WorldWideScience

Sample records for advanced hydraulic studies

  1. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... and improving hydraulic conditions. Unlike most traditional theses which usually focus only on one particular subject of study, this thesis contains four relatively independent studies which cover the following topics: a newly proposed particle settling enhancement plate, the redesign of the inlet zone......, introduction and conclusions as well as the study results. All studies were carried out with a combination of numerical model and measurements. In the first part of the thesis a new concept of using a vortex to increase particle removal from liquid was proposed and the new particle settling enhancement plates...

  2. Advances in thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Laura Garcia, E-mail: laura.gf@cern.ch [European Organization for Nuclear Research (CERN), Geneva (Switzerland). Technology Department; Hernandez, Carlos Garcia; Mazaira, Leorlen Rojas, E-mail: cgh@instec.cu, E-mail: irojas@instec.cu [Higher Institute of Technologies and Applied Sciences (INSTEC), Habana (Cuba); Castells, Facundo Alberto Escriva, E-mail: aescriva@iqn.upv.es [University of Valencia (UV), Valencia (Spain). Energetic Engineering Institute; Lira, Carlos Brayner de Olivera, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (BRazil). Dept. de Engenharia Nuclear

    2013-07-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste trans- mutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, the heat transfer from the fuel to the coolant was analyzed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. (author)

  3. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  4. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  5. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  6. Study on hydraulics and transport in heterogeneous porous media (III). 1998 annual report of advanced engineering research

    Energy Technology Data Exchange (ETDEWEB)

    Jinno, K. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Nakagawa, Tosao [Kyushu Univ., Fukuoka (Japan); Hosokawa, Kei [Kyushu Industrial Univ., Fukuoka (Japan); Hatanaka, K.; Ijiri, Yuji; Uchida, M. [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Watari, S. [CRC Research Inst. Inc., Tokyo (Japan); Kanazawa, Y. [IDC, Tokai, Ibaraki (Japan)

    1999-06-01

    In computerized simulation for nuclide migration in an underground disposal system of high-level radioactive wastes, one of the key parameters is macroscopic dispersion coefficients which is known to depend on local hydraulic parameters such as permeability. This study aims to clarify fundamental aspect of effective diffusive flows of contaminants in heterogeneously permeable media. A cooperative study between Kyushu University and JNC started in 1996, The report describes the validity of the present numerical calculation model for transport behaviors using laboratory data, the applicability of the present method to geological environments of heterogeneous porous media having different permeability, and the comparison of numerical results obtained using the present method with the results reported from the field test held at Horkheimer Insel, Germany, using tracer injection technique and measurements at several observation wells. (S. Ohno)

  7. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  8. Advanced geothermal hydraulics model -- Phase 1 final report, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    W. Zheng; J. Fu; W. C. Maurer

    1999-07-01

    An advanced geothermal well hydraulics model (GEODRIL) is being developed to accurately calculate bottom-hole conditions in these hot wells. In Phase 1, real-time monitoring and other improvements were added to GEODRIL. In Phase 2, GEODRIL will be integrated into Marconi's Intelligent Drilling Monitor (IDM) that will use artificial intelligence to detect lost circulation, fluid influxes and other circulation problems in geothermal wells. This software platform has potential for significantly reducing geothermal drilling costs.

  9. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  10. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  11. Development of an Advanced Hydraulic Fracture Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  12. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  13. 23 CFR 650.111 - Location hydraulic studies.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Location hydraulic studies. 650.111 Section 650.111 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains §...

  14. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  15. Hydraulic fracture model comparison study: Complete results

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R. [Sandia National Labs., Albuquerque, NM (United States); Abou-Sayed, I.S. [Mobil Exploration and Production Services (United States); Moschovidis, Z. [Amoco Production Co. (US); Parker, C. [CONOCO (US)

    1993-02-01

    Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production difficult and often economic and stimulation is required. Because of the diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes. The objective of this study was to develop a comparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs. This report compares the fracture modeling results of twelve different simulators, some of them run in different modes for eight separate design cases. Comparisons of length, width, height, net pressure, maximum width at the wellbore, average width at the wellbore, and average width in the fracture have been made, both for the final geometry and as a function of time. For the models in this study, differences in fracture length, height and width are often greater than a factor of two. In addition, several comparisons of the same model with different options show a large variability in model output depending upon the options chosen. Two comparisons were made of the same model run by different companies; in both cases the agreement was good. 41 refs., 54 figs., 83 tabs.

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  17. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  18. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  19. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-03-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

  20. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  1. Advanced neutron source reactor thermal-hydraulic test loop facility description

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  2. Study on thermal-hydraulics during a PWR reflood phase

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs.

  3. Hydraulic fracking sustainability assesment : case of study Luena (Cantabria, Spain)

    OpenAIRE

    Fernández Ferreras, Jose Antonio

    2014-01-01

    ABSTRACT: The opposition to Hydraulic fracturing in Cantabria, has led the Regional Government to enact a law that prohibits their use in the region, which has been suspended by the Central Government. The objective of this work is to Identify impacts on the environment, and the main economic and social factors (sustainability) in a case of study Luena research permit (with an estimated shale gas reserves of 10.34*109 Nm3), establishing a guide for assessing the activity of hydraulic fracturi...

  4. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  5. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  6. Mesh convergence study for hydraulic turbine draft-tube

    Science.gov (United States)

    Devals, C.; Vu, T. C.; Zhang, Y.; Dompierre, J.; Guibault, F.

    2016-11-01

    Computational flow analysis is an essential tool for hydraulic turbine designers. Grid generation is the first step in the flow analysis process. Grid quality and solution accuracy are strongly linked. Even though many studies have addressed the issue of mesh independence, there is still no definitive consensus on mesh best practices, and research on that topic is still needed. This paper presents a mesh convergence study for turbulence flow in hydraulic turbine draft- tubes which represents the most challenging turbine component for CFD predictions. The findings from this parametric study will be incorporated as mesh control rules in an in-house automatic mesh generator for turbine components.

  7. Studies investigate effects of hydraulic fracturing

    Science.gov (United States)

    Balcerak, Ernie

    2012-11-01

    The use of hydraulic fracturing, also known as fracking, to enhance the retrieval of natural gas from shale has been increasing dramatically—the number of natural gas wells rose about 50% since 2000. Shale gas has been hailed as a relatively low-cost, abundant energy source that is cleaner than coal. However, fracking involves injecting large volumes of water, sand, and chemicals into deep shale gas reservoirs under high pressure to open fractures through which the gas can travel, and the process has generated much controversy. The popular press, advocacy organizations, and the documentary film Gasland by Josh Fox have helped bring this issue to a broad audience. Many have suggested that fracking has resulted in contaminated drinking water supplies, enhanced seismic activity, demands for large quantities of water that compete with other uses, and challenges in managing large volumes of resulting wastewater. As demand for expanded domestic energy production intensifies, there is potential for substantially increased use of fracking together with other recovery techniques for "unconventional gas resources," like extended horizontal drilling.

  8. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  9. Advances in Sleep Studies

    Science.gov (United States)

    ... of this page please turn JavaScript on. Feature: Sleep Disorders Advances in Sleep Studies Past Issues / Summer 2015 ... is the director of the National Center on Sleep Disorders Research (NCSDR) in the NIH's National Heart, Lung, ...

  10. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  11. Comparative study for thermal-hydraulic performance

    Directory of Open Access Journals (Sweden)

    Alok Kumar

    2016-03-01

    Full Text Available Several researchers have worked on the passive approach of heat transfer enhancement in tube heat exchangers. Some of them tried to modify the surface by creating dimple or using wire coil of different cross-section, while some worked on core fluid disturbance by using some insert geometries such as twisted tapes. But the ultimate aim of all was to create some disturbance in the flow in order to obtain enhanced heat transfer. This paper focuses on comparison of some of the most commonly used insert geometries. Insert geometry selected for this comparison is collection of core fluid disturbance, surface modification and combination of both. Different geometries taken in this study include twisted tape, twisted tape with ring, circular band, multiple twisted tape, twisted tape with conical rings, and so on and used air under turbulent flow regime as working fluid. On the basis of comparison made, it is observed that, in case of “single twisted tape insert” the thermal performance factor was maximum and in the event of “twisted tape with circular ring” the overall heat transfer rate is maximum. Future aspect is also proposed, which includes perforation in circular ring, and causes decrease in friction factor value because of less flow blockage.

  12. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  13. A review of modern advances in analyses and applications of single-phase natural circulation loop in nuclear thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Dipankar N., E-mail: dipankar.n.basu@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Bhattacharyya, Souvik; Das, P.K. [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-12-15

    Highlights: • Comprehensive review of state-of-the-art on single-phase natural circulation loops. • Detailed discussion on growth in solar thermal system and nuclear thermal hydraulics. • Systematic development in scaling methodologies for fabrication of test facilities. • Importance of numerical modeling schemes for stability assessment using 1-D codes. • Appraisal of current trend of research and possible future directions. - Abstract: A comprehensive review of single-phase natural circulation loop (NCL) is presented here. Relevant literature reported since the later part of 1980s has been meticulously surveyed, with occasional obligatory reference to a few pioneering studies originating prior to that period, summarizing the key observations and the present trend of research. Development in the concept of buoyancy-induced flow is discussed, with introduction to flow initiation in an NCL due to instability. Detailed discussion on modern advancement in important application areas like solar thermal systems and nuclear thermal hydraulics are presented, with separate analysis for various reactor designs working on natural circulation. Identification of scaling criteria for designing lab-scale experimental facilities has gone through a series of modification. A systematic analysis of the same is presented, considering the state-of-the-art knowledge base. Different approaches have been followed for modeling single-phase NCLs, including simplified Lorenz system mostly for toroidal loops, 1-D computational modeling for both steady-state and stability characterization and 3-D commercial system codes to have a better flow visualization. Methodical review of the relevant studies is presented following a systematic approach, to assess the gradual progression in understanding of the practical system. Brief appraisal of current research interest is reported, including the use of nanofluids for fluid property augmentation, marine reactors subjected to rolling waves

  14. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    Science.gov (United States)

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  15. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: III - Numerical Evaluation of Fluid Mixing Phenomena using Advanced Interface-Tracking Method -

    Science.gov (United States)

    Yoshida, Hiroyuki; Nagayoshi, Takuji; Takase, Kazuyuki; Akimoto, Hajime

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed by correlations with empirical results of actual-size tests. However, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. Development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. We tried to verify the TPFIT code by comparing it with the 2-channel air-water and steam-water mixing experimental results. The predicted result agrees well the observed results and bubble dynamics through the gap and cross flow behavior could be effectively predicted by the TPFIT code, and pressure difference between fluid channels is responsible for the fluid mixing.

  16. Triaxial coreflood study of the hydraulic fracturing of Utica Shale

    Science.gov (United States)

    Carey, J. W.; Frash, L.; Viswanathan, H. S.

    2015-12-01

    One of the central questions in unconventional oil and gas production research is the cause of limited recovery of hydrocarbon. There are many hypotheses including: 1) inadequate penetration of fractures within the stimulated volume; 2) limited proppant delivery; 3) multiphase flow phenomena that blocks hydrocarbon migration; etc. Underlying any solution to this problem must be an understanding of the hydrologic properties of hydraulically fractured shale. In this study, we conduct triaxial coreflood experiments using a gasket sealing mechanism to characterize hydraulic fracture development and permeability of Utica Shale samples. Our approach also includes fracture propagation with proppants. The triaxial coreflood experiments were conducted with an integrated x-ray tomography system that allows direct observation of fracture development using x-ray video radiography and x-ray computed tomography at elevated pressure. A semi-circular, fracture initiation notch was cut into an end-face of the cylindrical samples (1"-diameter with lengths from 0.375 to 1"). The notch was aligned parallel with the x-ray beam to allow video radiography of fracture growth as a function of injection pressure. The proppants included tungsten powder that provided good x-ray contrast for tracing proppant delivery and distribution within the fracture system. Fractures were propagated at injection pressures in excess of the confining pressure and permeability measurements were made in samples where the fractures propagated through the length of the sample, ideally without penetrating the sample sides. Following fracture development, permeability was characterized as a function of hydrostatic pressure and injection pressure. X-ray video radioadiography was used to study changes in fracture aperture in relation to permeability and proppant embedment. X-ray tomography was collected at steady-state conditions to fully characterize fracture geometry and proppant distribution.

  17. Study of the Process of Hydraulic Mixing in Anaerobic Digester of Biogas Plant

    Directory of Open Access Journals (Sweden)

    Karaeva Julia V.

    2015-03-01

    Full Text Available Two systems of hydraulic mixing in a vertical cylindrical anaerobic digester: standard and modernised are discussed in the paper. Numerical investigations that were carried out are focused on a study of hydrodynamic processes in an aerobic digester using two various systems of hydraulic mixing as well as on analysis of the efficiency of methane fermentation process accomplished under different geometric parameters of an anaerobic digester and systems of hydraulic mixing.

  18. The dynamic running law study on driving system of hydraulic winder

    Institute of Scientific and Technical Information of China (English)

    彭佑多; 刘德顺; 郭迎福; 张永忠; 文西芹

    2002-01-01

    Dynamic running law of the hydraulic driving system decides the hoisting cage velocity curve in a hoisting cycle and is decided by the characteristic of the hydraulic driving system and by the operating speed of hoist driver. The paper studies the dynamic running law of hydraulic driving system, analyses the influence of driver operating speed on the dynamic running characteristic, and points out the reasonable driver operating speed to control the dynamic stress in rope and to reduce the oscillation of rope system.

  19. Sensitivity study on hydraulic well testing inversion using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.

  20. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  1. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Evren Ozbayoglu; Lei Zhou

    2002-07-30

    This is the fourth quarterly progress report for Year-3 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between April 1, 2002 and June 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 3: Addition of a Cuttings Injection/Separation System), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)''; (c) Research project (Task 9b): ''Study of Foam Flow Behavior Under EPET Conditions''; (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''; (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b); (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S); (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  2. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  4. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk, Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2002-10-30

    This is the first quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between July 1, 2002 and Sept. 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System, (b) New Research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings (Task 12), Viscosity of Foam under EPET (Task 9b). (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  5. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  6. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    Science.gov (United States)

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  7. Using CFD as a support tool for the initial study of Hydraulic Turbomachinery

    Directory of Open Access Journals (Sweden)

    José Luis Vicéns

    2014-03-01

    Full Text Available The Engineering Education requires that students acquire an appropriate knowledge on a mathematical computational language as well as on a numerical simulation procedure. The computational language of mathematics usually is taught in advanced courses, once that the curriculum mathematical education is mainly completed; in addition, the numerical simulation is usually located late or even in doctoral studies. In this paper, we propose that the Computational Fluid Dynamics (CFD become to be a teaching-learning tool, instead of a strategic resource only. CFD can be regarded as a transversal skill i.e., as a useful educational tool for the Hydraulic Turbomachines learning, which achieves to overcome some epistemological obstacles of students. We develop a teaching-learning method in which the Tutor Facilitator plays an important role.

  8. Application study of magnetic fluid seal in hydraulic turbine

    Science.gov (United States)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  11. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    Science.gov (United States)

    Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.

    2011-08-01

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  12. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    Energy Technology Data Exchange (ETDEWEB)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  13. STUDY OF A FAULT DIAGNOSIS EXPERT SYSTEM FOR SYNTHETIC MINING SYSTEM HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    Han Yilun

    2000-01-01

    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  14. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  15. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  16. Experimental Study For Pizometric Head Distribution Under Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Dr. Najm Obaid Salim Alghazali

    2015-04-01

    Full Text Available Abstract In this research the experimental method by using Hydraulic modeling used to determination the flow net in order to analyses seepage flow through single- layer soil foundation underneath hydraulic structure. as well as steady the consequence of the cut-off inclination angle on exit gradient factor of safety uplift pressure and quantity of seepage by using seepage tank were designed in the laboratory with proper dimensions with two cutoffs . The physical model seepage tank was designed in two downstream cutoff angles which are 90 and 120 and upstream cutoff angles 90 45 120. After steady state flow the flow line is constructed by dye injection in the soil from the upstream side in front view of the seepage tank and the equipotentials line can be constructed by pizometer fixed to measure the total head. From the result It is concluded that using downstream cut-off inclined towards the downstream side with amp1256 equal 120 that given value of redaction 25 is beneficial in increasing the safety factor against the piping phenomenon. using upstream cut-off inclined towards the downstream side with amp1256 equal 45 that given value of redaction 52 is beneficial in decreasing uplift pressure and quantity of seepage.

  17. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-04-30

    Experiments on the flow loop are continuing. Improvements to the software for data acquisition are being made as additional experience with three-phase flow is gained. Modifications are being made to the Cuttings Injection System in order to improve control and the precision of cuttings injection. The design details for a drill-pipe Rotation System have been completed. A US Patent was filed on October 28, 2002 for a new design for an instrument that can generate a variety of foams under elevated pressures and temperatures and then transfer the test foam to a viscometer for measurements of viscosity. Theoretical analyses of cuttings transport phenomena based on a layered model is under development. Calibrations of two nuclear densitometers have been completed. Baseline tests have been run to determine wall roughness in the 4 different tests sections (i.e. 2-in, 3-in, 4-in pipes and 5.76-in by 3.5-in annulus) of the flow loop. Tests have also been conducted with aerated fluids at EPET conditions. Preliminary experiments on the two candidate aqueous foam formulations were conducted which included rheological tests of the base fluid and foam stability reports. These were conducted after acceptance of the proposal on the Study of Cuttings Transport with Foam Under Elevated Pressure and Elevated Temperature Conditions. Preparation of a test matrix for cuttings-transport experiments with foam in the ACTF is also under way. A controller for instrumentation to measure cuttings concentration and distribution has been designed that can control four transceivers at a time. A prototype of the control circuit board was built and tested. Tests showed that there was a problem with radiated noise. AN improved circuit board was designed and sent to an external expert to verify the new design. The new board is being fabricated and will first be tested with static water and gravel in an annulus at elevated temperatures. A series of viscometer tests to measure foam properties have

  18. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  19. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  20. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  1. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty one students. Nineteen lecturers gave sixty seventy five minute lectures. A Proceedings was published.

  2. Antiquity versus modern times in hydraulics - a case study

    Science.gov (United States)

    Stroia, L.; Georgescu, S. C.; Georgescu, A. M.

    2010-08-01

    Water supply and water management in Antiquity represent more than Modern World can imagine about how people in that period used to think about, and exploit the resources they had, aiming at developing and improving their society and own lives. This paper points out examples of how they handled different situations, and how they managed to cope with the growing number of population in the urban areas, by adapting or by improving their water supply systems. The paper tries to emphasize the engineering contribution of Rome and the Roman Empire, mainly in the capital but also in the provinces, as for instance the today territory of France, by analysing some aqueducts from the point of view of modern Hydraulic Engineering. A third order polynomial regression is proposed to compute the water flow rate, based on the flow cross-sectional area measured in quinaria. This paper also emphasizes on contradictory things between what we thought we knew about Ancient Roman civilization, and what could really be proven, either by a modern engineering approach, a documentary approach, or by commonsense, where none of the above could be used. It is certain that the world we live in is the heritage of the Greco-Roman culture and therefore, we are due to acknowledge their contribution, especially taking into account the lack of knowledge of that time, and the poor resources they had.

  3. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  4. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Thomas Michael; Shadid, John N; Pawlowski, Roger P; Cyr, Eric C; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  5. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    Science.gov (United States)

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  6. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  7. The hydraulics of a straight bedrock channel: Insights from solute dispersion studies

    Science.gov (United States)

    Richardson, Keith; Carling, Paul Anthony

    2006-12-01

    Bedrock channels represent a hydraulic environment quite different from that of alluvial channels, but currently, little is known about bedrock channel hydraulics and whether they differ in any fundamental sense from those of alluvial channels. A series of dye dilution experiments was carried out over a range of discharges in a straight reach of a bedrock channel (Birk Beck, U.K.), and an aggregated dead zone (ADZ) model for longitudinal solute transport and dispersion applied to the resulting time-concentration curves. The results of the experiments indicate the existence of two significant threshold discharges, Q1 and Q2. The dispersive fraction parameter of the ADZ model is found to decrease with increasing discharge, levelling off at a value close to zero for moderate to high discharges in excess of Q1. At these discharges, the flow behaves almost as plug flow with very little dispersion taking place. At high discharges (greater than Q2), the stage-discharge relationship deviates from a power law and discharge increases more slowly with increasing stage. In addition, area-weighted and momentum-weighted mean velocity values diverge strongly, as do estimates of reach volume derived from survey and from discharge and mean travel times. Celerity estimated from the slope of the stage-discharge relationship is found to peak at moderate discharges and to fall below momentum-weighted mean velocity estimates at a discharge equal to Q2. Two hypotheses, the Macroturbulent Mixing Hypothesis and the Decoupled Dead Zone Hypothesis, are advanced to account for these observations. The fall in dispersive fraction to near zero at discharges above Q1 is best explained as the result of a combination of increasing flow uniformity and effective lateral mixing across the whole channel cross section due to high turbulence intensities and large turbulent length scales. This means that potential dead zones in the bed and margins of the channel become well flushed and do not act as

  8. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  9. Assimilating SAR-derived water level data into a hydraulic model: a case study

    Directory of Open Access Journals (Sweden)

    L. Giustarini

    2011-02-01

    Full Text Available Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction to the model forecast uncertainty. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data.

  10. The study of crosslinked fluid leakoff in hydraulic fracturing physical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Grothe, Vinicius Perrud; Ribeiro, Paulo Roberto [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Petroleo; Sousa, Jose Luiz Antunes de Oliveira e [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia. Dept. de Estruturas; Fernandes, Paulo Dore [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2000-07-01

    The fluid loss plays an important role in the design and execution of hydraulic fracturing treatments. The main objectives of this work were: the study of the fluid loss associated with the propagation of hydraulic fractures generated at laboratory; and the comparison of two distinct methods for estimating leakoff coefficients - Nolte analysis and the filtrate volume vs. square root of time plot. Synthetic rock samples were used as well as crosslinked hydroxypropyl guar (HPG) fluids in different polymer concentrations. The physical simulations comprised the confinement of (0.1 x 0.1 x 0.1) m{sup 3} rock samples in a load cell for the application of an in situ stress field. Different flow rates were employed in order to investigate shear effects on the overall leakoff coefficient. Horizontal radial fractures were hydraulically induced with approximate diameters, what was accomplished by controlling the injection time. Leakoff coefficients determined by means of the pressure decline analysis were compared to coefficients obtained from static filtration tests, considering similar experimental conditions. The research results indicated that the physical simulation of hydraulic fracturing may be regarded as an useful tool for evaluating the effectiveness of fracturing fluids and that it can supply reliable estimates of fluid loss coefficients. (author)

  11. Scoping studies: advancing the methodology

    Directory of Open Access Journals (Sweden)

    O'Brien Kelly K

    2010-09-01

    Full Text Available Abstract Background Scoping studies are an increasingly popular approach to reviewing health research evidence. In 2005, Arksey and O'Malley published the first methodological framework for conducting scoping studies. While this framework provides an excellent foundation for scoping study methodology, further clarifying and enhancing this framework will help support the consistency with which authors undertake and report scoping studies and may encourage researchers and clinicians to engage in this process. Discussion We build upon our experiences conducting three scoping studies using the Arksey and O'Malley methodology to propose recommendations that clarify and enhance each stage of the framework. Recommendations include: clarifying and linking the purpose and research question (stage one; balancing feasibility with breadth and comprehensiveness of the scoping process (stage two; using an iterative team approach to selecting studies (stage three and extracting data (stage four; incorporating a numerical summary and qualitative thematic analysis, reporting results, and considering the implications of study findings to policy, practice, or research (stage five; and incorporating consultation with stakeholders as a required knowledge translation component of scoping study methodology (stage six. Lastly, we propose additional considerations for scoping study methodology in order to support the advancement, application and relevance of scoping studies in health research. Summary Specific recommendations to clarify and enhance this methodology are outlined for each stage of the Arksey and O'Malley framework. Continued debate and development about scoping study methodology will help to maximize the usefulness and rigor of scoping study findings within healthcare research and practice.

  12. Advanced Collaborative Emissions Study (ACES)

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  13. A Study on the Pressure Relief Scope and the Stress Variation of Hydraulic Flushing Borehole

    Directory of Open Access Journals (Sweden)

    C. F.Wei

    2014-01-01

    Full Text Available To study the variation of the pressure relief scope and the stress around hydraulic flushing borehole, the theory of coalrock damage was utilized to distinguish the interaction area of water-jet and coal-rock into the coal-rock crushing area, the water-jet pressure stagnation area, the transition area and the original stress recovery area of coal-rock. Based on the actual occurrence conditions of the coal seam, the pressure variation and relief scope around the hydraulic flushing borehole were analyzed and simulated by RFPA2D-Flow software. The results showed that a relief area with the radius of 5.0 ~ 6.0 m around the borehole formed due to the hydraulic flushing with the pressure relief of 0.038 ~ 6.545 MPa, and the maximum principal stress is 15.85 MPa with a distance of 6.8 m from the inspected hole where stress concentration appeared. After hydraulic flushing test, the diameter (441.8 ~ 1171.6 mm of the hole which can be an expression of coal crushing area size, was calculated based on the examination of the coal amount through the trial process, and it can be drawn that the pressure relief area must be larger than that of the coal-rock crushing area. Meanwhile, the measured pressures relief range(5.96 ~ 6.62 m is basically consistent with the numerical simulation result (5.0 ~ 6.0 m which verified the accuracy of the simulation analysis, according to the distance from the inspection drilling to the hydraulic flushing borehole and the decreased degree of the gas content in the inspection hole by the way of Gas Content.

  14. Soil water balance scenario studies using predicted soil hydraulic parameters

    NARCIS (Netherlands)

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.

    2006-01-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in ter

  15. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.

  16. Coupled Numerical Study of Turbidity Currents, Internal Hydraulic Jump and Morphological Signatures

    Science.gov (United States)

    Hu, P.; Cao, Z.; He, Z.; Gareth, P.

    2013-12-01

    Abstract: The last two decades have seen intensive experimental and numerical studies of the occurrence condition of internal hydraulic jump in turbidity currents and the induced morphological signatures (Garcia and Parker 1989; Kostic and Parker 2006). Yet there are two critical issues that remain insufficiently or inappropriately addressed. First, depositional turbidity currents are imposed on steep slopes in both flume experiments and numerical cases, exclusively based on a configuration consisting of an upstream sloping portion and a downstream horizontal portion linked by a slope break. This appears physically counterintuitive as steep slope should favour self-accelerating erosional turbidity currents (Parker et al. 1986). The second issue concerns the numerical studies. There exist significant interactions among the current, sediment transport and bed topography. Due to the slope break in bed, the current may experience an internal hydraulic jump, leaving morphological signatures on the bed, which in turn affects the current evolution. Nevertheless, simplified decoupled models are exclusively employed in previous numerical investigations, in which the interactions are either partly or completely ignored without sufficient justification. The present paper aims to address the above-mentioned two issues relevant to the occurrence condition of the internal hydraulic jump and the induced morphological signatures. A recently developed well-balanced coupled numerical model for turbidity currents (Hu et al. 2012) is applied. In contrast to previous studies, erosional turbidity currents will be imposed at the upstream boundary, which is much more typical of the field. The effects of sediment size, bed slope decrease, and upstream and downstream boundary conditions are revealed in detail. In addition, the evolution of turbidity currents over a bed characterized by gradual decrease in slope is also discussed. References Garcia, M. H., and Parker, G. (1989). Experiments

  17. Study on thermal-hydraulics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2000-05-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  18. Experimental study on thermal performance of heat sinks: the effect of hydraulic diameter and geometric shape

    Science.gov (United States)

    Marzougui, M.; Hammami, M.; Maad, R. Ben

    2016-10-01

    The main purpose of this study is focused on experimental investigation of cooling performance of various minichannel designs. The hydraulic dimension of one of the heat sink is 3 mm while that of the other is 2 mm. Deionised water was used as the coolant for studies conducted in both the heat sinks. Tests were done for a wide range of flow rates (0.7 l-9 l h-1) and heat inputs (5-40 kW/m2). Irrespective of the hydraulic diameter and the geometric configuration, profits and boundaries of each channel shape are analyzed and discussed in the clarity of experimental data. The total thermal resistance and the average heat transfer coefficient are compared for the various channels inspected.

  19. Study on Thermal-Hydraulic Behavior of an Integral Type Reactor under Heaving Condition

    OpenAIRE

    2014-01-01

    A self-developed program was used to study the thermal-hydraulic behavior of an integral type reactor under heaving condition. Comparison of calculated results with the data of experiments performed on a natural circulation loop designed with reference to an integral type reactor of Tsinghua University in inclination, heaving, and rolling motions was carried out. Characteristics of natural circulation in heaving motion and effect of motion parameters on natural circulation were investigated. ...

  20. Thermal hydraulic studies in steam generator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G. [Engineering Development Group Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India)

    2005-07-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m{sup 3}/hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  1. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou CAO

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  2. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  3. Hydraulic Cushion” Type Overload Protection Devices Usable in Mechanical Presses. A Patent Study

    Science.gov (United States)

    Cioară, R.

    2016-11-01

    The possible consequences of machine-tool overload are well-known. In order to prevent such, machine-tools are equipped with various overload protection devices. Mechanical presses, intensively strained machine-tools, are typically equipped with three protection systems: against accidental access to the working area during machine deployment, against torque overload and force overload. Force overload protection systems include either destructible parts and are used in small to medium nominal force mechanical presses, or non-destructible ones used mostly in medium to large nominal force (H-frame) presses. A particular class of force overload protection systems without destructible parts are “hydraulic cushion” type devices. While such systems do not necessarily cause the machine to stop, the slide's stroke does not reach the initial dead centre and consequently cannot exert the designed technological force on the workpiece. By a patent study referencing 19 relevant patents the paper captures both the diversity of the constrictive solutions of “hydraulic cushion” type protection devices and their positioning modalities within the structure of a mechanical press. An important aim of the study is to highlight the reserve of creativity existing in this field, at least from the viewpoint of the hydraulic cushion positioning, as well as to emphasize the essential requirement of a relative motion between the mobile and the fixed parts of the tool, a motion of opposite sense to that of the slide-crank mechanism.

  4. Study on test and preparation of load spectrum of hydraulic excavator

    Science.gov (United States)

    Zhang, Hong; Feng, Guodi; Zhang, Haijun; Wang, Xiaofeng; Zhang, Yingzhi

    2017-01-01

    Due to harsh working conditions, the components of hydraulic excavator are subject to large amount of alternating load and random load during the operation and they are seriously damaged. The test of load signal and preparation of load spectrum for the hydraulic excavator are studied in this paper. In the first place, pretreatment of filtering and noise reduction for load signal is conducted based on experimental test on site and experimental working condition analysis. After the load signal is processed in sections, distribution fitting is performed for information like mean amplitude after rain flow counting with the approach of probability statistics to get the probability distribution function for mean value and amplitude value. Finally the two dimensional load spectrum for mean amplitude is obtained and program spectrum loading solution of fatigue experiment is given. The study of load signal test and load spectrum preparation method for hydraulic excavator conducted in this paper is of great significance for clarification of load distribution of excavator and further reliability test of excavator.

  5. Numerical and Experimental Study of the Dynamics of Imploding Hydraulic Jumps

    Science.gov (United States)

    Gunter, Amy-Lee; Smadi, Othman; Kiyanda, Charles; Kadem, Lyes; Ng, Hoi Dick

    2009-11-01

    The dynamics of imploding hydraulic jumps is investigated in this study. Experimental and numerical studies are performed to identify the critical conditions at which circular shallow water waves can be produced and amplify as they propagate toward the center without wave breaking. These conditions enable water waves to behave analogously to gaseous shock waves through the hydraulic analogy. The stability of the imploding jumps is also analyzed by introducing obstacles in the path of the implosion. Experimentally, a gate-type water table is constructed and the creation of a circular converging hydraulic jump is achieved by retracting the gate which separate two volumes of water by mean of three pneumatic pistons. A CCD camera is used to visualize the dynamics of the implosion. The acquired images are processed on Matlab using an image processing toolbox based algorithm which detects the shape and trajectory of the imploding wave. To compare the characteristics of the imploding jump and the mechanism of wave breaking, numerical simulations using Volume of Fluid (VOF) and Smoothed Particles Hydrodynamics (SPH) methods are performed. The experimental and numerical results are compared with the Chester-Chisnell-Whitham (CCW) approximate solution of the shallow water wave equations.

  6. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  7. Contesting Technologies in the Networked Society: A Case Study of Hydraulic Fracturing and Shale Development

    Science.gov (United States)

    Hopke, Jill E.

    In this dissertation, I study the network structure and content of a transnational movement against hydraulic fracturing and shale development, Global Frackdown. I apply a relational perspective to the study of role of digital technologies in transnational political organizing. I examine the structure of the social movement through analysis of hyperlinking patterns and qualitative analysis of the content of the ties in one strand of the movement. I explicate three actor types: coordinator, broker, and hyper-local. This research intervenes in the paradigm that considers international actors as the key nodes to understanding transnational advocacy networks. I argue this focus on the international scale obscures the role of globally minded local groups in mediating global issues back to the hyper-local scale. While international NGOs play a coordinating role, local groups with a global worldview can connect transnational movements to the hyper-local scale by networking with groups that are too small to appear in a transnational network. I also examine the movement's messaging on the social media platform Twitter. Findings show that Global Frackdown tweeters engage in framing practices of: movement convergence and solidarity, declarative and targeted engagement, prefabricated messaging, and multilingual tweeting. The episodic, loosely-coordinated and often personalized, transnational framing practices of Global Frackdown tweeters support core organizers' goal of promoting the globalness of activism to ban fracking. Global Frackdown activists use Twitter as a tool to advance the movement and to bolster its moral authority, as well as to forge linkages between localized groups on a transnational scale. Lastly, I study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). I analyze the top actors tweeting using the #fracking

  8. Effect of biocrust: study of mechanical and hydraulic properties and erodibility

    Science.gov (United States)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana

    2016-04-01

    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  9. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  10. Soil hydraulic properties and REV study using X-ray microtomography and pore-scale modelling: saturated hydraulic conductivity

    Science.gov (United States)

    Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Karsanina, Marina; Umarova, Aminat; Korost, Dmitry; Matthai, Stephan; Mallants, Dirk

    2016-04-01

    To verify pore-scale modelling approach for determination of soil saturated hydraulic conductivity properties we scanned three cylindrical soil samples taken from A, Ah and B horizons using X-ray microtomography method. Resulting 3D soil images with resolutions of 15.25-20.96 μm were segmented into pores and solids and their maximum inscribed cube subvolumes were used as input data for three major pore-scale modelling methods to simulate saturated flow - lattice-Boltzmann method, finite-difference solution of the Stokes problem, and pore-network model. Provided that imaging resolution is high enough to capture the backbone of effective porosity and the main conducting pores all three methods resulted in simulated soil permeabilities close to experimental values for Ah and B samples. The resolution of A sample was not enough for an accurate modelling and we concluded that this soil requires multi-scale imaging to cover all relevant heterogeneities. We demonstrate that popular SWV method to choose segmentation threshold resulted in oversegmentation and order of magnitude higher permeability values. Careful manual thresholding combined with local segmentation algorithm provided much more accurate results. Detailed analysis of water retention curves showed that air-filled porosity at relevant pressure stages cannot be used for verification of the segmentation results. Representativity analysis by simulating flow in increasing soil volume up to 2.8 cm3 revealed no representative elementary volume (REV) within Ah sample and non-uniqueness of REV for B sample. The latter was explained by soil structure non-stationarity. We further speculate that structures soil horizons can exhibit no REV at all. We discuss numerous advantages of coupled imaging and pore-scale modelling approach and show how it can become a successor of the conventional soil coring method to parametrize large scale continuum models.

