of this project was to develop a method, at the pilot scale, for the economical production of hydrogen from peanut shells. During the project period a pilot scale process, based on the bench scale process developed at NREL (National Renewable Energy Lab), was developed and successfully operated to produce hydrogen from peanut shells. The technoeconomic analysis of the process suggests that the production of hydrogen via this method is cost-competitive with conventional means of hydrogen production.

  10. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    Science.gov (United States)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  11. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    Science.gov (United States)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  12. Characterization of hydrogen embrittlement in automotive advanced high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, O.; Veith, S.; Goebel, T. [BMW Group, Muenchen (Germany); Loidl, M.

    2011-12-15

    Hydrogen embrittlement is the limiting factor when it comes to the utilization of advanced highest strength steels in a car body frame. Steels with a tensile strength of greater than 1000 MPa are deemed to be susceptible to hydrogen induced delayed fracture and therefore are not yet widely used. To characterize the deleterious effects of hydrogen embrittlement in advanced highest strength steels the slow strain rate testing in gaseous hydrogen atmosphere is a suitable method for investigating the effect of hydrogen on the materials ductility. Additionally the hydrogen content after slow strain rate testing was measured by means of thermal desorption spectroscopy. By using this technique it is possible to differentiate between diffusible and trapped hydrogen. Diffusible hydrogen may interact with dislocations and therefore changes the fracture behaviour of metals. This was also documented by analysing the fracture surface of the tensile specimen by optical and scanning electron microscopy. The investigations yield a comprehensive view on the susceptibility towards hydrogen induced cracking and allow a comparative view among different steel grades. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. An advanced negative hydrogen ion source

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, Alexey A., E-mail: gonchar@iop.kiev.ua; Dobrovolsky, Andrey N.; Goretskii, Victor P. [Institute of Physics National Academy of Science in Ukraine, Kiev 03028 (Ukraine)

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  14. Hydrogen for road transport: implementations and developments; L'hydrogene pour le transport sur route: realisations et developpements

    Energy Technology Data Exchange (ETDEWEB)

    Junker, M.; Bocquet, L.; Bendif, M.; Karboviac, D. [Alphea, 57 - Forbach (France)

    2000-07-01

    The different technologies for the use of hydrogen in the road transport are overviewed: type of propulsion (fuel cell and electric motor or internal combustion motor), hydrogen production, on-board storage, infrastructure. The aspects of safety, standardization and regulation are approached too. At the present time, main of the hydrogen buses are equipped with polymer membrane cells (PEMFC), directly supplied in hydrogen and stored in tanks under pressure (300 bars). On the other hand, the automobile manufacturers are developing different types of prototypes: internal combustion engines with liquid hydrogen storage, PEM cell cars with hydrogen storage (liquid, gas or hydrides) or with methanol storage. The infrastructure type will depend on the primary fuel chosen by the automobile manufacturers and on the requirements of the petroleum firms. Several hydrogen service stations have been constructed. They deliver hydrogen, on a gaseous or liquid state; the hydrogen being produced by natural gas reforming or by electrolysis. The setting of a 'Hydrogen system' require indeed the development of specific means of production, transport, distribution and storage. The public acceptance will be won by safeguards of safety, reliability, performance and competitiveness. The research and development studies are nowadays particularly centred on: 1)the on-board hydrogen storage 2)the on-board systems of hydrogen production from methanol and gasoline 3)the standardization and regulation. (O.M.)

  15. Novel sugar-to-hydrogen technology promises transportation fuel independence

    OpenAIRE

    Trulove, Susan

    2007-01-01

    The hydrogen economy is not a futuristic concept. The U.S. Department of Energy's 2006 Advance Energy Initiative calls for competitive ethanol from plant sources by 2012 and a good selection of hydrogen-powered fuel cell vehicles by 2020.

  16. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  17. Advanced Reactors Thermal Energy Transport for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  18. Well-To-Wheel Analysis of Solar Produced Hydrogen for Future Transportation Systems

    International Nuclear Information System (INIS)

    Hydrogen production, transport, and usage in future passenger car transportation systems is compared for selected solar and conventional hydrogen production technologies using a comprehensive life cycle assessment (LCA) approach. Solar scenarios show distinctly lower greenhouse gas (GHG) emissions than fossil-based scenarios. For example, using solar produced hydrogen in fuel cell cars reduces life cycle GHG emissions by 75% compared to advanced gasoline vehicles and by more than 90% if car and road infrastructure are not considered. Utilization of solar produced hydrogen has the potential of reducing fossil energy requirements by a factor of up to 10 compared to conventional technologies. Environmental impacts are associated with the construction of the steel-intensive infrastructure for concentrating solar power plants due to mineral and fossil resource consumption as well as discharge of pollutants related to today's non-sustainable steel production technology. (authors)

  19. Storage of hydrogen in advanced high pressure container. Final report for PSO projekt

    International Nuclear Information System (INIS)

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  20. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  1. Hydrogen production for transportation fuels using nuclear energy

    International Nuclear Information System (INIS)

    We have been developing solid-oxide cells for the efficient High Temperature Electrolytic (HTE) production of hydrogen using the heat and electricity of advanced nuclear reactors. This team, which includes Ceramatec, Inc. of Salt Lake City, ANL and UNL V, has been conducting experiments at progressively larger sizes and longer durations to build on the technology developed for solid-oxide fuel cells and to investigate the technical challenges unique to electrolytic operation. By operating at temperatures of 800-850 deg. C, the cell voltage of the electrolyzer can be reduced by about 40% from the room temperature voltage and the reaction rates are much faster at the high temperatures. The planar cells are electrolyte-supported and consist of 0.150 mm- thick yttria- or scandia-stablized zirconia. The use of precious metals has been avoided in the design. The inlet to the cells is 90 v/o steam, 10 v/o hydrogen, while the outlet is about 25 v/o steam and 75 v/o hydrogen. The hydrogen in the inlet is needed to maintain reducing conditions on the nickel-cermet electrode. In addition to producing hydrogen, we have been conducting a series of experiments in which the O-2 ion-conducting electrolytes can be used for the co-electrolysis of CO2 as well as H2O. The resulting CO + 2 H2 mixture ('synthesis gas') can serve as feedstock in the Fischer Tropsch reaction for the formation of liquid fuels, such as gasoline, diesel and jet fuel and of synthetic lubricating oils. This process, which we have named Syntrolysis, is potentially a direct application of nuclear energy to the production of synthetic fuels very similar to the conventional transportation fuels we now use. We have conducted studies of the use of nuclear-generated hydrogen in the upgrading of heavy crude oil, oil sands and for coal to liquids processes. By using nuclear energy, instead of fossil fuels, for the production of the necessary hydrogen, the carbon dioxide emissions from the overall process can be greatly

  2. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  3. Influence of hydrogen chemisorption kinetics on the interpretation of hydrogen transport through iron membranes

    Science.gov (United States)

    Shanabarger, M. R.; Taslami, A.; Nelson, H. G.

    1981-01-01

    The influence of a specific surface reaction on the transport of gas-phase hydrogen through iron membranes has been investigated on the basis of model calculations. The surface reaction involves an adsorbed molecular hydrogen precursor between the gas phase and the dissociated chemisorbed state. The calculations demonstrate that the surface reaction for the H2/Fe system makes significant contributions to the time delay associated with the transient hydrogen transport through iron membranes, even under conditions where the steady-state hydrogen transport is independent of the surface reaction. These contributions to the time delay are interpreted in terms of an effective diffusivity, which is a function of the pressure on the entrance side and the thickness of the membrane.

  4. ALS liquid hydrogen turbopump: Advanced Development Program

    Science.gov (United States)

    Shimp, Nancy R.; Claffy, George J.

    1989-01-01

    The point of departure (POD) turbopump concept was reviewed and finalized. The basis for the POD was the configuration presented in the Aerojet proposal. After reviewing this proposal concept, several modifications were made. These modifications include the following: (1) the dual pump discharge arrangement was changed to a single discharge; (2) commonality of the turbine inlet manifold with the advanced launch system (ALS) liquid oxygen (LOX) TPA was dropped for this program; (3) the turbine housing flange arrangement was improved by relocating it away from the first stage nozzles; (4) a ten percent margin (five percent diameter increase) was built into the impeller design to ensure meeting the required discharge pressure without the need for increasing speed; (5) a ten percent turbine power margin was imposed which is to be obtained by increasing turbine inlet pressure if required; and (6) the backup concept, as an alternative to the use of cast impellers, now incorporates forged/machined shrouded impellers, rather than the unshrouded type originally planned.

  5. The supply security of hydrogen as transport fuel

    OpenAIRE

    Hansen, Anders Chr.

    2007-01-01

    The impact that hydrogen and fuel cell technology can have on the security of European transport fuel supply is addressed in this paper. This impact depends primarily on the primary energy commodities that serve as feedstock in the production of hydrogen. Natural gas as feedstock does not provide any improvement of security of supply. Coal with carbon capturing and sequestration provides in some respects a more secure supply of energy as will nuclear power. Renewable electricit...

  6. No facilitator required for membrane transport of hydrogen sulfide

    OpenAIRE

    Mathai, John C.; Missner, Andreas; Kügler, Philipp; Saparov, Sapar M.; Zeidel, Mark L.; Lee, John K.; Pohl, Peter

    2009-01-01

    Hydrogen sulfide (H2S) has emerged as a new and important member in the group of gaseous signaling molecules. However, the molecular transport mechanism has not yet been identified. Because of structural similarities with H2O, it was hypothesized that aquaporins may facilitate H2S transport across cell membranes. We tested this hypothesis by reconstituting the archeal aquaporin AfAQP from sulfide reducing bacteria Archaeoglobus fulgidus into planar membranes and by monitoring the resulting fa...

  7. Hydrogen embrittlement of the Ni-base alloy 600 correlated with hydrogen transport by dislocations

    International Nuclear Information System (INIS)

    Hydrogen transport by dislocations is one of the mechanisms reported in the literature to be responsible for the hydrogen embrittlement (H.E.) of some metals even if it needs to be associated with one or several cracking mechanisms. This study brings new evidence of dislocation sweeping of hydrogen and some arguments in favor of its contribution to the H.E. mechanism of alloy 600 (Ni-Cr-Fe). A study of tritium desorption assisted by the plastic deformation has been conducted by coupling a β counting technique and a tensile test. The experimental results obtained with alloy 600 strongly support the mechanism of hydrogen transport by dislocations. The H.E. characteristics of alloy 600 have been measured on smooth tensile specimens in relationship with the microstructure and the testing conditions. The influence of different parameters including the prestrain level, the strain rate and the temperature supports the role of hydrogen transport in the embrittlement process and the existence of local hydrogen enrichment associated with dislocations pile-ups. (orig.)

  8. Hydrogen Embrittlement of Automotive Advanced High-Strength Steels

    Science.gov (United States)

    Lovicu, Gianfranco; Bottazzi, Mauro; D'Aiuto, Fabio; De Sanctis, Massimo; Dimatteo, Antonella; Santus, Ciro; Valentini, Renzo

    2012-11-01

    Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.

  9. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  10. Analytical modelling of hydrogen transport in reactor containments

    International Nuclear Information System (INIS)

    A versatile computational model of hydrogen transport in nuclear plant containment buildings is developed. The background and significance of hydrogen-related nuclear safety issues are discussed. A computer program is constructed that embodies the analytical models. The thermofluid dynamic formulation spans a wide applicability range from rapid two-phase blowdown transients to slow incompressible hydrogen injection. Detailed ancillary models of molecular and turbulent diffusion, mixture transport properties, multi-phase multicomponent thermodynamics and heat sink modelling are addressed. The numerical solution of the continuum equations emphasizes both accuracy and efficiency in the employment of relatively coarse discretization and long time steps. Reducing undesirable numerical diffusion is addressed. Problem geometry options include lumped parameter zones, one dimensional meshs, two dimensional Cartesian or axisymmetric coordinate systems and three dimensional Cartesian or cylindrical regions. An efficient lumped nodal model is included for simulation of events in which spatial resolution is not significant. Several validation calculations are reported

  11. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  12. Transport modeling and advanced computer techniques

    International Nuclear Information System (INIS)

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  13. Chill Down Process of Hydrogen Transport Pipelines

    Science.gov (United States)

    Mei, Renwei; Klausner, James

    2006-01-01

    A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.

  14. CLEAN HYDROGEN TECHNOLOGY FOR 3-WHEEL TRANSPORTATION IN INDIA

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Sapru

    2005-11-15

    Hydrogen is a clean burning, non-polluting transportation fuel. It is also a renewable energy carrier that can be produced from non-fossil fuel resources such as solar, wind and biomass. Utilizing hydrogen as an alternative fuel for vehicles will diversify the resources of energy, and reduce dependence on oil in the transportation sector. Additionally, clean burning hydrogen fuel will also alleviate air pollution that is a very severe problem in many parts of world, especially major metropolitan areas in developing countries, such as India and China. In our efforts to foster international collaborations in the research, development, and demonstration of hydrogen technologies, through a USAID/DOE cost-shared project, Energy Conversion Devices, Inc.,(www.ovonic.com) a leading materials and alternative energy company, in collaboration with Bajaj Auto Limited, India's largest three-wheeler taxi manufacturer, has successfully developed and demonstrated prototype hydrogen ICE three-wheelers in the United States and India. ECD's proprietary Ovonic solid-state hydrogen storage technology is utilized on-board to provide a means of compact, low pressure, and safe hydrogen fuel. These prototype hydrogen three-wheelers have demonstrated comparable performance to the original CNG version of the vehicle, achieving a driving range of 130 km. The hydrogen storage system capable of storing 1 kg hydrogen can be refilled to 80% of its capacity in about 15 minutes at a pressure of 300 psi. The prototype vehicles developed under this project have been showcased and made available for test rides to the public at exhibits such as the 16th NHA annual meeting in April 2005, Washington, DC, and the SIAM (Society of Indian Automotive Manufacturers) annual conference in August 2005, New Delhi, India. Passengers have included members of the automotive industry, founders of both ECD and Bajaj, members of the World Bank, the Indian Union Minister for Finance, the President of the Asia

  15. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 1019 m-3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  16. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    OpenAIRE

    Barazesh, JM; Hennebel, T; Jasper, JT; Sedlak, DL

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low con...

  17. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  18. Externalities of the transport sector and the role of hydrogen in a sustainable transport vision

    International Nuclear Information System (INIS)

    Transport systems perform vital societal functions, but in their present state cannot be considered 'sustainable'. One of the most controversially discussed long-term solutions to climate change and air emission externalities is the introduction of hydrogen as an energy fuel and fuel cell vehicles. In this paper, we integrate the two debates on the sustainability of today's transport systems and on the opportunities, threats and possible transition paths towards a 'hydrogen economy' in road transport. We focus our analysis on developed countries as well as the specific needs of the fast growing markets for car travel in the emerging economies. We conclude that the use of hydrogen can significantly reduce CO2 emissions of the transport sector, even if taking into account tailpipe and upstream emissions as well as alternative technology developments. Moreover, local air pollutants can be reduced up to 80%. Possible negative impacts, including accident risks, nuclear waste or increased biomass demand, need to be benchmarked against these benefits. Thus, we highlight the need for integrated energy and transport policies and argue for more reflexive and inclusive societal debate about the impacts and beneficiaries of hydrogen transport technologies

  19. The rate-limiting process of hydrogen transport in Mo

    Energy Technology Data Exchange (ETDEWEB)

    Ohkoshi, Keishiro; Chikazawa, Yoshitaka; Bandourko, V.; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen isotope transport characteristics of Mo, whose refractory properties are considered to be suitable as plasma facing material, was investigated by applying 3 keV D{sub 2}{sup +} beam to the membrane specimen. The Arrhenius plot of deuterium permeation probability showed linear increase against the reciprocal temperature and its apparent activation energy was determined as 41.5 kJ/mol. The simultaneous irradiation of 3 keV Ar{sup +} onto backside surface of specimen had little effect on the deuterium permeation rate. According to these results, the rate-limiting process of deuterium transport in Mo was determined. (author)

  20. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  1. Distribution and transport of hydrogen in the lithospheric mantle: A review

    Science.gov (United States)

    Demouchy, Sylvie; Bolfan-Casanova, Nathalie

    2016-01-01

    The minerals constituting the Earth's upper mantle are nominally anhydrous silicates (NAMs). However they do contain hydrogen as a trace element, decorating point defects in their crystalline structure. Experimental petrology and mineralogy have quantified the maximum concentration under several compositional and thermodynamic conditions, but systematic studies on the hydrogen concentration in minerals from mantle-derived rocks have only recently been carried out. Here, we have compiled the distribution of hydrogen in upper mantle peridotite xenoliths, from which several conclusions can be drawn. NAMs from peridotite xenoliths contain a few ppm wt. H2O in their structure. From the current database, the hydrogen concentrations in olivine regularly increase with increasing depth. The amount of hydrogen in NAMs from peridotite xenoliths from subduction contexts is not higher than in other geological context for similar temperature and pressure conditions. The highest hydrogen concentrations is found in peridotitic olivines from cratonic mantle, and are likely due to the depth of origin. The increasing hydrogen concentration in olivine with increasing depth is likely controlled by the increase of H partitioning into olivine at the expense of orthopyroxene as imposed by a decrease in Al content in opx with depth. However, the sparse data could also indicate that the bulk hydrogen concentration slightly increases with depth > 150 km. In this case, it would suggest, locally (Udachnaya for example), a possible increase in water fugacity due to fluid saturation. Even if the most abundant mineral in mantle rocks is olivine, the bulk hydrogen concentration in peridotites is controlled by the amount of hydrogen stored in pyroxenes. However, hydrogen concentration in olivine remains crucial for consequences on physical properties such as rheology and electrical conductivity. Kinetics of hydrogen transport is reviewed and hydrous melt/fluid percolation appears necessary to

  2. Hydrogen - the answer to our prayer for low carbon transport?

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Albert; Kershaw, Ian; Vinke, Jan [Ricardo Strategic Consulting GmbH, Muenchen (Germany)

    2008-07-01

    As political, social and economic pressure mounts, the automotive industry needs low carbon solutions - but how do we get there? Despite higher fuel prices and pressure to reduce vehicle CO{sub 2} in many countries, consumers assume limited personal responsibility for reducing carbon emissions from their road transport. The automotive industry is challenged with developing low carbon vehicles without compromise on cost, performance or practicality. The options for reducing CO{sub 2} emissions from road transport range from improved traffic management and driving behaviour, to improved vehicle technologies. Incremental efficiency improvements will be the most cost-effective way of improving powertrains, while economics and availability will continue to limit use of fuel cells, hydrogen and biofuels. We propose an evolutionary route of downsized combustion engines, increasing hybrid electric capability and more biofuel blends, supplemented by lower carbon plug-in electric power for short journeys. The transition to low carbon transport will require policies to encourage consumer demand. (orig.)

  3. Advanced hydrogen/oxygen thrust chamber design analysis

    Science.gov (United States)

    Shoji, J. M.

    1973-01-01

    The results are reported of the advanced hydrogen/oxygen thrust chamber design analysis program. The primary objectives of this program were to: (1) provide an in-depth analytical investigation to develop thrust chamber cooling and fatigue life limitations of an advanced, high pressure, high performance H2/O2 engine design of 20,000-pounds (88960.0 N) thrust; and (2) integrate the existing heat transfer analysis, thermal fatigue and stress aspects for advanced chambers into a comprehensive computer program. Thrust chamber designs and analyses were performed to evaluate various combustor materials, coolant passage configurations (tubes and channels), and cooling circuits to define the nominal 1900 psia (1.31 x 10 to the 7th power N/sq m) chamber pressure, 300-cycle life thrust chamber. The cycle life capability of the selected configuration was then determined for three duty cycles. Also the influence of cycle life and chamber pressure on thrust chamber design was investigated by varying in cycle life requirements at the nominal chamber pressure and by varying the chamber pressure at the nominal cycle life requirement.

  4. CREATION OF AUTORECIPIENTS FOR STORAGE, TRANSPORTATIONS AND DELIVERIES OF THE COMPRESSED HYDROGEN

    OpenAIRE

    Павлов, Н. В.

    2015-01-01

    Growing use of hydrogen in various industries and predictable in the near future a change to hydrogen economy make actual the creation of automobile recipients for transportation and storages of the hydrogen compressed up to high pressures. For substantiation of development of automobile hydrogen recipient the comparison of some parameters (specific consumption of energy, specific volume) three possible systems of storage: compressed hydrogen; hydrogen in liquid kind at cryogenic temperatures...

  5. Conventional and advanced containers for LPG transport

    Energy Technology Data Exchange (ETDEWEB)

    Hausen, J.

    1982-04-08

    For the purpose of storage and transport, natural gas, petroleum gas, and chemical gases, must be liquefied. They are either transported in pressure or cooling vessels or in a combined type of vessel. Membrane tanks and solid tanks have been developed for LNG transport. These tanks are made of aluminium alloys or nickel steels. The production expenditure of the present systems is high. Savings may be possible by using plastics. Investigations have already shown good results.

  6. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    Energy Technology Data Exchange (ETDEWEB)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  7. Storage of hydrogen in advanced high pressure container. Appendices; Lagring af brint i avancerede hoejtryksbeholdere. Appendiks 1

    Energy Technology Data Exchange (ETDEWEB)

    Bentzen, J.J.; Lystrup, A. [Forskningscenter Risoe, Roskilde (Denmark)

    2005-07-15

    The objective of the project has been to study barriers for a production of advanced high pressure containers especially suitable for hydrogen, in order to create a basis for a container production in Denmark. The project has primarily focused on future Danish need for hydrogen storage in the MWh area. One task has been to examine requirement specifications for pressure tanks that can be expected in connection with these stores. Six potential storage needs have been identified: (1) Buffer in connection with start-up/regulation on the power grid. (2) Hydrogen and oxygen production. (3) Buffer store in connection with VEnzin vision. (4) Storage tanks on hydrogen filling stations. (5) Hydrogen for the transport sector from 1 TWh surplus power. (6) Tanker transport of hydrogen. Requirements for pressure containers for the above mentioned use have been examined. The connection between stored energy amount, pressure and volume compared to liquid hydrogen and oil has been stated in tables. As starting point for production technological considerations and economic calculations of various container concepts, an estimation of laminate thickness in glass-fibre reinforced containers with different diameters and design print has been made, for a 'pure' fibre composite container and a metal/fibre composite container respectively. (BA)

  8. Method of making a hydrogen transport membrane, and article

    Science.gov (United States)

    Schwartz, Joseph M.; Corpus, Joseph M.; Lim, Hankwon

    2015-07-21

    The present invention relates to a method of manufacturing a hydrogen transport membrane and the composite article itself. More specifically, the invention relates to producing a membrane substrate, wherein the ceramic substrate is coated with a metal oxide slurry, thereby eliminating the need for an activation step prior to plating the ceramic membrane through an electroless plating process. The invention also relates to modifying the pore size and porosity of the substrate by oxidation or reduction of the particles deposited by the metal oxide slurry.

  9. Chemical Kinetic Modeling of Advanced Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  10. Transport coefficients of plasmas in mixtures of nitrogen and hydrogen

    International Nuclear Information System (INIS)

    Graphical abstract: The transport coefficients of thermal plasmas depend strongly on temperature, pressure and composition. This is illustrated here using calculated values of the thermal conductivity of mixtures of nitrogen and hydrogen; the percentages are by volume. Highlights: ► Transport coefficients of plasmas in nitrogen–hydrogen mixtures were calculated. ► Combined diffusion coefficients were determined. ► The temperature range was 300–30,000 K and the pressure range 0.1–5 atm. ► The accuracy of different mixing rules was checked. ► The small differences from literature data are due to changed collision integrals. - Abstract: Calculated values of the viscosity, thermal conductivity and electrical conductivity of nitrogen and mixtures of nitrogen and hydrogen, including ammonia and hydrazine, at high temperatures are presented. Combined ordinary, pressure, temperature and electric field diffusion coefficients are also given for the mixtures. The calculations, which assume local thermodynamic equilibrium, are performed for plasmas in the temperature range from 300 to 30,000 K and the pressure range from 0.1 to 5 atm. The results are compared with those of previously published studies. Reasonable and in some cases very good agreement is found; those discrepancies that exist are attributed to the improved values of the some of the collision integrals used here. Different mixing rules are tested, with two found to give very good results: that of Yun et al. [K.-S. Yun, S. Weissman, E.A. Mason, Phys. Fluids 5 (1962) 672] for the viscosity and thermal conductivity, and a simple interpolation weighted by mole fraction for the electrical conductivity.

  11. Proton and hydrogen transport through two-dimensional monolayers

    Science.gov (United States)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  12. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    Directory of Open Access Journals (Sweden)

    Tatiana Morosuk

    2012-02-01

    Full Text Available Steam methane reforming (SMR is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered. One of the tools under development for the improvement of energy conversion systems from the thermodynamic viewpoint is the advanced exergetic analysis. In this paper, the avoidable part of the exergy destruction is estimated and the interactions among components of the overall system are evaluated in terms of endogenous and exogenous exergy destruction. The assumptions required for these calculations are discussed in detail, especially for those components that are typically used in chemical processes. Results of this paper suggest options for increasing the thermodynamic efficiency of hydrogen production by steam-methane reforming.

  13. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  14. Advanced Transport Systems Showcased in La Rochelle

    OpenAIRE

    Alessandrini, Adriano; Parent, Michel; Holguin, Carlos

    2011-01-01

    International audience CityMobil project, a large integrated project co-funded by DG RESEARCH of the European Commission, organized in La Rochelle an advanced city car showcase in which it gave to the citizens the possibility to ride driverless vehicles. 256 users where interviewed. Responses where very positive with all indicators passing the threshold of positive acceptance; only the perception of safety was on the threshold but not above. Such positive response of the citizens to the ne...

  15. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  16. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  17. Advances in materials for room temperature hydrogen sensors.

    Science.gov (United States)

    Arya, Sunil K; Krishnan, Subramanian; Silva, Hayde; Jean, Sheila; Bhansali, Shekhar

    2012-06-21

    Hydrogen (H(2)), as a source of energy, continues to be a compelling choice in applications ranging from fuel cells and propulsion systems to feedstock for chemical, metallurgical and other industrial processes. H(2), being a clean, reliable, and affordable source, is finding ever increasing use in distributed electric power generation and H(2) fuelled cars. Although still under 0.1%, the distributed use of H(2) is the fastest growing area. In distributed H(2) storage, distribution, and consumption, safety continues to be a critical aspect. Affordable safety systems for distributed H(2) applications are critical for the H(2) economy to take hold. Advances in H(2) sensors are driven by specificity, reliability, repeatability, stability, cost, size, response time, recovery time, operating temperature, humidity range, and power consumption. Ambient temperature sensors for H(2) detection are increasingly being explored as they offer specificity, stability and robustness of high temperature sensors with lower operational costs and significantly longer operational lifetimes. This review summarizes and highlights recent developments in room temperature H(2) sensors. PMID:22582176

  18. Recent advances in mass transport in materials

    CERN Document Server

    Ochsner, Andreas

    2012-01-01

    The present topical volume presents a representative cross-section of some recent advances made in the area of diffusion. The range of topics covered is very large, and, this reflects the enormous breadth of the topic of diffusion. The areas covered include diffusion in intermetallics, phenomenological diffusion theory, diffusional creep, kinetics of steel-making, diffusion in thin films, precipitation, diffusional phase transformations, atomistic diffusion simulations, epitaxial growth and diffusion in porous media. Review from Book News Inc.: In 13 invited and peer-reviewed papers, scientist

  19. Advanced lithium battery chemistries for sustainable transportation

    OpenAIRE

    Monaco, Simone

    2014-01-01

    The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first i...

  20. Who farted? Hydrogen sulphide transport from Bardarbunga to Scandinavia

    CERN Document Server

    Grahn, Håkan; Brännström, Niklas

    2015-01-01

    On September 9 2014 several incidences of foul smell (rotten eggs) were reported on the coast of Norway (in particular in the vicinity of Molde) and then on September 10 in the interior parts of county V\\"asterbotten, Sweden. One of the theories that were put forward was that the foul smell was due to degassing of the Bardarbunga volcano on Iceland. Using satellite images (GOME-1,-2) of the sulphur dioxide, SO_2, contents in the atmosphere surrounding Iceland to estimate flux of SO_2 from the volcano and an atmospheric transport model, PELLO, we vindicate this theory: we argue that the cause for the foul smell was hydrogen sulphide originating from Bardarbunga. The model concentrations are also compared to SO_2 concentration measurements from Muonio, Finland.

  1. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  2. Modeling and analysis of hydrogen detonation events in the Advanced Neutron Source reactor containment

    International Nuclear Information System (INIS)

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure

  3. Modeling and analysis of hydrogen detonation events in the advanced neutron source reactor containment

    International Nuclear Information System (INIS)

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure. (author)

  4. Advancing Transportation through Vehicle Electrification - PHEV

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the development of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.

  5. Atom-hydrogen energy and influence of transport pollution to the environment

    International Nuclear Information System (INIS)

    Full text : The justification of feasibility of atomic-hydrogen energy is important to take into consideration of the results of comparative analysis of environmental impact of combustion of organic fuels and hydrogen. The use of gasoline, natural gas and hydrogen in the transport sector leads to various impacts on environment. The assessment of environmental impact

  6. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    Science.gov (United States)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  7. Assessment of the impact of advanced air-transport technology

    Science.gov (United States)

    Maxwell, R. L.; Dickinson, L. V., Jr.

    1981-01-01

    The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

  8. Hydrogen recycling and transport in the helical divertor of TEXTOR

    International Nuclear Information System (INIS)

    observed. Its absence can be explained using an extended two point model including heat convection applied to the region dominated by parallel transport (laminar region). The radial penetration depth of the neutral hydrogen particles (λn ∼ 3-4 cm) estimated from spectroscopic measurements was found to be often larger than the varying radial extent of this laminar region (few mm up to 6 cm) which finally leads to convective heat transport reducing parallel temperature gradients. Increasing the radial extent of the laminar region especially in front of the divertor strike points could lead to an improvement in this respect and provide access to a high recycling regime. The radiation instability developing at high plasma densities in the helical divertor in TEXTOR is preceded by a transient partial detachment of the plasma from the divertor target plates and leads to the formation of a poloidally structured and helically inclined radiating belt, a helical divertor MARFE. While typically leading to a density limit disruption, this MARFE has been stabilised using a feedback system and could provide some divertor functionality such as low target temperature, increased neutral density and increased radiation within the stochastic boundary. Simulations using two different cross-field transport coefficients showed, that an agreement is only found at a certain level of cross-field transport (D perpendicularto =1 m2s-1). The inclusion of carbon impurities in the simulations results in the experimentally observed reduction of the recycling flux. (orig.)

  9. Hydrogen recycling and transport in the helical divertor of TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Clever, Meike

    2010-07-01

    observed. Its absence can be explained using an extended two point model including heat convection applied to the region dominated by parallel transport (laminar region). The radial penetration depth of the neutral hydrogen particles ({lambda}{sub n} {approx} 3-4 cm) estimated from spectroscopic measurements was found to be often larger than the varying radial extent of this laminar region (few mm up to 6 cm) which finally leads to convective heat transport reducing parallel temperature gradients. Increasing the radial extent of the laminar region especially in front of the divertor strike points could lead to an improvement in this respect and provide access to a high recycling regime. The radiation instability developing at high plasma densities in the helical divertor in TEXTOR is preceded by a transient partial detachment of the plasma from the divertor target plates and leads to the formation of a poloidally structured and helically inclined radiating belt, a helical divertor MARFE. While typically leading to a density limit disruption, this MARFE has been stabilised using a feedback system and could provide some divertor functionality such as low target temperature, increased neutral density and increased radiation within the stochastic boundary. Simulations using two different cross-field transport coefficients showed, that an agreement is only found at a certain level of cross-field transport (D {sub perpendicular} {sub to} =1 m{sup 2}s{sup -1}). The inclusion of carbon impurities in the simulations results in the experimentally observed reduction of the recycling flux. (orig.)

  10. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    Science.gov (United States)

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  11. Air Force funded researcher engineers enzymes to advance the hydrogen economy

    OpenAIRE

    Trulove, Susan

    2007-01-01

    Y. H. Percival Zhang, assistant professor of biological systems engineering at Virginia Tech, has received an Air Force Young Investigator award to advance development of an onboard process to convert a cellulosic material into hydrogen to power fuel cell vehicles.

  12. Recent advances in catalytic asymmetric hydrogenation:Renaissance of the monodentate phosphorus ligands

    Institute of Scientific and Technical Information of China (English)

    GUO Hongchao; DING Kuiling; DAI Lixin

    2004-01-01

    The history for the development of chiral phosphorus ligands in catalytic asymmetric hydrogenation is briefly highlighted. This review focuses on the recent advances in the synthesis of the monodentate phosphorus ligands and their applications in catalytic asymmetric hydrogenation. The examples highlighted in this article clearly demonstrated the importance and advantages of monodentate phosphorus ligands, which had been ignored for 30 a and experienced a renaissance at the very beginning of this millennium, particularly in the area of asymmetric hydrogenation.

  13. Hydrogen diffusion and trapping in Ti-modified advanced high strength steels

    OpenAIRE

    Winzer, N.; Rott, O; Thiessen, R.; Thomas, I.; Mraczek, K.; Hoche, T.; Wright, L; Mrovec, M.

    2016-01-01

    The influence of Ti on hydrogen diffusion and trapping in various advanced high strength steels was investigated. Electrochemical hydrogen permeation tests were performed on various model steels, with and without Ti, with benchmark tests performed using a commercial steel variant. The hydrogen trapping parameters for each steel were determined by fitting the permeation curves with a finite element model based on the McNabb and Foster equations using least squares minimisation. The influence o...

