WorldWideScience

Sample records for advanced hydraulic studies

  1. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... and improving hydraulic conditions. Unlike most traditional theses which usually focus only on one particular subject of study, this thesis contains four relatively independent studies which cover the following topics: a newly proposed particle settling enhancement plate, the redesign of the inlet zone...... of a high-flow rate clarifier, identify the hydraulic problems of an old partially functioned CSO facility and investigate possible ways to entirely eliminate untreated CSO by improving its hydraulic capacity and performance. In order to be easily understood, each part includes its own abstract...

  2. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  3. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  4. Advanced Thermal Hydraulics Design of Commercial SFRs

    International Nuclear Information System (INIS)

    Prototype Fast Breeder Reactor (PFBR) is a 500 MWe pool type sodium cooled fast reactor, which is in an advanced stage of construction in India. As a follow-up to PFBR, six commercial sodium cooled fast reactors (Commercial SFR) of similar capacity are to be constructed, wherein the focus is improved economy and enhanced safety. These reactors are envisaged to have twin-unit concept. Design and construction experiences from PFBR provided the motivation to achieve an optimum design for the Commercial SFR with significant design changes. Some of the changes include, (i) provision of four primary pipes per primary sodium pump, (ii) inner vessel with single torus, (iii) dome shaped roof slab supported on reactor vault, (iv) machined thick plate rotating plugs, (v) reduced main vessel diameter with narrow-gap cooling baffles and (vi) safety vessel integrated with reactor vault. Advanced computational fluid dynamic studies have been performed towards thermal hydraulic design of these components. This paper covers thermal hydraulic design validation of the chosen options, including hot pool thermal hydraulics, influence of control plug shape on pool hydraulics, flow requirement for main vessel cooling, safety analysis of primary pipe rupture event and thermal management top shield and reactor vault. (author)

  5. Fundamental study on thermo-hydraulic phenomena concerning passive safety of advanced marine reactor

    International Nuclear Information System (INIS)

    The objective of this study is to investigate the thermo-hydraulic behavior of a fluid region confined in a rectangular parallelepiped cavity equipped with a heater and a cooler. The motivation of this study is to clarify a thermal buffer effect for an innovative marine nuclear reactor to realize passive safety. In the present study, experiments were carried out with conditions of laminar convection. Temperature and flow behavior was visualized by the liquid-crystal suspension method, by which the temperature distribution in liquid can be observed as a colored map. Thermal plumes from the heater and the cooler, global natural circulation in the cavity and thermal stratification were observed as elements of the complicated phenomena. Using a code which solves the Navier-Stokes and energy equations, numerical simulations under steady and unsteady condition were carried out to predict the experimental results for two-dimensional, laminar situations, and a good agreement was obtained. (author)

  6. Advances of study on thermal-hydraulic performance in tight-lattice rod bundles for reduced-moderation water reactors

    International Nuclear Information System (INIS)

    R and D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Reduced-Moderation Water Reactor (RMWR) is started at Japan Atomic Energy Research Institute in collaboration with power company, reactor vendors, universities since 2002. The RMWR can attain the favorable characteristics such as effective utilization of uranium resources, multiple recycling of plutonium, high burn-up and long operation cycle, based on matured LWR technologies. MOX fuel assemblies with tight lattice arrangement are used to increase the conversion ratio by reducing the moderation of neutron. Increasing the in-core void fraction also contributes to the reduction of neutron moderation. The confirmation of thermal-hydraulic feasibility is one of the most important R and D items for the RMWR because of the tight-lattice configuration. In this paper, we will show the R and D plan and describe some advances on experimental and analytical studies. The experimental study is performed mainly using large-scale (37-rod bundle) test facility and the analytical one aims to develop a predictable technology for geometry effects such as gap between rods, grid spacer configuration etc. using advanced 3-D two-phase flow simulation methods. Steady-state and transient critical power experiments are conducted with the test facility (Gap width between rods: 1.0 mm) and the experimental data reveal the feasibility of RMWR. (authors)

  7. Advance of Study on Design Methods of Hydraulic System of Radio Remote Control of Construction Machinery

    Institute of Scientific and Technical Information of China (English)

    FENG Kai-lin; YANG Wei-min; CHEN kang-ning

    2003-01-01

    The working principle of radio remote controlling of construction machinery should be that signals of the radio wave from the transmitter obtained in the receiver were controlled and then changed into electronic analog or digital signals which can be used to drive different actuators and mechanisms of the vehicle.The vehicle could be acted by following the controlling instructions sent by the operator.The best operation mode of construction machinery is suitable not only to manual operating but also to remote controlling in the same vehicle.The design methods of the hydraulic system used for the radio remote controlling of construction machinery are discussed.The design methods of hydraulic circuits for the actuators controlled by solenoid on-off type valves,hydro-electronic multi-way proportional valves,closed loop proportional servo driver or three-way proportional reducing valves are discussed in detail (with real example).The design methods of the power shift transmission of electro-hydraulic controlling,the devices of braking and the directional streering are discussed in this paper.

  8. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    International Nuclear Information System (INIS)

    The objectives of the project are to study thermal hydraulic characteristics of advanced nuclear reactor system for evaluating key thermal-hydraulic phenomena relevant to new safety concepts. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. The Followings are main research topics: - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation-induced Thermal Mixing in a Pool - Development of Thermal-Hydraulic Models for Two-Phase Flow - Construction of T-H Data Base

  9. International benchmark study of advanced thermal hydraulic safety analysis codes against measurements on IEA-R1 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hainoun, A., E-mail: pscientific2@aec.org.sy [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Doval, A. [Nuclear Engineering Department, Av. Cmdt. Luis Piedrabuena 4950, C.P. 8400 S.C de Bariloche, Rio Negro (Argentina); Umbehaun, P. [Centro de Engenharia Nuclear – CEN, IPEN-CNEN/SP, Av. Lineu Prestes 2242-Cidade Universitaria, CEP-05508-000 São Paulo, SP (Brazil); Chatzidakis, S. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Ghazi, N. [Atomic Energy Commission of Syria (AECS), Nuclear Engineering Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Park, S. [Research Reactor Design and Engineering Division, Basic Science Project Operation Dept., Korea Atomic Energy Research Institute (Korea, Republic of); Mladin, M. [Institute for Nuclear Research, Campului Street No. 1, P.O. Box 78, 115400 Mioveni, Arges (Romania); Shokr, A. [Division of Nuclear Installation Safety, Research Reactor Safety Section, International Atomic Energy Agency, A-1400 Vienna (Austria)

    2014-12-15

    Highlights: • A set of advanced system thermal hydraulic codes are benchmarked against IFA of IEA-R1. • Comparative safety analysis of IEA-R1 reactor during LOFA by 7 working teams. • This work covers both experimental and calculation effort and presents new out findings on TH of RR that have not been reported before. • LOFA results discrepancies from 7% to 20% for coolant and peak clad temperatures are predicted conservatively. - Abstract: In the framework of the IAEA Coordination Research Project on “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal hydraulic computational methods and tools for operation and safety analysis of research reactors” the Brazilian research reactor IEA-R1 has been selected as reference facility to perform benchmark calculations for a set of thermal hydraulic codes being widely used by international teams in the field of research reactor (RR) deterministic safety analysis. The goal of the conducted benchmark is to demonstrate the application of innovative reactor analysis tools in the research reactor community, validation of the applied codes and application of the validated codes to perform comprehensive safety analysis of RR. The IEA-R1 is equipped with an Instrumented Fuel Assembly (IFA) which provided measurements for normal operation and loss of flow transient. The measurements comprised coolant and cladding temperatures, reactor power and flow rate. Temperatures are measured at three different radial and axial positions of IFA summing up to 12 measuring points in addition to the coolant inlet and outlet temperatures. The considered benchmark deals with the loss of reactor flow and the subsequent flow reversal from downward forced to upward natural circulation and presents therefore relevant phenomena for the RR safety analysis. The benchmark calculations were performed independently by the participating teams using different thermal hydraulic and safety

  10. Thermal-Hydraulic Experiments and Modelling for Advanced Nuclear Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Song, C. H.; Chung, M. K.; Park, C. K. and others

    2005-04-15

    The objectives of the project are to study thermal hydraulic characteristics of reactor primary system for the verification of the reactor safety and to evaluate new safety concepts of new safety design features. To meet the research goal, several thermal hydraulic experiments were performed and related thermal hydraulic models were developed with the experimental data which were produced through the thermal hydraulic experiments. Followings are main research topics; - Multi-dimensional Phenomena in a Reactor Vessel Downcomer - Condensation Load and Thermal Mixing in the IRWST - Development of Thermal-Hydraulic Models for Two-Phase Flow - Development of Measurement Techniques for Two-Phase Flow - Supercritical Reactor T/H Characteristics Analysis From the above experimental and analytical studies, new safety design features of the advanced power reactors were verified and lots of the safety issues were also resolved.

  11. Thermal hydraulic R and D of Chinese advanced reactors

    International Nuclear Information System (INIS)

    The Chinese government sponsors a program of research, development, and demonstration related to advanced reactors, both small modular reactors and larger systems. These advanced reactors encompass innovative reactor concepts, such as CAP1400 - Chinese large advanced passive pressurized water reactor, Hualong one - Chinese large advanced active and passive pressurized water reactor, ACP100 - Chinese small modular reactor, SCWR- R and D of super critical water-cooled reactor in China, CLEAR - Chinese lead-cooled fast reactor, TMSR - Chinese Thorium molten-salt reactor. The thermal hydraulic R and D of those reactors are summarised. (J.P.N.)

  12. Advanced thermal hydraulic method using 3x3 pin modeling

    International Nuclear Information System (INIS)

    Advanced thermal hydraulic methods are being developed as part of the US DOE sponsored Nuclear Hub program called CASL (Consortium for Advanced Simulation of LWRs). One of the key objectives of the Hub program is to develop a multi-physics tool which evaluates neutronic, thermal hydraulic, structural mechanics and nuclear fuel rod performance in rod bundles to support power uprates, increased burnup/cycle length and life extension for US nuclear plants. Current design analysis tools are separate and applied in series using simplistic models and conservatisms in the analysis. In order to achieve key Nuclear Hub objectives a higher fidelity, multi-physics tool is needed to address the challenge problems that limit current reactor performance. This paper summarizes the preliminary development of a multi-physics tool by performing 3x3 pin modeling and making comparisons to available data. (author)

  13. Kuala Kemaman hydraulic model study

    International Nuclear Information System (INIS)

    There The problems facing the area of Kuala Kemaman are siltation and erosion at shoreline. The objectives of study are to assess the best alignment of the groyne alignment, to ascertain the most stable shoreline regime and to investigate structural measures to overcome the erosion. The scope of study are data collection, wave analysis, hydrodynamic simulation and sediment transport simulation. Numerical models MIKE 21 are used - MIKE 21 NSW, for wind-wave model, which describes the growth, decay and transformation of wind-generated waves and swell in nearshore areas. The study takes into account effects of refraction and shoaling due to varying depth, energy dissipation due to bottom friction and wave breaking, MIKE 21 HD - modelling system for 2D free-surface flow which to stimulate the hydraulics phenomena in estuaries, coastal areas and seas. Predicted tidal elevation and waves (radiation stresses) are considered into study while wind is not considered. MIKE 21 ST - the system that calculates the rates of non-cohesive (sand) sediment transport for both pure content and combined waves and current situation

  14. Equipping simulators with an advanced thermal hydraulics model EDF's experience

    International Nuclear Information System (INIS)

    The development of an accelerated version of the advanced CATHARe-1 thermal hydraulics code designed for EDF training simulators (CATHARE-SIMU) was successfully completed as early as 1991. Its successful integration as the principal model of the SIPA Post-Accident Simulator meant that its use could be extended to full-scale simulators as part of the renovation of the stock of existing simulators. In order to further extend the field of application to accidents occurring in shutdown states requiring action and to catch up with developments in respect of the CATHARE code, EDF initiated the SCAR Project designed to adapt CATHARE-2 to simulator requirements (acceleration, parallelization of the computation and extension of the simulation range). In other respects, the installation of SIPA on workstations means that the authors can envisage the application of this remarkable training facility to the understanding of thermal hydraulics accident phenomena

  15. Advancement of experimentation for measuring hydraulic conductivity of bentonite using high-pressure consolidation test apparatus

    International Nuclear Information System (INIS)

    In the geological disposal facility of high-level radioactive wastes, it is important to grasp the hydraulic conductivity characteristic of bentonite. The purpose of this study is the advancement of the examination method for the measurement of a more reliable hydraulic conductivity using high-pressure consolidation test apparatus (maximum consolidation pressure 10MPa). Consequently, it succeeded in improving the reliability of data by raising the resolution of displacement used for an examination, increasing to 80 the number of measurement data for 2 minutes after making each consolidation pressure act on the occasion of measurement and adopting the data of a high consolidation pressure (more than 5.88MPa) stage. (author)

  16. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  17. Thermal hydraulic evaluation of advanced wire-wrapped assemblies

    International Nuclear Information System (INIS)

    The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs

  18. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical

  19. Advanced model structures applied to system identification of a servo- hydraulic test rig

    Directory of Open Access Journals (Sweden)

    P. Czop

    2010-07-01

    Full Text Available Purpose: This paper deals with a method for the parametric system identification of a nonlinear system to obtain its parametric representation using a linear transfer function. Such representation is applicable in off-line profile correction methods minimizing the error between a reference input signal and a signal performed by the test rig. In turn, a test signal can be perfectly tracked by a servo-hydraulic test rig. This is the requirement in massive production where short test sequences are repeated to validate the products.Design/methodology/approach: A numerical and experimental case studies are presented in the paper. The numerical study presents a system identification process of a nonlinear system consisting of a linear transfer function and a nonlinear output component, being a static function. The experimental study presents a system identification process of a nonlinear system which is a servo-hydraulic test rig. The simulation data has been used to illustrate the feasibility study of the proposed approach, while the experimental data have been used to validate advanced model structures under operational conditions.Findings: The advanced model structures confirmed their better performance by means of the model fit in the time domain.Research limitations/implications: The method applies to analysis of such mechanical and hydraulic systems for which measurements are corrupted by residual harmonic disturbances resulting from system nonlinearities.Practical implications: The advanced model structures are intended to be used as inverse models in off-line signal profile correction.Originality/value: The results state the foundation for the off-line parametric error cancellation method which aims in improving tracking of load signals on servo-hydraulic test rigs.

  20. Development of an Advanced Hydraulic Fracture Mapping System

    Energy Technology Data Exchange (ETDEWEB)

    Norm Warpinski; Steve Wolhart; Larry Griffin; Eric Davis

    2007-01-31

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysis and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.

  1. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  2. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  3. Advanced drilling systems study.

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  4. 23 CFR 650.111 - Location hydraulic studies.

    Science.gov (United States)

    2010-04-01

    ... § 650.111 (c) and (d) shall be summarized in environmental review documents prepared pursuant to 23 CFR... 23 Highways 1 2010-04-01 2010-04-01 false Location hydraulic studies. 650.111 Section 650.111... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains §...

  5. Hydraulic fracture model comparison study: Complete results

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R. [Sandia National Labs., Albuquerque, NM (United States); Abou-Sayed, I.S. [Mobil Exploration and Production Services (United States); Moschovidis, Z. [Amoco Production Co. (US); Parker, C. [CONOCO (US)

    1993-02-01

    Large quantities of natural gas exist in low permeability reservoirs throughout the US. Characteristics of these reservoirs, however, make production difficult and often economic and stimulation is required. Because of the diversity of application, hydraulic fracture design models must be able to account for widely varying rock properties, reservoir properties, in situ stresses, fracturing fluids, and proppant loads. As a result, fracture simulation has emerged as a highly complex endeavor that must be able to describe many different physical processes. The objective of this study was to develop a comparative study of hydraulic-fracture simulators in order to provide stimulation engineers with the necessary information to make rational decisions on the type of models most suited for their needs. This report compares the fracture modeling results of twelve different simulators, some of them run in different modes for eight separate design cases. Comparisons of length, width, height, net pressure, maximum width at the wellbore, average width at the wellbore, and average width in the fracture have been made, both for the final geometry and as a function of time. For the models in this study, differences in fracture length, height and width are often greater than a factor of two. In addition, several comparisons of the same model with different options show a large variability in model output depending upon the options chosen. Two comparisons were made of the same model run by different companies; in both cases the agreement was good. 41 refs., 54 figs., 83 tabs.

  6. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  7. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a

  8. Thermal-hydraulics numerical analyses of Pebble Bed Advanced High Temperature Reactor hot channel

    International Nuclear Information System (INIS)

    Background: The thermal hydraulics behavior of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) hot channel was studied. Purpose: We aim to analyze the thermal-hydraulics behavior of the PB-AHTR, such as pressure drop, temperature distribution of coolant and pebble bed as well as thermal removal capacity in the condition of loss of partial coolant. Methods: We used a modified FLUENT code which was coupled with a local non-equilibrium porous media model by introducing a User Defined Scalar (UDS) in the calculation domain of the reactor core and subjoining different resistance terms (Ergun and KTA) to calculate the temperature of coolant, solid phase of pebble bed and pebble center in the core. Results: Computational results showed that the resistance factor has great influence on pressure drop and velocity distribution, but less impact on the temperature of coolant, solid phase of pebble bed and pebble center. We also confirmed the heat removal capacity of the PB-AHTR in the condition of nominal and loss of partial coolant conditions. Conclusion: The numerical analyses results can provide a useful proposal to optimize the design of PB-AHTR. (authors)

  9. Development of a steady thermal-hydraulic analysis code for the China Advanced Research Reactor

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; QIU Suizheng; GUO Yun; SU Guanghui; JIA Dounan; LIU Tiancai; ZHANG Jianwei

    2007-01-01

    A multi-channel model steady-state thermalhydraulic analysis code was developed for the China Advanced Research Reactor (CARR). By simulating the whole reactor core, the detailed mass flow distribution in the core was obtained. The result shows that structure size plays the most important role in mass flow distribution, and the influence of core power could be neglected under singlephase flow. The temperature field of the fuel element under unsymmetrical cooling condition was also obtained, which is necessary for further study such as stress analysis, etc. Of the fuel element. At the same time, considering the hot channel effect including engineering factor and nuclear factor, calculation of the mean and hot channel was carried out and it is proved that all thermal-hydraulic parameters satisfy the "Safety design regulation of CARR".

  10. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-03-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

  11. Advanced hydraulic fracturing methods to create in situ reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Murdoch, L. [FRx Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

    1997-12-31

    Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

  12. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  13. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  14. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    Science.gov (United States)

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  15. Influence of Rock Fabric on Hydraulic Fracture Propagation: Laboratory Study

    Science.gov (United States)

    Stanchits, S. A.; Desroches, J.; Burghardt, J.; Surdi, A.; Whitney, N.

    2014-12-01

    Massive hydraulic fracturing is required for commercial gas production from unconventional reservoirs. These reservoirs are often highly fractured and heterogeneous, which may cause significant fracture complexity and also arrest propagation of hydraulic fractures, leading to production decrease. One of the goals of our study was to investigate the influence of rock fabric features on near-wellbore fracture geometry and complexity. We performed a series of laboratory tests on Niobrara outcrop shale blocks with dimensions of 30 x 30 x 36 inches in a true-triaxial loading frame. Acoustic Emission (AE) technique was applied to monitor hydraulic fracture initiation and dynamics of fracture propagation. After the tests, the shape of the created hydraulic fracture was mapped by goniometry technique. To estimate fracture aperture, particles of different sizes were injected with fracturing fluid. In all tests, AE analysis indicated hydraulic fracture initiation prior to breakdown or the maximum of wellbore pressure. In most tests, AE analysis revealed asymmetrical hydraulic fracture shapes. Post-test analysis demonstrated good correspondence of AE results with the actual 3D shape of the fracture surface map. AE analysis confirmed that in some of these tests, the hydraulic fracture approached one face of the block before the maximum wellbore pressure had been reached. We have found that in such cases the propagation of hydraulic fracture in the opposite direction was arrested by the presence of mineralized interfaces. Mapping the distribution of injected particles confirmed the creation of a narrow-width aperture in the vicinity of pre-existing interfaces, restricting fracture conductivity. Based on the results of our study, we concluded that the presence of planes of weakness, such as mineralized natural fractures, can result in the arrest of hydraulic fracture propagation, or in poor fracture geometries with limited aperture, that in turn could lead to high net pressure

  16. Study on thermal-hydraulics during a PWR reflood phase

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In-core thermal-hydraulics during a PWR reflood phase following a large-break LOCA are quite unique in comparison with two-phase flow which has been studied widely in previous researches, because the geometry of the flow path is complicated (bundle geometry) and water is at extremely low superficial velocity and almost under stagnant condition. Hence, some phenomena realized during a PWR reflood phase are not understood enough and appropriate analytical models have not been developed, although they are important in a viewpoint of reactor safety evaluation. Therefore, author investigated some phenomena specified as important issues for quantitative prediction, i.e. (1) void fraction in a bundle during a PWR reflood phase, (2) effect of radial core power profile on reflood behavior, (3) effect of combined emergency core coolant injection on reflood behavior, and (4) the core separation into two thermal-hydraulically different regions and the in-core flow circulation behavior observed during a combined injection PWR reflood phase. Further, author made analytical models for these specified issues, and succeeded to predict reflood behaviors at representative types of PWRs, i.e.cold leg injection PWRs and Combined injection PWRs, in good accuracy. Above results were incorporated into REFLA code which is developed at JAERI, and they improved accuracy in prediction and enlarged applicability of the code. In the present study, models were intended to be utilized in a practical use, and hence these models are simplified ones. However, physical understanding on the specified issues in the present study is basic and principal for reflood behavior, and then it is considered to be used in a future advanced code development and improvement. (author). 110 refs.

  17. Advanced neutron source reactor thermal-hydraulic test loop facility description

    Energy Technology Data Exchange (ETDEWEB)

    Felde, D.K.; Farquharson, G.; Hardy, J.H.; King, J.F.; McFee, M.T.; Montgomery, B.H.; Pawel, R.E.; Power, B.H.; Shourbaji, A.A.; Siman-Tov, M.; Wood, R.J.; Yoder, G.L.