  11. Advanced wind turbine design studies: Advanced conceptual study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P; Sherwin, R [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  12. 2001 Industry Studies: Advanced Manufacturing

    Science.gov (United States)

    2007-11-02

    markets, production and innovation. After encountering growing international competition in the 1970’s and 1980’s, U.S. manufacturers sought new and better...competitive advantages and better performance in world markets. Importantly, advanced manufacturing involves the innovative integration of new technology...the traditional parameters of mass production, giving rise to a new era in manufacturing in which manufacturers are increasing the speed and

  13. An Experimental Study of Measuring Oscillatory and Transient Pressures in Hydraulic Systems.

    Science.gov (United States)

    1978-12-01

    dynamic conditions. One of these computer programs that was of interest in this study was the Hydraulic Systems Frequency Response (HsFR). H- SFR program...reason for that failure is that the model for the hose was not accurate enough. The predicted amplitudes were much lower than measurec’ values except...the line. 6. P(%)- in line - Pclanp on x 100 ( 6 Pin line 7. Span - The distance between two clamps. The trans- ducers were located in the center of the

  14. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    OpenAIRE

    2015-01-01

    A novel stage hydraulic monitoring system based on Internet of Things (IoT) is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring ...

  15. Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna

    Science.gov (United States)

    Bayala, Jules; Heng, Lee Kheng; van Noordwijk, Meine; Ouedraogo, Sibiri Jean

    2008-11-01

    Hydraulic redistribution (HR) in karité ( Vitellaria paradoxa) and néré ( Parkia biglobosa) tree species was studied by monitoring the soil water potential ( ψs) using thermocouple psychrometers at four compass directions, various distances from trees and at different soil depths (max depth 80 cm) during the dry seasons of 2004 and 2005. A modified WaNuLCAS model was then used to infer the amount of water redistribued based on ψs values. Tree transpiration rate was also estimated from sap velocity using thermal dissipative probes (TDP) and sapwood area, and the contribution of hydraulically redistributed water in tree transpiration was determined. The results revealed on average that 46% of the psychrometer readings under karité and 33% under néré showed the occurrence of HR for the two years. Soil under néré displayed significantly lower fluctuations of ψs (0.16 MPa) compared to soil under karité (0.21 MPa). The results of this study indicated that the existence of HR leads to a higher ψs in the plant rhizosphere and hence is important for soil water dynamics and plant nutrition by making more accessible the soluble elements. The simulation showed that the amount of water redistributed would be approximately 73.0 L and 247.1 L per tree per day in 2005 for karité and néré, and would represent respectively 60% and 53% of the amount transpired a day. Even though the model has certainly overestimated the volume of water hydraulically redistributed by the two species, this water may play a key role in maintaining fine root viability and ensuring the well adaptation of these species to the dry areas. Therefore, knowledge of the extent of such transfers and of the seasonal patterns is required and is of paramount importance in parkland systems both for trees and associated crops.

  16. Hydraulic modelling for flood mapping and prevention: the case study of Cerfone River

    Science.gov (United States)

    Di Francesco, Silvia; Venturi, Sara; Manciola, Piergiorgio

    2016-04-01

    The research focuses on the hydraulic risk evaluation and danger estimation for different extreme flood events, in order to correctly implement mitigation measures in an anthropized basin. The Cerfone River (Tuscany, Italy), due to the several floods that have affected the neighbouring villages in recent years, is selected as case of study. A finite volume numerical model that solves the shallow water equations all over the computational domain, was used to simulate the unsteady evolution of the maximum extent of flooded areas for different scenarios. The one - dimensional approach (still widespread in engineering projects) can be inaccurate in complex flows, which are often two or three dimensional and sometimes does not manage to capture the flood spatial extents in terms of flow depth and velocity. The use of a two-dimensional numerical model seems to be the suitable instrument in terms of computational efficiency and adequacy of results. In fact it overcomes the limits of a one-dimensional modeling in terms of prediction of hydraulic variables with a less computational effort respect to a full 3d model. An accurate modeling of the river basin leads to the evaluation of the present hydraulic risk. Structural and non- structural measures are then studied, simulated and compared in order to define the optimal risk reduction plan for the area of study. At this aim, different flooding scenarios were simulated through the 2D mathematical model: i) existing state of the river and floodplain areas; ii) design of a levee to protect the most vulnerable populated areas against the flooding risk; iii) use of off - stream detention basins that strongly amplify the lamination capacity of floodplains. All these scenarios were simulated for different return periods: 50, 100, 200 and 500 years. The inputs of the hydraulic models are obtained in accordance with the legislative requirement of Tuscany Region; in particular discharge hydrographs are evaluate through the ALTo

  17. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators

    KAUST Repository

    Siddiqui, A.

    2016-12-22

    Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems.

  18. Hydraulic study of drilling fluid flow in circular and annular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2011-10-15

    This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)

  19. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  20. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  1. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  2. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  3. Forming-Precision-Driven Structure Design of Hydraulic Press:Methodology and Case Study

    Institute of Scientific and Technical Information of China (English)

    李艳聪; 张连洪; 何柏岩; 陈永亮; 张淳

    2015-01-01

    The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, re-sulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses cost-effective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiff-ness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to proto-types;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the opti-mization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.

  4. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  5. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Yue Dong

    2015-01-01

    Full Text Available A novel stage hydraulic monitoring system based on Internet of Things (IoT is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring pressure of flow. When the monitored data exceeds the normal range, some failure may occur in the stage hydraulic system. If any failure occurs in the circuit, the maintainers can be informed immediately, which can greatly improve maintenance efficiency, ensuring the failure to be eliminated in time. Meanwhile, we can take advantage of wireless sensor network (WSN to connect the multiple loops and then monitor the loops by using ZigBee technology, which greatly improves the efficiency of monitoring.

  6. Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.; Yeh, Tian-Chyi J.; Berg, Steven J.; Mao, Deqiang

    2015-06-01

    In this study, we demonstrate the effectiveness of hydraulic tomography (HT) that considers variably saturated flow processes in mapping the heterogeneity of both the saturated and unsaturated zones in a laboratory unconfined aquifer. The successive linear estimator (SLE) developed by Mao et al. (2013c) for interpreting HT in unconfined aquifers is utilized to obtain tomograms of hydraulic conductivity (K), specific storage (Ss), and the unsaturated zone parameters (pore size parameter (α) and saturated water content (θs)) for the Gardner-Russo's model. The estimated tomograms are first evaluated by visually comparing them with stratigraphy visible in the sandbox. Results reveal that the HT analysis is able to accurately capture the location and extent of heterogeneity including high and low K layers within the saturated and unsaturated zones, as well as reasonable distribution patterns of α and θs for the Gardner-Russo's model. We then validate the estimated tomograms through predictions of drawdown responses of pumping tests not used during the inverse modeling effort. The strong agreement between simulated and observed drawdown curves obtained by pressure transducers and tensiometers demonstrates the robust performance of HT that considers variably saturated flow processes in unconfined aquifers and the unsaturated zone above it. In addition, compared to the case using the homogeneous assumption, HT results, as expected, yield significantly better predictions of drawdowns in both the saturated and unsaturated zones. This comparison further substantiates the unbiased and minimal variance of HT analysis with the SLE algorithm.

  7. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    Science.gov (United States)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  8. Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings.

    Science.gov (United States)

    Hahn, Andreas; Lang, Michael; Stuckart, Claudia

    2016-11-01

    The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component.This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied.Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive.Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable.

  9. Analysis of clinically important factors on the performance of advanced hydraulic, microprocessor-controlled exo-prosthetic knee joints based on 899 trial fittings

    Science.gov (United States)

    Hahn, Andreas; Lang, Michael; Stuckart, Claudia

    2016-01-01

    Abstract The objective of this work is to evaluate whether clinically important factors may predict an individual's capability to utilize the functional benefits provided by an advanced hydraulic, microprocessor-controlled exo-prosthetic knee component. This retrospective cross-sectional cohort analysis investigated the data of above knee amputees captured during routine trial fittings. Prosthetists rated the performance indicators showing the functional benefits of the advanced maneuvering capabilities of the device. Subjects were asked to rate their perception. Simple and multiple linear and logistic regression was applied. Data from 899 subjects with demographics typical for the population were evaluated. Ability to vary gait speed, perform toileting, and ascend stairs were identified as the most sensitive performance predictors. Prior C-Leg users showed benefits during advanced maneuvering. Variables showed plausible and meaningful effects, however, could not claim predictive power. Mobility grade showed the largest effect but also failed to be predictive. Clinical parameters such as etiology, age, mobility grade, and others analyzed here do not suffice to predict individual potential. Daily walking distance may pose a threshold value and be part of a predictive instrument. Decisions based solely on single parameters such as mobility grade rating or walking distance seem to be questionable. PMID:27828871

  10. Study on the Energy-Regeneration-based Velocity Control of the Hydraulic-Hybrid Vehicle

    Directory of Open Access Journals (Sweden)

    SONG Yunpu

    2012-11-01

    Full Text Available This paper simplifies the energy regenerationbased vehicle velocity system of the hydraulichybrid businto a process in which the extension rod of the hydraulic cylinder drives the secondary-element variable delivery pump/motor to change its displacement. This process enables braking of the vehicle and also allows recovery of energy. The stability, energy efficiency and other characteristics of the system are studied based on analysis of mathematical models of the vehicle velocity control. The relevant controller is designed to study effects of the controller on system characteristics. The vehicle velocity control module of the energy regeneration system is stable and able to recovery the inertia energy generated in vehicle braking. After the controller intended to improve response speed is added, system response becomes quicker but energy recovery rate declines.

  11. Study on Thermal-Hydraulic Behavior of an Integral Type Reactor under Heaving Condition

    Directory of Open Access Journals (Sweden)

    Beibei Feng

    2014-01-01

    Full Text Available A self-developed program was used to study the thermal-hydraulic behavior of an integral type reactor under heaving condition. Comparison of calculated results with the data of experiments performed on a natural circulation loop designed with reference to an integral type reactor of Tsinghua University in inclination, heaving, and rolling motions was carried out. Characteristics of natural circulation in heaving motion and effect of motion parameters on natural circulation were investigated. Results indicated that: (1 long-period heaving motion would lead to more significant influence than inclination and rolling motion; (2 it was an alternating force field which consisted of gravity and an additional force that decided the flow temperature and density difference of natural circulation; (3 effect of strength k and cycle T of heaving motion on flow fluctuation of natural circulation and condensate depression of heating section outlet was performed.

  12. Experiments and analytical studies related to blowdown and containment thermal hydraulics on CSF

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anu, E-mail: adutta@barc.gov.in; Thangamani, I.; Shanware, V.M.; Rao, K.S.; Gera, B.; Ravi Kiran, A.; Goyal, P.; Verma, Vishnu; Sharma, P.K.; Agrawal, M.K.; Ganju, S.; Singh, R.K.

    2015-12-01

    Highlights: • Blowdown and containment thermal hydraulics experiments conducted in CSF. • RELAP5, ASTEC and CONTRAN codes used for analysis. • Containment peak pressure and temp predicted close to experimental values. • CONTRAN and ASTEC codes predict early containment depressurization. • Numerical procedure, benchmarked for loss of coolant accident in nuclear reactors. - Abstract: Containment Studies Facility (CSF) is volumetrically scaled down model of Indian Pressurized Heavy Water Reactor (IPHWR) containment for simulating LOCA/MSLB conditions which consists of concrete containment model (CM) and Primary Heat Transport Model (PHTM) vessel. Blowdown experiments at different initial vessel pressure conditions were recently conducted at CSF and the vessel and containment parameters such as pressure, temperature and level transients have been recorded during the experiments. The experimental results have been used for benchmarking of numerical procedure adopted for evaluating LOCA/MSLB conditions in nuclear containment. The numerical procedure involves simulation of blowdown phenomena using RELAP5 code for evaluating mass and energy discharge rates, which are then used for calculating containment pressure–temperature transients using ASTEC and in-house CONTRAN codes. Predictions of major parameters of vessel and containment model were found to be in good agreement with that of experimental data. In containment thermal hydraulic calculations, condensation heat transfer coefficient affects the containment pressure–temperature transients. Various empirical condensation models like Tagami, Uchida and Diffusion models have been incorporated in CONTRAN code and suitable condensation model has been identified for which predicted pressure values are close to the experimental one. The details of the experimental and analytical studies conducted are presented in this paper.

  13. The Advanced Study of Gymnastics.

    Science.gov (United States)

    Salmela, John H., Ed.

    The sport of artistic gymnastics is viewed from a multidisciplinary point of view. The training, performance, and judgment of the sport undergo specialized study of interest to sport scientists, teachers, coaches, and athletes. Organized into five major sections, the book presents such themes as the psychological, physiological, biomechanical,…

  14. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2013-06-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  15. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2015-07-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  16. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  17. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Directory of Open Access Journals (Sweden)

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  18. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  19. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  20. Numerical and experimental study of low-frequency pressure pulsations in hydraulic units with Francis turbine

    Science.gov (United States)

    Platonov, D.; Minakov, A.; Dekterev, D.; Sentyabov, A.; Dekterev, A.

    2016-10-01

    The paper presents the numerical simulation method of three-dimensional turbulent flows in the hydraulic turbine. This technique was verified by means of experimental data obtained on a water model of the Francis turbines. An aerodynamic stand, which is a miniature copy of the real hydraulic turbine, was designed. A series of experiments have been carried out on this stand and the corresponding calculations were performed. The dependence of the velocity and pressure pulsations profiles for different operation regimes are presented.

  1. NATO Advanced Study Institute on Advances in Microlocal Analysis

    CERN Document Server

    1986-01-01

    The 1985 Castel vecchio-Pas coli NATO Advanced Study Institute is aimed to complete the trilogy with the two former institutes I organized : "Boundary Value Problem for Evolution Partial Differential Operators", Liege, 1976 and "Singularities in Boundary Value Problems", Maratea, 1980. It was indeed necessary to record the considerable progress realized in the field of the propagation of singularities of Schwartz Distri­ butions which led recently to the birth of a new branch of Mathema­ tical Analysis called Microlocal Analysis. Most of this theory was mainly built to be applied to distribution solutions of linear partial differential problems. A large part of this institute still went in this direction. But, on the other hand, it was also time to explore the new trend to use microlocal analysis In non linear differential problems. I hope that the Castelvecchio NATO ASI reached its purposes with the help of the more famous authorities in the field. The meeting was held in Tuscany (Italy) at Castelvecchio-P...

  2. The development and verification of thermal-hydraulic code on passive residual heat removal system of Chinese advanced PWR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The technology of passive safety is the current trend among safety systems in nuclear power plant. Passive residual heat removal system (PRHRS), a major part of passive safety systems of Chinese advanced PWR, is a novel design with three-fold natural circulation. On the basis of reasonable physics and mathematics models, MITAP-PRHRS code was developed to analyze steady and transient characteristics of the PRHRS. The calculation and analysis show that the code simulates steady characteristics of the PRHRS very well, and it is able to simulate transient characteristics of all startup modes of the PRHRS. However, the quantitative description is poor during the initial stages of the transition process when water hammer occurs.

  3. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  4. Use of laser flow visualization techniques in reactor component thermal-hydraulic studies

    Energy Technology Data Exchange (ETDEWEB)

    Oras, J.J.; Kasza, K.E.

    1984-01-01

    To properly design reactor components, an understanding of the various thermal hydraulic phenomena, i.e., thermal stratification flow channeling, recirculation regions, shear layers, etc., is necessary. In the liquid metal breeder reactor program, water is commonly used to replace sodium in experimental testing to facilitate the investigations, (i.e., reduce cost and allow fluid velocity measurement or flow pattern study). After water testing, limited sodium tests can be conducted to validate the extrapolation of the water results to sodium. This paper describes a novel laser flow visualization technique being utilized at ANL together with various examples of its use and plans for further development. A 3-watt argon-ion laser, in conjunction with a cylindrical opticallens, has been used to create a thin (approx. 1-mm) intense plane of laser light for the illuminiation of various flow tracers in precisely defined regions of interest within a test article having windows. Both fluorescing dyes tuned to the wavelength of the laser light (to maximize brightness and sharpness of flow image) and small (< 0.038-mm, 0.0015-in. dia.) opaque, nearly neutrally buoyant polystyrene spheres (to ensure that the particles trace out the fluid motion) have been used as flow tracers.

  5. Experimental and analytical study on thermal hydraulics in reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Araya, Fumimasa; Ohnuki, Akira; Yoshida, Hiroyuki; Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Study and development of reduced-moderation spectrum water reactor proceeds as a option of the future type reactor in Japan Atomic Energy Research Institute (JAERI). The reduced-moderation spectrum in which a neutron has higher energy than the conventional water reactors is achieved by decreasing moderator-to-fuel ratio in the lattice core of the reactor. Conversion ratio in the reduced-moderation water reactor can be more than 1.0. High burnup and long term cycle operation of the reactor are expected. A type of heavy water cooled PWR and three types of BWR are discussed as follows; For the PWR, (1) critical heat flux experiments in hexagonal tight lattice core, (2) evaluation of cooling limit at a nominal power operation, and (3) analysis of rewetting cooling behavior at loss of coolant accident following with large scale pipe rupture. For the BWR, analyses of cooling limit at a nominal power operation of, (1) no blanket BWR, (2) long term cycle operation BWR, and (3) high conversion ratio BWR. The experiments and the analyses proved that the basic thermal hydraulic characteristics of these reduced-moderation water reactors satisfy the essential points of the safety requirements. (Suetake, M.)

  6. Microstructural studies of advanced austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  7. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    袁辉; 徐龙江; 田大宝; 赵燕玲

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting-theory contamination analyser are carried out. The filter effect of portable hydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and field experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to control the oil contamination was carried out in the Datong Coat Mining Bureau.

  8. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    Science.gov (United States)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  9. Experimental Study of Thermo-hydraulic Characteristics of Surfaces with In-line Dimple Arrangement

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2015-01-01

    Full Text Available The paper presents a conducted experimental study of the heat exchange intensification on the surfaces covered with a regular vortex-generating relief that is an in-line array of the shallow hemispherical dimples. Using 12 configuration options with the Reynolds numbers in the range of (0.2-7.0 106 as an example, it analyses how a longitudinal and cross step of the in-line dimple array (density dimples effects on the processes of heat exchange intensification and resistance.The monocomponent strain-gauge balance allows us to define a value of the resistance coefficient by direct weighing of models (located in parallel in a flow of "relief" and smooth "reference" ones being under study. Distribution fields of heat – transfer factor are determined by recording a cooling process of the surface of studied models having high spatial and temporary resolution. All researches were conducted with one-shot data record of these thermal and hydraulic measurements for the smooth (reference surfaces and the studied surfaces covered with a regular vortex-generating relief (dimples. The error of determined parameters was no more than ±5%.The oil-sooty method allows us to visualize flow around a regular relief and obtain a flow pattern for 12 options of dimples configuration. The analysis has been carried out and a compliance of the flow patterns with the field of heat-transfer factors has been obtained.It has been found that for the in-line configuration a Reynolds analogy factor for most models is nonlinearly dependent on the Reynolds number. The friction intensification, at first, falls (to some Reynolds number and, further, starts increasing, tending to the friction intensification value with self-similarity flow around. Thus with increasing Reynolds number, the heattransfer factor intensification falls (more slowly than resistance intensification.

  10. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  11. Using CFD as a support tool for the initial study of Hydraulic Turbomachinery

    OpenAIRE

    José Luis Vicéns; Blas Zamora

    2014-01-01

    [EN] The Engineering Education requires that students acquire an appropriate knowledge on a mathematical computational language as well as on a numerical simulation procedure. The computational language of mathematics usually is taught in advanced courses, once that the curriculum mathematical education is mainly completed; in addition, the numerical simulation is usually located late or even in doctoral studies. In this paper, we propose that the Computational Fluid Dynamics (CFD...

  12. [Advances in the studies of concealed penis].

    Science.gov (United States)

    Fan, Sheng-hai; Li, Xue-de

    2015-09-01

    Concealed penis is usually found in children, which affects the patients both physiologically and psychologically. Some of the patients are wrongly treated by circumcision, which may bring about serious consequences to the sexual life of the patients in their adulthood. In the recent years, this disease has been receiving more and more attention from both doctors and parents. However, controversies remain as to its classification, pathogenesis, pathology, and treatment. This paper focuses on the understanding and advances in the studies of concealed penis.

  13. Pressure Safety: Advanced Self-Study 30120

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Pressure Safety Advance Self-Study (Course 30120) consists of an introduction, five modules, and a quiz. To receive credit in UTrain for completing this course, you must score 80% or better on the 15-question quiz (check UTrain). Directions for initiating the quiz are appended to the end of this training manual. This course contains several links to LANL websites. UTrain might not support active links, so please copy links into the address line in your browser.

  14. EXPERIMENTAL STUDY HYDRAULIC ROUGHNESS FOR KAN TIN MAIN DRAINAGE CHANNEI IN HONG KONG

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; YANG Kai-lin; GUO Xing-lei; XIE Sheng-zong; FU Hui; GUO Yong-xin

    2012-01-01

    The Kam Tin Main Drainage Channel (KTMDC) is an important river for the city drainage in Hong Kong.The roughness and its variations have an obvious effect on the flood control capacity and the flow capacity.So physical model tests are designed to study the KTMDC.Due to its complex channel structure,the tests are completed in two steps.In Step 1,the energy loss is measured along the main channel without inflows,with all inflows and outflows being sealed.In Step 2,all the inflow and outflow structures are measured,with the sealed inflows and outflows being opened on the basis of Step 1.In each step,two schemes are employed.One of the key issues is the choice of suitable materials to make the model's roughness similar to that of the prototype.According to the gravity similarity criterion,the 1:25 scale model is built,with the main channel made of Perspex.The facing slopes of the grasscrete and the stone masonry need to be roughened.A kind of the nylon net is selected to simulate the roughness of the stone masonry and the plastic lawn for the grasscrete facing slope.For the different structure reaches,the roughness coefficients are estimated based on the hydraulic theory.The rationality of the test results is verified in this study.The results of testing can provide a reliable basis for the renovation,the expansion,the optimization of this channel.

  15. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  16. STUDY ON AN OBJECTORIENTED FEATUREBASED CADOF HYDRAULIC MANIFOLD BLOCK

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The technique of objectoriented featurebased solid modeling and its application in the CAD of hydraulic manifold block (HMB) are discussed. The research can greatly improve the convenience and efficiency of product design for HMB, as well as for the other mechanical products.

  17. The Hydraulic Jump: Finding Complexity in Turbulent Water

    Science.gov (United States)

    Vondracek, Mark

    2013-01-01

    Students who do not progress to more advanced science disciplines in college generally do not realize that seemingly simple physical systems are--when studied in detail--more complex than one might imagine. This article presents one such phenomenon--the hydraulic jump--as a way to help students see the complexity behind the seemingly simple, and…

  18. Recent Advances in Study of Oceanic Vortex

    Institute of Scientific and Technical Information of China (English)

    FU Gang; LI Li; LIU Qinyu

    2002-01-01

    In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Generally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.

  19. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  20. A numerical study on improving the thermal hydraulic performance of printed circuit heat exchanger using the supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bo Guen; Kim, Dae Hyun; Chung, Jin Taek [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2015-10-15

    The objective of this study is to propose a new channel shape that improves thermal-hydraulic performance. The existing Zigzag channel has high pressure loss due to flow separation and reverse flow. To improve this disadvantage, partial straight channel is inserted into bended points. Also, the effects of straight channel's length change on heat transfer and pressure loss are analyzed. Thermal-hydraulic performance of the new shape and existing Zigzag channel are quantitatively compared in terms of Goodness Factor. Mass flow rate was changed from 1.41 x 10{sup -4} kg/s to 2.48 x 10{sup -4} kg/s . The average volume goodness factor of 1mm straight channel shape was increased by 25% compared to the Zigzag channel.

  1. A study of factors influencing advanced puberty

    Directory of Open Access Journals (Sweden)

    Yong Jun Park

    2010-02-01

    Full Text Available Purpose : The purpose of this study was to evaluate the timing of puberty and the factors inducing advanced puberty in elemental school students of low grades. Methods : The 1st, 2nd, and 3rd grade elemental students from the Goyang province were randomly selected, and their sexual maturation rate was assessed by physical examination. After obtaining an informed consent, a questionnaire was administered to the parents; eating habits, lifestyle, use of growth-inducing medication, and present illness of the students were evaluated to determine the factors that induced advanced puberty. The data were statistically analyzed. Results : We selected 170 children and the girls:boys sex ratio was 1.2:1. Two 9-year-old boys were in genital stage 2. Two (14.3% 6-year-old girls, 6 (19.4% 7-year-old girls, 15 (39.6% 8-year-old girls, and 4 (57.1% 9-year-old girls were in breast stage 2. The average pubertal timing predicted for girls was 9.11¡?#?.86; years. The main factors influencing pubertal timing were obesity scale, frequency of eating fast food, and the use of growth-inducing medication. A high rating on the obesity scale and high frequency of eating fast food indicated advanced stage of puberty. Growth-inducing medication induced puberty through obesity. Conclusion : We proposed that predictive average pubertal timing in girls was 9.11¡?#?.86; years, which was consistent with the previously reported findings from abroad. The significant influencing factors in advanced puberty were obesity scale and frequency of fast food.

  2. A COMPUTATIONAL STUDY OF THE ACTUATION SPEED OF THE HYDRAULIC CYLINDER UNDER DIFFERENT PORTS’ SIZES AND CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    M. O. ABDALLA

    2015-02-01

    Full Text Available The discharged oil from hydraulic cylinder, during its operation, is highly restricted by the small sized outlets. As a result, a back pressure builds up and the piston motion, therefore, is slowed down; the system pump has to do additional work to overcome this hydraulic resistance so as to preserve the required speed. In this study the possibility of improvement of the actuation speed of the hydraulic cylinders was investigated and analysed. Both a four-port cylinder and a resized-ports cylinder were proposed as fast cylinders. FLUENT 6.3 was used for the simulation of the oil flow field of the hydraulic cylinders. Results showed that relation between discharge flow and the outlets diameters is best described by a power law having coefficients partially depending on the system pressure. It had also shown that for any given total outlet area, the actuation speed of the single outlet cylinders is always higher than that of the double outlets cylinders. In one case where the total outlet area is 3.93E-05m2, the actuation speed of the single outlet cylinder is 21% higher than that of the double outlets cylinder; whereas, when doubling the total outlet area the different is reduced to just 6% . Resizing the outlet for small ports was more efficient than using multi-outlets; while for a large ports it shows no significant difference to use either one outlet port or multi-outlets. Both the solutions of resizing or ports addition need special valve to be fit to the cylinder so that the cylinder could be effectively operated under the control of the proportional valve.

  3. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Singh, Manjit [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  4. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    YUAN Hui; XU Long-jiang; TIAN Da-biao; ZHAO Yan-ling

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil cont amination of the hydraulic systems of shearers. Experimental provement of siltin g-theory contamination analyser are carried out.The filter effect of portable h ydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and fi e ld experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to contr o l the oil contamination was carried out in the Datong Coal Mining Bureau.

  5. STUDY ON THE CONTROL SYSTEM OF HYDRAULIC MOMENT-ADJUSTED BRAKE FOR DOWNWARD BELT CONVEYOR

    Institute of Scientific and Technical Information of China (English)

    孟国营; 徐志强; 霍森; 方佳雨

    1997-01-01

    Having analyzed the drawbacks on the design of control system of hydraulic momentadjusted brake system, the author presents a closed loop control system in the process of start and braking of the conveyer. On the basis of the concept of the critical time and the critical acceleration and its deductions, the working mode of the conveyer can be identified and controlled in feedback, furthermore, thus realize the process of soft start. In the deceleration process, the author points out the problems that exist in the present control system and sets forward the control process that acted by the combined function of brake moment of motor and the drag torque of hydraulic brake at the beginning of deceleration, it will further improved reliability of conveyor system.

  6. Study on blister of the coating on solid cantilevers of hydraulic supports for coal mining

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work, blister of the Cu-Sn plus Cr coating on solid cantilevers of hydraulic supports for coal mining was investigated by hydrogen-charging, Devanathan-Stachurski method and electrochemical impedance spectroscopy (EIS) measurement. It was found that the permeation hydrogen during the pickling process and the electroplating process was responsible for the blisters. The residual tensile stress due to the machining process would increase the permeation hydrogen amount during pickling and electroplating processes.

  7. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  8. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  9. Study on Hydraulic Performances of a 3-Bladed Inducer Based on Different Numerical and Experimental Methods

    Directory of Open Access Journals (Sweden)

    Yanxia Fu

    2016-01-01

    Full Text Available The hydraulic performances of a 3-bladed inducer, designed at Alta, Pisa, Italy, are investigated both experimentally and numerically. The 3D numerical model developed in ANSYS CFX to simulate the flow through the inducer and different lengths of its inlet/outlet ducts is illustrated. The influence of the inlet/outlet boundary conditions, of the turbulence models, and of the location of inlet/outlet different pressure taps on the evaluation of the hydraulic performance of the inducer is analyzed. As expected, the predicted hydraulic performance of the inducer is significantly affected by the lengths of the inlet/outlet duct portions included in the computations, as well as by the turbulent flow model and the locations of the inlet/outlet pressure taps. It is slightly affected by the computational boundary conditions and better agreement with the test data obtained when adopting the k-ω turbulence model. From the point of the pressure tap locations, the pressure rise coefficient is much higher when the inlet/outlet static pressure taps were chosen in the same locations used in the experiments.

  10. Trend of hydraulic units

    Energy Technology Data Exchange (ETDEWEB)

    Deshimaru, Jun' ichi

    1988-11-01

    The gear, vane and piston pumps occupy a more then 90% share in the hydraulic pumps. Comparatively large pumps are mainly variable delivery piston pumps. The piston pumps are comparatively high in output density (output per unit weight), indicating the hydraulic pump in performance, and tend to become higher and higher in it. Though they are mainly 210 to 350kgf/cm/sup 2/ in rated pressure, some of them come to surpass 400kgf/cm/sup 3/ in it. While the progress in computation also requires the high speed operation, high accuracy and other severe conditions for the hydraulic units, which accordingly and increasingly intensify the requirement for hydraulic oil in abrasion resistibility, oxidation stability and response characteristics. While cavitation comes to easily occur, which considerably and disadvantageously influences hydraulic oil in life through degradation, noise level and respondingness. From now on, the development of high performance oil and study of mechanical structure are important. 19 references, 9 figures, 2 tables.

  11. 10MN/16MN数控高性能拉深液压机液压系统研究%Study on hydraulic system of 10MN/16MN high performance deep-drawing hydraulic press

    Institute of Scientific and Technical Information of China (English)

    叶臻; 王晋抚

    2013-01-01

    介绍了提高双动拉深液压机高性能的关键液压技术.分析了影响液压机快速平稳运行和压边滑块四角调平的原因,并对其液压回路分别进行了研究.解决了双动液压机速度慢和精度低等技术难题,有效提高了生产频率和综合性能.%The key technology for improving the high performance of deep-drawing hydraulic press has been introduced in the text. The reasons for influence of fast and smooth running of hydraulic press and four corners leveling control system for blank slider have been analyzed, and the hydraulic loops have been studied. Finally, the technical problems such as slow speed and low accuracy of double action hydraulic press have been solved, which effectively raise the production rate and comprehensive performance.

  12. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  13. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  14. The New Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

    2006-06-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

  15. NATO Advanced Study Institute on Superconducting Electronics

    CERN Document Server

    Nisenhoff, Martin; Superconducting Electronics

    1989-01-01

    The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our persp...

  16. EXPERIMENTAL STUDY OF EFFECTS OF OPERATING CONDITIONS ON THE FLOW CHARACTERISTICS OF WATER HYDRAULIC THROTTLE

    Institute of Scientific and Technical Information of China (English)

    Liu Yinshui; Nie Songlin; Zhu Yuquan; He Xiaofeng; Li Zhuangyun

    2004-01-01

    Experimental investigations are made on the effects of operating conditions on the flow characteristics of throttle when tap water is used as the working media. The researched throttles include cone poppet valve, ball valve, disc valve and dumping orifice. Operating condition includes poppet lift, working media, back pressure, medium temperature, etc. Because the vapourous pressure of water is much higher than that of oil, cavitation is easier to occur in water hydraulic elements and systems, so the effects of operating conditions on the cavitation characteristics of throttle are also researched.

  17. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  18. The Pan American Advanced Studies Institute

    CERN Document Server

    Arous, Gérard; Ferrari, Pablo; Newman, Charles; Sidoravicius, Vladas; Vares, Maria

    2014-01-01

    This volume features selected and peer-reviewed articles from the Pan-American Advanced Studies Institute (PASI). The chapters are written by international specialists who participated in the conference. Topics include developments based on breakthroughs in the mathematical understanding of phenomena describing systems in highly inhomogeneous and disordered media, including the KPZ universality class (describing the evolution of interfaces in two dimensions), spin glasses, random walks in random environment, and percolative systems. PASI fosters a collaboration between North American and Latin American researchers and students. The conference that inspired this volume took place in January 2012 in both Santiago de Chile and Buenos Aires. Researchers and graduate students will find timely research in probability theory, statistical physics and related disciplines.

  19. Classification Studies in an Advanced Air Classifier

    Science.gov (United States)

    Routray, Sunita; Bhima Rao, R.

    2016-10-01

    In the present paper, experiments are carried out using VSK separator which is an advanced air classifier to recover heavy minerals from beach sand. In classification experiments the cage wheel speed and the feed rate are set and the material is fed to the air cyclone and split into fine and coarse particles which are collected in separate bags. The size distribution of each fraction was measured by sieve analysis. A model is developed to predict the performance of the air classifier. The objective of the present model is to predict the grade efficiency curve for a given set of operating parameters such as cage wheel speed and feed rate. The overall experimental data with all variables studied in this investigation is fitted to several models. It is found that the present model is fitting good to the logistic model.

  20. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  1. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    Science.gov (United States)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  2. Study of thermal and hydraulic performances of circular and square ribbed rough microchannels using LBM

    Science.gov (United States)

    Taher, M. A.; Kim, H. D.; Lee, Y. W.

    2015-11-01

    The effects of roughness geometries and relative roughness height at the slip flow regime to investigate the thermal and hydraulic performances of microchannel have been considered in the present article using a thermal Lattice Boltzmann Method (TLBM). A two dimensional 9-bit (D2Q9) single relaxation time (SRT) model is used to simulate this problem. In micro-flows, the local density variation is still relatively small, but the total density changes, therefore, in order to account this density variation and its effect on the kinematic viscosity v, a new relaxation time proposed by Niu et al.[13] is used. The roughness geometry is modeled as a series of square and circular riblets with a relative roughness height from 0% to 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn) and the dimensionless heat transfer rate in terms of Nusselt number (Nu) have been discussed in order to analyze the roughness effects. The thermal-hydraulic performance ( η) is calculated considering the simultaneous effects of thermal and fluid friction (pressure drop) at the slip flow regime at Knudsen number, Kn, ranging from 0.01 to 0.10 with other controlling parameters for both kind of geometries. The results have been compared with previous published works and it is found to be in very good agreement.

  3. Assessment of hydraulic fish habitat condition using integrated toolkit: a case study of the Geum river basin, Republic of Korea.