  14. Hydrogen transport on graphene: Competition of mobility and desorption

    OpenAIRE

    Borodin, V. A.; Vehviläinen, T. T.; Ganchenkova, M. G.; Nieminen, Risto M.

    2011-01-01

    The results of molecular dynamics (MD) simulations of atomic hydrogen kinetics on graphene are presented. The simulations involve a combination of approaches based on Brenner carbon-hydrogen potential and first-principles force calculations. Both kinds of MD calculations predict very similar qualitative trends and reproduce equally well the features of hydrogen behavior, even such sophisticated modes as long correlated jump chains. Both approaches agree that chemisorbed hydrogen diffusion on ...

  15. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Ervice Pouokam

    2016-01-01

    Full Text Available Hydrogen sulfide (H2S is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a “gasotransmitter.” A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations.

  16. From oil sands to transportation fuels, to electricity, to hydrogen

    International Nuclear Information System (INIS)

    The Alberta Chamber of Resources programs and initiatives on oil sands and heavy oil, and strategies for revitalizing oilsands development in Alberta are described. The regional upgrader and satellite production facilities concept, and technology requirements for mineable oil sands by the year 2010 are discussed. Strategic alliances in furtherence of oil sands research and development and the National Task Force on Oil Sands Strategies are described. Changes in requirements for transportation fuels due to stricter regulations and environmental initiatives will cause a trend to lighter fuels with more hydrogen content, less aromatics, nitrogen, sulfur and metals. A preferred refinery configuration will be able to process heavier crudes and synthetic crudes, have no heavy fuel oil product, low sulfur products, low aromatics with high octane, and low operating cost. A regional or central facility that combines the processing capabilities of a bitumen upgrader with the process units of a refinery is preferred. Advantages of this concept are: value addition to the feedstock is maximized; dependence on refineries is eliminated; restriction on synthetic crude oil volumes due to capacity limitations at refineries is eliminated; directly marketable finished products are produced; more stringent quality specifications are satisfied; and the synergies between upgrading and refining improve overall economics of processing. It is recommended that the concept of regional upgraders be adopted for Alberta, strategic alliances be encouraged, incentives for bitumen production be provided, and a bitumen pipeline network be developed. 12 refs

  17. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies, including...

  18. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies including...

  19. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  20. Parametric evaluation of large-scale high-temperature electrolysis hydrogen production using different advanced nuclear reactor heat sources

    International Nuclear Information System (INIS)

    High-temperature electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800-950 oC, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an intermediate heat exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed with the objective of evaluating the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency of the integrated plant design for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

  1. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Evenson; Anthony F. Sammells; Richard Mackay; Scott R. Morrison; Sara L. Rolfe; Richard Blair; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Chandra Ratnasamy; Jon P. Wagner; Clive Brereton; Warren Wolfs

    2004-04-26

    During this quarter, work was focused on testing layered composite membranes under varying feed stream flow rates at high pressure. By optimizing conditions, H{sub 2} permeation rates in excess of 400 mL {center_dot} min{sup -1} {center_dot} cm{sup -2} at 440 C were measured. Membrane stability was characterized by repeated thermal and pressure cycling. The effect of cermet grain size on permeation was determined. Finally, progress is summarized on thin film cermet fabrication, catalyst development, and H{sub 2} separation unit scale up.

  2. Advanced Transport Operating System (ATOPS) control display unit software description

    Science.gov (United States)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  3. Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store

    Directory of Open Access Journals (Sweden)

    Jianfeng Mao

    2015-01-01

    Full Text Available The development of new practical hydrogen storage materials with high volumetric and gravimetric hydrogen densities is necessary to implement fuel cell technology for both mobile and stationary applications. NaBH4, owing to its low cost and high hydrogen density (10.6 wt%, has received extensive attention as a promising hydrogen storage medium. However, its practical use is hampered by its high thermodynamic stability and slow hydrogen exchange kinetics. Recent developments have been made in promoting H2 release and tuning the thermodynamics of the thermal decomposition of solid NaBH4. These conceptual advances offer a positive outlook for using NaBH4-based materials as viable hydrogen storage carriers for mobile applications. This review summarizes contemporary progress in this field with a focus on the fundamental dehydrogenation and rehydrogenation pathways and properties and on material design strategies towards improved kinetics and thermodynamics such as catalytic doping, nano-engineering, additive destabilization and chemical modification.

  4. Hydrogen

    OpenAIRE

    John O’M. Bockris

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the...

  5. Advanced Transport Operating System (ATOPS) utility library software description

    Science.gov (United States)

    Clinedinst, Winston C.; Slominski, Christopher J.; Dickson, Richard W.; Wolverton, David A.

    1993-01-01

    The individual software processes used in the flight computers on-board the Advanced Transport Operating System (ATOPS) aircraft have many common functional elements. A library of commonly used software modules was created for general uses among the processes. The library includes modules for mathematical computations, data formatting, system database interfacing, and condition handling. The modules available in the library and their associated calling requirements are described.

  6. Advanced rocket propulsion technology assessment for future space transportation

    Science.gov (United States)

    Wilhite, A. W.

    1982-01-01

    Single-stage and two-stage launch vehicles were evaluated for various levels of propulsion technology and payloads. The evaluation included tradeoffs between ascent flight performance and vehicle sizing that were driven by engine mass, specific impulse, and propellant requirements. Numerous mission, flight, and vehicle-related requirements and constraints were satisfied in the design process. The results showed that advanced technology had a large effect on reducing both single- and two-stage vehicle size. High-pressure hydrocarbon-fueled engines that were burned in parallel with two-position nozzle hydrogen-fueled engines reduced dry mass by 23% for the two-stage vehicle and 28% for the single-stage vehicle as compared to an all-hydrogen-fueled system. The dual-expander engine reduced single-stage vehicle dry mass by 41%. Using advanced technology, the single-stage vehicle became comparable in size and sensitivity to that of the two-stage vehicle for small payloads.

  7. Environmental impact of road transport in Portugal and effects of hydrogen technologies penetration

    OpenAIRE

    Travassos, Maria Antónia; Sá, A. I. Correia de; Luz, Paulo P. da; Rangel, C. M.

    2008-01-01

    Road traffic is one of the transportation sectors with faster growth due to the of vehicle fleets increase and a strong investment in road infrastructure and also one of the most important emitters of greenhouse gases (GHGs).With introduction, in this sector, of a new renewable fuel, like hydrogen, a reduction of the reported pollutant is foreseen. In this work, an analysis of the environmental benefits resulting from the introduction of hydrogen on road transport in Portugal is made. Impact ...

  8. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  9. Transport modeling and gyrokinetic analysis of advanced high performance discharges

    International Nuclear Information System (INIS)

    Predictive transport modeling and gyrokinetic stability analyses of demonstration hybrid (HYBRID) and Advanced Tokamak (AT) discharges from the International Tokamak Physics Activity (ITPA) profile database are presented. Both regimes have exhibited enhanced core confinement (above the conventional ITER reference H-mode scenario) but differ in their current density profiles. Recent contributions to the ITPA database have facilitated an effort to study the underlying physics governing confinement in these advanced scenarios. In this paper, we assess the level of commonality of the turbulent transport physics and the relative roles of the transport suppression mechanisms (i.e. ExB shear and Shafranov shift (α) stabilization) using data for select HYBRID and AT discharges from the DIII-D, JET, and AUG tokamaks. GLF23 transport modeling and gyrokinetic stability analysis indicates that ExB shear and Shafranov shift stabilization play essential roles in producing the improved core confinement in both HYBRID and AT discharges. Shafranov shift stabilization is found to be more important in AT discharges than in HYBRID discharges. We have also examined the competition between the stabilizing effects of ExB shear and Shafranov shift stabilization and the destabilizing effects of higher safety factors and parallel velocity shear. Linear and nonlinear gyrokinetic simulations of idealized low and high safety factor cases reveals some interesting consequences. A low safety factor (i.e. HYBRID relevant) is directly beneficial in reducing the transport, and ExB shear stabilization can win out over parallel velocity shear destabilization allowing the turbulence to be quenched. However, at low-q/high current, Shafranov shift stabilization plays less of a role. Higher safety factors (as found in AT discharges), on the other hand, have larger amounts of Shafranov shift stabilization, but parallel velocity shear destabilization can prevent ExB shear quenching of the turbulent

  10. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  11. Environmental impact assessment of the penetration of hydrogen technologies in Portugal's road transport

    OpenAIRE

    Travassos, Maria Antónia; Sá, A. I. Correia de; Luz, Paulo P. da; Rangel, C. M.

    2009-01-01

    Road traffic is one of the transportation sectors with faster growth and also one of the most important emitters of greenhouse gases (GHGs). In this work, an analysis of the environmental benefits resulting from the introduction of hydrogen on road transport in Portugal is made. Impact is analyzed mainly looking at the pollutant emissions provided by road transport at the point of use. Emissions associated to road transport have been estimated using the software COPERT (version 4), since it p...

  12. Penetration of hydrogen technologies: study on the environmental impact of road transport in Portugal

    OpenAIRE

    Travassos, Maria Antónia; Sá, A. I. Correia de; Luz, Paulo P. da; Rangel, C. M.

    2008-01-01

    Road traffic is one of the transportation sectors with faster growth and also one of the most important emitters of greenhouse gases (GHGs). In this work, an analysis of the environmental benefits resulting from the introduction of hydrogen on road transport in Portugal is made. Impact is analyzed mainly looking at the pollutant emissions provided by road transport at the point of use. Emissions associated to road transport have been estimated using the software COPERT (version 4), since it p...

  13. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  14. Advances in nickel hydrogen technology at Yardney Battery Division

    Science.gov (United States)

    Bentley, J. G.; Hall, A. M.

    1987-01-01

    The current major activites in nickel hydrogen technology being addressed at Yardney Battery Division are outlined. Five basic topics are covered: an update on life cycle testing of ManTech 50 AH NiH2 cells in the LEO regime; an overview of the Air Force/industry briefing; nickel electrode process upgrading; 4.5 inch cell development; and bipolar NiH2 battery development.

  15. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    OpenAIRE

    Morosuk, Tatiana; Boyano, Alicia; Blanco-Marigorta, Ana-Maria; Tsatsaronis, George

    2012-01-01

    Steam methane reforming (SMR) is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered....

  16. Hydrogen transport through stainless steel under plasma irradiation

    Science.gov (United States)

    Airapetov, A. A.; Begrambekov, L. B.; Kaplevsky, A. S.; Sadovskiy, Ya A.

    2016-01-01

    The paper presents the results of investigation of gas exchange through stainless steel surface of the plasma chamber under irradiation with hydrogen atoms in oxygen atmosphere or oxygen contaminated hydrogen plasma. Dependence of this process on various irradiation parameters, such as the metal temperature, energy of irradiating ions, gas composition of plasma are studied. It is shown, that desorption from stainless steel is activated with the increase of the plasma chamber walls temperature and energy of irradiating ions. Hydrogen release occurs also under irradiation of the walls by helium and argon plasmas added with oxygen, however the amount of released hydrogen is several times lower than in the case of irradiation with oxygen contaminated deuterium plasma.

  17. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  18. Modelling the Global Transportation Systems for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzanowski, D.A.; Kypreos, S.

    2004-03-01

    A modelling analysis of the transportation system is described, focused on the market penetration of different transportation technologies (including Learning-by-Doing) until the year 2050. A general outline of the work and first preliminary results are presented. (author)

  19. Hydrogen Vent Ground Umbilical Quick Disconnect - Flight Seal Advanced Development

    Science.gov (United States)

    Girard, Doug; Jankowski, Fred; Minich, Mark C.; Yu, Weiping

    2012-01-01

    This project is a team effort between NASA Engineering (NE) and Team QNA Engineering personnel to provide support for the Umbilical Systems Development project which is funded by Advanced Exploration Systems (AES) and 21st Century Launch Complex. Specifically, this project seeks to develop a new interface between the PPBE baselined Legacy SSP LH2 Vent Arm QD probe and SLS vent seal.

  20. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  1. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    Science.gov (United States)

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  2. A study on hydrogen mixing and transport in the containment

    International Nuclear Information System (INIS)

    This report deals with the regulation and research status for hydrogen burn that can be occurred in severe accidents and the possibility of the local detonation through the analysis of the local hydrogen concentration in the containment. In this study, CONTAIN version 1.12 which can model integrated ex-vessel phenomena during the severe accidents is used. To predict the local hydrogen concentration, containment is divided into sixteen sub-compartments taking into account geometric characteristics of Ulchin 3,4 NPP. Because the local hydrogen concentration depends upon accident sequences, the accident sequence for TMLB' and medium LOCA which are predicted to generate more hydrogen among accident sequences are considered. The thermal hydraulic primary system source data and the corium composition data were adopted from the MAAP calculation results. The sensitivity study is also performed to examine the effect of the equivalent fraction of zirconium oxidation in the reactor vessel and flow loss coefficient between flow path. The result of this study can be used as base data to install the igniters that is considered to prevent a detonation. (Author) 15 refs., 35 figs., 12 tabs

  3. Standard practice for evaluation of hydrogen uptake, permeation, and transport in metals by an electrochemical technique

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This practice gives a procedure for the evaluation of hydrogen uptake, permeation, and transport in metals using an electrochemical technique which was developed by Devanathan and Stachurski. While this practice is primarily intended for laboratory use, such measurements have been conducted in field or plant applications. Therefore, with proper adaptations, this practice can also be applied to such situations. 1.2 This practice describes calculation of an effective diffusivity of hydrogen atoms in a metal and for distinguishing reversible and irreversible trapping. 1.3 This practice specifies the method for evaluating hydrogen uptake in metals based on the steady-state hydrogen flux. 1.4 This practice gives guidance on preparation of specimens, control and monitoring of the environmental variables, test procedures, and possible analyses of results. 1.5 This practice can be applied in principle to all metals and alloys which have a high solubility for hydrogen, and for which the hydrogen permeation is ...

  4. Embrittlement of steels for hydrogen transport and storage under high pressure; Fragilisation des aciers destines au transport et au stockage de l'hydrogene sous haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Jouinot, P.; Gantchenko, V.; Katundi, D. [Institut Superieur de Mecanique de Paris (ISMEP-Sumeca), 93 - Saint-Ouen (France)

    2007-07-01

    This work deals with gaseous hydrogen embrittlement of steels for pipelines having a relatively high mechanical resistance (elasticity limit: 550 MPa, Grade 80). The studied materials come from 5 tube steels batch already used for hydrocarbons transport. Plates have been obtained by continuous casting followed by a hot controlled rolling: the rolling temperature is adjusted for obtaining a strain hardening in order to increase the mechanical resistance of the steel. These materials have been tested under hydrogen pressure and the resistance to hydrogen has been measured for each of them. The results show that the hydrogen embrittlement decreases when the mechanical resistance of the plate (or its hardness) increases. The inclusion state of the different steels has been quantified by images analysis at different depths in the plates. These steels contain only globular oxides or aligned aluminates. The hydrogen embrittlement increases with the amount of the globular oxides (or with the length of the aligned aluminates). Micrographic and fractographic analyses show that even small globular inclusions ({phi}=1 {mu}m) concentrate enough hydrogen to induce a crack in the material or to lead to a crack propagation. In order to estimate the homogeneity of the ferrito-perlitic structure, the thickness of ferrite bands have been measured. The hydrogen embrittlement increases as the thickness of the ferrite bands, that is to say, as the heterogeneity of the structure. Micrographs have shown that the hydrogen cracking is initiated on perlite aggregates; the crack propagates then in ferrite and joins then others perlitic areas. This study shows that relatively resistant steels (Grade 80, elasticity limit: 550 MPa) can be used for manufacturing pipelines submitted to high hydrogen pressure. (O.M.)

  5. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.S. [Directed Technologies Inc., Arlington, VA (United States)

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  6. Long-term developments in the transport sector -- comparing biofuel and hydrogen roadmaps

    Energy Technology Data Exchange (ETDEWEB)

    Uyterlinde, M.A.; Londo, M.; Godfroij, P.; Jeeninga, H.

    2007-07-01

    In view of climate change and declining oil reserves, alternative fuels for transport receive increasing attention. Two promising options are biofuels, of which the market penetration has already started, and hydrogen, which, when used in fuel cell cars, could lead to zero-emission vehicles. This paper draws on the results of two ongoing EU projects in which roadmaps are being developed for respectively biofuels and hydrogen . The most important potential conflict lies in competition for biomass as a feedstock. In this context, the hydrogen-fuel cell route has the advantage of a higher efficiency (in terms of km driven per ha or tonne biomass) than biofuels. Furthermore, hydrogen is more flexible in feedstock, since it can also be produced in a climate-friendly way from fossil resources such as coal. Synergy between biofuels and hydrogen is in gasification technology. This technology is required both for biomass-to-liquids, one of the more promising biofuels, and for hydrogen production from biomass and/or coal. Our analysis indicates that the transportation sector will need both options in the long term: while hydrogen may become dominant for passenger cars, greening of long-distance heavy duty transport will become dependent on a bio-based diesel substitute. (auth)

  7. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    Science.gov (United States)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  8. The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: An exploration with SHIPMod (Spatial hydrogen infrastructure planning model)

    OpenAIRE

    Agnolucci, P.; McDowall, W.; Akgul, O.; Papageorgiou, L. G.

    2013-01-01

    Hydrogen is widely recognised as an important option for future road transportation, but a widespread infrastructure must be developed if the potential for hydrogen is to be achieved. This paper and related appendices which can be downloaded as Supplementary material present a mixed-integer linear programming model (called SHIPMod) that optimises a hydrogen supply chains for scenarios of hydrogen fuel demand in the UK, including the spatial arrangement of carbon capture and storage infrastruc...

  9. Support of future lighthouse projects and beyond. Managing the transition to hydrogen for transport

    International Nuclear Information System (INIS)

    Large scale demonstration projects as the 'Lighthouse projects' are an important step towards commercialisation. However, costs for disruptive technologies such as hydrogen, are high in the first phase of market introduction. Therefore, policy support is needed to facilitate the introduction of hydrogen. But, how can the government support and stimulate (early) market introduction and use of hydrogen in the transportation sector? What kind of policy instruments are needed in what phase of the introduction trajectory? And what are the current instruments in the EU and US? Can these affect the introduction of hydrogen in transport? Generally, the hydrogen chain can be stimulated by providing an investment subsidy, production subsidy, tax exemptions and a (production or sales) obligation. Technology specific configurations of these support mechanisms for the diverse technologies in the hydrogen chain have to be taken into account. Besides that the support measures have to act upon each other for every technology development stage. A comparison of the EU and US policies shows differences in the approach of bringing the hydrogen vehicles to the market. The amount of support differs. The US funds RD and D 50% and stimulates the market by obligating sales (ZEV obligation) and procurement, while the EU funds R and D 50%, demonstration 35% and is now looking into large scale demonstration projects, after which the commercial market introduction of hydrogen vehicles is envisaged

  10. Evaluation of tritium transportation to the product hydrogen in the HTGR hydrogen production system

    International Nuclear Information System (INIS)

    In a high temperature gas cooled reactor (HTGR) coupled with a hydrogen production system, tritium produced at the core contaminate the product hydrogen and the recycle feed water by permeating through the heat exchanger tubes. From the view point of a safety design, tritium concentration in the product hydrogen and the recycle feed water is required to be below as low as reasonably achievable. Reasonable countermeasure for reducing tritium concentration in the product hydrogen is proposed based on the calculation in an HTGR hydrogen production system by steam reforming of natural gas. The proposal is the combination of developed oxide scale and calorized coating on the surface of tubes. Concerning to the necessity of tritium trap system to reduce tritium concentration in the recycle feed water, the calculation results show that concentration level is below allowable limit in the law without tritium trap system. Increment of radiation dose for the public is low enough when the product hydrogen is used as alternative energy to fossil fuels. (author)

  11. Hydrogen transport in molten salt Flinak measured by solid electrolyte sensors with Pd electrode

    International Nuclear Information System (INIS)

    The transport of hydrogen (H2) in Flinak was investigated using hydrogen sensor made of proton conductive solid electrolyte. The test in Flinak was performed after the validity of the sensor was checked in the test in Ar-H2 gas mixture with known hydrogen partial pressure. The sensor showed stable output in the Flinak at homogeneous temperature condition. The electromotive force (EMF) of the sensor agreed with theoretically estimated EMF. The sensor however showed the EMF much different from the theoretically estimated EMF when there was temperature difference between the free surface and the immersed sensor position. The temperature dependence of the Henry's law which controlled the hydrogen transport in Flinak was investigated from the sensor EMF. It was indicated that the Henry's constant for H2 in Flinak had the negative temperature dependence, which agrees with the previous study.

  12. Analysis CFD for the hydrogen transport in the primary containment of a BWR

    International Nuclear Information System (INIS)

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  13. Hydrogen isotopes transport parameters in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E. [Politecnico di Torino (Italy). Dipartimento di Energetica; Benamati, G. [ENEA Fusion Division, CR Brasimone, 40032 Camungnano, Bologna (Italy); Ogorodnikova, O.V. [Moscow State Engineering Physics Institute, Moscow 115409 (Russian Federation)

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.) 62 refs.

  14. Hydrogen isotopes transport parameters in fusion reactor materials

    Science.gov (United States)

    Serra, E.; Benamati, G.; Ogorodnikova, O. V.

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.

  15. Comparison of the renewable transportation fuels, liquid hydrogen and methanol, with gasoline - energetic and economic aspects

    International Nuclear Information System (INIS)

    In this paper, the renewable energy vectors liquid hydrogen (LH2) and methanol generated from atmospheric CO2 are compared with the conventional crude oil-gasoline system. Both renewable concepts, liquid hydrogen and methanol, lead to a drastic CO2 reduction compared to the fossil-based system. The comparison between the LH2 and methanol vector for the transport sector shows nearly the same fuel cost and energy efficiency but strong infrastructure advantages for methanol. (author)

  16. Integrated analysis of hydrogen passenger vehicle transportation pathways

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1998-08-01

    Hydrogen-powered fuel cell vehicles will reduce local air pollution, greenhouse gas emissions and oil imports. Other alternative vehicles such as gasoline- or methanol-powered fuel cell vehicles, natural gas vehicles and various hybrid electric vehicles with internal combustion engines may also provide significant environmental and national security advantages. This report summarizes a two-year project to compare the direct hydrogen fuel cell vehicle with other alternatives in terms of estimated cost and estimated societal benefits, all relative to a conventional gasoline-powered internal combustion engine vehicle. The cost estimates used in this study involve ground-up, detailed analysis of the major components of a fuel cell vehicle system, assuming mass production in automotive quantities. The authors have also estimated the cost of both gasoline and methanol onboard fuel processors, as well as the cost of stationary hydrogen fueling system components including steam methane reformers, electrolyzers, compressors and stationary storage systems. Sixteen different vehicle types are compared with respect to mass production cost, local air pollution and greenhouse gas emissions.

  17. Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels

    OpenAIRE

    Figueroa-Gordon, Douglas J.; Robinson, M. J.

    2010-01-01

    This paper describes how hydrogen transport affects the severity of hydrogen embrittlement in 300 M and AerMet100 ultra high strength steels. Slow strain rate tests were carried out on specimens coated with electrodeposited cadmium and aluminium-based SermeTel 1140/962. Hydrogen diffusivities were measured using two-cell permeation and galvanostatic charging methods and values of 8.0 × 10−8 and 1.0 × 10−9 cm2 s−1 were obtained for 300 M and AerMet100, respectively. A two-dim...

  18. Life cycle greenhouse emissions of compressed natural gas-hydrogen mixtures for transportation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, P. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250, Ciudad Autonoma de Buenos Aires (Argentina); Dawidowski, L.; Gomez, D. [Gerencia Quimica, CNEA, Av. Gral. Paz 1499, San Martin (Argentina); Pasquevich, D. [Instituto de Energia y Desarrollo Sustentable, CNEA, CONICET, Av. del Libertador 8250, Ciudad Autonoma de Buenos Aires (Argentina); Centro Atomico Bariloche, CNEA, Av. Bustillo 9500, S.C. de Bariloche (Argentina)

    2010-06-15

    We have developed a model to assess the life cycle greenhouse emissions of compressed natural gas-hydrogen (CNG-H{sub 2}) mixtures used for transportation in Argentina. The overall fuel life cycle is assessed through a well-to-wheel (WTW) analysis for different hydrogen generation and distribution options. The combustion stage in road vehicles is modeled using the COPERT IV model. Hydrogen generation options include classical steam methane reforming (SMR) and water electrolysis (WE) in central plants and distributed facilities at the refueling stations. Centralized hydrogen generation by electrolysis in nuclear plants as well as the use of solar photovoltaic and wind electricity is also considered. Hydrogen distribution options include gas pipeline and refrigerated truck transportation for liquefied hydrogen. A total number of fifteen fuel pathways are studied; in all the cases the natural gas-hydrogen mixture is made at the refueling station. The use of WE using nuclear or wind electricity appears to be less contaminant that the use of pure CNG. (author)

  19. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    International Nuclear Information System (INIS)

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NOx concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NOx in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NOx) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality

  20. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    van Hassel, Bart A. [United Technologies Research Center, East Hartford, CT (United States)

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  1. An advanced control system for a next generation transport aircraft

    Science.gov (United States)

    Rising, J. J.; Davis, W. J; Grantham, W. D.

    1983-01-01

    The use of modern control theory to develop a high-authority stability and control system for the next generation transport aircraft is described with examples taken from work performed on an advanced pitch active control system (PACS). The PACS was configured to have short-period and phugoid modes frequency and damping characteristics within the shaded S-plane areas, column force gradients with set bounds and with constant slope, and a blended normal-acceleration/pitch rate time history response to a step command. Details of the control law, feedback loop, and modal control syntheses are explored, as are compensation for the feedback gain, the deletion of the velocity signal, and the feed-forward compensation. Scheduling of the primary and secondary gains are discussed, together with control law mechanization, flying qualities analyses, and application on the L-1011 aircraft.

  2. Advanced Finite Element Discretizations for High-Energy Ion Transport

    International Nuclear Information System (INIS)

    The dominant continuous slowing-down energy loss process coupled with the small (but nonnegligible) straggling poses a significant challenge for deterministic numerical solution when incident beams are monoenergetic or have discontinuous energy spectra. Such spectra broaden very slowly with depth into the target material. Advanced space-energy discretization methods are consequently necessary to achieve numerical robustness. Finite element solutions to this problem were investigated using two general families of discontinuous trial functions, one linear and the other nonlinear. The two families were numerically tested, and results are shown for 1.7-GeV protons incident on a W target. Results from quadratic and exponential-quadratic discontinuous trial functions are in excellent agreement with Monte Carlo results. It is found that very high order finite element schemes are necessary for monoenergetic charged-particle beam transport

  3. Application of COBRA-NC to hydrogen transport

    International Nuclear Information System (INIS)

    COBRA-NC, a thermal-hydraulic computer code for the analysis of light water reactor (LWR) containment system transients is presented. A brief description of the code is provided. While the code is being developed for all phases of a containment transient, data comparisons with hydrogen distribution test data obtained in the Hanford Engineering Development Laboratory test facility and in the Battelle Memorial Institute's test facility are presented in this paper. The advantages this code features over other containment codes is also discussed

  4. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  5. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  6. Engine Concept Study for an Advanced Single-Aisle Transport

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which mission fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. The results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  7. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  8. Advanced fuel cells for transportation applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-10

    This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

  9. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  10. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  11. Performance testing of hydrogen transport membranes at elevated temperatures and pressures.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Cugini, A. V.; Dorris, S. E.; Fisher, E. P.; Graham, W. J.; Martello, D. V.; Poston, J. A.; Rothenberger, K. S.; Siriwardane, R. W.

    1999-06-16

    The development of hydrogen transport ceramic membranes offers increased opportunities for hydrogen gas separation and utilization. Commercial application of such membranes will most likely take place under conditions of elevated temperature and pressure, where industrial processes producing and or utilizing hydrogen occur, and where such membranes are theoretically expected to have the greatest permeability. Hydrogen separation membrane performance data at elevated temperature is quite limited, and data at elevated pressures is conspicuously lacking. This paper will describe the design, construction, and recent experimental results obtained from a membrane testing unit located at the U.S. Department of Energy's Federal Energy Technology Center (FETC). The membrane testing unit is capable of operating at temperatures up to 900 C and pressures up to 500 psi. Mixed-oxide ceramic ion-transport membranes, fabricated at Argonne National Laboratory (ANL), were evaluated for hydrogen permeability and characterized for surface changes and structural integrity using scanning electron microscopy/X-ray microanalysis (SEM/EDS), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), as a function of temperature, pressure, and hydrogen exposure.

  12. Investigation of electrical transport in hydrogenated multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Highly disordered multiwalled carbon nanotubes of large outer diameter (∼60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.

  13. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  14. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.C.; Barker, J.G.; Rowe, J.M.; Williams, R.E. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States); Gagnon, C. [Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States); Lindstrom, R.M. [Scientist Emeritus, Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8395, Gaithersburg, MD 20899-8395 (United States); Ibberson, R.M.; Neumann, D.A. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6100, Gaithersburg, MD 20899-6100 (United States)

    2015-08-21

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  15. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  16. Market penetration analysis of hydrogen vehicles in Norwegian passenger transport towards 2050

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Fidje, Audun; Espegren, Kari Aamodt [Institute for Energy Technology, Energy Systems Department, P.O. Box 40, NO-2027 Kjeller (Norway); Stiller, Christoph [Department of Energy and Process Engineering, The Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Svensson, Ann Mari; Moeller-Holst, Steffen [Department of Energy Conversion and Materials, SINTEF Materials and Chemistry, NO-7465 Trondheim (Norway)

    2010-07-15

    The Norwegian energy system is characterized by high dependency on electricity, mainly hydro power. If the national targets to reduce emissions of greenhouse gases should be met, a substantial reduction of CO{sub 2} emissions has to be obtained from the transport sector. This paper presents the results of the analyses of three Norwegian regions with the energy system model MARKAL during the period 2005-2050. The MARKAL models were used in connection with an infrastructure model H2INVEST. The analyses show that a transition to a hydrogen fuelled transportation sector could be feasible in the long run, and indicate that with substantial hydrogen distribution efforts, fuel cell cars can become competitive compared to other technologies both in urban (2025) and rural areas (2030). In addition, the result shows the importance of the availability of local energy resources for hydrogen production, like the advantages of location close to chemical industry or surplus of renewable electricity. (author)

  17. Market penetration analysis of hydrogen vehicles in Norwegian passenger transport towards 2050

    International Nuclear Information System (INIS)

    The Norwegian energy system is characterized by high dependency on electricity, mainly hydro power. If the national targets to reduce emissions of greenhouse gases should be met, a substantial reduction of CO2 emissions has to be obtained from the transport sector. This paper presents the results of the analyses of three Norwegian regions with the energy system model MARKAL during the period 2005-2050. The MARKAL models were used in connection with an infrastructure model H2INVEST. The analyses show that a transition to a hydrogen fuelled transportation sector could be feasible in the long run, and indicate that with substantial hydrogen distribution efforts, fuel cell cars can become competitive compared to other technologies both in urban (2025) and rural areas (2030). In addition, the result shows the importance of the availability of local energy resources for hydrogen production, like the advantages of location close to chemical industry or surplus of renewable electricity. (author)

  18. An issue paper on the use of hydrogen getters in transportation packaging

    International Nuclear Information System (INIS)

    The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning, the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging

  19. Hydrogen , Hybrid and Electric Propulsion in a Strategy for Sustainable Transport

    DEFF Research Database (Denmark)

    Jørgensen, Kaj

    1998-01-01

    Analysis of the scope for application of hydrogen and electric propulsion for improvement of the fuel cycle efficiency and introduction of renewable energy in the transport sector. The paper compares these fuels with each other as well as with other fuels (especially bio fuels) and outlines their...

  20. An issue paper on the use of hydrogen getters in transportation packaging

    Energy Technology Data Exchange (ETDEWEB)

    NIGREY,PAUL J.

    2000-02-01

    The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning, the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging.

  1. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    Science.gov (United States)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  2. Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels

    International Nuclear Information System (INIS)

    This paper describes how hydrogen transport affects the severity of hydrogen embrittlement in 300 M and AerMet100 ultra high strength steels. Slow strain rate tests were carried out on specimens coated with electrodeposited cadmium and aluminium-based SermeTel 1140/962. Hydrogen diffusivities were measured using two-cell permeation and galvanostatic charging methods and values of 8.0 x 10-8 and 1.0 x 10-9 cm2 s-1 were obtained for 300 M and AerMet100, respectively. A two-dimensional diffusion model was used to predict the hydrogen distributions in the SSR specimens at the time of failure. The superior embrittlement resistance of AerMet100 was attributed to reverted austenite forming around martensite laths during tempering.