    1994-02-01

    The Thermal-Hydraulic Test Loop (THTL) is a facility for experiments constructed to support the development of the Advanced Neutron Source Reactor (ANSR) at Oak Ridge National Laboratory. The ANSR is both cooled and moderated by heavy water and uses uranium silicide fuel. The core is composed of two coaxial fuel-element annuli, each of different diameter. There are 684 parallel aluminum-clad fuel plates (252 in the inner-lower core and 432 in the outer-upper core) arranged in an involute geometry that effectively creates an array of thin rectangular flow channels. Both the fuel plates and the coolant channels are 1.27 mm thick, with a span of 87 mm (lower core), 70 mm (upper core), and 507-mm heated length. The coolant flows vertically upwards at a mass flux of 27 Mg/m{sup 2}s (inlet velocity of 25 m/s) with an inlet temperature of 45{degrees}C and inlet pressure of 3.2 MPa. The average and peak heat fluxes are approximately 6 and 12 MW/m{sup 2}, respectively. The availability of experimental data for both flow excursion (FE) and true critical heat flux (CHF) at the conditions applicable to the ANSR is very limited. The THTL was designed and built to simulate a full-length coolant subchannel of the core, allowing experimental determination of thermal limits under the expected ANSR thermal-hydraulic conditions. For these experimental studies, the involute-shaped fuel plates of the ANSR core with the narrow 1.27-mm flow gap are represented by a narrow rectangular channel. Tests in the THTL will provide both single- and two-phase thermal-hydraulic information. The specific phenomena that are to be examined are (1) single-phase heat-transfer coefficients and friction factors, (2) the point of incipient boiling, (3) nucleate boiling heat-transfer coefficients, (4) two-phase pressure-drop characteristics in the nucleate boiling regime, (5) flow instability limits, and (6) CHF limits.

  18. Hydraulic fracking sustainability assesment : case of study Luena (Cantabria, Spain)

    OpenAIRE

    Fernández Ferreras, Jose Antonio

    2014-01-01

    ABSTRACT: The opposition to Hydraulic fracturing in Cantabria, has led the Regional Government to enact a law that prohibits their use in the region, which has been suspended by the Central Government. The objective of this work is to Identify impacts on the environment, and the main economic and social factors (sustainability) in a case of study Luena research permit (with an estimated shale gas reserves of 10.34*109 Nm3), establishing a guide for assessing the activity of hydraulic fracturi...

  19. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  20. Strategic need for a multi-purpose thermal hydraulic loop for support of advanced reactor technologies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su -Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); Housley, Gregory K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  1. Development of an advanced thermal hydraulics model for nuclear power plant simulation

    International Nuclear Information System (INIS)

    This paper summarizes the development of an advanced digital computer thermal hydraulics model for nuclear power plant simulation. A review of thermal hydraulics code design options is presented together with a review of existing engineering models. CAE has developed an unequal temperatures-unequal velocities five equation model based on the drift flux formalism. CAE has selected the model on the basis that phase separation and thermal non-equilibrium are required to simulate complex and important phenomena occurring in systems such as reactor cooling systems (RCS) and steam generators (SG). The drift flux approach to phase separation and countercurrent flow was selected because extensive testing and validation data supports full-range drift flux parameters correlations. The five equation model was also chosen because it conserves important quantities, i.e. mass and energy of each phase, and because of numerical advantages provided by the case of coupling phasic mass conservation equations with phasic energy conservation equations. The basis of CAE's model as well as supporting models for convection and conduction heat transfer, break flow, interphase mass and heat transfer are described. Comparison of code calculations with experimental measurements taken during a small break LOCA test with the OTIS facility are presented. The use of such advanced thermal hydraulics model as plant analyzer considerably improves simulation capabilities of severe transient as well as of normal operation of two phase systems in nuclear power plants. (orig./HP)

  2. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  3. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions

  4. Advanced thermal-hydraulic and neutronic codes: current and future applications. Summary and conclusions

    International Nuclear Information System (INIS)

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  5. Proceedings of the workshop on advanced thermal-hydraulic and neutronic codes: current and future applications

    International Nuclear Information System (INIS)

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  6. Tap Water Hydraulic Control Systems - Design and Industrial Applications. Chapter 7 in Advances in Hydraulic Control Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    Deals with development and design of modern tap water hydraulic components and systems, in particalar the Danfoss Nessie-family of components and systems working with pure tap water without any kind of additives. Typical industrial applications are presented and the perspectives of new industrial...

  7. Update to advanced neutron source steady-state thermal-hydraulic report

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.; Carbajo, J.J.; Morris, D.G.; Nelson, W.R.

    1996-05-01

    This report is intended to be a supplement to ORNL/TM-12398, Steady-State Thermal-Hydraulic Design Analysis of the Advanced Neutron Source Reactor. It updates the core thermal-hydrualic design to the latest three-element configuration and also provides the most recent information on the thermal-hydraulic statistical uncertainty analysis. In addition, it includes calculations of beam tube cooling and control rod lift forces, which were not addressed in the initial report. This report describes work that is a snapshot in time as it stood at the end of the project. The three-element core calculations include a description of changes made to the overall coolant system; however, most of the analysis is focused on fuel loading thermal-hydraulic calculations. This analysis uses updated uncertainty values and indicates that a two-dimensional fuel grading in the three-element core would still be necessary to meet the desired operating and safety criteria. Analysis of cooling in the reflector tank examines various cooling options for the reflector tank components. This work investigated multiple forced convection designs as well as natural convection cooling requirements. Lift forces on the inner control rods caused by the upward coolant flow were also examined. Initial control rod designs were such that a sheared control rod would tend to lift because of flow forces. Design changes were recommended that would eliminate this issue. They included geometry changes to the inner control rod cooling channels, changes to the orificing in the central hole region, and reduction of inner control rod coolant velocity.

  8. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    Energy Technology Data Exchange (ETDEWEB)

    A. Joseph Palmer; Gerry L. McCormick; Shannon J. Corrigan

    2010-06-01

    2010 International Congress on Advances in Nuclear Power Plants (ICAPP’10) ANS Annual Meeting Imbedded Topical San Diego, CA June 13 – 17, 2010 Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR) Author: A. Joseph Palmer, Mechanical Engineer, Irradiation Test Programs, 208-526-8700, Joe.Palmer@INL.gov Affiliation: Idaho National Laboratory P.O. Box 1625, MS-3840 Idaho Falls, ID 83415 INL/CON-10-17680 ABSTRACT Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory’s (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed

  9. Study on an Axial Flow Hydraulic Turbine with Collection Device

    OpenAIRE

    Yasuyuki Nishi; Terumi Inagaki; Kaoru Okubo; Norio Kikuchi

    2014-01-01

    We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inl...

  10. 75 FR 35023 - Informational Public Meetings for Hydraulic Fracturing Research Study

    Science.gov (United States)

    2010-06-21

    ... AGENCY Informational Public Meetings for Hydraulic Fracturing Research Study AGENCY: Environmental... between hydraulic fracturing and drinking water. The meetings are open to all interested parties and will... Hydraulic Fracturing Study informational meetings are as follows: July 8, 2010, from 6 p.m. to 10 p.m.,...

  11. Hydraulic Shuttle Irradiation System (HSIS) Recently Installed in the Advanced Test Reactor (ATR)

    International Nuclear Information System (INIS)

    Most test reactors are equipped with shuttle facilities (sometimes called rabbit tubes) whereby small capsules can be inserted into the reactor and retrieved during power operations. With the installation of Hydraulic Shuttle Irradiation System (HSIS) this capability has been restored to the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The general design and operating principles of this system were patterned after the hydraulic rabbit at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR), which has operated successfully for many years. Using primary coolant as the motive medium the HSIS system is designed to simultaneously transport fourteen shuttle capsules, each 16 mm OD x 57 mm long, to and from the B-7 position of the reactor. The B-7 position is one of the higher flux positions in the reactor with typical thermal and fast (>1 Mev) fluxes of 2.8E+14 n/cm2/sec and 1.9E+14 n/cm2/sec respectively. The available space inside each shuttle is approximately 14 mm diameter x 50 mm long. The shuttle containers are made from titanium which was selected for its low neutron activation properties and durability. Shuttles can be irradiated for time periods ranging from a few minutes to several months. The Send and Receive Station (SRS) for the HSIS is located 2.5 m deep in the ATR canal which allows irradiated shuttles to be easily moved from the SRS to a wet loaded cask, or transport pig. The HSIS system first irradiated (empty) shuttles in September 2009 and has since completed a Readiness Assessment in November 2009. The HSIS is a key component of the ATR National Scientific User Facility (NSUF) operated by Battelle Energy Alliance, LLC and is available to a wide variety of university researchers for nuclear fuels and materials experiments as well as medical isotope research and production.

  12. An experimental study of hydraulic fracture and erosion

    OpenAIRE

    Mhach, H.K.

    1991-01-01

    This thesis concerns an experimental investigation of hydraulic fracturing when the water pressure is increased rapidly in a borehole and development of a possible simple method for identifying erodible clayey soils. Case histories of hydraulic fracturing in embankment dams and boreholes are reviewed. It is found that hydraulic fracturing in dams is often associated with rapid reservoir filling and zones of low stresses. Previously proposed criteria for hydraulic fracturing are outlined. It i...

  13. Study on Knowledge -based Intelligent Fault Diagnosis of Hydraulic System

    Directory of Open Access Journals (Sweden)

    Xuexia Liu

    2012-12-01

    Full Text Available A general framework of hydraulic fault diagnosis system was studied. It consisted of equipment knowledge bases, real-time databases, fusion reasoning module, knowledge acquisition module and so on. A tree-structure model of fault knowledge was established. Fault nodes knowledge was encapsulated by object-oriented technique. Complete knowledge bases were made including fault bases and diagnosis bases. It could describe the fault positions, the structure of fault, cause-symptom relationships, diagnosis principles and other knowledge. Taking the fault of left and right lifting oil cylinder out of sync for example, the diagnostic results show that the methods were effective.

  14. Study on the Mathematical Model of Hydraulic Jump Atomization

    Institute of Scientific and Technical Information of China (English)

    张华; 练继建; 刘昉

    2004-01-01

    An equation of atomization quantity from energy dissipation by hydraulic jump was derived from the dimensional analysis. By applying Gauss diffusion equation, the spray diffusion rule in valley was studied under the condition of continuous linear source and random wind direction.By considering the spray-rain switching process, coagulation, condensation and evaporation of droplets, the air temperature, air relative humidity, spray density and the rainfall intensity in the lower reaches of the linear source were calculated. The 3-D numerical simulation fitted well with prototype monitoring. Finally, the prediction of atomization influence on environments for Xiangjiaba Hydropower Station was conducted.

  15. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    Science.gov (United States)

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  16. Korean development of advanced thermal-hydraulic codes for water reactors and HTGRS: space and gamma

    International Nuclear Information System (INIS)

    Korea has been developing SPACE(Safety and Performance Analysis CodE) and GAMMA(GAs Multicomponent Mixture Analysis) codes for safety analysis of PWRs and HTGRs, respectively. SPACE is being developed by the Korea nuclear industry, which is a thermal-hydraulic analysis code for safety analysis of a PWR. It will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWR and the design of an advanced PWR. It consists of the up-to-date physical models of two-phase flow dealing with multi-dimensional two-fluid, three-field flow. The GAMMA code consists of the multi-dimensional governing equations consisting of the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of n species. GAMMA is based on a porous media model so that we can deal with the thermo-fluid and chemical reaction behaviors in a multicomponent mixture system as well as heat transfer within the solid components, free and forced convection between a solid and a fluid, and radiative heat transfer between the solid surfaces. GAMMA has a model for helium turbines for HTGRs based on the throughflow calculation. We performed extensive code assessment for the V&V of SPACE and GAMMA. (author)

  17. Hydraulic performance of biofilters for stormwater management: first lessons from both laboratory and field studies.

    Science.gov (United States)

    Le Coustumer, S; Fletcher, T D; Deletic, A; Barraud, S

    2007-01-01

    In order to improve knowledge on stormwater biofiltration systems, the Facility for Advancing Water Biofiltration (FAWB) was created at Monash University in Melbourne, Australia. One of the aims of FAWB is to improve hydraulic performance of biofilters, given that there are numerous cases of infiltration devices failing after a few years of operation. Experiments were conducted in the field to evaluate the performance of existing systems, and in the lab to understand the factors that influence hydraulic behavior over time. The field experiments show that 43% of tested systems are below nominal Australian guidelines for hydraulic conductivity. The preliminary lab results show a decrease in hydraulic conductivity during the first weeks of operation (mu=66% reduction), although most remain within acceptable limits. Influences of the size of the biofilter relative to its catchment and the importance of the type of media, on the evolution of hydraulic conductivity, are examined. PMID:18048981

  18. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Len Volk; Mark Pickell; Evren Ozbayoglu; Barkim Demirdal; Paco Vieira; Affonso Lourenco

    1999-10-15

    This report includes a review of the progress made in ACTF Flow Loop development and research during 90 days pre-award period (May 15-July 14, 1999) and the following three months after the project approval date (July15-October 15, 1999) The report presents information on the following specific subjects; (a) Progress in Advanced Cuttings Transport Facility design and development, (b) Progress report on the research project ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress report on the research project ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress report on the research project ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress report on the research project ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Progress report on the instrumentation tasks (Tasks 11 and 12) (g) Activities towards technology transfer and developing contacts with oil and service company members.

  19. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Lei Zhou

    2000-01-30

    This is the second quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between Oct 1, 2000 and December 31, 2000. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility (Task 2: Addition of a foam generation and breaker system), (b) Research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (c) Research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (d) Research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (e) Research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Research on instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), and Foam properties while transporting cuttings. (Task 12), (h) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members. The tasks Completed During This Quarter are Task 7 and Task 8.

  20. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira

    2000-10-30

    This is the first quarterly progress report for Year 2 of the ACTS project. It includes a review of progress made in Flow Loop development and research during the period of time between July 14, 2000 and September 30, 2000. This report presents information on the following specific tasks: (a) Progress in Advanced Cuttings Transport Facility design and development (Task 2), (b) Progress on research project (Task 8): ''Study of Flow of Synthetic Drilling Fluids Under Elevated Pressure and Temperature Conditions'', (c) Progress on research project (Task 6): ''Study of Cuttings Transport with Foam Under LPAT Conditions (Joint Project with TUDRP)'', (d) Progress on research project (Task 7): ''Study of Cuttings Transport with Aerated Muds Under LPAT Conditions (Joint Project with TUDRP)'', (e) Progress on research project (Task 9): ''Study of Foam Flow Behavior Under EPET Conditions'', (f) Initiate research on project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (g) Progress on instrumentation tasks to measure: Cuttings concentration and distribution (Tasks 11), and Foam properties (Task 12), (h) Initiate a comprehensive safety review of all flow-loop components and operational procedures. Since the previous Task 1 has been completed, we will now designate this new task as: (Task 1S). (i) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  1. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  2. Triaxial coreflood study of the hydraulic fracturing of Utica Shale

    Science.gov (United States)

    Carey, J. W.; Frash, L.; Viswanathan, H. S.

    2015-12-01

    One of the central questions in unconventional oil and gas production research is the cause of limited recovery of hydrocarbon. There are many hypotheses including: 1) inadequate penetration of fractures within the stimulated volume; 2) limited proppant delivery; 3) multiphase flow phenomena that blocks hydrocarbon migration; etc. Underlying any solution to this problem must be an understanding of the hydrologic properties of hydraulically fractured shale. In this study, we conduct triaxial coreflood experiments using a gasket sealing mechanism to characterize hydraulic fracture development and permeability of Utica Shale samples. Our approach also includes fracture propagation with proppants. The triaxial coreflood experiments were conducted with an integrated x-ray tomography system that allows direct observation of fracture development using x-ray video radiography and x-ray computed tomography at elevated pressure. A semi-circular, fracture initiation notch was cut into an end-face of the cylindrical samples (1"-diameter with lengths from 0.375 to 1"). The notch was aligned parallel with the x-ray beam to allow video radiography of fracture growth as a function of injection pressure. The proppants included tungsten powder that provided good x-ray contrast for tracing proppant delivery and distribution within the fracture system. Fractures were propagated at injection pressures in excess of the confining pressure and permeability measurements were made in samples where the fractures propagated through the length of the sample, ideally without penetrating the sample sides. Following fracture development, permeability was characterized as a function of hydrostatic pressure and injection pressure. X-ray video radioadiography was used to study changes in fracture aperture in relation to permeability and proppant embedment. X-ray tomography was collected at steady-state conditions to fully characterize fracture geometry and proppant distribution.

  3. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk, Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2002-10-30

    This is the first quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between July 1, 2002 and Sept. 30, 2002. This report presents a review of progress on the following specific tasks: (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System, (b) New Research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions'', (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions'', (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings (Task 12), Viscosity of Foam under EPET (Task 9b). (f) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (g) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  4. Sensitivity study on hydraulic well testing inversion using simulated annealing

    International Nuclear Information System (INIS)

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion

  5. Study of the Process of Hydraulic Mixing in Anaerobic Digester of Biogas Plant

    Directory of Open Access Journals (Sweden)

    Karaeva Julia V.

    2015-03-01

    Full Text Available Two systems of hydraulic mixing in a vertical cylindrical anaerobic digester: standard and modernised are discussed in the paper. Numerical investigations that were carried out are focused on a study of hydrodynamic processes in an aerobic digester using two various systems of hydraulic mixing as well as on analysis of the efficiency of methane fermentation process accomplished under different geometric parameters of an anaerobic digester and systems of hydraulic mixing.

  6. The dynamic running law study on driving system of hydraulic winder

    Institute of Scientific and Technical Information of China (English)

    彭佑多; 刘德顺; 郭迎福; 张永忠; 文西芹

    2002-01-01

    Dynamic running law of the hydraulic driving system decides the hoisting cage velocity curve in a hoisting cycle and is decided by the characteristic of the hydraulic driving system and by the operating speed of hoist driver. The paper studies the dynamic running law of hydraulic driving system, analyses the influence of driver operating speed on the dynamic running characteristic, and points out the reasonable driver operating speed to control the dynamic stress in rope and to reduce the oscillation of rope system.

  7. AREVA NP's advanced Thermal Hydraulic Methods for Reactor Core and Fuel Assembly Design

    International Nuclear Information System (INIS)

    The main objective of the Thermal Hydraulic (TH) analysis of reactor core and fuel assembly design is the determination of pressure loss and critical heat flux (CHF). Especially the description of the latter effect requires the modeling of a large variety of physical phenomena starting with single phase quantities like turbulence or fluid-wall friction, two phase quantities like void distributions, heat transfer between fuel rod and fluid and ultimately the CHF mechanism itself. Additional complexity is added by the fact that the relevant geometric scales which have to be resolved, cover a wide range from the length of the fuel assembly (∼ 4000 mm), over the typical dimensions of sub-channel cross sections and the vanes on the spacer grids (∼ 10 mm) down to the microscopic scales set by bubble sizes and boundary layers (mm to sub mm). Due to the above described situation the necessary TH quantities are often determined by measurements. The main advantage of this technique is that measurements are widely accepted and trusted if the geometry and flow conditions are sufficiently close to real reactor conditions. The main disadvantage of experiments is that they are expensive both with respect to time and money; especially in high pressure tests they give only limited access to the test object. Consequently there is a strong interest to develop computer codes with the goal of minimizing the need of experiments, and hence, speeding up and reducing costs of fuel assembly and core design. Today most of the design work is based on sub-channel codes, originally developed in the 70's; they provide an effective description of the TH in fuel assemblies by regarding the fuel assembly as a system of communicating channels (the volume enclosed by four fuel rods = one sub-channel). Further development of these codes is one main focus of AREVA NP's Thermal Hydraulic method and code development strategy. To focus the know-how and resources existing in the different regions of

  8. 75 FR 36387 - Informational Public Meetings for Hydraulic Fracturing Research Study; Correction

    Science.gov (United States)

    2010-06-25

    ..., 2010, in FR doc. 2010-14897, on page 35023, in the third Column, correct the Web site addresses shown... AGENCY Informational Public Meetings for Hydraulic Fracturing Research Study; Correction AGENCY... Hydraulic Fracturing Research Study. The document contained an incorrect EPA Web site address in two...

  9. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  10. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Ergun Kuru; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Gerald Kane; Mark Pickell; Len Volk; Mike Volk; Barkim Demirdal; Affonso Lourenco; Evren Ozbayoglu; Paco Vieira; Neelima Godugu

    2000-07-30

    ACTS flow loop is now operational under elevated pressure and temperature. Currently, experiments with synthetic based drilling fluids under pressure and temperature are being conducted. Based on the analysis of Fann 70 data, empirical correlations defining the shear stress as a function of temperature, pressure and the shear rate have been developed for Petrobras synthetic drilling fluids. PVT equipment has been modified for testing Synthetic oil base drilling fluids. PVT tests with Petrobras Synthetic base mud have been conducted and results are being analyzed Foam flow experiments have been conducted and the analysis of the data has been carried out to characterize the rheology of the foam. Comparison of pressure loss prediction from the available foam hydraulic models and the test results has been made. Cuttings transport experiments in horizontal annulus section have been conducted using air, water and cuttings. Currently, cuttings transport tests in inclined test section are being conducted. Foam PVT analysis tests have been conducted. Foam stability experiments have also been conducted. Effects of salt and oil concentration on the foam stability have been investigated. Design of ACTS flow loop modification for foam and aerated mud flow has been completed. A flow loop operation procedure for conducting foam flow experiments under EPET conditions has been prepared Design of the lab-scale flow loop for dynamic foam characterization and cuttings monitoring instrumentation tests has been completed. The construction of the test loop is underway. As part of the technology transport efforts, Advisory Board Meeting with ACTS-JIP industry members has been organized on May 13, 2000.