    Science.gov (United States)

    Park, Sangyoung; Kim, Jeongkon; Ko, Ick Hwan; Arthington, Angela; Jones, Gary; Yum, Kyung Taek

    2010-01-01

    Artificial changes of rivers, including construction and operation of dams, inevitably lead to physical and ecological changes throughout waterways and their floodplains. In this study, a conceptual model coupled with integrated numerical modeling is presented for hydraulic fish habitat assessment of the Geum River basin, Republic of Korea. Based on the major events which might have affected the ecological system, a conceptual model was formulated to guide desktop and field studies, modeling and scenario evaluations. The result of hydraulic fish habitat assessment indicated that the construction of the Daecheong Multipurpose Dam (DMD) in the Geum River basin has altered flow magnitudes and reduced the river's flow variability. Changes are evident in the magnitude of medium and small flows and the river experiences increased low flows during the dry season. Black shiner, an endangered fish species in Korea, was selected and analyzed to explore relationships between flow regime change by dams and changes to its preferred habitats. As a result, fewer sensitive riffle-benthic species were observed in the reaches downstream of DMD due to the reduction of suitable habitat conditions such as riffle-pool sequences. The proposed conceptual model and integrated toolkit would allow river managers to isolate the physical and biological effects associated with dam operation and could be useful for developing river management strategies.

  4. An experimental study of the dual-loop control of electro-hydraulic load simulator (EHLS)

    Institute of Scientific and Technical Information of China (English)

    Wang Chengwen; Jiao Zongxia; Wu Shuai; Shang Yaoxing

    2013-01-01

    This paper investigates motion coupling disturbance (the so called surplus torque) in the hardware-in-the-loop (HIL) experiments. The‘‘velocity synchronization scheme’’ was proposed by Jiao for an electro-hydraulic load simulator (EHLS) in 2004. In some situations, however, the scheme is limited in the implementation for certain reasons, as is the case when the actuator’s valve signal is not available or it is seriously polluted by noise. To solve these problems, a ‘‘dual-loop scheme’’ is developed for EHLS. The dual-loop scheme is a combination of a torque loop and a position synchronization loop. The role of the position synchronization loop is to decouple the motion disturbance caused by the actuator system. To verify the feasibility and effectiveness of the proposed scheme, extensive simulations are performed using AMESim. Then, the performance of the developed method is validated by experiments.

  5. Fault detection approach based on Bond Graph observers: Hydraulic System Case Study

    Directory of Open Access Journals (Sweden)

    Ghada Saoudi

    2016-10-01

    Full Text Available The present paper deals with a bond graph procedure to design graphical observers for fault detection purpose. First of all, a bond Graph approach to build a graphical proportional observer is shown. The estimators’ performance for fault detection purpose is improved using a residual sensitivity analysis to actuator, structural and parametric faults. For uncertain bond graph models in linear fractional transformation LFT, the method is extended to build a graphical proportional-integralPI observer more robust to the presence of parameter uncertainties. The proposed methods allows the computing of the gain matrix graphically using causal paths and loops on the bond graph model of the system. As application, the method is used over a hydraulic system. The simulation results show the dynamic behavior of system variables and the performance of the developed graphical observers

  6. Extraction of Crustal Deformation from Seafloor Hydraulic Pressure Gauges: A trial collaboration study

    Science.gov (United States)

    Ariyoshi, Keisuke; Nagano, Akira; Hasegawa, Takuya; Matsumoto, Hiroyuki; Kido, Motoyuki; Igarashi, Toshihiro; Uchida, Naoki; Nakata, Ryoko; Yamashita, Yusuke

    2016-04-01

    It has been well known that megathrust earthquakes such as the 2004 Sumatra-Andaman Earthquake (Mw 9.1) and the 2011 the Pacific Coast of Tohoku Earthquake (Mw 9.0) had devastated the coastal areas in the western of Indonesia and in the north-eastern of Japan, respectively. Some researchers have pointed out that the 2011 Tohoku earthquake may correspond to the recurrence of the 869 Jogan earthquake. In addition, the 887 Nin'na earthquake followed it and ruptured the source regions for both the 1946 Mw 8.1 Nankai and 1944 Mw 7.9 Tonankai earthquakes with probably greater magnitude than the sum of the two earthquakes. These may indicate that megathrust earthquakes like the Nin'na earthquake might occur along the Nankai Trough in the near future. To mitigate the disaster of those forthcoming megathrust earthquakes, the Japanese government has established seafloor networks of cable-linked observatories around Japan: DONET (Dense Oceanfloor Network system for Earthquakes and Tsunamis along the Nankai Trough) and S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench). The advantage of the cable-linked network is to monitor the propagation process of tsunami and seismic waves as well as seismic activity in real time. Before the occurrence of such megathrust earthquakes, monitoring of seismically plate coupling is important to evaluate the disaster risk in advance. Recently, owing to the inland networks of highly sensitive seismic broadband seismogram stations, very low-frequency interplate earthquakes (VLFEs) have been observed near the trench. Since VLFE is thought to be located in the shallower and deeper edge of seismogenic segments occurring megathrust earthquakes and be sensitive to small stress change such as Earth tidal modulation due to low stress drop, monitoring the spatiotemporal change of VLFE activity has been expected to detect the strongly plate coupling regions in advance of megathrust earthquake occurrence. In this study

  7. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with

  8. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, A.; Stephansson, O.; Stenberg, L.; Plenkers, K.; Specht, S.; Milkereit, C.; Schill, E.; Kwiatek, G.; Dresen, G.; Zimmermann, G.; Dahm, T.; Weber, M.

    2016-11-01

    In this article, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multi-stage hydraulic fracturing with minimal impact on the environment, i.e. seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive, pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocenters obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multi-stage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broadband recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events is found to be smaller in the progressive treatment with frequent

  9. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    Full Text Available Applied in the aircraft control systems, hydraulic servo actuators with autonomous hydraulic supply, so-called, hydraulic actuators of integrated configuration, i.e. combination of a source of hydraulic power and its load in the single unit, are aimed at increasing control system reliability both owing to elimination of the pipelines connecting the actuator to the hydraulic supply source, and owing to avoidance of influence of other loads failure on the actuator operability. Their purpose is also to raise control system survivability by eliminating the long pipeline communications and their replacing for the electro-conductive power supply system, thus reducing the vulnerability of systems. The main reason for a delayed application of the hydraulic actuators in the cutting-edge aircrafts was that such aircrafts require hydraulic actuators of considerably higher power with considerable heat releases, which caused an unacceptable overheat of the hydraulic actuators. Positive and negative sides of the hydraulic actuators, their alternative options of increased reliability and survivability, local hydraulic systems as an advanced alternative to independent hydraulic actuators are considered.Now to use hydraulic actuators in mainline aircrafts is inexpedient since there are the unfairly large number of the problems reducing, first and last, safety of flights, with no essential weight and operational advantages. Still works to create competitive hydraulic actuators ought to be continued.Application of local hydraulic systems (LHS will allow us to reduce length of pressure head and drain pipelines and mass of pipelines, as well as to raise their general fail-safety and survivability. Application of the LHS principle will allow us to use a majority of steering drive advantages. It is necessary to allocate especially the following:- ease of meeting requirements for the non-local spread of the engine weight;- essentially reducing length and weight of

  10. Thermal Hydraulic Performance of Tight Lattice Bundle

    Science.gov (United States)

    Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki

    Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.

  11. Survey of cogeneration: Advanced cogeneration research study

    Science.gov (United States)

    Slonski, M. L.

    1983-01-01

    The consumption of electricity, natural gas, or fuel oil was surveyed. The potential electricity that could be generated in the SCE service territory using cogeneration technology was estimated. It was found that an estimated 3700 MWe could potentially be generated in Southern California using cogenerated technology. It is suggested that current technology could provide 2600 MWe and advanced technology could provide 1100 MWe. Approximately 1600 MWt is considered not feasible to produce electricity with either current or advanced cogeneration technology.

  12. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  13. Beneficial effects on water management of simple hydraulic structures in wetland systems: the Vallevecchia case study, Italy.

    Science.gov (United States)

    Carrer, G M; Bonato, M; Smania, D; Barausse, A; Comis, C; Palmeri, L

    2011-01-01

    Conflicting water uses in coastal zones demand integrated approaches to achieve sustainable water resources management, protecting water quality while allowing those human activities which rely upon aquatic ecosystem services to thrive. This case study shows that the creation and simple management of hydraulic structures within constructed wetlands can markedly reduce the non-point pollution from agriculture and, simultaneously, benefit agricultural activities, particularly during hot and dry periods. The Vallevecchia wetland system is based on a reclaimed 900 ha-large drainage basin in Northern Italy, where droughts recently impacted agriculture causing water scarcity and saltwater intrusion. Rainwater and drained water are recirculated inside the system to limit saltwater intrusion, provide irrigation water during dry periods and reduce the agricultural nutrient loads discharged into the bordering, eutrophic Adriatic Sea. Monitoring (2003-2009) of water quality and flows highlights that the construction (ended in 2005) of a gated spillway to control the outflow, and of a 200,000 m3 basin for water storage, dramatically increased the removal of nutrients within the system. Strikingly, this improvement was achieved with a minimal management effort, e.g., each year the storage basin was filled once: a simple management of the hydraulic structures would greatly enhance the system efficiency, and store more water to irrigate and limit saltwater intrusion.

  14. [Advances in the study of the nucleolus].

    Science.gov (United States)

    Feng, Jin-Mei; Sun, Jun; Wen, Jian-Fan

    2012-12-01

    As the most prominent sub-nuclear compartment in the interphase nucleus and the site of ribosome biogenesis, the nucleolus synthesizes and processes rRNA and also assembles ribosomal subunits. Though several lines of research in recent years have indicated that the nucleolus might have additional functions-such as the assembling of signal recognition particles, the processing of mRNA, tRNA and telomerase activities, and regulating the cell cycle-proteomic analyses of the nucleolus in three representative eukaryotic species has shown that a plethora of proteins either have no association with ribosome biogenesis or are of presently unknown function. This phenomenon further indicates that the composition and function of the nucleolus is far more complicated than previously thought. Meanwhile, the available nucleolar proteome databases has provided new approaches and led to remarkable progress in understanding the nucleolus. Here, we have summarized recent advances in the study of the nucleolus, including new discoveries of its structure, function, genomics/proteomics as well as its origin and evolution. Moreover, we highlight several of the important unresolved issues in this field.

  15. Recent advances in human viruses imaging studies.

    Science.gov (United States)

    Florian, Paula Ecaterina; Rouillé, Yves; Ruta, Simona; Nichita, Norica; Roseanu, Anca

    2016-06-01

    Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease.

  16. NATO Advanced Study Institute on Spectroscopy

    Science.gov (United States)

    DiBartolo, Baldassare; Barnes, James (Technical Monitor)

    2001-01-01

    This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.

  17. A Study on Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2013-01-01

    Full Text Available This paper establishes a mathematic model of composite braking in the hydraulic hybrid vehicle and analyzes the constraint condition of parallel regenerative braking control algorithm. Based on regenerative braking system character and ECE (Economic Commission of Europe regulations, it introduces the control strategy of regenerative braking in parallel hydraulic hybrid vehicle (PHHV. Finally, the paper establishes the backward simulation model of the hydraulic hybrid vehicle in Matlab/simulink and makes a simulation analysis of the control strategy of regenerative braking. The results show that this strategy can equip the hydraulic hybrid vehicle with strong brake energy recovery power in typical urban drive state.

  18. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2015-06-01

    Full Text Available This work focuses on the chemical-mineralogical, textural and physical-mechanical properties of hydraulic lime mortars made with siliceous and calcareous aggregate. Mortars were cured at 60% and 90% of relative humidity, so as to assess the variability of mortar petrophysical properties in the hardened state due to the moisture conditions. The final aim was to determine the most adequate moisture conditions to be maintained during application and hardening of hydraulic mortars intended for repair interventions. We found out that using a calcareous aggregate and curing mortar at 90% of relative humidity give place to better textural and mechanical properties. However, these characteristics mostly depend on the maximum size of the aggregate grains, which should be smaller than 6 mm, in order to avoid the occurrence of mechanical discontinuities in the mortar.En este trabajo se han estudiado las propiedades químico-mineralógicas, texturales y físico-mecánicas de morteros de cal hidráulica elaborados con áridos silíceo y calcítico. Estos morteros se han curado al 60% y 90% de humedad relativa, con el fin de evaluar las eventuales diferencias en las propiedades petrofísicas de los morteros una vez endurecidos y así establecer cuál de los dos ambientes es recomendable durante la aplicación y fraguado de morteros de cal hidráulica destinados a obras de restauración. Se ha encontrado que el uso de un árido de composición calcítica y el curado al 90% de humedad relativa dan lugar a morteros hidráulicos con mejores características texturales y propiedades mecánicas. De todas formas, estas características dependen principalmente del tamaño máximo del árido empleado, que debería ser inferior a 6 mm para evitar discontinuidades mecánicas en el mortero.

  19. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  20. Preliminary experimental results using the thermal-hydraulic integral test facility (VISTA) for the pilot plant of the system integrated modular advanced reactor, SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; Pak, Hyun Sik; Cho, Seok; Pak, Choon Kyung; Lee, Sung Jae; Song, Chul Hwa; Chung, Moon Ki [KAERI, Taejon (Korea, Republic of)

    2003-07-01

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. Its scaled ratio with respect to the SMART-P is 1/1 in height and 1/96 in volume and heater power. So far, several steady states and transient tests have been carried out to verify the overall thermal hydraulic primary and secondary characteristics in a range of 10% to 100% power operation. As results of preliminary results, the steady state conditions were found to coincide with the expected design values of the SMART-P. But the major thermal hydraulic parameters are greatly affected by the initial water level and the nitrogen pressure in the reactor upper annular cavity. In the PRHR transient tests, the steam inlet temperature of the PRHR system is found to drop suddenly from a superheated condition to a saturated condition at the end period of PRHR operation.

  1. Management of a water distribution network by coupling GIS and hydraulic modeling: a case study of Chetouane in Algeria

    Science.gov (United States)

    Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus

    2016-04-01

    For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.

  2. On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.; Berg, Steven J.

    2016-11-01

    This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.

  3. Numerical Study on the Permeability of the Hydraulic-Stimulated Fracture Network in Naturally-Fractured Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-09-01

    Full Text Available As hydraulic fracturing is a fluid-rock coupling process, the permeability of the hydraulic-stimulated fracture network in the initial stage has great effects on the propagation of the hydraulic fracture network in the following stages. In this work, the permeability of the hydraulic-stimulated fracture network in shale gas reservoirs is investigated by a newly-proposed model based on the displacement discontinuity method. The permeability of the fracture network relies heavily on fracture apertures, which can be calculated with high precision by the displacement discontinuity method. The hydraulic fracturing processes are simulated based on the natural fracture networks reconstructed from the shale samples in the Longmaxi formation of China. The flow fields are simulated and the permeability is calculated based on the fracture configurations and fracture apertures after hydraulic fracturing treatment. It is found that the anisotropy of the permeability is very strong, and the permeability curves have similar shapes. Therefore, a fitting equation of the permeability curve is given for convenient use in the future. The permeability curves under different fluid pressures and crustal stress directions are obtained. The results show that the permeability anisotropy is stronger when the fluid pressure is higher. Moreover, the permeability anisotropy reaches the minimum value when the maximum principle stress direction is perpendicular to the main natural fracture direction. The investigation on the permeability is useful for answering how the reservoirs are hydraulically stimulated and is useful for predicting the propagation behaviors of the hydraulic fracture network in shale gas reservoirs.

  4. Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan

    Directory of Open Access Journals (Sweden)

    Ken Okamoto

    2015-10-01

    Full Text Available We examined the influence of input soil hydraulic parameters on HYDRUS-1D simulations of evapotranspiration and volumetric water contents (VWCs in the unsaturated zone of a sugarcane field on the island of Miyakojima, Japan. We first optimized the parameters for root water uptake and examined the influence of soil hydraulic parameters (water retention curve and hydraulic conductivity on simulations of evapotranspiration. We then compared VWCs simulated using measured soil hydraulic parameters with those using pedotransfer estimates obtained with the ROSETTA software package. Our results confirm that it is important to always use soil hydraulic parameters based on measured data, if available, when simulating evapotranspiration and unsaturated water flow processes, rather than pedotransfer functions.

  5. Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe

    Institute of Scientific and Technical Information of China (English)

    Salah Zouaoui; Hassane Djebouri; Kamal Mohammedi; Sofiane Khelladi; Aomar Ait Aider

    2016-01-01

    This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe. The particles are spherical and are large with respect to the diameter of the pipe (8%, 10%, 16%and 25%). Experiments were done to test the important parameters in solid transport (pressure, velocity, etc.). As a result, the relationship between the pressure gradient forces and the mixture velocity was sub-stantially different from the pure liquid flow. However, in a single-phase flow a monotonous behavior of the pres-sure drop curve is observed, and the curve of the solid particle flow attains its minimum at the critical velocity. The regimes are characterized with differential pressure measurements and visualizations.

  6. Numerical Study of Thermal Hydraulics for Secondary side of Steam Generator by CUPID/MARS Coupled Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As a thermal-hydraulic behavior in the secondary side of steam generator such as two-phase boiling flow, flow-induce vibration of U-tubes is quite complicated, the importance to numerically investigate the flow behavior has been arisen. Recently, multi-scale analyses have been developed to take into account the primary side as well. In this study, the coupled CUPID and MARS code was used for the simulation of boiler side of the PWR steam generator. Calculation results are compared with the existing code quantitatively. Coupled CUPID/MARS code was applied for the simulation of the steam generator. The primary side of the steam generator and other RCS was simulated by MARS and the secondary side was calculated by CUPID with porous media approach.

  7. Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator

    Directory of Open Access Journals (Sweden)

    NingHE

    2010-06-01

    Full Text Available Different factors affecting the efficiency of the orifice energy dissipator were investigated based on a series of theoretical analyses and numerical simulations. The main factors investigated by dimension analysis were identified, including the Reynolds number (Re, the ratio of the orifice diameter to the inner diameter of the pipe ( , and the ratio of distances between orifices to the inner diameter of the pipe ( . Then, numerical simulations were conducted with a two-equation turbulence model. The calculation results show the following: Hydraulic characteristics change dramatically as flow passes through the orifice, with abruptly increasing velocity and turbulent energy, and decreasing pressure. The turbulent energy appears to be low in the middle and high near the pipe wall. For the energy dissipation setup with only one orifice, when Re is smaller than 105, the orifice energy dissipation coefficient K increases rapidly with the increase of Re. When Re is larger than 105, K gradually stabilizes. As increases, K and the length of the recirculation region L1 show similar variation patterns, which inversely vary with . The function curves can be approximated as straight lines. For the energy dissipation model with two orifices, because of different incoming flows at different orifices, the energy dissipation coefficient of the second orifice (K2 is smaller than that of the first. If is less than 5, the K value of the model, depending on the variation of K2, increases with the spacing between two orifices L , and an orifice cannot fulfill its energy dissipation function. If is greater than 5, K2 tends to be steady; thus, the K value of the model gradually stabilizes. Then, the flow fully develops, and L has almost no impact on the value of K.

  8. Advanced nuclear systems. Review study; Fortgeschrittene Nuklearsysteme. Review Study

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph [Interdisziplinaere Arbeitsgruppe Naturwissenschaft, Technik und Sicherheit (IANUS), Darmstadt University of Technology, Hochschulstrasse 10, D-64289 Darmstadt (Germany); Baehr, Roland; Hahn, Lothar [Institute for applied ecology (Oeko-Institut), Elisabethenstrasse 55-57, D-64283 Darmstadt (Germany)

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  9. Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force

    Institute of Scientific and Technical Information of China (English)

    Ming-hui YU; Hong-yan WEI; Song-bai WU

    2015-01-01

    Bank erosion is a typical process of lateral channel migration, which is accompanied by vertical bed evolution. As a main sediment source, the failed bank soil may directly cause the increase of sediment concentration and considerable channel evolution in a short time. The paper presents an experimental study on non-cohesive and cohesive homogenous bank failure processes, influence of the failed bank soil on bank re-collapse, as well as the interaction between bank failure and near-bank bed evolution due to fluvial hydraulic force. A series of experiments were carried out in a 180° bend rectangular flume. The results reveal the iteration cycle between bank erosion and bed deformation: undercutting of the riverbank, slip failure of the submerged zone of the bank, as well as cantilever failure of the overhang, failed bank soil staying at bank toe temporarily or hydraulic transportation, exchange between the failed bank soil and bed material, bed material load being re-transported either as bed load or as suspended load, and bed deformation. Same as bank failure, the mixing of failed bank soil and bed material is more severe near the curved flow apex. Moreover, non-cohesive bank failure tends to occur near the water surface while cohesive bank failure near the bank toe. For non-cohesive dense (sandy) soil, the bank erosion amount and residual amount of failed bank soil on the bed increase with the near-bank velocity or bed erodibility. But for cohesive soil, only bank erosion amount follows the above rule. The results are expected to provide theoretical basis for river management and flood prevention.

  10. ECO-HYDRAULICS TECHNIQUES FOR CONTROLLING EUTROPHICATION OF SMALL SCENERY LAKES-A CASE STUDY OF LUDAO LAKE IN SHANGHAI

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Ludao Lake with an area of 0.86 km2 and 50% water surface ratio, was taken as an example to study the eco-hydraulics techniques for preventing lake eutrophication. Besides external water inflow and outflow, the term related to internal local flow circulation was added in the continuity equation of two-dimensional horizontal hydrodynamic model, and further the hydrodynamic model was calibrated by the scenario of no water exchange. The velocity of 0.2 m/s was suggested to be the critical velocity of controlling algal bloom. To achieve the critical velocity in the whole lake, three factors were analyzed, which are wind, artificial external inflow augmentation and internal local flow disturbance by pump circulation. It is found that the role of wind can be disregarded. For the eco-hydraulics technique of external lake water inflow augmentation, the water flowing route should be firstly optimized, further, the lake inflow has a critical value under specified water level due to the narrow inlets, so the whole lake is difficult to reach the critical velocity to prevent algal bloom, and a combination of external inflow augmentation and internal local flowing disturbance should be considered. Simulation results show that the combination of external water inflow augmentation and internal local flow disturbance requires less eco-flow to achieve the global critical velocity than the sole internal local flow disturbance, for the Ludao Lake, the former requires total eco-flow of 25 m3/s, which reduces by 50% than the latter requiring total eco-flow of 52 m3/s.

  11. Study of IMT-advanced heterogeneous network

    Institute of Scientific and Technical Information of China (English)

    Qin Fei; Peng Ying; Sun Shaohui; Wang Yingmin

    2011-01-01

    Referring to research on the Heterogeneous Network (Het-Net) application scenario and technique characters in IMT-Advaneed (The 4th Generation Mobile Communications) cellular system, this paper provides further analysis on main technique aspects of Heterogeneous Network, discussion on interference issue due to multi-layer building by access points and their corresponding solutions from standardization and engineering implementation. The proposed solution can effectively solve the interference problem in IMT-advanced Het-Net, and also improves the networking performance dramaticaUy for future mobile communication systems.

  12. Advanced General Aviation Turbine Engine (GATE) study

    Science.gov (United States)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  13. Skills Required for Nursing Career Advancement: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Sheikhi

    2016-05-01

    Full Text Available Background Nurses require certain skills for progression in their field. Identifying these skills can provide the context for nursing career advancement. Objectives This study aimed to identify the skills needed for nurses’ career advancement. Materials and Methods A qualitative approach using content analysis was adopted to study a purposive sample of eighteen nurses working in teaching hospitals affiliated with the Qazvin, Shahid Beheshti, and Iran Universities of Medical Sciences. The data were collected through semi-structured interviews, and analyzed using conventional content analysis. Results The three themes extracted from the data included interpersonal capabilities, competency for career success, and personal capacities. The results showed that acquiring a variety of skills is essential for career advancement. Conclusions The findings showed that personal, interpersonal, and functional skills can facilitate nurses’ career advancement. The effects of these skills on career advancement depend on a variety of conditions that require further studies.

  14. A study of return to saturation oscillations in the OSU APEX thermal hydraulic testing facility

    Science.gov (United States)

    Franz, Scott Cameron

    The purpose of this paper is to describe the flow oscillations which occur in the AP600 long term cooling test facility at Oregon State University. The AP600 system is an advanced pressurized water reactor design utilizing passive emergency cooling systems. A few hours after the initiation of a cold leg break, the passive cooling systems inject gravity fed cold water at a rate allowing steam production in the reactor vessel. Steam production in the core causes the pressure in the upper head to increase leading to flow oscillations in all the connecting reactor systems. This paper will show that the oscillations have a definite region of onset and termination for specific conditions in the APEX testing facility. Tests performed at high powers, high elevation breaks, and small break sizes do not exhibit oscillations. The APOS (Advanced Plant Oscillation Simulator) computer code has been developed using a quasi-steady state analysis for flows and a transient analysis for the core node energy balance. The pressure in the reactor head is calculated using a modified perfect gas analysis. For tank liquid inventories, a simple conservation of mass analysis is used to estimate the tank elevations. Simulation logic gleaned from APEX data and photographic evidence have been incorporated into the code to predict termination of the oscillations. Areas which would make the work more complete include a better understanding of two-phase fluid behavior for a top offtake on a pipe, more instrumentation in the core region of the APEX testing facility, and a clearer understanding of fluid conditions in the reactor barrel. Scaling of the oscillations onset and pressure amplitude are relatively straightforward, but termination and period are difficult to scale to the full AP600 plant. Differences in the core power profile and other geometrical differences between the testing facility and the actual plant make the scaling of this phenomenon to the actual plant conditions very difficult.

  15. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  16. Benchmarking Investments in Advancement: Results of the Inaugural CASE Advancement Investment Metrics Study (AIMS). CASE White Paper

    Science.gov (United States)

    Kroll, Juidith A.

    2012-01-01

    The inaugural Advancement Investment Metrics Study, or AIMS, benchmarked investments and staffing in each of the advancement disciplines (advancement services, alumni relations, communications and marketing, fundraising and advancement management) as well as the return on the investment in fundraising specifically. This white paper reports on the…

  17. Experimental studies on dynamic system characteristics of the high temperature/high pressure thermal-hydraulic test facility(VISTA) for the power variation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K. Y.; Park, H. S.; Joe, S.; Park, C. K.; Lee, S. J.; Song, C. W.; Jeong, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Dynamic system characteristics tests were carried out for the power variation by using the high temperature/high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents), which had been constructed to simulate the SMART-P by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems in the range of 5% to 85% power. Automatic PID control logics were developed and installed to the VISTA facility to control the major thermal hydraulic parameters. Power was changed with either a step or a ramp changing method from the reference power of 10%, 25%, 50% and 75% to 5% or 10% higher power. It was found that there is no noticeable difference in the responses between a step and a ramp changing method. When unique constants of P, I, and D were used in the range of 5% to 85% power, it was found to be liable to lose the system control. Further studies are required to quantify the controllability and the time constants of the major thermal hydraulic parameters.

  18. Environmental restoration: Integrating hydraulic control of groundwater, innovative contaminant removal technologies and wetlands restoration--A case study at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.M.; Serkiz, S.M.; Adams, J.; Welty, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01

    The groundwater remediation program at the F and H Seepage Basins, Savannah River Sits (SRS) is a case study of the integration of various environmental restoration technologies at a single waste site. Hydraulic control measures are being designed to mitigate the discharge of groundwater plumes to surface water. One of the primary constituents of the plumes is tritium. An extraction and reinjection scenario is being designed to keep the tritium in circulation in the shallow groundwater, until it can naturally decay. This will be accomplished by extracting groundwater downgradient of the waste sites, treatment, and reinjection of the tritiated water into the water table upgradient of the basins. Innovative in-situ technologies, including electrolytic migration, are being field tested at the site to augment the pump-treat-reinject system. The in-situ technologies target removal of contaminants which are relatively immobile, yet represent long term risks to human health and the environment. Wetland restoration is an integral part of the F and H remediation program. Both in-situ treatment of the groundwater discharging the wetlands to adjust the pH, and replacement of water loss due to the groundwater extraction program ar being considered. Toxicity studies indicate that drought and the effects of low pH groundwater discharge have been factors in observed tree mortality in wetlands near the waste sites.

  19. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  20. Stochastic inverse modelling of hydraulic conductivity fields taking into account independent stochastic structures: A 3D case study

    Science.gov (United States)

    Llopis-Albert, C.; Capilla, J. E.

    2010-09-01

    domain by using a pseudo porous media approach, in which fractures are represented by high K zones. This approach has already been proven to be successful in real case studies. Results of the K conditional fields have been compared to those obtained in a scenario where the independence of the different stochastic structures was not fully considered. After performing an uncertainty assessment, we have found that when using additional conditioning data (piezometric head data) and multiple SPs the reproduction of the hydraulic head field is significantly improved and uncertainty is reduced. However, honouring the independence of different SPs does not warrant a decrease of uncertainty but in fact due to a more realistic reproduction of the statistical features uncertainty can be increased.

  1. Growth And Characterization Studies Of Advanced Infrared Heterostructures

    Science.gov (United States)

    2015-06-30

    AFRL-RV-PS- TR-2015-0126 AFRL-RV-PS- TR-2015-0126 GROWTH AND CHARACTERIZATION STUDIES OF ADVANCED INFRARED HETEROSTRUCTURES Sanjay Krishna...To) 15 Feb 2013 – 09 May 2014 4. TITLE AND SUBTITLE Growth And Characterization Studies Of Advanced Infrared Heterostructures 5a. CONTRACT NUMBER...DISCUSSION After growth , the epitaxial wafers were characterized by x-ray diffraction to monitor crystal quality and layer thicknesses. The

  2. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...... of the laws of physics on the system. The unknown (or uncertain) parameters are estimated with Maximum Likelihood (ML) parameter estimation. The identified model has been evaluated by comparing the measurements with simulation of the model. The identified model was much more capable of describing the dynamics...... of the system than the deterministic model....

  3. A Numerical Study on the Improvement of Suction Performance and Hydraulic Efficiency for a Mixed-Flow Pump Impeller

    Directory of Open Access Journals (Sweden)

    Sung Kim

    2014-01-01

    Full Text Available This paper describes a numerical study on the improvement of suction performance and hydraulic efficiency of a mixed-flow pump by impellers. The design of these impellers was optimized using a commercial CFD (computational fluid dynamics code and DOE (design of experiments. The design variables of meridional plane and vane plane development were defined for impeller design. In DOE, variables of inlet part were selected as main design variables in meridional plane, and incidence angle was selected in vane plane development. The verification of the experiment sets that were generated by 2k factorial was done by numerical analysis. The objective functions were defined as the NPSHre (net positive suction head required, total efficiency, and total head of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the NPSHre and total efficiency, according to the meridional plane and incidence angle, was discussed by analyzing the 2k factorial design results. The performance of optimally designed model was verified by experiments and numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.

  4. Cosmos, an international center for advanced studies

    Science.gov (United States)

    Ryzhov, Iurii; Alifanov, Oleg; Sadin, Stanley; Coleman, Paul

    1990-01-01

    The concept of Cosmos, a Soviet operating center for aerospace activities, is presented. The main Cosmos participants are the Institute for Aerospace Education, the Institute for Research and Commercial Development, and the Department of Space Policy and Socio-Economic Studies. Cosmos sponsors a number of educational programs, basic research, and studies of the social impact of space-related technologies.

  5. Advances in phylogenetic studies of Nematoda

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nematoda is a metazoan group with extremely high diversity only next to Insecta. Caenorhabditis elegans is now a favorable experimental model animal in modern developmental biology, genetics and genomics studies. However, the phylogeny of Nematoda and the phylogenetic position of the phylum within animal kingdom have long been in debate. Recent molecular phylogenetic studies gave great challenges to the traditional nematode classification. The new phylogenies not only placed the Nematoda in the Ecdysozoan and divided the phylum into five clades, but also provided new insights into animal molecular identification and phylogenetic biodiversity studies. The present paper reviews major progress and remaining problems in the current molecular phylogenetic studies of Nematoda, and prospects the developmental tendencies of this field.

  6. Pre-Flight Advanced Clothing Study

    Science.gov (United States)

    Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini; Byme, Vicky

    2014-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The present study was undertaken to find ways further to reduce this logistical burden while examining human response to different types of clothes. The primary objective of the study is to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment. The secondary objective is to assess the reasons for length of wear from perceptions of clothing characteristics, including nine ordinal scales. Cardiovascular exercise was chosen as the activity in this experiment for its profuse sweating effect and because it is considered a more severe treatment applied to the clothes than every-day usage. Study garments were exercise T-shirts and shorts purchased from various vendors. Fabric construction, fabric composition, and finishing treatment were defined as the key variables. A web-based questionnaire was used for self-reported data collection. The study was divided in three balanced experiments: a cotton-polyester-wool (CPW) T-shirts study with 61 participants, a polyester-modacrylic-polyester/cocona (PMC) T-shirts study with 40 participants, and a shorts study with 70 participants. In the CPW study, the T-shirts were made of 100% cotton, or of 100% polyester or of 100% wool, and categorized into open and tight knit constructions. In the PMC study, the T-shirts were made of 100% polyester, or of 82% modacrylic, or of 95% polyester with 5% cocona fiber, without construction distinction. The shorts were made either of 100% cotton or of 100% polyester, and were knitted or woven. Some garments were treated with Bio-Protect 500 antimicrobial finish according the experimental design

  7. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  8. Characterizing hydraulic conductivity with the direct-push permeameter

    Science.gov (United States)

    Butler, J.J.; Dietrich, P.; Wittig, V.; Christy, T.

    2007-01-01

    The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a depth at which a K estimate is desired. A short hydraulic test is then performed by injecting water through the screen at a constant rate (less than 4 L/min) while pressure changes are monitored at the transducer locations. Hydraulic conductivity is calculated using the injection rate and the pressure changes in simple expressions based on Darcy's Law. In units of moderate or higher hydraulic conductivity (more than 1 m/d), testing at a single level can be completed within 10 to 15 min. Two major advantages of the method are its speed and the insensitivity of the K estimates to the zone of compaction created by tool advancement. The potential of the approach has been assessed at two extensively studied sites in the United States and Germany over a K range commonly faced in practical field investigations (0.02 to 500 m/d). The results of this assessment demonstrate that the DPP can provide high-resolution K estimates that are in good agreement with estimates obtained through other means. ?? 2007 National Ground Water Association.

  9. Determination of hydraulic conductivity of fractured rock masses:A case study for a rock cavern project in Singapore

    Institute of Scientific and Technical Information of China (English)

    Zhipeng Xu; Zhiye Zhao; Jianping Sun; Ming Lu

    2015-01-01

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, construction stage, and post-construction stage), suitable models and methods are proposed to determine the hy-draulic conductivities at different locations and depths, which will be used at other locations in the future.

  10. Advanced Multiple Processor Configuration Study. Final Report.

    Science.gov (United States)

    Clymer, S. J.

    This summary of a study on multiple processor configurations includes the objectives, background, approach, and results of research undertaken to provide the Air Force with a generalized model of computer processor combinations for use in the evaluation of proposed flight training simulator computational designs. An analysis of a real-time flight…

  11. Environmental aspects of hydraulic fracturing - Main results and recommendations from two studies on behalf of the German Environment Agency

    Science.gov (United States)

    Krischbaum, Bernd; Bertram, Andreas; Böttcher, Christian; Iyimen-Schwarz, Züleyha; Rechenberg, Jörg; Dannwolf, Uwe; Meiners, Georg

    2016-04-01

    The German Environment Agency (UBA) accompanies the debate on fracking for years. Two major reports on risks and environmental impacts regarding the exploration and exploitation of unconventional natural gas, in particular shale gas have been published. On the basis of these studies as well as on scientific evidence UBA considers ecological barriers as a sustainable means to minimize the risks to environment and human health. 1) Recent studies show that the contamination of shallow aquifers by rise of fluids through natural faults or artificially created fractures is extremely unlikely. However, activities on the surface and lack of wellbore integrity pose threats and substantial risks for the quality of shallow aquifers. 2) The need for thorough groundwater monitoring is fully accepted, yet its range and design is subject to discussion. 3) Formerly, analysis and mass balances of flowback and produced water have been insufficient, thus there is a lack of exact information on proportions of frac-fluids, flowback and formation water respectively, as well as data on possible reaction products. 4) Currently, neither on national nor on European level best reference techniques (BREF) for the treatment and disposal of flowback and produced water are available. 5) In addition, land consumption, emission of greenhouse gases, and induced seismicity are major issues. UBA recommends amongst others the implementation of an environmental impact assessment (EIA) for fracking activities, the prohibition of fracking in water protection areas as well as their catchments, and the disclosure of all frac-fluid chemicals within a national chemical registry. To achieve these objectives the German Environment Agency suggests a step-by-step approach. The paper will present the main results from the studies and the recommendations of the German Environment Agency regarding hydraulic fracturing for unconventional gas exploitation.