  3. Summary - Advanced high-temperature reactor for hydrogen and electricity production

    International Nuclear Information System (INIS)

    Historically, the production of electricity has been assumed to be the primary application of nuclear energy. That may change. The production of hydrogen (H2) may become a significant application. The technology to produce H2 using nuclear energy imposes different requirements on the reactor, which, in turn, may require development of new types of reactors. Advanced High Temperature reactors can meet the high temperature requirements to achieve this goal. This alternative application of nuclear energy may necessitate changes in the regulatory structure

  4. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Torzillo, Giuseppe; Scoma, Alberto; Faraloni, Cecilia; Giannelli, Luca

    2015-01-01

    Biological hydrogen production is being evaluated for use as a fuel, since it is a promising substitute for carbonaceous fuels owing to its high conversion efficiency and high specific energy content. The basic advantages of biological hydrogen production over other "green" energy sources are that it does not compete for agricultural land use, and it does not pollute, as water is the only by-product of the combustion. These characteristics make hydrogen a suitable fuel for the future. Among several biotechnological approaches, photobiological hydrogen production carried out by green microalgae has been intensively investigated in recent years. A select group of photosynthetic organisms has evolved the ability to harness light energy to drive hydrogen gas production from water. Of these, the microalga Chlamydomonas reinhardtii is considered one of the most promising eukaryotic H2 producers. In this model microorganism, light energy, H2O and H2 are linked by two excellent catalysts, the photosystem 2 (PSII) and the [FeFe]-hydrogenase, in a pathway usually referred to as direct biophotolysis. This review summarizes the main advances made over the past decade as an outcome of the discovery of the sulfur-deprivation process. Both the scientific and technical barriers that need to be overcome before H2 photoproduction can be scaled up to an industrial level are examined. Actual and theoretical limits of the efficiency of the process are also discussed. Particular emphasis is placed on algal biohydrogen production outdoors, and guidelines for an optimal photobioreactor design are suggested. PMID:24754449

  5. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sung Oh [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Teizer, Winfried [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)

    2013-07-22

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  6. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    International Nuclear Information System (INIS)

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process

  7. Use of electric vehicles or hydrogen in the Danish transport sector

    OpenAIRE

    Skytte, Klaus; Pizarro Alonso, Amalia Rosa; Karlsson, Kenneth Bernard

    2015-01-01

    Denmark is one of the Northern European countries that have set up ambitious longterm targets to reduce GHG emissions from the transport as well as from other sectors. In Denmark the target is to make the transport sector independent of fossilfuel consumption by 2050 at the latest. This paper compares a likely scenario with two alternative ways to achieve the goal - either with a high percentage of electric vehicles (EV) or with a high percentage of hydrogen (H2) use in the transport sector. ...

  8. Transport Advances in Disposable Bioreactors for Liver Tissue Engineering

    Science.gov (United States)

    Catapano, Gerardo; Patzer, John F.; Gerlach, Jörg Christian

    Acute liver failure (ALF) is a devastating diagnosis with an overall survival of approximately 60%. Liver transplantation is the therapy of choice for ALF patients but is limited by the scarce availability of donor organs. The prognosis of ALF patients may improve if essential liver functions are restored during liver failure by means of auxiliary methods because liver tissue has the capability to regenerate and heal. Bioartificial liver (BAL) approaches use liver tissue or cells to provide ALF patients with liver-specific metabolism and synthesis products necessary to relieve some of the symptoms and to promote liver tissue regeneration. The most promising BAL treatments are based on the culture of tissue engineered (TE) liver constructs, with mature liver cells or cells that may differentiate into hepatocytes to perform liver-specific functions, in disposable continuous-flow bioreactors. In fact, adult hepatocytes perform all essential liver functions. Clinical evaluations of the proposed BALs show that they are safe but have not clearly proven the efficacy of treatment as compared to standard supportive treatments. Ambiguous clinical results, the time loss of cellular activity during treatment, and the presence of a necrotic core in the cell compartment of many bioreactors suggest that improvement of transport of nutrients, and metabolic wastes and products to or from the cells in the bioreactor is critical for the development of therapeutically effective BALs. In this chapter, advanced strategies that have been proposed over to improve mass transport in the bioreactors at the core of a BAL for the treatment of ALF patients are reviewed.

  9. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure

    International Nuclear Information System (INIS)

    In this paper, the transport and distribution aspects of hydrogen during the transition period towards a possible full-blown hydrogen economy are carefully looked at. Firstly, the energetic and material aspects of hydrogen transport through the existing natural-gas (NG) pipeline infrastructure is discussed. Hereby, only the use of centrifugal compressors and the short-term security of supply seem to constitute a problem for the NG to hydrogen transition. Subsequently, the possibility of percentwise mixing of hydrogen into the NG bulk is dealt with. Mixtures containing up to 17 vol% of hydrogen should not cause difficulties. As soon as more hydrogen is injected, replacement of end-use applications and some pipelines will be necessary. Finally, the transition towards full-blown hydrogen transport in (previously carrying) NG pipelines is treated. Some policy guidelines are offered, both in a regulated and a liberalised energy (gas) market. As a conclusion, it can be stated that the use of hydrogen-natural gas mixtures seems well suited for the transition from natural gas to hydrogen on a distribution (low pressure) level. However, getting the hydrogen gas to the distribution grid, by means of the transport grid, remains a major issue. In the end, the structure of the market, regulated or liberalised, turns out not to be important. (author)

  10. Implementing a Hydrogen Energy Infrastructure: Storage Options and System Design

    OpenAIRE

    Ogden, Joan M.; Yang, Christopher

    2005-01-01

    The development of a hydrogen infrastructure has been identified as a key barrier to implementing hydrogen as for a future transportation fuel. Several recent studies of hydrogen infrastructure have assessed near-term and long-term alternatives for hydrogen supply [1-2]. In this paper, we discuss how advances in material science related to hydrogen storage could change how a future hydrogen infrastructure is designed. Using a simplified engineering/economic model for hydrogen infrastructure d...

  11. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  12. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  13. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  14. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    Science.gov (United States)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  15. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    Science.gov (United States)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  16. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  17. QUANTUM-MECHANICAL PROPERTIES OF PROTON TRANSPORT IN THE HYDROGEN-BONDED MOLECULAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    PANG XIAO-FENG; LI PING

    2000-01-01

    The dynamic equations of the proton transport along the hydrogen bonded molecular systems have been obtainedby using completely quantum-mechanical method to be based on new Hamiltonian and model we proposed. Somequantum-mechanical features of the proton-solitons have also been given in such a case. The alternate motion of twodefects resulting from proton transfer occurred in the systems can be explained by the results. The results obtainedshow that the proton-soliton has corpuscle feature and obey classical equations of motion, while the free soliton movesin uniform velocity along the hydrogen bonded chains.

  18. Study of muonic hydrogen transport in TRIUMF experiment 742 by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Wozniak, J. [Inst. of Physics and Nuclear Techniques, Cracow (Poland); Bystritsky, V.M. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Jacot-Guillarmod, R.; Mulhauser, F. [Fribourg Univ. (Switzerland)

    1996-10-01

    A technique of neutral muonic atom beams is proposed in the TRIUMF E742 experiment for measuring the scattering cross sections of muonic hydrogen isotopes in solid hydrogen. We present the results of Monte Carlo modeling of p{mu} and d{mu} atoms transport under the conditions of this experiment, taking into account the main physical as well as the geometrical aspects. The optimization of set-up parameters is performed in order to choose the most sensitive experimental conditions. (orig.). 14 refs.

  19. Development of tailorable advanced blanket insulation for advanced space transportation systems

    Science.gov (United States)

    Calamito, Dominic P.

    1987-01-01

    Two items of Tailorable Advanced Blanket Insulation (TABI) for Advanced Space Transportation Systems were produced. The first consisted of flat panels made from integrally woven, 3-D fluted core having parallel fabric faces and connecting ribs of Nicalon silicon carbide yarns. The triangular cross section of the flutes were filled with mandrels of processed Q-Fiber Felt. Forty panels were prepared with only minimal problems, mostly resulting from the unavailability of insulation with the proper density. Rigidizing the fluted fabric prior to inserting the insulation reduced the production time. The procedures for producing the fabric, insulation mandrels, and TABI panels are described. The second item was an effort to determine the feasibility of producing contoured TABI shapes from gores cut from flat, insulated fluted core panels. Two gores of integrally woven fluted core and single ply fabric (ICAS) were insulated and joined into a large spherical shape employing a tadpole insulator at the mating edges. The fluted core segment of each ICAS consisted of an Astroquartz face fabric and Nicalon face and rib fabrics, while the single ply fabric segment was Nicalon. Further development will be required. The success of fabricating this assembly indicates that this concept may be feasible for certain types of space insulation requirements. The procedures developed for weaving the ICAS, joining the gores, and coating certain areas of the fabrics are presented.

  20. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys

    International Nuclear Information System (INIS)

    Vanadium based alloys have been identified as a leading candidate material for fusion first-wall blanket structure application because they exhibit favorable safety and environmental characteristics, good fabricability, potential for high performance and long-time operation lifetime in a fusion environment. As part of a study of the thermodynamics, kinetics and embrittlement properties of hydrogen in vanadium based alloys, experiments were conducted to determine the rate of hydrogen transport through the vanadium reference alloys, V-7.5Cr-15Ti and V-4Cr-4Ti, and to determine these alloys' hydrogen embrittlement, they were exposed to hydrogen pressures of 3 and 300 kPa (0.03--3 atm) at temperatures between 380 and 475 C. To facilitate hydrogen entry and egress, tubes of these alloys were coated with palladium on the inside and outside faces. Observed permeabilities were 0.015 to 0.065 micromoles/(m2sPa0.5) for the V-7.5Cr-15Ti alloy and 0.02 to 0.05 micromoles/m2sPa0.5 for the V-4Cr-4Ti alloy depending on the quality of the coat and the operating temperature. At 1.7 atm hydrogen, V-7.5Cr-15Ti embrittled at temperatures below 380 C while V-4Cr-4Ti embrittled around 330 C

  1. Hydrogen transport and embrittlement for palladium coated vanadium-chromium-titanium alloys

    International Nuclear Information System (INIS)

    As part of a study of the thermodynamics, kinetics and embrittlement properties of hydrogen in vanadium based alloys, experiments were conducted to determine the rate of hydrogen transport through the vanadium reference alloys, V-7.5Cr-15Ti and V-4Cr-4Ti, and to determine these alloys' hydrogen embrittlement, they were exposed to hydrogen pressures of 3 and 300 kPa (0.03-3 atm) at temperatures between 380 and 475 C. To facilitate hydrogen entry and egress, tubes of these alloys were coated with palladium on the inside and outside faces. Observed permeabilities were 0.015 to 0.065 μmol/(m2 s Pa0.5) for the V-7.5Cr-15Ti alloy and 0.02 to 0.05 μmol/(m2 s Pa0.5) for the V-4Cr-4Ti alloy depending on the quality of the coat and the operating temperature. At 1.7 atm hydrogen, V-7.5Cr-15Ti embrittled at temperatures below 380 C while V-4Cr-4Ti embrittled around 330 C. (orig.)

  2. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current‑voltage and transient current‑time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v‑1 s‑1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  3. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors.

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-12

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm(2) v(-1) s(-1)), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability. PMID:27363543

  4. Two-phase model of hydrogen transport to optimize nanoparticle catalyst loading for hydrogen evolution reaction

    DEFF Research Database (Denmark)

    Kemppainen, Erno; Halme, Janne; Hansen, Ole;

    2016-01-01

    gas volume fraction is sufficiently high to facilitate H2 transfer to bubbles within a distance shorter than the diffusion layer thickness. At current densities below about 40 mA/cm2 the model reduces to an analytical approximation that has characteristics similar to the diffusion of H2. At higher...... current densities the increase in the gas volume fraction makes the H2 surface concentration nonlinear with respect to the current density. Compared to the typical diffusion layer model, our model is an extension that allows more detailed studies of reaction kinetics and mass transport in the electrolyte...

  5. Definition gas isolation characteristics and hydrogen mass-transport in graphite based reactor materials

    International Nuclear Information System (INIS)

    The purpose of this work is study of hydrogen mass-transport and graphite materials sorption properties under different reactor conditions in hydrogen medium for prognosis its capacity for work by reactor accident . As samples for study were given graphite materials; reactor graphite with 7% titanium additive (RG-T) and pyrolytic graphite with low density (PGL). Irradiation in the hydrogen medium has been conducted in IVG.IM reactor. Experimental conditions for RG-T sample: irradiated temperature 693 K; hydrogen pressure 105 Pa, time 2 hours, total fluence 1.5·1015 neutron/cm2. Samples of pyre graphite were cut out from thermal assembly shell, which worked for t=4000 c in the reactor IVG.1M in the hydrogen flow under 60·105 Pa pressure and temperature 1923 K. Total fluence is equals 8·1017 neutron/cm2. Dependence of gas isolation from RG-T and PGL graphite under isochronous annealing and programming linear heating by 20-2000 K temperature interval with quantity isolated gas mass-spectrometric registration is received. There are tree peaks of gas insolation on thermo sorption curves under regime of linear heating. First peak is responsible for hydrogen sorbed on surface, second - in pores, and third - hydrogen gas isolation from material's volume: lattice defects, pore's inside surface, lattice diffusion from graphite grain. Diffusion coefficient by pores in the graphite RG-T and PGL are approximately equal D=2·10-6 cm2/s under 1023 K. Values of hydrogen diffusion coefficient from irradiated and non-irradiated volumes of the both graphite samples are compared

  6. Dynamic competition between plug-in hybrid and hydrogen fuel cell vehicles for personal transportation

    Energy Technology Data Exchange (ETDEWEB)

    Bento, Nuno [LEPII, Universite de Grenoble, CNRS, BP47 38040 GRENOBLE Cedex 9 (France)

    2010-10-15

    This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester's (Diffusion technologique non binaire et schema epidemiologique. Une reconsideration. Economie Appliquee 1995; tome XLVIII(3):71-101), it is shown that the early deployment of plug-in hybrid vehicles - the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field - risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage. (author)

  7. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  8. The outlook for using palladium and 4th period metal oxides in hydrogen energy and transport

    International Nuclear Information System (INIS)

    Full text : it is known that 50 percent of the world's resources of palladium are found in Russia. This has opened avenues for revival of the Russian economy for development of hydrogen energy. In the present state of the art, hydrogen energy is based on liquid storage systems that requires further improvement of cryogenic facilities. In this connection it is necessary to devise a great variety of low-temperature devices : sensors, chemical adsorbents, and zeolites that operate in the airless environment of heat insulation vacuum cavities. To ensure normal operation of these systems at low temperatures one must employ catalysts and oxygen accumulators. The objective of this work is the estimation of potential need for palladium in hydrogen energy and transport

  9. Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain

    Directory of Open Access Journals (Sweden)

    Jun Ouyang

    2016-03-01

    Full Text Available Using the density functional theory and the nonequilibrium Green’s function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would have potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.

  10. Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain

    Science.gov (United States)

    Ouyang, Jun; Long, Mengqiu; Zhang, Xiaojiao; Zhang, Dan; He, Jun; Gao, Yongli

    2016-03-01

    Using the density functional theory and the nonequilibrium Green's function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs) by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs) chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would have potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.

  11. Parametric HECTR calculations of hydrogen transport and combustion at N Reactor

    International Nuclear Information System (INIS)

    This report describes a limited number of parametric calculations of hydrogen transport and combustion in the N Reactor confinement for selected accident sequences. The calculations are performed using the HECTR computer code, which is a lumped-parameter code developed specifically for evaluating hydrogen behavior in reactor containments. A number of parameters are evaluated in this study, including hydrogen source rate, spray effects, and source location. The calculations indicate that mixing within major compartments tends to occur fairly rapidly, but that mixing between compartments can be inhibited in certain situations, resulting in the formation of flammable mixtures. These results are being compared to calculations performed with other computer codes, including a code that uses finite-difference models. United Nuclear Corporation will present the results of these code comparisons in future reports

  12. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  13. Studies of hydrogen absorption and desorption processes in advanced intermetallic hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masashi

    2005-07-01

    This work is a part of the research program performed in the Department of Energy Systems, Institute for Energy Technology (Kjeller, Norway), which is focused on the development of the advanced hydrogen storage materials. The activities are aimed on studies of the mechanisms of hydrogen interactions with intermetallic alloys with focus on establishing an interrelation between the crystal structure, thermodynamics and kinetics of the processes in the metal-hydrogen systems, on the one hand, and hydrogen storage properties (capacity, rates of desorption, hysteresis). Many of the materials under investigation have potential to be applied in applications, whereas some already have been commercialised in the world market. A number of metals take up considerable amounts of hydrogen and form chemical compounds with H, metal hydrides. Unfortunately, binary hydrides are either very stable (e.g. for the rare earth metals [RE], Zr, Ti, Mg: metal R) or are formed at very high applied pressures of hydrogen gas (e.g. for the transition metals, Ni, Co, Fe, etc.: Metal T). However, hydrogenation process becomes easily reversible at very convenient from practical point of view conditions, around room temperature and at H2 pressures below 1 MPa for the two-component intermetallic alloys R{sub x}T{sub y}. This raised and maintains further interest to the intermetallic hydrides as solid H storage materials. Materials science research of this thesis is focused on studies of the reasons staying behind the beneficial effect of two non-transition elements M(i.e., In and Sn) contributing to the formation of the ternary intermetallic alloys R{sub x}T{sub y}M{sub 2}., on the hydrogen storage behaviours. Particular focus is on two aspects where the remarkable improvement of ordinary metal hydrides is achieved via introduction of In and Sn: a) Increase of the volume density of stored hydrogen in solid materials to the record high level. b) Improvement of the kinetics of hydrogen charge and

  14. Study of Advanced Railgun Hydrogen Pellet Injectors for Fusion Reactor Refueling.

    Science.gov (United States)

    King, Tony Levone

    An advanced railgun system has been developed to assess its feasibility as a hypervelocity hydrogen pellet injector for magnetically confined plasmas. It consists of a pellet generator/gas gun assembly for freezing hydrogen pellets and injecting them into the railgun at velocities as high as 1.5 km/s. A plasma armature is formed by ionizing the low-Z propellant gas behind the pellet and firing the railgun. This fuseless operation prevents high-Z impurities from entering the reactor during pellet injection. The railgun system has several features that distinguish it from its predecessors, including: (1) a more compact, versatile pellet generator, (2) a new gas gun configuration that produces significantly higher pellet speeds, (3) a perforated coupling piece between the gas gun and railgun to prevent spurious arcing, and (4) ablation-resistant sidewalls, perforated sidewalls and transaugmentation to reduce inertial and viscous drag, the primary obstacles to achieving hypervelocity. A unique system of sophisticated controls and diagnostics has been assembled to operate the railgun system and assess its performance, including fully automated pellet freezing and gas gun operation, an automatic timing circuit that is immune to mistriggering caused by pellet fragmentation or electromagnetic interference, a streak camera, photostations, light gates, current trans formers, B-dot probes, laser interferometry and optical spectroscopy. Free-arc and hydrogen pellet experiments were conducted to evaluate various railgun designs. Transaugmented and simple railguns 1.2 and 2 m long were tested. The performances of railguns using Mullite, solid Lexan and perforated Lexan sidewalls were compared. The railgun theory of operation and anticipated losses are also examined. The theoretical predictions are found to be in good agreement with the experimental results. The advanced railgun system has set several world records for bare hydrogen pellet velocity, including a 3.3 km/s shot on

  15. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  16. Application of the LIMIT code to the analysis of containment hydrogen transport

    International Nuclear Information System (INIS)

    The principal developmental focus of the LIMIT code is the ability to model hydrogen transport accurately in reactor containments. The program is capable of treating rapid two-phase dominated blowdown transients, slower mixing events in which diffusional transport is important, and lumped or nodal multicompartment analysis. The code's features include versatile multidimensional geometry options and models of ancillary equipment including solid heat sinks and mass and energy sources. The program is applied to a number of pertinent problems including continuum analysis of a hydrogen/water blowdown, simulation of experimental tests performed at the Battelle-Frankfurt Institute and the Hanford Engineering Development Laboratory, and lumped parameter studies of connected room problems. The code is shown to be capable of accurately treating a wide range of problems with reasonable computational efficiency. The need for even better efficiency, additional equipment submodels, and further validation are the code's principal limitations

  17. An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions

    OpenAIRE

    Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

    2007-01-01

    This paper presents an analysis of the potential system-wide energy and air emissions implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle (LDV) fleet. The analysis uses the U.S. EPA MARKet ALlocation (MARKAL) technology database and model to simultaneously consider competition among alternative technologies and fuels, with a focus on the transportation and the electric sectors. Our modeled reference case suggests that economics alone would not yiel...

  18. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    Science.gov (United States)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  19. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO

    Science.gov (United States)

    Duffy, James B.

    1993-01-01

    The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo

  20. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  1. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  2. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    Science.gov (United States)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Purohit, Sudhaunshu S.; Li, Han; King, Sean W.; Dutta, Dhanadeep; Gidley, David; Lanford, William A.; Paquette, Michelle M.

    2015-07-01

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-BxC:Hy) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (EU), and Tauc parameter (B1/2)], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-BxC:Hy thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm3, Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 1010 to 1015 Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ˜1.3 g/cm3 (or below ˜35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters EU and B1/2, with increasing H concentration is explained by the release of strain in the network and associated decrease in structural disorder. All of these correlations in a-BxC:Hy are found to be very similar to those

  3. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    Science.gov (United States)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  4. Multi-component transport in polymers: hydrocarbon / hydrogen separation by reverse selectivity membrane; Transport multi-composants dans les polymeres: separation hydrocarbures / hydrogene par membrane a selectivite inverse

    Energy Technology Data Exchange (ETDEWEB)

    Mauviel, G.

    2003-12-15

    Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)

  5. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) research program annual review

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-01

    This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review.

  6. Advanced physics of electron transport in semiconductors and nanostructures

    CERN Document Server

    Fischetti, Massimo V

    2016-01-01

    This textbook is aimed at second-year graduate students in Physics, Electrical Engineer­ing, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale. Understanding electronic transport in solids requires some basic knowledge of Ham­iltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry. Further topics covered include: the theory of energy bands in crystals, of second quan­tization and elementary excitations in solids, of the dielectric properties of semicon­ductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconduc...

  7. Energy analysis and CO2 emission evaluation of a hydrogen energy system for the transportation system in Japan

    International Nuclear Information System (INIS)

    A concept of hydrogen energy system for the transportation system in Japan is proposed to replace all the fuel oil used by the transportation means with liquefied hydrogen (LH2) in order to conserve petroleum and to reduce CO2 emission into the atmosphere. The hydrogen is produced by way of electrolysis with solar photovoltaic cells on a large number of ocean rafts in the South Pacific Ocean. All the elements of the hydrogen energy system for production, storage, and transportation are assumed to be built or fabricated with such conventional energies as coal, oil and electricity. The hydrogen energy system, at the present state of technologies, consumes the conventional energies more than the present petroleum energy system does. At the future developed state of technologies the hydrogen energy system can replace all the fuel oil consumed by the transportation means, 69 Mm3 a year, with LH2 of 24.9 Tg a year. The LH2 is produced on the rafts of which total area is about 6,000 km2 and is transported to Japan by 270 LH2 tankers of which capacity is 125,000 m3. The hydrogen energy system can save 785 of the petroleum energy which the current transportation system would consume and can suppress 80% of the CO2 emission which the petroleum consumption by the transportation means would release. If concrete is applied to the structure of the rafts, even the present technologies make the hydrogen energy system reduce 14% of the CO2 emission

  8. Impact of hydrogen onboard storage technologies on the performance of hydrogen fuelled vehicles: A techno-economic well-to-wheel assessment

    NARCIS (Netherlands)

    de Wit, M.P.; Faaij, A.P.C.

    2007-01-01

    Hydrogen onboard storage technologies form an important factor in the overall performance of hydrogen fuelled transportation, both energetically and economically. Particularly, advanced storage options such as metal hydrides and carbon nanotubes are often hinted favourable to conventional, liquid an

  9. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    Science.gov (United States)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  10. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  11. Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems

    Science.gov (United States)

    Ally, Jamie; Pryor, Trevor

    The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

  12. Advanced Simulation of Electron Heat Transport in Fusion Plasmas

    International Nuclear Information System (INIS)

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  13. Advanced simulation of electron heat transport in fusion plasmas

    International Nuclear Information System (INIS)

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E X B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  14. Evaluation of hydrogen cost

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute advances the research and development of the thermochemical water splitting IS process technology as well as the integration technology between a high-temperature gas cooled reactor (HTGR) and a hydrogen production system using the high temperature engineering test reactor (HTTR) aiming at the commercialization of the HTGR hydrogen production system around 2025. Hydrogen system for fuel cell cars consists of off-site system and on-site system. In thinking about off-site system like the HTGR hydrogen production system, it is necessary to consider the cost of transportation of hydrogen as well as the cost of hydrogen production, storage and refueling. Moreover, when the hydrogen is produced with the fossil fuel, the cost of carbon dioxide disposal should be considered. The economy evaluation of the HTGR hydrogen production system must include all costs of hydrogen production, storage, transportation and refueling. In this paper, the cost evaluation data related to storage, transportation and refueling in Japan and the USA are investigated in addition to the hydrogen production cost. The cost evaluation of several off-site and on-site systems is carried out. (author)

  15. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    Science.gov (United States)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  16. Porous Iron and Ferric Oxide Pellets for Hydrogen Storage: Texture and Transport Characteristics

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Rogut, J.; Grabowski, J.; Wiatowski, M.; Ludwik-Pardała, M.; Schneider, Petr; Šolcová, Olga

    Atény: WSEAS Press, 2010 - (Mladenov, V.; Psarris, K.; Mastorakis, N.; Caballero, A.; Vachtsevanos, G.), s. 99-103 ISBN 978-960-474-251-6 R&D Projects: GA MŠk(CZ) 7C08033 Grant ostatní: ECR(XE) RFCR-CT-2007-00006 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen storage * transport parameters * inverse gas chromatography Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.wseas.us/books/2010/Tenerife/MECHECICON.pdf

  17. The influence of hydrogen on the chemical, mechanical, optical/electronic, and electrical transport properties of amorphous hydrogenated boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Nordell, Bradley J.; Karki, Sudarshan; Nguyen, Thuong D.; Rulis, Paul; Caruso, A. N.; Paquette, Michelle M., E-mail: paquettem@umkc.edu [Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); Purohit, Sudhaunshu S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110 (United States); Li, Han; King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Dutta, Dhanadeep; Gidley, David [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lanford, William A. [Department of Physics, University at Albany, Albany, New York 12222 (United States)

    2015-07-21

    Because of its high electrical resistivity, low dielectric constant (κ), high thermal neutron capture cross section, and robust chemical, thermal, and mechanical properties, amorphous hydrogenated boron carbide (a-B{sub x}C:H{sub y}) has garnered interest as a material for low-κ dielectric and solid-state neutron detection applications. Herein, we investigate the relationships between chemical structure (atomic concentration B, C, H, and O), physical/mechanical properties (density, porosity, hardness, and Young's modulus), electronic structure [band gap, Urbach energy (E{sub U}), and Tauc parameter (B{sup 1/2})], optical/dielectric properties (frequency-dependent dielectric constant), and electrical transport properties (resistivity and leakage current) through the analysis of a large series of a-B{sub x}C:H{sub y} thin films grown by plasma-enhanced chemical vapor deposition from ortho-carborane. The resulting films exhibit a wide range of properties including H concentration from 10% to 45%, density from 0.9 to 2.3 g/cm{sup 3}, Young's modulus from 10 to 340 GPa, band gap from 1.7 to 3.8 eV, Urbach energy from 0.1 to 0.7 eV, dielectric constant from 3.1 to 7.6, and electrical resistivity from 10{sup 10} to 10{sup 15} Ω cm. Hydrogen concentration is found to correlate directly with thin-film density, and both are used to map and explain the other material properties. Hardness and Young's modulus exhibit a direct power law relationship with density above ∼1.3 g/cm{sup 3} (or below ∼35% H), below which they plateau, providing evidence for a rigidity percolation threshold. An increase in band gap and decrease in dielectric constant with increasing H concentration are explained by a decrease in network connectivity as well as mass/electron density. An increase in disorder, as measured by the parameters E{sub U} and B{sup 1/2}, with increasing H concentration is explained by the release of strain in the network and associated decrease in

  18. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    International Nuclear Information System (INIS)

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects

  19. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.; Kit Heung, L.; Sessions, H.T. [Savannah River National Laboratory - SRNL, Aiken, SC (United States)

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  20. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Swain; Greg M.

    2009-04-13

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  1. Analysis CFD for the hydrogen transport in the primary containment of a BWR; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guerreroazteca_69@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This study presents a qualitative and quantitative comparison among the CFD GASFLOW and OpenFOAM codes which are related with the phenomenon of hydrogen transport and other gases in the primary containment of a Boiling Water Reactor (BWR). GASFLOW is a commercial license code that is well validated and that was developed in Germany for the analysis of the gases transport in containments of nuclear reactors. On the other hand, OpenFOAM is an open source code that offers several evaluation solvers for different types of phenomena; in this case, the solver reacting-Foam is used to analyze the hydrogen transport inside the primary containment of the BWR. The results that offer the solver reacting-Foam of OpenFOAM are evaluated in the hydrogen transport calculation and the results are compared with those of the program of commercial license GASFLOW to see if is viable the use of the open source code in the case of the hydrogen transport in the primary containment of a BWR. Of the obtained results so much quantitative as qualitative some differences were identified between both codes, the differences (with a percentage of maximum error of 4%) in the quantitative results are small and they are considered acceptable for this analysis type, also, these differences are attributed mainly to the used transport models, considering that OpenFOAM uses a homogeneous model and GASFLOW uses a heterogeneous model. (Author)

  2. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  3. APOLLO-2: An advanced transport code for LWRs

    International Nuclear Information System (INIS)

    APOLLO-2 is a fully modular code in which each module corresponds to a specific task: access to the cross-sections libraries, creation of isotopes medium or mixtures, geometry definition, self-shielding calculations, computation of multigroup collision probabilities, flux solver, depletion calculations, transport-transport or transport-diffusion equivalence process, SN calculations, etc... Modules communicate exclusively by ''objects'' containing structured data, these objects are identified and handled by user's given names. Among the major improvements offered by APOLLO-2 the modelization of the self-shielding: it is possible now to deal with a great precision, checked versus Montecarlo calculations, a fuel rod divided into several concentric rings. So the total production of Plutonium is quite better estimated than before and its radial distribution may be predicted also with a good accuracy. Thanks to the versatility of the code some reference calculations and routine ones may be compared easily because only one parameter is changed; for example the self-shielding approximations are modified, the libraries or the flux solver being exactly the same. Other interesting features have been introduced in APOLLO-2: the new isotopes JEF.2 are available in 99 and 172 energy groups libraries, the surface leakage model improves the calculation of the control rod efficiency, the flux-current method allows faster calculations, the possibility of an automatic convergence checking during the depletion calculations coupled with fully automatic corrections, heterogeneous diffusion coefficients used for voiding analysis. 17 refs, 1 tab

  4. Transport coefficients for carbon, hydrogen, and the organic mixture C2H3

    International Nuclear Information System (INIS)

    Electrical and thermal transport coefficients are calculated for amorphous elemental carbon and hydrogen, using the best available systematic theoretical methods. The density range considered is 10-3g/cm3 less than or equal to rho less than or equal to 106g/cm3 for carbon, and 10-4g/cm3 less than or equal to rho less than or equal to 105g/cm3 for hydrogen. The temperature range considered is 10-2eV less than or equal to kT less than or equal to 104eV. Calculational methods include relativistic partial-wave analysis of the extended Ziman theory, and nonrelativistic plane-wave analysis (Born approximation) of the original Ziman theory. Physical models include relativistic Dirac-Fock-Slater and nonrelativistic Thomas-Fermi-Dirac electron-ion potentials, and one-component-plasma ion-ion structure factors. A mixing algorithm is used to obtain approximate transport coefficients for the atomic ratio C2H3. 10 refs., 31 figs

  5. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    Science.gov (United States)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  6. Single-step chemistry model and transport coefficient model for hydrogen combustion

    Institute of Scientific and Technical Information of China (English)

    WANG ChangJian; WEN Jennifer; LU ShouXiang; GUO Jin

    2012-01-01

    To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydrogen-air mixture is H2+0.5O2→H2O,the reaction rate model is ω =1.13×1015[H2][O2]exp(-46.37T0/T) mol (cm3 s)-1,and the transport coefficient model is μ=K/Cp=pD=7.0×10-5T 0.7 g (cm s)-1.By using current models and the reference model to simulate steady Zeldovich-von Neumann-Doering (ZND) wave and free-propagating laminar flame,it is found that the results are well agreeable.Additionally,deflagration-to-detonation transition in an obstructed channel was also simulated.The numerical results are also well consistent with the experimental results.These provide a reasonable proof for current method and new models.