  12. Experimental Study on Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    International Nuclear Information System (INIS)

    In this paper, an experimental investigation is implemented on the abrasive waterjet polishing technique to evaluate its capability in polishing of surfaces and edges of hydraulic turbine blades. For this, the properties of this method are studied and the main parameters affecting its performance are determined. Then, an experimental test-rig is designed, manufactured and tested to be used in this study. This test-rig can be used to polish linear and planar areas on the surface of the desired workpieces. Considering the number of parameters and their levels, the Taguchi method is used to design the preliminary experiments. All experiments are then implemented according to the Taguchi L18 orthogonal array. The signal-to-noise ratios obtained from the results of these experiments are used to determine the importance of the controlled polishing parameters on the final quality of the polished surface. The evaluations on these ratios reveal that the nozzle angle and the nozzle diameter have the most important impact on the results. The outcomes of these experiments can be used as a basis to design a more precise set of experiments in which the optimal values of each parameter can be estimated

  13. Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (Monterey, CA)

    Science.gov (United States)

    A summary of EPA's research relating to potential impacts of hydraulic fracturing on drinking water resources will be presented. Background about the study plan development will be presented along with an analysis of the water cycle as it relates to hydraulic fracturing processe...

  14. Experimental studies of rock fracture behavior related to hydraulic fracture

    Science.gov (United States)

    Ma, Zifeng

    The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.

  15. Study on an Axial Flow Hydraulic Turbine with Collection Device

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nishi

    2014-01-01

    Full Text Available We propose a new type of portable hydraulic turbine that uses the kinetic energy of flow in open channels. The turbine comprises a runner with an appended collection device that includes a diffuser section in an attempt to improve the output by catching and accelerating the flow. With such turbines, the performance of the collection device, and a composite body comprising the runner and collection device were studied using numerical analysis. Among four stand-alone collection devices, the inlet velocity ratio was most improved by the collection device featuring an inlet nozzle and brim. The inlet velocity ratio of the composite body was significantly lower than that of the stand-alone collection device, owing to the resistance of the runner itself, the decreased diffuser pressure recovery coefficient, and the increased backpressure coefficient. However, at the maximum output tip speed ratio, the inlet velocity ratio and the loading coefficient were approximately 31% and 22% higher, respectively, for the composite body than for the isolated runner. In particular, the input power coefficient significantly increased (by approximately 2.76 times owing to the increase in the inlet velocity ratio. Verification tests were also conducted in a real canal to establish the actual effectiveness of the turbine.

  16. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  17. Theoretical and experimental studies of heavy liquid metal thermal hydraulics. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    Through the Nuclear Energy Department's Technical Working Group on Fast Reactors (TWG-FR), the IAEA provides a forum for exchange of information on national programmes, collaborative assessments, knowledge preservation, and cooperative research in areas agreed by the Member States with fast reactor and partitioning and transmutation development programmes (e.g. accelerator driven systems (ADS)). Trends in advanced fast reactor and ADS designs and technology development are periodically summarized in status reports, symposia, and seminar proceedings prepared by the IAEA to provide all interested IAEA Member States with balanced and objective information. The use of heavy liquid metals (HLM) is rapidly diffusing in different research and industrial fields. The detailed knowledge of the basic thermal hydraulics phenomena associated with their use is a necessary step for the development of the numerical codes to be used in the engineering design of HLM components. This is particularly true in the case of lead or lead-bismuth eutectic alloy cooled fast reactors, high power particle beam targets and in the case of the cooling of accelerator driven sub-critical cores where the use of computational fluid dynamic (CFD) design codes is mandatory. Periodic information exchange within the frame of the TWG-FR has lead to the conclusion that the experience in HLM thermal fluid dynamics with regard to both the theoretical/numerical and experimental fields was limited and somehow dispersed. This is the case, e.g. when considering turbulent exchange phenomena, free-surface problems, and two-phase flows. Consequently, Member States representatives participating in the 35th Annual Meeting of the TWG-FR (Karlsruhe, Germany, 22-26 April 2002) recommended holding a technical meeting (TM) on Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics. Following this recommendation, the IAEA has convened the Technical Meeting on Theoretical and Experimental Studies of

  18. Application study of magnetic fluid seal in hydraulic turbine

    Science.gov (United States)

    Yu, Z. Y.; Zhang, W.

    2012-11-01

    The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.

  19. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    Science.gov (United States)

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  20. Using CFD as a support tool for the initial study of Hydraulic Turbomachinery

    Directory of Open Access Journals (Sweden)

    José Luis Vicéns

    2014-03-01

    Full Text Available The Engineering Education requires that students acquire an appropriate knowledge on a mathematical computational language as well as on a numerical simulation procedure. The computational language of mathematics usually is taught in advanced courses, once that the curriculum mathematical education is mainly completed; in addition, the numerical simulation is usually located late or even in doctoral studies. In this paper, we propose that the Computational Fluid Dynamics (CFD become to be a teaching-learning tool, instead of a strategic resource only. CFD can be regarded as a transversal skill i.e., as a useful educational tool for the Hydraulic Turbomachines learning, which achieves to overcome some epistemological obstacles of students. We develop a teaching-learning method in which the Tutor Facilitator plays an important role.

  1. The status of studies on fast reactor core thermal hydraulics at PNC

    International Nuclear Information System (INIS)

    An outlook was addressed on investigative activities of the fast reactor core thermal-hydraulics at Power Reactor and Nuclear Fuel Development Corporation. Firstly, a computational modeling to predict flow field under natural circulation decay heat removal condition using multi-dimensional codes and its validation were presented. The validation was carried out through calculations of sodium experiments on an inter-subassembly heat transfer, a transient from forced to natural circulation and an inter-wrapper flow. Secondly, experimental and computational studies were expressed on local blockage with porous media in a fuel subassembly. Lastly, information was presented on an advanced computational code based on a subchannel analysis code. The code is under the development and extended to perform whole core simulation. (author)

  2. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  3. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    Energy Technology Data Exchange (ETDEWEB)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  4. Benchmarking of thermal hydraulic loop models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES), phase-I: Isothermal steady state forced convection

    International Nuclear Information System (INIS)

    As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.

  5. STUDY ON CARRIER PURIFICATION TECHNOLOGY FOR HYDRAULIC OIL

    Institute of Scientific and Technical Information of China (English)

    ZhangXi

    1996-01-01

    The surface feature of contaminative oil is analysed and the theory of carrier purification technology for hydraulic oil is put forward.Experiments have been done in laboratory.The main performance of the purified oil has got to a level of new oil.

  6. Electro-hydraulic forming of advanced high-strength steels: Deformation and microstructural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, Aashish; Stephens, Elizabeth V.; Edwards, Danny J.; Smith, Mark T.; Davies, Richard W.

    2012-06-08

    This conference manuscript describes mechanical and microstructural characterization of steel sheets that were deformed via the electro-hydraulic forming technique. The manuscripts shows the importance of the experimental technique developed at PNNL in the sense that the deformation history information enabled by this technique is not obtainable through existing conventional approaches. Additionally, strain-rate effects on texture development during sheet-forming at high-rates are described. Thus, we have demonstrated that it is now possible to correlate deformation history with microstructural development during high-rate forming, a capability that is unique to PNNL.

  7. Advanced computer simulation and modelling for solving single phase hydraulic problems

    International Nuclear Information System (INIS)

    This paper discusses the methods to perform single phase hydraulic calculations for complex piping networks and applications which require a high degree of accuracy. Two separate computer programs are utilized for the simulation and modeling of the networks. Equivalent length of piping and corresponding flows and pressures are calculated by using Overthruster and Kypipe computer programs respectively. The Overthruster Program is designed to perform standardized inplant L/D hydraulic calculations. This program contains certain empirical equations and data. The Kypipe Program is designed specifically to simulate steady state pressure and flow calculations in piping distribution system transporting fluids. Fluor Daniel, completed the modification design and Southern California Edison installed the modification and performed start-up testing of the system. The actual test results, pressures and flows, correlated well within 2 percent of the values predicted by analytical methods. This unique example demonstrates analytical capabilities and the level of accuracies achieved by using this method versus the conventional methods with typical inaccuracies of 10 to 15 percent

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-04-30

    Experiments on the flow loop are continuing. Improvements to the software for data acquisition are being made as additional experience with three-phase flow is gained. Modifications are being made to the Cuttings Injection System in order to improve control and the precision of cuttings injection. The design details for a drill-pipe Rotation System have been completed. A US Patent was filed on October 28, 2002 for a new design for an instrument that can generate a variety of foams under elevated pressures and temperatures and then transfer the test foam to a viscometer for measurements of viscosity. Theoretical analyses of cuttings transport phenomena based on a layered model is under development. Calibrations of two nuclear densitometers have been completed. Baseline tests have been run to determine wall roughness in the 4 different tests sections (i.e. 2-in, 3-in, 4-in pipes and 5.76-in by 3.5-in annulus) of the flow loop. Tests have also been conducted with aerated fluids at EPET conditions. Preliminary experiments on the two candidate aqueous foam formulations were conducted which included rheological tests of the base fluid and foam stability reports. These were conducted after acceptance of the proposal on the Study of Cuttings Transport with Foam Under Elevated Pressure and Elevated Temperature Conditions. Preparation of a test matrix for cuttings-transport experiments with foam in the ACTF is also under way. A controller for instrumentation to measure cuttings concentration and distribution has been designed that can control four transceivers at a time. A prototype of the control circuit board was built and tested. Tests showed that there was a problem with radiated noise. AN improved circuit board was designed and sent to an external expert to verify the new design. The new board is being fabricated and will first be tested with static water and gravel in an annulus at elevated temperatures. A series of viscometer tests to measure foam properties have

  9. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  10. Advances and future of ship hydraulic propulsion technology%船舶液压推进技术评述

    Institute of Scientific and Technical Information of China (English)

    纪玉龙; 张英; 郭阳; 孙玉清

    2011-01-01

    Ship hydraulic propulsion technology is analyzed and,the development and research status of ship hydraulic propulsion technology is summarized,and the prospect and development trend of the technology is discussed.Results show that the development of hydraulic propulsion technology in china is slow,and the further research should be focused on such aspects as high efficiency dive system design,intelligent and modular components design,noise reduction and strengthening system operating conditions matching performance,etc.With the further study of the technology,hydraulic propulsion technology will play more and more important role in military ships,civil ships and submersible boats,and it is expected to be the first choice for some special ships.%对船舶液压推进技术进行论述,并对其发展过程以及现状进行总结,在此基础上探讨液压推进技术的前景以及研究方向.液压推进技术在我国发展比较缓慢,对其深入研究应集中于高效传动方案设计、元件智能化以及模块化、降低噪声、强化系统工况匹配性能等方面.随着对该技术研究的深入,液压推进技术将在军用船舶、民用作业船舶以及深潜器等领域发挥越来越重要的作用,并有望成为某些特种船舶的首选推进方式.

  11. STUDY OF A FAULT DIAGNOSIS EXPERT SYSTEM FOR SYNTHETIC MINING SYSTEM HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    Han Yilun

    2000-01-01

    Fault diagnosis expert system for hydraulic support is studied.The system is achieved by Turbo-prolong Language, it summaries the experience of the domain expert and sets up a fault tree, knowledge base is developed by a productive rule.According to the feature of diagnosis, the system selects forward non-determination inferring and limited depth-first search strategy.It can accomplish expert diagnosis of more than 50 kinds faults in hydraulic support.

  12. Thermal-hydraulic experiments of an advanced PIUS-type reactor

    International Nuclear Information System (INIS)

    The author constructed a semi-large scale experimental apparatus for simulating thermal-hydraulic behavior of the PIUS-type reactor with keeping the volumetric scaling ratio to the realistic reactor model. Fundamental experiments such as a steady state operation and a pump trip simulation were reported in ICONE-3(1995). In this paper the authors present two main results. One is a feedback control system using the upper density lock, and a start up simulation based on the non-uniform heating for both the primary loop and the poison loop. The other is a control system of small scale sub-loop attached to the poison loop in order to establish PIUS principle on the realistic operation of the PIUS-type reactor

  13. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    International Nuclear Information System (INIS)

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors

  14. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [Brookhaven National Lab., Upton, NY (United States)] [comp.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  15. Experimental Study For Pizometric Head Distribution Under Hydraulic Structures

    Directory of Open Access Journals (Sweden)

    Dr. Najm Obaid Salim Alghazali

    2015-04-01

    Full Text Available Abstract In this research the experimental method by using Hydraulic modeling used to determination the flow net in order to analyses seepage flow through single- layer soil foundation underneath hydraulic structure. as well as steady the consequence of the cut-off inclination angle on exit gradient factor of safety uplift pressure and quantity of seepage by using seepage tank were designed in the laboratory with proper dimensions with two cutoffs . The physical model seepage tank was designed in two downstream cutoff angles which are 90 and 120 and upstream cutoff angles 90 45 120. After steady state flow the flow line is constructed by dye injection in the soil from the upstream side in front view of the seepage tank and the equipotentials line can be constructed by pizometer fixed to measure the total head. From the result It is concluded that using downstream cut-off inclined towards the downstream side with amp1256 equal 120 that given value of redaction 25 is beneficial in increasing the safety factor against the piping phenomenon. using upstream cut-off inclined towards the downstream side with amp1256 equal 45 that given value of redaction 52 is beneficial in decreasing uplift pressure and quantity of seepage.

  16. Hydraulic study of parallel channels coupled to recirculation loops

    International Nuclear Information System (INIS)

    In this work is integrated a model of recirculation loops that allows to characterize each loop for separate and with which is possible to analyze events as shot of recirculation bombs or its transfer of high to low speed. The recirculation pattern is integrated to a model of 36 channels in parallel that represents the core of a BWR. Because the core reactor is conformed by fuel assemblies physically prepared in a parallel arrangement, it is natural to obtain a parallel application of complete pattern, where are have 36 channels tasks more other two tasks that calculates recirculation and punctual kinetics, respectively. As initial test of system, which even it is found in development, was analyzed a discharge of both recirculation pumps. In this test transitory it is only verified the hydraulic behavior, the power is imposed artificially as frontier condition that is function of flow in the calculated core by the recirculation pattern. The pattern of thermal hydraulics channel and the recirculation loops are programmed in language C, the neutronic pattern is programmed in Fortran 77. For the simulations was used a work station Alpha Station DS20E with operative system Unix and the communication system Parallel Virtual Machine, that allows to a heterogeneous collection of computers in net to work like a virtual computer in parallel. (Author)

  17. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  18. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  19. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty one students. Nineteen lecturers gave sixty seventy five minute lectures. A Proceedings was published.

  20. Elements of validation for LWRs thermal hydraulic studies with FLICA-OVAP

    International Nuclear Information System (INIS)

    FLICA-OVAP is an advanced two-phase flow thermal-hydraulics code based on a full 3D subchannel approach. It is designed to analyze flows in Light Water Reactors (LWRs) cores such as PWRs, BWRs and experimental reactors. Therefore its applicability covers all ranges of operating conditions for water-cooled reactors. This paper presents an overview of FLICA-OVAP modeling capabilities for applications in nuclear reactors design and safety analysis. A validation matrix is proposed and its results are presented. The matrix covers a wide range of selected phenomena, which are relevant for thermalhydraulics studies. Therefore the different FLICA-OVAP physical correlations addressed in the current study include single phase and two-phase friction factors, single phase and boiling heat transfer, turbulence and critical heat flux. Results of the FLICA-OVAP validation studies highlight the capabilities of the code to well-predict two-phase flows in Light Water Reactors for both normal operation and under accidental circumstances. Future developments as well as validation activities are also summarized. (author)

  1. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  2. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  3. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  4. Antiquity versus modern times in hydraulics - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Stroia, L [Research Department, Sangari Engineering Services SRL, 35-39 Emil Racovita, Complex Azur 1, AP 08, Voluntari, 077191 (Romania); Georgescu, S C [Hydraulics and Hydraulic Machinery Department, University ' Politehnica' of Bucharest 313 Spl. Independentei, S6, Bucharest, 060042 (Romania); Georgescu, A M, E-mail: liviu.stroia@sangari.r [Hydraulics and Environmental Protection Department, Technical University of Civil Engineering Bucharest, 124 Lacul Tei Bd, S2, Bucharest, 020396 (Romania)

    2010-08-15

    Water supply and water management in Antiquity represent more than Modern World can imagine about how people in that period used to think about, and exploit the resources they had, aiming at developing and improving their society and own lives. This paper points out examples of how they handled different situations, and how they managed to cope with the growing number of population in the urban areas, by adapting or by improving their water supply systems. The paper tries to emphasize the engineering contribution of Rome and the Roman Empire, mainly in the capital but also in the provinces, as for instance the today territory of France, by analysing some aqueducts from the point of view of modern Hydraulic Engineering. A third order polynomial regression is proposed to compute the water flow rate, based on the flow cross-sectional area measured in quinaria. This paper also emphasizes on contradictory things between what we thought we knew about Ancient Roman civilization, and what could really be proven, either by a modern engineering approach, a documentary approach, or by commonsense, where none of the above could be used. It is certain that the world we live in is the heritage of the Greco-Roman culture and therefore, we are due to acknowledge their contribution, especially taking into account the lack of knowledge of that time, and the poor resources they had.

  5. Antiquity versus modern times in hydraulics - a case study

    Science.gov (United States)

    Stroia, L.; Georgescu, S. C.; Georgescu, A. M.

    2010-08-01

    Water supply and water management in Antiquity represent more than Modern World can imagine about how people in that period used to think about, and exploit the resources they had, aiming at developing and improving their society and own lives. This paper points out examples of how they handled different situations, and how they managed to cope with the growing number of population in the urban areas, by adapting or by improving their water supply systems. The paper tries to emphasize the engineering contribution of Rome and the Roman Empire, mainly in the capital but also in the provinces, as for instance the today territory of France, by analysing some aqueducts from the point of view of modern Hydraulic Engineering. A third order polynomial regression is proposed to compute the water flow rate, based on the flow cross-sectional area measured in quinaria. This paper also emphasizes on contradictory things between what we thought we knew about Ancient Roman civilization, and what could really be proven, either by a modern engineering approach, a documentary approach, or by commonsense, where none of the above could be used. It is certain that the world we live in is the heritage of the Greco-Roman culture and therefore, we are due to acknowledge their contribution, especially taking into account the lack of knowledge of that time, and the poor resources they had.

  6. Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Thomas Michael; Shadid, John N; Pawlowski, Roger P; Cyr, Eric C; Wildey, Timothy Michael

    2014-01-01

    This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

  7. Advance of the upsetting technology theory and technique in a hydraulic press

    International Nuclear Information System (INIS)

    The tension stress theory of a rigid-plastic mechanical model when the ratio of height to diameter (HID) larger than 1 and the shearing stress theory if a hydrostatic stress mechanical model when HID less than 1 are advanced for the problem of upsetting a cylinder between common flat platens. The former breaks the saying described in traditional engineering plastic mechanics that there always exist three-dimensional compressive stresses in the interior of an upsetting body. The latter perfectly interprets the problem that there often present the flaws with meat pie in the heavy forgings. The new theory of flat platen upsetting has been testified by the qualitative physical simulation, the quantitative numerical simulation, the generalized slip-line solution, the mechanical slab method and the dissecting test in production. Two new mechanical model for upsetting a square body and the new technology and its mechanical principal of upsetting between the cone-shaped platens are further proposed on the basis of the new theory

  8. Numerical modeling of an advancing hydraulically-driven pile in sand

    Institute of Scientific and Technical Information of China (English)

    Meen-wah GUI

    2011-01-01

    The penetration of a model pile through sand was investigated via a numerical analysis. Data from nine triaxial compression tests on dense specimens at different stress levels was generalized and used to create an empirical non-linear plastic hardening stress-strain relation for use in the analysis. As the computer program used is capable of large displacement analyses in radial symmetry, we expected that the analysis would easily reproduce the tip resistance penetration profile of the model pile in sand of known density and stress. However, initial attempts led to over-prediction. Successful analyses required both successive reformations of the mesh and the complete elimination of the dilatant peak in soil strength, which is naturally eliminated under large confining stress directly beneath the advancing tip, and that soil in the far-field had strained insufficiently to reach peak strength. Thus, the soil around the shaft must have been sheared to a critical state as it flowed past the tip. The hypothesis that the resistance to displacement piles in sand is mainly a function of the deformability of the sand was again proven, and the use of peak strength in the traditional bearing capacity formulae was found to be inappropriate. Independent investigation in this direction is needed to quantify the hypothesis.

  9. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  10. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented

  11. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Nclear rockets improve the propellant efficiency more than twice compared to CRs and thus significantly reduce the propellant requirement. The superior efficiency of nuclear rockets is due to the combination of the huge energy density and a single low molecular weight propellant utilization. Nuclear Thermal Rockets (NTRs) are particularly suitable for manned missions to Mars because it satisfies a relatively high thrust as well as a high propellant efficiency. NTRs use thermal energy released from a nuclear fission reactor to heat a single low molecular weight propellant, i. e., Hydrogen (H{sub 2}) and then exhausted the extremely heated propellant through a thermodynamic nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub sp}) which represents the ratio of the thrust over the rate of propellant consumption. The difference of I{sub sp} makes over three times propellant savings of NTRs for a manned Mars mission compared to CRs. NTRs can also be configured to operate bimodally by converting the surplus nuclear energy to auxiliary electric power required for the operation of a spacecraft. Moreover, the concept and technology of NTRs are very simple, already proven, and safe. Thus, NTRs can be applied to various space missions such as solar system exploration, International Space Station (ISS) transport support, Near Earth Objects (NEOs) interception, etc. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The ROK has also begun the research for space nuclear systems as a volunteer of the international space race and a major world nuclear energy country. KANUTER is one of the advanced NTR engines currently under development at KAIST. This bimodal engine is operated in two modes of propulsion with 100 MW

  12. Temporal changes of topsoil hydraulic conductivity studied by multiple-point tension disk infiltrometer

    Science.gov (United States)

    Klipa, Vladimir; Zumr, David; Snehota, Michal; Dohnal, Michal

    2015-04-01

    Hydraulic conductivity of cultivated soils is strongly affected by agrotechnical procedures, soil compaction, plant growth etc. This contribution is focused on series of measurement of topsoil unsaturated hydraulic conductivity using automated multipoint tension infiltrometer developed at CTU in Prague. The apparatus consists of two triplets of minidisk infiltrometers that are supported by a light aluminum frame. Therefore it allows simultaneous measurement of six tension infiltrations at two different pressure heads. Experiments were conducted at the experimental agricultural catchment Nučice (Central Bohemia, Czech Republic) as a part of the broader research of rainfall-runoff and soil erosion processes. The soil in the catchment is classified as Cambisol with texture that is ranging from loam to clay loam and is conservatively tilled. Series of ten infiltration campaigns (56 individual infiltration experiments) were carried out on a single experimental plot during period of two years. Dataset involves measurement under various agricultural activities and crop phenophases. The hydraulic conductivities were determined using extended semiempirical estimation procedure of Zhang. Additionally, large undisturbed soil samples were analyzed with use of X-ray computed tomography to assess the soil structure morphology in detail. Results show that unsaturated hydraulic conductivity was the lowest in early spring and did increase at beginning of summer. Unsaturated soil hydraulic conductivity was higher when the soil bulk density was high. During the summer and autumn the unsaturated hydraulic conductivity remained relatively unchanged. The impact of agricultural procedures was not apparent in the dataset.. The study has been supported by the Czech Science Foundation Project No. 13-20388P and by CTU in Prague funding via Student's Grant Competition SGS No. SGS14/131/OHK1/2T/11. The MultiDisk infiltrometer was developed within the framework of the project supported by the

  13. Advanced Collaborative Emissions Study (ACES)

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  14. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Noureddine, E-mail: nouryhamdi@gmail.com [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia); Srasra, Ezzeddine [Centre National des Recherches en Science des Materiaux, Borj Cedria Techno-Park, B.P. 95-2050, Hammam Lif, Tunis (Tunisia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  15. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (02-24-2012)

    Science.gov (United States)

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  16. Effect of biofilm on soil hydraulic properties: laboratory studies using xanthan as surrogate

    Science.gov (United States)

    Rosenkranz, H.; Iden, S. C.; Durner, W.