  12. Promoting water hydraulics in Malaysia: A green educational approach

    Science.gov (United States)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  13. Advanced studies on human gene ZNF322

    Institute of Scientific and Technical Information of China (English)

    LI Yongqing; WANG Yuequn; YUAN Wuzhou; DENG Yun; ZHU Chuanbing; WU Xiushan

    2007-01-01

    The human novel gene of ZNF322 is cloned from human fetal eDNA library using the primers on the basis of the ZNF322 sequence analyzed with computer.The gene is located on Chromosome 6p22.1,and encodes a protein consisting of 402 amino acid residues and containing nine tandem C2H2-type zinc-finger motifs.Northern blot result shows that the gene is expressed in all examined adult tissues.Subcellular location study indicates that ZNF322-EGFP fusion protein is distributed in the nucleus and cytoplasm.Reporter gene assays show that ZNF322 is a potential transcriptional activator.

  14. System identification advances and case studies

    CERN Document Server

    Mehra, Raman K

    1976-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  15. Preliminary study of CANDU moderator thermal hydraulics using the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gi; Jeong Jae Jun [Pusan National Univ., Busan (Korea, Republic of); Lee, Jae Ryong; Kim, Hyoung Tae [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    When the moderator cooling system fails, moderator may act as to remove decay heat which occurs in fuel. During loss of coolant accident (LOCA), the film boiling occurs in the Calandria tube (CT) because the hot pressure tube would deform into contacting with the calandria tube. And lower subcooling would decrease the margin of the CT to dryout. So, it is important to estimate a local subcooling of the moderator inside the Calandria vessel. However, in order to predict the internal temperature the study of empirical experiments and calculations are needed because only the inlet/outlet temperature can be measured in real reactor. In this study, the internal flow of the moderator was predicted by using the CUPID code, which has been developed in KAERI. The CUPID adopts three dimensional, transient, two phase and three field model, and includes various physical models and correlations of the interfacial mass, momentum and energy transfer for the closure relations of the two fluid model. The CUPID code shows single phase and two phase flow through two phase flow calculations of virtual can be applied.

  16. Study of a particle method for thermal-hydraulic analysis. 2

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki; Koshizuka, Seiichi [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1997-03-01

    In liquid metal fast breeder reactors (LMFBRs), liquid metal of sodium is used as the coolant under the atmospheric pressure. Thus, the coolant system has free surfaces in the components. In addition, the structures should be thin enough to reduce thermal stresses because the coolant is used in a wide range of temperature. Therefore, troubles may take place due to the sloshing, its interactions with structures and fluid-structure coupling vibration induced by flows. However, there have been no numerical methods to analyze large deformations of free surfaces and structures. Moving Particle Semi-implicit (MPS) method can be applied to topological change as well as large deformations of continuum since the calculation is based on macroscopic particles. We have developed an algorithm for incompressible flow analysis and flows with wave breaking on a free surface were successfully calculated. The objectives of the present study are development of the MPS method to analyze fluid-structure interactions and analysis of sloshing in a tank made of elastic walls. As a conclusion , a numerical method for fluid-structure interactions with large deformations of free surfaces and structures is developed based on the MPS method in the present study. (J.P.N.)

  17. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters.

    Science.gov (United States)

    Çakir, Recep; Gidirislioglu, Ali; Çebi, Ulviye

    2015-12-01

    The research into the treatment of domestic wastewaters originating from Büyükdöllük village in Edirne Province was carried out over a 3 year experimental period. The wastewaters of the settlement were treated using a constructed wetland with subsurface horizontal flow, and the effects of different hydraulic loading levels on removal efficiency were studied. In order to achieve this goal, three equal chambers (ponds) of 300 m(2) each were constructed and planted with Phragmites australis. Each of the chambers was loaded with domestic wastewater with average flow discharge creating hydraulic loading rates of 0. m(3) day(-1) m(-2); 0.075 m(3) day(-1) m(-2) and 0.125 m(3) day(-1) m(-2), respectively. According to the results of the study, the inlet levels of the pollutant parameters with carbon origin in the water samples taken from the system entrance are high and the average values for three years are respectively: Biological Oxygen Demand, BOD5 -324.5 mg L(-1); Chemical Oxygen Demand, COD -484,0 mg L(-1); suspended solids (TSS) -147.3 mg L(-1) and Oil and Grease -0.123 mg L(-1). It was also determined that the removal rates of the system were closely dependent on the applied hydraulic loading levels and the highest removal rates of 64.9%, 62.5%, 86.3% and 80.34% for BOD5, COD, TSS and Oil and Grease, respectively, were determined in the pond with a hydraulic loading rate of 0.050 m(3) day(-1) m(-2). Lower removal of 57.9%, 55.5%, 81.4% and 74.5% for BOD5, COD, TSS and Oil and Grease were recorded in the pond with a hydraulic loading rate of 0.075 m(3) day(-1) m(-2); and these values were 49.1%, 47.8%, 70.9% and 62.1% for the pond with a hydraulic loading rate of 0.125 m(3) day(-1) m(-2). High removal rates were also recorded for the other investigated pollution parameters.

  18. Recent Advances in the Studies on Luotonins

    Directory of Open Access Journals (Sweden)

    Yurngdong Jahng

    2011-06-01

    Full Text Available Luotonins are alkaloids from the aerial parts of Peganum nigellastrum Bunge. that display three major skeleton types. Luotonins A, B, and E are pyrroloquinazolino-quinoline alkaloids, luotonins C and D are canthin-6-one alkaloids, and luotonin F is a 4(3H-quinazolinone alkaloid. All six luotonins have shown promising cytotoxicities towards selected human cancer cell lines, especially against leukemia P-388 cells. Luotonin A is the most active one, with its activity stemming from topoisomerase I-dependent DNA-cleavage. Such intriguing biological activities and unique structures have led not only to the development of synthetic methods for the efficient synthesis of these compounds, but also to interest in structural modifications for improving the biological properties. Recent progress in the study of luotonins is covered.

  19. An Appraisal of Qualifying Role of Hydraulic Heritage Systems: A Case Study of Qanat in the Central Iran

    NARCIS (Netherlands)

    Fasihi Harandi, M.; De Vries, M.J.

    2014-01-01

    Hydraulic heritage systems, both underground and exposed, have been known to be sustainable for millennia. Persian and also Roman aqueducts are examples of such hydrosystems. Their value is often overlooked but they have undeniable advantages: they have functional interconnectedness with their surro

  20. Impact of within-field variability in soil hydraulic properties on transpiration fluxes and crop yields: A numerical study

    NARCIS (Netherlands)

    Hupet, F.; Dam, van J.C.; Vanclooster, M.

    2004-01-01

    By means of numerical modeling we investigate the impact of within-field variability in the soil hydraulic properties on actual transpiration and dry matter yield for three different climate scenarios. We first show that the sensitivity of the simulated actual transpiration and dry matter yield to s

  1. Study and Implementation of Advanced Neuroergonomic Techniques

    Directory of Open Access Journals (Sweden)

    B.F.Momin

    2012-08-01

    Full Text Available Research in the area of neuroergonomics has blossomed in recent years with the emergence of noninvasive techniques for monitoring human brain function that can be used to study various aspects of human behavior in relation to technology and work, including mental workload, visual attention, working memory, motor control, human-automation interaction, and adaptive automation. Consequently, this interdisciplinary field is concerned with investigations of the neural bases of human perception,cognition, and performance in relation to systems and technologies in the real world -- for example, in the use of computers and various other machines at home or in the workplace, and in operating vehiclessuch as aircraft, cars, trains, and ships. We will look at recent trends in functional magnetic resonance imaging (fMRI, with a special focus on the questions that have been addressed. This focus is particularly important for functional neuroimaging, whose contributions will be measured by the depth of the questions asked. The ever-increasing understanding of the brain and behavior at work in the real world, the development of theoretical underpinnings, and the relentless spread of facilitative technology in the West and abroad are inexorably broadening the substrates for this interdisciplinary area of research and practice. Neuroergonomics blends neuroscience and ergonomics to the mutual benefit of both fields, and extends the study of brain structure and function beyond the contrived laboratory settings often used in neuropsychological, psychophysical, cognitive science, and other neurosciencerelated fields. Neuroergonomics is providing rich observations of the brain and behavior at work, at home, in transportation, and in other everyday environments in human operators who see, hear, feel, attend, remember, decide, plan, act, move, or manipulate objects among other people and technology in diverse,real-world settings. The neuroergonomics approach is

  2. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček

    2016-07-01

    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  3. Numerical study on hydraulic performance of submerged propellers in oxidation ditch

    Institute of Scientific and Technical Information of China (English)

    Wu Siyuan; Zhou Daqing; Zheng Yuan

    2014-01-01

    The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant.The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conver-sion efficiency.So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers.On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetra-hedral mesh were generated.Based on Navier -Stokes equations and standard k -εturbulence model, the flow was simulated by using a simple algorithm.Through changing some design parameters of pro-pellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions.The study can provide theoretical and project guidance for submerged propellers design.

  4. Recent Advance in Studies on Angelica sinensis

    Institute of Scientific and Technical Information of China (English)

    FANG Ling; XIAO Xue-feng; LIU Chang-xiao; HE Xin

    2012-01-01

    Angelicae Sinensis Radix (ASR) is the root of Angelica sinensis which is a fragrant and perennial herb native to China,Japan,and Korea.In traditional Chinese medicine (TCM),the plant is useful for replenishing and invigorating blood,relieving pain,and moistening the intestines,resulting in its application for the treatment of menstrual disorders,and as an emollient and laxative for chronic constipation of the aged and debilitated.An in-depth review of the literature brings to light a great number of chemical constituents that have been isolated from ASR as well as both preclinical (in vivo and in vitro) and clinical studies,which over the years,have sought to investigate the medicinal relevance of some of these phytoconstituents and/or extract(s) prepared from ASR.The purpose of this review is therefore to present some major pharmacological and pharmacokinetic research findings on some selected phytoconstituents of ASR with emphasis on the current trends in terms of research techniques or design.This review would also provide a wealth of information for users/practitioners of TCM regarding the use of ASR or its products for maximum efficiency and minimal toxicity or side effects.

  5. Numerical and experimental studies of hydraulic noise induced by surface dipole sources in a centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 戴菡葳; 丁剑; 谈明高; 王勇; 黄浩钦

    2016-01-01

    The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experi- mental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.

  6. Advanced Integrated Power and Attitude Control System (IPACS) study

    Science.gov (United States)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  7. Conditional Inference and Advanced Mathematical Study: Further Evidence

    Science.gov (United States)

    Inglis, Matthew; Simpson, Adrian

    2009-01-01

    In this paper, we examine the support given for the "theory of formal discipline" by Inglis and Simpson (Educational Studies Mathematics 67:187-204, "2008"). This theory, which is widely accepted by mathematicians and curriculum bodies, suggests that the study of advanced mathematics develops general thinking skills and, in particular, conditional…

  8. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Combustion Studies

    Science.gov (United States)

    1992-11-01

    Appendices D, E, and F). The two main modeling approaches that enabled the calculation of stability from thermochemistry considera- tions are those of...Parallel TEACH -1Te Code Using an Approximately Implicit Algorithm." Proc. Tie prime authors of this report (G. Sturgess, D. Ballal S"ym Recem Advances and

  9. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  10. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  11. Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study.

    Science.gov (United States)

    Chooi, K Y; Comerford, A; Sherwin, S J; Weinberg, P D

    2016-06-01

    The hydraulic resistances of the intima and media determine water flux and the advection of macromolecules into and across the arterial wall. Despite several experimental and computational studies, these transport processes and their dependence on transmural pressure remain incompletely understood. Here, we use a combination of experimental and computational methods to ascertain how the hydraulic permeability of the rat abdominal aorta depends on these two layers and how it is affected by structural rearrangement of the media under pressure. Ex vivo experiments determined the conductance of the whole wall, the thickness of the media and the geometry of medial smooth muscle cells (SMCs) and extracellular matrix (ECM). Numerical methods were used to compute water flux through the media. Intimal values were obtained by subtraction. A mechanism was identified that modulates pressure-induced changes in medial transport properties: compaction of the ECM leading to spatial reorganization of SMCs. This is summarized in an empirical constitutive law for permeability and volumetric strain. It led to the physiologically interesting observation that, as a consequence of the changes in medial microstructure, the relative contributions of the intima and media to the hydraulic resistance of the wall depend on the applied pressure; medial resistance dominated at pressures above approximately 93 mmHg in this vessel.

  12. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  13. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    OpenAIRE

    M Osman Abdalla

    2013-01-01

    Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulate...

  14. Experimental Study about Activated Water Generated by the Electro-hydraulic Impulse Strengthening the Mechanical Performance of Concrete

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    On the basis of a great number of experiments, it is proved that the strength of concrete is improved greatly when it is mixed with activated water produced by the electro-hydraulic impulse. With the proper parameters, the compression strength of concrete can be increased by 45%. The reason for improvement of concrete strength by using activated water is discussed from the aspect of the structure of molecule.

  15. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  16. Hydraulic conductivity of GCLs in MSW landfills

    Institute of Scientific and Technical Information of China (English)

    LI Guo-cheng; YANG Wu-chao; DAN Tang-hui

    2008-01-01

    The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the in-fluence of the effective stress, chemical interactions, freeze - thaw cycles and temperature gradients. The chan-ges of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity, regardless of the cation concentration or the thickness of the adsorbed layer. The hydraulic conductivity is relat-ed to the relative abundance of monovalent and divalent cation(RMD), and RMD has a great effect on the hy-draulic conductivity in weak solution. The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal, which has been proved after 150 freeze-thaw cycles. The potential of desiccation cracking increases with the increasing temperature gradient and is related to the ini-tial subsoil water content, the applied overburden stress, etc.

  17. A study of passive and adaptive hydraulic engine mount systems with emphasis on non-linear characteristics

    Science.gov (United States)

    Kim, G.; Singh, R.

    1995-01-01

    Passive hydraulic mounts exhibit excitation frequency variant and deflection amplitude sensitive stiffness and damping properties. Such non-linear dynamic characteristics are examined by using analytical and experimental methods, both at the device level and within the context of a simplified vehicle model. A new lumped parameter non-linear mathematical model of the hydraulic mount is developed by simulating its decoupler switching mechanism and inertia track dynamics. The low frequency performance features and limitations of several passive mounts are made clear through the non-linear vehicle model simulation and comparable laboratory vibration tests. The high frequency performance problems of the passive hydraulic mount are identified by applying the quasi-linear analysis method. Based on these results, a new adaptive mount system is developed which exhibits broad bandwidth performance features up to 250 Hz. It implements an on-off damping control mode by using engine intake manifold vacuum and a microprocessor based solenoid valve controller. A laboratory bench set-up has already demonstrated its operational feasibility. Through analytical methods, it is observed that our adaptive mount provides superior dynamic performance to passive engine mounts and comparable performance to a small scale active mount over a wide frequency range, given the engine mounting resonance control, shock absorption and vibration isolation performance requirements. Although technical prospects of the proposed adaptive system appear promising, the in situperformance needs to be evaluated.

  18. Natural Attenuation of Fuel Hydrocarbon Contaminants:Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    Institute of Scientific and Technical Information of China (English)

    LU Guo-ping; ZHENG Chun-miao

    2004-01-01

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  19. Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-06-01

    Full Text Available High-pressure hydraulic fracturing technology in coal and coal bed methane mines can lead to roof and floor damage, and fracture initiation disorder that leads to a “blank area”, and other issues. A new method of hydraulic fracturing is proposed to increase the homogeneous permeability of coal in underground coalmines. Numerical and other simulation tests for different forms of a tree-type, branched borehole model are presented. The results show that the branched array causes cracks to initiate from the bottom of the array, and these extend along the direction of the adjacent boreholes. Generally, as the number of branched boreholes increases, the coal seam fracture network also increase, improving the distribution of the fracture network, making the fracturing effect better. The branched boreholes appear to reduce initiation pressure and, with increasing branches, the initiation pressure decreases. A model with four tree-type, branched boreholes leads to a reduction in initiation pressure of 69%. In terms of permeability improvement technology in underground coalmines, a branched hydraulic fracturing borehole array has the advantages of reducing initiation pressure, controlling crack initiation and extension, enhancing the fracturing effect and reducing the destruction of the roof and floor.

  20. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  1. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  2. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P

    1991-01-01

    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  3. Advanced turbine systems study system scoping and feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

  4. Hydraulic characterization of " Furcraea andina

    Science.gov (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  5. Large-eddy simulation in hydraulics

    CERN Document Server

    Rodi, Wolfgang

    2013-01-01

    Complex turbulence phenomena are of great practical importance in hydraulics, including environmental flows, and require advanced methods for their successful computation. The Large Eddy Simulation (LES), in which the larger-scale turbulent motion is directly resolved and only the small-scale motion is modelled, is particularly suited for complex situations with dominant large-scale structures and unsteadiness. Due to the increasing computer power, LES is generally used more and more in Computational Fluid Dynamics. Also in hydraulics, it offers great potential, especially for near-field probl

  6. 工程机械液压系统性能试验台中的液压泵动态性能试验研究%Experimental Study on Dynamic Performance of Hydraulic Pump of Construction Machinery Hydraulic System Performance Testing Platform

    Institute of Scientific and Technical Information of China (English)

    朱发新; 林少芬; 龚雅萍; 王伟军; 张志斌

    2011-01-01

    Taking the steering system of the construction machinery hydraulic system performance testing platform as physical model, the dynamic performances of the hydraulic pump were studied by local experiments. According to the test results, the influences of motor speed, fuel tank position, load voltage on the hydraulic pump performance as well as the effect of hydraulic pump pressure and flow change to the hydraulic system were obtained.%以工程机械液压系统性能试验台的转向系统为物理模型,通过试验研究液压泵的动态性能.根据试验结果,得出油箱位置、变频电机转速、加载电压等系统工况对液压泵动态性能的影响,同时得出液压泵压力、流量的动态变化对液压系统的影响.

  7. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  8. Comparison Study on Thermal-Hydraulic Analysis Depending on Liquid Relief Valve Response for an Station Blackout in CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. M.; Kho, D. W. [KHNP-CRI, Daejeon (Korea, Republic of); Choi, S. H.; Moon, B. J.; Kim, S. R. [Nuclear Engineering Service and Solution Co., Daejeon (Korea, Republic of)

    2014-10-15

    The purpose of this analysis is to compare the results of thermal-hydraulic analysis depending on liquid relief valve response during a station black out (SBO) events in CANDU-6. The primary heat transport system (PHTS) behavior following the postulated SBO is analyzed using CATHENA code. In the paper, analysis was performed to evaluate the effect on coolant system where LRVs are assumed to be opened or opened according to normal open characteristics in the condition of SBO. The result showed that the primary pressure boundary is extended from LRV to DCT and the effects on primary system behavior were neglectable.

  9. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    -going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  10. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species.

    Science.gov (United States)

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D; Amodeo, Gabriela

    2015-11-24

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.

  11. Advances of Studies on the Viral Proteins of PRRSV

    Institute of Scientific and Technical Information of China (English)

    Cao; Zongxi; Shi; Zhihai; Lin; Zhemin; Jiao; Peirong; Zhang; Guihong

    2014-01-01

    Porcine reproductive and respiratory syndrome( PRRS) is one of viral diseases with severe reproductive obstacle of pregnant sows and respiratory tract symptoms and higher mortality of piglets as characteristics,which is caused by porcine reproductive and respiratory syndrome virus( PRRSV). PRRS has brought great threats to swine industry in the world. The advances of studies on the viral proteins of PRRSV were reviewed from the genome,non-structural proteins and structural proteins of PRRSV.

  12. Hydraulic study of parallel channels coupled to recirculation loops; Estudio hidraulico de canales paralelos acoplados a lazos de recirculacion

    Energy Technology Data Exchange (ETDEWEB)

    Campos G, R. M.; Cecenas F, M. [Instituto de Investigaciones Electricas, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)], e-mail: rmcampos@iie.org.mx

    2009-10-15

    In this work is integrated a model of recirculation loops that allows to characterize each loop for separate and with which is possible to analyze events as shot of recirculation bombs or its transfer of high to low speed. The recirculation pattern is integrated to a model of 36 channels in parallel that represents the core of a BWR. Because the core reactor is conformed by fuel assemblies physically prepared in a parallel arrangement, it is natural to obtain a parallel application of complete pattern, where are have 36 channels tasks more other two tasks that calculates recirculation and punctual kinetics, respectively. As initial test of system, which even it is found in development, was analyzed a discharge of both recirculation pumps. In this test transitory it is only verified the hydraulic behavior, the power is imposed artificially as frontier condition that is function of flow in the calculated core by the recirculation pattern. The pattern of thermal hydraulics channel and the recirculation loops are programmed in language C, the neutronic pattern is programmed in Fortran 77. For the simulations was used a work station Alpha Station DS20E with operative system Unix and the communication system Parallel Virtual Machine, that allows to a heterogeneous collection of computers in net to work like a virtual computer in parallel. (Author)

  13. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  14. Constant-Pressure Hydraulic Pump

    Science.gov (United States)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  15. Erosion Control of Scour during Construction. Report 4. Stability of Underlayer Material Placed in Advance of Construction to Prevent Scour; Hydraulic Model Investigation.

    Science.gov (United States)

    1983-06-01

    effect of period as a result of these studies. Gravesen , Jensen, and Sorensen 51 llt’pu. . I’t , ’ l ie! manus r i pt ) f I a ve ( ndu’: t e I i...Engineer Waterways Experiment Station, CE, Vicksburg, Miss. Gravesen , H., Jensen, 0. J., and Sorensen, T. "Stability of Rubble Mound Breakwaters II

  16. Study of consolidation chemotherapy in advanced epithelial ovarian carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng Ning-hai; Huang Hui-fang; Pan Lin-ya; Shen Keng; Wu Ming; Yang Jia-xin

    2007-01-01

    Objective: A prospective randomized study was designed to evaluate the role of consolidation chemotherapy in advanced epithelial ovarian carcinoma.Methods: 50 patients with advanced epithelial ovarian carcinoma treated in our hospital during the period from March 2000 to October 2005 were enrolled in this study.All patients had achieved clinical complete remission by means of standard treatments, and were randomly divided into consolidation chemotherapy group and control group.Relapse rate, and disease-free survival(DFS) time were analyzed in both groups.Results: 24 patients were assigned in consolidation chemotherapy group, and 26 patients in control group.Tumor relapse interval in consolidation group was (26.5±7.4) months, vs.(16.8±7.0) months in control group respectively, P=0.001.Time to relapse(TTR) in consolidation group was (19.2±6.8) months, vs.(10.0±6.9)months in control group, P=0.002.Analysis of DFS time and overall survival time, Log Rank test:P=0.042 and P= 0.062, respectively.Conclusions: Consolidation chemotherapy could be the relevant factor that postpones tumor relapse interval and prolongs DFS time in advanced epithelial ovarian carcinoma patients who had achived chlinical complete remission.But so far the statistic result of our clinical study is beyond the conclusion that consolidation chemotherapy can decrease relapse rate or increase survival rate.Muhicenter randomized clinical trial should be performed to confirm the role of consolidation chemotherapy in advanced epithelial ovarian carcinoma.

  17. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Stingaciu, Laura-Roxana

    2010-07-01

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  18. Contribution to the study of thermal-hydraulic problems in nuclear reactors; Contribution a l`etude de problemes de thermohydraulique dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G

    1998-07-07

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in `in-situ` thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  19. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  20. Wave Energy Study in China: Advancements and Perspectives

    Institute of Scientific and Technical Information of China (English)

    游亚戈; 郑永红; 沈永明; 吴必军; 刘荣

    2003-01-01

    The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current status and the advancements achieved in China. After analysis of the wave energy resources and practical situations in China, it is pointed out that the studies on wave energy should be not only concentrated on the conversion efficiency and costs of wave energy devices, but also focused on the technology of independent operation and stable output of electricity. Finally, the perspectives of application of wave energy in China are discussed.

  1. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  2. New advances in pollination biology and the studies in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pollination biology is the study of the various biological features in relation to the event of pollen transfer. It is one of the central concerns of plant reproductive ecology and evolutionary biology. In this paper, we attempt to introduce the main advances and some new interests in pollination biology and make a brief review of the research work that has been done in China in recent years. We also give some insights into the study that we intend to carry out in this field in the future.

  3. Thermal-Hydraulic System Study of the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) for ITER Using System Code RELAP5

    Institute of Scientific and Technical Information of China (English)

    Jin Xuezhou; R. Meyder

    2005-01-01

    The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5-models are modified to take the cyclic operation of the circulator, heat exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.

  4. Thermal-Hydraulic System Study of the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) for ITER Using System Code RELAP5

    Science.gov (United States)

    Jin, Xuezhou; R, Meyder

    2005-04-01

    The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5-models are modified to take the cyclic operation of the circulator, heat exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.

  5. Data Analytics of Hydraulic Fracturing Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jovan Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  6. Characterization of a hydraulically induced bedrock fracture

    OpenAIRE

    2014-01-01

    Hydraulic fracturing is a controversial practice because of concerns about environmental impacts due to its widespread use in recovering unconventional petroleum and natural gas deposits. However, water-only hydraulic fracturing has been used safely and successfully for many years to increase the permeability of aquifers used for drinking and irrigation water supply. This process extends and widens existing bedrock fractures, allowing groundwater storage to increase. Researchers have studied ...

  7. Primary Study on Hydraulic Properties of Podocarpus%四种罗汉松属植物茎水力结构特征初步研究

    Institute of Scientific and Technical Information of China (English)

    高永茜; 易传辉

    2012-01-01

    The Hydraulic properties of four Podocarpus plant, P. Nagi, P. Fleuryi, P. Macrophyllus and P. Forrestii were studied. The results showed that there were significant differences among the average leaf area of four species. However, there was no significant difference among the total leaf areas, Huber value, sapwood density, hydraulic conductivity, specific conductivity, leaf specific conductivity and the leaf area of four species; and also no significant correlation between these five parameters and their average leaf area.%对罗汉松属(Podocarpus)竹柏(P.nagi)、长叶竹柏(P.fleuryi)、罗汉松(P.macrophyllus)和大理罗汉松(P.forrestii)4种植物茎水力结构特征参数进行了测定.结果显示,4种植物平均叶面积和茎端总叶面积均差异明显;4种植物的胡伯尔值(Hv)、边材密度、导水率(Kh)、比导率(Ks)、叶比导率(LSC)没有显著差异,与其平均叶面积也没有显著的相关性,可能是由于4种植物的茎端总叶面积没有显著差异引起的.

  8. Simulation Study of Hydraulic Damper Based on Fluent%基于Fluent的液力阻尼器的仿真研究

    Institute of Scientific and Technical Information of China (English)

    徐小进; 卢永锦

    2012-01-01

    In order to meet the needs of the deceleration performance study of hydraulic damper in engineering, based on the Fluent simulation, it is used Gambit to establish a mathematical model to verify the correctness of the model through the comparison with the experimental result. On the basis of all above, it analyzes the relative relationship between the rotor resistance torque of the hydraulic gear damper and the rotational speed. It defines the K coefficient as a solution and a research method to describe and analyze the deceleration performance ofhvdraulic damper for engineering practice.%为满足工程中液力阻尼器减速性能研究的需要,基于Fluent仿真计算,利用Gambit建立数学模型,并通过与实验结果的对比,验证了模型的正确性.在此基础上,分析了液力阻尼器动子阻力矩与转速的相对关系,提出了引用K系数来描述和分析液力阻尼器减速性能的方法,为工程实际提供了解决问题的分析研究手段.

  9. A comparative study of Cr-X-N (X=Zr, Si) coatings for the improvement of the low-speed torque efficiency of a hydraulic piston pump

    Science.gov (United States)

    Hong, Yeh-Sun; Lee, Sang-Yul

    2008-02-01

    The internal parts of hydraulic pumps operating at variable speed should be protected from insufficient lubrication. The axial piston type pumps employ a steel-base cylinder barrel rotating on a soft bronze valves plate with a slide contact, where the insufficient lubrication of these components can cause rapid wear of the valve plate and increase the friction loss. In this study, the cylinder barrel surface was deposited with CrZrN coatings, which were expected to improve the tribological contact with a valve plate under low-speed mixed lubrication conditions. Its effect on the improvement of the low-speed torque efficiency of a hydraulic piston pump was investigated and compared with that from the CrSiN coating. The coated cylinder barrels showed much lower friction coefficients and wear rates of the valve plates than the uncoated plasma-nitride one. In particular, the CrZrN coatings revealed better performance than the CrSiN coatings. By representing the improvement in the torque efficiency of the whole pump based upon the degree of the friction coefficient reduction, the CrZrN coatings exhibited approximately a 0.35% higher improvement at 300 bar and 100 rpm than CrSiN coatings. The possible failure modes of the coatings coated on the barrel were sugested and the microstructures of the coatings seemed to have a strong effect on the film failure mode.

  10. 液压卷带装置动态性能试验研究%Test study on dynamic performance of hydraulic belt-winding device

    Institute of Scientific and Technical Information of China (English)

    戴珊珊

    2011-01-01

    介绍了卷带装置的液压系统组成及工作原理,分析了液压泵的功率特性,搭建了液压卷带装置试验台,介绍了试验原理和硬件组成。通过大量试验,研究了启动时卷带装置的动态性能以及不同负载下系统的恒功率特性。%The constitution and the working principle of the hydraulic system of the belt-winding device are described, and the power characteristics of the hydraulic pump are analyzed. A test bench for the belt-winding device is built and its constitution and working principle are introduced. Based on a large number of tests, dynamic characteristics of the belt-winding device during starting process and constant-power characteristics of the system in different load modes are studied.

  11. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor; Analisis para el acoplamiento del codigo NESTLE para la cinetica tridimensional del nucleo al codigo avanzado de sistemas termo-hidraulicos, RELAP5/SCDAPSIM y su aplicacion al reactor de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Salazar C, J.H.; Nunez C, A. [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C. [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)]. E-mail: hsalazar22@prodigy.net.mx

    2004-07-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  12. OPTIMIZATION STUDIES FOR THE ADVANCED PHOTOINJECTOR EXPERIMENT (APEX)

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, S.M.

    2009-04-30

    The Advanced Photoinjector Experiment (APEX) seeks to validate the design of a proposed high-brightness, normal conducting RF photoinjector gun and bunching cavity feeding a superconducting RF linac to produce nC-scale electron bunches with sub-micron normalized emittances at MHz-scale repetition rates. The beamline design seeks to optimize the slice averaged 6D brightness of the beam prior to injection into a high gradient linac for further manipulation and delivery to an FEL undulator. Details of the proposed beamline layout and electron beam dynamics studies are presented.

  13. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  14. A Review on Mechanical and Hydraulic System Modeling of Excavator Manipulator System

    Directory of Open Access Journals (Sweden)

    Jiaqi Xu

    2016-01-01

    Full Text Available A recent trend in the development of off-highway construction equipment, such as excavators, is to use a system model for model-based system design in a virtual environment. Also, control system design for advanced excavation systems, such as automatic excavators and hybrid excavators, requires system models in order to design and simulate the control systems. Therefore, modeling of an excavator is an important first step toward the development of advanced excavators. This paper reviews results of recent studies on the modeling of mechanical and hydraulic subsystems for the simulation, design, and control development of excavator systems. Kinematic and dynamic modeling efforts are reviewed first. Then, various approaches in the hydraulic system modeling are presented.

  15. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  16. Recent advances in studies of meteorites using cosmogenic radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Reedy, Robert C. E-mail: rreedy@unm.edu

    2004-08-01

    The use of accelerator mass spectrometry (AMS) to measure cosmogenic radionuclides in meteorites has greatly enabled studies of cosmic-ray exposure histories. The high sensitivity of AMS has allowed measurements of samples that are very small or have very low activities. AMS measurements have much better accuracy and precision than usually possible with decay counting. AMS allows the routine measurements of many long-lived radionuclides, including some with half-lives not regularly measured previously or some made by neutron-capture reactions (such as {sup 36}Cl, {sup 41}Ca and {sup 59}Ni). These advancements have enabled many meteorite studies that previously were not often done, such as terrestrial ages. All aspects of a meteorite's cosmic-ray exposure history, its ages and geometries, now can be better studied.

  17. Recognising advancing nursing practice: evidence from two observational studies.

    Science.gov (United States)

    Wilson-Barnett, J; Barriball, K L; Reynolds, H; Jowett, S; Ryrie, I

    2000-10-01

    Debates over title, grades and relationships across the profession has tended to dominate the literature in advancing nursing practice. Fewer research projects have attempted to study the activities of nurses who are designated as undertaking advancing nursing roles. One study evaluating Masters courses for Clinical Nursing Practice and a second addressing the impact of the 'Scope of Professional Practice' (United Kingdom Central Council for Nursing, Midwifery & Health Visiting, 1992) document by this team of authors afforded these research opportunities. In this paper empirical data from 'reflective' observation with 19 nurses (including midwives and health visitors) are presented to illustrate the range and type of functions undertaken by a small group of practitioners developing their practice. A number of characteristic features emerged. Assessment of individual and group needs, positive motivation to constantly improve practice, inter-disciplinary and cross agency working for planned change and an ability to identify and prioritize service requirements were recognised in these nurses' roles. Certain personal attributes were seen to be essential for successful role development such as confidence, commitment and problem solving powers combined with a positive working environment and supportive managers.

  18. Popeye Project: Hydraulic umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.G.; Williams, V.T.

    1996-12-31

    For the Popeye Project, the longest super-duplex hydraulic umbilical in the world was installed in the Gulf of Mexico. This paper reports on its selection and project implementation. Material selection addresses corrosion in seawater, water-based hydraulic fluid, and methanol. Five alternatives were considered: (1) carbon-steel with traditional coating and anodes, (2) carbon-steel coated with thermally sprayed aluminum, (3) carbon-steel sheathed in aluminum, (4) super-duplex, and (5) titanium. The merits and risks associated with each alternative are discussed. The manufacture and installation of the selected umbilical are also reported.

  19. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  20. Variation in reach-scale hydraulic conductivity of streambeds

    Science.gov (United States)

    Stewardson, M. J.; Datry, T.; Lamouroux, N.; Pella, H.; Thommeret, N.; Valette, L.; Grant, S. B.