  7. Advances in carbon dioxide compression and pipeline transportation processes

    CERN Document Server

    Witkowski, Andrzej; Majkut, Mirosław; Rulik, Sebastian; Stolecka, Katarzyna

    2015-01-01

    Providing a comprehensive analysis of CO2 compression, transportation processes and safety issues for post combustion CO2 capture applications for a 900 MW pulverized hard coal-fired power plant, this book assesses techniques for boosting the pressure of CO2 to pipeline pressure values with a minimal amount of energy. Four different types of compressors are examined in detail: a conventional multistage centrifugal compressor, integrally geared centrifugal compressor, supersonic shock wave compressor, and pump machines. The study demonstrates that the total compression power is closely related

  8. Advances in comprehensive gyrokinetic simulations of transport in tokamaks

    International Nuclear Information System (INIS)

    A continuum global gyrokinetic code GYRO has been developed to comprehensively simulate core turbulent transport in actual experimental profiles and enable direct quantitative comparisons to the experimental transport flows. GYRO not only treats the now standard ion temperature gradient (ITG) mode turbulence, but also treats trapped and passing electrons with collisions and finite β, equilibrium ExB shear stabilization, and all in real tokamak geometry. Most importantly the code operates at finite relative gyroradius (ρ*) so as to treat the profile shear stabilization and nonlocal effects which can break gyroBohm scaling. The code operates in either a cyclic flux-tube limit (which allows only gyroBohm scaling) or globally with physical profile variation. Bohm scaling of DIII-D L-mode has been simulated with power flows matching experiment within error bars on the ion temperature gradient. Mechanisms for broken gyroBohm scaling, neoclassical ion flows embedded in turbulence, turbulent dynamos and profile corrugations, are illustrated. (author)

  9. Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Grieb, Thomas M; Mills, W B; Jacobson, Mark Z; Summers, Karen V; Crossan, A Brook

    2010-12-31

    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world's FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to

  10. Potential Environmental Impacts of Hydrogen-based Transportation and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Grieb, Thomas M.; Mills, W. B.; Jacobson, Mark Z.; Summers, Karen V.; Crossan, A. Brook

    2010-12-31

    Hydrogen (H2) offers advantages as an energy carrier: minimal discharge of pollutants, production from multiple sources, increased thermodynamic efficiencies compared to fossil fuels, and reduced dependence on foreign oil. However, potential impacts from the H2 generation processes, transport and distribution of H2, and releases of H2 into the atmosphere have been proposed. The goal of this project was to analyze the effects of emissions of hydrogen, the six criteria pollutants and greenhouse gases on climate, human health, materials and structures. This project was part of a larger effort by DOE to assess the life-cycle costs and benefits and environmental impacts to inform decisions regarding future hydrogen research. Technical Approach: A modeling approach was developed and used to evaluate the potential environmental effects associated with the conversion of the on-road vehicle fleet from fossil-fuel vehicles to hydrogen fuel cell vehicles. GATOR-GCMOM was the primary tool used to predict atmospheric concentrations of gases and aerosols for selected scenarios. This model accounts for all feedbacks among major atmospheric processes based on first principles. The future scenarios and the emission rates selected for this analysis of hydrogen environmental effects are based on the scenarios developed by IPCC. The scenarios selected for the model simulations are a 2000 and 2050 A1B base cases, and a 2050 A1B case with hydrogen fuel cell vehicles (HFCVs). The hydrogen fuel cell scenario assumed conversion of 90% of fossil-fuel on-road vehicles (FFOV) in developed countries and 45% of FFOVs vehicles in other countries to HFCVs, with the H2 produced by steam-reforming of natural gas (SHFCVs). Simulations were conducted to examine the effect of converting the world’s FFOVs to HFCVs, where the H2 is produced by wind-powered electrolysis (WHFCVs). In all scenarios a 3% leakage of H2 consumed was assumed. Two new models were developed that provide the ability to

  11. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  12. Comparison of transportation options in a carbon-constrained world : hydrogen, plug-in hybrids and biofuels

    International Nuclear Information System (INIS)

    A 100-year advanced vehicle simulation was conducted in order to compare the relative costs between hydrogen-powered, plug-in hybrids, and biofuel-powered vehicles. The life-cycle costs for various hydrogen systems were presented in order to estimate the future costs of a distributed hydrogen infrastructure. Vehicles were compared in terms of fuel economy, urban air pollution costs and greenhouse gas (GHG) emissions. Societal cost reduction factors were also considered. Stringent future climate change constraints were applied to the simulation. The study demonstrated that fuel cell vehicles and a hydrogen infrastructure are both durable and cost-competitive. Plug-in vehicles are also economically viable. The study considered that hydrogen and electricity sources will become non-polluting in the future. Scenario market shares for various advanced vehicles were presented. The cost of the hydrogen infrastructure was compared with costs to reduce the carbon footprint of the electricity grid. Infrastructure costs were also compared to gasoline and diesel infrastructure. It was concluded that hydrogen-powered fuel cell vehicles will reduce GHGs to 80 per cent below 1990 levels, eliminate urban air pollution, and achieve petroleum energy independence. tabs., figs.

  13. Hydrogen fueled subsonic aircraft - A prospective

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The performance characteristics of hydrogen-fueled subsonic transport aircraft are compared with those of aircraft using conventional aviation kerosene. Results of the Cryogenically Fueled Aircraft Technology Program sponsored by NASA indicate that liquid hydrogen may be particularly efficient for subsonic transport craft when ranges of 4000 km or more are involved; however, development of advanced cryogenic tanks for liquid hydrogen fuel is required. The NASA-sponsored program also found no major technical obstacles for international airports converting the liquid hydrogen fueling systems. Resource utilization efficiency and fuel production costs for hydrogen produced by coal gasification or for liquid methane or synthetic aviation kerosene are also assessed.

  14. An advanced media interface for control of modern transport aircraft navigational systems

    Science.gov (United States)

    Jones, D. R.; Parrish, R. V.; Person, L. H., Jr.; Old, J. L.

    1984-01-01

    With the advent of digital avionics, the workload of the pilot in a moderen transport aircraft is increasing significantly. This situation makes it necessary to reduce pilot workload with the aid of new advanced technologies. As part of an effort to improve information management systems, NASA has, therefore, studied an advanced concept for managing the navigational tasks of a modern transport aircraft. This concept is mainly concerned with the simplification of the pilot interface. The advanced navigational system provides a simple method for a pilot to enter new waypoints to change his flight plan because of heavy traffic, adverse weather conditions, or other reasons. The navigational system was implemented and evaluated in a flight simulator representative of a modern transport aircraft. Attention is given to the simulator, flight simulation, multimode devices, and the navigational system.

  15. Economic study of multipurpose advanced high-speed transport configurations

    Science.gov (United States)

    1979-01-01

    A nondimensional economic examination of a parametrically-derived set of supersonic transport aircraft was conducted. The measure of economic value was surcharged relative to subsonic airplane tourist-class yield. Ten airplanes were defined according to size, payload, and speed. The price, range capability, fuel burned, and block time were determined for each configuration, then operating costs and surcharges were calculated. The parameter with the most noticeable influence on nominal surcharge was found to be real (constant dollars) fuel price increase. A change in SST design Mach number from 2.4 to Mach 2.7 showed a very small surcharge advantage (on the order of 1 percent for the faster aircraft). Configuration design compromises required for an airplane to operate overland at supersonic speeds without causing sonic boom annoyance result in severe performance penalties and require high (more than 100 percent) surcharges.

  16. Hydrogen plasma-mediated modification of the electrical transport properties of ZnO nanowire field effect transistors

    International Nuclear Information System (INIS)

    We investigated the effects of hydrogen plasma treatment on the electrical transport properties of ZnO nanowire field effect transistors (FETs) with a back gate configuration. After hydrogen plasma treatment of the FET devices, the effective carrier density and mobility of the nanowire FETs increased with a threshold voltage shift toward a negative gate bias direction. This can be attributed to the desorption of oxygen molecules adsorbed on the surface of the nanowire channel, to passivation and to doping effects due to the incorporation of energetic hydrogen ions generated in plasma. (paper)

  17. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    Science.gov (United States)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  18. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization

    Science.gov (United States)

    Kaverzin, Alexey

    Physical properties of electrons in graphene offer not only functionality in terms of conventional charge transport, but also allow to explore spin and valley degrees of freedom. The presence of internal coupling between the nontrivial current states and normal charge current provides the effective mechanism for studying these properties. At the same time a nonlocal geometry of the transport experiments allows to separate the useful signal associated with either spin or valley degree of freedom from trivial charge contribution. In this work using the nonlocal geometry we study the transport properties of hydrogenated graphene Hall bar devices. The observed nonlocal signal is seen to substantially exceed the background ohmic contribution and, therefore, has to be understood in terms of nontrivial mediative current. The channel length dependence of the useful signal falls into direct/inverse spin Hall effect description, however, the absence of the modulation of the measured effect with the applied in plane magnetic field discredits the spin nature of the observed phenomenon. Our findings cannot be explained with the existing models suggesting that further investigation is required. European Union's Seventh Framework Programme Grant 604391 Graphene Flagship, FOM, NWO.

  19. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  20. Development of advanced manufacturing technologies for low cost hydrogen storage vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark [Quantum Fuel Systems Technologies Worldwide, Inc., Irvine, CA (United States); Lam, Patrick [Boeing Research and Technology (BR& T), Seattle, WA (United States)

    2014-12-29

    The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizing composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum

  1. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Caille, Gary

    2013-12-13

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  2. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  3. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    Science.gov (United States)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  4. Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System

    Energy Technology Data Exchange (ETDEWEB)

    Eric J. Carlson

    2004-10-20

    PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

  5. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    International Nuclear Information System (INIS)

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes

  6. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fradera, J., E-mail: jfradera@ubu.es; Cuesta-López, S., E-mail: scuesta@ubu.es

    2013-12-15

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in, e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAM® CFD tool for 0D–3D simulations. Results for a 0D case show the impact of a He dispersed phase of nano bubbles on hydrogen isotopes inventory at different temperatures as well as the inventory evolution during a He nucleation event. In addition, 1D and 2D axisymmetric cases are exposed showing the effect of a He dispersed gas phase on hydrogen isotope permeation through a lithium lead eutectic alloy and the effect of vortical structures on hydrogen isotope transport at a backward facing step. Exposed results give a valuable insight on current nuclear technology regarding the importance of controlling hydrogen isotope transport and its interactions with nucleation event through gas absorption processes.

  7. Dispersive transport in hydrogenated a-Si prepared by rf sputtering

    International Nuclear Information System (INIS)

    Time-of-flight measurement of photo-excited carriers has been carried out in hydrogenated a-Si deposited by rf sputtering method. Both electrons and holes show highly dispersive transport. The electron drift mobility near room temperature ranges from 5 x 10-3 to 4 x 10-5 cm2/V.s, much lower than that of GD samples, and the activation energy is about 0.3 eV. The value of the hole mobility is comparable with that in GD specimens, but its activation energy is about 0.2 eV which is about half of that observed in GD a-Si. (author)

  8. Spin transport properties of partially edge-hydrogenated MoS2 nanoribbon heterostructure

    Science.gov (United States)

    Peng, Li; Yao, Kailun; Zhu, Sicong; Ni, Yun; Zu, Fengxia; Wang, Shuling; Guo, Bin; Tian, Yong

    2014-06-01

    We report ab initio calculations of electronic transport properties of heterostructure based on MoS2 nanoribbons. The heterostructure consists of edge hydrogen-passivated and non-passivated zigzag MoS2 nanoribbons (ZMoS2NR-H/ZMoS2NR). Our calculations show that the heterostructure has half-metallic behavior which is independent of the nanoribbon width. The opening of spin channels of the heterostructure depends on the matching of particular electronic orbitals in the Mo-dominated edges of ZMoS2NR-H and ZMoS2NR. Perfect spin filter effect appears at small bias voltages, and large negative differential resistance and rectifying effects are also observed in the heterostructure.

  9. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites

    CERN Document Server

    Jacquet, Emmanuel

    2013-01-01

    The D/H ratios of carbonaceous chondrites, believed to reflect that of water in the inner early solar system, are intermediate between the protosolar value and that of most comets. The isotopic composition of cometary water has been accounted for by several models where the isotopic composition of water vapor evolved by isotopic exchange with hydrogen gas in the protoplanetary disk. However, the position and the wide variations of the distribution of D/H ratios in carbonaceous chondrites have yet to be explained. In this paper, we assume that the D/H composition of cometary ice was achieved in the disk building phase and model the further isotopic evolution of water in the inner disk in the classical T Tauri stage. Reaction kinetics compel isotopic exchange between water and hydrogen gas to stop at $\\sim$500 K, but equilibrated water can be transported to the snow line (and beyond) via turbulent diffusion and consequently mix with isotopically comet-like water. Under certain simplifying assumptions, we calcul...

  10. Advanced thermal barrier coatings for operation in high hydrogen content fueled gas turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Sampath, Sanjay [Stony Brook Univ., NY (United States)

    2015-04-02

    The Center for Thermal Spray Research (CTSR) at Stony Brook University in partnership with its industrial Consortium for Thermal Spray Technology is investigating science and technology related to advanced metallic alloy bond coats and ceramic thermal barrier coatings for applications in the hot section of gasified coal-based high hydrogen turbine power systems. In conjunction with our OEM partners (GE and Siemens) and through strategic partnership with Oak Ridge National Laboratory (ORNL) (materials degradation group and high temperature materials laboratory), a systems approach, considering all components of the TBC (multilayer ceramic top coat, metallic bond coat & superalloy substrate) is being taken during multi-layered coating design, process development and subsequent environmental testing. Recent advances in process science and advanced in situ thermal spray coating property measurement enabled within CTSR has been incorporated for full-field enhancement of coating and process reliability. The development of bond coat processing during this program explored various aspects of processing and microstructure and linked them to performance. The determination of the bond coat material was carried out during the initial stages of the program. Based on tests conducted both at Stony Brook University as well as those carried out at ORNL it was determined that the NiCoCrAlYHfSi (Amdry) bond coats had considerable benefits over NiCoCrAlY bond coats. Since the studies were also conducted at different cycling frequencies, thereby addressing an associated need for performance under different loading conditions, the Amdry bond coat was selected as the material of choice going forward in the program. With initial investigations focused on the fabrication of HVOF bond coats and the performance of TBC under furnace cycle tests , several processing strategies were developed. Two-layered HVOF bond coats were developed to render optimal balance of density and surface roughness

  11. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  12. Polymer pipes for distributing mixtures of hydrogen and natural gas. Evolution of their transport and mechanical properties after an ageing under an hydrogen environment

    Energy Technology Data Exchange (ETDEWEB)

    Klopffer, Marie-Helene [IFP (France); Berne, Philippe [CEA (France); Castagnet, Sylvie [ENSMA (France); Weber, Mathilde [Air Liquide (Canada); Hochstetter, Gilles [Arkema (France); Espuche, Eliane [INSA Lyon (France)

    2010-07-01

    With the development of hydrogen as an energy vector, its delivery and transport from the production site to the end user remains an issue. Indeed, the key challenge to overcome is the high hydrogen permeation through existing polymer infrastructures used for natural gas distribution (Polyethylene pipes, components as connecting parts). This high flow rate of hydrogen through polymer has to be taken into account for safety and economical requirements. This 3-year project investigates pure hydrogen gas and mixtures (20% CH4 - 80% H2) in pipelines made of engineering polymers to develop and assess material solutions to cope with today problems for H2 distribution. Materials such as polyethylene (PE100) and polyamide 11 (PA11) have been studied. PE100 is considered as a reference material as it is used today in natural gas distribution pipes. PA11 should allow a higher operating pressure combined with better gas-barrier performances. Test benches and protocols for testing materials in terms of mechanical and barrier properties were first developed. The materials have then been studied in terms of barrier, mechanical properties and on a microstructural point of view. The properties of the raw material and samples after ageing in presence of hydrogen in various conditions were compared to assess the long term behaviour in service. These results as well as the comparison between PA11 and PE are presented. (orig.)

  13. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  14. Hydrogen-isotope transport in an ELBRODUR G CuCrZr alloy for nuclear applications in heat sinks

    Science.gov (United States)

    Noh, S. J.; Byeon, W. J.; Shin, H. W.; Kim, H. S.; Kim, Jaeyong; Lee, S. K.; Kim, Jaewoo

    2016-05-01

    We present the first complete data set of the transport parameters (permeability, diffusivity, and solubility) of hydrogen and deuterium in an ELBRODUR G precipitation hardened CuCrZr alloy experimentally measured by using the time-dependent gas-phase technique in an elevated temperature range of 300-600 °C for nuclear applications in heat sinks. Using the measured values for hydrogen and deuterium and a quantum mechanical model based on a harmonic approximation, an extrapolation for tritium is also presented. The isotope effect ratios for the transport parameters were also estimated. Furthermore, our hydrogen results for ELBRODUR G were compared with the results for other copper alloys previously reported by other authors.

  15. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    International Nuclear Information System (INIS)

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm-3 and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations are then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.

  16. Wind Energy and Transport Synergy: Electric Vehicle or Hydrogen Vehicle?; Sinergia Energia Eolica Transporte: vehiculo electrico o vehiculo de hidrogeno?

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, I.

    2009-07-01

    This article briefly analyzes the potential uses of hydrogen as a form of energy from wind power. It also briefly describes the different experiences gained in wind energy-based hydrogen production by water hydrolysis, and finally it concludes with a brief analysis of the competition between hydrogen and the new ion-lithium batteries used in motor vehicles as potential solutions to support wind energy management. (Author)

  17. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  18. A study on the hydrogen embrittlement mitigation for carbon steel welds by using electro-transport treatment

    International Nuclear Information System (INIS)

    Hydrogen Embrittlement(HE) mitigation on weld was developed by using electro-transport theory. This method can be applied to evaluate weld integrity and reduce HE susceptibility. To demonstrate the validation of the developed method, it applied to carbon steel weld. It shows that the results of electro-transport treatment were in good agreement with those of the previous theoretical study. Based on these results, the electro-transport treatment which can substitute for conventional post weld heat treatment was proposed as a potential method for mitigating the HE susceptibility

  19. Hydrogen as an energy carrier. Production and liquefaction of hydrogen in Norway for transportation to and storage/distribution in Germany. A technical and economical assessment of potential hydrogen energy vectors as part of the European case study ''Norwegian Hydro Energy in Germany (NHEG)''

    International Nuclear Information System (INIS)

    The primary objective of this project is to evaluate the feasibility of using existing technology, infrastructure and technical experience in realizing a pilot hydro-power/hydrogen project with hydrogen being produced and liquefied in Norway from hydro-power and transported to Germany as liquid hydrogen for end-use. The second objective is to compare transport of liquid hydrogen and electricity transmission. 10 figs., 3 tabs., 6 refs

  20. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    Science.gov (United States)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  1. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  2. Hydrogen-rich boron-containing materials for hydrogen storage.

    Science.gov (United States)

    Wang, Ping; Kang, Xiang-Dong

    2008-10-28

    Hydrogen-rich boron-containing compounds have received extensive attention as potential hydrogen storage media for vehicular applications. The past years have seen significant progresses in material discovery, material composition/structure tailoring, catalyst identification and regeneration chemistry, which give rise to state-of-the-art hydrogen storage materials/technologies. Lithium tetrahydroborate-related materials exhibit the hitherto highest reversible hydrogen capacity via solid-gas reactions. Catalytic hydrolysis of sodium tetrahydroborate offers an on-demand hydrogen generation system for vehicular applications. Ammonia borane-related materials exhibit a satisfactory combination of material properties that are suited for on-board hydrogen sources, coupled with significant advances in spent fuels regeneration. This Perspective discusses the current progresses of these representative reversible or irreversible material systems, aiming at providing an outline of the forefront of hydrogen storage materials/technologies for transportation applications. PMID:19082020

  3. Understanding and Control of Transport in Advanced Tokamak Regimes in DIII-D

    International Nuclear Information System (INIS)

    Transport phenomena are studied in Advanced Tokamak (AT) regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomics Energy Agency, Vienna, 1987), Vol. I, p. 159], with the goal of developing understanding and control during each of three phases: Formation of the internal transport barrier (ITB) with counter neutral beam injection takes place when the heating power exceeds a threshold value of about 9 MW, contrasting to CO-NBI injection, where Pthreshold NH89 = 9 for 16 confinement times has been accomplished in a discharge combining an ELMing H-mode edge and an ITB, and exhibiting ion thermal transport down to 2-3 times neoclassical. The microinstabilities usually associated with ion thermal transport are predicted stable, implying that another mechanism limits performance. High frequency MHD activity is identified as the probable cause

  4. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Adams, J.A.; Kinnelly, A.A. [and others

    1997-07-01

    In partial fulfillment of the U.S. Department of Energy Contract No. DE-ACO2-94CE50389, {open_quotes}Direct Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}, this conceptual vehicle design report addresses the design and packaging of battery augmented fuel cell powertrain vehicles. This report supplements the {open_quotes}Conceptual Vehicle Design Report - Pure Fuel Cell Powertrain Vehicle{close_quotes} and includes a cost study of the fuel cell power system. The three classes of vehicles considered in this design and packaging exercise are the same vehicle classes that were studied in the previous report: the Aspire, representing the small vehicle class; the AIV (Aluminum Intensive Vehicle) Sable, representing the mid-size vehicle; and the E-150 Econoline, representing the van-size class. A preliminary PEM fuel cell power system manufacturing cost study is also presented. As in the case of the previous report concerning the {open_quotes}Pure Fuel Cell Powertrain Vehicle{close_quotes}, the same assumptions are made for the fuel cell power system. These assumptions are fuel cell system power densities of 0.33 kW/ka and 0.33 kW/l, platinum catalyst loading of less than or equal to 0.25 mg/cm{sup 2} total, and hydrogen tanks containing compressed gaseous hydrogen under 340 atm (5000 psia) pressure. The batteries considered for power augmentation of the fuel cell vehicle are based on the Ford Hybrid Electric Vehicle (HEV) program. These are state-of-the-art high power lead acid batteries with power densities ranging from 0.8 kW/kg to 2 kW/kg. The results reported here show that battery augmentation provides the fuel cell vehicle with a power source to meet instant high power demand for acceleration and start-up. Based on the assumptions made in this report, the packaging of the battery augmented fuel cell vehicle appears to be as feasible as the packaging of the pure fuel cell powered vehicle.

  5. Advanced Approaches to Greatly Reduce Hydrogen Gas Crossover Losses in PEM Electrolyzers Operating at High Pressures and Low Current Densities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ElectroChem proposes a Phase II program to advance its very successful SBIR Phase I technology effort to the point of minimum hydrogen loss through the electrolyzer...

  6. The Advanced Energy Initiative

    Science.gov (United States)

    Milliken, JoAnn; Joseck, Fred; Wang, Michael; Yuzugullu, Elvin

    The President's Advanced Energy Initiative (AEI), launched in 2006, addresses the challenges of energy supply and demand facing our Nation by supporting research and development of advanced technologies for transportation and stationary power generation. The AEI portfolio includes clean coal, nuclear and renewable energy technologies (solar and wind) for stationary power generation and advanced battery technologies, cellulosic ethanol as a fuel and hydrogen fuel cells for transportation. These research and development programs are underpinned by comprehensive life-cycle analysis efforts using models such as Hydrogen Analysis (H2A) and Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) to enable a better understanding of the characteristics and trade-offs associated with advanced energy options and to help decision makers choose viable pathways for clean, reliable and affordable energy.

  7. NATO Advanced Study Institute on Hydrogen in Disordered and Amorphous Solids

    CERN Document Server

    Bowman, Robert

    1986-01-01

    This is the second volume in the NATO ASI series dealing with the topic of hydrogen in solids. The first (V. B76, Metal Hydrides) appeared five years ago and focussed primarily on crystalline phases of hydrided metallic systems. In the intervening period, the amorphous solid state has become an area of intense research activity, encompassing both metallic and non-metallic, e.g. semiconducting, systems. At the same time the problem of storage of hydrogen, which motivated the first ASI, continues to be important. In the case of metallic systems, there were early indications that metallic glasses and disordered alloys may be more corrosion resistant, less susceptible to embrittlement by hydrogen and have a higher hydrogen mobility than ordered metals or intermetallics. All of these properties are desirable for hydrogen storage. Subsequent research has shown that thermodynamic instability is a severe problem in many amorphous metal hydrides. The present ASI has provided an appropriate forum to focus on these issu...

  8. Macro-System Model for Hydrogen Energy Systems Analysis in Transportation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, V.; Ruth, M.; Sa, T. J.; Goldsby, M. E.

    2012-06-01

    The Hydrogen Macro System Model (MSM) is a simulation tool that links existing and emerging hydrogen-related models to perform rapid, cross-cutting analysis. It allows analysis of the economics, primary energy-source requirements, and emissions of hydrogen production and delivery pathways.

  9. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    Directory of Open Access Journals (Sweden)

    Ya FatouNjie-Mbye

    2012-07-01

    Full Text Available Hydrogen sulfide (H2S, a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1 ion channels such as calcium (L-type, T-type and intracellular stores, potassium (KATP and small conductance channels and chloride channels, (2 glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed.

  10. Advanced system analysis for indirect methanol fuel cell power plants for transportation applications

    International Nuclear Information System (INIS)

    The indirect methanol cell fuel concept being actively pursued by the United States Department of Energy and General Motors Corporation is based on electrochemical engine (e.c.e.) an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electric power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen are under active development. This paper describes status of each of these components, and describe a model that predicts the steady state performance of the e.c.e

  11. Advanced Public Transportation Sytems; A Taxonomy, Commercial Availability And Deployment, Phase II

    OpenAIRE

    Khattak, Asad; Et. al.,

    1997-01-01

    This study explores the development and availability of Advanced Public Transportation Systems (APTS) technologies. The study refines a taxonomy of transit technologies and uses it to explore the availability of new technologies and their impacts in transit agencies. THe taxonomy is based on defining the features, functions and performance characteristics of transit technologies. Based on the taxonomy, three surveys of technology suppliers were conducted. Questions were related to technology ...

  12. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H+ in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H+ produced in situ from functional supports and H2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H+ and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  13. Magnesium-based materials for hydrogen storage: Recent advances and future perspectives

    Institute of Scientific and Technical Information of China (English)

    YAO XiangDong; LU GaoQing

    2008-01-01

    Hydrogen storage is a real challenge for realizing "hydrogen economy" that will solve the critical is-sues of humanity such as energy depletion,air pollution,greenhouse emission and climate change.Recently,tremendous efforts have been devoted to this internationally focused area.Magnesium (Mg) is among the most promising candidates for this purpose and attracts numerous research interests.This paper is aiming at reviewing recent literatures on approaches and progress,the necessity of fur-ther research,and future direction to the research of Mg for hydrogen storage.

  14. Palladium-rare-earth metal alloys-advanced materials for hydrogen power engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Hydrogen of no less than 99. 999 % (vol. fraction) purity is a principal power media of hydrogen power engineering. A single method for the preparation of high purity hydrogen consists in its separation from vapour-gas mixtures via the selective diffusion of hydrogen through a palladium membrane. The rate of hydrogen diffusion and the strength and stability during the operation in aggressive gases are important characteristics of palladium membranes. The increase in the strength, plasticity, and hydrogen-permeability of membrane alloys can be reached by alloying palladium with the formation of solid solutions.The formation of wide ranges of palladium-rare-earth metal (REM) solid solutions is an interesting feature of palladium. Earlier, we have shown that the alloying of Pd with REM substantially increases the rate of hydrogen diffusion and markedly increases the strength of palladium on retention of the adequate plasticity.In this work, we have studied alloys of the Pd-Y and Pd-Y-Me systems. It was shown that the following conditions should be satisfied to prepare high-quality alloys exhibiting high service properties: (1)the use of high-purity components (whose purity is no less than 99.95%, mass fraction), in particular,high-purity Y prepared by vacuum distillation, and (2) holding the reached purity for the final product.For this purpose, we suggested a cycle of manufacturing operations including the preparation of a vacuumtight foil of 50 (m thick as the final stage.The hydrogen-permeability of the alloys was measured at different temperatures and hydrogen pressures. The instability of operation of binary Pd-Y alloys w alloying the composition with a Ⅷ Group metal. For example, the alloy of the optimum composition Pd-8Y-Me in the annealed state exhibits the following mechanical properties: HV= 75 kg/mm2 , σu = 58 kg/mm2 , and δ= 20%. Its hydrogen-permeability (QH2) measured as a function of the temperature exceeds that of the Pd-23Ag alloy (that is widely

  15. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    International Nuclear Information System (INIS)

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10−3 Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp3 C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bonds at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling

  16. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  17. Recent advances in radiation transport simulation capabilities at Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    The use of SCALE 4.3 and the ITS 3.0 codes by Atlantic Nuclear Services Ltd. for the Point Lepreau Generating Station offers an efficient and accurate means to solve radiation transport problems in many diverse areas, including health physics, plant operation and accident analysis. Two recent studies demonstrate the usefulness of these tow code suites for solving highly complex problems involving channel decay heat following shut-down and hydrogen radiolysis in containment, following a loss of coolant accident (LOCA). This paper summarizes the application of the SCALE 4.3 and ITS 3.0 codes in modelling and simulation in these studies. The objective of the decay heat study was to determine the distribution of heat in the fuel channel and its surrounding after a reactor shutdown. The purpose of the study of hydrogen radiolysis occurring in containment, following a LOCA was to determine the production rate of hydrogen gas in the sump water in the reactor building

  18. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  19. Hydrogen Filling Station

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  20. Assuring containment in reactor accidents: recent advances concerning the mitigation of the hydrogen risk

    International Nuclear Information System (INIS)

    This article presents the different programs led in laboratories concerning the mitigation of the hydrogen risk in nuclear power plants. 3 aspects are considered: the generation of hydrogen during a reactor major accident, the distribution of this gas inside the reactor containment building and the different combustion modes of hydrogen. Studies show that it is difficult to prevent at any time and place the formation of a combustible mixture despite the presence of hydrogen recombiners. Studies have led to the setting of criteria concerning flame acceleration and detonation-explosion transitions, it has been shown that a mixture whose expansion parameter stays below a limit value can not lead to a flame acceleration over 400 m/s. (A.C.)

  1. Collisionality scaling of turbulence and transport in advanced inductive plasmas in DIII-D

    Science.gov (United States)

    Yan, Z.; McKee, G. R.; Petty, C.; Luce, T.; Chen, X.; Holland, C.; Rhodes, T.; Schmitz, L.; Wang, G.; Zeng, L.; Marinoni, A.; Solomon, W.; DIII-D Team

    2015-11-01

    The collisionality scaling of multiscale turbulence properties and thermal transport characteristics in high-beta, high confinement Advanced Inductive (AI) plasmas was determined via systematic dimensionless scaling experiments on DIII-D. Preliminary estimate indicates a weak collisionality dependence of energy confinement as v* varied by a factor of ~2. Electron density and scaled (~Bt2) temperature profiles are well matched in the scan. Interestingly, low-k density fluctuation amplitudes are observed to decrease at lower v* near ρ ~ 0 . 75 . Ion and electron thermal transport values, computed with ONETWO using experimentally measured profiles and sources, will be presented, along with multi-scale turbulence measurements obtained with various fluctuation diagnostics. Altering collisionality should change the relative contribution of different modes to transport.

  2. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al3Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a ceramic

  3. Elastic, charge transfer, and related transport cross sections for proton impact of atomic hydrogen for astrophysical and laboratory plasma modeling

    Science.gov (United States)

    Schultz, D. R.; Ovchinnikov, S. Yu; Stancil, P. C.; Zaman, T.

    2016-04-01

    Updating and extending previous work (Krstić and Schultz 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3458 and other references) comprehensive calculations were performed for elastic scattering and charge transfer in proton—atomic hydrogen collisions. The results, obtained for 1301 collision energies in the center-of-mass energy range of 10‑4–104 eV, are provided for integral and differential cross sections relevant to transport modeling in astrophysical and other plasma environments, and are made available through a website. Use of the data is demonstrated through a Monte Carlo transport simulation of solar wind proton propagation through atomic hydrogen gas representing a simple model of the solar wind interaction with heliospheric neutrals.