    2012-04-01

    Many soil bacteria produce extracellular polymeric substances (EPS) in which they are embedded while residing in the porous matrix. EPS are often attached as a biofilm to both the bacteria cell and the soil particles. As a consequence, their influence on water flow through variably saturated porous media often cannot be neglected. While the influence of attached microbial biomass and EPS on saturated water flow has been studied extensively, its investigation for unsaturated flow in soils has found significantly less attention. The objective of this study was the quantification of the effect of biofilms on the unsaturated soil hydraulic properties. We determined the soil water retention and unsaturated hydraulic conductivity functions of biofilm-affected soils by using xanthan as an EPS surrogate. Evaporation experiments were conducted on two sandy soil materials. The amount of added xanthan was varied in 6 stages from zero to 0.25 %. Additional measurements of soil water retention using the dewpoint method closed the remaining gap from the evaporation method to air-dryness. The experimental data were evaluated by the simplified evaporation method of Schindler. The results show that the unsaturated hydraulic conductivity is reduced markedly by added xanthan and the shape of the soil water retention curve is alterated significantly for all stages of xanthan addition. The reduction in hydraulic conductivity is high enough to fully suppress stage-one evaporation for xanthan-sand mixtures. The water-holding capacity of the xanthan and the alteration of the effective pore size distribution explain these results.

  17. Stability boundary calculation of thermal-hydraulic channels with RAMONA5, ATHLET and a reduced order model. A comparative study

    International Nuclear Information System (INIS)

    In the framework of the design study comprehensive system code analyses are performed with ATHLET and RAMONA. RAMONA is used in the current analysis because it has a broad validation basis for stability and transient analysis. On the other hand ATHLET has some advantages compared to RAMONA (free geometry and nodalization definition), which will be important to model and analyse the above mentioned test facility. One objective is to predict and confirm the operating conditions and transient behaviour for different facility designs. Thereby one aspect is the prediction of the thermal-hydraulic conditions at which self sustained density wave oscillations (ssDWOs) may occur under constant pressure drop boundary conditions. This paper is devoted to the latter investigation, only. In particular, we will discuss the question under which conditions the results of the measurement and simulation of the ssDWO onset are comparable to each other using the system codes ATHLET and RAMONA and, beside, an advanced reduced thermal-hydraulic model (TH-ROM). It will be shown why a precise measurement of the steady state axial profiles (void fraction, velocity of the liquid and gas phases and the axial pressure drop distribution) is of paramount importance in the scope of the present comparative study. (orig.)

  18. Consideration of a design optimization method for advanced nuclear power plant thermal-hydraulic components

    International Nuclear Information System (INIS)

    In order to meet the global energy demand and also mitigate climate change, we anticipate a significant resurgence of nuclear power in the next 50 years. Globally, Generation III plants (ABWR) have been built; Gen' III+ plants (EPR, AP1000 others) are anticipated in the near term. The U.S. DOE and Japan are respectively pursuing the NGNP and MSFR. There is renewed interest in closing the fuel cycle and gradually introducing the fast reactor into the LWR-dominated global fleet. In order to meet Generation IV criteria, i.e. thermal efficiency, inherent safety, proliferation resistance and economic competitiveness, plant and energy conversion system engineering design have to increasingly meet strict design criteria with reduced margin for reliable safety and uncertainties. Here, we considered a design optimization approach using an anticipated NGNP thermal system component as a Case Study. A systematic, efficient methodology is needed to reduce time consuming trial-and-error and computationally-intensive analyses. We thus developed a design optimization method linking three elements; that is, benchmarked CFD used as a 'design tool', artificial neural networks (ANN) to accommodate non-linear system behavior and enhancement of the 'design space', and finally, response surface methodology (RSM) to optimize the design solution with targeted constraints. The paper presents the methodology including guiding principles, an integration of CFD into design theory and practice, consideration of system non-linearities (such as fluctuating operating conditions) and systematic enhancement of the design space via application of ANN, and a stochastic optimization approach (RSM) with targeted constraints. Results from a Case Study optimizing the printed circuit heat exchanger for the NGNP energy conversion system will be presented. (author)

  19. Assimilating SAR-derived water level data into a hydraulic model: a case study

    Directory of Open Access Journals (Sweden)

    L. Giustarini

    2011-02-01

    Full Text Available Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction to the model forecast uncertainty. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data.

  20. Assimilating SAR-derived water level data into a hydraulic model: a case study

    Directory of Open Access Journals (Sweden)

    L. Giustarini

    2011-07-01

    Full Text Available Satellite-based active microwave sensors not only provide synoptic overviews of flooded areas, but also offer an effective way to estimate spatially distributed river water levels. If rapidly produced and processed, these data can be used for updating hydraulic models in near real-time. The usefulness of such approaches with real event data sets provided by currently existing sensors has yet to be demonstrated. In this case study, a Particle Filter-based assimilation scheme is used to integrate ERS-2 SAR and ENVISAT ASAR-derived water level data into a one-dimensional (1-D hydraulic model of the Alzette River. Two variants of the Particle Filter assimilation scheme are proposed with a global and local particle weighting procedure. The first option finds the best water stage line across all cross sections, while the second option finds the best solution at individual cross sections. The variant that is to be preferred depends on the level of confidence that is attributed to the observations or to the model. The results show that the Particle Filter-based assimilation of remote sensing-derived water elevation data provides a significant reduction in the uncertainty at the analysis step. Moreover, it is shown that the periodical updating of hydraulic models through the proposed assimilation scheme leads to an improvement of model predictions over several time steps. However, the performance of the assimilation depends on the skill of the hydraulic model and the quality of the observation data.

  1. A study of hydraulic flow into tunnels in a transition regime

    Energy Technology Data Exchange (ETDEWEB)

    Atwa, M. (Ain Shams Univ., Cairo (Egypt)); Leca, E.; Rat, M.; Humbert, P. (Laboratoire Central des Ponts et Chaussees, 75 - Paris (France))

    The authors deal with hydraulic flow into tunnels dug in water-bearing soils. considering the hydraulic response of the aquiferous artery in the short and medium term, the flow is analysed in a transition regime. A summary of previous work on this subject is given, together with the solutions offered for estimating the hydraulic response of the soils mass to the digging of the tunnel. A numerical analysis by finite elements was also undertaken, using the LCPC-CESAR programme (LCPC means Laboratoire Central des Ponts et Chaussees, the french department of civil engineering) under two-dimensional and three-dimensional conditions. The authors compare the results of the calculations under two-dimensional conditions for a permeable-walled tunnel with those obtained by similar methods. The effect of an impervious lining on the hydraulic characteristics of flow is also studied, along with the three-dimensional aspect of the flow towards the tunnel face during its construction. 11 refs. 25 figs.

  2. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  3. A Study on the Pressure Relief Scope and the Stress Variation of Hydraulic Flushing Borehole

    Directory of Open Access Journals (Sweden)

    C. F.Wei

    2014-01-01

    Full Text Available To study the variation of the pressure relief scope and the stress around hydraulic flushing borehole, the theory of coalrock damage was utilized to distinguish the interaction area of water-jet and coal-rock into the coal-rock crushing area, the water-jet pressure stagnation area, the transition area and the original stress recovery area of coal-rock. Based on the actual occurrence conditions of the coal seam, the pressure variation and relief scope around the hydraulic flushing borehole were analyzed and simulated by RFPA2D-Flow software. The results showed that a relief area with the radius of 5.0 ~ 6.0 m around the borehole formed due to the hydraulic flushing with the pressure relief of 0.038 ~ 6.545 MPa, and the maximum principal stress is 15.85 MPa with a distance of 6.8 m from the inspected hole where stress concentration appeared. After hydraulic flushing test, the diameter (441.8 ~ 1171.6 mm of the hole which can be an expression of coal crushing area size, was calculated based on the examination of the coal amount through the trial process, and it can be drawn that the pressure relief area must be larger than that of the coal-rock crushing area. Meanwhile, the measured pressures relief range(5.96 ~ 6.62 m is basically consistent with the numerical simulation result (5.0 ~ 6.0 m which verified the accuracy of the simulation analysis, according to the distance from the inspection drilling to the hydraulic flushing borehole and the decreased degree of the gas content in the inspection hole by the way of Gas Content.

  4. Elastic-plastic solution and experimental study on critical water pressure inducing hydraulic fracturing in soil

    Institute of Scientific and Technical Information of China (English)

    朱俊高; 吉恩跃; 温彦锋; 张辉

    2015-01-01

    It is widely believed that hydraulic fracturing will occur in the clay core of an earth-rockfill dam if the water pressure in the core increases to levels that are high enough to allow a fracture to form. An elastic-plastic solution to critical water pressure inducing hydraulic fracturing(fracture initiation pressure) in soil is derived based on Mohr-Coulomb shear failure criterion and the theory of cavity expansion. In order to verify the applicability of the criteria presented and study the relations among fracture initiation pressure, tensile strength and stress state of soil, laboratory tests are performed on compacted cuboid specimens by true triaxial apparatus. According to the test results, the cracks of hydraulic fracturing existed perpendicular to the minor principal stress plane. The hydraulic fracturing pressure pf increases with the increase of dry density of specimen, pf shows good linear relationship with σ2 and σ3. The prediction from presented equation is compared with test results and other three predictions, of which two are tensile failure(TS) criterion, and the other is Mohr-Coulomb(M-C) criterion. The presented solution is verified, and the other three approaches for pf are evaluated. The comparison indicates that the predicted values from the presented equations agree well with the test values for specimens of low dry density, and the error of the prediction is larger for those of high dry density, especially in lower minor stress states. The predicted average relative error of absolute value Ra from TS1 criterion is 13.3% for all specimens of different dry densities, and each prediction is lower than the test data. On the contrary, most of the predicted values from M-C criterion are greater than the test data, but the average relative error from the presented equation is the minimum. Considering the safety of soil works, an equation from TS1 criterion is suggested to evaluate the occurrence of hydraulic fracturing in earth-rockfill dam

  5. Elastic-plastic solution and experimental study on critical water pressure inducing hydraulic fracturing in soil

    Institute of Scientific and Technical Information of China (English)

    朱俊高; 吉恩跃; 温彦锋; 张辉

    2015-01-01

    It is widely believed that hydraulic fracturing will occur in the clay core of an earth-rockfill dam if the water pressure in the core increases to levels that are high enough to allow a fracture to form. An elastic-plastic solution to critical water pressure inducing hydraulic fracturing (fracture initiation pressure) in soil is derived based on Mohr-Coulomb shear failure criterion and the theory of cavity expansion. In order to verify the applicability of the criteria presented and study the relations among fracture initiation pressure, tensile strength and stress state of soil, laboratory tests are performed on compacted cuboid specimens by true triaxial apparatus. According to the test results, the cracks of hydraulic fracturing existed perpendicular to the minor principal stress plane. The hydraulic fracturing pressurepf increases with the increase of dry density of specimen,pfshows good linear relationship withs2 ands3. The prediction from presented equation is compared with test results and other three predictions, of which two are tensile failure (TS) criterion, and the other is Mohr-Coulomb (M-C) criterion. The presented solution is verified, and the other three approaches forpf are evaluated. The comparison indicates that the predicted values from the presented equations agree well with the test values for specimens of low dry density, and the error of the prediction is larger for those of high dry density, especially in lower minor stress states. The predicted average relative error of absolute valueRa from TS1 criterion is 13.3% for all specimens of different dry densities, and each prediction is lower than the test data. On the contrary, most of the predicted values from M-C criterion are greater than the test data, but the average relative error from the presented equation is the minimum. Considering the safety of soil works, an equation from TS1 criterion is suggested to evaluate the occurrence of hydraulic fracturing in earth-rockfill dam designing.

  6. Soil water balance scenario studies using predicted soil hydraulic parameters

    NARCIS (Netherlands)

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.

    2006-01-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in ter

  7. Hydraulic studies of in-situ permeable reactive barriers

    International Nuclear Information System (INIS)

    Groundwater flow velocity is a critical parameter in evaluating the field performance of in-situ permeable reactive barriers. Laboratory column tests indicate that bromide is a suitable studies involving granular iron. Conservative tracer tests conservative tracer for use in field tracer studies have been conducted to determine groundwater velocity and flow patterns through pilot-scale funnel-and-gate trials involving the EnviroMetal Process. Other methods of measuring in-situ velocities have also been evaluated. Once accurate groundwater flow velocities are known and concentrations of VOCs are measured, field degradation rates can be calculated. Both parameters are necessary for the design and costing of full-scale treatment systems

  8. Thermal hydraulic study of a corium molten pool

    International Nuclear Information System (INIS)

    The thermohydraulic behaviour of a mass of molten core is investigated, in the frame of PWR severe accidents studies. The corium may be located in the vessel lower head or in an external core-catcher. It is assumed to be present in the container instantaneously. Its motion is described by one velocity field. It may be homogeneous or made of two stratified fluids. The residual power is assumed to be constant and uniform in the UO2 phase. The radiative losses and the external water-cooling are taken into account. The thermal resistance of a peripheral crust is considered. The influence of the crust on the pool geometry may be studied. The wall behaviour is analysed by a conduction calculation. The interest of a sacrificial layer is underlined, so as the necessity of a multicomponent multiphase model to study the behaviour of a core catcher. It is also concluded that some experiments are needed for code validation about volume heated natural convection and multiphase flows. (author). 14 figs., 3 refs

  9. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  10. Coupled Numerical Study of Turbidity Currents, Internal Hydraulic Jump and Morphological Signatures

    Science.gov (United States)

    Hu, P.; Cao, Z.; He, Z.; Gareth, P.

    2013-12-01

    Abstract: The last two decades have seen intensive experimental and numerical studies of the occurrence condition of internal hydraulic jump in turbidity currents and the induced morphological signatures (Garcia and Parker 1989; Kostic and Parker 2006). Yet there are two critical issues that remain insufficiently or inappropriately addressed. First, depositional turbidity currents are imposed on steep slopes in both flume experiments and numerical cases, exclusively based on a configuration consisting of an upstream sloping portion and a downstream horizontal portion linked by a slope break. This appears physically counterintuitive as steep slope should favour self-accelerating erosional turbidity currents (Parker et al. 1986). The second issue concerns the numerical studies. There exist significant interactions among the current, sediment transport and bed topography. Due to the slope break in bed, the current may experience an internal hydraulic jump, leaving morphological signatures on the bed, which in turn affects the current evolution. Nevertheless, simplified decoupled models are exclusively employed in previous numerical investigations, in which the interactions are either partly or completely ignored without sufficient justification. The present paper aims to address the above-mentioned two issues relevant to the occurrence condition of the internal hydraulic jump and the induced morphological signatures. A recently developed well-balanced coupled numerical model for turbidity currents (Hu et al. 2012) is applied. In contrast to previous studies, erosional turbidity currents will be imposed at the upstream boundary, which is much more typical of the field. The effects of sediment size, bed slope decrease, and upstream and downstream boundary conditions are revealed in detail. In addition, the evolution of turbidity currents over a bed characterized by gradual decrease in slope is also discussed. References Garcia, M. H., and Parker, G. (1989). Experiments

  11. Study on thermal-hydraulics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2000-05-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  12. Experimental study on thermal performance of heat sinks: the effect of hydraulic diameter and geometric shape

    Science.gov (United States)

    Marzougui, M.; Hammami, M.; Maad, R. Ben

    2016-10-01

    The main purpose of this study is focused on experimental investigation of cooling performance of various minichannel designs. The hydraulic dimension of one of the heat sink is 3 mm while that of the other is 2 mm. Deionised water was used as the coolant for studies conducted in both the heat sinks. Tests were done for a wide range of flow rates (0.7 l-9 l h-1) and heat inputs (5-40 kW/m2). Irrespective of the hydraulic diameter and the geometric configuration, profits and boundaries of each channel shape are analyzed and discussed in the clarity of experimental data. The total thermal resistance and the average heat transfer coefficient are compared for the various channels inspected.

  13. Mapping Uncertainties – A case study on a hydraulic model of the river Voxnan.

    OpenAIRE

    Andersson, Sara

    2015-01-01

    This master thesis gives an account for the numerous uncertainties that prevail one-dimensional hydraulic models and flood inundation maps, as well as suitable assessment methods for different types of uncertainties. A conducted uncertainty assessment on the river Voxnan in Sweden has been performed. The case study included the calibra-tion uncertainty in the spatially varying roughness coefficient and the boundary condi-tion uncertainty in the magnitude of a 100-year flood, in present and fu...

  14. Hydraulic model calibration for extreme floods in bedrock-confined channels: case study from northern Thailand

    Science.gov (United States)

    Kidson, R. L.; Richards, K. S.; Carling, P. A.

    2006-02-01

    Palaeoflood reconstructions based on stage evidence are typically conducted in data-poor field settings. Few opportunities exist to calibrate the hydraulic models used to estimate discharge from this evidence. Consequently, an important hydraulic model parameter, the roughness coefficient (e.g. Manning's n), is typically estimated by a range of approximate techniques, such as visual estimation and semi-empirical equations. These techniques contribute uncertainty to resulting discharge estimates, especially where the study reach exhibits sensitivity in the discharge-Manning's n relation. We study this uncertainty within a hydraulic model for a large flood of known discharge on the Mae Chaem River, northern Thailand. Comparison of the calibrated Manning's n with that obtained from semi-empirical equations indicates that these underestimate roughness. Substantial roughness elements in the extra-channel zone, inundated during large events, contribute significant additional sources of flow resistance that are captured neither by the semi-empirical equations, nor by existing models predicting stage-roughness variations. This bedrock channel exhibits a complex discharge-Manning's n relation, and reliable estimates of the former are dependent upon realistic assignment of the latter. Our study demonstrates that a large recent flood can provide a valuable opportunity to constrain this parameter, and this is illustrated when we model a palaeoflood event in the same reach, and subsequently examine the magnitude-return period consequences of discharge uncertainty within a flood frequency analysis, which contributes its own source of uncertainty.

  15. Study of heat treatment parameters for large-scale hydraulic steel gate track

    Directory of Open Access Journals (Sweden)

    Ping-zhou CAO

    2013-10-01

    Full Text Available In order to enhance external hardness and strength, a large-scale hydraulic gate track should go through heat treatment. The current design method of hydraulic gate wheels and tracks is based on Hertz contact linear elastic theory, and does not take into account the changes in mechanical properties of materials caused by heat treatment. In this study, the heat treatment parameters were designed and analyzed according to the bearing mechanisms of the wheel and track. The quenching process of the track was simulated by the ANSYS program, and the temperature variation, residual stress, and deformation were obtained and analyzed. The metallurgical structure field after heat treatment was predicted by the method based on time-temperature-transformation (TTT curves. The results show that the analysis method and designed track heat treatment process are feasible, and can provide a reference for practical projects.

  16. Contesting Technologies in the Networked Society: A Case Study of Hydraulic Fracturing and Shale Development

    Science.gov (United States)

    Hopke, Jill E.

    In this dissertation, I study the network structure and content of a transnational movement against hydraulic fracturing and shale development, Global Frackdown. I apply a relational perspective to the study of role of digital technologies in transnational political organizing. I examine the structure of the social movement through analysis of hyperlinking patterns and qualitative analysis of the content of the ties in one strand of the movement. I explicate three actor types: coordinator, broker, and hyper-local. This research intervenes in the paradigm that considers international actors as the key nodes to understanding transnational advocacy networks. I argue this focus on the international scale obscures the role of globally minded local groups in mediating global issues back to the hyper-local scale. While international NGOs play a coordinating role, local groups with a global worldview can connect transnational movements to the hyper-local scale by networking with groups that are too small to appear in a transnational network. I also examine the movement's messaging on the social media platform Twitter. Findings show that Global Frackdown tweeters engage in framing practices of: movement convergence and solidarity, declarative and targeted engagement, prefabricated messaging, and multilingual tweeting. The episodic, loosely-coordinated and often personalized, transnational framing practices of Global Frackdown tweeters support core organizers' goal of promoting the globalness of activism to ban fracking. Global Frackdown activists use Twitter as a tool to advance the movement and to bolster its moral authority, as well as to forge linkages between localized groups on a transnational scale. Lastly, I study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). I analyze the top actors tweeting using the #fracking

  17. Thermal hydraulic characteristics study of prototype NET and CEA cable-in-conduit conductors (CICCs)

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Ryuji

    1995-10-31

    The thermal hydraulic characteristics of low temperature helium in a Cable-in-Conduit Conductor (CICC) significantly affects the overall design and performance of the associated large scale superconducting magnet system. It is essential to understand the transient and steady state behavior of the helium in the conductor. Throughout the development of CICCs, the reduction of flow impedance has been one of the key factors to improving the overall pressure drop. The newly developed CICC for the ITER project has a hybrid cooling scheme: a central channel that is surrounded by bundles, for which the thermal hydraulic characteristics are not well understood. This thesis describes an experimental and analytical investigation of thermal hydraulic characteristics of low temperature helium in conventional and hybrid CICCS. Pressure drop measurements for both NET and CEA conductors have been conducted, using low temperature helium and liquid nitrogen to obtain a range of Reynolds numbers. The results are correlated with classical friction factor and Reynolds number analysis. The flow impedance reduction of the CEA conductor is described by measures of a developed flow model. Thermally induced flow in the CEA conductor has been studied with an inductive heating method. The induced velocity in the central channel is measured by a Pitot tube with steady state Reynolds number up to {approximately}7000. The transient pressure wave propagation has been recorded with pressure transducers placed equally along the conductor. The supercritical helium temperature in the central channel has been measured with the thermometer probe. However, the reduction of the central channel area significantly affects the overall thermal hydraulic characteristics of the conductor. The results suggest the importance of the central channel. A transient heat transfer experiment studied the.transverse heat transfer mechanism in the CEA conductor. The temperatures in the central channel and bundle region

  18. Studies and projections of hydraulic conductivity of Devonian Plavinu and Daugava carbonate aquifers in Latvia

    Science.gov (United States)

    Perkone, E.; Delina, A.; Saks, T.; Raga, B.; Jātnieks, J.; Klints, I.; Popovs, K.; Babre, A.; Bikše, J.; Kalvāns, A.; Retike, I.; Ukass, J.