    2016-04-01

    Streambed hydraulic conductivity is an important control on flow within the hyporheic zone, affecting hydrological, ecological, and biogeochemical processes essential to river ecosystem function. Despite many published field measurements, few empirical studies examine the drivers of spatial and temporal variations in streambed hydraulic conductivity. Reach-averaged hydraulic conductivity estimated for 119 surveys in 83 stream reaches across continental France, even of coarse bed streams, are shown to be characteristic of sand and finer sediments. This supports a model where processes leading to the accumulation of finer sediments within streambeds largely control hydraulic conductivity rather than the size of the coarse bed sediment fraction. After describing a conceptual model of relevant processes, we fit an empirical model relating hydraulic conductivity to candidate geomorphic and hydraulic drivers. The fitted model explains 72% of the deviance in hydraulic conductivity (and 30% using an external cross-validation). Reach hydraulic conductivity increases with the amplitude of bedforms within the reach, the bankfull channel width-depth ratio, stream power and upstream catchment erodibility but reduces with time since the last streambed disturbance. The correlation between hydraulic conductivity and time since a streambed mobilisation event is likely a consequence of clogging processes. Streams with a predominantly suspended load and less frequent streambed disturbances are expected to have a lower streambed hydraulic conductivity and reduced hyporheic fluxes. This study suggests a close link between streambed sediment transport dynamics and connectivity between surface water and the hyporheic zone.

  1. Experimental and Dynamic Study of the Piston Rod Lateral Friction for the Twin-Tube Hydraulic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Yanqing Liu

    2003-01-01

    Full Text Available In this paper, dynamic loads acting on a twin-tube hydraulic shock absorber are derived out both in wheel and axle planes by modeling mechanically car rear suspensions, and internal and external forces that yield lateral surface damage and wear-out of the piston rod for the absorber are analyzed according to bench and real road test measures. From viewpoint of vehicle system dynamics and experiment, such key factors as road unevenness, very high car speed and severe shock induced vibrations are investigated, by which stochastic bending moments and dramatically increasing shock loading are introduced directly to the piston rod. From viewpoint of the whole car assembly, on the other hand, due to hardly perfectly placements of the piston rods in their positions between the car suspension and body, unacceptable manufacturing quality of the body may cause additional dynamic forces on the piston rod. Significant results obtained by theoretical and experimental analysis of lateral frictions of the piston rod are presented systematically for improving design of the shock absorber.

  2. Centrifugal slurry pump wear and hydraulic studies. Quarterly technical progress report, January 1, 1987--March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Bonney, G.E. [Ingersoll-Rand Co., Phillipsburg, NJ (United States)

    1987-01-01

    The following report marks the third quarter of the third phase of the centrifugal slurry pump improvement program. The program was begun in 1982 for the purpose of improving the operating life of centrifugal slurry pumps for coal liquefaction service. This phase of work will verify the design of a pump at higher speed operation. Eventual scale-up of the prototype slurry pumps to full-scale synthetic fuel generation plants could require ten times the flow. The higher speed will allow pumps to be smaller with respectable efficiencies. Conversely, without increasing the specific speed of the pump design, the eventual size would be more than triple that of the prototype slurry pump. The prototype slurry pump during this phase of the program incorporated all the features proven in the earlier phases of the program. This new, higher specific speed pump will be tested for the ability of the hydraulic design to inhibit wear. It will be tested and compared to the previous optimum prototype slurry pump of this program.

  3. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  4. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  5. Review of Hydraulic Fracturing for Preconditioning in Cave Mining

    Science.gov (United States)

    He, Q.; Suorineni, F. T.; Oh, J.

    2016-12-01

    Hydraulic fracturing has been used in cave mining for preconditioning the orebody following its successful application in the oil and gas industries. In this paper, the state of the art of hydraulic fracturing as a preconditioning method in cave mining is presented. Procedures are provided on how to implement prescribed hydraulic fracturing by which effective preconditioning can be realized in any in situ stress condition. Preconditioning is effective in cave mining when an additional fracture set is introduced into the rock mass. Previous studies on cave mining hydraulic fracturing focused on field applications, hydraulic fracture growth measurement and the interaction between hydraulic fractures and natural fractures. The review in this paper reveals that the orientation of the current cave mining hydraulic fractures is dictated by and is perpendicular to the minimum in situ stress orientation. In some geotechnical conditions, these orientation-uncontrollable hydraulic fractures have limited preconditioning efficiency because they do not necessarily result in reduced fragmentation sizes and a blocky orebody through the introduction of an additional fracture set. This implies that if the minimum in situ stress orientation is vertical and favors the creation of horizontal hydraulic fractures, in a rock mass that is already dominated by horizontal joints, no additional fracture set is added to that rock mass to increase its blockiness to enable it cave. Therefore, two approaches that have the potential to create orientation-controllable hydraulic fractures in cave mining with the potential to introduce additional fracture set as desired are proposed to fill this gap. These approaches take advantage of directional hydraulic fracturing and the stress shadow effect, which can re-orientate the hydraulic fracture propagation trajectory against its theoretical predicted direction. Proppants are suggested to be introduced into the cave mining industry to enhance the

  6. NATO Advanced Study Institute on Magnetic Resonance : Introduction, Advanced Topics and Applications to Fossil Energy

    CERN Document Server

    Fraissard, Jacques

    1984-01-01

    This volume contains the lectures presented at an Advanced Study Institute on "Magnetic Resonance Techniques in Fossil Energy Problems," which was held at the village of Maleme, Crete, in July of 1983. As of this writing, a different popular attitude prevails from that when the ASI was proposed as far as how critical the world energy picture is. In the popular press, a panglossian attitude (the "petroleum glut" of the 80's) has replaced the jeremiads of the 70's ( a catastrophic "energy crisis"). Yet, there are certain important constants: (a) for the foreseeable future, fossil energy sources (petroleum, coal, oil shale, etc. ) will continue to be of paramount importance; and (b) science and technology of the highest order are needed to extend the fossil ener~y resource base and to utilize it in a cost-effective manner that is also environmentally acceptable. It is precisely this second item that this volume addresses. The volume introduces the phenomenology of magnetic resonance ~n a unified and detailed man...

  7. Study on advancement of in vivo counting using mathematical simulation

    CERN Document Server

    Kinase, S

    2003-01-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and m...

  8. Beyond descriptive research: advancing the study of spirituality and health.

    Science.gov (United States)

    Rosmarin, David H; Wachholtz, Amy; Ai, Amy

    2011-12-01

    The past three decades have witnessed a surge in research on spirituality and health. This growing body of literature has linked many aspects of spirituality as well as religion to both positive and negative indices of human functioning. However, studies have primarily been descriptive, focusing on identifying associations between spirituality and health, rather than explanatory, focusing on identifying mechanisms underlying observed relationships. Earlier research is also limited by failure to control for salient covariates, apply prospective design, and use sophisticated measurements with well defined and empirically-validated factors. Recent research, however, is advancing the study of spirituality and health by examining not only whether religious factors are relevant to human health, but also how spirituality may functionally impact medical and psychological wellbeing and illness. This article introduces a special issue on Spirituality and Health containing 12 full-length research reports to further this welcomed, emerging trend.

  9. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  10. NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics

    CERN Document Server

    1985-01-01

    Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...

  11. NATO Advanced Study Institute on Physics of New Laser Sources

    CERN Document Server

    Arecchi, F; Mooradian, Aram; Sona, Alberto

    1985-01-01

    This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Physics of New Laser Sources", the twelfth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini" San Miniato, Tuscany, July 11-21, 1984. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or for those wishing to switch into this area after working previously in other areas. From the outset, the School has been under the direction of Prof. F. T. Arecchi, then at the University of Pavia, now at the University of Florence, and Dr. D. Roess of Heraeus, Hanau. In 1981, Prof. H. Walther, University of Munich and Max-Planck Institut fur Quantenoptik joined as co-director. Each year the Directors choose a subj~ct of particular int...

  12. Center for Advanced Energy Studies (CAES) Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik; Keith Perry

    2007-07-01

    Twenty-first century energy challenges include demand growth, national energy security, and global climate protection. The Center for Advanced Energy Studies (CAES) is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE) and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding the educational opportunities at the Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed this strategic plan based on the Balanced Scorecard approach. A Strategy Map (Section 7) summarizes the CAES vision, mission, customers, and strategic objectives. Identified strategic objectives encompass specific outcomes related to three main areas: Research, Education, and Policy. Technical capabilities and critical enablers needed to support these objectives are also identified. This CAES strategic plan aligns with and supports the strategic objectives of the four CAES institutions. Implementation actions are also presented which will be used to monitor progress towards fulfilling these objectives.

  13. Conceptual design study of advanced acoustic-composite nacelles

    Science.gov (United States)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  14. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  15. HYDRAULICS, TUSCARAWAS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  16. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    M Osman Abdalla

    2013-01-01

    Full Text Available Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulated in FLUENT. Results show that the small outlet ports are the sources of energy loss in hydraulic cylinders. A new hydraulic system was proposed as a solution to relieve the hydraulic resistance in the actuators. The proposed system is a four ports hydraulic cylinder fitted with a novel flow control valve. The proposed four ports cylinder was simulated and parameters such as ports sizes, loads and pressures are varied during the simulation. The hydraulic resisting forces, piston speed and mass flow rates are computed. Results show that the hydraulic resistance is significantly reduced in the proposed four ports actuators; and the proposed cylinders run faster than the conventional cylinders and a considerable amount of energyis saved as well.

  17. Hydraulic Redistribution: A Modeling Perspective

    Science.gov (United States)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  18. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    Science.gov (United States)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  19. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  20. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  1. Optimization study and neutronic and thermal-hydraulic design calculations of a 75 KWTH aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Garcia, Lorena P. Rodriguez; Llanes, Jesus Salomon; Hernandez, Carlos R. Garcia, E-mail: dperez@instec.cu, E-mail: dmilian@instec.cu, E-mail: lorenapilar@instec.cu, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Lira, Carlos A. Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Rodriguez, Manuel Cadavid, E-mail: mcadavid2001@yahoo.com [Tecnologia Nuclear Medica Spa, TNM (Chile)

    2015-07-01

    {sup 99m}Tc is the most common radioisotope used in nuclear medicine. It is a very useful radioisotope, which is used in about 30-40 million procedures worldwide every year. Medical diagnostic imaging techniques using {sup 99m}Tc represent approximately 80% of all nuclear medicine procedures. Although {sup 99m}Tc can be produced directly on a cyclotron or other type of particle accelerator, currently is almost exclusively produced from the beta-decay of its 66-h parent {sup 99}Mo. {sup 99}Mo production system in an Aqueous Homogeneous Reactor (AHR) is potentially advantageous because of its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing and purification characteristics. In this paper, an AHR conceptual design using Low Enriched Uranium (LEU) is studied and optimized for the production of {sup 99}Mo. Aspects related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotopes production and the reactivity feedback introduced in the solution by the volumetric expansion of the fuel solution due to thermal expansion of the fuel solution and the void volume generated by radiolytic gas bubbles were evaluated. Thermal-hydraulics studies were carried out in order to show that sufficient cooling capacity exists to prevent fuel overheating. The neutronic and thermal-hydraulics calculations have been performed with the MCNPX computational code and the version 14 of ANSYS CFX respectively. The neutronic calculations demonstrated that the reactor is able to produce 370 six-day curies of {sup 99}Mo in 5 days operation cycles and the CFD simulation demonstrated that the heat removal systems provide sufficient cooling capacity to prevent fuel overheating, the maximum temperature reached by the fuel (89.29 deg C) was smaller to the allowable temperature limit (90 deg C). (author)

  2. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking.

    Science.gov (United States)

    Koehler-McNicholas, Sara R; Nickel, Eric A; Medvec, Joseph; Barrons, Kyle; Mion, Spencer; Hansen, Andrew H

    2017-01-01

    In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users.

  3. The influence of a hydraulic prosthetic ankle on residual limb loading during sloped walking

    Science.gov (United States)

    Nickel, Eric A.; Medvec, Joseph; Barrons, Kyle; Mion, Spencer; Hansen, Andrew H.

    2017-01-01

    In recent years, numerous prosthetic ankle-foot devices have been developed to address the demands of sloped walking for individuals with lower-limb amputation. The goal of this study was to compare the performance of a passive, hydraulic ankle-foot prosthesis to two related, non-hydraulic ankles based on their ability to minimize the socket reaction moments of individuals with transtibial amputation during a range of sloped walking tasks. After a two-week accommodation period, kinematic data were collected on seven subjects with a transtibial amputation walking on an instrumented treadmill set at various slopes. Overall, this study was unable to find significant differences in the torque at the distal end of the prosthetic socket between an ankle-foot prosthesis with a hydraulic range-of-motion and other related ankle-foot prosthesis designs (rigid ankle, multiaxial ankle) during the single-support phase of walking. In addition, socket comfort and perceived exertion were not significantly different for any of the ankle-foot prostheses tested in this study. These results suggest the need for further work to determine if more advanced designs (e.g., those with microprocessor control of hydraulic features, powered ankle-foot designs) can provide more biomimetic function to prosthesis users. PMID:28278172

  4. Advances in Studies of Increase of Farmers’ Income

    Institute of Scientific and Technical Information of China (English)

    Hua; LIANG; Zhongming; SHEN

    2015-01-01

    The issue concerning increase of farmers’ income is always a hot spot from central to local areas. Scholars of economics,sociology,and history have made extensive theoretical and empirical studies on this and relevant achievements are abundant. This paper firstly summarized relevant literature research achievements of domestic and foreign scholars. From various agricultural supporting and benefiting policies of central and local government in recent years,it found out major factors restricting growth of farmers’ income. From economic development rules,combining theories of regional comparative advantages,agricultural development and regional economic development,it is expected to solve problems in increase of farmers’ income,and realize scientific policies and management,accurate strategies,advanced and feasible decisions. Finally,it came up with pertinent recommendations for increasing farmers’ income.

  5. NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications

    CERN Document Server

    2008-01-01

    Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...

  6. Advanced studies on Simulation Methodologies for very Complicated Fracture Phenomena

    Science.gov (United States)

    Nishioka, Toshihisa

    2010-06-01

    Although nowadays, computational techniques are well developed, for Extremely Complicated Fracture Phenomena, they are still very difficult to simulate, for general engineers, researchers. To overcome many difficulties in those simulations, we have developed not only Simulation Methodologies but also theoretical basis and concepts. We sometimes observe extremely complicated fracture patterns, especially in dynamic fracture phenomena such as dynamic crack branching, kinking, curving, etc. For examples, although the humankind, from primitive men to modern scientists such as Albert Einstein had watched the post-mortem patterns of dynamic crack branching, the governing condition for the onset of the phenomena had been unsolved until our experimental study. From in these studies, we found the governing condition of dynamic crack bifurcation, as follows. When the total energy flux per unit time into a propagating crack tip reaches the material crack resistance, the crack braches into two cracks [total energy flux criterion]. The crack branches many times whenever the criterion is satisfied. Furthermore, the complexities also arise due to their time-dependence and/or their-deformation dependence. In order to make it possible to simulate such extremely complicated fracture phenomena, we developed many original advanced computational methods and technologies. These are (i)moving finite element method based on Delaunay automatic triangulation (MFEMBOAT), path independent,(ii) equivalent domain integral expression of the dynamic J integral associated with a continuous auxiliary function,(iii) Mixed phase path-prediction mode simulation, (iv) implicit path prediction criterion. In this paper, these advanced computational methods are thoroughly explained together with successful comparison with the experimental results. Since multiple dynamic crack branching phenomena may be most complicated fracture due to complicated fracture paths, and its time dependence (transient), this

  7. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  8. Effect of Natural Fractures on Hydraulic Fracturing

    Science.gov (United States)

    Ben, Y.; Wang, Y.; Shi, G.

    2012-12-01

    Hydraulic Fracturing has been used successfully in the oil and gas industry to enhance oil and gas production in the past few decades. Recent years have seen the great development of tight gas, coal bed methane and shale gas. Natural fractures are believed to play an important role in the hydraulic fracturing of such formations. Whether natural fractures can benefit the fracture propagation and enhance final production needs to be studied. Various methods have been used to study the effect of natural fractures on hydraulic fracturing. Discontinuous Deformation Analysis (DDA) is a numerical method which belongs to the family of discrete element methods. In this paper, DDA is coupled with a fluid pipe network model to simulate the pressure response in the formation during hydraulic fracturing. The focus is to study the effect of natural fractures on hydraulic fracturing. In particular, the effect of rock joint properties, joint orientations and rock properties on fracture initiation and propagation will be analyzed. The result shows that DDA is a promising tool to study such complex behavior of rocks. Finally, the advantages of disadvantages of our current model and future research directions will be discussed.

  9. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  10. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren;

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  11. Thermal-mechanical and thermal-hydraulic integrated study of the Helium-Cooled Lithium Lead Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Chiovaro, P., E-mail: pg.chiovaro@din.unipa.it [Dipartimento di Ingegneria Nucleare, Universita di Palermo, Palermo (Italy); Di Maio, P.A.; Giammusso, R.; Lupo, Q.; Vella, G. [Dipartimento di Ingegneria Nucleare, Universita di Palermo, Palermo (Italy)

    2010-12-15

    The Helium-Cooled Lithium Lead Test Blanket Module (HCLL-TBM) is one of the two TBM to be installed in an ITER equatorial port since day 1 of operation, with the specific aim to investigate the main concept functionalities and issues such as high efficiency helium cooling, resistance to thermo-mechanical stresses, manufacturing techniques, as well as tritium transport, magneto-hydrodynamics effects and corrosion. In particular, in order to show a DEMO-relevant thermo-mechanical and thermal-hydraulic behavior, the HCLL-TBM has to meet several requirements especially as far as its coolant thermofluid-dynamic conditions and its thermal-mechanical field are concerned. The present paper is focused on the assessment of the HCLL-TBM thermal-mechanical performances under both nominal and accidental load conditions, by adopting a computational approach based on the Finite Element Method. A realistic 3D finite element model of the whole HCLL-TBM, in the horizontal first wall design has been set up, consisting of about 597,000 elements and 767,000 nodes. In particular, since the thermal fields of both the module and the coolant are strictly coupled, the helium flow domain has been modeled too and a thermal contact model has been set up to properly simulate the convective heat transfer between the structure wall and the coolant. Pure conductive heat transfer has been assumed within the Pb-Li eutectic alloy of the breeder units. The volumetric density of the nuclear deposited power, recently calculated at Department of Nuclear Engineering of the University of Palermo by the MCNP 4C code, has been applied as distributed thermal load in order to assess the potential influence on the module thermo-mechanical performances of the markedly non-uniform poloidal and toroidal distributions that have been predicted within the Segment Box. Different loading scenarios have been considered as to the heat flux onto the module First Wall. Steady state and transient thermal-mechanical analyses

  12. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  13. VIRTUAL DESIGN OF A NEW TYPE OF HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using virtual reality to design a new type of hydraulic support is discussed. That is how to make use of the virtual design to develop coal mining machine in practice. The advantages of virtual design are studied and the simple virtual reality system is built. The 3D parts and elements of hydraulic support are modeled with parametric design in CAD software, then exported to VR environment, in which the virtual hydraulic support is assembled, operated and tested. With the method, the errors and faults of design can be fined easily, many improvements are made and the new hydraulic support is developed successfully.

  14. NATO Advanced Study Institute on Atoms in Strong Fields

    CERN Document Server

    Clark, Charles; Nayfeh, Munir

    1990-01-01

    This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscop...

  15. Advanced mathematical study and the development of conditional reasoning skills.

    Directory of Open Access Journals (Sweden)

    Nina Attridge

    Full Text Available Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.

  16. Advanced mathematical study and the development of conditional reasoning skills.

    Science.gov (United States)

    Attridge, Nina; Inglis, Matthew

    2013-01-01

    Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.

  17. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  18. New advances in the study of Alpine glaciations

    Institute of Scientific and Technical Information of China (English)

    ShangZhe Zhou

    2014-01-01

    The European Alps is the birthplace of glaciology and in particular Quaternary glaciology and for over one hundred years has been a model region for studying mountain glaciations. In this paper, we review the achievements from this region, which will benefit glaciological studies of the Tibetan Plateau, China. According to new evidences of glaciofluvial de-posits discovered in valleys and forelands of the Alps, researchers have progressed from an original four Pleistocene gla-ciations to seven glaciations:Biber, Donua, Günz, Haslach, Mindel, Riss and Würm. The earliest one Biber possibly oc-curred between the Pliocene and Pleistocene, but the chronology before Riss is still in doubt. Recent years, Riss and Würm glaciations have been supported by a large numbers of cosmogenic exposure dating. In particular, cosmogenic nuclide exposure dating has been carried out for different moraine boulders in numerous valleys, which reveals a series of climatic change events, and they are comparable to post-glacial age records of northern Europe. The advancement of glaciological studies in the Alps is important in promoting glaciological research in the Tibetan Plateau.

  19. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  20. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  1. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  2. Remotely Adjustable Hydraulic Pump

    Science.gov (United States)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  3. NATO Advanced Study Institute on Turbulence, Weak and Strong

    CERN Document Server

    Cardoso, O

    1994-01-01

    The present volume comprises the contributions of some of the participants of the NATO Advance Studies Institute "Turbulence, Weak and Strong", held in Cargese, in August 1994. More than 70 scientists, from seniors to young students, have joined to­ gether to discuss and review new (and not so new) ideas and developments in the study of turbulence. One of the objectives of the School was to incorporate, in the same meeting, two aspects of turbulence, which are obviously linked, and which are often treated sep­ arately: fully developed turbulence (in two and three dimensions) and weak turbulence (essentially one and two-dimensional systems). The idea of preparing a dictionary rather than ordinary proceedings started from the feeling that the terminology of turbulence includes many long, technical, poorly evocative words, which are usually not understood by people exterior to the field, and which might be worth explaining. Students who start working in the field of turbulence face a sort of curious situation:...

  4. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  5. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  6. Estimation of effective soil hydraulic parameters for water management studies in semi-arid zones. Integral use of modelling, remote sensing and parameter estimation

    NARCIS (Netherlands)

    Jhorar, R.K.

    2002-01-01

    Key words: evapotranspiration, effective soil hydraulic parameters, remote sensing, regional water management, groundwater use, Bhakra Irrigation System, India.The meaningful application of water management simulation models at regional scale for the analysis of alternate water manage

  7. Temporal changes of hydraulic conductivity of cultivated soil studied with help of multipoint tension infiltrometer and X-ray computed tomography

    Science.gov (United States)

    Klipa, Vladimir; Zumr, David; Snehota, Michal; Dohnal, Michal

    2016-04-01

    Soil aggregates, its shape, size and spatial distribution affect the pores arrangement and thus govern the hydraulic conductivity of soil and soil moisture regime. On arable lands the soil is exposed to rapid structural changes within each growing season due to agrotechnical practices, quick crop and root growth, soil biota and climatic conditions. This contribution is mainly focused on temporal changes of unsaturated hydraulic conductivity of cultivated soil. The research is supplemented by detailed analysis of CT images of soil samples for better understanding of structural change of soil during the year and its impact on soil hydraulic conductivity. The infiltration experiments were done using automated multipoint tension infiltrometer recently developed at CTU in Prague on the plots located on the Nucice experimental catchment. The catchment is situated in a moderately hilly area in central Bohemia (Czech Republic). Fourteen regular infiltration campaigns (77 individual infiltration experiments) were conducted from October 2012 until July 2015 on a single arable plot. In general, agricultural practice captured involved complete life cycle from sowing, through harvest, to postharvest stubble breaking. Weather conditions during infiltration experiments ranged from clear-sky to light rain, with temperatures between 8 and 30°C. All measurements were consistently performed with small suction of 3 cm and hydraulic conductivities were determined using extended semiempirical estimation procedure of Zhang. Results show that unsaturated hydraulic conductivity was the lowest in early spring and did increase at beginning of summer in the years 2012 - 2014. During the summer and autumn (2012 - 2014) the unsaturated hydraulic conductivity remained relatively unchanged. On the contrary, results in the year 2015 show opposite trend - the highest hydraulic conductivity was observed in early spring and did gradually decrease until the end of July. In both cases, however, the

  8. Soil Structure and Saturated Hydraulic Conductivity

    Science.gov (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  9. Comparative Studies of the Short-Term Toxicity of the Hydraulic Fluids MIL-H-19457C, MIL-H-19457B, and MIL-H-22072B.

    Science.gov (United States)

    1986-07-09

    17 COSATI COOGS I. SUOIECT TERMS IConAo Wan @U n I af ecnwy OWd Idenafy by 611"k numberp WIGL GROUP Sue. on. MIL-H-19457C Hydraulic Fluids Neurotoxi ci...GOPSUU.Gp. MIL-H-19457C Hydraulic Fluids Neurotoxi city MIL-H-19457B 21-Day Inhalation Acute Toxicity MIL-H-22072B Ethylene Glycol 1. ?I (CONMu. on ,VVV

  10. HYBRID CONTROL OF HYDRAULIC PRESS MACHINE BASED ON ROBUST CONTROL

    Institute of Scientific and Technical Information of China (English)

    FANG Yu; YANG Jian; CHAI Xiaodong

    2008-01-01

    A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional valve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.

  11. Conceptual design study of advanced fuel fabrication systems

    Energy Technology Data Exchange (ETDEWEB)

    Ken-ya, Tanaka; Shusaku, Kono; Kiyoshi, Ono [Japan Nuclear Cycle Development JNC, Fuel Fabrication System Group, O-Arai Engineering Center, Ibaraki (Japan)

    2001-07-01

    The fuel fabrication plant images based on the advanced equipment with availability to operate in hot-cell facility are constructed. The characteristics of each fuel fabrication system for economical and environmental are evaluated roughly. The advanced fuel fabrication routes such as simplified pelletizing, vibration compaction and casting process would have the potential for reducing plant construction cost and minimizing the radioactive waste generated from fuel fabrication process. (author)

  12. Implementation of Advanced Warehouses in a Hospital Environment - Case study

    Science.gov (United States)

    Costa, J.; Sameiro Carvalho, M.; Nobre, A.

    2015-05-01

    In Portugal, there is an increase of costs in the healthcare sector due to several factors such as the aging of the population, the increased demand for health care services and the increasing investment in new technologies. Thus, there is a need to reduce costs, by presenting the effective and efficient management of logistics supply systems with enormous potential to achieve savings in health care organizations without compromising the quality of the provided service, which is a critical factor, in this type of sector. In this research project the implementation of Advanced Warehouses has been studied, in the Hospital de Braga patient care units, based in a mix of replenishment systems approaches: the par level system, the two bin system and the consignment model. The logistics supply process is supported by information technology (IT), allowing a proactive replacement of products, based on the hospital services consumption records. The case study was developed in two patient care units, in order to study the impact of the operation of the three replenishment systems. Results showed that an important inventory holding costs reduction can be achieved in the patient care unit warehouses while increasing the service level and increasing control of incoming and stored materials with less human resources. The main conclusion of this work illustrates the possibility of operating multiple replenishment models, according to the types of materials that healthcare organizations deal with, so that they are able to provide quality health care services at a reduced cost and economically sustainable. The adoption of adequate IT has been shown critical for the success of the project.

  13. EQUILIBRIO HIDRÁULICO EN SISTEMAS DE BOMBEO MINERO: ESTUDIO DE CASO HYDRAULIC BALANCE ON MINE PUMPING SYSTEMS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Luis Enrique Ortiz Vidal

    2010-12-01

    Full Text Available Fue evaluada la influencia del uso de los métodos de Hazen-Williams y Darcy-Weisbach en el establecimiento del equilibrio hidráulico para un sistema de bombeo minero. Empresas mineras con actividad subterránea hacen uso de estaciones de bombeo para evacuar el agua, producto de la profundización de sus labores. Proyectistas y vendedores de equipos de bombeo usan diferentes expresiones para la estimación de la pérdida de carga total del sistema, parámetro importante para la determinación del equilibrio hidráulico. El presente estudio tiene como objetivo analizar y validar la aplicación de algunas de estas expresiones para un sistema de bombeo minero. Las principales características del estudio de caso son: caudal de agua de 1.350 l/s; tuberías de acero y HDPE de 16 in y 18 in de diámetro, respectivamente; longitud total de la tubería de 2.900 m; y una altura geodésica de 230 m. Los cálculos fueron realizados con los métodos ya mencionados teniendo las expresiones de Haaland, Swamee-Jain y Churchill como factores de fricción. Los resultados obtenidos fueron comparados con los medidos en campo, teniéndose una desviación máxima del sistema de 28,6% y 3,1% para la pérdida de carga y Hman total, respectivamente.This study evaluates the influence of the Hazen-Williams and Darcy-Weisbach methods on the hydraulic balance of a mine pumping system. Underground mining sompanies use pumping stations for evacuate the produced water. Designers and equipment sellers use different expressions to estimate the head loss. This study analyzes and validates the implementation of some of these expressions to a mine pumping system. The features of the case study are: water flow rate of 1350 l/s, steel and HDPE diameter pipes of 16in. and 18in., respectively. The total pipe length is 2900m, and the hydraulic height difference is 230 m. The calculations were performed by the above-mention methods, taking the expressions of Haaland, Swamee-Jain and

  14. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  15. Genesis methodology quantitative risk assessment of innovative technologies in hydraulic engineering

    OpenAIRE

    Bekker Aleksandr T.; Zolotov Boris A.; Ljubimov Valeriy S.; Nosovsky Valeriy S.

    2015-01-01

    The historical development of studies to determine the risk of innovative technologies in hydraulic engineering. The proposed methodology for quantitative risk calculation can be used in hydraulic engineering, and serve as a basis for calculating the risk of industrial techniques.

  16. Study on advancement of in vivo counting using mathematical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for

  17. Application of Ferrography to Fault Diagnosis of Hydraulic Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper deals with research on the successful use of ferrography as a wear measurement method for condition monitoring and fault diagnosis of hydraulic systems.The analysis program and progression is discussed, and a case study for condition monitoring and fault diagnosis of hydraulic systems by means of ferrography is also reviewed.

  18. INL Experimental Program Roadmap for Thermal Hydraulic Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    Glenn McCreery; Hugh McIlroy

    2007-09-01

    Advanced computer modeling and simulation tools and protocols will be heavily relied on for a wide variety of system studies, engineering design activities, and other aspects of the Next Generation Nuclear Power (NGNP) Very High Temperature Reactor (VHTR), the DOE Global Nuclear Energy Partnership (GNEP), and light-water reactors. The goal is for all modeling and simulation tools to be demonstrated accurate and reliable through a formal Verification and Validation (V&V) process, especially where such tools are to be used to establish safety margins and support regulatory compliance, or to design a system in a manner that reduces the role of expensive mockups and prototypes. Recent literature identifies specific experimental principles that must be followed in order to insure that experimental data meet the standards required for a “benchmark” database. Even for well conducted experiments, missing experimental details, such as geometrical definition, data reduction procedures, and manufacturing tolerances have led to poor Benchmark calculations. The INL has a long and deep history of research in thermal hydraulics, especially in the 1960s through 1980s when many programs such as LOFT and Semiscle were devoted to light-water reactor safety research, the EBRII fast reactor was in operation, and a strong geothermal energy program was established. The past can serve as a partial guide for reinvigorating thermal hydraulic research at the laboratory. However, new research programs need to fully incorporate modern experimental methods such as measurement techniques using the latest instrumentation, computerized data reduction, and scaling methodology. The path forward for establishing experimental research for code model validation will require benchmark experiments conducted in suitable facilities located at the INL. This document describes thermal hydraulic facility requirements and candidate buildings and presents examples of suitable validation experiments related

  19. Thermal Hydraulic Stability in a Coaxial Thermosyphon

    Institute of Scientific and Technical Information of China (English)

    YANG Jianhui; LU Wenqiang; LI Qing; LI Qiang; ZHOU Yuan

    2005-01-01

    The heat transfer and thermal hydraulic stability in a two-phase thermosyphon with coaxial riser and down-comer has been experimentally investigated and theoretically analyzed to facilitate its application in cold neutron source. The flow in a coaxial thermosyphon was studied experimentally for a variety of heating rates, transfer tube lengths, charge capacities, and area ratios. A numerical analysis of the hydraulic balance between the driving pressure head and the resistance loss has also been performed. The results show that the presented coaxial thermosyphon has dynamic performance advantages relative to natural circulation in a boiling water reactor.

  20. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye;

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... of the hydraulic properties of the studied soils. We found that introducing measured water content as a predictor generally gave lower errors for water retention predictions and higher errors for conductivity predictions. The best of the developed PTFs for predicting hydraulic conductivity was tested against PTFs...

  1. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States); Basher, A.M.H. [South Carolina State Univ., Orangeburg, SC (United States)

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical

  2. Hydraulic mining method

    Science.gov (United States)

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  3. Advanced cogeneration research study. Survey of cogeneration potential

    Science.gov (United States)

    Slonski, M. L.

    1983-01-01

    Fifty-five facilities that consumed substantial amounts of electricity, natural gas, or fuel oil were surveyed by telephone in 1983. The primary objective of the survey was to estimate the potential electricity that could be generated in the SCE service territory using cogeneration technology. An estimated 3667 MW sub e could potentially be generated using cogenerated technology. Of this total, current technology could provide 2569 MW sub p and advanced technology could provide 1098 MW sub e. Approximately 1611 MW sub t was considered not feasible to produce electricity with either current or advanced cogeneration technology.

  4. On the Hydraulics of Flowing Horizontal Wells

    Science.gov (United States)

    Bian, A.; Zhan, H.

    2003-12-01

    A flowing horizontal well is a special type of horizontal well that does not have pumping/injecting facility. The discharge rate of a flowing horizontal well is controlled by the hydraulic gradient between the aquifer and the well and it generally varies with time if the hydraulic head of the aquifer is transient. This type of well has been used in landslide control, mining dewatering, water table control, underground water transportation through a horizontal tunnel, agricultural water drainage, and other applications. Flowing horizontal wells have quite different hydrodynamic characteristics from horizontal wells with fixed pumping or injecting rates because their discharge rates are functions of the aquifer hydraulic heads (Zhan et al, 2001; Zhan and Zlotnik, 2002). Hydraulics of flowing horizontal wells have rarely been studied although the hydraulics of flowing vertical wells have been extensively investigated before. The purpose of this paper is to obtain analytical solutions of groundwater flow to a flowing horizontal-well in a confined aquifer, in a water table aquifer without precipitation, and in a water table aquifer with precipitation. The functions of the flowing horizontal well discharge rates versus time will be obtained under above mentioned different aquifer conditions. The relationships of the aquifer hydraulic heads versus the discharge rates of the well will be investigated. The rate of water table decline due to the dewatering of the well will also be computed, and this solution is particularly useful for landslide control and mining dewatering. The theoretical solutions will be compared with results of experiments that will be conducted in the hydrological laboratory at Texas A&M University. Reference: Zhan, H., Wang, L.V., and Park, E, On the horizontal well pumping tests in the anisotropic confined aquifers, J. hydrol., 252, 37-50, 2001. Zhan, H., and Zlotnik, V. A., Groundwater flow to a horizontal or slanted well in an unconfined aquifer

  5. Measurement and modeling of unsaturated hydraulic conductivity

    Science.gov (United States)

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  6. 46 CFR 28.880 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must...

  7. Effect of cavitation bubble collapse on hydraulic oil temperature

    Institute of Scientific and Technical Information of China (English)

    沈伟; 张健; 孙毅; 张迪嘉; 姜继海

    2016-01-01

    Cavitation bubble collapse has a great influence on the temperature of hydraulic oil. Herein, cone-type throttle valve experiments are carried out to study the thermodynamic processes of cavitation. First, the processes of growth and collapse are analysed, and the relationships between the hydraulic oil temperature and bubble growth and collapse are deduced. The effect of temperature is then considered on the hydraulic oil viscosity and saturated vapour pressure. Additionally, an improved form of the Rayleigh–Plesset equation is developed. The effect of cavitation on the hydraulic oil temperature is experimentally studied and the effects of cavitation bubble collapse in the hydraulic system are summarised. Using the cone-type throttle valve as an example, a method to suppress cavitation is proposed.