  4. Study on transient hydrogen behavior and effect on passive containment cooling system of the advanced PWR

    International Nuclear Information System (INIS)

    A certain amount of hydrogen will be generated due to zirconium-steam reaction or molten corium concrete interaction during severe accidents in the pressurized water reactor (PWR). The generated hydrogen releases into the containment, and the formed flammable mixture might cause deflagration or detonation to produce high thermal and pressure loads on the containment, which may threaten the integrity of the containment. The non-condensable hydrogen in containment may also reduce the steam condensation on the containment surface to affect the performance of the passive containment cooling system (PCCS). To study the transient hydrogen behavior in containment with the PCCS performance during the accidents is significant for the further study on the PCCS design and the hydrogen risk mitigation. In this paper, a new developed PCCS analysis code with self-reliance intellectual property rights, which had been validated by comparison on the transients in the containment during the design basis accidents with other developed PCCS analysis code, is brief introduced and used for the transient simulation in the containment under a postulated small break LOCA of cold-leg. The results show that the hydrogen will flow upwards with the coolant released from the break and spread in the containment by convection and diffusion, and it results in the increase of the pressure in the containment due to reducing the heat removal capacity of the PCCS. (author)

  5. Calculations concerning the capability of passive recombiners to control hydrogen concentration in the containment of an advanced PWR

    International Nuclear Information System (INIS)

    The Department of Mechanical and Nuclear Constructions of the University of Pisa has developed a computer code, HOCRA, which is able to make an initial evaluation of the capability of catalytic recombiners to remove hydrogen from the atmosphere of the safety containments of nuclear reactors in accident conditions. The code allows the analysis of the average concentration transient of hydrogen in a generic compartment of a safety containment in a nuclear reactor. The software is structured into two groups. The first, mode-1, analyses the average concentration in all the free volume of the containment before a possible venting., whereas the second, mode-2, analyses the average concentration transient in a containment compartment, assuming input and output flow rates into and from the compartment itself The first part of this paper outlines the physical and mathematical model of the code, the second part reports calculations made for an advanced PWR in cooperation with ENEL. (author)

  6. Studies of solar photovoltaic/electrolytic hydrogen systems

    International Nuclear Information System (INIS)

    Hydrogen is a high quality, low polluting fuel, which could replace oil and natural gas for transportation, heating, and power generation. If hydrogen is generated via solar photovoltaic (PV) powered water electrolysis, it would be possible to produce and use energy on a large scale with essentially no greenhouse gas emission and very little local pollution. In previous studies, we investigated some of the implications of projected advances in thin film PV technologies for PV hydrogen production. Here we summarize our findings on the design and economics of PV hydrogen systems, and discuss potential long term applications of PV hydrogen as a transportation fuel for ''zero emissions'' fuel cell vehicles

  7. Predicted electron-transport coefficients at high E/N values. I. Hydrogen

    International Nuclear Information System (INIS)

    Transport coefficients of electrons in hydrogen are calculated over the range 10-16-15 V cm2 by solving the Boltzmann equation using a two-term spherical-harmonic expansion which takes into account the effect of the source of new electrons produced by ionization. Recently reported electron cross-section data, both experimental and theoretical, have been used in the calculation. It is shown that the release of new electrons in ionizing collisions has a noticeable effect on the electron distribution function starting from E/Napprox. =1.2 x 10-15 V cm2. The predicted values of the first Townsend ionization coefficient are in excellent agreement with experimental results over the entire range of E/N values considered without using unrealistically large momentum-transfer cross sections at high electron energies. The calculated values for the drift velocity v/sub d/ are in good agreement with the measured values. For the characteristic energy D/sub T//μ, the agreement is good up to E/N=2 x 10-15 V cm2, while for higher E/N it becomes less satisfactory. The electron excitation rates for the vibration, the excitation of the B 1Σ+/sub u/ and C 1Pi/sub u/ electronic states, and the rate of H-atom production are presented as a function of E/N. Results are also given for the fraction of the input power that is transfered to the various inelastic processes

  8. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    Energy Technology Data Exchange (ETDEWEB)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  9. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  10. Transport Reactor Development Unit Modification to Provide a Syngas Slipstream at Elevated Conditions to Enable Separation of 100 LB/D of Hydrogen by Hydrogen Separation Membranes Year - 6 Activity 1.15 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Schlasner, Steven

    2012-03-01

    Gasification of coal when associated with carbon dioxide capture and sequestration has the potential to provide low-cost as well as low-carbon hydrogen for electric power, fuels or chemicals production. The key element to the success of this concept is inexpensive, effective separation of hydrogen from carbon dioxide in synthesis gas. Many studies indicate that membrane technology is one of the most, if not the most, economical means of accomplishing separation; however, the advancement of hydrogen separation membrane technology is hampered by the absence of experience or demonstration that the technology is effective economically and environmentally at larger scales. While encouraging performance has been observed at bench scale (less than 12 lb/d hydrogen), it would be imprudent to pursue a largescale demonstration without testing at least one intermediate scale, such as 100 lb/d hydrogen. Among its many gasifiers, the Energy & Environmental Research Center is home to the transport reactor demonstration unit (TRDU), a unit capable of firing 200—500 lb/hr of coal to produce 400 scfm of synthesis gas containing more than 200 lb/d of hydrogen. The TRDU and associated downstream processing equipment has demonstrated the capability of producing a syngas over a wide range of temperatures and contaminant levels — some of which approximate conditions of commercial-scale gasifiers. Until this activity, however, the maximum pressure of the TRDU’ s product syngas was 120 psig, well below the 400+ psig pressures of existing large gasifiers. This activity installed a high-temperature compressor capable of accepting the range of TRDU products up to 450°F and compressing them to 500 psig, a pressure comparable to some large scale gasifiers. Thus, with heating or cooling downstream of the TRDU compressor, the unit is now able to present a near-raw to clean gasifier synthesis gas containing more than 100 lb/d of hydrogen at up to 500 psig over a wide range of temperatures

  11. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction.

    Science.gov (United States)

    Shi, Yanmei; Zhang, Bin

    2016-03-14

    The urgent need of clean and renewable energy drives the exploration of effective strategies to produce molecular hydrogen. With the assistance of highly active non-noble metal electrocatalysts, electrolysis of water is becoming a promising candidate to generate pure hydrogen with low cost and high efficiency. Very recently, transition metal phosphides (TMPs) have been proven to be high performance catalysts with high activity, high stability, and nearly ∼100% Faradic efficiency in not only strong acidic solutions, but also in strong alkaline and neutral media for electrochemical hydrogen evolution. In this tutorial review, an overview of recent development of TMP nanomaterials as catalysts for hydrogen generation with high activity and stability is presented. The effects of phosphorus (P) on HER activity, and their synthetic methods of TMPs are briefly discussed. Then we will demonstrate the specific strategies to further improve the catalytic efficiency and stability of TMPs by structural engineering. Making use of TMPs as cocatalysts and catalysts in photochemical and photoelectrochemical water splitting is also discussed. Finally, some key challenges and issues which should not be ignored during the rapid development of TMPs are pointed out. These strategies and challenges of TMPs are instructive for designing other high-performance non-noble metal catalysts. PMID:26806563

  12. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W

    International Nuclear Information System (INIS)

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described

  13. Recent Advances on Hydrogenic Retention in ITER's Plasma-Facing Materials: BE, C, W.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C H; Alimov, Kh; Bekris, N; Causey, R A; Clark, R.E.H.; Coad, J P; Davis, J W; Doerner, R P; Mayer, M; Pisarev, A; Roth, J

    2008-03-29

    Management of tritium inventory remains one of the grand challenges in the development of fusion energy and the choice of plasma-facing materials is a key factor for in-vessel tritium retention. The Atomic and Molecular Data Unit of the International Atomic Energy Agency organized a Coordinated Research Project (CRP) on the overall topic of tritium inventory in fusion reactors during the period 2001-2006. This dealt with hydrogenic retention in ITER's plasma-facing materials, Be, C, W, and in compounds (mixed materials) of these elements as well as tritium removal techniques. The results of the CRP are summarized in this article together with recommendations for ITER. Basic parameters of diffusivity, solubility and trapping in Be, C and W are reviewed. For Be, the development of open porosity can account for transient hydrogenic pumping but long term retention will be dominated by codeposition. Codeposition is also the dominant retention mechanism for carbon and remains a serious concern for both Be and C containing layers. Hydrogenic trapping in unirradiated tungsten is low but will increase with ion and neutron damage. Mixed materials will be formed in a tokamak and these can also retain significant amounts of hydrogen isotopes. Oxidative and photon-based techniques for detritiation of plasma-facing components are described.

  14. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  15. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  16. Advanced bulk processing of lightweight materials for utilization in the transportation sector

    Science.gov (United States)

    Milner, Justin L.

    The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of this research. Development and validation of the processing techniques is achieved through wide-ranging experiments along with detailed mechanical and microstructural examination of the processed material. On a broad level, this research will make advancements in processing of bulk lightweight materials facilitating industrial-scale implementation. Where accumulative roll bonding and isolated shear rolling, currently feasible on an industrial scale, processes bulk sheet materials capable of replacing more expensive grades of alloys and enabling low-temperature and high-strain-rate formability. Furthermore, friction stir processing to manufacture lightweight tubes, made from magnesium alloys, has the potential to increase the utilization of these materials in the automotive and aerospace sectors for high strength - high formability applications. With the increased utilization of these advanced processing techniques will significantly reduce the cost associated with lightweight materials for many applications in the transportation sectors.

  17. Status of advanced light-duty transportation technologies in the US

    International Nuclear Information System (INIS)

    The need to reduce oil consumption and greenhouse gases is driving a fundamental change toward more efficient, advanced vehicles, and fuels in the transportation sector. The paper reviews the current status of light duty vehicles in the US and discusses policies to improve fuel efficiency, advanced electric drives, and sustainable cellulosic biofuels. The paper describes the cost, technical, infrastructure, and market barriers for alternative technologies, i.e., advanced biofuels and light-duty vehicles, including diesel vehicles, natural-gas vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and fuel-cell electric vehicles. The paper also presents R and D targets and technology validation programs of the US government. - Highlights: ► Summary of the current status of LDVs and fuels. ► Overview of government policies and incentives for advanced vehicles and fuels. ► Technical and infrastructure barriers for biofuels, PHEVs, and FCEVs. ► Cost targets and research challenges for batteries and fuel cells. ► Summary of near- to mid-term market considerations for vehicles and fuels.

  18. RADTRAN 4.0: Advanced computer code for transportation risk assessment

    International Nuclear Information System (INIS)

    RADTRAN 4.0 is a computer code for transportation risk assessment developed by Sandia National Laboratories for the US Department of Energy. While retaining the most useful and time-proven features of its predecessors, RADTRAN 4.0 incorporates significant advances over the earlier versions. The most useful new features are: improved route-specific analysis capability, internal radionuclide data library, improved logic for analysis of multiple-radionuclide packages such as spent fuel, separate treatment of gamma and neutron components of Transport Index (TI), and increased number of accident-severity categories. In this paper, each of these features will be described, and, where appropriate, potential applications will be discussed. 11 refs

  19. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    Science.gov (United States)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  20. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    Science.gov (United States)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  1. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  2. Collisional-Radiative and Transport Modelling of Hydrogen and Helium for ITER

    International Nuclear Information System (INIS)

    The current ITER computational engineering activities for edge plasma and plasma surface interaction (divertor) issues are carried out with the B2-EIRENE code, version SOLPS 4.3. Atomic and molecular data are brought into this integrated edge plasma tool mostly via the kinetic (Monte Carlo) Boltzmann solver EIRENE. The relevance of precise and comprehensive hydrogenic A and M processes within this computational model is obvious, as only those processes and their associated friction, plasma cooling effects etc. provide access to the favourable 'detached divertor' regime, on which the planned ITER operation is based. This regime is characterized by a (hydrogen-) chemical complexity not otherwise encountered in fusion plasmas. Helium is the ash of the fusion process and without control of its concentration the fusion flame in ITER would be choked by its own ash within 100 seconds, well short of the planned 600 - 1000 seconds of plasma operation per discharge. Edge and divertor plasma modelling for ITER falls already into the category of 'computational engineering', whereas all other applications of edge transport modelling codes today, e.g. to the ASDEX-Upgrade and JET tokamaks (2D) or the LHD and W7X stellarators (3D), etc. are largely 'computational science' activities still. This necessarily leads to particular consequences also for atomic and molecular databases within the B2-EIRENE code package. Computational parameter scans in the multi-dimensional parameter space of the ITER divertor are extremely slow and expensive, both with respect to human and to computational resources. One single data point (i.e. one single run with B2-EIRENE on a particular set of ITER input parameters) takes about 3 months on current computers. (This figure is a constant since about 15 years: the increasing complexity of the physical model compensates rapid speedup and availability of CPUs.) Exchanges of code modules or of A and M databases are only carried out if either missing physics

  3. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  4. The contribution to the energy balance and transport in an advanced-fuel tokamak reactor

    International Nuclear Information System (INIS)

    The influence of synchrotron radiation emission on the energy balance of an advanced-fuel (such as D-3He, or catalyzed-D) tokamak plasma is considered. It is shown that a region in the β-T space exists, where the fusion energy delivered to the plasma overcomes synchrotron and bremsstrahlung energy losses, and which could then allow for ignited operation. 1-Dimensional codes results are also presented, which illustrate the main features of radial transport in a ignited, D-3He tokamak plasma

  5. The effect of a micro bubble dispersed gas phase on hydrogen isotope transport in liquid metals under nuclear irradiation

    CERN Document Server

    Fradera, Jorge

    2013-01-01

    The present work intend to be a first step towards the understanding and quantification of the hydrogen isotope complex phenomena in liquid metals for nuclear technology. Liquid metals under nuclear irradiation in,e.g., breeding blankets of a nuclear fusion reactor would generate tritium which is to be extracted and recirculated as fuel. At the same time that tritium is bred, helium is also generated and may precipitate in the form of nano bubbles. Other liquid metal systems of a nuclear reactor involve hydrogen isotope absorption processes, e.g., tritium extraction system. Hence, hydrogen isotope absorption into gas bubbles modelling and control may have a capital importance regarding design, operation and safety. Here general models for hydrogen isotopes transport in liquid metal and absorption into gas phase, that do not depend on the mass transfer limiting regime, are exposed and implemented in OpenFOAMR CFD tool for 0D to 3D simulations. Results for a 0D case show the impact of a He dispersed phase of na...

  6. Hydrogen for transport in Denmark towards 2050. Contribution to electric-powered transport, growth, CO{sub 2} reduction and independence of fossil fuels; Brint til transport i Danmark frem mod 2050. Bidrag til elektrisk transport, vaekst, CO{sub 2} reduktion og fossil uafhaengighed. Baggrundsrapport. Endelig udgave

    Energy Technology Data Exchange (ETDEWEB)

    Wennike, F. (Hydrogen Link Danmark (Denmark)); Mortensgaard, A. (Brint and Braendselscelle Partnerskabet, Copenhagen (Denmark)); Sloth, M. (H2 Logic A/S, Herning (Denmark))

    2011-12-15

    Significant funding has been invested internationally in the development of hydrogen and fuel cells for the last 10 years, among others by the leading car makers. In Denmark alone businesses have, along with contributions from public programs, invested two billion DKK since 2001. The investments have helped to develop and mature hydrogen and fuel cells so that a deployment can be initiated from 2015. With the Danish government's new initiative, ''Our Energy'', which is targeted towards a switch to a fossil fuel-independent society in 2050, it is obvious that hydrogen is included as one of many technologies that can help solve the challenge within the transport sector. The Hydrogen Link Denmark Association and selected Danish players in the Hydrogen and Fuel Cell Partnership in Denmark has therefore prepared this analysis which describes a possible contribution to electrical transport, growth, CO{sub 2} reduction and fossil fuel independence by introduction of hydrogen for transport in Denmark up to 2050. The analysis is based on a possible share of hydrogen cars in the Danish car fleet in 2050 of 50% and the secondary effects of activation of the energy policy objectives for fossil fuel independence, and not least the significant potential for Danish exports of hydrogen and fuel cell technology and affected jobs. Similarly, the contribution of hydrogen for transport in relation to balancing the increased share of fluctuating renewable energy production was analyzed. (LN)

  7. The impact of soil uptake on the global distribution of molecular hydrogen: chemical transport model simulation

    Directory of Open Access Journals (Sweden)

    H. Yashiro

    2011-07-01

    Full Text Available The global tropospheric distribution of molecular hydrogen (H2 and its uptake by the soil are simulated using a model called CHemical AGCM (atmospheric general circulation model for the Study of the Environment and Radiative forcing (CHASER, which incorporates a two-layered soil diffusion/uptake process component. The simulated distribution of deposition velocity over land is influenced by regional climate, and has a global average of 3.3×10−2 cm s−1. In the region north of 30° N, the amount of soil uptake shows a large seasonal variation corresponding to change in biological activity due to soil temperature and change in diffusion suppression by snow cover. In the temperate and humid regions in the mid- to low- latitudes, the uptake is mostly influenced by the soil air ratio, which controls the gas diffusivity in the soil. In the semi-arid regions, water stress and high temperatures contribute to the reduction of biological activity, as well as to the seasonal variation in the deposition velocity. A comparison with the observations shows that the model reproduces both the distribution and seasonal variation of H2 relatively well. The global burden and tropospheric lifetime of H2 are 150 Tg and 2.0 yr, respectively. The seasonal variation in H2 mixing ratios at the northern high latitudes is mainly controlled by a large seasonal change in the soil uptake. In the Southern Hemisphere, seasonal change in net chemical production and inter-hemispheric transport are the dominant causes of the seasonal cycle, while large biomass burning contributes significantly to the seasonal variation in the tropics and subtropics. Both observations and the model show large inter-annual variations, especially for the period 1997–1998, associated with large biomass burning in the tropics and at Northern Hemisphere high latitudes. The soil uptake shows relatively small inter-annual variability

  8. The impact of soil uptake on the global distribution of molecular hydrogen: chemical transport model simulation

    Directory of Open Access Journals (Sweden)

    H. Yashiro

    2011-02-01

    Full Text Available The molecular hydrogen (H2 in the troposphere is highly influenced by the strength of H2 uptake by the terrestrial soil surface. The global distribution of H2 and its uptake by the soil are simulated by using a model called CHemical AGCM for Study of Environment and Radiative forcing (CHASER, which incorporates a 2-layered soil diffusion/uptake process component. The simulated distribution of deposition velocity over land reflects regional climate and has a global average of 3.3 × 10−2 cm s−1. In the region north of 30° N, the amount of soil uptake increases, particularly in the summer. However, the increase in the uptake becomes smaller in the winter season due to snow cover and a reduction in the biological activity at low temperatures. In the temperate and humid regions in the mid- and low-latitudes, the uptake is mostly influenced by the soil air ratio, which controls the gas diffusivity in the soil. In the semi-arid region, water stress and high temperature contribute to the reduction of biological activity, as well as to the seasonal variation in the deposition velocity. The comparison with the observations shows that the model reproduces both the distribution and seasonal variation of H2 relatively well. The global burden and tropospheric lifetime are 150 Tg and 2.0 yr, respectively. The seasonal variation of H2 in the northern high latitude is mainly controlled by the large seasonal change in soil uptake. In the Southern Hemisphere, the seasonal change in the net chemical production and inter-hemispheric transport are the dominant cause of the seasonal cycle. Large biomass burning impacts the magnitude of seasonal variation mainly in the tropics and subtropics. Both observation and model show large inter-annual variation, especially for the period 1997–1998, associated with the large biomass burning in tropics and northern high-latitudes. The soil uptake

  9. Hydrogen transport through thin palladium-copper alloy composite membranes at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Weiping [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu Jie; Sheng Shishan [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xiong Guoxing [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)], E-mail: gxxiong@dicp.ac.cn; Yang Weishen [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)], E-mail: yangws@dicp.ac.cn

    2008-02-29

    Hydrogen permeation performance of three thin palladium-copper composite membranes with different thicknesses had been studied between 398 K and 753 K. Hydrogen permeance was obtained up to 2.7 x 10{sup -6} mol/(m{sup 2} s Pa) with an ideal selectivity over 1000 at 753 K. The hydrogen permeation exhibited two different activation energies over the temperature range: lower activation energy of about 9.8 kJ/mol above 548 K, while higher activation energy of about 26.4 kJ/mol below 548 K. After permeation tests, the alloy membranes were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and in situ X-ray diffraction. Palladium segregation on the surface of these palladium-copper alloys may induce changes of hydrogen permeation performance and thus influence the activation energies.

  10. Hydrogen transport through thin palladium-copper alloy composite membranes at low temperatures

    International Nuclear Information System (INIS)

    Hydrogen permeation performance of three thin palladium-copper composite membranes with different thicknesses had been studied between 398 K and 753 K. Hydrogen permeance was obtained up to 2.7 x 10-6 mol/(m2 s Pa) with an ideal selectivity over 1000 at 753 K. The hydrogen permeation exhibited two different activation energies over the temperature range: lower activation energy of about 9.8 kJ/mol above 548 K, while higher activation energy of about 26.4 kJ/mol below 548 K. After permeation tests, the alloy membranes were characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and in situ X-ray diffraction. Palladium segregation on the surface of these palladium-copper alloys may induce changes of hydrogen permeation performance and thus influence the activation energies

  11. Durability and transport properties of polyethylene pipes for distributing mixtures of hydrogen and natural gas

    International Nuclear Information System (INIS)

    The objective of the Integrated Project Naturalhy is to prepare the European natural gas industry for the introduction of hydrogen by assessing the capability of the existing natural gas infrastructures to accept mixtures of hydrogen and natural gas. This paper presents the ongoing work on investigations of the distribution network within the Durability Work Package leaded by Gaz de France. Permeation measurements were performed at different temperatures on a PE80 with pure or mixed methane and hydrogen. Permeability coefficients were determined along with their temperature dependency. Development of dedicated long-term hydrogen ageing test bench has been achieved. The study of long-term behaviour of polyethylene for pipe applications has been started on PE80 and PE100. Real scale experiments on various components of distribution networks have been investigated. (authors)

  12. A review of recent advances of numerical simulations of microscale fuel processors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Jamelyn D.; Wang, Yong

    2015-05-01

    Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformer’s small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanol’s low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.

  13. Policy support for large scale demonstration projects for hydrogen use in transport. Deliverable D 5.1 (Part B)

    International Nuclear Information System (INIS)

    This research addresses the possible policy support mechanisms for hydrogen use in transport to answer the question which policy support mechanism potentially is most effective to stimulate hydrogen in transport and especially for large scale demonstrations. This is done by investigating two approaches. First, the possible policy support mechanisms for energy innovations. Second, by relating these to the different technology development stages (R and D, early market and mass market stage) and reviewing their effect on different parts of the hydrogen energy chain (production, distribution and end-use). Additionally, a comparison of the currently policy support mechanisms used in Europe (on EU level) with the United States (National and State level) is made. The analysis shows that in principle various policy support mechanisms can be used to stimulate hydrogen. The choice for a policy support mechanism should depend on the need to reduce the investment cost (euros/MW), production/use cost (euros/GJ) or increase performance (euros/kg CO2 avoided) of a technology during its development. Careful thought has to be put into the design and choice of a policy support mechanism because it can have effects on other parts of the hydrogen energy chain, mostly how hydrogen is produced. The effectiveness of a policy support mechanism greatly depends on the ability to adapt to the developments of the technology and the changing requirements which come with technological progress. In time different policy support mechanisms have to be applied. For demonstration projects there is currently the tendency to apply R and D subsidies in Europe, while the United States applies a variety of policy support mechanisms. The United States not only has higher and more support for demonstration projects but also has stronger incentives to prepare early market demand (for instance requiring public procurement and sales obligations). In order to re-establish the level playing field, Europe may

  14. Market penetration analysis of the use of hydrogen in the road transport sector of the Madrid region, using MARKAL

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A.; Guervos, E. [Chemical Engineering Department, Universidad Nacional de Educacion a Distancia (UNED), Juan del Rosal 12, Madrid 28040 (Spain); Posso, F. [Science Department, ULA - Tachira, San Cristobal 5001 (Venezuela)

    2009-01-15

    Nobody can doubt today that hydrogen will, in the not-too-distant future, represent a very significant percentage of the total energy used by the transport sector. This study therefore consists of the modelling and simulation of energy consumption, by type of vehicle and fuel or energetic vector, in the road transport sector of the Madrid Region, during the period 2010-2050, using the MARKAL model. It has been necessary to complete this model by adding numerous specifications in order to determine the features of the Madrid Region, the richest Region in Spain. For the purpose of the study, three growth scenarios, based on short-term energy forecasts made by different official organizations, have been proposed for the energy consumption of the road transport sector in the Region. The results show a profound change in the current situation as there is a significant decrease in the consumption of fossil fuels and an increase in that of alternative non-fossil fuels and hydrogen. The latter, in particular, will rise from 0.1% in the year 2010, to around 50% in the year 2050, which will mean a drastic drop in the sector's CO{sub 2} and atmospheric pollutant emissions. (author)

  15. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    Science.gov (United States)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  16. Prospects for hydrogen storage in graphene.

    Science.gov (United States)

    Tozzini, Valentina; Pellegrini, Vittorio

    2013-01-01

    Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions. PMID:23165421

  17. A vertical-oriented WS2 nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction

    Science.gov (United States)

    Shifa, Tofik Ahmed; Wang, Fengmei; Cheng, Zhongzhou; Zhan, Xueying; Wang, Zhenxing; Liu, Kaili; Safdar, Muhammad; Sun, Lianfeng; He, Jun

    2015-08-01

    Electrocatalytic hydrogen production at low overpotential is a promising route towards a clean and sustainable energy. Layered transition metal dichalcogenides (LTMDs) have attracted copious attention for their outstanding activities in hydrogen evolution reaction (HER). However, the horizontally laid nanosheets suffer from a paucity of active edge sites. Herein, we report the successful synthesis of vertical-oriented WS2 nanosheets through a hydrothermal method followed by a facile sulfurization process. Furthermore, the surface of synthesized WS2 nanosheets was decorated by ultrathin reduced graphene oxide (rGO) nanoplates. This is achieved for the first time by bringing the rGO on the surface of vertical-oriented WS2 nanosheets, which is conducive to rapid electron transport during the HER process. Significantly, the as-synthesized rGO/WS2 nanosheets exhibit improved HER activity as compared to the undecorated ones. It needs a low overpotential of only 229 mV vs. RHE to afford a current density of 10 mA cm-2. We believe that this hybrid structure demonstrated remarkable HER activity brought about by a compatible synergism between rGO and WS2.Electrocatalytic hydrogen production at low overpotential is a promising route towards a clean and sustainable energy. Layered transition metal dichalcogenides (LTMDs) have attracted copious attention for their outstanding activities in hydrogen evolution reaction (HER). However, the horizontally laid nanosheets suffer from a paucity of active edge sites. Herein, we report the successful synthesis of vertical-oriented WS2 nanosheets through a hydrothermal method followed by a facile sulfurization process. Furthermore, the surface of synthesized WS2 nanosheets was decorated by ultrathin reduced graphene oxide (rGO) nanoplates. This is achieved for the first time by bringing the rGO on the surface of vertical-oriented WS2 nanosheets, which is conducive to rapid electron transport during the HER process. Significantly, the as

  18. Ripple transport in helical-axis advanced stellarators - a comparison with classical stellarator/torsatrons

    International Nuclear Information System (INIS)

    Calculations of the neoclassical transport rates due to particles trapped in the helical ripples of a stellarator's magnetic field are carried out, based on solutions of the bounce-averaged kinetic equation. These calculations employ a model for the magnetic field strength, B, which is an accurate approximation to the actual B for a wide variety of stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias) as well as conventional stellarators and torsatrons. Comparisons are carried out in which it is shown that the Helias concept leads to significant reductions in neoclassical transport rates throughout the entire long-mean-free-path regime, with the reduction being particularly dramatic in the ν-1 regime. These findings are confirmed by numerical simulations. Further, it is shown that the behavior of deeply trapped particles in Helias can be fundamentally different from that in classical stellarator/torsatrons; as a consequence, the beneficial effects of a radial electric field on the transport make themselves felt at lower collision frequency than is usual. (orig.)

  19. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of

  20. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain.

    Science.gov (United States)

    Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S

    2016-01-01

    The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes. PMID:26198375

  1. The dimensions of the policy debate over transportation energy: The case of hydrogen in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, Gustavo [Institute of Transportation Studies, University of California at Davis, One Shields Avenue, Davis, CA 95616 (United States); Kennedy School of Government, Harvard University, 79 JFK Street, Cambridge, MA 02138 (United States)

    2008-03-15

    Environmental and politico-strategic concerns have driven the increase in policy activity related to energy that the United States witnessed in the last few years. The nature of the issues at stake and the level of stakeholder involvement result in a highly complex policy debate. The broad concern of this paper is the study of this energy-policy process and the identification of the main policy issues. Specifically, multivariate analysis is applied to data on a wide variety of stakeholders' policy beliefs and policy preferences to identify the policy dimensions that characterize the debate over energy policy in the United States. The focus is on the policy debate over hydrogen as a transportation fuel, although many results are applicable to the debate over transportation energy at large. The analysis uses a dataset of 502 individuals from 323 different stakeholder organizations obtained via a web-based survey specifically designed for this study. (author)

  2. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-01

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems. PMID:27012818

  3. Thermal hydraulic studies for passive heat transport systems relevant to advanced reactors

    International Nuclear Information System (INIS)

    Nuclear is the only non-green house gas generating power source that can replace fossil fuels and can be commercially deployed in large scale. However, the enormous developmental efforts and safety upgrades during the past six decades have somewhat eroded the economic competitiveness of water-cooled reactors which form the mainstay of the current nuclear power programme. Further, the introduction of the supercritical Rankine cycle and the gas turbine based advanced fuel cycles have enhanced the efficiency of fossil fired power plants (FPP) thereby reducing its greenhouse gas emissions. The ongoing development of ultra-supercritical and advanced ultra-supercritical turbines aims to further reduce the greenhouse gas emissions and economic competitiveness of FPPs. In the backdrop of these developments, the nuclear industry also initiated development of advanced nuclear power plants (NPP) with improved efficiency, sustainability and enhanced safety as the main goals. A review of the advanced reactor concepts being investigated currently reveals that excepting the SCWR, all other concepts use coolants other than water. The coolants used are lead, lead bismuth eutectic, liquid sodium, molten salts, helium and supercritical water. Besides, some of these are employing passive systems to transport heat from the core under normal operating conditions. In view of this, a study is in progress at BARC to examine the performance of simple passive systems using SC CO2, SCW, LBE and molten salts as the coolant. This paper deals with some of the recent results of these studies. The study focuses on the steady state, transient and stability behaviour of the passive systems with these coolants. (author)

  4. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS; F

    International Nuclear Information System (INIS)

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. To have better understanding of the membrane reactor, during this reporting period, we developed a two-dimensional pseudo-homogeneous reactor model for steam reforming of methane by equilibrium shift in a tubular membrane reactor. In numerical solution of the reactor model equations, numerical difficulties were encountered and we seeking alternative solution techniques to overcome the problem

  5. Superconductivity for hydrogen economy

    International Nuclear Information System (INIS)

    The emerging hydrogen economy is expected to deal with a large amount of liquid hydrogen produced from the renewable energy resources. The main advantage of liquid hydrogen in comparison with other forms of its storage and transportation is in allowing wide use of superconductivity, which would optimise energy efficiency of the economy. The basic element of the infrastructure for hydrogen economy is a network of superconducting pipelines carrying simultaneously liquid hydrogen and loss-free electricity. The most likely material for such infrastructure is MgB2, the only superconductor efficiently working at boiling temperature of liquid hydrogen and not showing strong critical current reduction on grain boundaries. The cheap techniques for the preparation of MgB2 are hot isostatic pressing, resistive sintering and paint coating. These and other advanced techniques are able to provide MgB2 with suitable for the infrastructure structural and superconducting properties. The preparation of a large-area superconducting joint between two pieces of MgB2 as a technique enabling this infrastructure is reported. A potential of synergy between liquid hydrogen and superconductivity is revealed in a range of possible new energy applications.

  6. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  7. Hydrogenic Species Transport Assessments in Ceramic Aluminas Used in ITER ICRH H and CD and Diagnostic Systems

    International Nuclear Information System (INIS)

    Ceramic insulators will be used in the ITER Heating and Current Drive and Diagnostics (H and CD/D) systems as opto-electronic vacuum windows or as feed-troughs. Their performance as materials could come modified by the intake of deuterium-tritium which amounts might be enhanced by ionising radiation effects. Such vacuum windows have a primary safety role as tritium confinement barriers. Tritium transport analyses have major implications on the design and safety assessments of ITER RF H and CD systems. As it is shown, refined tritium transport release-rate models together with detailed parametric studies can precise such assessments. In addition such modeling serves as conceptual framework to quantify precise impact of underlying phenomena (ex. radiation-enhanced diffusion or potential effects of radiation damage on tritium transport through the Vacuum Window) and its fi nal impact on main transport parameters of interest for VW design: permeation flux and D/T inventories. In the present work it has been shown how, for electric implantation of ionized D,T in the VW being the major source for isotopes intake, an hybrid recombination/radiation enhanced diffusion regime determine H-isotopes transport kinetics in the window. Precise values for permeation fluxes and inventories are provided from solution of mass transport equations. Near and medium term work planning is advanced. (Author) 16 refs

  8. Hydrogenic Species Transport Assessments in Ceramic Aluminas Used in ITER ICRH H and CD and Diagnostic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, C.; Sedano, L. A.

    2007-09-27

    Ceramic insulators will be used in the ITER Heating and Current Drive and Diagnostics (H and CD/D) systems as opto-electronic vacuum windows or as feed-troughs. Their performance as materials could come modified by the intake of deuterium-tritium which amounts might be enhanced by ionising radiation effects. Such vacuum windows have a primary safety role as tritium confinement barriers. Tritium transport analyses have major implications on the design and safety assessments of ITER RF H and CD systems. As it is shown, refined tritium transport release-rate models together with detailed parametric studies can precise such assessments. In addition such modeling serves as conceptual framework to quantify precise impact of underlying phenomena (ex. radiation-enhanced diffusion or potential effects of radiation damage on tritium transport through the Vacuum Window) and its fi nal impact on main transport parameters of interest for VW design: permeation flux and D/T inventories. In the present work it has been shown how, for electric implantation of ionized D,T in the VW being the major source for isotopes intake, an hybrid recombination/radiation enhanced diffusion regime determine H-isotopes transport kinetics in the window. Precise values for permeation fluxes and inventories are provided from solution of mass transport equations. Near and medium term work planning is advanced. (Author) 16 refs.

  9. The transport coefficients of electron swarms in hydrogen and carbon monoxide at moderate E/N

    International Nuclear Information System (INIS)

    Drift velocity in hydrogen and carbon monoxide and the ratio of the lateral diffusion coefficient to mobility in carbon monoxide were measured at ambient temperature and over the ranges of the reduced electric field E/N. The results are 250 < E/N <= 350 Td and 5 <= E/N <= 350 Td, and 75<= E/N <= 500 Td, respectively. (author)

  10. AN INTEGRATED ASSESSMENT OF THE IMPACTS OF HYDROGEN ECONOMY ON TRANSPORTATION, ENERGY USE, AND AIR EMISSIONS

    Science.gov (United States)

    This paper presents an analysis of the potential energy, economic and environmental implications of hydrogen fuel cell vehicle (H2-FCV) penetration into the U.S. light duty vehicle fleet. The approach, which uses the U.S. EPA MARKet ALlocation technology database and model, allow...