    2012-04-01

    Carbonate aquifers show a very wide range of hydrogeological characteristics. Carbonate rock hydrogeology display two extremes: on one hand hydrogeological properties of the carbonates are governed by the pathways of the preferential groundwater flow typical in karstic regions, on the other - some carbonate aquifers behave almost like a homogeneous, isotropic, porous medium. Most lie between these extremes, but these case variations complicates the study of carbonate aquifer properties. In this study the results of the hydraulic conductivity in carbonate aquifers measurements, hydraulic conductivity correlation between sediments lithology and the aquifer surface depth and fractures research is presented. Upper Devonian Frasnian stage Pļaviņu and Daugava carbonate aquifers in the Latvian part of the Baltic basin is considered. The aim of this research is to elaborate characteristic hydraulic conductivity values for each aquifer based on existing data of the pumping test results and other aquifer properties. Pļaviņu and Daugava carbonate aquifers mainly consist of jointed dolomite with intermediate layers of dolomitic marlstone, limestone, clays and gypsum. These aquifers are prevalent in most of the study area, except Northern and South - Eastern parts of the territory. In geological structure Daugava aquifer lies above Pļaviņu aquifer. Daugava aquifer depth changes from 10 - 20 and even less meters in Eastern part to 250 - 300 m in South - West part of study area, but thickness varies from few meters to 30 m. Pļaviņu aquifer surface depth varies from 20 - 30 m, but in uplands surface depth reaches more than 120 m, in Eastern part to more than 300 m in South - West part of study area. Aquifer average thickness varies from 20 - 40 m, but in areas with buried valleys thickness can be less than 10 meters. Outcrops of these sediments are occurring in banks of largest rivers and in some areas aquifers are karstified. In studies of the carbonate aquifers it is

  19. Experimental identification and study of hydraulic resonance test rig with Francis turbine operating at partial load

    International Nuclear Information System (INIS)

    Resonance in hydraulic systems is characterized by pressure fluctuations of high amplitude which can lead to undesirable and dangerous effects, such as noise, vibration and structural failure. For a Francis turbine operating at partial load, the cavitating vortex rope developing at the outlet of the runner induces pressure fluctuations which can excite the hydraulic system resonance, leading to undesirable large torque and power fluctuations. At resonant operating points, the prediction of amplitude pressure fluctuations by hydro-acoustic models breaks down and gives unreliable results. A more detailed knowledge of the eigenmodes and a better understanding of phenomenon occurring at resonance could allow improving the hydro-acoustic models prediction.This paper presents an experimental identification of a resonance observed in a close-looped hydraulic system with a Francis turbine reduced scale model operating at partial load. The resonance is excited matching one of the test rig eigenfrequencies with the vortex rope precession frequency. At this point, the hydro-acoustic response of the test rig is studied more precisely and used finally to reproduce the shape of the excited eigenmode.

  20. Experimental identification and study of hydraulic resonance test rig with Francis turbine operating at partial load

    Science.gov (United States)

    Favrel, A.; Landry, C.; Müller, A.; Avellan, F.

    2012-11-01

    Resonance in hydraulic systems is characterized by pressure fluctuations of high amplitude which can lead to undesirable and dangerous effects, such as noise, vibration and structural failure. For a Francis turbine operating at partial load, the cavitating vortex rope developing at the outlet of the runner induces pressure fluctuations which can excite the hydraulic system resonance, leading to undesirable large torque and power fluctuations. At resonant operating points, the prediction of amplitude pressure fluctuations by hydro-acoustic models breaks down and gives unreliable results. A more detailed knowledge of the eigenmodes and a better understanding of phenomenon occurring at resonance could allow improving the hydro-acoustic models prediction.This paper presents an experimental identification of a resonance observed in a close-looped hydraulic system with a Francis turbine reduced scale model operating at partial load. The resonance is excited matching one of the test rig eigenfrequencies with the vortex rope precession frequency. At this point, the hydro-acoustic response of the test rig is studied more precisely and used finally to reproduce the shape of the excited eigenmode.

  1. An approach to the field study of hydraulic gradients in variable- salinity ground water

    Science.gov (United States)

    Hickey, J.J.

    1989-01-01

    A field study approach is proposed for reliably estimating hydraulic gradients in subregions within a region of variable-salinity ground water. It is based upon Hubbert's concept about the kind of density distributions that are required for ground water to have a potential. The approach consists of dividing a region of variable-salinity ground water into subregions with constant density, subregions with only vertical variations in density, and subregions with vertical and lateral variations in density before determining magnitude and direction of hydraulic gradients. The approach was applied to an unconfined coastal aquifer and also to a confined and layered coastal aquifer that is used for sub-surface injection. As the two applications show, the analysis of water levels and pressures from subregions with constant or approximately constant density and the analysis of pressures from subregions with only vertical variations in density provide simple and direct means for deducing the characteristics of hydraulic gradients within a region of variable-salinity ground water. -from Author

  2. Experimental study of thermal–hydraulic performance of cam-shaped tube bundle with staggered arrangement

    International Nuclear Information System (INIS)

    Highlights: • Thermal–hydraulic performance of a non-circular tube bundle has been investigated experimentally. • Tubes were mounted in staggered arrangement with two longitudinal pitch ratios 1.5 and 2. • Drag coefficient and Nusselt number of tubes in second row was measured. • Friction factor of this tube bundle is lower than circular tube bundle. • Thermal–hydraulic performance of this tube bundle is greater than circular tube bundle. - Abstract: Flow and heat transfer from cam-shaped tube bank in staggered arrangement is studied experimentally. Tubes were located in test section of an open loop wind tunnel with two longitudinal pitch ratios 1.5 and 2. Reynolds number varies in range of 27,000 ⩽ ReD ⩽ 42,500 and tubes surface temperature is between 78 and 85 °C. Results show that both drag coefficient and Nusselt number depends on position of tube in tube bank and Reynolds number. Tubes in the first column have maximum value of drag coefficient, while its Nusselt number is minimum compared to other tubes in tube bank. Moreover, pressure drop from this tube bank is about 92–93% lower than circular tube bank and as a result thermal–hydraulic performance of this tube bank is about 6 times greater than circular tube bank

  3. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  4. Centrifugal slurry pump wear and hydraulic studies. Phase II report. Experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, D.; Cooper, P.; Biswas, C.; Sloteman, D.; Onuschak, A.

    1983-01-01

    This report describes the work performed by Ingersoll-Rand Research, Inc., under Phase II, Experimental Studies for the contract entitled, Centrifugal Slurry Pump Wear and Hydraulic Studies. This work was carried out for the US Department of Energy under Contract No. DE-AC-82PC50035. The basic development approach pursued this phase is presented, followed by a discussion on wear relationships. The analysis, which resulted in the development of a mathematical wear model relating pump life to some of the key design and operating parameters, is presented. The results, observations, and conclusions of the experimental investigation on small scale pumps that led to the selected design features for the prototype pump are discussed. The material investigation was performed at IRRI, ORNL and Battelle. The rationale for selecting the materials for testing, the test methods and apparatus used, and the results obtained are presented followed by a discussion on materials for a prototype pump. In addition, the prototype pump test facility description, as well as the related design and equipment details, are presented. 20 references, 53 figures, 13 tables.

  5. Advanced wind turbine design studies: Advanced conceptual study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P; Sherwin, R [Atlantic Orient Corp., Norwich, VT (United States)

    1994-08-01

    In conjunction with the US Department of Energy and the National Renewable Energy Laboratory`s Advanced Wind Turbine Program, the Atlantic Orient Corporation developed preliminary designs for the next generation of wind turbines. These 50 kW and 350 kW turbines are based upon the concept of simplicity. By adhering to a design philosophy that emphasizes simplicity, we project that these turbines will produce energy at extremely competitive rates which will unlock the potential of wind energy domestically and internationally. The program consisted of three distinct phases. First, we evaluated the operational history of the Enertech 44 series wind turbines. As a result of this evaluation, we developed, in the second phase, a preliminary design for a new 50 kW turbine for the near-term market. In the third phase, we took a clean-sheet-of-paper approach to designing a 350 kW turbine focused on the mid-1990s utility market that incorporated past experience and advanced technology.

  6. Development of numerical procedure for thermal hydraulic design of nuclear reactors with advanced two-fluid model (1). Improvement of numerical stability of advanced two-fluid model

    International Nuclear Information System (INIS)

    Two-fluid model is still useful to simulate two-phase flow in large domain such as rod bundles. However, two-fluid model include a lot of constitutive equations, and the two-fluid model has problems that the results of analyses depend on accuracy of constitutive equations. To solve these problems, we have been developing an advanced two-fluid model. In this model, an interface tracking method is combined with the two-fluid model to predict large interface structure behavior without any constitutive equations, and constitutive equations to evaluate the effects of small bubbles or droplets are only required. In this study, we modified the advanced two-fluid model to improve the stability of the numerical simulation and reduce the computational time. In this paper, we describe the modification performed in this study and the numerical results of two-phase flow in various flow conditions are shown. (author)

  7. Effect of biocrust: study of mechanical and hydraulic properties and erodibility

    Science.gov (United States)

    Slavík, Martin; Bruthans, Jiří; Schweigstillová, Jana

    2016-04-01

    It is well-known that lichens and other organisms forming crust on soil or rock surface play important role in weathering but may also protect underlying material from fast erosion. So far, there have been only few measurements comparing mechanical or hydraulic properties of biocrust with its subsurface on locked sand and friable sandstones, so the overall effect of the biocrust is not well-understood. Objective of our study is to quantify the effect of the biocrust on mechanical and hydraulic properties of friable sandstone and locked sand of Cretaceous age in six different localities with varying aspect and inclination and age of exposure in sandpit Strelec (Czech Rep.). On the artificial exposures, biocrust developed within last 10-30 years. Beside measurements of mechanical and hydraulic properties, SEM and mercury intrusion porosimetry in crust and subsurface was performed. Drilling resistance technique was found an excellent method to distinguish the biocrust from its subsurface (~3 mm thick biocrust has up to 12 times higher drilling resistance than underlying material). Surface zone with the biocrust has 3 - 25 times higher tensile strength than the subsurface material (1 - 25 kPa). In comparison with the subsurface, the biocrust is considerably less erodible (based on water jet testing). Biocrust saturated hydraulic conductivity is 15 - 240 times lower than the subsurface (6*10 -5 - 1*10 -4 m/s) and its permeability for water vapor is 4 - 9 times lower than subsurface. Presence of the biocrust slows down capillary absorption of water 4 - 25 times. The biocrust is thus forming firm surface which protects underlying material from rain and flowing water erosion and which considerably modifies its hydraulic properties. Material with crust exposed to calcination, leaching by concentrated peroxide and experiments with zymoliase enzyme strongly indicate that major contribution to crust hardening is provided by organic matter. Based on DNA sequencing the crust is

  8. Experimental study of hydraulic transport of large particles in horizontal pipes

    OpenAIRE

    Ravelet, Florent; Bakir, Farid; Khelladi, Sofiane; Rey, Robert

    2013-01-01

    This article presents an experimental study of the hydraulic transport of very large solid particles (above 5 mm) in an horizontal pipe. Two specific masses are used for the solids. The solids are spheres that are large with respect to the diameter of the pipe (5, 10 and 15%) or real stones of arbitrary shapes but constant specific mass and a size distribution similar to the tested spherical beads. Finally, mixtures of size and / or specific mass are studied. The regimes are characterized wit...

  9. Parameter sensitivity study of boiling and two-phase flow models in computational thermal hydraulics

    International Nuclear Information System (INIS)

    This work presents a sensitivity study of boiling and two phase flow models for thermal hydraulics simulations in nuclear reactors. The study quantifies sources of uncertainty and error in these simulations by computing global sensitivities of figures of merit, or outputs, to model parameters, inputs, and mesh resolution. Results are obtained for the DEBORA benchmark problem of boiling in a channel driven by a heated wall section. Scalar outputs of interest are average wall temperature, integrated cross-sectional void fraction, and pressure drop in the channel. Sensitivities are computed with respect to both individual heat fluxes and to the parameters in the models for these heat fluxes. (author)

  10. Hydraulic conductivity of sandstones in the Baltic Basin - a comparative study of pumping tests and grain size distribution

    Science.gov (United States)

    Perkone, E.; Bikše, J.; Jātnieks, J.; Klints, I.; Delina, A.; Saks, T.; Raga, B.; Retike, I.

    2012-04-01

    Aquifer fluid conductivity properties describe ability of sediments to transmit groundwater, and consequently govern the groundwater flow. Studies and knowledge of hydraulic conductivity (K), transmissivity and storativity for the particular aquifer is of great importance for hydrogeological problem solving process. This study presents the results of the comparative study between hydraulic conductivity, grain size distribution, sediments lithology of the lower Devonian Emsian stage, middle Devonian Eifelian and Givetian stage, upper Devonian Frasnian stage, and Cambrian clastic sediments in the central part of the Baltic Basin. The aim of this study was to find characteristic hydraulic conductivity values for each aquifer based on aquifer grain size distribution and lithology on the one hand and pumping test results one the other. For the calculation of the hydraulic conductivity one has to take into account not only grain size distribution but effective porosity, temperature and kinematic viscosity of the fluid as well, which are lacking in this study. Pumping test results provide a range of at least two orders of hydraulic conductivity values for each aquifer. To characterize the typical values for each aquifer and further subdivide each aquifer into regions of different hydraulic conductivities, pumping test results were correlated with grain size distribution. As a limiting factor for the hydraulic conductivity in the sandstones the fraction of the fine particles with the size less than 0.05 mm were chosen. The correlation of hydraulic conductivity and grain size distribution was carried out by comparing the Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

  11. Soil hydraulic properties and REV study using X-ray microtomography and pore-scale modelling: saturated hydraulic conductivity

    Science.gov (United States)

    Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Karsanina, Marina; Umarova, Aminat; Korost, Dmitry; Matthai, Stephan; Mallants, Dirk

    2016-04-01

    To verify pore-scale modelling approach for determination of soil saturated hydraulic conductivity properties we scanned three cylindrical soil samples taken from A, Ah and B horizons using X-ray microtomography method. Resulting 3D soil images with resolutions of 15.25-20.96 μm were segmented into pores and solids and their maximum inscribed cube subvolumes were used as input data for three major pore-scale modelling methods to simulate saturated flow - lattice-Boltzmann method, finite-difference solution of the Stokes problem, and pore-network model. Provided that imaging resolution is high enough to capture the backbone of effective porosity and the main conducting pores all three methods resulted in simulated soil permeabilities close to experimental values for Ah and B samples. The resolution of A sample was not enough for an accurate modelling and we concluded that this soil requires multi-scale imaging to cover all relevant heterogeneities. We demonstrate that popular SWV method to choose segmentation threshold resulted in oversegmentation and order of magnitude higher permeability values. Careful manual thresholding combined with local segmentation algorithm provided much more accurate results. Detailed analysis of water retention curves showed that air-filled porosity at relevant pressure stages cannot be used for verification of the segmentation results. Representativity analysis by simulating flow in increasing soil volume up to 2.8 cm3 revealed no representative elementary volume (REV) within Ah sample and non-uniqueness of REV for B sample. The latter was explained by soil structure non-stationarity. We further speculate that structures soil horizons can exhibit no REV at all. We discuss numerous advantages of coupled imaging and pore-scale modelling approach and show how it can become a successor of the conventional soil coring method to parametrize large scale continuum models.

  12. Application of Advanced Thermal Hydraulic TRACG Model to Preserve Operating Margins in BWRs at Extended Power Up-rate Conditions

    International Nuclear Information System (INIS)

    GE has developed TRACG, a customized BWR version of the TRAC model, for application to BWR analyses. This model was initially applied to special BWR challenges and for benchmarking the official simplified thermal-hydraulic design models. However, in past years extensive additional model development, qualification and application studies have been completed. This development has followed the CSAU methodology, where extensive model evaluation and qualification have been performed to demonstrate the applicability of the model and to quantify the uncertainty in the model parameters as well as in plant parameters and initial conditions. This has then been combined with a statistically based application methodology following the CSAU approach to generate tolerance limits for the critical safety and design parameters. This effort has resulted in application processes that have been reviewed and approved by the US NRC to enable routine application of the TRACG model to the design and licensing analyses and utilize the improved operating margin to optimize the fuel cycle design. These applications have been supported by development of programs that construct specific plant and problem base-decks that utilize BWR plant characteristics and system databases to standardize and streamline the application to several plants. The application of the TRACG model in Transient and LOCA analyses has assisted in allowing similar power peaking at higher power density conditions for BWRs. Also, the application of the TRACG model in Stability analyses has assisted in preserving the setpoints of stability monitoring systems to avoid margin loss for high power density applications. TRACG is being used for analysis of ATWS events. It has been used to support the development of emergency procedure guidelines, and it is currently being used to demonstrate that the suppression pool temperature limits can be met for up-rated conditions. Finally, the application of the TRACG model in Faulted Load

  13. Hydraulic redistribution study in two native tree species of agroforestry parklands of West African dry savanna

    Science.gov (United States)

    Bayala, Jules; Heng, Lee Kheng; van Noordwijk, Meine; Ouedraogo, Sibiri Jean

    2008-11-01

    Hydraulic redistribution (HR) in karité ( Vitellaria paradoxa) and néré ( Parkia biglobosa) tree species was studied by monitoring the soil water potential ( ψs) using thermocouple psychrometers at four compass directions, various distances from trees and at different soil depths (max depth 80 cm) during the dry seasons of 2004 and 2005. A modified WaNuLCAS model was then used to infer the amount of water redistribued based on ψs values. Tree transpiration rate was also estimated from sap velocity using thermal dissipative probes (TDP) and sapwood area, and the contribution of hydraulically redistributed water in tree transpiration was determined. The results revealed on average that 46% of the psychrometer readings under karité and 33% under néré showed the occurrence of HR for the two years. Soil under néré displayed significantly lower fluctuations of ψs (0.16 MPa) compared to soil under karité (0.21 MPa). The results of this study indicated that the existence of HR leads to a higher ψs in the plant rhizosphere and hence is important for soil water dynamics and plant nutrition by making more accessible the soluble elements. The simulation showed that the amount of water redistributed would be approximately 73.0 L and 247.1 L per tree per day in 2005 for karité and néré, and would represent respectively 60% and 53% of the amount transpired a day. Even though the model has certainly overestimated the volume of water hydraulically redistributed by the two species, this water may play a key role in maintaining fine root viability and ensuring the well adaptation of these species to the dry areas. Therefore, knowledge of the extent of such transfers and of the seasonal patterns is required and is of paramount importance in parkland systems both for trees and associated crops.