  8. The Injector Solenoid Valve Hydraulic Study of High Pressure Common-Rail%高压共轨喷油器电磁阀液力特性研究

    Institute of Scientific and Technical Information of China (English)

    王国莹; 袁永先; 徐春龙; 吴小军

    2012-01-01

    高压共轨系统喷油器电磁阀是高压共轨系统的关键技术,为进一步了解其液力特性,本研究基于Hydsim软件平台,针对2进油量孔的大流量电磁阀喷油器结构建立仿真模型,通过试验校验了模型的准确性,并通过模拟仿真方法,分析了控制量孔的结构对大流量喷油器液力特性的影响.%Solenoid valve is the key technology of diesel engine high pressure common rail system. For knowing about the basic hydraulic concept, a common-rail injector simulation model has been developed with Hydsim software, which has 2 inlet orifices. The model shows good agreement with the measurements. The study shows the influence of the orifice structure to the injector.

  9. Thermal hydraulics development for CASL

    Energy Technology Data Exchange (ETDEWEB)

    Lowrie, Robert B [Los Alamos National Laboratory

    2010-12-07

    This talk will describe the technical direction of the Thermal-Hydraulics (T-H) Project within the Consortium for Advanced Simulation of Light Water Reactors (CASL) Department of Energy Innovation Hub. CASL is focused on developing a 'virtual reactor', that will simulate the physical processes that occur within a light-water reactor. These simulations will address several challenge problems, defined by laboratory, university, and industrial partners that make up CASL. CASL's T-H efforts are encompassed in two sub-projects: (1) Computational Fluid Dynamics (CFD), (2) Interface Treatment Methods (ITM). The CFD subproject will develop non-proprietary, scalable, verified and validated macroscale CFD simulation tools. These tools typically require closures for their turbulence and boiling models, which will be provided by the ITM sub-project, via experiments and microscale (such as DNS) simulation results. The near-term milestones and longer term plans of these two sub-projects will be discussed.

  10. SITMILARITY LAW FOR HYDRAULIC DISTORTED MODEL

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Newton's general similarity criterion was applied to the distorted model. The results for the similarities of gravity force, drag force and pressure force are identical with those derived from relevant differential equations of fluid flow. And the selected limits of the distorted ratio were studied and the simulation of roughness coefficient of distorted model was conducted by means of hydraulic test.

  11. Hydraulic adjustment of Scots pine across Europe

    NARCIS (Netherlands)

    Martínez-Vilalta, J.; Cochard, H.; Mencuccini, M.; Sterck, F.J.; Herrero, A.; Korhonen, J.F.J.; Llorens, P.; Nikinmaa, E.; Nolè, A.; Poyatos, R.; Ripullone, F.; Sass-Klaassen, U.; Zweifel, R.

    2009-01-01

    The variability of branch-level hydraulic properties was assessed across 12 Scots pine populations covering a wide range of environmental conditions, including some of the southernmost populations of the species. The aims were to relate this variability to differences in climate, and to study the po

  12. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  13. Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of 10 next-generation hydraulic hybrid refuse vehicles (HHVs), 8 previous-generation HHVs, and 8 comparable conventional diesel vehicles operated by Miami-Dade County's Public Works and Waste Management Department in southern Florida. The HHVs under study - Autocar E3 refuse trucks equipped with Parker Hannifin's RunWise Advanced Series Hybrid Drive systems - can recover as much as 70 percent of the energy typically lost during braking and reuse it to power the vehicle. NREL's evaluation will assess the performance of this technology in commercial operation and help Miami-Dade County determine the ideal routes for maximizing the fuel-saving potential of its HHVs.

  14. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  15. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  16. NATO Advanced Study Institute International Advanced Course on The Liquid State and Its Electrical Properties

    CERN Document Server

    Christophorou, L; Luessen, L

    1988-01-01

    As the various disciplines of science advance, they proliferate and tend to become more esoteric. Barriers of specialized terminologies form, which cause scientists to lose contact with their colleagues, and differences in points-of-view emerge which hinder the unification of knowledge among the various disciplines, and even within a given discipline. As a result, the scientist, and especially the student, is in many instances offered fragmented glimpses of subjects that are funda­ mentally synthetic and that should be treated in their own right. Such seems to be the case of the liquid state. Unlike the other states of matter -- gases, solids, and plasmas -- the liquid state has not yet received unified treatment, probably because it has been the least explored and remains the least understood state of matter. Occasionally, events occur which help remove some of the barriers that separate scientists and disciplines alike. Such an event was the ASI on The Liquid State held this past July at the lovely Hotel T...

  17. Performances of a balanced hydraulic motor with planetary gear train

    Science.gov (United States)

    Yu, Hongying; Luo, Changjie; Wang, Huimin

    2012-07-01

    The current research of a balanced hydraulic motor focuses on the characteristics of the motor with three planet gears. References of a balanced hydraulic motor with more than three planet gears are hardly found. In order to study the characteristics of a balanced hydraulic motor with planetary gear train that includes more than three planet gears, on the basis of analysis of the structure and working principle of a balanced hydraulic motor with planetary gear train, formulas are deduced for calculating the hydraulic motor's primary performance indexes such as displacement, unit volume displacement, flowrate fluctuation ratio, etc. Influences of the gears' tooth number on displacement and flowrate characteristics are analyzed. In order to guarantee the reliability of sealing capability, the necessary conditions that tooth number of the sun gear and the planet gears should satisfy are discussed. Selecting large unit volume displacement and small displacement fluctuation ratio as designing objectives, a balanced hydraulic motor with three planet gears and a common gear motor are designed under the conditions of same displacement, tooth addendum coefficien and clearance coefficient. By comparing the unit volume displacement and fluctuation ratio of the two motors, it can be seen that the balanced hydraulic motor with planetary gear train has the advantages of smaller fluctuation ratio and larger unit volume displacement. The results provide theoretical basis for choosing gear tooth-number of this kind of hydraulic motor.

  18. Issues and future direction of thermal-hydraulics research and development in nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Saha, P., E-mail: pradip.saha@ge.com [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Aksan, N. [GRNSPG Group, University of Pisa (Italy); Andersen, J. [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Yan, J. [Westinghouse Electric Co., Columbia, SC (United States); Simoneau, J.P. [AREVA, Lyon (France); Leung, L. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada); Bertrand, F. [CEA, DEN, DER, F-13108 Saint-Paul-Lez-Durance (France); Aoto, K.; Kamide, H. [Japan Atomic Energy Agency, Chiyoda-ku, Tokyo (Japan)

    2013-11-15

    The paper archives the proceedings of an expert panel discussion on the issues and future direction of thermal-hydraulic research and development in nuclear power reactors held at the NURETH-14 conference in Toronto, Canada, in September 2011. Thermal-hydraulic issues related to both operating and advanced reactors are presented. Advances in thermal-hydraulics have significantly improved the performance of operating reactors. Further thermal-hydraulics research and development is continuing in both experimental and computational areas for operating reactors, reactors under construction or ready for near-term deployment, and advanced Generation-IV reactors. As the computing power increases, the fine-scale multi-physics computational models, coupled with the systems analysis code, are expected to provide answers to many challenging problems in both operating and advanced reactor designs.

  19. Investigation of Valve Plate in Water Hydraulic Axial Piston Motor

    Institute of Scientific and Technical Information of China (English)

    聂松林; 李壮云; 等

    2002-01-01

    This paper has introduced the developments of water hydraulic axial piston equipments.According to the effects of physicochemical properties of water on water hydraulic components,a novel valve plate for water hydraulic axial motor has been put forward,whose moment exerted by the fluid field between valve plate and bearing plate is balanced entirely.The material screening experiment of valve plate is done on the test rig.Through numerical simulation the effects of some geometry parameters on the performance of water hydraulic motor have been studied.The silencing grooves on the valve plate in water hydraulic motor can reduce the pressure shock and the occurrence of cavitation effectively.It is evident that the appropriate structure should change the wear status between matching paris and reduces the wear and specific pressure of the matching pairs.The specimen with the new type valve plate is used in a tool system.

  20. An evaluation of calculation procedures affecting the constituent factors of equivalent circulating density for drilling hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, William J.

    1996-12-31

    This Dr. ing. thesis covers a study of drilling hydraulics offshore. The purpose of drilling hydraulics is to provide information about downhole pressure, suitable surface pump rates, the quality of hole cleaning and optimum tripping speeds during drilling operations. Main fields covered are drilling hydraulics, fluid characterisation, pressure losses, and equivalent circulating density. 197 refs., 23 figs., 22 tabs.

  1. Hydraulic fracturing: paving the way for a sustainable future?

    Science.gov (United States)

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  2. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    Science.gov (United States)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve

  3. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    Directory of Open Access Journals (Sweden)

    Jiangang Chen

    2014-01-01

    Full Text Available With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  4. Hydraulic rams; a comparative investigation

    NARCIS (Netherlands)

    Tacke, J.H.P.M.

    1988-01-01

    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram: acceler

  5. Hydraulics. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  6. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    Science.gov (United States)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  7. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  8. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  9. Coal and char studies by advanced EMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  10. Hydraulic design of embankment stepped chutes: a methodology based on an experimental study; Diseno hidraulico de vertedores escalonados con pendientes modernas: metodologia basada en un estudio experimental

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Carlos A; Chanson, Hubert [Universidad de Queensland (Australia)

    2007-04-15

    Stepped chutes have been used as hydraulic structures since antiquity. They can be found acting as spillways and fish ladders in dams and weirs, as energy dissipators in artificial channels, gutters and rivers, and as aeration enhancers in water treatment plants and polluted streams. In recent years, new construction techniques and materials (Roller Compacted Concrete RCC, rip-rap gabions, etc.) together with the development of the above-mentioned new applications have allowed cheaper construction methods, increasing the interest in stepped chute design. During the last three decades, research in stepped spillways has been very active. However, studies prior to 1993 neglected the effect of free-surface aeration. A number of studies have focused since then on steep stepped chutes ({theta} {approx} 45 degrees), but the hydraulic performance of moderate-slope stepped channels is not yet totally understood. This study details an experimental investigation of physical air-water flow properties down moderate-slope stepped spillways conducted in two laboratory models: the first model was a 3.15-m-long stepped chute with a 15.9 degrees slope comprising two interchangeable step heights (h = 0.1 m and h = 0.05 m); the second model was a 3.3 m long, stepped channel with a 21.8 degrees slope (h = 0.1 m). A broad range of discharges within transition and skimming flow regimes was investigated. Measurements were conducted using a double tip conductivity probe. The study provides new, original insights into air-water stepped chute flows not foreseen in prior studies and presents a new design criterion for chutes with moderate slopes based on the experimental results. [Spanish] Durante las ultimas tres decadas, el interes y diversidad en el uso de canales escalonados han aumentado debido al desarrollo de nuevas tecnicas y materiales que permiten su construccion de manera rapida y economica (concreto compactado con rodillo CCR, gaviones, etcetera). Actualmente, los canales

  11. Plant hydraulic traits govern forest water use and growth

    Science.gov (United States)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  12. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  13. Energy Efficiency Comparison between Hydraulic Hybrid and Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jia-Shiun Chen

    2015-05-01

    Full Text Available Conventional vehicles tend to consume considerable amounts of fuel, which generates exhaust gases and environmental pollution during intermittent driving cycles. Therefore, prospective vehicle designs favor improved exhaust emissions and energy consumption without compromising vehicle performance. Although pure electric vehicles feature high performance and low pollution characteristics, their limitations are their short driving range and high battery costs. Hybrid electric vehicles (HEVs are comparatively environmentally friendly and energy efficient, but cost substantially more compared with conventional vehicles. Hydraulic hybrid vehicles (HHVs are mainly operated using engines, or using alternate combinations of engine and hydraulic power sources while vehicles accelerate. When the hydraulic system accumulator is depleted, the conventional engine reengages; concurrently, brake-regenerated power is recycled and reused by employing hydraulic motor–pump modules in circulation patterns to conserve fuel and recycle brake energy. This study adopted MATLAB Simulink to construct complete HHV and HEV models for backward simulations. New European Driving Cycles were used to determine the changes in fuel economy. The output of power components and the state-of-charge of energy could be retrieved. Varying power component models, energy storage component models, and series or parallel configurations were combined into seven different vehicle configurations: the conventional manual transmission vehicle, series hybrid electric vehicle, series hydraulic hybrid vehicle, parallel hybrid electric vehicle, parallel hydraulic hybrid vehicle, purely electric vehicle, and hydraulic-electric hybrid vehicle. The simulation results show that fuel consumption was 21.80% lower in the series hydraulic hybrid vehicle compared to the series hybrid electric vehicle; additionally, fuel consumption was 3.80% lower in the parallel hybrid electric vehicle compared to the

  14. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Gamir

    Full Text Available Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L. Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.. The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  15. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    Science.gov (United States)

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  16. Thermal hydraulic studies of spallation target for one-way coupled Indian accelerator driven systems with low energy proton beam

    Indian Academy of Sciences (India)

    V Mantha; A K Mohanty; P Satyamurthy

    2007-02-01

    BARC has recently proposed a one-way coupled ADS reactor. This reactor requires typically ∼ 1 GeV proton beam with 2 mA of current. Approximately 8 kW of heat is deposited in the window of the target. Circulating liquid metal target (lead/lead-bismuth-eutectic) has to extract this heat and this is a critical R&D problem to be solved. At present there are very few accelerators, which can give few mA and high-energy proton beam. However, accelerators with low energy and hundreds of micro-ampere current are commercially available. In view of this, it is proposed in this paper to simulate beam window heating of ∼ 8 kW in the target with low-energy proton beam. Detailed thermal analysis in the spallation and window region has been carried out to study the capability of heat extraction by circulating LBE for a typical target loop with a proton beam of 30 MeV energy and current of 0.267 mA. The heat deposition study is carried out using FLUKA code and flow analysis by CFD code. The detailed analysis of this work is presented in this paper.

  17. Pilot study with fly ash stabilised sewage sludge as hydraulic barrier layer; Pilotfoersoek med flygaskastabiliserat avloppsslam (FSA) som taetskikt

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, Josef; Maurice, Christian; Mossakowska, Agnes; Eklund, Caroline

    2005-10-01

    A lot of landfills will be closed and finally covered during the next five to ten years. The design and construction of final closure caps, especially the landfill liner, are carried out to reduce the amount of water percolating through the landfill as to minimize the effect on the surrounding environment for a long time span. Earlier studies has indicated that sewage sludge stabilized with fly ash, resulting in a product called FSA, has a good potential to be used as landfill liner. In this project a large field test with FSA was carried out at a landfill under closure. The objective of the project was to study the following in depth: Manufacturing and construction regarding mainly technical and economical aspects; Permeability, stability and settlement as well as leachability; Durability, a key aspect. Environmental authorities advice that a closure cap shall guarantee function for several hundreds of years. The field tests were conducted at the landfill Dragmossen which is located south of Aelvkarleby in Sweden. During the field test approximately 1,500 tonnes FSA was manufactured. The FSA liner was installed on an area of 2,400 m{sup 2} with a thickness of 0,55 m. Parallel to the ongoing investigations at the landfill, laboratory studies were carried out to study the rate of biological decomposition of the liner. The results show that the manufactured FSA can be used as landfill liner in a large scale. The homogeneous quality, strength and low permeability of FSA is even better than the set criteria. The demands on the contained materials, fly ash and sewage sludge, are high and have to fulfil certain quality requirements for example regarding the water and dry solid content. The field test also showed that it is feasible to store fly ash and sewage sludge during at least two weeks to enable manufacturing in a larger scale. Mixing fly ash and sewage sludge will result in an odour due to bad smell and exit of ammonium gases. The odour fades away quickly after

  18. Gravity-Driven Hydraulic Fractures

    Science.gov (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  19. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.

    2003-01-01

    system for agricultural applications and driving for transportation. During tranport phases, the lack of suspension causes the vehicle to bounce and pitch, and makes it difficalt to control. Many systems have been proposed to cope with the oscillatory behavior, and different solutions exist. Common......This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for most of the systems are that they operate on the hydrailc actuators generally providing the motive forces for moving the implement and/or attachment, typically a plough. The basic idea and physical working principle are to use the implement, moveable relative to the vehicle, as a damper mass. The paper...

  20. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    As wind turbines increase in size, combined with increased lifetime demands, new methods for load reduction needs to be examined. One method is to make the yaw system of the turbine soft/flexible and hereby dampen the loads to the system, which is the focus of the current paper. By utilizing...... the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized to reduce loading in critical components. Results shows that a significant reduction in fatigue and extreme loads to the yaw...... system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...

  1. Long-term corrosion of rebars embedded in aerial and hydraulic binders - Parametric study and first step of modelling

    Energy Technology Data Exchange (ETDEWEB)

    Chitty, Walter-John [CEA, DSM, IRAMIS, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette cedex (France); Dillmann, Philippe [CEA, DSM, IRAMIS, Laboratoire Pierre Suee, F-91191 Gif-sur-Yvette cedex (France); Institut de Recherches sur les Archeomateriaux, LMC UMR5060 CNRS (France)], E-mail: philippe.dillmann@cea.fr; L' Hostis, Valerie [CEA, DEN, DPC, SCCME, Laboratoire d' Etude du Comportement des Betons et des Argiles, F-91191 Gif-sur-Yvette (France); Millard, Alain [CEA, DEN, DM2S, SEMT, Laboratoire de Modelisation, Systemes et Simulation, F-91191 Gif-sur-Yvette (France)

    2008-11-15

    The prediction of long-term behaviour of reinforced concrete structures involved in the nuclear industry requires a phenomenological modelling of the rebars corrosion processes. Previous analytical characterisation of archaeological artefacts allowed to identify a typical layout constituted of four layers (the metal, the dense product layer, the transformed medium and the binder). Additional experiments leaded to identify the long-term corrosion mechanisms. Following these results, this paper proposes an analytical model of long-term corrosion of rebars embedded in concrete. This modelling is considering the kinetic of oxygen diffusion through the system and its consumption at the metal/dense product layer interface as a function of concrete water saturation degree. Corrosion products thicknesses estimated with the model are then compared to corrosion product thicknesses measured on archaeological artefacts. A parametric study is performed and demonstrates that the oxygen diffusivity and the kinetic constant of the cathodic reaction affect in a wide range the model results.

  2. Thermal hydraulic similarity analysis of the integral effect test facility for main steam line break events

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K.Y.; Park, H.S.; Euh, D.J.; Kwon, T.S.; Baek, W.P. [Thermal Hydraulic Safety Research Division Korea Atomic Energy Research Institute 150 Dukjin-Dong, Yusong-Gu, Daejeon 305-353 (Korea, Republic of)

    2005-07-01

    Full text of publication follows: A thermal-hydraulic integral effect test facility, ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is being constructed at Korea Atomic Energy Research Institute (KAERI). The ATLAS is a 1/2 reduced height and 1/288 volume scaled test facility based on the design features of the APR1400, an evolutionary pressurized water reactor developed by Korean industry. The ATLAS will be used to get more realistic understanding of the thermal hydraulic phenomena following postulated events and to carry out performance evaluation and safety analysis of the reference plants. The MSLB (Main Steam Line Break) event is one of the representative non-LOCA events and thermalhydraulic phenomena following the event are to be investigated in the ATLAS. In this paper, thermal hydraulic similarity for MSLB events between the ATLAS and the prototype plant, APR1400 is assessed by using the MARS code, which is a multi-dimensional best-estimate thermal hydraulic code being developed by KAERI. Several cases including SLBFPLOOP and SLBFP are taken into account for similarity analysis in this paper. The neutronic effects such as moderator temperature coefficients and doppler reactivity in APR1400 are not considered in this study. The same control logics for the major sequence of events such as reactor trip, turbine trip, valve opening and actuation of the emergency cooling system are applied to the ATLAS and the APR1400. The present investigation is focused on the scaling and the reduced power effects on thermal hydraulic similarity after initiation of MSLB events. It is found that the ATLAS facility has the similar thermal hydraulic responses against the MSLB events. However, the initial high secondary pressure before the MSLB initiation resulted in different primary pressure and temperature progression from the APR1400. The break flow from the main steam line is found to be one of the most dominating parameters governing the transient

  3. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  4. Hydraulic Conductivity of Compacted Laterite Treated with Iron Ore Tailings

    Directory of Open Access Journals (Sweden)

    Umar Sa’eed Yusuf

    2016-01-01

    Full Text Available The objective of this study was to investigate the effect of iron ore tailings (IOT on hydraulic conductivity of compacted laterite. The IOT conforms to ASTM C 618-15 Type F designations. In the present study, soil was admixed with 0–20% IOT and compacted at moulding water content ranging from 10 to 25% using four types of compactive efforts. Hydraulic conductivities of the compacted soil-IOT mixtures were determined using deionized water and municipal solid waste leachate as the permeant fluids, respectively. Deionized water was the reference permeant fluid. Results of this study showed that hydraulic conductivity decreased with increase in IOT content as a result of improvement in mechanical properties of the soil. Permeation of the soil-IOT mixtures with leachate caused the hydraulic conductivity to drop to less than 1 × 10−9 m/s especially at higher compactive efforts. Also, bioclogging of the soil pores due to accumulation of biomass from bacteria and yeast present in the leachate tends to significantly reduce the hydraulic conductivity. From an economic point of view, it has been found from the results of this study that soil specimens treated with up to 20% IOT and compacted at the British Standard Light (BSL compactive effort met the maximum regulatory hydraulic conductivity of less than or equal to 1 × 10−9 m/s for hydraulic barrier system.

  5. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  6. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)

    2007-06-15

    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  7. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary

    Science.gov (United States)

    Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime

    R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.

  8. RTDP方法在大型先进压水堆热工设计中的应用初步研究%Preliminary Research on RTDP Methodology for Advanced LPP Thermal-hydraulic Design

    Institute of Scientific and Technical Information of China (English)

    杨萍; 贾红轶; 王喆

    2013-01-01

    Departure from nucleate boiling (DNB) design basis is one of the most important basis for reactor core thermal-hydraulic design.In order to evaluate whether the DNB design basis meets the demand of thermal-hydraulic design,the departure from nucleate boiling ratio (DNBR) design limit should be determined first.The RTDP methodology was described detailedly,in which the uncertainties of operating parameters and nuclear design parameters were statistically combined.Then the RTDP methodology and a reactor subchannel code were applied to calculate the DNBR design limit and quality limit for LPP.The conclusions were presented to provide the key acceptable criterion for DNBR design basis.%偏离泡核沸腾(DNB)设计基准是反应堆热工水力设计中的重要基准之一,为评价该设计基准是否满足热工水力设计要求,首先需确定堆芯偏离泡核沸腾比(DNBR)设计限值.本工作详细论述了使用统计学方法确定运行参数及核设计参数等不确定性的RTDP原理,并应用该方法和堆芯子通道分析程序对大型先进压水堆DNBR设计限值及含汽率限值进行计算并给出结论,为DNBR设计基准的验证提供了关键判据.

  9. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy

    2015-08-01

    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  10. Rodent-repellent studies. III. Advanced studies in the evaluation of chemical repellents

    Science.gov (United States)

    Bellack, E.; DeWitt, J.B.

    1949-01-01

    In order to bridge the gap between preliminary screening of chemicals for potential rodent repellency and the application ofthese compounds to paper cartons, more advanced studies in the evaluation ofpromising materials have been carried out. These studies have resulted in: (1) a modification of the food acceptance technique which eliminates doubtful compounds and also provides a closer analogy to the ultimate goal, and (2) a method for rapidly testing chemicals incorporated in paper. When the results of these latter tests are expressed as a function of time, it can be shown that a distinct correlation exists between the deterrency exhibited by treated paper and the repellency of treated food.

  11. Hydraulic conductivity of organomodified soil

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, R.B.; Grant, J.M.; Voice, T.C.; Rakhshandehroo, G.; Xu, S.; Boyd, S.A. [Michigan State Univ., East Lansing, MI (United States)

    1995-11-01

    The effects of organomodification on soil hydraulic conductivity were investigated. Hydraulic conductivity and porosity of treated and untreated samples of a sandy loam were measured as a function of effective stress. Batch treatment with hexadecyltrimethyl ammonium (HDTMA) and dry packing produced organomodified samples that were 79% less conducive than untreated samples prior to loading. Treated samples lost less hydraulic conductivity as a result of loading than untreated samples so that treated samples had higher conductivity at high loads. Observed differences in conductivity are explained in terms of the role of the treated and untreated clay in controlling initial effective pore size and its change during consolidation.

  12. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models

    Directory of Open Access Journals (Sweden)

    Paola Patiño

    2012-04-01

    Full Text Available Hydrodynamic phenomena take place within water treatment plants associated with physical, operational and environmental factors which can affect the water quality. This study evaluated a hydraulic clarifier’s hydrodynamic pattern using sludge recirculation through continuous tracer test leading to determining hydraulic behaviour indicators and simplified flow models. The clarifier had dual flow with a predominantly complete mixture during the hours in which higher temperatures were reported for affluent water compared to those reported inside the reactor, causing the formation of density currents promoting mixing in the reactor and increased turbidity in the effluent. The hydraulic indicators and the Wolf-Resnick model had higher sensitivity to the influence of temperature on reactor hydrodynamics.

  13. Theoretical Advanced Study Institute in Elementary Particle Physics

    CERN Document Server

    2017-01-01

    The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2017. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.

  14. Magnetic suspension and balance system advanced study, phase 2

    Science.gov (United States)

    Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.

    1990-01-01

    The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.

  15. A study of the key problem of optimum hydraulic design for a pump system with low head%低扬程泵装置优化水力设计的关键问题

    Institute of Scientific and Technical Information of China (English)

    徐磊; 陆林广; 梁金栋; 王刚; 董雷

    2012-01-01

    An in-depth study on the problem of optimum hydraulic design for a pump system with low head has been made in this paper. The efficiency of a pump system with low head is divided into two aspects: one is pump efficiency and the other is conduit efficiency. Some problems about the definition of pump segment in the pump system, efficiency modification for the pump segment and flow pattern of inlet conduit in the pump system are discussed. The influence of conduit hydraulic loss on the conduit efficiency and pump system efficiency is analyzed and the influence of both flow velocity and flow pattern on the conduit hydraulic loss is illustrated by calculation samples, from which the conclusions are drawn as follows: under the condition of low head, the key problem of how to increase the pump system efficiency is to reduce the conduit hydraulic loss as much as possible; The essential way to reduce the conduit hydraulic loss may be to lower the flow velocity and improve the flow pattern in the conduit. The approaches to reduce the conduit hydraulic loss mainly include: to choose the type of pump system and conduit with the optimal hydraulic performance, to suitably lower pump nD value, to choose better pump model, to suitably relax the restrictions for conduit control size, and to sufficiently optimize hydraulic design for conduit shape.%对低扬程泵装置的优化水力设计问题进行了较为深入的研究.将低扬程泵装置效率分解为水泵效率和流道效率两个方面,讨论了泵装置中泵段的概念和泵段效率的修正等问题,分析了流道水力损失对流道效率及泵装置效率的影响,通过实例说明了流道内的流速和流态对流道水力损失的影响,得到以下结论:在低扬程条件下,尽可能减小流道水力损失是提高泵装置效率的关键;减小流道水力损失的关键是降低流道内的流速和改善流道内的流态,其途径主要包括选择水力性能最优的泵装置型式和流道

  16. Experimental Investigation on the Basic Law of Hydraulic Fracturing After Water Pressure Control Blasting

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng; Ma, Jian; Chen, Shuliang

    2014-07-01

    Because of the advantages of integrating water pressure blasting and hydraulic fracturing, the use of hydraulic fracturing after water pressure control blasting is a method that is used to fully transform the structure of a coal-rock mass by increasing the number and range of hydraulic cracks. An experiment to study hydraulic fracturing after water pressure blasting on cement mortar samples (300 × 300 × 300 mm3) was conducted using a large-sized true triaxial hydraulic fracturing experimental system. A traditional hydraulic fracturing experiment was also performed for comparison. The experimental results show that water pressure blasting produces many blasting cracks, and follow-up hydraulic fracturing forces blasting cracks to propagate further and to form numerous multidirectional hydraulic cracks. Four macroscopic main hydraulic cracks in total were noted along the borehole axial and radial directions on the sample surfaces. Axial and radial main failure planes induced by macroscopic main hydraulic cracks split the sample into three big parts. Meanwhile, numerous local hydraulic cracks were formed on the main failure planes, in different directions and of different types. Local hydraulic cracks are mainly of three types: local hydraulic crack bands, local branched hydraulic cracks, and axial layered cracks. Because local hydraulic cracks produce multiple local layered failure planes and lamellar ruptures inside the sample, the integrity of the sample decreases greatly. The formation and propagation process of many multidirectional hydraulic cracks is affected by a combination of water pressure blasting, water pressure of fracturing, and the stress field of the surrounding rock. To a certain degree, the stress field of surrounding rock guides the formation and propagation process of the blasting crack and the follow-up hydraulic crack. Following hydraulic fracturing that has been conducted after water pressure blasting, the integrity of the sample is found to

  17. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  18. HYDRAULICS, HAMPDEN COUNTY, MA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data in this submittal include spatial datasets and model outputs necessary for computation of the 1-percent flooding extent. The minimum requirement for...

  19. HYDRAULICS, MADISON COUNTY, ALABAMA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This Hydraulic data was reviewed and approved by FEMA during the initial MT-2 processing. Recent developments in digital terrain and geospatial database management...

  20. HYDRAULICS, ATHENS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  1. HYDRAULICS, JACKSON COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. Hydraulic wind energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    The purpose of this research was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70', 3/4'' I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 70', 1'' I-D-flexhose.

  3. Creating new life for hydraulic turbines by upgrading and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, G.F.

    1998-12-01

    Methods by which to extend the life of aging hydraulic turbines which are still in operation today are discussed. Upgrading some of these turbines which were built as far back as 80 years ago may be feasible with current rehabilitation technology and advanced computer aided hydraulic mechanical design analysis techniques. The benefits achieved with many hydraulic turbine upgrade and rehabilitation programs include: (1) increased performance, (2) extended service life, (3) stopping accelerated deterioration due to cavitation, (4) reducing detrimental symptoms such as unit vibration, component cracking and excessive wearing ring clearances, (5) reducing the possibility of major failures, and (6) reducing unscheduled forced outages. Increased usage of a non-polluting, renewable energy source is an additional benefit of rehabilitation and upgrading of hydro power generating units.2 refs., 2 tabs., 7 figs.

  4. Experimental studies on heat transfer characteristics and natural circulation performance of PRHRS of the high temperature and high pressure thermal-hydraulic test facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, H. S.; Choi, K. Y.; Joe, S.; Park, C. K.; Lee, S. J.; Song, C. W.; Jeong, M. K. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    Several experiments are performed to investigate the heat transfer characteristics and natural circulation performance of passive residual removal system (PRHRS) of the high temperature and high pressure thermal-hydraulic test facility. Especially the natural circulation performance of PRHRS, the heat transfer characteristics of PRHRS heat exchangers and emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are investigated in detail. The coolant flows steadily in the natural circulation loop which is composed of the steam generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant. Also the experimental results show that the core decay heat are sufficiently removed with the operation of the PRHRS.

  5. Masters Study in Advanced Energy and Fuels Management

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States)

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  6. Physico-empirical approach for mapping soil hydraulic behaviour

    Directory of Open Access Journals (Sweden)

    G. D'Urso

    1997-01-01

    Full Text Available Abstract: Pedo-transfer functions are largely used in soil hydraulic characterisation of large areas. The use of physico-empirical approaches for the derivation of soil hydraulic parameters from disturbed samples data can be greatly enhanced if a characterisation performed on undisturbed cores of the same type of soil is available. In this study, an experimental procedure for deriving maps of soil hydraulic behaviour is discussed with reference to its application in an irrigation district (30 km2 in southern Italy. The main steps of the proposed procedure are: i the precise identification of soil hydraulic functions from undisturbed sampling of main horizons in representative profiles for each soil map unit; ii the determination of pore-size distribution curves from larger disturbed sampling data sets within the same soil map unit. iii the calibration of physical-empirical methods for retrieving soil hydraulic parameters from particle-size data and undisturbed soil sample analysis; iv the definition of functional hydraulic properties from water balance output; and v the delimitation of soil hydraulic map units based on functional properties.

  7. Hydraulic Jump and Energy Dissipation with Sluice Gate

    Directory of Open Access Journals (Sweden)

    Youngkyu Kim

    2015-09-01

    Full Text Available Movable weirs have been developed to address the weaknesses of conventional fixed weirs. However, the structures for riverbed protection downstream of movable weirs are designed using the criteria of fixed weirs in most cases, and these applications cause problems, such as scour and deformation of structures, due to misunderstanding the difference between different types of structures. In this study, a hydraulic experiment was conducted to examine weir type-specific hydraulic phenomena, compare hydraulic jumps and downstream flow characteristics according to different weir types, and analyze hydraulic characteristics, such as changes in water levels, velocities and energy. Additionally, to control the flow generated by a sluice gate, energy dissipators were examined herein for their effectiveness in relation to different installation locations and heights. As a result, it was found that although sluice gates generated hydraulic jumps similar to those of fixed weirs, their downstream supercritical flow increased to eventually elongate the overall hydraulic jumps. In energy dissipator installation, installation heights were found to be sensitive to energy dissipation. The most effective energy dissipator height was 10% of the downstream free surface water depth in this experiment. Based on these findings, it seems desirable to use energy dissipators to reduce energy, as such dissipators were found to be effective in reducing hydraulic jumps and protecting the riverbed under sluice gates.

  8. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  9. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  10. 46 CFR 28.405 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  11. Maxillomandibular Advancement in Obstructive Sleep Apnea Syndrome Patients: a Restrospective Study on the Sagittal Cephalometric Variables

    OpenAIRE

    2013-01-01

    ABSTRACT Objectives The present retrospective study analyzes sagittal cephalometric changes in patients affected by obstructive sleep apnea syndrome submitted to maxillomandubular advancement. Material and Methods 15 adult sleep apnea syndrome (OSAS) patients diagnosed by polysomnography (PSG) and treated with maxillomandubular advancement (MMA) were included in this study. Pre- (T1) and postsurgical (T2) PSG studies assessing the apnea/hypopnea index (AHI) and the lowest oxygen saturation (L...

  12. Energy-saving Study of Excavator Based on Hydraulic Pump Efficiency%基于液压泵效率的挖掘机节能研究

    Institute of Scientific and Technical Information of China (English)

    吴文海; 杨宇澜; 刘桓龙; 王国志

    2014-01-01

    For the work characteristics of the volume adjustable hydraulic pump,its control and working principle in the hydrau-lic excavator were analyzed. And as a basis,the simulation model of a volume adjustable pump and a hydraulic excavator machine was established. The simulation results show that the discharge ratio of the volume adjustable pump is an important control parameter which can achieve a greater impact on the efficiency of a hydraulic pump. When the excavator is in the fine operation phase,a reducer is used to adjust the pump speed,and the increase of the discharge ratio can improve the efficiency of the pump,so the fuel consumption is decreased by 16.5% which improves the overall fuel efficiency.%针对变量液压泵的工作特点,分析了其在液压挖掘机中控制和工作原理,并以此为基础建立了变量泵以及液压挖掘机整机的仿真模型。仿真结果表明:变量泵的排量比是对挖掘机中液压泵效率影响较大且可实现控制的一个重要参数,在挖掘机精细作业时采用减速机调节泵的转速,适当增大泵的排量比能提高泵的效率,使油耗量下降了16.5%,提高了整机的燃油效率。

  13. An Experimental Study on the Hydraulic Mount Parameters of Automotive Powertrain%汽车动力总成液压悬置参数试验研究

    Institute of Scientific and Technical Information of China (English)

    杨慰; 史文库; 马利红; 潘斌; 徐波

    2014-01-01

    The forces exerted on the air-spring type hydraulic mount of a vehicle powertrain are analyzed and a dynamic model for hydraulic mount is built. The mount parameters are measured by a series tests and used to conduct a simulation on the dynamic model, with which the dynamic characteristics of hydraulic mount are obtained and compared with that acquired by test. The results show that the simulated mount characteristics are basically con-sistent with tested ones, verifying the correctness of the simulation model built and the accurateness of mount param-eters obtained.%对汽车动力总成的空气弹簧式液压悬置进行受力分析,建立动力学模型,通过一系列试验获取悬置的参数,并利用它们对动力学模型进行仿真,得到空气弹簧式液压悬置的动态特性,并与试验得到的动态特性做比对。结果表明,空气弹簧式液压悬置仿真与试验的动态特性基本一致,说明所建立的仿真模型是正确的,所获取的液压悬置参数是准确的。

  14. Advanced simulation study on bunch gap transient effect

    Science.gov (United States)

    Kobayashi, Tetsuya; Akai, Kazunori

    2016-06-01

    Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.