  11. Introduction of hydrogen vehicles in Kathmandu Valley. A clean and sustainable way of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ale, B.B. [Department of Mechanical Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University (Nepal); Bade Shrestha, S.O. [Department of Mechanical and Aeronautical Engineering, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2009-06-15

    Air quality of Kathmandu Valley, the capital of Nepal, was one of the worse among the big cites in the world. The air quality situation was becoming more critical due to the substantial increase in the conventional fueled vehicles in the valley each year. The bowl-like topography and generally low speeds of wind during the dry seasons create poor dispersion conditions, augmenting the air pollution problem further. The pollution is expected to quadruple by 2020 from the 2005 level in as business as usual scenario. The main source of the pollution in the valley is motor vehicle emissions. The paper highlights the different level of air pollution and emission reductions by introducing hydrogen fuel vehicles in Kathmandu Valley. The entire fleet of vehicles in the valley can be fueled by hydrogen produced from the national hydroelectricity of Nepal using only less than 50% of its surplus energy. This will reduce about 700,000 tonnes of carbon emission in the valley in 2020. In addition, production of hydrogen using the surplus hydroelectricity of Nepal will improve load factor of the grid, and save a substantial amount of hard currency used to import the petroleum fuel in the country. As Nepal is one of the most hydropower potential countries in the world, with a 80,000 MW potential capacity, hydrogen production is renewable, sustainable and pollution free. (author)

  12. Advanced construction materials for thermo-chemical hydrogen production from VHTR process heat

    International Nuclear Information System (INIS)

    The (very) high temperature reactor concept ((V)HTR) is characterized by its potential for process heat applications. The production of hydrogen by means of thermo-chemical cycles is an appealing example, since it is more efficient than electrolysis due to the direct use of process heat. The sulfur-iodine cycle is one of the best studied processes for the production of hydrogen, and solar or nuclear energy can be used as a heating source for the high temperature reaction of this process. The chemical reactions involved in the cycle are: I2 (l) + SO2 (g) +2 H2O (l) → 2HI (l) + H2SO4 (l) (70-120 deg. C); H2SO4 (l) → H2O (l) + SO2 (g) + 1/2 O2 (g) (800-900 deg. C); 2HI (l) → I2 (g) + H2 (g) (300-450 deg. C) The high temperature decomposition of sulphuric acid, which is the most endothermic reaction, results in a very aggressive chemical environment which is why suitable materials for the decomposer heat exchanger have to be identified. The class of candidate materials for the decomposer is based on SiC. In the current study, SiC based materials were tested in order to determine the residual mechanical properties (flexural strength and bending modulus, interfacial strength of brazed joints), after exposure to an SO2 rich environment, simulating the conditions in the hydrogen production plant. Brazed SiC specimens were tested after 20, 100, 500 and 1000 hrs exposure to SO2 rich environment at 850oC under atmospheric pressure. The gas composition in the corrosion rig was: 9.9 H2O, 12.25 SO2, 6.13 O2, balance N2 (% mol). The characterization involved: weight change monitoring, SEM microstructural analysis and four-point bending tests after exposure. Most of the specimens gained weight due to the formation of a corrosion layer as observed in the SEM. The corrosion treatment also showed an effect on the mechanical properties. In the four-point bending tests performed at room temperature and at 850 deg. C, a decrease in bending modulus with exposure time was observed

  13. Investigation of advanced nanostructured multijunction photoanodes for enhanced solar hydrogen generation via water splitting

    Science.gov (United States)

    Ishihara, Hidetaka

    As the worldwide demand for fossil-based fuel increases every day and the fossil reserve continues to be depleted, the need for alternative/renewable energy sources has gained momentum. Electric, hybrid, and hydrogen cars have been at the center of discussion lately among consumers, automobile manufacturers, and politicians, alike. The development of a fuel-cell based engine using hydrogen has been an ambitious research area over the last few decades-ever since Fujishima showed that hydrogen can be generated via the solar-energy driven photo-electrolytic splitting of water. Such solar cells are known as Photo-Electro-Chemical (PEC) solar cells. In order to commercialize this technology, various challenges associated with photo-conversion efficiency, chemical corrosion resistance, and longevity need to be overcome. In general, metal oxide semiconductors such as titanium dioxide (TiO 2, titania) are excellent candidates for PEC solar cells. Titania nanotubes have several advantages, including biocompatibility and higher chemical stability. Nevertheless, they can absorb only 5-7% of the solar spectrum which makes it difficult to achieve the higher photo-conversion efficiency required for successful commercial applications. A two-prong approach was employed to enhance photo-conversion efficiency: 1) surface modification of titania nanotubes using plasma treatment and 2) nano-capping of the titania nanotubes using titanium disilicide. The plasma surface treatment with N2 was found to improve the photo-current efficiency of titania nanotubes by 55%. Similarly, a facile, novel approach of nano-capping titania nanotubes to enhance their photocurrent response was also investigated. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using RF magnetron sputtering technique. The optical properties of titania nanotubes were not found to change due to the capping; however, a considerable increase (40%) in the photocurrent

  14. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    Science.gov (United States)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  15. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    Science.gov (United States)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  16. Advanced boundary condition method in quantum transport and its application in nanodevices

    Science.gov (United States)

    He, Yu

    Modern semiconductor devices have reached critical dimensions in the sub-20nm range. During the last decade, quantum transport methods have become the standard approaches to model nanoscale devices. In quantum transport methods, Schrodinger equations are solved in the critical device channel with the contacts served as the open boundary conditions. Proper and efficient treatments of these boundary conditions are essential to provide accurate prediction of device performance. The open boundary conditions, which represent charge injection and extraction effects, are described by contact self-energies. All existing contact self-energy methods assume periodic and semiinfinite contacts, which are in stark contrast to realistic devices where the contacts often have complicated geometries or imperfections. On the other hand, confined structures such as quantum dots, nanowires, and ultra-thin bodies play an important role in nanodevice designs. In the tight binding models of these confined structures, the surfaces require appropriate boundary treatments to remove the dangling bonds. The existing boundary treatments fall into two categories. One is to explicitly include the passivation atoms in the device. This is limited to passivation with atoms and small molecules due to the increasing rank of the Hamiltonian. The other is to implicitly incorporate passivation by altering the orbital energies of the dangling bonds with a passivation potential. This method only works for certain crystal structures and symmetries, and fails to distinguish different passivation scenarios, such as hydrogen and oxygen passivation. In this work, an efficient self-energy method applicable for arbitrary contact structures is developed. This method is based on an iterative algorithm which considers the explicit contact segments. The method is demonstrated on a graphene nanoribbon structure with trumpet shape contacts and a Si0.5Ge0.5 nanowire transistor with alloy disorder contacts. Furthermore

  17. Transport dynamics of a high-power-density matrix-type hydrogen-oxygen fuel cell

    Science.gov (United States)

    Prokopius, P. R.; Hagedorn, N. H.

    1974-01-01

    Experimental transport dynamics tests were made on a space power fuel cell of current design. Various operating transients were introduced and transport-related response data were recorded with fluidic humidity sensing instruments. Also, sampled data techniques were developed for measuring the cathode-side electrolyte concentration during transient operation.

  18. Hydrogenic Species Transport Assessments in Ceramic Alumina used in ITER ICRH H-and-CD and Diagnostics Systems

    International Nuclear Information System (INIS)

    Insulators used as H-and-CD and Diagnostic vacuum windows (VW) in ITER may become modified by surface intake and bulk transport of hydrogenic species. VW, operating under severe radiation levels, have a primary safety role as tritium confinement barriers. Ionizing radiation can potentially enhance the (H') absorption and release at surfaces and diffusion rates in the bulk. Radiation damage modifies the material's bulk trapped inventories by increasing steady trapping centre concentrations. An experimental programme is ongoing at CIEMAT, to quantify radiation effects on H transport characteristics and also the possible impact on the ceramic. Here a parametric transport assessment is done in order to obtain a wide evaluation of permeation fluxes, ranges, and solu ted/trapped inventories in alumina as VW materials: Polycrystal Al2O3 for vacuum transmission window in ICRH systems, RF feed-through and bushing system insulators, and single crystal is used for diagnostics. TMAP7 is the release-rate modeling tool used for the assessment. The insulator operational scenarios are discussed with special attention paid to the ITER design assumptions for the values of H-species source terms (neutrals and implanted). Available material transport data without radiation is discussed and taken as reference base for this parametric exercise. Permeation fluxes through base materials are justified to be below DRG limits established for ITER. (author)

  19. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  20. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    International Nuclear Information System (INIS)

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions. (letter)

  1. Transmutation Scenarios Impacts on Advanced Nuclear Cycles (fabrication/reprocessing/transportation)

    International Nuclear Information System (INIS)

    In the frame of the French Law for waste management, minor actinides transmutation scenarios have been studied for a sodium-cooled fast reactors fleet using homogeneous or heterogeneous recycling modes. Americium, neptunium and curium can be transmuted once included together in the standard MOX fuel, or the sole Americium can be incorporated in Am-bearing radial blanket. MAs transmutation in Accelerator Driven System has also been studied while Plutonium is recycling in SFR. Assessments and comparisons of these advanced cycles have been performed in light of technical and economic aspects criteria. The purpose of this study is to present the results in terms of impacts of the transmutation scenarios on fuel cycle plants (fabrication, reprocessing) and transportations taking into account thermal, radiation and criticality parameters. Comparison with no transmutation option is also presented. (author)

  2. A Psychoacoustic Evaluation of Noise Signatures from Advanced Civil Transport Aircraft

    Science.gov (United States)

    Rizzi, Stephen A.; Christian, Andrew

    2016-01-01

    The NASA Environmentally Responsible Aviation project has been successful in developing and demonstrating technologies for integrated aircraft systems that can simultaneously meet aggressive goals for fuel burn, noise and emissions. Some of the resulting systems substantially differ from the familiar tube and wing designs constituting the current civil transport fleet. This study attempts to explore whether or not the effective perceived noise level metric used in the NASA noise goal accurately reflects human subject response across the range of vehicles considered. Further, it seeks to determine, in a quantitative manner, if the sounds associated with the advanced aircraft are more or less preferable to the reference vehicles beyond any differences revealed by the metric. These explorations are made through psychoacoustic tests in a controlled laboratory environment using simulated stimuli developed from auralizations of selected vehicles based on systems noise assessments.

  3. Prisoners' bodies: methods and advances in convict medicine in the transportation era.

    Science.gov (United States)

    Brasier, Angeline

    2010-01-01

    Recent historical research looks upon the plight of Australian convicts not as victims of a harsh penal system, but as workers whose health had to be judiciously maintained. What then can be said for the medical treatments provided for convict patients during this chapter in Australia's past? Did convicts receive medical treatments with the same measure of importance and urgency as the free populace, or were prisoners' bodies considered with such a measure of insignificance that they provided veritable opportunities for advances in medicine? This article will provide general insight into prison medicine in Australia during the transportation era and how some convicts were subjected to experimental medical practices. It will also place these techniques into a wider global context by considering experimental practices involving convict patients in establishments in other places, such as Wakefield and Bermuda. PMID:21553693

  4. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    Science.gov (United States)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  5. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  6. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    International Nuclear Information System (INIS)

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production

  7. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process

    OpenAIRE

    Bragg, Stefanie A.; Armstrong, Kristie C.; Xue, Zi-Ling

    2012-01-01

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H2O2 and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high CH2O2,t = 0, the reaction is zeroth order with respect to CH2O2 and first order with respect to Cblood....

  8. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications

    International Nuclear Information System (INIS)

    Equations are given which describe the permeation rate, diffusivity and solubility of hydrogen over the range 250-6000C at pressures up to 105 Pa for the 316L stainless and modified 1.4914 martensitic candidate steels proposed for the construction of the Next European Torus (NET). For heat-treated 316L steel, the permeation rates measured agreed well with previous work and did not vary significantly from specimen to specimen or from batch to batch. Measurements of the permeation rate of hydrogen and deuterium through the modified 1.4914 steel, believed to be the first made, show that the martensitic steel is significantly more permeable than the austenitic steel, by an order of magnitude at 2500C and a factor of five at 6000C. This difference could make it necessary to use permeation barriers on critical components made from the martensitic steel in order to reduce the tritium permeation rate to acceptable levels. (orig.)

  9. The affect of community dynamics and knowledge on the acceleration of technology development for the transition towards a hydrogen based transport system in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Van Giessel, J.F.; Ros, M.

    2003-03-15

    Due to the disadvantages (energy security, urban air pollution, the risk of climate change due to CO2 emission) of the current energy system, scientists and policymakers are searching for alternative energy sources to reduce the need for and use of fossil fuel and make the energy system more sustainable. Hydrogen is one of the proposed options. The transportation sector has a large contribution to climate change in terms of carbon dioxide emission. Hydrogen can be used as an alternative fuel to reduce the air pollution and CO2 emission in the transportation sector. In Europe many organisations and institutions are working together on the research and development of hydrogen as an alternative energy carrier for the transportation sector. The EC tries to reach the policy goal to substitute 2% of the fuel used in the transportation sector by hydrogen in the year 2015 and even 5% in the year 2020. In the EU, Germany is a frontrunner in the amount of hydrogen R and D projects. Many R and D projects in Germany are aimed at the transport sector. Most major car manufactures in Germany, especially DaimlerChrysler and BMW, invest large amounts of money in the R and D of hydrogen and fuel cell technologies. Besides spending of these organisations, the Federal German government and some state governments (Bundesstate) stimulate the development of hydrogen and fuel cell technologies since 1980. The growing awareness of both policy makers and major car manufactures in Germany to use hydrogen as an alternative fuel for the transportation sector makes it interesting to review this transition process in the transportation sector in Germany and see if this process can be accelerated. The innovation systems theory and the co-evolution of technology and community distinguish community dynamics and knowledge as important factors for describing technological change. In this research these factors will be used to determine the affect on the acceleration of technology development. The

  10. Hydrogen and fuel cell technology in EU LDV transport: Potential contribution to environmental goals

    OpenAIRE

    Hansen, Anders Chr.

    2007-01-01

    Hydrogen in fuel cell (HFC) technology offers a fuel and powertrain solution for a.o. Light Duty Vehicles (LDVs) that is free of tail pipe emissions. This analysis aims at quantifying the potential contribution of this technology to the reduction of air pollution from the European LDV stock. The study shows that HFC technology can contribute to a reduction of local pollutants, but in a very modest scale compared to other measures adopted in European air pollution abatement poli...

  11. Transport of hydrogenic species in crystalline oxides: radiation and electric-field-enhanced diffusion

    International Nuclear Information System (INIS)

    Thermal diffusion of protons, deuterons and tritons forming OH-, OD- and OT- radicals respectively was monitored by infrared absorption measurements in MgO, Al2O3, LiNbO3 and TiO2 single crystals. The electric charge and/or ionic radius is shown to be more important than mass in affecting the diffusion behaviour in these oxides. The influence of selected impurities and crystal orientation on the diffusion parameters was also investigated. Thermal diffusion of protons occupying substitutional anion vacancies (hydride ions) or [H-]+ centres was studied in thermochemically reduced MgO crystals. Simulations using an ab initio Hartree-Fock cluster approach indicate that the mobile defect is more compatible with the H- ion than with the proton. Application of even a moderate electric field is very effective in enhancing the H+ ↔ D+ exchange in crystals containing hydroxyl ions. In addition, deuterons can be effectively incorporated in crystals with undetectable hydrogen concentrations by applying moderate electric fields at elevated temperatures. The incorporation of deuterons occurs without proton replacement, which indicates the possibility of D+(H+) doping. Under electron irradiation, otherwise stable hydrogenic species become mobile at temperatures as low as 85 K. Ionizing radiation breaks the O-H bond with exceedingly large cross-sections (108 barns at room temperature), which is a strong function of the irradiating temperature. The displacement cross-section of protons is twice that of deuterons. Radiation induced displacement of protons from hydride ions at room temperature is also discussed. Out-diffusion of hydrogen isotopes can be induced in TiO2 crystals near room temperature by breaking the hydroxyl bond by electron irradiation and subsequently sweeping out hydrogenic species along the c-axis by application of an electric field. (topical review)

  12. Magnetic liquefier for hydrogen

    International Nuclear Information System (INIS)

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century

  13. Magnetic liquefier for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  14. The role of methane and hydrogen in a fossil-free Swedish transport sector

    OpenAIRE

    Larsson, Mårten

    2015-01-01

    Drastic reductions of greenhouse gas emissions are required to limit the severe risks associated with a changing climate. One measure is to disrupt the fossil-fuel dependency in the transport sector, but it appears difficult and costly in comparison to other measures. Vehicles and fuels are available, but no single alternative can replace petrol and diesel in all parts of the transport system. None of them are ideal regarding all of the following aspects: vehicle performance, fuel production ...

  15. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    Science.gov (United States)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  16. Impacts of large-scale introduction of hydrogen in the road transport sector on urban air pollution and human exposure in Copenhagen

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, S.S.; Ketzel, M.; Brandt, J.; Frohn, L.M.; Winther, M.; Nielsen, O.K. (Aarhus Univ.. National Environmental Research Institute, Roskilde (Denmark)); Joergensen, K.; Karlsson, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Dept. of System Analysis, Roskilde (Denmark))

    2011-07-15

    The aim of the project 'Environmental and Health Impact Assessment of Scenarios for Renewable Energy Systems with Hydrogen' (HYSCENE) is to improve modelling of the environmental impacts and related socio-cultural and welfare economic impacts of a proposed hydrogen/renewable energy system with focus on large-scale introduction of hydrogen as energy carrier in the road transport sector (http://hyscene.dmu.dk). This extended abstract will focus on the impacts on urban air pollution and human exposure. (Author)

  17. A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides

    Directory of Open Access Journals (Sweden)

    Jerzy Bystrzycki

    2010-12-01

    Full Text Available The recent advances on the effects of microstructural refinement and various nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides obtained in the last few years in the allied laboratories at the University of Waterloo (Canada and Military University of Technology (Warsaw, Poland are critically reviewed in this paper. The research results indicate that microstructural refinement (particle and grain size induced by ball milling influences quite modestly the hydrogen storage properties of simple metal and complex metal hydrides. On the other hand, the addition of nanometric elemental metals acting as potent catalysts and/or metal halide catalytic precursors brings about profound improvements in the hydrogen absorption/desorption kinetics for simple metal and complex metal hydrides alike. In general, catalytic precursors react with the hydride matrix forming a metal salt and free nanometric or amorphous elemental metals/intermetallics which, in turn, act catalytically. However, these catalysts change only kinetic properties i.e. the hydrogen absorption/desorption rate but they do not change thermodynamics (e.g., enthalpy change of hydrogen sorption reactions. It is shown that a complex metal hydride, LiAlH4, after high energy ball milling with a nanometric Ni metal catalyst and/or MnCl2 catalytic precursor, is able to desorb relatively large quantities of hydrogen at RT, 40 and 80 °C. This kind of behavior is very encouraging for the future development of solid state hydrogen systems.

  18. High-Purity Aluminum Magnet Technology for Advanced Space Transportation Systems

    Science.gov (United States)

    Goodrich, R. G.; Pullam, B.; Rickle, D.; Litchford, R. J.; Robertson, G. A.; Schmidt, D. D.; Cole, John (Technical Monitor)

    2001-01-01

    Basic research on advanced plasma-based propulsion systems is routinely focused on plasmadynamics, performance, and efficiency aspects while relegating the development of critical enabling technologies, such as flight-weight magnets, to follow-on development work. Unfortunately, the low technology readiness levels (TRLs) associated with critical enabling technologies tend to be perceived as an indicator of high technical risk, and this, in turn, hampers the acceptance of advanced system architectures for flight development. Consequently, there is growing recognition that applied research on the critical enabling technologies needs to be conducted hand in hand with basic research activities. The development of flight-weight magnet technology, for example, is one area of applied research having broad crosscutting applications to a number of advanced propulsion system architectures. Therefore, NASA Marshall Space Flight Center, Louisiana State University (LSU), and the National High Magnetic Field Laboratory (NHMFL) have initiated an applied research project aimed at advancing the TRL of flight-weight magnets. This Technical Publication reports on the group's initial effort to demonstrate the feasibility of cryogenic high-purity aluminum magnet technology and describes the design, construction, and testing of a 6-in-diameter by 12-in-long aluminum solenoid magnet. The coil was constructed in the machine shop of the Department of Physics and Astronomy at LSU and testing was conducted in NHMFL facilities at Florida State University and at Los Alamos National Laboratory. The solenoid magnet was first wound, reinforced, potted in high thermal conductivity epoxy, and bench tested in the LSU laboratories. A cryogenic container for operation at 77 K was also constructed and mated to the solenoid. The coil was then taken to NHMFL facilities in Tallahassee, FL. where its magnetoresistance was measured in a 77 K environment under steady magnetic fields as high as 10 T. In

  19. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  20. The Advanced Re-Entry Vehicle (ARV) a Development Step from ATV Toward Manned Transportation Systems

    Science.gov (United States)

    Bottacini, M.; Berthe, P.; Vo, X.; Pietsch, K.

    2011-08-01

    The Advanced Re-entry Vehicle (ARV) programme has been undertaken by Europe with the objective to contribute to the preparation of a future European crew transportation system, while providing a valuable logistic support to the ISS through an operational cargo return system. This development would allow: - the early acquisition of critical technologies; - the design, development and testing of elements suitable for the follow up human rated transportation system. These vehicles should also serve future LEO infrastructures and exploration missions. With the aim to satisfy the above objectives a team composed by major European industries and led by EADS Astrium Space Transportation is currently conducting the phase A of the programme under contract with the European Space Agency (ESA). Two vehicle versions are being investigated: a Cargo version, transporting cargo only to/from the ISS, and a Crew version, which will allow the transfer of both crew and cargo to/from the ISS. The ARV Cargo version, in its present configuration, is composed of three modules. The Versatile Service Module (VSM) provides to the system the propulsion/GNC for orbital manoeuvres and attitude control and the orbital power generation. Its propulsion system and GNC shall be robust enough to allow its use for different launch stacks and different LEO missions in the future. The Un-pressurised Cargo Module (UCM) provides the accommodation for about 3000 kg of un-pressurised cargo and is to be sufficiently flexible to ensure the transportation of: - orbital infrastructure components (ORU's); - scientific / technological experiments; - propellant for re-fuelling, re-boost (and deorbiting) of the ISS. The Re-entry Module (RM) provides a pressurized volume to accommodate active/passive cargo (2000 kg upload/1500 kg download). It is conceived as an expendable conical capsule with spherical heat- hield, interfacing with the new docking standard of the ISS, i.e. it carries the IBDM docking system, on a

  1. Hydrogen and OUr Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  2. Influence of the content of Cr in diffusive transport parameters and trapping of hydrogen in Fe alloys; Influencia del contenido de Cr en los parametros de transporte difusivos y de trapping de hidrogeno en aleaciones de Fe

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, I.; Alberro, G.; Orduna, I.; Legarda, F.; Vila, R.; Ortiz, C. J.

    2013-07-01

    The materials candidates to be part of a fusion reactor must characterize properly to carry out the correct selection of the same. In this sense, the interaction of the isotopes of hydrogen with materials Such It is essential, since the transport parameters will Affect the inventory of hydrogen in the reactor Retained and, in Addition, of These components isotopes permeation through structural materials can Affect areas of human.

  3. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Science.gov (United States)

    Mutch, Michael J.; Lenahan, Patrick M.; King, Sean W.

    2016-08-01

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  4. Why hydrogen

    International Nuclear Information System (INIS)

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  5. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Science.gov (United States)

    Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.

    1981-01-01

    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included.

  6. 77 FR 34194 - Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste

    Science.gov (United States)

    2012-06-11

    ... Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule... irradiated reactor fuel and certain nuclear waste passing through or across the boundary of their States... shipment of irradiated reactor fuel and nuclear waste,'' requires licensees to provide advance notice...

  7. A novel sputtered Pd mesh architecture as an advanced electrocatalyst for highly efficient hydrogen production

    Science.gov (United States)

    de Lucas-Consuegra, Antonio; de la Osa, Ana R.; Calcerrada, Ana B.; Linares, José J.; Horwat, David

    2016-07-01

    This study reports the preparation, characterization and testing of a sputtered Pd mesh-like anode as an advanced electrocatalyst for H2 production from alkaline ethanol solutions in an Alkaline Membrane Electrolyzer (AEM). Pd anodic catalyst is prepared by magnetron sputtering technique onto a microfiber carbon paper support. Scanning Electron Microscopy images reveal that the used preparation technique enables to cover the surface of the carbon microfibers exposed to the Pd target, leading to a continuous network that also maintains part of the original carbon paper macroporosity. Such novel anodic architecture (organic binder free) presents an excellent electro-chemical performance, with a maximum current density of 700 mA cm-2 at 1.3 V, and, concomitantly, a large H2 production rate with low energy requirement compared to water electrolysis. Potassium hydroxide emerges as the best electrolyte, whereas temperature exerts the expected promotional effect up to 90 °C. On the other hand, a 1 mol L-1 ethanol solution is enough to guarantee an efficient fuel supply without any mass transfer limitation. The proposed system also demonstrates to remain stable over 150 h of operation along five consecutives cycles, producing highly pure H2 (99.999%) at the cathode and potassium acetate as the main anodic product.

  8. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research.

    Science.gov (United States)

    Lampert, M; Anda, G; Czopf, A; Erdei, G; Guszejnov, D; Kovácsik, Á; Pokol, G I; Réfy, D; Nam, Y U; Zoletnik, S

    2015-07-01

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera's measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties. PMID:26233377

  9. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    International Nuclear Information System (INIS)

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties

  10. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  11. Transport properties of bare and hydrogenated zigzag silicene nanoribbons: Negative differential resistances and perfect spin-filtering effects

    International Nuclear Information System (INIS)

    Ab initio calculations are performed to investigate the spin-polarized transport properties of the bare and hydrogenated zigzag silicene nanoribbons (ZSiNRs). The results show that the ZSiNRs with symmetric (asymmetric) edges prefer the ferromagnetic (antiferromagnetic) as their ground states with the semiconductor properties, while the accordingly antiferromagnetic (ferromagnetic) states exhibit the metallic behaviors. These facts result in a giant magnetoresistance behavior between the ferromagnetic and antiferromagnetic states in the low bias-voltage regime. Moreover, in the ferromagnetic ZSiNRs with asymmetric edges, a perfect spin-filtering effect with 100% positive electric current polarization can be achieved by altering the bias voltage. In addition, we also find that the negative differential resistances prefer the metastable states. The findings here indicate that the asymmetric and symmetric ZSiNRs are promising materials for spintronic applications.

  12. Spin-dependent transport properties of hetero-junction based on zigzag graphene nanoribbons with edge hydrogenation and oxidation

    Science.gov (United States)

    Cui, Li-ling; Long, Meng-qiu; Zhang, Xiao-jiao; Li, Xin-mei; Zhang, Dan; Yang, Bing-chu

    2016-02-01

    Using the non-equilibrium Green's function method and the spin-polarized density functional theory, we investigate the magnetism and spin resolved transport properties of hetero-structures based on zigzag graphene nanoribbons (ZGNRs) with edge hydrogenation (H) and oxidation (O). It is found that a perfect spin filtering effect can be realized on O-ZGNR-H/H-ZGNR-H in both parallel and anti-parallel spin configurations. Interestingly, an excellent dual spin filtering behavior can be obtained on O-ZGNR-H/H2-ZGNR-H, which is independent of the width of the nanoribbon. Our results indicate that the hetero-structure holds promise for spintronic devices in future.

  13. Recent advances on the regulation of glucose transporter 4 transport and its relationship with myocardial viability in cardiomyocytes

    International Nuclear Information System (INIS)

    Glucose plays an important role in cardiac metabolism. It is the major energy source during myocardial ischemia. Trans-membrane glucose transport is the first rate-limited step for myocardial glucose metabolism, which is facilitated by glucose transports (GLUTs) and GLUT4 represents an important mechanism that governs the entry of glucose into the heart. The quality and quantity of GLUT4 play a decisive role in transmembrane glucose transport. To better retrieve myocardial metabolism and improve myocardial function under myocardial ischemia conditions, it is urgent to elucidate the regulatory mechanism of GLUT4 expression, the regulatory mechanism of GLUT4 translocation, the regulatory mechanism of GLUT4 intrinsic activity and glucose transport in cardiomyocytes. This review summarized the current state of knowledge regarding the regulation of GLUT4 functioning and glucose transport in cardiomyocytes. (authors)

  14. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  15. Effect of grain boundary trapping kinetics on diffusion in polycrystalline materials: hydrogen transport in Ni

    Science.gov (United States)

    Ilin, Dmitrii N.; Kutsenko, Anton A.; Tanguy, Dome; Olive, Jean-Marc

    2016-03-01

    Due to experimental limitations, the solute distribution in polycrystalline materials is difficult to obtain directly, especially in the vicinity of grain boundaries. Using a newly developed computational method which mixes continuum diffusion equations and atomic scale jump rates, we study the interstitial diffusion in solids containing interfaces taking into account trapping kinetics. The model is applied to hydrogen diffusion in Ni in elementary configurations: fast intergranular diffusion with no segregation (in agreement with Fisher’s model), slow intergranular diffusion with trapping, diffusion through a triple junction and solute redistribution due to stress gradients across the interface. It is shown that the classical diffusion modes can be captured and a new diffusion regime with the effect of grain boundary trapping is revealed.

  16. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    International Nuclear Information System (INIS)

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na2SO4 of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H2O2 from O2 reduction. In EF, PEF and SPEF, hydroxyl radical (·OH) is formed from Fenton's reaction between added catalytic Fe2+ and generated H2O2. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with ·OH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since ·OH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H2O2 with BDD yields the poorest mineralization because pollutants are only removed with ·OH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of ·OH at its surface. Enrofloxacin decay always follows a pseudo first-order reaction. Its primary aromatic by-products and short intermediates including polyols, ketones

  17. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-15

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na{sub 2}SO{sub 4} of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H{sub 2}O{sub 2} from O{sub 2} reduction. In EF, PEF and SPEF, hydroxyl radical (centre dotOH) is formed from Fenton's reaction between added catalytic Fe{sup 2+} and generated H{sub 2}O{sub 2}. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with centre dotOH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since centre dotOH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H{sub 2}O{sub 2} with BDD yields the poorest mineralization because pollutants are only removed with centre dotOH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of centre dotOH at its surface. Enrofloxacin

  18. Isotope tracer investigation and ab-initio simulation of anisotropic hydrogen transport and possible multi-hydrogen centers in tin dioxide

    Science.gov (United States)

    Watanabe, Ken; Sakaguchi, Isao; Hashiguchi, Minako; Saito, Noriko; Ross, Emily M.; Haneda, Hajime; Ohsawa, Takeo; Ohashi, Naoki

    2016-06-01

    Hydrogen as an impurity in single crystals of tin dioxide was investigated through diffusivity and vibrational-mode analyses performed using isotope tracers and density functional theory calculations. It was found that hydrogen diffusion along the axis is very fast, even at relatively low temperatures (400 °C), but is considerably slower within the (001) plane. Using transitional state calculations, this diffusion behavior was determined to be the result of anisotropy in the migration barrier for interstitial hydrogen (Hi). In addition, the two distinct vibrational modes observed in the optical spectrum were identified as the O-H stretching modes of Hi and the substitutional hydrogen at the tin sites.

  19. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  20. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  1. Sensitivity of transport aircraft performance and economics to advanced technology and cruise Mach number

    Science.gov (United States)

    Ardema, M. D.

    1974-01-01

    Sensitivity data for advanced technology transports has been systematically collected. This data has been generated in two separate studies. In the first of these, three nominal, or base point, vehicles designed to cruise at Mach numbers .85, .93, and .98, respectively, were defined. The effects on performance and economics of perturbations to basic parameters in the areas of structures, aerodynamics, and propulsion were then determined. In all cases, aircraft were sized to meet the same payload and range as the nominals. This sensitivity data may be used to assess the relative effects of technology changes. The second study was an assessment of the effect of cruise Mach number. Three families of aircraft were investigated in the Mach number range 0.70 to 0.98: straight wing aircraft from 0.70 to 0.80; sweptwing, non-area ruled aircraft from 0.80 to 0.95; and area ruled aircraft from 0.90 to 0.98. At each Mach number, the values of wing loading, aspect ratio, and bypass ratio which resulted in minimum gross takeoff weight were used. As part of the Mach number study, an assessment of the effect of increased fuel costs was made.

  2. Transport coefficients of dilute hydrogen gas, calculations and comparisons with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J., E-mail: jas@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany)

    2010-02-18

    The paper presents quantum mechanical ab initio calculations of transport coefficients of dilute H{sub 2} gas, derived from an empirically corrected ab initio interaction potential used in so-called close-coupled channel calculations which provided scattering matrices and subsequently differential scattering cross sections of the elastic and inelastic rotational interactions, for grids of relative kinetic energies sufficient to obtain converged results of transport coefficients at temperatures up to 300 K. The formalism of the Waldmann-Snider theory of the Boltzmann equation has been used following previous work in this field. Results are presented for the pure para- and ortho-H{sub 2} gas as well as for their mixtures. Excellent agreement has been found in comparisons with measured results of pure para-H{sub 2} gas thus providing proof of the proper input used in the calculations. The comparison with measured normal H{sub 2} transport coefficients was also successful for the calculated normal H{sub 2} shear viscosity ({+-}2%) and the calculated translational heat conductivity coefficient ({+-}2%). Deviations from experiments of up to {approx}10% have been found for the total normal H{sub 2} heat conductivity in the temperature range between 75 and 225 K.

  3. Transport coefficients of dilute hydrogen gas, calculations and comparisons with experiments

    Science.gov (United States)

    Schaefer, J.