  14. Hydraulic modelling for flood mapping and prevention: the case study of Cerfone River

    Science.gov (United States)

    Di Francesco, Silvia; Venturi, Sara; Manciola, Piergiorgio

    2016-04-01

    The research focuses on the hydraulic risk evaluation and danger estimation for different extreme flood events, in order to correctly implement mitigation measures in an anthropized basin. The Cerfone River (Tuscany, Italy), due to the several floods that have affected the neighbouring villages in recent years, is selected as case of study. A finite volume numerical model that solves the shallow water equations all over the computational domain, was used to simulate the unsteady evolution of the maximum extent of flooded areas for different scenarios. The one - dimensional approach (still widespread in engineering projects) can be inaccurate in complex flows, which are often two or three dimensional and sometimes does not manage to capture the flood spatial extents in terms of flow depth and velocity. The use of a two-dimensional numerical model seems to be the suitable instrument in terms of computational efficiency and adequacy of results. In fact it overcomes the limits of a one-dimensional modeling in terms of prediction of hydraulic variables with a less computational effort respect to a full 3d model. An accurate modeling of the river basin leads to the evaluation of the present hydraulic risk. Structural and non- structural measures are then studied, simulated and compared in order to define the optimal risk reduction plan for the area of study. At this aim, different flooding scenarios were simulated through the 2D mathematical model: i) existing state of the river and floodplain areas; ii) design of a levee to protect the most vulnerable populated areas against the flooding risk; iii) use of off - stream detention basins that strongly amplify the lamination capacity of floodplains. All these scenarios were simulated for different return periods: 50, 100, 200 and 500 years. The inputs of the hydraulic models are obtained in accordance with the legislative requirement of Tuscany Region; in particular discharge hydrographs are evaluate through the ALTo

  15. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    Science.gov (United States)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  16. Contribution to the study of thermal-hydraulic problems in nuclear reactors

    International Nuclear Information System (INIS)

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in 'in-situ' thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  17. Hydraulic study of drilling fluid flow in circular and annular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Scheid, C.M.; Calcada, L.A.; Braga, E.R.; Paraiso, E.C.H. [Universidade Federal Rural do Rio de Janeiro (PPGEQ/UFRRJ), Seropedica, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Dept. de Engenharia Qumica], E-mail: calcada@ufrrj.br; Martins, A. L. [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2011-10-15

    This study investigates the drilling fluid flow behavior of two water-based drilling fluids in circular and annular tubes. The study has four main objectives: 1) to evaluate correlations between the Power Law and the Casson rheological models, 2) to characterize the flow behavior, 3) to evaluate five hydraulic-diameter equations, and 4) to evaluate the correlations of five turbulent flow-friction factors. The experimental fluid flow loop consisted of one positive displacement pump of 25 HP connected to a 500-liter tank agitated by a 3-HP mixer. The fluids passed through six meters long tubes, arranged in three horizontal rows with independent inlets and outlets. The circular tubes had a 1 inch diameter and were configured as two concentric annular tubes. Annular Tube I had an outer diameter of 1 1/4 inch and an inner diameter of 1/2 inch. Annular Tube II had an outer diameter of 2 inches and an inner diameter of 3/4 inch. The results show that, for the fluids in exam, correlations proposed in the literature were inaccurate as far as predicting hydraulic diameter, estimating pressure drop, and defining the flow regime. In general, the performance of those correlations depended on the fluid properties and on the system's geometry. Finally, literature parameters for some of the correlations were estimated for the two drilling fluids studied. These estimations improved the predictive capacity of calculating the friction factor for real drilling fluids applications for both circular and annular tubes. (author)

  18. Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)

    1998-01-01

    Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)

  19. Thermal hydraulic parameter studies of heat exchanger for the TRIGA MARK II research reactor

    International Nuclear Information System (INIS)

    Thermal Hydraulic studies have being conducted at PUSPATI TRIGA Mark II (RTP) Nuclear Research Reactor. The purpose of this study is to determine the heat transfer characteristic and heat exchanger performance at difference reactor power. Fundamental concept and a plate type application of heat exchanger in RTP are presented in this study. A plate type heat exchanger is a device for RTP reactor cooling system built for efficient heat transfer from one fluid to another. The study involves the observation of inlet and outlet temperature profile, flow rate and pressure at the reactor pool and heat exchanger. The observed parameters are compared to basic engineering calculation and the output of the study has been beneficial to evaluate the performance of newly-installed plate type heat exchanger. (author)

  20. Forming-Precision-Driven Structure Design of Hydraulic Press:Methodology and Case Study

    Institute of Scientific and Technical Information of China (English)

    李艳聪; 张连洪; 何柏岩; 陈永亮; 张淳

    2015-01-01

    The structure stiffness of presses has great effects on the forming precision of workpieces, especially in near-net or net shape forming. Conventionally the stiffness specification of presses is empirically determined, re-sulting in poor designs with insufficient or over sufficient stiffness of press structures. In this paper, an approach for the structure design of hydraulic presses is proposed, which is forming-precision-driven and can make presses cost-effective by lightweight optimization. The approach consists of five steps:(1)the determination of the press stiff-ness specification in terms of the forming precision requirement of workpieces;(2)the conceptual design of the press structures according to the stiffness and workspace specifications, and the structure configuration of the press;(3)the prototype design of the press structures by equivalently converting the conceptual design to proto-types;(4)the selection of key structure parameters by sensitivity analysis of the prototype design; and(5)the opti-mization of the prototype design. The approach is demonstrated and validated through a case study of the structure design of a 100 MN hydraulic press.

  1. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Yue Dong

    2015-01-01

    Full Text Available A novel stage hydraulic monitoring system based on Internet of Things (IoT is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring pressure of flow. When the monitored data exceeds the normal range, some failure may occur in the stage hydraulic system. If any failure occurs in the circuit, the maintainers can be informed immediately, which can greatly improve maintenance efficiency, ensuring the failure to be eliminated in time. Meanwhile, we can take advantage of wireless sensor network (WSN to connect the multiple loops and then monitor the loops by using ZigBee technology, which greatly improves the efficiency of monitoring.

  2. Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat

    Directory of Open Access Journals (Sweden)

    Tadas Zdankus

    2016-07-01

    Full Text Available Significant potential for reducing thermal energy consumption in buildings of moderate and cold climate countries lies within wind energy utilisation. Unlike solar irradiation, character of wind speeds in Central and Northern Europe correspond to the actual thermal energy demand in buildings. However, mechanical wind energy undergoes transformation into electrical energy before being actually used as thermal energy in most wind energy applications. The study presented in this paper deals with hydraulic systems, designed for small-scale applications to eliminate the intermediate energy transformation as it converts mechanical wind energy into heat directly. The prototype unit containing a pump, flow control valve, oil tank and piping was developed and tested under laboratory conditions. Results of the experiments showed that the prototype system is highly efficient and adjustable to a broad wind velocity range by modifying the definite hydraulic system resistance. Development of such small-scale replicable units has the potential to promote “bottom-up” solutions for the transition to a zero carbon society.

  3. Validation of hydraulic tomography in an unconfined aquifer: A controlled sandbox study

    Science.gov (United States)

    Zhao, Zhanfeng; Illman, Walter A.; Yeh, Tian-Chyi J.; Berg, Steven J.; Mao, Deqiang

    2015-06-01

    In this study, we demonstrate the effectiveness of hydraulic tomography (HT) that considers variably saturated flow processes in mapping the heterogeneity of both the saturated and unsaturated zones in a laboratory unconfined aquifer. The successive linear estimator (SLE) developed by Mao et al. (2013c) for interpreting HT in unconfined aquifers is utilized to obtain tomograms of hydraulic conductivity (K), specific storage (Ss), and the unsaturated zone parameters (pore size parameter (α) and saturated water content (θs)) for the Gardner-Russo's model. The estimated tomograms are first evaluated by visually comparing them with stratigraphy visible in the sandbox. Results reveal that the HT analysis is able to accurately capture the location and extent of heterogeneity including high and low K layers within the saturated and unsaturated zones, as well as reasonable distribution patterns of α and θs for the Gardner-Russo's model. We then validate the estimated tomograms through predictions of drawdown responses of pumping tests not used during the inverse modeling effort. The strong agreement between simulated and observed drawdown curves obtained by pressure transducers and tensiometers demonstrates the robust performance of HT that considers variably saturated flow processes in unconfined aquifers and the unsaturated zone above it. In addition, compared to the case using the homogeneous assumption, HT results, as expected, yield significantly better predictions of drawdowns in both the saturated and unsaturated zones. This comparison further substantiates the unbiased and minimal variance of HT analysis with the SLE algorithm.

  4. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  5. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    Science.gov (United States)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  6. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  7. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  8. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    Science.gov (United States)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and

  9. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: application to the study of ancient Naxos aqueduct

    Science.gov (United States)

    Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.

    2011-07-01

    Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.

  10. Study of radionuclides migration in hydraulic binders. Influence of binder alteration on transfer mechanisms and kinetic

    International Nuclear Information System (INIS)

    In the framework of low and medium activity wastes surface storage, hydraulic binders materials are usually used as containment barrier. The safety analysis of this storage mode involves the knowledge of their behaviour and of their retention capacity towards radionuclides, at short and long-term. The knowledge of diffusional processes inside their liquid phase and those of the interactions existing between the diffusing element and the cement matrix, as well as their kinetics, are essential elements for the study of their durability on 300 years. An experimental methodology has been defined, allowing the characterization of the transfer of an element j in a porous material by the determination of the diffusion coefficient of j in the pores of the material x and the determination of the local equilibrium constant characterizing the interaction of j with the material x. This can be made from the analytical expressions coming from the Fick laws. These parameters have been studied from diffusion and leaching experiments of radionuclides in pure cement pastes. A modelling of the leaching processes is proposed here. The decomposition of the hydraulic binders, by their leaching in a demineralized solution at 'aggressive' pH, leads essentially to their decalcification - whose kinetics answers to a pure diffusion law in √t - and an increase of their porosity. In these attack conditions, it seems that it exists a decalcification limit condition, from which a lattice of interconnected microcracks is developed in all the material. In consequence, the retention capacity of these degraded materials towards radionuclides decreases. The cesium transfer appears more sensitive to the degradation of the material than of those of the tritium. (O.M.)

  11. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    International Nuclear Information System (INIS)

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  12. Study of the performance of four repairing material systems for hydraulic structures of concrete dams

    Directory of Open Access Journals (Sweden)

    Kormann A. C. M.

    2003-01-01

    Full Text Available Four types of repairing materials are studied as function of either a conventional concrete or a reference-concrete (RefC, these are: polymer-modified cement mortar (PMor, steel fiber concrete (SFco, epoxy mortar (EMor and silica fume mortar (SFmo, to be applied in hydraulic structures surfaces subjected to a high velocity water flow. Besides the mechanical requests and wearing resistance of hydraulic concrete dam structures, especially the spillway surfaces, the high solar radiation, the environmental temperature and wet and dry cycles, contribute significantly to the reduction of their lifespan. RefC and the SFco were developed based on a usual concrete mixture used in slabs of spillways. The average RefC mixture used was 1: 1.61: 2.99: 0.376, with Pozzolan-modified Portland cement consumption of 425 kg/m³. EMor and PMor mixtures followed the information given by the manufacturers and lab experience. Tests on concrete samples were carried out in laboratory simulating normally found environmental situations in order to control the mechanical resistance and the aging imposed conditions, such as solar radiation and humidity. Also, physicochemical characterizing tests were made for all used materials. From the analyzed results, two of them presented a higher performance: the EMor and SFmo. SFco presented good adherence to the RefC and good mechanical performance. However, it also presented apparent metal corrosion in humidity tests, being indicated for use, with caution, as an intermediate layer in underwater repairs. In a general classification, considering all tests, including their field applications, the better performance material systems were EMor- SFmo> SFco> PMor.

  13. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  14. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2015-07-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  15. EFFECT FOR A SINGLE ROUGHNESS E=5,63mm OF EXPERIMENTAL TO STUDY HYDRAULIC JUMP PROFILE IN A CHANNEL IN U A ROUGH BOTTOM

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2013-06-01

    Full Text Available This study aims to study the hydraulic jump controlled by threshold, moving in a channel profile 'U' bottomed rough for a single roughness E=5,63mm. Functional relations in dimensionless terms, linking the different characteristics of the projection, showing the effect of roughness of the bottom of the channel are obtained. The hydraulic jump is the primary means used by hydraulic structures to dissipate energy. This hydraulic jump is formed at the sharp transition from a supercritical flow a stream flow.

  16. Computational and experimental study of effects of sediment shape on erosion of hydraulic turbines

    International Nuclear Information System (INIS)

    Hard particles as Quartz and Feldspar are present in large amount in most of the rivers across the Himalayan basins. In run-off-river hydro power plants these particles find way to turbine and cause its components to erode. Loss of turbine material due to the erosion and subsequent change in flow pattern induce several operational and maintenance problems in the power plants. Reduction in overall efficiency, vibrations and reduced life of turbine components are the major effects of sediment erosion of hydraulic turbines. Sediment erosion of hydraulic turbines is a complex phenomenon and depends upon several factors. One of the most influencing parameter is the characteristics of sediment particles. Quantity of sediment particles, which are harder than the turbine material, is one of the bases to indicate erosion potential of a particular site. Research findings have indicated that shape and size of the hard particles together with velocity of impact play a major role to decide the mode and rate of erosion in turbine components. It is not a common practice in Himalayan basins to conduct a detail study of sediment characteristics as a part of feasibility study for hydropower projects. Lack of scientifically verified procedures and guidelines to conduct the sediment analysis to estimate its erosion potential is one of the reasons to overlook this important part of feasibility study. Present study has been conducted by implementing computational tools to characterize the sediment particles with respect to their shape and size. Experimental studies have also been done to analyze the effects of different combinations of shape and size of hard particles on turbine material. Efforts have also been given to develop standard procedures to conduct similar study to compare erosion potential between different hydropower sites. Digital image processing software and sieve analyzer have been utilized to extract shape and size of sediment particles from the erosion sensitive power

  17. Basic hydraulics

    CERN Document Server

    Smith, P D

    1982-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  18. NATO Advanced Study Institute on Advances in Microlocal Analysis

    CERN Document Server

    1986-01-01

    The 1985 Castel vecchio-Pas coli NATO Advanced Study Institute is aimed to complete the trilogy with the two former institutes I organized : "Boundary Value Problem for Evolution Partial Differential Operators", Liege, 1976 and "Singularities in Boundary Value Problems", Maratea, 1980. It was indeed necessary to record the considerable progress realized in the field of the propagation of singularities of Schwartz Distri­ butions which led recently to the birth of a new branch of Mathema­ tical Analysis called Microlocal Analysis. Most of this theory was mainly built to be applied to distribution solutions of linear partial differential problems. A large part of this institute still went in this direction. But, on the other hand, it was also time to explore the new trend to use microlocal analysis In non linear differential problems. I hope that the Castelvecchio NATO ASI reached its purposes with the help of the more famous authorities in the field. The meeting was held in Tuscany (Italy) at Castelvecchio-P...

  19. IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES

    Science.gov (United States)

    Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...

  20. Hydraulic testing plan for the Bear Creek Valley Treatability Study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The Bear Creek Valley (BCV) Treatability Study is intended to provide site-specific data defining potential treatability technologies applicable to contaminated groundwater and surface water. The ultimate goal of this effort is to install a treatment system that will remove uranium, technetium, nitrate, and several metals from groundwater before it reaches Bear Creek. This project directly supports the BCV Feasibility Study. Part of the Treatability Study, Phase II Hydraulic Performance Testing, will produce hydraulic and treatment performance data required to design a long-term treatment system. This effort consists of the installation and testing of two groundwater collection systems: a trench in the vicinity of GW-835 and an angled pumping well adjacent to NT-1. Pumping tests and evaluations of gradients under ambient conditions will provide data for full-scale design of treatment systems. In addition to hydraulic performance, in situ treatment chemistry data will be obtained from monitoring wells installed in the reactive media section of the trench. The in situ treatment work is not part of this test plan. This Hydraulic Testing Plan describes the location and installation of the trench and NT-1 wells, the locations and purpose of the monitoring wells, and the procedures for the pumping tests of the trench and NT-1 wells

  1. Experimental Identification and Study of Hydraulic Resonance Test Rig with Francis Turbine operating at Partial Load

    OpenAIRE

    Favrel, Arthur; Landry, Christian; Müller, Andres; Avellan, François

    2013-01-01

    Resonance in hydraulic systems is characterized by pressure fluctuations of high amplitude which can lead to undesirable and dangerous effects, such as noise, vibration and structural failure. For a Francis turbine operating at partial load, the cavitating vortex rope developing at the outlet of the runner induces pressure fluctuations which can excite the hydraulic system resonance, leading to undesirable large torque and power fluctuations. At resonant operating points, the prediction of am...

  2. Improved design of hydroelectric projects : hydraulic roughness of TBM-bored tunnels. An experimental study.

    OpenAIRE

    Katarzyna Filipek; Anna Kasprzyk

    2011-01-01

    The purpose of this thesis is to link head loss coefficients in rough pipes to the physical roughness of the surface through measurements of head loss in fully turbulent flow. It is generally regarded that hydraulic roughness is some function of the height, spacing, density and nature of the physical roughness under consideration. Attempts have been made to link hydraulic roughness to physical roughness of an irregular surface. Those have, however, been incomplete and conducted at flow states...

  3. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  4. Advances and challenges in innovation studies

    OpenAIRE

    Castellacci, F.; Grodal, S.; Mendonça, S; Wibe, M.

    2005-01-01

    The article discusses recent advances and future challenges in innovation studies. First, it separately considers four main strands of research, studying innovation at the organizational, systemic, sectoral and macroeconomic levels. Then, considering the field as a whole, the article points to the existence of important neglected topics and methodological challenges for future research. In fact, several fundamental issues are still unexplored, such as the co-evolution betwee...

  5. Microstructural studies of advanced austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J. A.; Ren, Jyh-Ching [University of Southern California, Los Angeles, CA (USA). Dept. of Materials Science

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  6. Study of thermal hydraulic behaviors during steam generator multiple tube rupture events in PWR

    International Nuclear Information System (INIS)

    Since the occurrence probability of multiple steam generator tube rupture (MSGTR) in PWR is low, analytical or experimental investigation for termination of such accidents is not performed explicitly. Therefore, thermal-hydraulic analysis of the plant behavior under the MSGTR (10 and 50 tubes) in all loops or in a single loop with station black out (SBO) were made in this study with use of the code RETRAN3D, and investigations for accident management (AM) of such accidents were made in order to contribute to continuous risk reduction efforts in the future. This study indicated that the water supply function to the SG is quite important for coping with accidents involving MSGTR accompanied by SBO to prevent core damage. Further, if the auxiliary feed water system loses its function, the time to reach the core exposure is predicted to be reduced by 1 hour or more in a MSGTR case as compared to a single-tube SGTR case. Therefore, in order to prevent the core damage during MSGTR, it is desirable to have alternative water injection equipment operable to quickly replace auxiliary feed water system if it fails and to increase the reliability of the auxiliary feed water system. (author)

  7. Advanced Cell Development and Degradation Studies

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; R. C. O' Brien; K. G. Condie; M. Sohal; G. K. Housley; J. J. Hartvigsen; D. Larsen; G. Tao; B. Yildiz; V. Sharma; P. Singh; N. Petigny; T. L. Cable

    2010-09-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. From 2003 – 2009, this work was sponsored by the DOE Nuclear Hydrogen Initiative (NHI). Starting in 2010, the HTE research program has been sponsored by the Next Generation Nuclear Plant (NGNP) program. HTSE research priorities in FY10 are centered on understanding and reducing cell and stack performance degradation to an acceptable level to advance the technology readiness level of HTSE and to justify further large-scale demonstration activities. This report provides a summary of our FY10 experimental program, which has been focused on advanced cell and stack development and degradation studies. Advanced cell and stack development activities are under way at five technology partners: MSRI, Versa Power, Ceramatec, NASA Glenn, and St. Gobain. Performance evaluation of the advanced technology cells and stacks has been performed by the technology partners, by MIT and the University of Connecticut and at the INL HTE Laboratory. Summaries of these development activities and test results are presented.

  8. The development and verification of thermal-hydraulic code on passive residual heat removal system of Chinese advanced PWR

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The technology of passive safety is the current trend among safety systems in nuclear power plant. Passive residual heat removal system (PRHRS), a major part of passive safety systems of Chinese advanced PWR, is a novel design with three-fold natural circulation. On the basis of reasonable physics and mathematics models, MITAP-PRHRS code was developed to analyze steady and transient characteristics of the PRHRS. The calculation and analysis show that the code simulates steady characteristics of the PRHRS very well, and it is able to simulate transient characteristics of all startup modes of the PRHRS. However, the quantitative description is poor during the initial stages of the transition process when water hammer occurs.

  9. [Advances in the studies of concealed penis].

    Science.gov (United States)

    Fan, Sheng-hai; Li, Xue-de

    2015-09-01

    Concealed penis is usually found in children, which affects the patients both physiologically and psychologically. Some of the patients are wrongly treated by circumcision, which may bring about serious consequences to the sexual life of the patients in their adulthood. In the recent years, this disease has been receiving more and more attention from both doctors and parents. However, controversies remain as to its classification, pathogenesis, pathology, and treatment. This paper focuses on the understanding and advances in the studies of concealed penis.

  10. Pressure Safety: Advanced Self-Study 30120

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    Pressure Safety Advance Self-Study (Course 30120) consists of an introduction, five modules, and a quiz. To receive credit in UTrain for completing this course, you must score 80% or better on the 15-question quiz (check UTrain). Directions for initiating the quiz are appended to the end of this training manual. This course contains several links to LANL websites. UTrain might not support active links, so please copy links into the address line in your browser.

  11. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    Science.gov (United States)

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. PMID:19819130

  12. Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles

    International Nuclear Information System (INIS)

    Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)

  13. Experimental and analytical study on thermal hydraulics in reduced-moderation water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Araya, Fumimasa; Ohnuki, Akira; Yoshida, Hiroyuki; Kureta, Masatoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-06-01

    Study and development of reduced-moderation spectrum water reactor proceeds as a option of the future type reactor in Japan Atomic Energy Research Institute (JAERI). The reduced-moderation spectrum in which a neutron has higher energy than the conventional water reactors is achieved by decreasing moderator-to-fuel ratio in the lattice core of the reactor. Conversion ratio in the reduced-moderation water reactor can be more than 1.0. High burnup and long term cycle operation of the reactor are expected. A type of heavy water cooled PWR and three types of BWR are discussed as follows; For the PWR, (1) critical heat flux experiments in hexagonal tight lattice core, (2) evaluation of cooling limit at a nominal power operation, and (3) analysis of rewetting cooling behavior at loss of coolant accident following with large scale pipe rupture. For the BWR, analyses of cooling limit at a nominal power operation of, (1) no blanket BWR, (2) long term cycle operation BWR, and (3) high conversion ratio BWR. The experiments and the analyses proved that the basic thermal hydraulic characteristics of these reduced-moderation water reactors satisfy the essential points of the safety requirements. (Suetake, M.)

  14. Thermal-hydraulic studies on the safety of VVER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    The thesis includes several thermal-hydraulic analyses related to the Loviisa VVER-440 nuclear power plant units. The work consists of experimental studies, analysis of the experiments, analysis of some plant transients and development of a calculational model for calculation of boric concentrations in the reactor. In the first part of thesis, in the case of simulation of boric acid solution behaviour during long-term cooling period of LOCAs, experiments were performed in scaled-down test facilities. The experimental data together with the results of RELAP5/MOD3 simulations were used to develop a model for calculations of boric acid concentrations in the reactor during LOCAs. In the second part, in the case of simulation of horizontal generators, experiments were performed with PACTEL integral test loop to simulate loss of feedwater transients. The PACTEL experiments as well as earlier REWETT-III natural circulation tests, were analyzed with RELAP5/MOD3 Version 5m5 code. The third part of the work consists of simulations of Loviisa VVER reactor pump trip transients with RELAP5/MOD1-Eur, RELAP5/MOD3 and CATHARE codes. (56 refs., 9 figs.)

  15. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.;

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for a parameter research study with emphasis on the requirements to the hitch control by use of hydraulic pressure compensated proportional control valve....