  15. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  16. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi

    2003-06-30

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  17. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    Energy Technology Data Exchange (ETDEWEB)

    Milenkovic, Rade Z. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: rade.milenkovic@psi.ch; Dementjevs, Sergejs; Samec, Karel [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Platacis, Ernests; Zik, Anatolij; Flerov, Aleksej [Institute of Physics of University of Latvia, LV-2156 Salaspils (Latvia); Manfrin, Enzo; Thomsen, Knud [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2009-08-11

    Structural-hydraulic tests of the European Isotope Separation On-Line (EURISOL) neutron converter target mock-up, named MErcury Target EXperiment 1 (METEX 1), have been conducted by Paul Scherrer Institut (PSI, Switzerland) in cooperation with Institute of Physics of University of Latvia (IPUL, Latvia). PSI proceeded with extensive thermal-hydraulic and structural computational studies, followed by the target mock-up tests carried out on the mercury loop at IPUL. One of the main goals of the METEX 1 test is to investigate the hydraulic and structural behaviour of the EURISOL target mock-up for various inlet flow conditions (i.e. mass flow rates) and, in particular, for nominal operating flow rate and pressure in the system. The experimental results were analysed by advanced time-frequency methods such as Short-Time Fourier Transform in order to check the vibration characteristics of the mock-up and the resonance risk. The experimental results (obtained in METEX 1), which include inlet flow rate, pressure of the cover gas, total pressure loss, structural acceleration, sound and strain data, were jointly analysed together with numerical data obtained from Computational Fluid Dynamics (CFD)

  18. Structural-hydraulic test of the liquid metal EURISOL target mock-up

    Science.gov (United States)

    Milenković, Rade Ž.; Dementjevs, Sergejs; Samec, Karel; Platacis, Ernests; Zik, Anatolij; Flerov, Aleksej; Manfrin, Enzo; Thomsen, Knud

    2009-08-01

    Structural-hydraulic tests of the European Isotope Separation On-Line (EURISOL) neutron converter target mock-up, named MErcury Target EXperiment 1 (METEX 1), have been conducted by Paul Scherrer Institut (PSI, Switzerland) in cooperation with Institute of Physics of the University of Latvia (IPUL, Latvia). PSI proceeded with extensive thermal-hydraulic and structural computational studies, followed by the target mock-up tests carried out on the mercury loop at IPUL. One of the main goals of the METEX 1 test is to investigate the hydraulic and structural behaviour of the EURISOL target mock-up for various inlet flow conditions (i.e. mass flow rates) and, in particular, for nominal operating flow rate and pressure in the system. The experimental results were analysed by advanced time-frequency methods such as Short-Time Fourier Transform in order to check the vibration characteristics of the mock-up and the resonance risk. The experimental results (obtained in METEX 1), which include inlet flow rate, pressure of the cover gas, total pressure loss, structural acceleration, sound and strain data, were jointly analysed together with numerical data obtained from Computational Fluid Dynamics (CFD).

  19. Phenomenon of methane driven caused by hydraulic fracturing in methane-bearing coal seams

    Institute of Scientific and Technical Information of China (English)

    Huang Bingxiang; Cheng Qingying; Chen Shuliang

    2016-01-01

    The methane concentration of the return current will always be enhanced to a certain degree when hydraulic fracturing with bedding drilling is implemented to a gassy coal seam in an underground coal mine. The methane in coal seam is driven out by hydraulic fracturing. Thus, the phenomenon is named as methane driven effect of hydraulic fracturing. After deep-hole hydraulic fracturing at the tunneling face of the gassy coal seam, the coal methane content exhibits a‘low-high-low”distribution along exca-vation direction in the following advancing process, verifying the existence of methane driven caused by hydraulic fracturing in methane-bearing coal seam. Hydraulic fracturing causes the change of pore-water and methane pressure in surrounding coal. The uneven distribution of the pore pressure forms a pore pressure gradient. The free methane migrates from the position of high pore (methane) pressure to the position of low pore (methane) pressure. The methane pressure gradient is the fundamental driving force for methane-driven coal seam hydraulic fracturing. The uneven hydraulic crack propagation and the effect of time (as some processes need time to complete and are not completed instantaneously) will result in uneven methane driven. Therefore, an even hydraulic fracturing technique should be used to avoid the negative effects of methane driven; on the other hand, by taking fully advantage of methane driven, two technologies are presented.

  20. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... structure has the additional benefit that structural changes such as the addition or removal of end-users are easily implementable. In this work, the problem of controlling the pressure drop at the end-users to a constant reference value is considered. This is done by the use of pumps located both...... are considered. Some of the work considers control actions which are constrained to non-negative values only. This is due to the fact that the actuators in this type of system typically consist of centrifugal pumps which are only able to deliver non-negative actuation. Other parts of the work consider control...

  1. Technologies and Innovations for Hydraulic Pumps

    OpenAIRE

    Ivantysynova, Monika

    2016-01-01

    Positive displacement machines working as hydraulic pumps or hydraulic motors have always been, are and will be an essential part of any hydraulic system. Current trends and future demands on energy efficient systems will not only drastically increase the number of positive displacement machines needed for modern efficient hydraulic circuits but will significantly change the performance requirements of pumps and motors. Throttleless system configurations will change the landscape of hydraulic...

  2. 异向流斜管沉淀池水力特性研究%Study on Hydraulic Characteristic of the Tube Settler

    Institute of Scientific and Technical Information of China (English)

    崔晓峰; 于永海

    2016-01-01

    异向流斜管沉淀池在现有的文献上没有类似的可供计算水头损失的公式和系数,在设计时取值困难。以计算流体力学软件FLUENT为平台,采用标准k-ε湍流模型与SIMPLEC算法,采用速度进口与自由出流边界条件以及按无应力边界条件处理的自由水面对异向流斜管沉淀池中的水流运动进行数值模拟计算,对水流流态、断面流速分布与压强分布等水力特性进行了研究。基于数值模拟计算得到了沉淀池的水头损失,与实际工程测量结果吻合较好,找到了一种沉淀池水头损失的计算方法。%Little information could be found about formulas and coefficients for calculating the head loss of tube settler ,which makes it difficult for the designers to get the values .Herein ,using computational fluid dynamics software FLUENT as the platform ,the hydraulic characteristics involving in water flow regime ,velocity distribution and pressure distribution of flow were studied via the standard k-εturbulence model with the SIMPLEC algorithm and numerical simulation on the flow in tube settler based on the as‐sumptions that the free water surface remains flat as a stress-free plane of symmetry and the velocity distribution and free outflow are prescribed on inlet and outlet boundaries respectively .The head loss of the tube settler was obtained from the numerical simulation , which was in good agreement with the measurement for actual engineering .

  3. Parker Hybrid Hydraulic Drivetrain Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  4. Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment.

    Science.gov (United States)

    Camarillo, Mary Kay; Domen, Jeremy K; Stringfellow, William T

    2016-12-01

    Produced water is a significant waste stream that can be treated and reused; however, the removal of production chemicals-such as those added in hydraulic fracturing-must be addressed. One motivation for treating and reusing produced water is that current disposal methods-typically consisting of deep well injection and percolation in infiltration pits-are being limited. Furthermore, oil and gas production often occurs in arid regions where there is demand for new water sources. In this paper, hydraulic fracturing chemical additive data from California are used as a case study where physical-chemical and biodegradation data are summarized and used to screen for appropriate produced water treatment technologies. The data indicate that hydraulic fracturing chemicals are largely treatable; however, data are missing for 24 of the 193 chemical additives identified. More than one-third of organic chemicals have data indicating biodegradability, suggesting biological treatment would be effective. Adsorption-based methods and partitioning of chemicals into oil for subsequent separation is expected to be effective for approximately one-third of chemicals. Volatilization-based treatment methods (e.g. air stripping) will only be effective for approximately 10% of chemicals. Reverse osmosis is a good catch-all with over 70% of organic chemicals expected to be removed efficiently. Other technologies such as electrocoagulation and advanced oxidation are promising but lack demonstration. Chemicals of most concern due to prevalence, toxicity, and lack of data include propargyl alcohol, 2-mercaptoethyl alcohol, tetrakis hydroxymethyl-phosphonium sulfate, thioglycolic acid, 2-bromo-3-nitrilopropionamide, formaldehyde polymers, polymers of acrylic acid, quaternary ammonium compounds, and surfactants (e.g. ethoxylated alcohols). Future studies should examine the fate of hydraulic fracturing chemicals in produced water treatment trains to demonstrate removal and clarify interactions

  5. Hydraulic Aspects of Vegetation Maintanence in Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian

    1991-01-01

    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  6. ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD

    Institute of Scientific and Technical Information of China (English)

    Dong Longlei; Yan Guirong; Li Ronglin

    2004-01-01

    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  7. A prospective study of the incidence of falls in patients with advanced cancer.

    LENUS (Irish Health Repository)

    Stone, Carol

    2011-10-01

    The association between aging and falls risk, and the morbidity and mortality resulting from falls in older persons, is well documented. Results from a small number of studies of patients with cancer in inpatient settings suggest that patients with advanced cancer may be at high risk of falling. We present preliminary results pertaining to the incidence of falls in patients with advanced cancer from an ongoing study of risk factors for falls.

  8. A Retrospective Study of Cleft lip and palate Patients' Satisfaction after Maxillary Distraction or Traditional Advancement of the Maxilla

    DEFF Research Database (Denmark)

    Andersen, Kristian; Nørholt, Sven Erik; Küseler, Annelise

    2012-01-01

    A Retrospective Study of Cleft lip and palate Patients' Satisfaction after Maxillary Distraction or Traditional Advancement of the Maxilla......A Retrospective Study of Cleft lip and palate Patients' Satisfaction after Maxillary Distraction or Traditional Advancement of the Maxilla...

  9. Summary of recent design studies of advanced acoustic-composite nacelles

    Science.gov (United States)

    Norton, H. T., Jr.

    1975-01-01

    The results are summarized of recent NASA-sponsored studies of advanced acoustic-composite nacelles. Conceptual nacelle designs for current wide-bodied transports and for advanced technology transports, intended for operational use in the mid-1980's, were studied by Lockheed-California Company and the Douglas Aircraft Company. These studies were conducted with the objective of achieving significant reductions in community noise and/or fuel consumption with minimum penalties in airplane weights, cost, and operating expense. The results indicate that the use of advanced composite materials offer significant potential weight and cost savings and result in reduced fuel consumption and noise when applied to nacelles. The most promising concept for realizing all of these benefits was a long duct, mixed flow acoustic composite nacelle with advanced acoustic liners.

  10. Performance of nano-hydraulic turbine utilizing waterfalls

    OpenAIRE

    Ikeda, Toshihiko; Iio, Shouichiro; Tatsuno, Kenji

    2010-01-01

    The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions o...

  11. Pilot testing of a hydraulic bridge exciter

    Directory of Open Access Journals (Sweden)

    Andersson Andreas

    2015-01-01

    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  12. Grid Integration Studies: Advancing Clean Energy Planning and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Jessica [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chernyakhovskiy, Ilya [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Integrating significant variable renewable energy (VRE) into the grid requires an evolution in power system planning and operation. To plan for this evolution, power system stakeholders can undertake grid integration studies. This Greening the Grid document reviews grid integration studies, common elements, questions, and guidance for system planners.

  13. USE OF GEOSYNTHETIC CASINGS IN HYDRAULIC ENGINEERING

    Directory of Open Access Journals (Sweden)

    Piyavskiy Semen Avraamovich

    2012-10-01

    Full Text Available The article covers the use of geosynthetic casings in hydraulic engineering. The authors describe the structure of earth dams that have geosynthetic casings used as the reinforcement of downstream slopes. Results of stability calculations are provided. The authors consider several examples of effective application of advanced geosynthetic materials used in combination with local building materials as structural elements of hydraulic engineering facilities. Their analysis has demonstrated a strong potential and expediency of application of geosynthetic casings in the course of construction and renovation of low-pressure earth dams. The authors have also developed a new structure of an earth dam. The new earth dam has geosynthetic casings used as structural reinforcing elements of the crown and the downstream slope. The dam structure contemplates the overflow of high water. The structural strengths of the proposed solution include a smaller material consumption rate, lower labour intensiveness and cost of the slope reinforcement due to the application of local building materials used to fill the casings, fast and easy depositing of slope reinforcing elements, and high workability of its dismantling for repair purposes. The authors have also completed the analysis of stability of geosynthetic casings of downstream slopes of an earth dam. The analysis has proven high efficiency of a small slope ratio in combination with its anchorage and reinforcement of the downstream toe with the help of high-strength geogrids.

  14. CASP CompTIA Advanced Security Practitioner Study Guide Exam CAS-001

    CERN Document Server

    Gregg, Michael

    2012-01-01

    Get Prepared for CompTIA Advanced Security Practitioner (CASP) Exam Targeting security professionals who either have their CompTIA Security+ certification or are looking to achieve a more advanced security certification, this CompTIA Authorized study guide is focused on the new CompTIA Advanced Security Practitioner (CASP) Exam CAS-001. Veteran IT security expert and author Michael Gregg details the technical knowledge and skills you need to conceptualize, design, and engineer secure solutions across complex enterprise environments. He prepares you for aspects of the certification test that as

  15. Recent advances in human gene-longevity association studies

    DEFF Research Database (Denmark)

    De Benedictis, G; Tan, Q; Jeune, B;

    2001-01-01

    % of the variation in life span is genetically determined. Taking advantage of recent developments in molecular biology, researchers are now searching for candidate genes that might have an influence on life span. The data on unrelated individuals emerging from an ever-increasing number of centenarian studies makes......This paper reviews the recent literature on genes and longevity. The influence of genes on human life span has been confirmed in studies of life span correlation between related individuals based on family and twin data. Results from major twin studies indicate that approximately 25...

  16. 水溶性减阻剂在页岩气滑溜水压裂中的应用进展%Recent Advances in Water-Soluble Friction Reducers for Slickwater Hydraulic Fracturing Used in Completion of Shale Gas

    Institute of Scientific and Technical Information of China (English)

    张文龙; 伊卓; 杜凯; 祝纶宇; 刘希; 林蔚然

    2015-01-01

    Slickwater hydraulic fracturing is widely used to improve the efficiency of shale gas exploitation in North America and it also has a broad application prospect in China. The friction reducers are water-soluble polymeric additives which are added to slickwater to reduce friction loss during pumping. In this paper,the mechanism of water-soluble polymeric drag reduction was summed up,and recent progresses in the research of friction reducers,including polysaccharides friction reducers,poly(ethylene oxide) friction reducers and polyacrylamide friction reducer,used in the completion of shale gas were reviewed. The environmentally friendly friction reducers with high drag reduce ability,low damage to shale reservoir and low cost would be the development direction in future.%滑溜水压裂是致密页岩气开采主要采用的增产手段,水溶性减阻剂是滑溜水压裂液中用于降低流体在管道输送过程中所受阻力的化学试剂。介绍了减阻剂的减阻机理,综述了水溶性减阻剂在页岩气滑溜水压裂领域应用的研究进展,包括生物基多糖减阻剂、聚氧化乙烯减阻剂和聚丙烯酰胺类减阻剂在页岩气压裂领域应用的研究现状。对水溶性减阻剂的应用前景进行了展望,减阻性能好、对储层伤害低、环境友好和成本较低廉的减阻剂是未来研究的重点。

  17. Study on Hydraulic Parameters of Irrigating Warped Soil in Ningxia Irrigation Area%宁夏黄灌区灌淤土水力参数研究

    Institute of Scientific and Technical Information of China (English)

    易军; 尚三林; 杨正礼; 吴海卿; 马克星; 朱东海; 张晴雯

    2011-01-01

    A systematic research on hydraulic parameters of irrigating warped soil in Ningxia irrigation area is shown in this article. The results indicated as: the variation of saturated hydraulic conductivity of undisturbed soil and disturbed soil is 10~100 cm/d and 3~50 cm/d respectively. The dynamics of saturated hydraulic conductivity along the soil profile of the undisturbed soil is consisting with that of the disturbed soil: the saturated hydraulic conductivity presents reciprocating change with the increase of depth. The saturated hydraulic conductivity of undisturbed soil and disturbed soil are affected by clay content, bulk density, and porosity, except organic matter content. The saturated hydraulic conductivity of undisturbed soil is bigger than disturbed soil, with the general ratio of 2~5 times, and the variability is bigger too.Tendencies of soil water retention curves of all soil layers are similar, the soil volumetric water content decreased with the increase of soil water suctions, and it will stable when the suction reach a certain value,the soil water retention curve is affected by the clay content dramatically. The soil moisture diffusivity of all soil layers is changeable from 1. O× 10-3~6 cm2/min, and the soil moisture diffusivity of upper soils are far smaller than the lowers. Relationship between soil moisture diffusivities and soil volumetric water content in every soil layer are sharply positive exponential function, which was fitted by the empirical equation: D (θ)=aeω. The soil moisture diffusivity is affected by soil clay content, porosity, soil bulk density, and organic matter content.%对宁夏黄灌区灌淤土水力参数进行了较为系统的研究.研究结果表明,原状土与扰动土饱和导水率变化范围分别为10~100 cm/d和3~50 cm/d.原状土饱和导水率随土壤剖面变化规律与扰动土一致:随着土壤深度的增加,饱和导水率呈现高低往复变化.原状土和扰动土的饱和导水率

  18. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;

    2015-01-01

    Streambed hydraulic conductivity is one of the main factors controlling variability in surface water-groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were...... therefore determined from in-stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in-stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater-dominated stream. Seasonal...... small-scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional...

  19. Reliability modeling of hydraulic system of drum shearer machine

    Institute of Scientific and Technical Information of China (English)

    SEYED HADI Hoseinie; MOHAMMAD Ataie; REZA Khalookakaei; UDAY Kumar

    2011-01-01

    The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine.In this paper,the reliability of the hydraulic system of a drum shearer was analyzed.A case study was done in the Tabas Coal Mine in Iran for failure data collection.The results of the statistical analysis show that the time between failures (TBF)data of this system followed the 3-parameters Weibull distribution.There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation.The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation.The failure rate of this system decreases when time increases.Therefore,corrective maintenance(run-to-failure)was selected as the best maintenance strategy for it.

  20. Roof Weakening of Hydraulic Fracturing for Control of Hanging Roof in the Face End of High Gassy Coal Longwall Mining: A Case Study

    Science.gov (United States)

    Huang, Bingxiang; Wang, Youzhuang

    2016-09-01

    The occurence of hanging roof commonly arises in the face end of longwall coal mining under hard roof conditions. The sudden break and subsequent caving of a hanging roof could result in the extrusion of gas in the gob to the face, causing gas concentrations to rise sharply and to increase to over a safety-limited value. A series of linear fracturing-holes of 32 mm diameter were drilled into the roof of the entries with an anchor rig. According to the theory that the gob should be fully filled with the fragmentized falling roof rock, the drilling depth is determined as being 3 5 times the mining height if the broken expansion coefficient takes an empirical value. Considering the general extension range of cracks and the supporting form of the entryway, the spacing distance between two drilling holes is determined as being 1 2 times the crack's range of extension. Using a mounting pipe, a high pressure resistant sealing device of a small diameter-size was sent to the designated location for the high-pressure hydraulic fracturing of the roof rock. The hydraulic fracturing created the main hydro-fracturing crack and airfoil branch cracks in the interior of the roof-rock, transforming the roof structure and weakening the strength of the roof to form a weak plane which accelerated roof caving, and eventually induced the full caving in of the roof in time with the help of ground pressure. For holes deeper than 4 m, retreating hydraulic fracturing could ensure the uniformity of crack extension. Tested and applied at several mines in Shengdong Mining District, the highest ruptured water pressure was found to be 55 MPa, and the hanging roof at the face end was reduced in length from 12 m to less than 1 2 m. This technology has eliminated the risk of the extrusion of gas which has accumulated in the gob.

  1. An Experimental Study of the Corrosion Behavior of Nickel Tungsten Carbide in Some Water-Glycol Hydraulic Fluids for Subsea Applications

    Science.gov (United States)

    Zheng, Lei; Neville, Anne; Gledhill, Andrew; Johnston, David

    2010-02-01

    Corrosion failures of components in electro-hydraulic control systems can have serious consequences for the operation of an entire subsea oil recovery system, especially in water depths more than 150 m (Fleming, Meas. Control, 2000, 33(7), p 207-213). An acceptable reason for this is that seawater ingress can have a great effect on stainless steel 316L, the most commonly used material for the failed components of the direction control valves, since chloride irons destabilize the passive film [Malik et al., Corros. Sci., 1992, 33(11), p 1809-1827; Desalination, 1994, 97(1-3), p 189-197; Al-Malahy and Hodgkiess, Desalination, 2003, 158(1-3), p 35-42]. Other materials, claimed to be seawater tolerant, are starting to be used in this system. However, problems can still exist due to the complex factors relating to the corrosion process and how the environmental parameters affect the corrosion mechanisms. In this work, the corrosion behavior of a nickel tungsten carbide cermet, one of the proposed materials, is compared with stainless steel 316L, in four different water-glycol hydraulic fluids and 50% hydraulic fluid/50% seawater solutions using an electrochemical test methodology. Systematic fluid analysis, which includes GC-MS for organic components and ICP-MS analysis for ionic content, and surface analysis of the material are carried out to assess the corrosion mechanisms. Detailed conclusions are then made to summarize the advantages and disadvantages of nickel tungsten carbide being used in this system. The effects of each factor on the corrosion rates and mechanisms are discussed.

  2. 在水力除焦中采用变转速除焦水泵的探讨%Study on variable speed decoking pump in hydraulic decoking

    Institute of Scientific and Technical Information of China (English)

    张欣

    2011-01-01

    Fixed-speed decoking jet pumps are widely used in present hydraulic decoking process. Frequent start up, shutdown and fixed discharge pressure of the pumps often result in problems of impacting, vibration and excessive coke powder production. A hydraulic decoking technology in which variable speed decoking jet pumps are used is introduced. In the technology, variable speed equipment such as hydraulic coupling or variable frequency device is applied to unload the start-up of decoking jet pump, smoothly adjust the speed and control the decoking water pressure as required and perform decoking operation more conveniently and efficiently. The application of the technology has improved the flexibility of the decoking jet pumps and reliability of related decoking equipment, etc and reduced the coke powder production. The economics of the unit operation is improved.%在目前的水力除焦技术中普遍采用定转速除焦水泵,泵需要频繁启停且出口压力恒定不变,因而带来冲击、振动以及产生焦粉过多等问题.为解决此问题,介绍了一种采用变转速除焦水泵的技术,即通过液力偶合器或变频器等调速装置驱动,实现除焦水泵的无负荷启动、平滑调速,进而按需调节除焦水压力.结果表明:该技术使操作更灵活优化,并提高相关设备长周期运行的可靠性、减少焦粉的产生;可逐步升速,实现“回流-预充-钻孔”的操作程序,更经济节能.

  3. Studies of field test procedures in hydraulic turbines for SHP; Estudos de procedimentos de ensaios de campo em turbinas hidraulicas para PCH

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Lucimary Aparecida

    2006-07-01

    A supply contract of equipment for Small Hydro Power, contain the power and turbine efficiency guarantees and can contain adds guarantees referring to a rotation and pressure variation, runaway speed and cavitations test. To the determination about the hydraulics turbines performance for contractual guarantees are realized the field acceptance test, that are methods quite a lot used for enterprises like tools to prove the contractual guarantees in substitution to model test, that showed a cost extremely high. In the field acceptance test are measures of some values that added to the others, possibility obtain the turbine efficiency. In the small hydro power, the turbine efficiency represents the hydraulic power percentage that is subject to be transformed in electrical power. In the turbine purchase, the manufacturer has to guarantee the efficiency specified if it is become down to expected, the damages are enormous, then the importance to exist precise methods and reliable for your measurement. The method accuracy of the discharge measurement that has, between another problems, the calibration and installation, that influence hard the value of the efficiency obtained. This work shows the different methodologies about discharge measurement in hydraulic turbines, that can be apply in Small Hydro Power field tests and shows too the procedures used that in specifics cases of small hydro, without quality damage, the site tests could be executed the form that the guarantees will be approve with compatible cots with the investment done. As an example for said above, are show two cases in small hydro where did realized field acceptance tests to assure the contractual guarantees. (author)

  4. Treatment Process Requirements for Waters Containing Hydraulic Fracturing Chemicals

    Science.gov (United States)

    Stringfellow, W. T.; Camarillo, M. K.; Domen, J. K.; Sandelin, W.; Varadharajan, C.; Cooley, H.; Jordan, P. D.; Heberger, M. G.; Reagan, M. T.; Houseworth, J. E.; Birkholzer, J. T.

    2015-12-01

    A wide variety of chemical additives are used as part of the hydraulic fracturing (HyF) process. There is concern that HyF chemicals will be released into the environment and contaminate drinking water, agricultural water, or other water used for beneficial purposes. There is also interest in using produced water (water extracted from the subsurface during oil and gas production) for irrigation and other beneficial purposes, especially in the arid Southwest US. Reuse of produced water is not speculative: produced water can be low in salts and is being used in California for irrigation after minimal treatment. In this study, we identified chemicals that are used for hydraulic fracturing in California and conducted an analysis to determine if those chemicals would be removed by a variety of technically available treatment processes, including oil/water separation, air stripping, a variety of sorption media, advanced oxidation, biological treatment, and a variety of membrane treatment systems. The approach taken was to establish major physiochemical properties for individual chemicals (log Koc, Henry's constant, biodegradability, etc.), group chemicals by function (e.g corrosion inhibition, biocides), and use those properties to predict the fate of chemical additives in a treatment process. Results from this analysis is interpreted in the context of what is known about existing systems for the treatment of produced water before beneficial reuse, which includes a range of treatment systems from oil/water separators (the most common treatment) to sophisticated treatment trains used for purifying produced water for groundwater recharge. The results show that most HyF chemical additives will not be removed in existing treatment systems, but that more sophisticated treatment trains can be designed to remove additives before beneficial reuse.

  5. Implementing common data elements across studies to advance research.

    Science.gov (United States)

    Cohen, Marlene Z; Thompson, Cheryl Bagley; Yates, Bernice; Zimmerman, Lani; Pullen, Carol H

    2015-01-01

    Challenges arise in building the knowledge needed for evidence-based practice partially because obtaining clinical research data is expensive and complicated, and many studies have small sample sizes. Combining data from several studies may have the advantage of increasing the impact of the findings or expanding the population to which findings may be generalized. The use of common data elements will allow this combining and, in turn, create big data, which is an important approach that may accelerate knowledge development. This article discusses the philosophy of using common data elements across research studies and illustrates their use by the processes in a developmental center grant funded by the National Institutes of Health. The researchers identified a set of data elements and used them across several pilot studies. Issues that need to be considered in the adoption and implementation of common data elements across pilot studies include theoretical framework, purpose of the common measures, respondent burden, teamwork, managing large data sets, grant writing, and unintended consequences. We describe these challenges and solutions that can be implemented to manage them.

  6. Isolated heart models: cardiovascular system studies and technological advances.

    Science.gov (United States)

    Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo

    2015-07-01

    Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

  7. RFX machine and power supply improvements for RFP advanced studies

    Energy Technology Data Exchange (ETDEWEB)

    Piovan, R. E-mail: piovan@igi.pd.cnr.it; Gnesotto, F.; Ortolani, S.; Baker, W.; Barana, O.; Bettini, P.; Cavazzana, R.; Chitarin, G.; Dal Bello, S.; De Lorenzi, A.; Fiorentin, P.; Gaio, E.; Grando, L.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Masiello, A.; Milani, F.; Peruzzo, S.; Pomaro, N.; Sonato, P.; Taliercio, C.; Toigo, V.; Zaccaria, P.; Zanotto, L.; Zollino, G

    2001-10-01

    Experimental results and theoretical studies call for Reversed Field Experiment (RFX) machine and power supply improvements to allow studies that go beyond those of a conventional Reversed Field Pinch (RFP) with passively stabilized turbulent MHD dynamo. The new paths opened by recent results in RFX and other RFP machines are introduced; then the goals and the design lines of the technical modifications of RFX, mainly addressed to improve the first wall, the plasma magnetic boundaries and to increase the operational flexibility of the toroidal field circuit power supply, are reported.

  8. Inflammation and fatigue dimensions in advanced cancer patients and cancer survivors: An explorative study

    OpenAIRE

    2012-01-01

    textabstractBACKGROUND: Inflammation may underlie cancer-related fatigue; however, there are no studies that assess the relation between fatigue and cytokines in patients with advanced disease versus patients without disease activity. Furthermore, the relation between cytokines and the separate dimensions of fatigue is unknown. Here, association of plasma levels of inflammatory markers with physical fatigue and mental fatigue was explored in advanced cancer patients and cancer survivors. METH...

  9. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes; Calculo de fuerzas laterales hidraulicas en elementos combustibles tipo PWR con codigos de dinamica de fluidos coputacional

    Energy Technology Data Exchange (ETDEWEB)

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-08-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  10. Oscillatory Flow Testing in a Sandbox - Towards Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Zhou, Y.; Lim, D.; Cupola, F.; Cardiff, M. A.

    2014-12-01

    Detailed knowledge of subsurface hydraulic properties is important for predicting groundwater flow and contaminant transport. The spatial variation of hydraulic properties in the shallow subsurface has been extensively studied in the past two decades. A recent approach to characterize subsurface properties is hydraulic tomography, in which pressure data from multiple constant-rate pumping tests is inverted using a numerical model. Many laboratory sandbox studies have explored the performance of hydraulic tomography under different controlled conditions and shown that detailed heterogeneity information can be extracted (Liu et al., 2002, Illman et al., 2007, 2008, 2010a, 2010b, Liu et al., 2007, 2008, Xiang et al., 2009, Yin and Illman, 2009, Liu and Kitanidis, 2011, Berg and Illman, 2011a). Recently, Cardiff et al. (2013) proposed a modified approach of Oscillatory Hydraulic Tomography (OHT) - in which periodic pumping signals of different frequencies are used for aquifer stimulation - to characterize aquifer properties. The potential advantages of OHT over traditional hydraulic tomography include: 1) no net injection or extraction of water; 2) little movement of existing contamination; 3) minimal impact of model boundary conditions; and 4) robust extraction of oscillatory signals from noisy data. To evaluate the premise of OHT, we built a highly-instrumented 2-D laboratory sandbox and record pressure responses to periodic pumping tests. In our setup, the laboratory sandbox is filled with sand of known hydraulic properties, and we measure aquifer responses at a variety of testing frequencies. The signals recorded are processed using Fourier-domain analysis, and compared against expected results under linear (Darcian) theory. The responses are analyzed using analytical and numerical models, which provide key insights as to: 1) how "effective" hydraulic properties estimated using homogeneous models are associated with aquifer heterogeneity; and 2) how OHT is able to

  11. Advances in genetic studies of substance abuse in China

    Institute of Scientific and Technical Information of China (English)

    Yan SUN; Shiqiu MENG; Jiali LI; Jie SHI; Lin LU

    2013-01-01

    Summary:The importance of genetic factors in substance addiction has long been established. The rationale for this work is that understanding of the function of addiction genes and delineation of the key molecular pathways of these genes would enhance the development of novel therapeutic targets and biomarkers that could be used in the prevention and management of substance abuse. Over the past few years, there has been a substantial increase in the number of genetic studies conducted on addiction in China;these studies have primarily focused on heroin, alcohol, and nicotine dependence. Most studies of candidate genes have concentrated on the dopamine, opioid, and serotonin systems. A number of genes associated with substance abuse in Caucasians are also risk factors in Chinese, but several novel genes and genetic risk factors associated with substance abuse in Chinese subjects have also been identified. This paper reviews the genetic studies of substance abuse performed by Chinese researchers. Genotypes and alleles related to addictive behavior in Chinese individuals are discussed and the contributions of Chinese researchers to the international corpus of knowledge about the genetic understanding of substance abuse are described.

  12. Advances in the study of drawing and handwriting [guest editorial

    NARCIS (Netherlands)

    Meulenbroek, R.G.J.; Gemmert, A.W.A. van

    2003-01-01

    Since the early 1980s the study of drawing and handwriting movements has come to be known as the field of graphonomics". The term graphonomics intends to capture the multi-disciplinary scientific effort involved in identifying lawful relationships between the planning and generation of drawing and h

  13. Feasibility Study for an Advanced Lighted Aid to Navigation.

    Science.gov (United States)

    1981-09-01

    This network, comprised of some 15,000 fixed and moored (buoy) aids, supplies position information to mariners via visual markers and flashing lights...and moored (buoy) aids, supplies position information to mari- ners via visual markers and flashing lights. The Coast Guard is studying the use of

  14. Advancing Entrepreneurship in an Elementary School: A Case Study

    Science.gov (United States)

    Heilbrunn, Sibylle

    2010-01-01

    The aim of the paper is to introduce an experimental entrepreneurial elementary school in Israel. In addition to describing the organizational process of transformation from a conventional elementary school to an entrepreneurial school, the paper attempts to assess the impact of the process on teachers and pupils. The study investigates…

  15. Advances and expectations of study on wood rheology

    Institute of Scientific and Technical Information of China (English)

    马远荣; 罗迎社; 李贤军

    2008-01-01

    By studying and summarizing the characteristics of wood rheology,the mathematic models of creep and mechano-sorptive creep of wood were analyzed.Rheology behaviors in process,especially drying stress and deformation set were discussed.Application of wood rheology in woodcraft process was elaborated and the research prospects and orientation were forecasted.

  16. Variation of hydraulic gradient in nonlinear finite strain consolidation

    Institute of Scientific and Technical Information of China (English)

    谢新宇; 黄杰卿; 王文军; 李金柱

    2014-01-01

    In the research field of ground water, hydraulic gradient is studied for decades. In the consolidation field, hydraulic gradient is yet to be investigated as an important hydraulic variable. So, the variation of hydraulic gradient in nonlinear finite strain consolidation was focused on in this work. Based on lab tests, the nonlinear compressibility and nonlinear permeability of Ningbo soft clay were obtained. Then, a strongly nonlinear governing equation was derived and it was solved with the finite element method. Afterwards, the numerical analysis was performed and it was verified with the existing experiment for Hong Kong marine clay. It can be found that the variation of hydraulic gradient is closely related to the magnitude of external load and the depth in soils. It is interesting that the absolute value of hydraulic gradient (AVHG) increases rapidly first and then decreases gradually after reaching the maximum at different depths of soils. Furthermore, the changing curves of AVHG can be roughly divided into five phases. This five-phase model can be employed to study the migration of pore water during consolidation.