    2010-02-01

    The paper presents quantum mechanical ab initio calculations of transport coefficients of dilute H 2 gas, derived from an empirically corrected ab initio interaction potential used in so-called close-coupled channel calculations which provided scattering matrices and subsequently differential scattering cross sections of the elastic and inelastic rotational interactions, for grids of relative kinetic energies sufficient to obtain converged results of transport coefficients at temperatures up to 300 K. The formalism of the Waldmann-Snider theory of the Boltzmann equation has been used following previous work in this field. Results are presented for the pure para- and ortho-H 2 gas as well as for their mixtures. Excellent agreement has been found in comparisons with measured results of pure para-H 2 gas thus providing proof of the proper input used in the calculations. The comparison with measured normal H 2 transport coefficients was also successful for the calculated normal H 2 shear viscosity (±2%) and the calculated translational heat conductivity coefficient (±2%). Deviations from experiments of up to ≈10% have been found for the total normal H 2 heat conductivity in the temperature range between 75 and 225 K.

  4. Analysis of energy consumption and CO{sub 2} emissions of the life cycle of bio-hydrogen applied to the Portuguese road transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Filipa; Baptista, Patricia; Silva, Carla [IDMEC (Portugal). Dept. of Mechanical Engineering

    2010-07-01

    In this work the main objective is to analyze energy consumption and CO{sub 2} emissions of biohydrogen for use in the transportation sector in Portugal. A life cycle assessment will be performed in order to evaluate bio-hydrogen pathways, having biodiesel and conventional fossil diesel as reference. The pathways were production of feedstock, pre-treatment, treatment, compression, distribution and applications. For the well-to-tank analysis the SimaPro 7.1 software and excel tools are used. This study includes not only a well-to-tank analysis but also a tank-to-wheel analysis (using ADVISOR software) estimating hydrogen consumption and electricity consumption of a fuel cell hybrid and a plug-in hybrid. Several bio-hydrogen feedstocks to produce hydrogen through fermentation processes will be considered: potato peels. (orig.)

  5. A quasi-Delphi study on technological barriers to the uptake of hydrogen as a fuel for transport applications - Production, storage and fuel cell drivetrain considerations

    Energy Technology Data Exchange (ETDEWEB)

    Hart, David; Vuille, Francois [E4tech Sarl, Avenue Juste-Olivier 2, 1006 Lausanne (Switzerland); Anghel, Alexandra T.; Huijsmans, Joep [Shell Hydrogen B.V., Carel van Bylandtlaan 23, 2596 HR The Hague (Netherlands)

    2009-08-01

    The introduction of hydrogen in transport, particularly using fuel cell vehicles, faces a number of technical and non-technical hurdles. However, their relative importance is unclear, as are the levels of concern accorded them within the expert community conducting research and development within this area. To understand what issues are considered by experts working in the field to have significant potential to slow down or prevent the introduction of hydrogen technology in transport, a study was undertaken, primarily during 2007. Three key technology areas within hydrogen transport were selected - hydrogen storage, fuel cell drivetrains, and small-scale hydrogen production - and interviews with selected experts conducted. Forty-nine experts from 34 organisations within the fuel cell, automotive, industrial gas and other related industries participated, in addition to some key academic and government figures. The survey was conducted in China, Japan, North America and Europe, and analysed using conventional mathematical techniques to provide weighted and averaged rankings of issues viewed as important by the experts. It became clear both from the interviews and the subsequent analysis that while a primary concern in China was fundamental technical performance, in the other regions cost and policy were rated more highly. Although a few individual experts identified possible technical showstoppers, the overall message was that pre-commercial hydrogen fuel cell vehicles could realistically be on the road in tens of thousands within 5 years, and that full commercialisation could take place within 10-15 years, without the need for radical technical breakthroughs. Perhaps surprisingly, the performance of hydrogen storage technologies was not viewed as a showstopper, though cost was seen as a significant challenge. Overall, however, coherent policy development was more frequently identified as a major issue to address. (author)

  6. Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and norepinephrine transporters

    DEFF Research Database (Denmark)

    Andersen, Jacob; Kristensen, Anders Skov; Bang-Andersen, Benny;

    2009-01-01

    The biogenic monoamine transporters are integral membrane proteins that perform active transport of extracellular dopamine, serotonin and norepinephrine into cells. These transporters are targets for therapeutic agents such as antidepressants, as well as addictive substances such as cocaine and...... antidepressant drugs that act on the serotonin and/or the norepinephrine transporters. Specifically, we focus on structure-activity relationships of these drugs with emphasis on relationships between their molecular properties and the current knowledge of transporter structure....

  7. Proton and hydrogen atoms transport in the Martian upper atmosphere with an induced magnetic field

    OpenAIRE

    Shematovich, Valery; Bisikalo, Dimitri; Dieval, Catherine; Barabash, Stas; Stenberg, Gabriella; Nilsson, Hans; Futaana, Yoshifumi; Holmstrom, Mats; Gerard, Jean Claude

    2011-01-01

    We have applied the Direct Simulation Monte Carlo method to solve the kinetic equation for the H/H^+ transport in the upper Martian atmosphere. We calculate the upward H and H^+ fluxes, values that can be measured, and the altitude profile of the energy deposition to be used to understand the energy balance in the Martian atmosphere. The calculations of the upward flux have been made for the Martian atmosphere during solar minimum. We use an energy spectrum of the down moving protons in the a...

  8. Transport of energetic electrons in a fully ionized hydrogen plasma. [in solar flares

    Science.gov (United States)

    Bai, T.

    1982-01-01

    A Monte Carlo method for calculating energetic electron transport in a plasma is presented. The energy loss and angular deflection due to Coulomb collisions as a function of travel distance and energy are derived for energetic electrons in a fully ionized plasma with a uniform magnetic field. Formulas which include the effect of nonuniform B fields on the angular deflection are derived. The Monte Carlo method is applied to the thick-target beam model in which the energetic electrons are injected vertically downward.

  9. Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak ''HBT'' [High Beta Tokamak

    International Nuclear Information System (INIS)

    Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (ne ∼ 1 - 5 x 1014 (cm-3), Te ∼ 4 - 10 (eV), Bt ∼ 0.2 - 0.4(T)). Carbon impurity light, mainly the strong lines of CII(4267A, emitted by the C+ ions) and CIII (4647A, emitted by the C++ ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ions is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is ''classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the Hα emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time τp is comparable with the plasma energy confinement time τE; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy

  10. Plant sizing and evaluation of hydrogen production costs from advanced processes coupled to a nuclear heat source: Part II: Hybrid-sulphur cycle

    International Nuclear Information System (INIS)

    Hydrogen demand is already strong. It should significantly increase in the next few years due to the refinery industry's growing needs and new applications such as synthetic fuel or biofuel production. To meet the demand advanced processes are being developed throughout the world in a sustainability context. Among the most studied ones are thermochemical cycles: the sulphur-iodine and hybrid-sulphur cycles. For each of these processes, a thorough study was carried out from the flowsheet development to the final hydrogen production cost assessment, through the sizing and costing of the equipment, providing some insights about the process economic competitiveness given the current state of knowledge. This paper presents the analysis conducted for the hybrid-sulphur cycle, which leads to a hydrogen production cost around 6. 6 Euros/kg. The main contributions to that cost are discussed. (authors)

  11. Field verification of advanced transport models of radionuclides in heterogeneous soils

    International Nuclear Information System (INIS)

    This report deals with a verification study of advanced transport models of radionuclides in heterogeneous soils. The study reported here is the third phase of a research program carried out by Delft Geotechnics concerning the influence of soil heterogeneities on the migration of radionuclides in the soil and soil-water system. Phases 1 and 2 have been reported earlier in the EC Nuclear Science and technology series (EUR 12111 EN, 1989). The verification study involves the predictive modelling of a field tracer experiment carried out by the British Geological Survey (BGS) at Drigg, Cumbria (UK). Conservative (I131, Cl-, H3) as well as non-conservative (Co-EDTA) tracers were used. The inverse modelling shows that micro dispersion may be considered as a soil constant related to grainsize. Micro dispersion shows a slow increase with distance from the source. This increase is caused by mass transfer between adjacent layers of different permeability. Macro dispersion is observed when sampling over a larger interval then permitted by the detail with which the heterogeneity is described in the model. The prediction of the migration of radionuclides through heterogeneous soils is possible. The advection dispersion equation seems to be an adequate description of the migration of conservative tracers. The models based on this equation give comparable results on a small field test scale (3.5 m). The prediction of the migration of adsorbing species is more difficult. The mathematical descriptions seem appropriate, but the heterogeneity in soils seems to create a higher order of uncertainty which can not be described as yet with calculation strategies available at this moment

  12. Electric vehicles or use of hydrogen in the Danish transport sector in 2050?

    DEFF Research Database (Denmark)

    Skytte, Klaus; Pizarro Alonso, Amalia Rosa; Karlsson, Kenneth Bernard

    and calculates socio economic costs. It is used to model the different transport scenarios and their system integration with the electricity and heating sectors. The major findings of this paper are that an increased share of electric vehicles could significantly reduce the socio-economic cost of the...... system in 2050. Compared to the EV scenario, H2 generation from electrolysis is more flexible and the production can therefore to a larger degree be used to out-balance fluctuating electricity surplus from a high share of wind energy in the power system. H2 production may generate heat that can be used...... as district heating - replacing traditional heating plants, heat pumps and in some cases combined heat and power plants. Therefore the energy generation mix (electricity and heat) is more affected in the H2 scenario than in the EV scenario. Whether the H2 scenario is more costly to implement than the...

  13. RECENT ADVANCES OF UPSCALING METHODS FOR THE SIMULATION OF FLOW TRANSPORT THROUGH HETEROGENEOUS POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    Zhiming Chen

    2006-01-01

    We review some of our recent efforts in developing upscaling methods for simulating the flow transport through heterogeneous porous media. In particular, the steady flow transport through highly heterogeneous porous media driven by extraction wells and the flow transport through unsaturated porous media will be considered.

  14. A use of information and communication technologies in the framework of advanced management of transportation systems: dynamic OD matrix estimation

    OpenAIRE

    Montero Mercadé, Lídia; Barceló Bugeda, Jaime; Bullejos, Manuel

    2012-01-01

    Origin-Destination (OD) trip matrices are the primary data input used in principal traffic and transit models, which describe the patterns of trips/passengers across the area of study. In this way, OD matrices become a critical requirement in Advanced Transport Management and/or Information Systems that are supported by Dynamic Assignment models. In the future, once combined dynamic traffic and transit assignment tools will be available to practitioners, the problem of es...

  15. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  16. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    Science.gov (United States)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  17. Transition to hydrogen-based transportation in China: Lessons learned from alternative fuel vehicle programs in the United States and China

    International Nuclear Information System (INIS)

    This paper examines the experience of existing alternative fuel vehicle (AFV) programs in the US and China to provide insights into appropriate strategies for developing hydrogen vehicles and infrastructure in China. Although an increasing number of AFVs have been deployed in recent years, various factors have limited this progress, such as large sunk investments in conventional technologies, limited networks of refueling stations, the typically higher cost of AFVs, and the relatively low price of oil. Given these barriers, and additional barriers specific to hydrogen, a transition to hydrogen will be a slow process, and must be supported by both near- and long-term policies that have clear and measurable goals that take hydrogen beyond fleet applications into broader vehicle markets. Because a transition to hydrogen vehicles will not occur quickly, it is necessary for the government to have consistent and integrated transportation policies combining short- and long-term goals. These policies should draw upon resources from both governments and multinational companies to provide incentives for vehicle purchases, promote investment in infrastructure, and disseminate information to raise public awareness. Multinationals may find China to be an ideal testing ground for innovative hydrogen vehicles with appropriate incentive policies and programs

  18. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    for the energy sector is the application of a hydrogen economy, which transform the chemical energy in water and/or biomass into hydrogen. Considered as an energy carrier, hydrogen is then transported to the site of use where fuel cells convert its chemical energy into electricity.Here, we review the progress...... in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  19. Design of a pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Noble, J.; Kesseli, J.

    The overall operating temperature and efficiency of solar-powered Stirling engines can be improved by adding a heat transport system to more uniformly supply heat to the heater head tubes. One heat transport system with favorable characteristics is an alkali metal pool boiler. An alkali metal pool boiler heat transport system was designed for a 25-kW advanced Stirling conversion system (ASCS). Solar energy concentrated on the absorber dome boils a eutectic mixture of sodium and potassium. The alkali metal vapors condense on the heater head tubes, supplying the Stirling engine with a uniform heat flux at a constant temperature. Boiling stability is achieved with the use of an enhanced boiling surface and noncondensible gas.

  20. System and Propagation Availability Analysis for NASA's Advanced Air Transportation Technologies

    Science.gov (United States)

    Ugweje, Okechukwu C.

    2000-01-01

    This report summarizes the research on the System and Propagation Availability Analysis for NASA's project on Advanced Air Transportation Technologies (AATT). The objectives of the project were to determine the communication systems requirements and architecture, and to investigate the effect of propagation on the transmission of space information. In this report, results from the first year investigation are presented and limitations are highlighted. To study the propagation links, an understanding of the total system architecture is necessary since the links form the major component of the overall architecture. This study was conducted by way of analysis, modeling and simulation on the system communication links. The overall goals was to develop an understanding of the space communication requirements relevant to the AATT project, and then analyze the links taking into consideration system availability under adverse atmospheric weather conditions. This project began with a preliminary study of the end-to-end system architecture by modeling a representative communication system in MATLAB SIMULINK. Based on the defining concepts, the possibility of computer modeling was determined. The investigations continue with the parametric studies of the communication system architecture. These studies were also carried out with SIMULINK modeling and simulation. After a series of modifications, two end-to-end communication links were identified as the most probable models for the communication architecture. Link budget calculations were then performed in MATHCAD and MATLAB for the identified communication scenarios. A remarkable outcome of this project is the development of a graphic user interface (GUI) program for the computation of the link budget parameters in real time. Using this program, one can interactively compute the link budget requirements after supplying a few necessary parameters. It provides a framework for the eventual automation of several computations

  1. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    Science.gov (United States)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    Our ability to predict flow and transport processes in the unsaturated critical zone is considerably limited by two characteristics: heterogeneity of flow and transience of boundary conditions. The causes of heterogeneous flow and transport are fairly well understood, yet the characterization and quantification of such processes in natural profiles remains challenging. This is due to current methods of observation, such as staining and isotope tracers, being unable to observe multiple events on the same profile and offering limited spatial information. In our study we demonstrate an approach to characterize preferential flow and transport processes applying a combination of geoelectrical methods and advanced lysimeter techniques. On an agricultural soil profile, which was transferred undisturbed into a lysimeter container, we systematically applied a variety of input flow boundary conditions, resembling natural precipitation events. We measured breakthroughs of a conservative tracer and of nitrate, originating from the application of a slow release fertilizer and serving as a reactive tracer. Flow and transport in the soil column were observed using electrical resistivity tomography (ERT), tensiometers, water content probes and a multicompartment suction plate (MSP). These techniques allowed a direct validation of water content dynamics and tracer breakthrough under transient boundary conditions characterized noninvasively by ERT. We were able to image the advancing infiltration front and the advancing front of tracer and nitrate using time lapse ERT. Water content changes associated with the advancing infiltration front dominated over pore fluid conductivity changes during short term precipitation events. Conversely, long-term displacement of the solute fronts was monitored during periods of constant water content in between infiltration events. We observed preferential flow phenomena through ERT and through the MSP, which agreed in general terms. The preferential

  2. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  3. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    International Nuclear Information System (INIS)

    A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  4. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  5. Recent advances in the brain-to-blood efflux transport across the blood-brain barrier.

    Science.gov (United States)

    Hosoya, Ken-ichi; Ohtsuki, Sumio; Terasaki, Tetsuya

    2002-11-01

    Elucidating the details of the blood-brain barrier (BBB) transport mechanism is a very important step towards successful drug targeting to the brain and understanding what happens in the brain. Although several brain uptake methods have been developed to characterize transport at the BBB, these are mainly useful for investigating influx transport across the BBB. In 1992, P-glycoprotein was found to act as an efflux pump for anti-cancer drugs at the BBB using primary cultured bovine brain endothelial cells. In order to determine the direct efflux transport from the brain to the circulating blood of exogenous compounds in vivo, the Brain Efflux Index method was developed to characterize several BBB efflux transport systems. Recently, we have established conditionally immortalized rat (TR-BBB) and mouse (TM-BBB) brain capillary endothelial cell lines from transgenic rats and mice harboring temperature-sensitive simian virus 40 large T-antigen gene to characterize the transport mechanisms at the BBB in vitro. TR-BBB and TM-BBB cells possess certain in vivo transport functions and express mRNAs for the BBB. Using a combination of newly developed in vivo and in vitro methods, we have elucidated the efflux transport mechanism at the BBB for neurosteroids, excitatory neurotransmitters, suppressive neurotransmitters, amino acids, and other organic anions to understand the physiological role played by the BBB as a detoxifying organ for the brain. PMID:12429456

  6. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Wang, Nana; Yue, Jie; Chen, Liang; Qian, Yitai; Yang, Jian

    2015-05-20

    Rational design and delicate control on the component, structure, and surface of electrodes in lithium ion batteries are highly important to their performances in practical applications. Compared with various components and structures for electrodes, the choices for their surface are quite limited. The most widespread surface for numerous electrodes, a carbon shell, has its own issues, which stimulates the desire to find another alternative surface. Here, hydrogenated TiO2 is exemplified as an appealing surface for advanced anodes by the growth of ultrathin hydrogenated TiO2 branches on Mn3O4 nanorods. High theoretical capacity of Mn3O4 is well matched with low volume variation (∼4%), enhanced electrical conductivity, good cycling stability, and rate capability of hydrogenated TiO2, as demonstrated in their electrochemical performances. The proof-of-concept reveals the promising potential of hydrogenated TiO2 as a next-generation material for the surface in high-performance hybrid electrodes. PMID:25928277

  7. Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks

    OpenAIRE

    Han, Sang Soo; Mendoza-Cortés, José L.; Goddard, William A.

    2009-01-01

    This critical review covers the application of computer simulations, including quantum calculations (ab initio and DFT), grand canonical Monte-Carlo simulations, and molecular dynamics simulations, to the burgeoning area of the hydrogen storage by metal–organic frameworks and covalent-organic frameworks. This review begins with an overview of the theoretical methods obtained from previous studies. Then strategies for the improvement of hydrogen storage in the porous materials are discussed in...

  8. 8. annual U.S. hydrogen meeting: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The proceedings contain 35 papers arranged under the following topical sections: Government`s partnership role for hydrogen technology development; Government/industry partnerships -- Demonstrations; Entering the market -- Partnerships in transportation; Hydrogen -- The aerospace fuel; Codes and Standards; Advanced technologies; and Opportunities for partnerships in the utility market. Of the three markets identified (transportation, power production, and village power) papers are presented dealing with the first two. Three parts of the transportation market were covered: cars, trucks, and buses. Progress was reported in both fuel cell and internal combustion engine vehicle propulsion systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  10. Advances in sediment transport under combined action of waves and currents

    Institute of Scientific and Technical Information of China (English)

    Yongjun Lu; Shouqian Li; Liqin Zuo; Huaixiang Liu; J.A. Roelvink

    2015-01-01

    The coastal zone continuously changes due to natural processes and human activities. In order to understand and predict these morphological changes, an accurate description of sediment transport, caused by waves and currents (tidal or wave-induced), is important. This paper presents a review of the state-of-the-art knowledge in this field, including sediment incipient motion, bed forms, bed roughness, bed-load transport, suspended-load transport, equilibrium sediment concentration, and sheet flow. Some possible research fields and topics for future study also are proposed.

  11. Hydrogen-Assisted IC Engine Combustion as a Route to Hydrogen Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Andre Boehman; Daniel Haworth

    2008-09-30

    The 'Freedom Car' Initiative announced by the Bush Administration has placed a significant emphasis on development of a hydrogen economy in the United States. While the hydrogen-fueled fuel-cell vehicle that is the focus of the 'Freedom Car' program would rely on electrochemical energy conversion, and despite the large amount of resources being devoted to its objectives, near-term implementation of hydrogen in the transportation sector is not likely to arise from fuel cell cars. Instead, fuel blending and ''hydrogen-assisted'' combustion are more realizable pathways for wide-scale hydrogen utilization within the next ten years. Thus, a large potential avenue for utilization of hydrogen in transportation applications is through blending with natural gas, since there is an existing market for natural-gas vehicles of various classes, and since hydrogen can provide a means of achieving even stricter emissions standards. Another potential avenue is through use of hydrogen to 'assist' diesel combustion to permit alternate combustion strategies that can achieve lower emissions and higher efficiency. This project focused on developing the underlying fundamental information to support technologies that will facilitate the introduction of coal-derived hydrogen into the market. Two paths were envisioned for hydrogen utilization in transportation applications. One is for hydrogen to be mixed with other fuels, specifically natural gas, to enhance performance in existing natural gas-fueled vehicles (e.g., transit buses) and provide a practical and marketable avenue to begin using hydrogen in the field. A second is to use hydrogen to enable alternative combustion modes in existing diesel engines, such as homogeneous charge compression ignition, to permit enhanced efficiency and reduced emissions. Thus, this project on hydrogen-assisted combustion encompassed two major objectives: (1) Optimization of hydrogen-natural gas mixture

  12. Calculations of hydrogen transport for the simulation of a Sbo in the NPP-L V using the code CFD GASFLOW; Calculos de transporte de hidrogeno para la simulacion de un SBO en la CNLV usando el codigo CFD GASFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A. M.; Xolocostli M, V. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Lopez M, R.; Filio L, C.; Mugica R, C. A. [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico); Royl, P., E-mail: armando.gomez@inin.gob.mx [Karlsruhe Institute of Technology, Consultor, Hermann-von-Helmholtz-Platz, D-76344 Eggenstein -Leopoldshafen, Karlsruhe (Germany)

    2013-10-15

    The scenario of electric power total loss in the nuclear power plant of Laguna Verde (NPP-L V) has been analyzed using the code MELCOR previously, until reaching fault conditions of the primary container. A mitigation measure to avoid the loss of the primary contention is the realization of a venting toward the secondary contention (reactor building), however this measure bears the potential explosions occurrence risk when the hydrogen accumulated in the primary container with the oxygen of the reactor building atmosphere reacting. In this work a scenario has been supposed that considers the mentioned venting when the pressure of 4.5 kg/cm{sup 2} is reached in the primary container. The information for the hydrogen like an entrance fact is obtained of the MELCOR results and the hydrogen transport in both contentions is analyzed with the code CFD GASFLOW that allows predicting the detailed distribution of the hydrogen volumetric concentration and the possible detonation of flammability conditions in the reactor building. The results show that the venting will produce detonation conditions in the venting level (level 33) and flammability in the level of the recharge floor. The methodology here described constitutes the base of a detailed calculation system of this type of phenomena that can use to make safety evaluations in the NPP-L V on scenarios that include gases transport. (Author)

  13. Technical advances and energy substitutions in the transportation sector; Progres techniques et substitutions energetiques dans le secteur des transports

    Energy Technology Data Exchange (ETDEWEB)

    Tromenschlager-Philippe, F.

    2002-11-01

    Alternative motorization technologies have been proposed in order to achieve energy diversification and a reduction in pollutant emissions. Fuel cell vehicles are, among others, at the centre of research carried out by car manufacturers and oil companies. The use of fuel cell vehicles could contribute, first to a less stringent long-term energy dependence of oil importing countries and, second, to pollutant reduction in the transport sector. First of all, we propose the definition of 'innovation' and its treatment in the frame of mainstream economic theories. Then we proceed to a retrospective analysis of diesel motorization of the car market. In the second part of our work, we conduct a survey among French households aiming to obtain up-to-date information about their degree of acceptance of fuel cell technology. We are concerned about highlighting the determining factors of fuel cell vehicle adoption by consumers. For this, we set up a discrete choice model linking the individual decision to the whole group of technical or socio-economical factors and characteristics. Finally, we develop patterns of fuel cell equipment of passenger cars which differ according to type of vehicle and possible purchase assistance. These patterns lead us to the analysis of long-term fuel cell vehicle development on the French car market. (authors)

  14. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  15. An advanced model for grain face diffusion transport in irradiated UO{sub 2} fuel. Part 1: Model formulation

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S., E-mail: vms@ibrae.ac.r [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52, B. Tulskaya, Moscow 115191 (Russian Federation); Tarasov, V.I. [Nuclear Safety Institute (IBRAE), Russian Academy of Sciences, 52, B. Tulskaya, Moscow 115191 (Russian Federation)

    2009-07-01

    An advanced model for the grain face transport of gas atoms, self-consistently taking into consideration the effects of atom diffusion over the grain surface, their trapping by and irradiation induced resolution from intergranular bubbles is presented. The model allows prediction of a noticeable gas release from UO{sub 2} fuel without visible interlinkage of grain face bubbles, i.e. at very low grain face coverage, below the critical value manifested by formation of bubble channels on grain faces interconnected with open porosity, in accordance with experimental observations of UO{sub 2} and MOX fuel behaviour under various irradiation conditions.

  16. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Shahryar Garmsiri

    2014-04-01

    Full Text Available The potential benefits are examined of the “Power-to-Gas” (P2G scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity, geographical dispersion, hydrogen production rate, capital and operating costs are used as performance measures. The model takes into account the potential production rate of hydrogen and the rate that it can be injected into the local gas grid. “Straw man” systems are examined, centered on a wind farm size of 100 MW integrating a 16-MW capacity electrolysis system typically producing 4700 kg of hydrogen per day.

  17. Neutral particle transport based on the advanced method of characteristics (MOCHA)

    International Nuclear Information System (INIS)

    The paper describes the development of MOCHA, the advanced method of characteristics, based on the CHAR and ANEMONA codes, and its applications in a number of assembly and cell calculations. The MOCHA presents an attempt to satisfy the need imposed by the advanced reactor designs by providing the computational ability to account for all heterogeneities within the fuel assembly, the capability of general multi-dimensional geometry simulation, the flexibility in energy-group structure, the capability of multi-assembly simulation, accurate burn-up calculation, and linearly anisotropic scattering approximation

  18. Recent advances in hybrid methods applied to neutral particle transport problems

    International Nuclear Information System (INIS)

    Full text: Particle transport methods are essential for accurate simulation of nuclear systems including nuclear reactors, medical devices, nondestructive interrogation devices, and radiation imaging devices. Commonly, the Monte Carlo and deterministic discrete ordinates (Sn) approaches are used to solve radiation transport problems. Both approaches when used for simulation of large 3-D real-world problems may become inefficient. So, various hybrid methodologies have been developed; these methodologies can be categorized into four groups: coupled deterministic and Monte Carlo methods; Monte Carlo variance reduction using the deterministic importance function; acceleration of the deterministic methods based on a lower-order deterministic formulation; and coupled deterministic methods This paper compares the Sn deterministic and Monte Carlo approaches, reviews different hybrid methodologies, and discusses recent methods we (the University of Florida Transport Theory Group (UFTTG)) have developed and applied to real-world problems. (author)

  19. Transport

    International Nuclear Information System (INIS)

    Transport is one of the major causes of environmental damage in Austria. Energy consumption, pollutants emissions, noise emissions, use of surfaces, sealing of surfaces, dissection of ecosystems and impact on landscape are the most significant environmental impacts caused by it. An overview of the transport development of passengers and freight in Austria is presented. Especially the energy consumption growth, carbon dioxide and nitrogen oxide emissions by type of transport, and the emissions development (HC, particle and carbon monoxide) of goods and passengers transport are analyzed covering the years 1980 - 1999. The health cost resulting from transport-related air pollution in Austria is given and measures to be taken for an effective control of the transport sector are mentioned. Figs. 8, Table 1. (nevyjel)

  20. Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry

    KAUST Repository

    Yu, Weili

    2015-01-01

    Efficient photocatalytic hydrogen generation in a suspension system requires a sophisticated nano-device that combines a photon absorber with effective redox catalysts. This study demonstrates an innovative molecular linking strategy for fabricating photocatalytic materials that allow effective charge separation of excited carriers, followed by efficient hydrogen evolution. The method for the sequential replacement of ligands with appropriate molecules developed in this study tethers both quantum dots (QDs), as photosensitizers, and metal nanoparticles, as hydrogen evolution catalysts, to TiO2 surfaces in a controlled manner at the nano-level. Combining hydrophobic and hydrophilic interactions on the surface, CdSe-ZnS core-shell QDs and an Au-Pt alloy were attached to TiO2 without overlapping during the synthesis. The resultant nano-photocatalysts achieved substantially high-performance visible-light-driven photocatalysis for hydrogen evolution. All syntheses were conducted at room temperature and in ambient air, providing a promising route for fabricating visible-light-responsive photocatalysts.

  1. Verification of the Advanced Nodal Method on BWR Core Analyses by Whole-Core Heterogeneous Transport Calculations

    International Nuclear Information System (INIS)

    Recent boiling water reactor (BWR) core and fuel designs have become more sophisticated and heterogeneous to improve fuel cycle cost, thermal margin, etc. These improvements, however, tend to lead to a strong interference effect among fuel assemblies, and it my cause some inaccuracies in the BWR core analyses by advanced nodal codes. Furthermore, the introduction of mixed-oxide (MOX) fuel will lead to a much stronger interference effect between MOX and UO2 fuel assemblies. However, the CHAPLET multiassembly characteristics transport code was developed recently to solve two-dimensional cell-heterogeneous whole-core problems efficiently, and its results can be used as reference whole-core solutions to verify the accuracy of nodal core calculations. In this paper, the results of nodal core calculations were compared with their reference whole-core transport solutions to verify their accuracy (in keff, assembly power and pin power via pin power reconstruction) of the advanced nodal method on both UO2 and MOX BWR whole-core analyses. Especially, it was investigated if there were any significant differences in the accuracy between MOX and UO2 results

  2. Transmutation Scenarios Impacts on Advanced Nuclear Cycles. Fabrication, Reprocessing and Transportation

    International Nuclear Information System (INIS)

    Conclusions: First detailed assessment of plants and transportation in various transmutation scenarios. In case of curium transmutation: large difficulties and uncertainties requiring whole new technology development (more pronounced for ADS option). For Am transmutation: more feasible, still to be demonstrated on specific points for industrial extrapolation

  3. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection.

    Science.gov (United States)

    Mayor, T S; Couto, S; Psikuta, A; Rossi, R M

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow

  4. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection

    Science.gov (United States)

    Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.

    2015-12-01

    The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and

  5. Low-temperature synthesis of microcrystalline 3C-SiC film by high-pressure hydrogen-plasma-enhanced chemical transport

    International Nuclear Information System (INIS)

    The synthesis of microcrystalline 3C-SiC films on glass substrates at relatively low temperatures (≤600 deg. C) by the plasma-enhanced chemical transport method was carried out using a high-pressure pure hydrogen glow discharge. This method used the chemical erosion products of graphite and silicon in the hydrogen plasma as the deposition source. The temperature dependence of the etching rate of graphite and the generated volatile C-species were investigated by exposing sintered graphite to a pure hydrogen plasma at 100 Torr. Infrared absorption gas analysis indicated that the C-related film precursor generated from the graphite was mainly CH4. The etch rate of graphite reached a maximum at a sample temperature of 200 deg. C. The deposition rate of the SiC film prepared at a hydrogen pressure of 200 Torr increased monotonically from 14 to 29 nm min-1 with an increase in substrate temperature (Tsub) from 100 to 600 deg. C. The Si/C composition ratio in the films was independent of Tsub and all the film compositions were nearly stoichiometric. The prepared SiC films were microcrystalline 3C-SiC. Raman spectroscopy indicated that the film quality significantly depends on Tsub. The electrical conductivity of the films at room temperature was found to increase exponentially from 3 x 10-4 to 1.7 S cm-1 with Tsub.

  6. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    Science.gov (United States)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  7. Solar Hydrogen Reaching Maturity

    Directory of Open Access Journals (Sweden)

    Rongé Jan

    2015-09-01

    Full Text Available Increasingly vast research efforts are devoted to the development of materials and processes for solar hydrogen production by light-driven dissociation of water into oxygen and hydrogen. Storage of solar energy in chemical bonds resolves the issues associated with the intermittent nature of sunlight, by decoupling energy generation and consumption. This paper investigates recent advances and prospects in solar hydrogen processes that are reaching market readiness. Future energy scenarios involving solar hydrogen are proposed and a case is made for systems producing hydrogen from water vapor present in air, supported by advanced modeling.

  8. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  9. Advancements in Modeling Mercury Transport and Fate in a Dynamic Fluvial System

    Science.gov (United States)

    James, A. I.; Warwick, J. J.; Carroll, R. W.; Miller, J. R.

    2001-12-01

    The U.S. EPA designated the Carson River as part of a Superfund site in 1991 due to contamination by mercury used in mining operations in the 19th century. It is estimated that approximately 6.36 x 106 Kg (7,000 tons) of residual mercury is now distributed throughout the river's bank sediments and floodplain deposits. Both bank and water column mercury concentrations are high (64,242 μ g/Kg, and 28,000 ng/L, respectively). More than 95% of the mercury transported in the Carson River is affiliated with particulate matter and so it is necessary to accurately describe bank erosion and sediment transport processes in order to understand mercury transport and fate. Mercury concentrations are significantly higher in fine-grained overbank deposits, and appear to be inversely related to the slope of the channel bottom. The mercury contaminated sediment is believed to enter the system primarily during higher flow events when water levels reach overlying contaminated sediments and erosion processes become significant. The largest recorded flood event on the Carson River occurred in January 1997. This event is estimated to have eroded roughly 10 times the amount of bank material than had been eroded in the period from 1991 to 1996, and subsequently transported an estimated 200,000 tons of sediment and 3,000 lbs. of mercury into Lahontan Reservoir. Three computer models (RIVMOD, WASP5, and MERC4) are used to simulate the transport and fate of mercury within the Carson River system. For this study, inorganic mercury and methyl mercury (MeHg) are modeled and only the soluble forms of are available for chemical transformation. Modifications were made to the computer models to allow prediction of mercury transport and fate during extreme events. Enhancements include new functions that predict bank erosion rates and floodplain sedimentation during overbank flows. The bank erosion rate is modeled as proportional to the shear stress applied to the banks by the flow, while the rate

  10. Integration of Wind Energy, Hydrogen and Natural Gas Pipeline Systems to Meet Community and Transportation Energy Needs: A Parametric Study

    OpenAIRE

    Shahryar Garmsiri; Marc A. Rosen; Gordon Rymal Smith

    2014-01-01

    The potential benefits are examined of the “Power-to-Gas†(P2G) scheme to utilize excess wind power capacity by generating hydrogen (or potentially methane) for use in the natural gas distribution grid. A parametric analysis is used to determine the feasibility and size of systems producing hydrogen that would be injected into the natural gas grid. Specifically, wind farms located in southwestern Ontario, Canada are considered. Infrastructure requirements, wind farm size, pipeline capacity...