  16. Recent Advances in Study of Oceanic Vortex

    Institute of Scientific and Technical Information of China (English)

    FU Gang; LI Li; LIU Qinyu

    2002-01-01

    In this paper, the recent advances in the study of oceanic vortex are outlined. Firstly, the previous studies on oceanic vortex are reviewed. Secondly, some prominent features of oceanic vortex in the Gulf Stream, the Kuroshio, the South China Sea and the Japan Sea regions are depicted based upon the observations and numerical modeling results. Generally, the lifetime of these oceanic vortices ranges from several weeks to several months, and their horizontal scales vary from tens of kilometers to hundreds of kilometers. Their vertical scales are on the order of thousands of meters. Finally, some theoretical studies, mainly on the splitting of a cyclonic vortex and the merging of anticyclonic vortices, are introduced.

  17. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  18. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    袁辉; 徐龙江; 田大宝; 赵燕玲

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil contamination of the hydraulic systems of shearers. Experimental provement of silting-theory contamination analyser are carried out. The filter effect of portable hydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and field experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to control the oil contamination was carried out in the Datong Coat Mining Bureau.

  19. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  20. Feasibility study on the development of advanced LWR fuel technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Sohn, D. S.; Jeong, Y. H.; Song, K. W.; Song, K. N.; Chun, T. H.; Bang, J. G.; Bae, K. K.; Kim, D. H. and others

    1997-07-01

    Worldwide R and D trends related to core technology of LWR fuels and status of patents have been surveyed for the feasibility study. In addition, various fuel cycle schemes have been studied to establish the target performance parameters. For the development of cladding material, establishment of long-term research plan for alloy development and optimization of melting process and manufacturing technology were conducted. A work which could characterize the effect of sintering additives on the microstructure of UO{sub 2} pellet has been experimentally undertaken, and major sintering variables and their ranges have been found in the sintering process of UO{sub 2}-Gd{sub 2}O{sub 3} burnable absorber pellet. The analysis of state of the art technology related to flow mixing device for spacer grid and debris filtering device for bottom nozzle and the investigation of the physical phenomena related to CHF enhancement and the establishment of the data base for thermal-hydraulic performance tests has been done in this study. In addition, survey on the documents of the up-to-date PWR fuel assemblies developed by foreign vendors have been carried out to understand their R and D trends and establish the direction of R and D for these structural components. And, to set the performance target of the new fuel, to be developed, fuel burnup and economy under the extended fuel cycle length scheme were estimated. A preliminary study on the failure mechanism of CANDU fuel, key technology and advanced coating has been performed. (author). 190 refs., 31 tabs., 129 figs.

  1. EXPERIMENTAL STUDY HYDRAULIC ROUGHNESS FOR KAN TIN MAIN DRAINAGE CHANNEI IN HONG KONG

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; YANG Kai-lin; GUO Xing-lei; XIE Sheng-zong; FU Hui; GUO Yong-xin

    2012-01-01

    The Kam Tin Main Drainage Channel (KTMDC) is an important river for the city drainage in Hong Kong.The roughness and its variations have an obvious effect on the flood control capacity and the flow capacity.So physical model tests are designed to study the KTMDC.Due to its complex channel structure,the tests are completed in two steps.In Step 1,the energy loss is measured along the main channel without inflows,with all inflows and outflows being sealed.In Step 2,all the inflow and outflow structures are measured,with the sealed inflows and outflows being opened on the basis of Step 1.In each step,two schemes are employed.One of the key issues is the choice of suitable materials to make the model's roughness similar to that of the prototype.According to the gravity similarity criterion,the 1:25 scale model is built,with the main channel made of Perspex.The facing slopes of the grasscrete and the stone masonry need to be roughened.A kind of the nylon net is selected to simulate the roughness of the stone masonry and the plastic lawn for the grasscrete facing slope.For the different structure reaches,the roughness coefficients are estimated based on the hydraulic theory.The rationality of the test results is verified in this study.The results of testing can provide a reliable basis for the renovation,the expansion,the optimization of this channel.

  2. Study on stress characteristics of Francis hydraulic turbine runner based on two-way FSI

    Science.gov (United States)

    Zhu, W. R.; Xiao, R. F.; Yang, W.; Liu, J.; Wang, F. J.

    2012-11-01

    In recent years, cracking phenomenon occurs in many large-sized turbines both nationally and internationally, which has threatened the stable operation of hydraulic turbines. Consequently, Stress characteristics calculation and analysis of a Francis hydraulic turbine runner by application of fluid-structure interaction (FSI) technology become significantly important. In order to introduce two-way coupling technology to hydraulic machinery, two-way FSI technology is applied in this article to calculate and analyze stress characteristics. Through coordinate system transformation, the continuity equations and Navier-Stokes equations in the Cartesian coordinates system are firstly transformed to ALE coordinates system. The fluid field control equations are then constructed and discrete equations can be obtained by using flow-condition-based interpolation (FBIC-C). The structure static mechanics equations used are established in rotation coordinate system, and modeled with the finite method. Two-way coupling is computed by using iteration method. The fluid equations and structure equations are iterated until coupling coefficients converge. According to structure result, the maximum stress, displacement as well as its location can be found. As a result, the most easily wear position can be discovered which provides valuable basis for optimized design and stable operation of Francis hydraulic turbines. After comparing the results with that of one-way coupling, it is discovered that displacements is the key factors which affects the results of one-way and two-way coupling.

  3. Study on Control Strategy of Electro-Hydraulic Servo Loading System

    Directory of Open Access Journals (Sweden)

    Ju Tian

    2013-09-01

    Full Text Available Since extraneous torque is the key factor to affect the accuracy of electro-hydraulic servo loading system, the forming mechanism of extraneous torque was discussed in this work. And then several design methods of loading system controller based on modern control theory were introduced, such as internal model control, Cerebella model articulation control and adaptive backstepping control.

  4. Study on Control Strategy of Electro-Hydraulic Servo Loading System

    OpenAIRE

    Ju Tian

    2013-01-01

    Since extraneous torque is the key factor to affect the accuracy of electro-hydraulic servo loading system, the forming mechanism of extraneous torque was discussed in this work. And then several design methods of loading system controller based on modern control theory were introduced, such as internal model control, Cerebella model articulation control and adaptive backstepping control.

  5. A Laboratory Study of the Effects of Interbeds on Hydraulic Fracture Propagation in Shale Formation

    Directory of Open Access Journals (Sweden)

    Zhiheng Zhao

    2016-07-01

    Full Text Available To investigate how the characteristics of interbeds affect hydraulic fracture propagation in the continental shale formation, a series of 300 mm × 300 mm × 300 mm concrete blocks with varying interbeds, based on outcrop observation and core measurement of Chang 7-2 shale formation, were prepared to conduct the hydraulic fracturing experiments. The results reveal that the breakdown pressure increases with the rise of thickness and strength of interbeds under the same in-situ field stress and injection rate. In addition, for the model blocks with thick and high strength interbeds, the hydraulic fracture has difficulty crossing the interbeds and is prone to divert along the bedding faces, and the fracturing effectiveness is not good. However, for the model blocks with thin and low strength interbeds, more long branches are generated along the main fracture, which is beneficial to the formation of the fracture network. What is more, combining the macroscopic descriptions with microscopic observations, the blocks with thinner and lower strength interbeds tend to generate more micro-fractures, and the width of the fractures is relatively larger on the main fracture planes. Based on the experiments, it is indicated that the propagation of hydraulic fractures is strongly influenced by the characteristics of interbeds, and the results are instructive to the understanding and evaluation of the fracability in the continental shale formation.

  6. STUDY ON AN OBJECTORIENTED FEATUREBASED CADOF HYDRAULIC MANIFOLD BLOCK

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The technique of objectoriented featurebased solid modeling and its application in the CAD of hydraulic manifold block (HMB) are discussed. The research can greatly improve the convenience and efficiency of product design for HMB, as well as for the other mechanical products.

  7. A comparative study of various advanced fusions

    International Nuclear Information System (INIS)

    For the purpose of comparing the merits and demerits of various advanced fuel cycles, parametric studies of operation conditions are examined. The effects of nuclear elastic collisions and synchrotron radiation are taken into account. It is found that the high-#betta# Catalyzed DD fuel cycle with the transmutation of fusion-produced tritium into helium-3 is most feasible from the point of view of neutron production and tritium handling. The D-D fuel cycles seem to be less attractive compared to the Catalyzed DD. The p-11B and p-6Li fusion plasmas hardly attain the plasma Q value relevant to reactors. (author)

  8. Technological advances for studying human behavior

    Science.gov (United States)

    Roske-Hofstrand, Renate J.

    1990-01-01

    Technological advances for studying human behavior are noted in viewgraph form. It is asserted that performance-aiding systems are proliferating without a fundamental understanding of how they would interact with the humans who must control them. Two views of automation research, the hardware view and the human-centered view, are listed. Other viewgraphs give information on vital elements for human-centered research, a continuum of the research process, available technologies, new technologies for persistent problems, a sample research infrastructure, the need for metrics, and examples of data-link technology.

  9. Study of bioleaching under different hydraulic retention time for enhancing the dewaterability of digestate.

    Science.gov (United States)

    Li, Linshuai; Gao, Jingqing; Zhu, Songfeng; Li, Yonghong; Zhang, Ruiqin

    2015-12-01

    Dewatering of kitchen waste digestate is a key problem to solve so as to increase the application of kitchen waste after anaerobic digestion. In this study, the effects of bioleaching under different hydraulic retention time (HRT = 2, 2.5, and 3 days) on dewaterability of kitchen waste digestate were evaluated. A 12-stage plug flow bioreactor with 180 L working volume was used for digestate bioleaching. The bioleached digestate under different HRTs were collected and dewatered by plate-and-frame filter press. The results showed that the moisture contents of digestate cakes were 67.87 % at 2 days of HRT, 58.06 % at 2.5 days of HRT, and 54.45 % at 3 days of HRT, respectively, indicating the longer the HRT, the lower the moisture content of filter cake. Balanced between the cost and practical need, 2.5 days can be used as the HRT in engineering application. Under the condition of HRT of 2.5 days, the pH, specific resistance to filtration (SRF), capillary suction time (CST), and sedimentation rate of digestate changed from the initial values of 8.08, 210.6 s, 23.4 × 10(12) m kg(-1) and 10 % to 3.21, 32.7 s, 2.44 × 10(12) m kg(-1) and 76.8 %, respectively. Based on the observations above, the authors conclude that bioleaching technology is an effective method to enhance digestate dewaterability and reduce the cost of subsequent reutilization. PMID:26298699

  10. Parametric studies on containment thermal hydraulic loads during high pressure melt ejection in a BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    1997-12-01

    The containment thermal hydraulic loads during high pressure melt ejection in a Nordic BWR are studied parametrically with the CONTAIN and the MELCOR codes. The work is part of the Nordic RAK-2 project. The containment analyses were divided into two categories according to composition of the discharged debris: metallic and oxidic debris cases. In the base case with highly metallic debris, all sources from the reactor coolant system to the containment were based on the MELCOR/BH calculation. In the base case with the oxidic debris, the source data was specified assuming that {approx} 15% of the whole core material inventory and 34,000 kg of saturated water was discharged from the reactor pressure vessel (RPV) during 30 seconds. In this case, the debris consisted mostly of oxides. The highest predicted containment pressure peaks were about 8.5 bar. In the scenarios with highly metallic debris source, very high gas temperature of about 1900 K was predicted in the pedestal, and about 1400 K in the upper drywell. The calculations with metallic debris were sensititive to model parameters, like the particle size and the parameters, which control the chemical reaction kinetics. In the scenarios with oxidic debris source, the predicted pressure peaks were comparable to the cases with the metallic debris source. The maximum gas temperatures (about 450-500 K) in the containment were, however, significantly lower than in the respective metallic debris case. The temperatures were also insensitive to parametric variations. In addition, one analysis was performed with the MELCOR code for benchmarking of the MELCOR capabilities against the more detailed CONTAIN code. The calculations showed that leak tightness of the containment penetrations could be jeopardized due to high temperature loads, if a high pressure melt ejection occurred during a severe accident. Another consequence would be an early containment venting. (au). 28 refs.

  11. The influence of a drop-hydraulic structure on the mountain stream channel regime - case study from the Polish Carpathians

    Directory of Open Access Journals (Sweden)

    Artur RADECKI-PAWLIK

    2013-06-01

    Full Text Available Basic hydraulic parameters such as shear stress, stream power, unit stream power and water velocities were calculated and measured within the region of a drop hydraulic structure erected on the Kasinczanka stream in the Polish Carpathians. Besides examining the hydrodynamics of the stream the study investigated also the distribution of grain size in the bed-load at the upstream and downstream aprons of the structure. It was revealed that grains deposited at the upstream apron were finer than those deposited at the downstream apron. At the same time, shear stresses and unit stream power values were found to be quite stable upstream of the drop structure, but to change significantly along the stream channel downstream of the structure’s energy dissipating pool

  12. The Hydraulic Jump: Finding Complexity in Turbulent Water

    Science.gov (United States)

    Vondracek, Mark

    2013-01-01

    Students who do not progress to more advanced science disciplines in college generally do not realize that seemingly simple physical systems are--when studied in detail--more complex than one might imagine. This article presents one such phenomenon--the hydraulic jump--as a way to help students see the complexity behind the seemingly simple, and…

  13. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  14. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  15. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  16. Overview of EPA's Approach to Developing Prospective Case Studies Technical Workshop: Case Studies to Assess Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    Science.gov (United States)

    One component of the United States Environmental Protection Agency's (EPA) study of the potential impacts of hydraulic fracturing on drinking water resources is prospective case studies, which are being conducted to more fully understand and assess if and how site specific hydrau...

  17. A COMPUTATIONAL STUDY OF THE ACTUATION SPEED OF THE HYDRAULIC CYLINDER UNDER DIFFERENT PORTS’ SIZES AND CONFIGURATIONS

    Directory of Open Access Journals (Sweden)

    M. O. ABDALLA

    2015-02-01

    Full Text Available The discharged oil from hydraulic cylinder, during its operation, is highly restricted by the small sized outlets. As a result, a back pressure builds up and the piston motion, therefore, is slowed down; the system pump has to do additional work to overcome this hydraulic resistance so as to preserve the required speed. In this study the possibility of improvement of the actuation speed of the hydraulic cylinders was investigated and analysed. Both a four-port cylinder and a resized-ports cylinder were proposed as fast cylinders. FLUENT 6.3 was used for the simulation of the oil flow field of the hydraulic cylinders. Results showed that relation between discharge flow and the outlets diameters is best described by a power law having coefficients partially depending on the system pressure. It had also shown that for any given total outlet area, the actuation speed of the single outlet cylinders is always higher than that of the double outlets cylinders. In one case where the total outlet area is 3.93E-05m2, the actuation speed of the single outlet cylinder is 21% higher than that of the double outlets cylinder; whereas, when doubling the total outlet area the different is reduced to just 6% . Resizing the outlet for small ports was more efficient than using multi-outlets; while for a large ports it shows no significant difference to use either one outlet port or multi-outlets. Both the solutions of resizing or ports addition need special valve to be fit to the cylinder so that the cylinder could be effectively operated under the control of the proportional valve.

  18. NATO Advanced Study Institute on Superconducting Electronics

    CERN Document Server

    Nisenhoff, Martin; Superconducting Electronics

    1989-01-01

    The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our persp...

  19. The New Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Bond; K. Kostelnik; R.A. Wharton; A. Kadak

    2006-06-01

    A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundation to enable future economic growth. The next generation energy workforce in the U.S. is a critical element in meeting both national and global energy needs. The Center for Advanced Energy Studies (CAES) was established in 2005 in response to U.S. Department of Energy (DOE) requirements. CAES, located at the new Idaho National Laboratory (INL), will address critical energy education, research, policy study and training needs. CAES is a unique joint partnership between the Battelle Energy Alliance (BEA), the State of Idaho, an Idaho University Consortium (IUC), and a National University Consortium (NUC). CAES will be based in a new facility that will foster collaborative academic and research efforts among participating institutions.

  20. Numerical and experimental study of hydraulic dashpot used in the shut-off rod drive mechanism of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Narendra K., E-mail: nksingh_chikki@yahoo.com [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Badodkar, Deepak N. [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Singh, Manjit [Division of Remote Handling and Robotics, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-07-01

    Highlights: • Hydraulic dashpot performance is studied numerically as well as experimentally. • Instantaneous pressure built-up in the dashpot is mainly contributing for damping of freely falling shut-off rod at the end of its travel. • At elevated temperature, dashpot pressure does not reduce in proportion to the reduction in viscosity. • ‘C’ grove in the dashpot shaft flattens the pressure peak and shifts it toward the end of operation. - Abstract: Hydraulic dashpot design for shut-off rod drive mechanism application in a nuclear reactor has been analyzed both numerically and experimentally in this paper. Finite element commercial code COMSOL Multiphysics 4.3 has been used for numerical analysis. Experimental validation has been done at two different cases. Experimental test set-ups and hydraulic dashpot constructions have been described in detail. Various combinations of dashpot oil viscosity and clearance thickness have been analyzed. Important experimental results are also presented and discussed. Pressure distributions in the dashpot chambers obtained from COMSOL are given for both the set-ups. Numerical and experimental results are compared. Dashpot designs have been qualified after detailed analysis and testing on full-scale test stations simulating actual reactor conditions (except radiation)

  1. The study on measures to improve the reliability of the hydraulic systems of shearers

    Institute of Scientific and Technical Information of China (English)

    YUAN Hui; XU Long-jiang; TIAN Da-biao; ZHAO Yan-ling

    2001-01-01

    The authors indicate that the failure of hydraulic systems of shearers can drop greatly, its' reliability and service life can be increased by the use of a field oil contamination analyser and filter device to control the oil cont amination of the hydraulic systems of shearers. Experimental provement of siltin g-theory contamination analyser are carried out.The filter effect of portable h ydraulic driving oil-filter model YLJ-21 is examinationed in laboratory and fi e ld experiment. From January to August 1992, on-site experimental research using a silting-theory contamination analyser and oil-filter model YLJ-21 to contr o l the oil contamination was carried out in the Datong Coal Mining Bureau.

  2. STUDY ON THE CONTROL SYSTEM OF HYDRAULIC MOMENT-ADJUSTED BRAKE FOR DOWNWARD BELT CONVEYOR

    Institute of Scientific and Technical Information of China (English)

    孟国营; 徐志强; 霍森; 方佳雨

    1997-01-01

    Having analyzed the drawbacks on the design of control system of hydraulic momentadjusted brake system, the author presents a closed loop control system in the process of start and braking of the conveyer. On the basis of the concept of the critical time and the critical acceleration and its deductions, the working mode of the conveyer can be identified and controlled in feedback, furthermore, thus realize the process of soft start. In the deceleration process, the author points out the problems that exist in the present control system and sets forward the control process that acted by the combined function of brake moment of motor and the drag torque of hydraulic brake at the beginning of deceleration, it will further improved reliability of conveyor system.

  3. Study on blister of the coating on solid cantilevers of hydraulic supports for coal mining

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work, blister of the Cu-Sn plus Cr coating on solid cantilevers of hydraulic supports for coal mining was investigated by hydrogen-charging, Devanathan-Stachurski method and electrochemical impedance spectroscopy (EIS) measurement. It was found that the permeation hydrogen during the pickling process and the electroplating process was responsible for the blisters. The residual tensile stress due to the machining process would increase the permeation hydrogen amount during pickling and electroplating processes.

  4. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  5. 水工液压启闭机液压缸稳定性计算研究%Calculating Study of Stability of Hydraulic Cylinder of Hydraulic Hoist

    Institute of Scientific and Technical Information of China (English)

    殷勇华; 王孟

    2015-01-01

    水电水利工程中用于启闭各种闸门的液压缸具有工作行程大,活塞杆承受的拉、压荷载大,启闭操作的可靠性要求高等特点。实际应用中,计算其稳定性的资料很多,临界载荷取值相差很大。针对上述情况,提出了液压缸稳定性计算的新方法。将液压缸简化为二阶变截面的压杆,应用Matlab软件,得到液压缸临界载荷的校核公式。结果表明,所得到的计算结果简单方便,有利于人们在设计中的计算。%Hydraulic cylinder used for opening and closing various gate has features of long work schedule, high reliability of o ̄pening and closing operations, with its piston rod bearing high tension and pressure load in a hydropower project. In the actual application, a lot of materials are used to calculate the stability, but critical load values vary widely. Aiming at the above situa ̄tion, a new method is presented, which is used to calculate the stability of the hydraulic cylinder. The hydraulic cylinder is sim ̄plified as a second-order variable cross-compression bar, the formula of the critical load of the hydraulic cylinder is obtained by using Matlab software. The results show that the calculation result is obtained simply and conveniently. It helps people in the design calculation.

  6. The Pan American Advanced Studies Institute

    CERN Document Server

    Arous, Gérard; Ferrari, Pablo; Newman, Charles; Sidoravicius, Vladas; Vares, Maria

    2014-01-01

    This volume features selected and peer-reviewed articles from the Pan-American Advanced Studies Institute (PASI). The chapters are written by international specialists who participated in the conference. Topics include developments based on breakthroughs in the mathematical understanding of phenomena describing systems in highly inhomogeneous and disordered media, including the KPZ universality class (describing the evolution of interfaces in two dimensions), spin glasses, random walks in random environment, and percolative systems. PASI fosters a collaboration between North American and Latin American researchers and students. The conference that inspired this volume took place in January 2012 in both Santiago de Chile and Buenos Aires. Researchers and graduate students will find timely research in probability theory, statistical physics and related disciplines.

  7. 10MN/16MN数控高性能拉深液压机液压系统研究%Study on hydraulic system of 10MN/16MN high performance deep-drawing hydraulic press

    Institute of Scientific and Technical Information of China (English)

    叶臻; 王晋抚

    2013-01-01

    介绍了提高双动拉深液压机高性能的关键液压技术.分析了影响液压机快速平稳运行和压边滑块四角调平的原因,并对其液压回路分别进行了研究.解决了双动液压机速度慢和精度低等技术难题,有效提高了生产频率和综合性能.%The key technology for improving the high performance of deep-drawing hydraulic press has been introduced in the text. The reasons for influence of fast and smooth running of hydraulic press and four corners leveling control system for blank slider have been analyzed, and the hydraulic loops have been studied. Finally, the technical problems such as slow speed and low accuracy of double action hydraulic press have been solved, which effectively raise the production rate and comprehensive performance.