  17. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  18. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback....... The main target is to overcome problems with linear controllers deteriorating performance due to the inherent nonlinear nature of such systems, without requiring extensive knowledge on system parameters nor advanced control theory. In order to accomplish this task, an integral sliding mode controller...... employing parameter adaption through a recursive algorithm is presented. This is based on a reduced order model approximation of a VCD with unmatched valve flow- and cylinder asymmetries. Bounds on parameters are obtained despite lack of parameter knowledge, and the proposed controller demonstrates improved...

  19. Hydraulic hammer drilling technology: Developments and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Melamed, Y.; Kiselev, A. [SKB Geotechnika, Moscow (Russian Federation); Gelfgat, M. [Aquatic Co., Moscow (Russian Federation); Dreesen, D.; Blacic, J. [Los Alamos National Lab., NM (United States). GeoEngineering Group

    1996-12-31

    Percussion drilling technology was considered many years ago as one of the best approaches for hard rock drilling. Unfortunately the efficiency of most hydraulic hammer (HH) designs was very low (8% maximum), so they were successfully used in shallow boreholes only. Thirty years of research and field drilling experience with HH application in Former Soviet Union (FSU) countries led to the development of a new generation of HH designs with a proven efficiency of 40%. That advance achieved good operational results in hard rock at depths up to 2,000 m and more. The most recent research has shown that there are opportunities to increase HH efficiency up to 70%. This paper presents HH basic design principles and operational features. The advantages of HH technology for coiled-tubing drilling is shown on the basis of test results recently conducted in the US.

  20. Study of transient hydraulic in the essential service water system in NPP. Cofrentes; Estudio de transitorios hidraulicos en el sistema de agua de servicio esencial en C. N. C

    Energy Technology Data Exchange (ETDEWEB)

    Molina, M. C.; Prieto, J.; Olmedo, J.; Mota, M.

    2013-07-01

    The present paper presents the study of the possible transient hydraulic that they could occur in the essential service water system due to changes in modes of operation, as well as replacement of components or failure of these within the same operating mode. For a complete analysis, it has created a computer model of the system through software EcosimPro, whereby different models have been corresponding to each division's system, making the check that in any mode of operation, and in any event, the values be exceeded the design for the system and its components.

  1. On the Dynamic Measurements of Hydraulic Characteristics

    Science.gov (United States)

    Hasmatuchi, Vlad; Bosioc, Alin; Münch-Alligné, Cécile

    2016-11-01

    The present work introduces the implementation and validation of a faster method to measure experimentally the efficiency characteristics of hydraulic turbomachines at a model scale on a test rig. The case study is represented by a laboratory prototype of an in-line axial microturbine for water supply networks. The 2.65 kW one-stage variable speed turbine, composed by one upstream 5-blade runner followed by one counter-rotating downstream 7-blade runner, has been installed on the HES-SO Valais/Wallis universal test rig dedicated to assess performances of small hydraulic machinery following the IEC standard recommendations. In addition to the existing acquisition/control system of the test rig used to measure the 3D hill-chart of a turbine by classical static point-by-point method, a second digitizer has been added to acquire synchronized dynamic signals of the employed sensors. The optimal acceleration/deceleration ramps of the electrical drives have been previously identified in order to cope with the purpose of a reduced measurement time while avoiding errors and hysteresis on the acquired hydraulic characteristics. Finally, the comparison between the turbine efficiency hill-charts obtained by dynamic and static point-by-point methods shows a very good agreement in terms of precision and repeatability. Moreover, the applied dynamic method reduces significantly (by a factor of up to ten) the time necessary to measure the efficiency characteristics on model testing.

  2. [Management of psychiatric inpatients with advanced cancer: a pilot study].

    Science.gov (United States)

    Rhondali, Wadih; Ledoux, Mathilde; Sahraoui, Fatma; Marotta, Juliette; Sanchez, Vincent; Filbet, Marilène

    2013-09-01

    The prevalence of cancer is not well established and probably underestimated in long-stay psychiatric inpatients. Psychiatric patients do not have the same access for cancer screening and care. Therapeutic decision-making is a real ethical problem. In this context, access to medical care should be provided by the establishment of guidelines and/or recommendations for this specific population. The aim of our study was to assess how cancer was managed among long term psychiatric inpatients. For this pilot study, we used a mixed methodology: a quantitative part with a retrospective chart review of cancer patients in a psychiatric institution and a qualitative part based on semi-structured interviews with psychiatrists with discourse analysis. Delay in cancer diagnosis can be explained by communication and behavior disorders, inadequate screening, and additional tests often refused by patients. Compliance and ethical issues (i.e. obtaining informed consent) are many pitfalls to optimal cancer care that should be explored in further research.

  3. Advances in the study on induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Shuang; DUAN EnKui

    2008-01-01

    Recently, the study on "induced pluripotent stem cells" (iPS cells) has made a great breakthrough, and it is considered as a new milestone in the history of life science. This progress has updated our traditional concepts about pluripotency control, and provided people with a brand-new strategy for somatic cell nuclear reprogramming. In virtue of its availability and stability, this method holds great potential in both biological and clinical research. In order to introduce this rising field of study, this paper starts with an overview of the development of iPS cell establishment, describes the key steps in generating iPS cells, elaborates several relevant scientific issues, and evaluates its current restrictions and promises in future research.

  4. Recent advances in maize nuclear proteomic studies reveal histone modifications.

    Science.gov (United States)

    Casati, Paula

    2012-01-01

    The nucleus of eukaryotic organisms is highly dynamic and complex, containing different types of macromolecules including DNA, RNA, and a wide range of proteins. Novel proteomic applications have led to a better overall determination of nucleus protein content. Although nuclear plant proteomics is only at the initial phase, several studies have been reported and are summarized in this review using different plants species, such as Arabidopsis thaliana, rice, cowpea, onion, garden cress, and barrel clover. These include the description of the total nuclear or phospho-proteome (i.e., Arabidopsis, cowpea, onion), or the analysis of the differential nuclear proteome under different growth environments (i.e., Arabidopsis, rice, cowpea, onion, garden cress, and barrel clover). However, only few reports exist on the analysis of the maize nuclear proteome or its changes under various conditions. This review will present recent data on the study of the nuclear maize proteome, including the analysis of changes in posttranslational modifications in histone proteins.

  5. Comparative study of various PKINIT methods used in Advanced Kerberos

    Directory of Open Access Journals (Sweden)

    Shital S. Thorat,

    2010-10-01

    Full Text Available Traditional authentication method is password, but it cannot resist dictionary and playback attack. Thus, applications, which send an unencrypted password over the network, are extremely vulnerable. Kerberos can be used as a solution to these network security problems. The Kerberos protocol with public key cryptography may help client to prove its identity to a server (and vice-versa across an insecurenetwork connection. This paper shows comparative study of various PKINIT methods used in Kerberos with their results.

  6. Advances in the study of the systematics of Actinidia Lindley

    Institute of Scientific and Technical Information of China (English)

    Xinwei LI; Jianqiang LI; Djaja Djendoel SOEJARTO

    2009-01-01

    Actinidia (Actinidiaceae) is of economic importance for its edible fruits.Traditional taxonomy divided the genus into four sections,Leiocarpae Dunn,Maculatae Dunn,Strigosae Li,and Stellatae Li.However,phylogenetic studies based on morphology and molecular markers have posed challenges to the four-section scheme.It appears that the natural classification of the genus points to the existence of two groups,one comprising Leiocarpae,and the other Maculatae,Strigosae,and Stellatae.Single- or low-copy genes would probably be useful in untangling the perplexity andthe reticulate evolution of the genus.However,any phylogenetic studies must be firmly based on sound taxonomy and identification.Population sampling throughout the distribution range of the taxa should be carried out in order to study the variation pattern of the morphology and,ultimately,to clarify the confusion existing in some taxa.A combination of morphometrics and molecular data is highly desirable for resolving the uncertainty in Actinidia taxonomy.

  7. Complex Fluids and Hydraulic Fracturing.

    Science.gov (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  8. ESTIMATION OF HYDRAULIC CONDUCTIVITY AND CONTENT OF FINES FROM EXPERIMENTAL LAWS THAT CORELATE HYDRAULIC AND ELECTRIC PARAMETERS

    Directory of Open Access Journals (Sweden)

    Héctor José Peinado-Guevara

    2010-09-01

    Full Text Available Hydraulic conductivity is a basic element in the advancement of knowledge of a geological environment in both the flow and transport processes of pollutants for conservation projects, managementand environmental management and also for the development of public policies for protection of ecosystems, among others. The aim of this paper is to obtain the hydraulic conductivity (K and the finescontent (C of saturated granular half using two empirical laws. One correlates the electrical conductivity of saturated granular media σo and water saturated σw which depends on the formation factor(F, cation exchange capacity (CEC and the fines content in the saturated soil. Using data obtained from materials of 18 samples from 6 wells the relationships between F-C and CEC-C were obtained,so the equation reduces to a σo function in terms of σw and C, with a correlation coefficient of R = 0.97. A second experimental law is the one that results from the experimental relationship between K and C,being 1.4054 K 0.1804.C with a correlation coefficient of R = 0.96. From both experimental expressions relationships between K and C, a and C,and C are created so from every pair knowing one of them you get to know the other one. Under the scheme outlined electrical conductivity sections for the saturated medium and fines content are obtained,finding that the groundwater in the study area consists of a thin top layer and beneath it there is a predominantly sandy environment.

  9. Advanced vehicle concepts systems and design analysis studies

    Science.gov (United States)

    Waters, Mark H.; Huynh, Loc C.

    1994-01-01

    The work conducted by the ELORET Institute under this Cooperative Agreement includes the modeling of hypersonic propulsion systems and the evaluation of hypersonic vehicles in general and most recently hypersonic waverider vehicles. This work in hypersonics was applied to the design of a two-stage to orbit launch vehicle which was included in the NASA Access to Space Project. Additional research regarded the Oblique All-Wing (OAW) Project at NASA ARC and included detailed configuration studies of OAW transport aircraft. Finally, work on the modeling of subsonic and supersonic turbofan engines was conducted under this research program.

  10. ADVANCES OF STUDIES ON ACUPUNCTURE TREATMENT OF INSULIN RESISTANCE

    Institute of Scientific and Technical Information of China (English)

    PENG Yan; HOU Li-hui; WU Xiao-ke

    2006-01-01

    Insulin resistance (IR) is referred to decrease or loss of reactivity of the insulin target organs and tissues to biological effects of insulin. It has been proved that IR is a common attack basis for diabetes,hypertension, obesity, cerebrovascular diseases, atherosclerosis and coronary heart disease. The unique therapeutic effects of acupuncture and moxibustion on IR are paid great attention to at home and abroad day by day. In this paper, the survey of studies on interfering action of acupuncture on IR diseases, the mechanisms of acupuncture and moxibustion in treatment of IR, and effects of acupuncture and moxibustion on energy metabolism is reviewed.

  11. Advanced far infrared detector and double donor studies in Ge

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, C.S.

    1994-12-01

    This has application to astronomy and astrophysics. Selenium in Ge has been studied with a doping technique which limits complex formation. Only one ionization level has been found to correspond to selenium, which presumably occupies a substitutional site. This level is extremely unstable and its concentration decreases after annealing at 400C. Future work is planned to anneal the fast neutron damage before much selenium has formed in the {sup 74/76}Ge samples. It is expected that the observed selenium level can be better characterized and the missing selenium level is more likely to be discovered if other defects are removed before {sup 77}Se formation.

  12. Quantifying the Fecal Coliform Loads in Urban Watersheds by Hydrologic/Hydraulic Modeling: Case Study of the Beauport River Watershed in Quebec

    Directory of Open Access Journals (Sweden)

    Amélie Thériault

    2015-02-01

    Full Text Available A three-step method for the identification of the main sources of fecal coliforms (FC in urban waters and for the analysis of remedial actions is proposed. The method is based on (1 The statistical analysis of the relationship between rainfall and FC concentrations in urban rivers; (2 The simulation of hydrology and hydraulics; and (3 Scenario analysis. The proposed method was applied to the Beauport River watershed, in Canada, covering an area of 28.7 km2. FC loads and concentrations in the river, during and following rainfall events, were computed using the Storm Water Management Model (SWMM hydrological/hydraulic simulation model combined with event mean concentrations. It was found that combined sewer overflows (CSOs are the main FC sources, and that FC from stormwater runoff could still impair recreational activities in the Beauport River even if retention tanks were built to contain CSOs. Thus, intervention measures should be applied in order to reduce the concentration of FC in stormwater outfalls. The proposed method could be applied to water quality components other than FC, provided that they are present in stormwater runoff and/or CSOs, and that the time of concentration of the watershed is significantly lower than their persistence in urban waters.

  13. Study of Hydraulic Support Sealing Performance Test Specification%液压支架密封性能试验规范的研究

    Institute of Scientific and Technical Information of China (English)

    薛春明

    2015-01-01

    Due to the lack of performance evaluation system of hydraulic support’s sealing property in current domestic, through the re-search, a set of complete sealing performance test specification is put forward. Firstly, the general structure and the operating principle of the test bed’s hydraulic support sealing performance were introduced. Then we discussed the test conditions and test requirements. Finally, the specific test method was presented.%由于目前国内缺乏完善的液压支架密封性能评价体系,通过研究提出了一套完整的密封性能试验规范。首先介绍了液压支架密封性能试验台的总体结构及工作原理,讨论了试验条件,试验要求,最后给出了具体试验方法。

  14. Horizontal roof gap of backfill hydraulic support

    Institute of Scientific and Technical Information of China (English)

    张强; 张吉雄; 邰阳; 方坤; 殷伟

    2015-01-01

    For the backfill hydraulic support as the key equipment for achieving integration of backfilling and coal mining simultaneously in the practical process, its characteristics will directly influence the backfill body’s compression ratio. Horizontal roof gap, as a key parameter of backfilling characteristics, may impact the backfilling effect from the aspects of control of roof subsidence in advance, support stress, backfilling process and the support design. Firstly, the reason why horizontal roof gap exists was analyzed and its definition, causes and connotation were introduced, then adopting the Pro/E 3D simulation software, three typical 3D entity models of backfill hydraulic supports were built, based on the influence of horizontal roof gap on backfilling effect, and influence rules of four factors, i.e. support height, suspension height, suspension angle and tamping angle, were emphatically analyzed on horizontal roof gap. The results indicate that, the four factors all have significant impacts on horizontal roof gap, but show differences in influence trend and degree, showing negative linear correlation, positive linear correlation, positive semi-parabolic correlation and negative semi-parabolic correlation, respectively. Four legs type is the most adaptive to the four factors, while six legs (II) type has the poorest adaptability, and the horizontal roof gap is small under large support height, small suspension height, small suspension angle and large tamping angle situation. By means of optimizing structure components and their positional relation and suspension height of backfill scrape conveyor in the process of support design and through controlling working face deployment, roof subsidence in advance, mining height and backfilling during engineering application, the horizontal roof gap is optimized. The research results can be served as theoretical basis for support design and guidance for backfill support to have better performance in backfilling.

  15. Gas Test Loop Booster Fuel Hydraulic Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  16. Current Advances in the Metabolomics Study on Lotus Seeds.

    Science.gov (United States)

    Zhu, Mingzhi; Liu, Ting; Guo, Mingquan

    2016-01-01

    Lotus (Nelumbo nucifera), which is distributed widely throughout Asia, Australia and North America, is an aquatic perennial that has been cultivated for over 2,000 years. It is very stimulating that almost all parts of lotus have been consumed as vegetable as well as food, especially the seeds. Except for the nutritive values of lotus, there has been increasing interest in its potential as functional food due to its rich secondary metabolites, such as flavonoids and alkaloids. Not only have these metabolites greatly contributed to the biological process of lotus seeds, but also have been reported to possess multiple health-promoting effects, including antioxidant, anti-amnesic, anti-inflammatory, and anti-tumor activities. Thus, comprehensive metabolomic profiling of these metabolites is of key importance to help understand their biological activities, and other chemical biology features. In this context, this review will provide an update on the current technological platforms, and workflow associated with metabolomic studies on lotus seeds, as well as insights into the application of metabolomics for the improvement of food safety and quality, assisting breeding, and promotion of the study of metabolism and pharmacokinetics of lotus seeds; meanwhile it will also help explore new perspectives and outline future challenges in this fast-growing research subject.

  17. NATO Advanced Study Institute on Insurance and Risk Theory

    CERN Document Server

    Vylder, F; Haezendonck, J

    1986-01-01

    Canadian financial institutions have been in rapid change in the past five years. In response to these changes, the Department of Finance issued a discussion paper: The Regulation of Canadian Financial Institutions, in April 1985, and the government intends to introduce legislation in the fall. This paper studi.es the combinantion of financial institutions from the viewpoint of ruin probability. In risk theory developed to describe insurance companies [1,2,3,4,5J, the ruin probability of a company with initial reserve (capital) u is 6 1 -:;-7;;f3 u 1jJ(u) = H6 e H6 (1) Here,we assume that claims arrive as a Poisson process, and the claim amount is distributed as exponential distribution with expectation liS. 6 is the loading, i.e., premium charged is (1+6) times expected claims. Financial institutions are treated as "insurance companies": the difference between interest charged and interest paid is regarded as premiums, loan defaults are treated as claims.

  18. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  19. [Advances of Epigenetic Studies on Mechanisms of Paramutation].

    Science.gov (United States)

    Cheng, Shan; Wang, Xiao-Rong; Ding, Wei

    2016-02-01

    Studies in traditional genetics have revealed the molecular causes of many genetic diseases and provided direct clues for their prevention, diagnosis and treatments, as well as for various disorders with genetic background. However, the genetic profiles of most human diseases could not be fully explained with the canonical laws of genetics. Paramutation is one of non-Mendelian inheritance phenomenon, which was found in maize first in 1950s. The absence of alteration in nucleotide sequences in the gene-coding alleles suggested that paramutations might involve epigenetic mechanisms to transmit heritable changes in gene expression and determination of phenotypes. Recently, a novel epigenetic mechanism has been found in paramutation researches, emphasized the importance of DNA methyltransferase II mediated RNA (primarily non-coding RNAs) methylation in the occurrence and maintenance of paramutations. Researches on paramutations and their epigenetic mechnisms will not only expand our understanding in the genetic principles of life, but also help to develop new ideas for bioengineer and disease treatments. The present article reviewed the research highlights on molecular mechanisms of paramutation and discussed the prospects in disease study and therapy.

  20. Recent advances in maize nuclear proteomic studies reveal histone modifications

    Directory of Open Access Journals (Sweden)

    Paula eCasati

    2012-12-01

    Full Text Available The nucleus of eukaryotic organisms is highly dynamic and complex, containing different types of macromolecules including DNA, RNA, and a wide range of proteins. Novel proteomic applications have led to a better overall determination of nucleus protein content. Although nuclear plant proteomics is only at the initial phase, several studies have been reported and are summarized in this review using different plants species, such as Arabidopsis thaliana, rice, cowpea, onion, garden cress, and barrel clover. These include the description of the total nuclear or phospho-proteome (i.e. Arabidopsis, cowpea, onion, or the analysis of the differential nuclear proteome under different growth environments (i.e. Arabidopsis, rice, cowpea, onion, garden cress and barrel clover. However, only few reports exist on the analysis of the maize nuclear proteome or its changes under various conditions. This review will present recent data on the study of the nuclear maize proteome, including the analysis of changes in posttranslational modifications in histone proteins.

  1. Who Studies Religion at Advanced Level: Why and to What Effect?

    Science.gov (United States)

    Francis, Leslie J.; Astley, Jeff; Parker, Stephen G.

    2016-01-01

    This study was established to profile students currently studying religion at Advanced level (A level) in terms of their demography, motivation, experience and attitudes. Eight specific areas were identified for examination: their personal motivation to study religion at A level, the personal challenges posed by the subject, their personal…

  2. Identification of Enhancers In Human: Advances In Computational Studies

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2016-03-24

    Roughly ~50% of the human genome, contains noncoding sequences serving as regulatory elements responsible for the diverse gene expression of the cells in the body. One very well studied category of regulatory elements is the category of enhancers. Enhancers increase the transcriptional output in cells through chromatin remodeling or recruitment of complexes of binding proteins. Identification of enhancer using computational techniques is an interesting area of research and up to now several approaches have been proposed. However, the current state-of-the-art methods face limitations since the function of enhancers is clarified, but their mechanism of function is not well understood. This PhD thesis presents a bioinformatics/computer science study that focuses on the problem of identifying enhancers in different human cells using computational techniques. The dissertation is decomposed into four main tasks that we present in different chapters. First, since many of the enhancer’s functions are not well understood, we study the basic biological models by which enhancers trigger transcriptional functions and we survey comprehensively over 30 bioinformatics approaches for identifying enhancers. Next, we elaborate more on the availability of enhancer data as produced by different enhancer identification methods and experimental procedures. In particular, we analyze advantages and disadvantages of existing solutions and we report obstacles that require further consideration. To mitigate these problems we developed the Database of Integrated Human Enhancers (DENdb), a centralized online repository that archives enhancer data from 16 ENCODE cell-lines. The integrated enhancer data are also combined with many other experimental data that can be used to interpret the enhancers content and generate a novel enhancer annotation that complements the existing integrative annotation proposed by the ENCODE consortium. Next, we propose the first deep-learning computational

  3. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  4. Studies on Slurry Design Fundamentals for Advanced CMP Applications

    KAUST Repository

    Basim, G. B.

    2013-06-14

    New developments and device performance requirements in microelectronics industry add to the challenges in chemical mechanical planarization (CMP) process. One of the recently introduced materials is germanium which enables improved performance through better channel mobility in shallow trench isolation (STI) applications. This paper reports on the slurry design alternatives for Ge CMP with surfactant mediation to improve on the silica/germanium selectivity using colloidal silica slurry. In addition to the standard CMP tests to evaluate the material removal rates, atomic force microscopy (AFM) based wear tests were also conducted to evaluate single particle-surface interaction of the polishing system. Furthermore, nature of the surface oxide film of germanium was studied through contact angle measurements and surface roughness tested by AFM. It was observed that the CMP selectivity of the silica/germanium system and defectivity control were possible with a reasonable material removal rate value by using self-assembled structures of cationic surfactants.

  5. NATO Advanced Study Institute on Molecular Physics and Hypersonic Flows

    CERN Document Server

    1996-01-01

    Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibra...

  6. [Advances in the study of virtual channels of cochlear implant].

    Science.gov (United States)

    Zhu, Ziyan; Guan, Tian; Ye, Datian

    2009-12-01

    This paper discusses virtual channels of cochlear implant, which is produced by simultaneous or sequential activation of adjacent cochlear implant electrodes. Virtual channels create and transfer more available spectral pitch information with the limited number of fixed electrodes, which can be recognized as pitch percepts intermediate to those produced by each electrode separately. This technique not only utilizes the interaction of electrodes but also increases the number of place-pitch steps available to cochlear implant listeners. Virtual channels could be used to realize speech recognition in noisy environment, in enjoying music, and in understanding Chinese language. The study of virtual channels would significantly enhance the traditional cochlear implant therapy and benefit people suffering severe to profound hearing loss.

  7. Advances of nanotechnology in agro-environmental studies

    Directory of Open Access Journals (Sweden)

    Stefania Mura

    2013-09-01

    Full Text Available With the increase in the world population and the demand for food, new agricultural practices have been developed to improve food production through the use of more effective pesticides and fertilisers. These technologies can lead to an uncontrolled release of undesired substances into the environment, with the potential to contaminate soil and groundwater. Today, nanotechnology represents a promising approach to improve agricultural production and remediate polluted sites. This paper reviews the recent applications of nanotechnologies in agro-environmental studies with particular attention to the fate of nanomaterials once introduced in water and soil, to the advantages of their use and their possible toxicology. Findings show that the use of nanomaterials can improve the quality of the environment and help detect and remediate polluted sites. Only a small number of nanomaterials demonstrated potential toxic effects. These are discussed in detail.

  8. NATO Advanced Study Institute on Sonochemistry and Sonoluminescence

    CERN Document Server

    Mason, Timothy; Reisse, Jacques; Suslick, Kenneth

    1999-01-01

    Sonochemistry is studied primarily by chemists and sonoluminescence mainly by physicists, but a single physical phenomenon - acoustic cavitation - unites the two areas. The physics of cavitation bubble collapse, is relatively well understood by acoustical physicists but remains practically unknown to the chemists. By contrast, the chemistry that gives rise to electromagnetic emissions and the acceleration of chemical reactions is familiar to chemists, but practically unknown to acoustical physicists. It is just this knowledge gap that the present volume addresses. The first section of the book addresses the fundamentals of cavitation, leading to a more extensive discussion of the fundamentals of cavitation bubble dynamics in section two. A section on single bubble sonoluminescence follows. The two following sections address the new scientific discipline of sonochemistry, and the volume concludes with a section giving detailed descriptions of the applications of sonochemistry. The mixture of tutorial lectures ...

  9. NEW ADVANCES IN THE SCIENTIFIC STUDY OF TEXT COMPREHENSION

    Directory of Open Access Journals (Sweden)

    FERNANDO MARMOLEJO-RAMOS

    2007-08-01

    Full Text Available Text comprehension is a psychological activity that has attracted the interest of cognitive science for a long time.Nevertheless, just recently, neuroscientific studies have emerged in order to unveil the neural machinery behind thisactivity. This paper reviews some of the classical and, particularly, current works in cognitive science and new advancesin the neuroscience of text comprehension. Later on, a potential neurocognitive model for text comprehension basedon the core concepts of the cognitive and neuroscientific approaches is presented. This model preserves the predictionsmade by cognitive models as regards comprehension and the architecture of the new neuropsychological models asregards neurocognitive development. Finally, questions for future research in both domains and some general conclusionsare offered.

  10. Anisotropic and heterogeneous mechanical properties of a stratified shale/limestone sequence at Nash Point, South Wales: A case study for hydraulic fracture propagation through a layered medium

    Science.gov (United States)

    Forbes Inskip, Nathaniel; Meredith, Philip; Gudmundsson, Agust

    2016-04-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through layered sedimentary rocks with different mechanical and elastic properties remains poorly constrained. Yet this is a key issue controlling the propagation of both natural and anthropogenic hydraulic fractures in layered sequences. Here we report measurements of the contrasting mechanical and elastic properties of the Lower Lias at Nash Point, South Wales, which comprises an interbedded sequence of shale and limestone layers, and how those properties may influence fracture propagation. Elastic properties of both materials have been characterised via ultrasonic wave velocity measurements as a function of azimuth on samples cored both normal and parallel to bedding. The shale is highly anisotropic, with P-wave velocities varying from 2231 to 3890 m s-1, giving an anisotropy of ~55%. By contrast, the limestone is essentially isotropic, with a mean P-wave velocity of 5828 m s-1 and an anisotropy of ~2%. The dynamic Young's modulus of the shale, calculated from P- and S-wave velocity data, is also anisotropic with a value of 36 GPa parallel to bedding and 12 GPa normal to bedding. The modulus of the limestone is again isotropic with a value of 80 GPa. It follows that for a vertical fracture propagating (i.e. normal to bedding) the modulus contrast is 6.6. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. There are three principal mechanisms by which a fracture may deflect across or along an interface, namely: Cook-Gordon debonding, stress barrier, and elastic mismatch. Preliminary numerical modelling results (using a Finite Element Modelling software) of induced fractures at Nash Point suggest that all three are important. The results demonstrate a rotation of the maximum

  11. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    Science.gov (United States)

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem.

  12. Anisotropy of Soil Hydraulic Properties Along Arable Slopes

    Institute of Scientific and Technical Information of China (English)

    JING Yuan-Shu; ZHANG Bin; A.THIMM; H.ZEPP

    2008-01-01

    The spatial variations of the soil hydraulic properties were mainly considered in vertical direction.The objectives of this study were to measure water-retention curves,θ(ψ),and unsaturated hydraulic conductivity functions,K(ψ),of the soils sampled at different slope positions in three directions,namely,in vertical direction,along the slope and along the contour,and to determine the effects of sampling direction and slope position of two soil catenas.At the upper slope positions,the surface soils (0-10 cm) sampled in the vertical direction had a lower soil water content,θ,at a certain soil water potential (-1500 kPa <ψ<-10 kPa) and had the greatest unsaturated hydraulic conductivity,K,at ψ> -10kPa.At the lower slope positions,K at ψ>-10 kPa was smaller in the vertical direction than in the direction along the slope.The deep soils (100-110 cm) had similar soil hydraulic properties in all the three directions.The anisotropic variations of the hydraulic properties of the surface soils were ascribed to the effects of natural wetting and drying cycles on the structural heterogeneity.These results suggested that the anisotropy of soil hydraulic properties might be significant in influencing soil water movement along the slope and need to be considered in modeling.

  13. What clinical activities do advanced-practice registered dietitian nutritionists perform? Results of a Delphi study.

    Science.gov (United States)

    Brody, Rebecca A; Byham-Gray, Laura; Touger-Decker, Riva; Passannante, Marian R; Rothpletz Puglia, Pamela; O'Sullivan Maillet, Julie

    2014-05-01

    Activities performed by advanced-practice registered dietitian nutritionists (RDNs) have yet to be clearly elucidated. The study aimed to gain consensus on the practice activities of advanced-practice RDNs who provide direct clinical nutrition care. A three-round Delphi study was conducted. Purposive sampling identified 117 RDN experts working as clinicians and/or managers in direct care settings that met inclusion criteria for advanced-level practice. In Round 1, 85 experts provided open-ended advanced-level practice activities linked to the Nutrition Care Process sections. Using content analysis, the responses were coded into activity statements. In Round 2, experts rated the essentiality of these activities. In Round 3, experts re-rated statements not reaching consensus while viewing their previous rating, the group median, and comments. Median ratings of 1.0 to 3.0 were defined as essential, 4.0 were neither essential nor nonessential, and 5.0 to 7.0 were nonessential. Consensus was reached when the interquartile range of responses to each question was <2.0. Seventy-six (89.4%) experts completed all rounds. From 770 comments, 129 activity statements were generated. All statements reached consensus: 97.7% as essential; 0.8% as nonessential; and 1.5% as neither. Of essential activities, 67.5% were highly essential with limited variability (median=1.0; interquartile range≤2.0). Advanced-practice RDNs' tasks are patient-centered and reflect complex care; involve a comprehensive and discriminating approach; are grounded in advanced knowledge and expertise in clinical nutrition; include use of advanced interviewing, education, and counseling strategies; and require communication with patient, families, and the health care team. The high-level of consensus from experts suggest advanced-level clinical nutrition practice exists and can be defined.

  14. Analysis of Proppant Hydraulic Fracturing in a Sand Oil Reservoir in Southwest of Iran

    OpenAIRE

    Reza Masoomi; Iniko Bassey; Dolgow Sergie Viktorovich; Hosein Dehghani

    2015-01-01

    Hydraulic fracturing is one way to increase the productivity of oil and gas wells. One of the most fundamental successes of hydraulic fracturing operation is selecting the proper size and type of proppants which are used during the process. The aim of this study is optimizing the type and size of used propant in hydraulic fracturing operation in a sand oil reservoir in southwest of Iran. In this study sand and ceramic (sintered bauxite) have been considered as proppant type. Also the various ...

  15. DOUBLE METHOD OF CHARACTERISTICS TO ANALYZE HYDRAULIC-THERMAL TRANSIENTS OF PIPELINE FLOW

    Institute of Scientific and Technical Information of China (English)

    邓松圣; 周明来; 蒲家宁

    2002-01-01

    The hydraulic and thermal transients in pipeline flow were studied. The method of characteristics for hydraulic transient analysis of batch transport of pipeline flow had been improved. The thermal transient equation, in which the term with v3 was involved, had been inferred, while the corresponding method of characteristics was constructed. The double method of characteristics, which can be used to study the coherent hydraulic-thermal transients of batch transport of pipeline flow, was developed.

  16. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    Science.gov (United States)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  17. X-ray imaging in advanced studies of ophthalmic diseases.

    Science.gov (United States)

    Antunes, Andrea; Safatle, Angélica M V; Barros, Paulo S M; Morelhão, Sérgio L

    2006-07-01

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength lambda=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber

  18. Study on mode of on-off operation of water filling-emptying Valve for hydraulic floating ship lift%水力浮动式升船机充泄水阀门启闭方式研究

    Institute of Scientific and Technical Information of China (English)

    张蕊; 吴一红; 章晋雄; 张东

    2011-01-01

    Based on the operation principle of the hydraulic floating ship lift, a conceptual model for its water conveyance system, floating balancing weight-ship lift chamber system is established, and then the on-off operation mode of the water fillingemptying is studied with the numerical computations. The results show that the hydraulic control of the water filling and emptying valve is the key-link to ensure the stable operation and accurate positioning of the hydraulic floating ship lift. Through an intermittent on-off operation mode of the valve, the operation of ship lift chamber can be effectively controlled to meet the requirement concerned by means of setting an appropriate opening of the valve before the chamber being in and out of water, controlling water conveyance flow rate of the system and lowering the speeds of the chamber being in and out of water.%根据水力浮动式升船机的工作原理,研究建立了输水系统、平衡重浮筒--承船厢系统的概化模型,并采用数值计算方法研究了充泄水阀门合理的启闭方式.结果表明,充泄水阀门的水力控制是保证水力浮动式升船机运行稳定和准确停位的关键.通过采用阀门间歇开启方式,在承船厢入、出水前通过设定合适的阀门开度,控制系统输水流量,降低承船厢入、出水的速度,可以有效地控制承船厢运行满足要求.

  19. Study of stabilization/solidification processes (of solid porous wastes) based on hydraulic or bituminous binders; Etude des procedes de stabilisation/solidification (des dechets solides poreux) a base de liants hydrauliques ou de liants bitumineux

    Energy Technology Data Exchange (ETDEWEB)

    Sing-Teniere, Ch.

    1998-02-01

    The first part of this thesis presents the regulatory framework and the technical context linked with the study of stabilized/solidified wastes and with the evaluation of stabilization/solidification processes. A presentation of the two type of ultimate wastes under study (a used catalyst and an activated charcoal) and an analysis of the processes is given. The second part is devoted to the experimental characterization of both types of porous wastes. The third part deals with the processing of such wastes using an hydraulic binder. The study stresses on both on the stabilization/solidification efficiency of the process and on the conditions of its implementation. The same work is made for a process that uses a bituminous binder. Some choice criteria for the selection of the better process are deduced from the examination of the overall data collected. The waste characterization methodology is applied six times: two times for the raw wastes, two times for the same wastes processed with an hydraulic binder, and two times for the same wastes processed with a bituminous binder. (J.S.)

  20. Consensus on the Definition of Advanced Parkinson's Disease: A Neurologists-Based Delphi Study (CEPA Study)

    Science.gov (United States)

    Kulisevsky, Jaime; Tolosa, Eduardo S.

    2017-01-01

    To date, no consensus exists on the key factors for diagnosing advanced Parkinson disease (APD). To obtain consensus on the definition of APD, we performed a prospective, multicenter, Spanish nationwide, 3-round Delphi study (CEPA study). An ad hoc questionnaire was designed with 33 questions concerning the relevance of several clinical features for APD diagnosis. In the first-round, 240 neurologists of the Spanish Movement Disorders Group participated in the study. The results obtained were incorporated into the questionnaire and both, results and questionnaire, were sent out to and fulfilled by 26 experts in Movement Disorders. Review of results from the second-round led to a classification of symptoms as indicative of “definitive,” “probable,” and “possible” APD. This classification was confirmed by 149 previous participating neurologists in a third-round, where 92% completely or very much agreed with the classification. Definitive symptoms of APD included disability requiring help for the activities of daily living, presence of motor fluctuations with limitations to perform basic activities of daily living without help, severe dysphagia, recurrent falls, and dementia. These results will help neurologists to identify some key factors in APD diagnosis, thus allowing users to categorize the patients for a homogeneous recognition of this condition. PMID:28239501