  11. A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer

    International Nuclear Information System (INIS)

    Highlights: • A new index for optimal sizing of system is proposed. • Electromechanical model of all components is designed and simulated using MATLAB. • Detailed and accurate model of advanced alkaline electrolyzer is simulated. • Three different conditions of using WT and PV array for this system are discussed. • Actual data for weekly irradiation, wind speed, and temperature of Sahand are used. - Abstract: In this study, design and modelling of hybrid wind–photovoltaic system is done for the purpose of hydrogen production through water electrolysis. Actual data for weekly solar irradiation, wind speed, and ambient temperature of Sahand, Iran, are used for performance simulation and analysis of the system examined. The detailed model of components is used. The 10 kW alkaline electrolyzer model, which produces hydrogen, is based on combination of empirical electrochemical relationships, thermodynamics, and heat transfer theory. The operation of this system is optimized using imperial competitive colony algorithm. The objective of optimization is to maximize hydrogen production, considering minimum production of average excess power. This system is analysed in three different conditions of using just wind turbine (WT), photovoltaic (PV) array, and combination of them as power source, producing hydrogen of 8297, 4592, and 10,462 mol, respectively. As for this result and with analysing other results of simulation, it is clarified that the hybrid system is more useful for this study. In hybrid form the ratio of average produced power to nominal power for PV array is 0.247 and for WT is 0.493 which demonstrates that WT is more effective in production

  12. Advanced transport operating system software upgrade: Flight management/flight controls software description

    Science.gov (United States)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  13. Model for transport of glucose across membrane and production of hydrogen by photosynthetic bacteria%光合细菌的葡萄糖跨膜传输及代谢产氢模型

    Institute of Scientific and Technical Information of China (English)

    谢学旺; 董舟; 朱恂; 廖强

    2012-01-01

    Based on single photosynthetic bacterial cell in a batch reactor for bio-production of H2, a model was established for transport of glucose across membrane and production of hydrogen. The concentration distribution of glucose and hydrogen in the bioreactor was estimated, and the effect of light wavelength and intensity on glucose concentration in outside of cells as well as concentration profiles of hydrogen was investigated. The results showed that substantial agreement was achieved between the experimental results and model prediction values; and at wavelength and intensity of light 590 nm and 8000 lx respectively, the concentration of glucose was the lowest, and concentration of hydrogen was the highest outside cells.

  14. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  15. Staged Combustion Cycle Rocket Engine Design Trade-Offs for Future Advanced Passenger Transport

    OpenAIRE

    Sippel, Martin; Yamashiro, Ryoma

    2012-01-01

    Staged combustion cycle rocket engines with a moderate nominal 16 MPa chamber pressure have been selected as the baseline propulsion system for the visionary intercontinental passenger transport SpaceLiner. Several technical engine design trade-offs are run by numerical simulations and results are pre-sented including: • Fuel rich vs. Full-flow cycle • Useful operational domain in MR • Regenerative cooling options of thrust chamber The engine operational domain is evaluated on ...

  16. Parameters measurement transport hydrogen in Fe alloys with low contents of C through the technique of permeation; Medida de los Parametros de Transporte de Hidrogeno en Aleaciones de Fe con Bajo Contenidos de C mediante la Tecnica de Permeacion

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, I.; Alberro, G.; Legarda, F.; Vila, R.; Ortiz, C. J.

    2012-07-01

    The characterization of the candidates materials to be part of a fusion reactor implies interaction with hydrogen isotopes. Their transport parameters will affect the inventory of hydrogen retained in components of the fusion reactor and permeation of these isotopes through the materials structure can affect areas of human work. Therefore, the analysis of any concept related to fusion reactors, the plasma stability or radiation safety, lies in the knowledge of these parameters. The main objective of this work was to determine the influence of the C content of the iron alloys in the transport parameters of hydrogen using the technique of permeation. Six samples were analyzed experimentally by EFDA (European Fusion Development Agreement) with microstructure and chemical content of alloys controlled. Three of them, Fe pure, FeP y Fe10%Cr, contained insignificant amounts of C, while the other three, FeC, FePC y Fe10%CrC, had the same metallurgical composition as its corresponding pair, with the exception of the content of C.

  17. Mathematical model of water transport in Bacon and alkaline matrix-type hydrogen-oxygen fuel cells

    Science.gov (United States)

    Prokopius, P. R.; Easter, R. W.

    1972-01-01

    Based on general mass continuity and diffusive transport equations, a mathematical model was developed that simulates the transport of water in Bacon and alkaline-matrix fuel cells. The derived model was validated by using it to analytically reproduce various Bacon and matrix-cell experimental water transport transients.

  18. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  19. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystem Concepts

    Science.gov (United States)

    Levack, Daniel J. H.

    2000-01-01

    The Alternate Propulsion Subsystem Concepts contract had seven tasks defined for this report. The tasks were: F-1A Restart Study, J-2S Restart Study, Propulsion Database Development, SSME Upper Stage Use, CERs for Liquid Propellant Rocket Engines, Advanced Low Cost Engines, and Tripropellant Comparison Study. The detailed study results, with the data to support the conclusions from various analyses, are being reported as a series of five separate Final Task Reports. Consequently, this volume only reports the required programmatic information concerning Computer Aided Design Documentation, and New Technology Reports. A detailed Executive Summary, covering all the tasks, is also available as Volume I of this report.

  20. WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

    2012-10-02

    Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated

  1. Advancements in generalized-geometry discrete ordinates transport for lattice physics calculations

    International Nuclear Information System (INIS)

    This paper describes the generalized-geometry capabilities of the two-dimensional NEWT transport solver, used within the TRITON depletion sequence of the SCALE code system for lattice physics calculation. With the release of SCALE 5.1 in 2006, NEWT will introduce a new automated grid generation procedure based on simple body specifications, using an input format based on the SCALE Generalized-Geometry Processor. The paper will contrast the discretization techniques against those used in other unstructured grid treatments; illustrate the ease of model development, features, capabilities; and demonstrate the unique adaptability of NEWT for a wide range of fuel configurations. (authors)

  2. Advanced brain dopamine transporter imaging in mice using small-animal SPECT/CT

    OpenAIRE

    Pitkonen, Miia; Hippeläinen, Eero; Raki, Mari; Andressoo, Jaan-Olle; Urtti, Arto; Männistö, Pekka T.; Savolainen, Sauli; Saarma, Mart; Bergström, Kim

    2012-01-01

    Background Iodine-123-β-CIT, a single-photon emission computed tomography (SPECT) ligand for dopamine transporters (DATs), has been used for in vivo studies in humans, monkeys, and rats but has not yet been used extensively in mice. To validate the imaging and analysis methods for preclinical DAT imaging, wild-type healthy mice were scanned using 123I-β-CIT. Methods The pharmacokinetics and reliability of 123I-β-CIT in mice (n = 8) were studied with a multipinhole SPECT/CT camera after intrav...

  3. Hydrogen bonded supramolecular structures

    CERN Document Server

    Li, Zhanting

    2015-01-01

    This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems  made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers. This book is designed to b

  4. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    Energy Technology Data Exchange (ETDEWEB)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G. [Nuclear and Radiological Engineering Program, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA 30332-0745 (United States)

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  5. Development of an advanced atmospheric/transport model for emergency response purposes

    International Nuclear Information System (INIS)

    Atmospheric transport and diffusion models have been developed for real-time calculations of the location and concentration of toxic or radioactive materials during an accidental release at the Savannah River Site (SRS). These models are based Gaussian distributions and have been incorporated into an automated menu-driven program called the WIND (Weather INformation and Display) system. The WIND system atmospheric models employ certain assumptions that allow the computations of the ground-level concentration of toxic or radioactive materials to be made quickly. Gaussian models, such as PF/PL and 2DPUF, suffer from serious limitations including the inability to represent recirculation of pollutants in complex terrain, the use of one stability class at a given time to represent turbulent mixing over heterogeneous terrain, and the use of a wind field computed at only one height in the atmosphere. These limitations arise because the fundamental conservation relations of the atmosphere have been grossly simplified. Three-dimensional coupled atmospheric-dispersion models are not limited by the over-simplifications of the Gaussian assumption and have been used in the past to predict the transport of pollutants in a variety of atmospheric circulations. The disadvantage of these models is that they require large amounts of computational time; however, technology has progressed enough so that real-time simulations of dispersion may be made. These complex models can be run in an operational mode so that routine forecasts of the wind field and particulate concentration can be made

  6. Advanced method of solution of neutron transport equation in nuclear reactor cell - 361

    International Nuclear Information System (INIS)

    Method of solution of neutron transport integral equation has been developed. It is aimed into calculation analysis of neutron flux in nuclear reactor cell with complicated geometry and different boundary conditions. On this stage of nuclear reactor calculation it is important to take into account special futures of neutron flux behavior included anisotropy scattering. Modern computational strategy requires the ability to accurately solution of Boltzmann transport equation in the shortest possible time. This approach is based on neutron flux expansion with orthogonal polynomial system in every uniform mesh of the cell. As result of this approximation the system of linear integral equation is reduced to algebraic system with coefficients that are the six-fold integrals over the cell area in general case. In this paper formulae for calculation of these values are given. The algorithm of computer code for neutron flux calculation is described. The results obtained with general version of collision probabilities method code are given. The advantage of above described approach has been demonstrated. (authors)

  7. Advances in nuclear data and all-particle transport for radiation oncology

    International Nuclear Information System (INIS)

    Fast neutrons have been used to treat over 15,000 cancer patients worldwide and proton therapy is rapidly emerging as a treatment of choice for tumors around critical anatomical structures. Neutron therapy requires evaluated data to ∼70 MeV while proton therapy requires data to ∼250 MeV. Collaboration between Lawrence Livermore National Laboratory (LLNL) and the medical physics community has revealed limitations in nuclear cross section evaluations and radiation transport capabilities that have prevented neutron and proton radiation therapy centers from using Monte Carlo calculations to accurately predict dose in patients. These evaluations require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We are expanding the LLNL nuclear databases to higher energies for biologically important elements and have developed a three-dimensional, all-particle Monte Carlo radiation transport code that uses computer-assisted-tomography (CT) images as the input mesh. This code, called PEREGRINE calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data. In this paper, we will review the status of the nuclear data required for neutron and proton therapy, describe the capabilities of the PEREGRINE package, and show the effects of tissue inhomogeneities on dose distribution

  8. CFD analysis for the hydrogen transport in the primary contention of a BWR using the codes OpenFOAM and Gas-Flow

    International Nuclear Information System (INIS)

    The accidents in Unit 2 of the Three Mile Island Nuclear Power Plant (NPP) in the United States (March 28th, 1979), the one in Unit 4 of the NPP Chernobyl in Ukraine (April 26th, 1986) and the explosions in some units of Fukushima NPP in Japan (March 11th, 2011) boosted the investigations on severe accidents with core damage and, in particular, the threat to the ultimate barrier by an eventual explosion from uncontrolled Hydrogen combustion within the containment was considered of particular relevance. Research programs for analyzing Hydrogen behavior and control during this kind of accidents were early initiated by research and regulatory bodies. Assessment on Hydrogen behavior once it has been postulated to be released on the containment system can be divided into two phases, in the first one, transport and the concentrations of the gas mixtures and steam in each volume or area comprised between the structures of the containment are calculated, in the second one, the propagation of the detonation of the Hydrogen is calculated if there are the conditions to occur. Currently, there are computer programs that can be used in one, or both stages of computation, and they are based on one of the two solution methods in current use, one of them are integrated codes (e.g. MELCOR), which consists in assuming the containment as a network composed of hydraulic tanks or nodes on which the balance equations of mass and energy have to be solved, the network is connected by ducts or connections where the momentum balance equation arise. This methodology relies on the use of semi-empirical relationships and the criteria used to define a geometric pattern, are subjective. The second method, which is having relevance due to the large computing power of modern computers, is the numerical solution of the three-dimensional Navier-Stokes equations in complex geometries. This method of solution is known as Computational Fluid Dynamics (CFD), and offers the advantage of using a limited

  9. Concentration of Hydrogen Peroxide

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  10. Hydrogen, this hallucinogen

    International Nuclear Information System (INIS)

    The author discusses the origin of hydrogen for energetic use (mainly by extraction from water), the possible uses of this cumbersome gas (in vehicles, in electricity storage), and outlines that hydrogen economy consumes a lot of other energies (nuclear, wind, sun, biomass, and so on) for a high cost, and that hydrogen is therefore not a solution for the future. Other elements are given in appendix: production methods and processes, figures of energy production, ways to use and to store hydrogen in vehicles, assessment of possibilities for a vehicle, techniques and figures for hydrogen packaging, transport and distribution, energy cost, energetic assessment of hydrogen production, problems associated with distribution (tank filling)

  11. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    Energy Technology Data Exchange (ETDEWEB)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  12. Advanced surveillance technologies for used fuel long-term storage and transportation - 59032

    International Nuclear Information System (INIS)

    Utilities worldwide are using dry-cask storage systems to handle the ever-increasing number of discharged fuel assemblies from nuclear power plants. In the United States and possibly elsewhere, this trend will continue until an acceptable disposal path is established. The recent Fukushima nuclear power plant accident, specifically the events with the storage pools, may accelerate the drive to relocate more of the used fuel assemblies from pools into dry casks. Many of the newer cask systems incorporate dual-purpose (storage and transport) or multiple-purpose (storage, transport, and disposal) canister technologies. With the prospect looming for very long term storage - possibly over multiple decades - and deferred transport, condition- and performance-based aging management of cask structures and components is now a necessity that requires immediate attention. From the standpoint of consequences, one of the greatest concerns is the rupture of a substantial number of fuel rods that would affect fuel retrievability. Used fuel cladding may become susceptible to rupture due to radial-hydride-induced embrittlement caused by water-side corrosion during the reactor operation and subsequent drying/transfer process, through early stage of storage in a dry cask, especially for high burnup fuels. Radio frequency identification (RFID) is an automated data capture and remote-sensing technology ideally suited for monitoring sensitive assets on a long-term, continuous basis. One such system, called ARG-US, has been developed by Argonne National Laboratory for the U.S. Department of Energy's Packaging Certification Program for tracking and monitoring drums containing sensitive nuclear and radioactive materials. The ARG-US RFID system is versatile and can be readily adapted for dry-cask monitoring applications. The current built-in sensor suite consists of seal, temperature, humidity, shock, and radiation sensors. With the universal asynchronous receiver/transmitter interface in

  13. Direct-hydrogen-fueled proton-exchange-membrane (PEM) fuel cell system for transportation applications. Quarterly technical progress report No. 4, April 1, 1995--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Oei, D.

    1995-08-03

    This is the fourth Technical Progress Report for DOE Contract No. DE-AC02-94CE50389 awarded to Ford Motor Company on July 1, 1994. The overall objective of this contract is to advance the Proton-Exchange-Membrane (PEM) fuel cell technology for automotive applications. Specifically, the objectives resulting from this contract are to: (1) Develop and demonstrate on a laboratory propulsion system within 2-1/2 years a fully functional PEM Fuel Cell Power System (including fuel cell peripherals, peak power augmentation and controls). This propulsion system will achieve, or will be shown to have the growth potential to achieve, the weights, volumes, and production costs which are competitive with those same attributes of equivalently performing internal combustion engine propulsion systems; (2) Select and demonstrate a baseline onboard hydrogen storage method with acceptable weight, volume, cost, and safety features and analyze future alternatives; and (3) Analyze the hydrogen infrastructure components to ensure that hydrogen can be safely supplied to vehicles at geographically widespread convenient sites and at prices which are less than current gasoline prices per vehicle-mile; (4) Identify any future R&D needs for a fully integrated vehicle and for achieving the system cost and performance goals.

  14. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    International Nuclear Information System (INIS)

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data

  15. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    Science.gov (United States)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  16. Akuna - Integrated Toolsets Supporting Advanced Subsurface Flow and Transport Simulations for Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Karen L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Finsterle, Stefan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gable, Carl W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, Ian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gosink, Luke J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keating, Elizabeth H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Joerg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Moeglein, William A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pau, George S.H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Purohit, Sumit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sivaramakrishnan, Chandrika [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-04-24

    A next generation open source subsurface simulator and user environment for environmental management is being developed through a collaborative effort across Department of Energy National Laboratories. The flow and transport simulator, Amanzi, will be capable of modeling complex subsurface environments and processes using both unstructured and adaptive meshes at very fine spatial resolutions that require supercomputing-scale resources. The user environment, Akuna, provides users with a range of tools to manage environmental and simulator data sets, create models, manage and share simulation data, and visualize results. Underlying the user interface are core toolsets that provide algorithms for sensitivity analysis, parameter estimation, and uncertainty quantification. Akuna is open-source, cross platform software that is initially being demonstrated on the Hanford BC Cribs remediation site. In this paper, we describe the emerging capabilities of Akuna and illustrate how these are being applied to the BC Cribs site.

  17. Advanced Modeling and Experimental Validation of Complex Nuclear Material Forms of Potential Transportation Concern

    International Nuclear Information System (INIS)

    We present here computer modeling efforts to describe the time-dependent pressurization and gas-phase mole fractions inside sealed canisters containing actinide materials packaged with small (0.12 - 0.5 wt. %) amounts of water. The model is run using Chemkin software, and the chemical reaction mechanism includes gas generation due to radiolysis of adsorbed water, interfacial chemical reactions, and adsorption/desorption kinetics of water on PuO2 materials. The ultimate goal is to provide a verifiable computer model that can be used to predict problematic gas generation in storage forms and assure design criteria for short-term storage and transportation of less than well-characterized (with respect to gas generation) material classes. Our initial efforts are intended to assess pressurization and gas-phase mole fractions using well-defined 3013 container test cases. We have modeled gas generation on PuO2 with water loading up to 0.5 wt. %, at 300 and 525 K, for time frames of 3 years. Estimates of the initial H2 generation rates were determined using RadCalc and employed in the Chemkin model to assess time- and coverage-dependent system behavior. Results indicate that canister pressurization due to radiolysis is a relatively slow process, with pressure increases at 300 K of approximately 1.5 atm. for 5000 g of PuO2 packaged with 0.5 wt. % water. At higher temperatures (> 400 K), desorption of water into the gas phase largely dictates pressurization and the gas-phase mole fractions. These modeling efforts provide a predictive capability for potential gas generation behavior that when augmented and validated by surveillance information will provide a technical basis for safe storage and transportation

  18. Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array

    Science.gov (United States)

    Miner, J.; Enders, M.; Busby, R.

    2015-12-01

    EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.

  19. Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Reyna, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lund, J.; Kiff, S.; Cabrera-Palmer, B. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bowden, N. S.; Dazeley, S.; Keefer, G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2011-07-01

    Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino

  20. Recent advances towards a theory of catchment hydrologic transport: age-ranked storage and the Ω-functions

    Science.gov (United States)

    Harman, C. J.

    2014-12-01

    Models that faithfully represent spatially-integrated hydrologic transport through the critical zone at sub-watershed scales are essential building blocks for large-scale models of land use and climate controls on non-point source contaminant delivery. A particular challenge facing these models is the need to represent the delay between inputs of soluble contaminants (such as nitrate) at the field scale, and the solute load that appears in streams. Recent advances in the theory of time-variable transit time distributions (e.g. Botter et al., GRL 38(L11403), 2011) have provided a rigorous framework for representing conservative solute transport and its coupling to hydrologic variability and partitioning. Here I will present a reformulation of this framework that offers several distinct advantages over existing formulations: 1) the derivation of the governing conservation equation is simple and intuitive, 2) the closure relations are expressed in a convenient and physically meaningful way as probability distributions Ω(ST)Omega(S_T) over the storage ranked by age STS_T, and 3) changes in transport behavior determined by storage-dependent dilution and flow-path dynamics (as distinct from those due only to changes in the rates and partitioning of water flux) are completely encapsulated by these probability distributions. The framework has been implemented to model to the rich dataset of long-term stream and precipitation chloride from the Plynlimon watershed in Wales, UK. With suitable choices for the functional form of the closure relationships, only a small number of free parameters are required to reproduce the observed chloride dynamics as well as previous models with many more parameters, including reproducing the observed fractal 1/f filtering of the streamflow chloride variability. The modeled transport dynamics are sensitive to the input precipitation variability and water balance partitioning to evapotranspiration. Apparent storage-dependent age

  1. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  2. The use of regional advance mitigation planning (RAMP) to integrate transportation infrastructure impacts with sustainability; a perspective from the USA

    International Nuclear Information System (INIS)

    Globally, urban areas are expanding, and their regional, spatially cumulative, environmental impacts from transportation projects are not typically assessed. However, incorporation of a Regional Advance Mitigation Planning (RAMP) framework can promote more effective, ecologically sound, and less expensive environmental mitigation. As a demonstration of the first phase of the RAMP framework, we assessed environmental impacts from 181 planned transportation projects in the 19 368 km2 San Francisco Bay Area. We found that 107 road and railroad projects will impact 2411–3490 ha of habitat supporting 30–43 threatened or endangered species. In addition, 1175 ha of impacts to agriculture and native vegetation are expected, as well as 125 crossings of waterways supporting anadromous fish species. The extent of these spatially cumulative impacts shows the need for a regional approach to associated environmental offsets. Many of the impacts were comprised of numerous small projects, where project-by-project mitigation would result in increased transaction costs, land costs, and lost project time. Ecological gains can be made if a regional approach is taken through the avoidance of small-sized reserves and the ability to target parcels for acquisition that fit within conservation planning designs. The methods are straightforward, and can be used in other metropolitan areas. (papers)

  3. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on Jet

    International Nuclear Information System (INIS)

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7 s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5 s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3 T / 1.7 MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7 s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones) and

  4. Development of integrated real-time control of internal transport barriers in advanced operation scenarios on Jet

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D.; Laborde, L.; Litaudon, X.; Mazon, D.; Zabeo, L.; Joffrin, E.; Lennholm, M. [Association Euratom-CEA, Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Moreau, D. [EFDA-JET CSU, Culham Science Centre, Abingdon, OX (United Kingdom); Crisanti, F.; Pericoli-Ridolfini, V.; Riva, M.; Tuccillo, A. [Euratom-ENEA Association, C.R. Frascati (Italy); Murari, A. [Euratom-ENEA Association, Consorzio RFX, Padova (Italy); Tala, T. [Euratom-TEKES Association, VTT Processes (Finland); Albanese, R.; Ariola, M.; Tommasi, G. de; Pironti, A. [Euratom-ENEA Association, CREATE, Napoli (Italy); Felton, R.; Zastrow, K.D. [Euratom-UKAEA Association, Culham Science Centre, Abingdon(United Kingdom); Baar, M. de; Vries, P. de [Euratom-FOM Association, TEC Cluster, Nieuwegein (Netherlands); La Luna, E. de [Euratom-CIEMAT Association, CIEMAT, Madrid (Spain)

    2004-07-01

    An important experimental programme is in progress on JET to investigate plasma control schemes which, with a limited number of actuators, could eventually enable ITER to sustain steady state burning plasmas in an 'advanced tokamak' operation scenario. A multi-variable model-based technique was recently developed for the simultaneous control of several plasma parameter profiles in discharges with internal transport barriers (ITB), using lower hybrid current drive (LHCD) together with neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH). The proposed distributed-parameter control scheme relies on the experimental identification of an integral linear response model operator and retains the intrinsic couplings between the plasma parameter profiles. A first set of experiments was performed to control the current density profile in the low-density/low-power LH-driven phase of the JET advanced scenarios, using only one actuator (LHCD) and a simplified (lumped-parameter) version of the control scheme. Several requested steady state magnetic equilibria were thus obtained and sustained for about 7 s, up to full relaxation of the ohmic current throughout the plasma. A second set of experiments was dedicated to the control of the q-profile with 3 actuators (LHCD, NBI and ICRH) during the intense heating phase of advanced scenarios. The safety factor profile was also shown to approach a requested profile within about 5 s. The achieved plasma equilibrium was close to steady state. Finally, during the recent high power experimental campaign, experiments have been conducted in a 3 T / 1.7 MA plasma, achieving the simultaneous control of the current density and electron temperature profiles in ITB plasmas. Here, the distributed-parameter version of the algorithm was used for the first time, again with 3 actuators. Real-time control was applied during 7 s, and allowed to reach successfully different target q-profiles (monotonic and reversed-shear ones

  5. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y.; Endo, M.; Matsuda, Y.; Sugiyama, N.; Watanabe, M.; Sugahara, N.; Yamamoto, K. [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  6. Hydrogen perspectives in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Furutani, H. [Japan Ministry of International Trade and Industry, Ibaraki (Japan)

    2000-05-01

    The Japan Ministry of International Trade and Industry (MITI) is promoting the World Energy Network System Project which considers hydrogen energy to be a long term option for a sustainable energy economy. The project involves the construction of a global energy network for the effective supply, transportation, storage, and use of hydrogen as a renewable energy carrier. The first phase of the research and development program began in 1998. It involved the construction of a global-scale hydrogen energy network system based on renewable energies which will contribute to a real reduction in greenhouse gas emissions, ensure an adequate future energy supply and improve the quality of air in urban areas. The major research and development results of phase 1 included a conceptual design of a system to generate hydroelectric power at a site where water power resources are abundant enough to convert the hydroelectric power into hydrogen by the polymer electrolyte membrane (PEM) water electrolysis method. The research also involved the transport and storage of hydrogen to and at demand sites. The objective was to generate electric power by hydrogen combustion turbines through systems using liquid hydrogen, methanol and ammonia. The PEM water electrolysis system was considered to be the most promising high efficient hydrogen production technology with approximately 90 per cent energy efficiency at a current density of 1 A/cm{sup 2}. Phase 2 of the project began in 1999 and involved hydrogen utilization technology, hydrogen production technology, hydrogen transport, hydrogen storage, hydrogen absorbing alloy for distributed hydrogen storage and transport, innovative and leading technology plus system research. Phase 3 will eventually lead to the development of hydrogen combustion engines. 4 tabs., 7 figs.

  7. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  8. Investigation of the impact of temperature on hydrogen production cost from advanced water splitting technologies - HTR2008-58245

    International Nuclear Information System (INIS)

    One of the key technology challenges in the development of water splitting technologies is the requirement for high temperature process heat. High-Temperature Gas-Cooled Reactors (HTGRs) can supply this heat, but challenges multiply as the reactor outlet temperature, and therefore the maximum process temperature rises. A reasonable implementation strategy for applying HTGRs to these technologies would be to begin with a reactor outlet and a maximum process temperature that is achievable with today's technology and increase those temperatures in stages as improved technology emerges. This paper investigates what those temperatures should be in the first commercial demonstration by examining the effect of these temperatures on the cost of production of hydrogen. Parameters investigated include the fundamental thermodynamic limits of each technology, reaction kinetics, materials of construction cost, process complexity, component expected life, and availability. Based on this study, comparisons are made between the leading water splitting technologies and the advantages and disadvantages of each are explained. (authors)

  9. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M. [Princeton Univ., NJ (United States)] [and others

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  10. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-07-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications.

  11. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  12. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application.

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) - approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) - resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  13. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  14. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    Science.gov (United States)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  15. Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system

    International Nuclear Information System (INIS)

    This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.

  16. Linear and electronic transport in strongly coupled binary ionic mixtures. Applications to the hydrogen--helium system

    International Nuclear Information System (INIS)

    This paper is devoted to a systematic investigation of linear transport properties in strongly coupled binary ionic mixtures of pointlike ions interacting solely through Coulomb interactions. The basic formalism rests upon suitable extensions of the Boltzmann--Ziman equation. Validity conditions for the Lorentzian approximation are thoroughly discussed. High temperature and inelastic contributions to electron transport are emphasized. The formalism is, hereafter, specialized to a thorough investigation of electric, thermal, and mechanical transport coefficients. Basic transport quantities are expressed under a reduced form that allows an easy analytical treatment of temperature and inelastic corrections, parametrized with α=T/TF and (?)=βℎω, respectively. The former are derived from exact solutions of transport equation through various jellium dielectric functions. Calculation of inelastic contributions is performed through the variational method. Electron transport at T=0 is then thoroughly investigated, including electric and thermal conductivities as well as thermopower and shear viscosity. These results are furthermore extended to an exact calculation of the electric conductivity up to order α2 including properly inelastic contributions, derived in terms of successive moments of the ion--ion structure factors

  17. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector

    International Nuclear Information System (INIS)

    The membrane reactor is a novel technology for the production of hydrogen from natural gas. It promises economic small-scale hydrogen production, e.g. at refuelling stations and has the potential of inexpensive CO2 separation. Four configurations of the membrane reactor have been modelled with Aspenplus to determine its thermodynamic and economic prospects. Overall energy efficiency is 84%HHV without H2 compression (78% with compression up to 482bar). The modelling results also indicate that by using a sweep gas, the membrane reactor can produce a reformer exit stream consisting mainly of CO2 and H2O (>90%mol) suited for CO2 sequestration after water removal with an efficiency loss of only 1%pt. Reforming with a 2MW membrane reactor (250 unit production volume) costs 14$/GJH2 including compression, which is more expensive than conventional steam reforming+compression (12$/GJ). It does, however, promise a cheap method of CO2 separation, 14$/t CO2 captured, due to the high purity of the exit stream. The well-to-wheel chain of the membrane reactor has been compared to centralised steam reforming to assess the trade-off between production scale and the construction of a hydrogen and a CO2 distribution infrastructure. If the scale of centralised hydrogen production is below 40MW, the trade-off could be favourable for the membrane reactor with small-scale CO2 capture (18$/GJ including H2 storage, dispensing and CO2 sequestration for 40MW SMR versus 19$/GJ for MR). The membrane reactor might become competitive with conventional steam reforming provided that thin membranes can be combined with high stability and a cheap manufacturing method for the membrane tubes. Thin membranes, industrial utility prices and larger production volumes (i.e. technological learning) might reduce the levelised hydrogen cost of the membrane reactor at the refuelling station to less than 14$/GJ including CO2 sequestration cost, below that of large-scale H2 production with CO2 sequestration (

  18. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

  19. Meeting report - Which role for hydrogen in the energy system?

    International Nuclear Information System (INIS)

    Before giving some general information about the activities of the SFEN, about some events regarding the energy sector, and about meetings to come, a contribution is proposed on the role of hydrogen in the energy system. The author recalls the industrial methods used to produce hydrogen (water electrolysis, reforming of fossil fuels), indicates the main applications (fuel cells, power-to-gas, industrial applications, fuel for transport). He discusses the potential of hydrogen as a good energy vector for the future. Required technical advances are identified, as well as potential industrial applications. The competitiveness of the different hydrogen production technologies is discussed, and the different uses are more precisely described and discussed (principle of fuel cell, French researches on hybrid vehicle, application to heavy vehicles, perspectives for air transport). Other technological issues are briefly addressed: direct injection of hydrogen in gas distribution network or production of synthetic methane, combined hydrolysis of CO2 and H2O, hydrogen storage. After having outlined some remaining questions about the exploitation of hydrogen as energy vector, the author proposes some guidelines for the future: development of tools to analyse the competitiveness of hydrogen uses, improvement of existing technologies in terms of performance and costs, development of breakthrough technologies

  20. Properties of the hydrogen oxidation reaction on Pt/C catalysts at optimised high mass transport conditions and its relevance to the anode reaction in PEFCs and cathode reactions in electrolysers

    International Nuclear Information System (INIS)

    Using a high mass transport floating electrode technique with an ultra-low catalyst loading (0.84–3.5 μgPt cm−2) of commonly used Pt/C catalyst (HiSPEC 9100, Johnson Matthey), features in the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) were resolved and defined, which have rarely been previously observed. These features include fine structure in the hydrogen adsorption region between 0.18 < V vs. RHE < 0.36 V vs. RHE consisting of two peaks, an asymptotic decrease at potentials greater than 0.36 V vs. RHE, and a hysteresis above 0.1 V vs. RHE which corresponded to a decrease in the cathodic scan current by up to 50% of the anodic scan. These features are examined as a function of hydrogen and proton concentration, anion type and concentration, potential scan limit, and temperature. We provide an analytical solution to the Heyrovsky–Volmer equation and use it to analyse our results. Using this model we are able to extract catalytic properties (without mass transport corrections; a possible source of error) by simultaneously fitting the model to HOR curves in a variety of conditions including temperature, hydrogen partial pressure and anion/H+ concentration. Using our model we are able to rationalise the pH and hydrogen concentration dependence of the hydrogen reaction. This model may be useful in application to fuel cell and electrolyser simulation studies