  8. Combustion waves in hydraulically resisted systems.

    Science.gov (United States)

    Brailovsky, I; Kagan, L; Sivashinsky, G

    2012-02-13

    The effects of hydraulic resistance on the burning of confined/obstacle-laden gaseous and gas-permeable solid explosives are discussed on the basis of recent research. Hydraulic resistance is found to induce a new powerful mechanism for the reaction spread (diffusion of pressure) allowing for both fast subsonic as well as supersonic propagation. Hydraulic resistance appears to be of relevance also for the multiplicity of detonation regimes as well as for the transitions from slow conductive to fast convective, choked or detonative burning. A quasi-one-dimensional Fanno-type model for premixed gas combustion in an obstructed channel open at the ignition end is discussed. It is shown that, similar to the closed-end case studied earlier, the hydraulic resistance causes a gradual precompression and preheating of the unburned gas adjacent to the advancing deflagration, which leads (after an extended induction period) to a localized autoignition that triggers an abrupt transition from deflagrative to detonative combustion. In line with the experimental observations, the ignition at the open end greatly encumbers the transition (compared with the closed-end case), and the deflagration practically does not accelerate up to the very transition point. Shchelkin's effect, that ignition at a small distance from the closed end of a tube facilitates the transition, is described. PMID:22213662

  9. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application of the l......This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  10. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor

    International Nuclear Information System (INIS)

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  11. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  12. Advances in soil-structure interaction studies

    International Nuclear Information System (INIS)

    It is utmost important that lifeline infrastructures (such as bridges, hospitals, power plants, dams etc.) are safe and functional during earthquakes as damage or collapse of these structures may have far reaching implications. A lifeline's failure may hamper relief and rescue operations required just after an earthquake and secondly its indirect economical losses may be very severe. Therefore, safety of these structures during earthquakes is vital. Further, damage to nuclear facilities during earthquake may lead to disaster. These structures should be designed adequately taking into account all the important issues. Soil-Structure Interaction (SSI) is one of the design issues, which is often overlooked and even in some cases ignored. The effects of dynamic SSI are well understood and practiced in the nuclear power industry (for large foundations of the nuclear containment structures) since sixties. However, in last decade, there are many advances in techniques of SSI and those need to be incorporated in practice. Failures of many structures occurred during the 1989 Loma Prieta and 1994 Northridge, California earthquakes and the 1995 Kobe, Japan earthquake due to SSI or a related issue. Many jetties had failed in Andaman and Nicobar islands due to Sumatra earthquake and ensuing tsunamis. It is because of this recent experience that the importance of SSI on dynamic response of structures during earthquakes has been fully realized. General belief that the SSI effects are always beneficial for the structure is not correct. Some cases have been presented where it is shown that SSI effects are detrimental for the stability of the structure. This paper addresses the effects of dynamic SSI on the response of the structures and explains its importance. Further advances in SSI studies have been discussed

  13. Case studies for solving the Saint-Venant equations using the method of characteristics: pipeline hydraulic transients and discharge propagation

    Science.gov (United States)

    Barros, R. M.; Tiago Filho, G. L.; dos Santos, I. F. S.; da Silva, F. G. B.

    2014-03-01

    Hydraulic transients occur during a change from one equilibrium state to another, for example, in flows. The pipeline project should provide the head and discharge in any operating states, e.g., sudden valve opening or closure. Among the various numerical approaches for the calculation of pipeline transients, the method of characteristics (MOC) is advantageous This study aims to present a hydraulic transitory study as MOC applications for solving the Saint- Venant equations in two case studies: 1) in a penstock of a small hydropower system as a simple pipeline in the case of valve-closure in the downstream boundary with a reservoir in the upstream boundary; and 2) for discharge propagation into a channel by velocity and depth of the flow channel along space evaluation. The main data for the first case study consisted of a design head that is 182 meters, a turbine discharge of 13.82 m3/s, a diameter of 4 meters and length pipe (penstock) of 2,152.50 meters. Regarding the second case study, the entry hydrogram was given to a rectangular channel with a width of 6.1 meters, length of 3,048 meters, slope of 0.0016 meters, and exhibited uniform flow with nominal depth of 2.44 meters. The characteristic curve of the discharge in the downstream extremity is Q = 158.(y - 3.25)32. The proposed methodology by Chaudry [5] concerning the development of hydrodynamic models was used. The obtained results for first case study showed that the simulated values for valve pressure while varying turning the valve between 4 and 12 seconds results in maximum values of pressures that oscillated between 219.97mca and 212.39 mca (4s) and 196.42mca and 190.86mca (12s). For the second case study, the values of discharge, velocity, and depth for x=0 and elapsed time of 850s were, respectively, 127.70m3/s, 3.87m/s, and 5.36m. For x=0 and an elapsed time of 1,230s, the values were 87.92m3/s, 4.49m/s, and 3.21m. Therefore, the MOC numerical approach has been confirmed to be useful for several

  14. Case studies for solving the Saint-Venant equations using the method of characteristics: pipeline hydraulic transients and discharge propagation

    International Nuclear Information System (INIS)

    Hydraulic transients occur during a change from one equilibrium state to another, for example, in flows. The pipeline project should provide the head and discharge in any operating states, e.g., sudden valve opening or closure. Among the various numerical approaches for the calculation of pipeline transients, the method of characteristics (MOC) is advantageous This study aims to present a hydraulic transitory study as MOC applications for solving the Saint- Venant equations in two case studies: 1) in a penstock of a small hydropower system as a simple pipeline in the case of valve-closure in the downstream boundary with a reservoir in the upstream boundary; and 2) for discharge propagation into a channel by velocity and depth of the flow channel along space evaluation. The main data for the first case study consisted of a design head that is 182 meters, a turbine discharge of 13.82 m3/s, a diameter of 4 meters and length pipe (penstock) of 2,152.50 meters. Regarding the second case study, the entry hydrogram was given to a rectangular channel with a width of 6.1 meters, length of 3,048 meters, slope of 0.0016 meters, and exhibited uniform flow with nominal depth of 2.44 meters. The characteristic curve of the discharge in the downstream extremity is Q = 158.(y – 3.25)32. The proposed methodology by Chaudry [5] concerning the development of hydrodynamic models was used. The obtained results for first case study showed that the simulated values for valve pressure while varying turning the valve between 4 and 12 seconds results in maximum values of pressures that oscillated between 219.97mca and 212.39 mca (4s) and 196.42mca and 190.86mca (12s). For the second case study, the values of discharge, velocity, and depth for x=0 and elapsed time of 850s were, respectively, 127.70m3/s, 3.87m/s, and 5.36m. For x=0 and an elapsed time of 1,230s, the values were 87.92m3/s, 4.49m/s, and 3.21m. Therefore, the MOC numerical approach has been confirmed to be useful for several

  15. Hydraulic interference test and tracer tests within the Braendan area, Finnsjoen study site

    International Nuclear Information System (INIS)

    The report covers the performance and interpretation of a series of hydraulic interference tests and a tracer test in fracture zone 2 within the Breandan area, Finnsjoen. The interference test were performed by pumping from isolated sections of one borehole and recording the resutling pressure changes in multiple-observation sections (generally five) in adjacent boreholes as well as in the pumping borehole. The tracer test was performed by pulse injection of tracers in isolated sections of the near-region observation boreholes and monitoring the break-trough of tracers in the pumping borehole. The interference tests showed that different response patterns were generated in the near-region and in the more distant region from the pumping borehole. In the near-region, primary responses in high-conductive, low-porosity flow paths between the boreholes generally dominate. The tracer test also indicates that the primary responses may be strongly influenced by local heterogeneities. At longer distances more averaged responses generally occurred with similar responses in the multiple-sections in the boreholes. The hydraulic interference test as well as the tracer test documented a very high transmissivity of zone 2, particularily in its upper part. The interference tests indicated hydraulic interaction between zone 2 and the over- and underlying rock. Zone 2 was found to be bounded and may be represented by a triangular-shaped area. Interflow to zone 2 occured during pumping, possibly via other fracture zones. Responses due to the pumping occurred at long distances (up to about 1.5 km) from the pumping borehole. A numerical model was used to simulate the responses of the interference tests. Good agreement was achieved between simulated and observed responses from the most distant boreholes but decreased agreement in the near-region boreholes. This fact was attributed to local heterogeneities in the near-region. (76 figs., 50 tabs., 36 refs.)

  16. STUDY ON THE PERIODIC WATERHAMMER INITIATED BY A NOVEL HYDRAULIC SHOCK GENERATOR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The hydrodynamic performances of a novel hydraulic shock generator are examined.The shock generator is designed to impose the strong power of waterhammer in mining industry.The experimental results show that the Waterhammer produced by the periodic fast switch of a flowing fluid has diferent features with that of a single closure observed by other researchers.In particular,the intensity of the waterhammer depends largely on the switch frequency due to the interaction of successive pressure waves.These flow transient phenomen a are theoretically proved by the simulation results based on the finite difference method of characteristics.

  17. EXPERIMENTAL STUDY OF EFFECTS OF OPERATING CONDITIONS ON THE FLOW CHARACTERISTICS OF WATER HYDRAULIC THROTTLE

    Institute of Scientific and Technical Information of China (English)

    Liu Yinshui; Nie Songlin; Zhu Yuquan; He Xiaofeng; Li Zhuangyun

    2004-01-01

    Experimental investigations are made on the effects of operating conditions on the flow characteristics of throttle when tap water is used as the working media. The researched throttles include cone poppet valve, ball valve, disc valve and dumping orifice. Operating condition includes poppet lift, working media, back pressure, medium temperature, etc. Because the vapourous pressure of water is much higher than that of oil, cavitation is easier to occur in water hydraulic elements and systems, so the effects of operating conditions on the cavitation characteristics of throttle are also researched.

  18. The Hydraulic Project Włocławek: Design, Studies, Construction and Operation

    OpenAIRE

    Wojciech Majewski

    2015-01-01

    The Hydraulic Project Włocławek was commissioned in 1970 as the first barrage of the Lower Vistula Cascade (LVC). The purpose of the LVC was to create an important source of hydro-energy and inland navigation route connecting central Poland with the port city of Gdańsk. Along the Lower Vistula (LV) important cities and industrial centres are located. The Włocławek project still remains the only barrage on the LV thus creating a number of problems. The paper presents the basic hydrologic...

  19. Validation studies of thermal-hydraulic code for safety analysis of nuclear power plants

    International Nuclear Information System (INIS)

    The thesis gives an overview of the validation process for thermal-hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. Large part of the work has been performed in cooperation with the CATHARE-team in Grenoble, France. (41 refs., 11 figs., 8 tabs.)

  20. Study on thermal-hydraulic phenomena in porous media. Summarized report from 1997 Apr. to 2000 Mar

    International Nuclear Information System (INIS)

    This study deals with thermal-hydraulic phenomena in a porous blockage of a Fast Breeder Reactor. When foreign substances flow into the fuel subassembly with wire spacer, they would choke up the sub-channel and form a porous blockage. The objective of this study is to clarify the thermal-hydraulic phenomena in porous media and to develop the analytical method to predict the thermal-hydraulic field, deciding the maximum temperature on the fuel pin surface. This study is performed in cooperation with University of Tsukuba and Japan Nuclear Cycle Development Institute (JNC) from November 1997 to March 2000. This report describes the results for three years from April 1997 to March 2000. The visualization method using NaI solution as working fluid and Pyrex grass as structure was applicable to the porous media flow. When the concentration of NaI is 56.9 [wt%] in the solution, the refraction-rate corresponds to that of the Pyrex grass. The experiments to measure the velocity field inside and outside the blockage with Particle Image Velocimetry (PIV) analysis and Laser Doppler Velocimetry (LDV) were conducted. Moreover, we tried to measure the fluid temperature inside the blockage in the NaI solution, using Laser Induced Fluorescence (LIF) method. We checked the relation between the brightness of the fluorescence and solution temperature. And then, we revealed that the LIF method could be used even in the NaI solution. We also conducted the numerical analysis for the experiments. We confirmed that the calculation using the porous boby model is applicable to the analysis of the flow behavior around the porous blockage. (author)

  1. Single- and two-phase flow modeling for coupled neutronics / thermal-hydraulics transient analysis of advanced sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Nuclear power is nowadays in the front rank as regards helping to meet the growing worldwide energy demand while avoiding an excessive increase in greenhouse gas emissions. However, the operating nuclear power plants are mainly thermal-neutron reactors and, as such, can not be maintained on the basis of the currently identified uranium resources beyond one century at the present consumption rate. Sustainability of nuclear power thus involves closure of the fuel cycle through breeding. With a uranium-based fuel, breeding can only be achieved using a fast-neutron reactor. Sodium-cooled fast reactor (SFR) technology benefits from 400 reactor-years of accumulated experience and is thus a prime candidate for the implementation of so-called Generation-IV nuclear energy systems. In this context, the safety demonstration of SFRs remains a major Research and Development related issue. The current research aims at the development of a computational tool for the in-depth understanding of SFR core behaviour during accidental transients, particularly those including boiling of the coolant. An accurate modelling of the core physics during such transients requires the coupling between 3D neutron kinetics and thermal-hydraulics in the core, to account for the strong interactions between the two-phase coolant flow and power variations caused by the sodium void effect. The present study is specifically focused upon models for the representation of sodium two-phase flow. The extension of the thermal-hydraulics TRACE code, previously limited to the simulation of single-phase sodium flow, has been carried out through the implementation of equations-of-state and closure relations specific to sodium. The different correlations have then been implemented as options. From the validation study carried out, it has been possible to recommend a set of models which provide satisfactory results, while considering annular flow as the dominant regime up to dryout and a smooth breakdown of the

  2. Study of thermal and hydraulic performances of circular and square ribbed rough microchannels using LBM

    Science.gov (United States)

    Taher, M. A.; Kim, H. D.; Lee, Y. W.

    2015-11-01

    The effects of roughness geometries and relative roughness height at the slip flow regime to investigate the thermal and hydraulic performances of microchannel have been considered in the present article using a thermal Lattice Boltzmann Method (TLBM). A two dimensional 9-bit (D2Q9) single relaxation time (SRT) model is used to simulate this problem. In micro-flows, the local density variation is still relatively small, but the total density changes, therefore, in order to account this density variation and its effect on the kinematic viscosity v, a new relaxation time proposed by Niu et al.[13] is used. The roughness geometry is modeled as a series of square and circular riblets with a relative roughness height from 0% to 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn) and the dimensionless heat transfer rate in terms of Nusselt number (Nu) have been discussed in order to analyze the roughness effects. The thermal-hydraulic performance ( η) is calculated considering the simultaneous effects of thermal and fluid friction (pressure drop) at the slip flow regime at Knudsen number, Kn, ranging from 0.01 to 0.10 with other controlling parameters for both kind of geometries. The results have been compared with previous published works and it is found to be in very good agreement.

  3. Laboratory Studies to Examine the Impact of Polyacrylamide (PAM) on Soil Hydraulic Conductivity

    Science.gov (United States)

    Moran, E. A.; Young, M. H.; Yu, Z.

    2005-12-01

    Polyacrylamide (PAM) is a long-chain synthetic polymer made of the monomer acrylamide (AMD). PAM has numerous uses ranging from food processing to drilling to wastewater treatment. More recently it has been proposed as a canal sealant in the western US to improve water conservation. To support a larger field-based experimental program being implemented in Grand Junction, CO, soil column experiments are being conducted to evaluate the mechanisms of how, and to what extent, PAM reduces soil hydraulic conductivity. The goal of the experiments is to find the optimum concentration and application method of PAM that reduces hydraulic conductivity to the greatest extent. Column tests were conducted, in triplicate, using a constant head method in acrylic columns of 15 cm length and 6.4 cm diameter. An unbalanced multi-factorial design was used with experimental variables including soil type (medium silica sand, locally-derived sand, and locally-derived loam), PAM concentration (11, 22, 44, 88 kg/canal-ha), turbidity (0, 100, 350 NTU), and application method (hydrated PAM on dry soil and powdered PAM applied to water column above saturated soil). Non-crosslinked anionic PAM with a molecular weight of 12 to 24 Mg/mol was used for all experiments. Additional experiments were conducted in graduated cylinders to evaluate interactions between PAM, turbidity and water chemistry. Results of the laboratory tests will be presented and discussed in the context of water conservation in the western US.

  4. Design and Construction of Experiment for Direct Electron Irradiation of Uranyl Sulfate Solution: Bubble Formation and Thermal Hydraulics Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.

  5. NATO Advanced Study Institute on Spectroscopy

    Science.gov (United States)

    DiBartolo, Baldassare; Barnes, James (Technical Monitor)

    2001-01-01

    This booklet presents an account of the course 'Spectroscopy of Systems with Spatially Confined Structures' held in Erice-Sicily, Italy, from June 15 to June 30, 2001. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the 'Ettore Majorana' Centre for Scientific Culture. The purpose of this course was to present and discuss nanometer-scale physics, a rapidly progressing field. The top-down approach of semiconductor technology will soon meet the scales of the bottom-up approaches of supramolecular chemistry and of spatially localized excitations in ionic crystals. This course dealt with the fabrication, measurement and understanding of the relevant structures and brought together the scientific communities responsible for these development. The advances in this area of physics have already let to applications in optoelectronics and will likely lead to many more. The subjects of the course included spatially resolved structures such as quantum wells, quantum wires and quantum dots, single atoms and molecules, clusters, fractal systems, and the development of related techniques like near-field spectroscopy and confocal microscopy to study such systems.

  6. [Advances in the study of the nucleolus].

    Science.gov (United States)

    Feng, Jin-Mei; Sun, Jun; Wen, Jian-Fan

    2012-12-01

    As the most prominent sub-nuclear compartment in the interphase nucleus and the site of ribosome biogenesis, the nucleolus synthesizes and processes rRNA and also assembles ribosomal subunits. Though several lines of research in recent years have indicated that the nucleolus might have additional functions-such as the assembling of signal recognition particles, the processing of mRNA, tRNA and telomerase activities, and regulating the cell cycle-proteomic analyses of the nucleolus in three representative eukaryotic species has shown that a plethora of proteins either have no association with ribosome biogenesis or are of presently unknown function. This phenomenon further indicates that the composition and function of the nucleolus is far more complicated than previously thought. Meanwhile, the available nucleolar proteome databases has provided new approaches and led to remarkable progress in understanding the nucleolus. Here, we have summarized recent advances in the study of the nucleolus, including new discoveries of its structure, function, genomics/proteomics as well as its origin and evolution. Moreover, we highlight several of the important unresolved issues in this field.

  7. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers......, and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  8. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  9. Impact of light quality on leaf and shoot hydraulic properties: a case study in silver birch (Betula pendula).

    Science.gov (United States)

    Sellin, Arne; Sack, Lawren; Õunapuu, Eele; Karusion, Annika

    2011-07-01

    Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (Peffect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange.

  10. Extraction of Crustal Deformation from Seafloor Hydraulic Pressure Gauges: A trial collaboration study

    Science.gov (United States)

    Ariyoshi, Keisuke; Nagano, Akira; Hasegawa, Takuya; Matsumoto, Hiroyuki; Kido, Motoyuki; Igarashi, Toshihiro; Uchida, Naoki; Nakata, Ryoko; Yamashita, Yusuke

    2016-04-01

    It has been well known that megathrust earthquakes such as the 2004 Sumatra-Andaman Earthquake (Mw 9.1) and the 2011 the Pacific Coast of Tohoku Earthquake (Mw 9.0) had devastated the coastal areas in the western of Indonesia and in the north-eastern of Japan, respectively. Some researchers have pointed out that the 2011 Tohoku earthquake may correspond to the recurrence of the 869 Jogan earthquake. In addition, the 887 Nin'na earthquake followed it and ruptured the source regions for both the 1946 Mw 8.1 Nankai and 1944 Mw 7.9 Tonankai earthquakes with probably greater magnitude than the sum of the two earthquakes. These may indicate that megathrust earthquakes like the Nin'na earthquake might occur along the Nankai Trough in the near future. To mitigate the disaster of those forthcoming megathrust earthquakes, the Japanese government has established seafloor networks of cable-linked observatories around Japan: DONET (Dense Oceanfloor Network system for Earthquakes and Tsunamis along the Nankai Trough) and S-net (Seafloor Observation Network for Earthquakes and Tsunamis along the Japan Trench). The advantage of the cable-linked network is to monitor the propagation process of tsunami and seismic waves as well as seismic activity in real time. Before the occurrence of such megathrust earthquakes, monitoring of seismically plate coupling is important to evaluate the disaster risk in advance. Recently, owing to the inland networks of highly sensitive seismic broadband seismogram stations, very low-frequency interplate earthquakes (VLFEs) have been observed near the trench. Since VLFE is thought to be located in the shallower and deeper edge of seismogenic segments occurring megathrust earthquakes and be sensitive to small stress change such as Earth tidal modulation due to low stress drop, monitoring the spatiotemporal change of VLFE activity has been expected to detect the strongly plate coupling regions in advance of megathrust earthquake occurrence. In this study

  11. Study on the impeller hydraulic performance for the contra-rotating axial flow pump

    International Nuclear Information System (INIS)

    This paper discusses the design method and performance of the front and rear impellers of the contra-rotating axial flow pump. A definition of specific speed has been given. The design head of rear impeller is suggested to increase appropriately. By analyzing the inlet and outlet velocity triangles of the twin impellers in detail under design and off-design point, the paper gives a matching condition and formulas for working out the two triangles. Based on the velocity triangles and 'lift method', the geometric parameters of the twin impellers have been designed, the results have been analyzed qualitatively, and the hydraulic performance has been predicted. A practical design shows that at the same design head of the twin impellers, the relative velocity at the middle of inlet and outlet of rear impeller are larger than that of the front impeller, while the stagger angle is smaller and the head curve is much steeper

  12. An experimental study of the dual-loop control of electro-hydraulic load simulator (EHLS)

    Institute of Scientific and Technical Information of China (English)

    Wang Chengwen; Jiao Zongxia; Wu Shuai; Shang Yaoxing

    2013-01-01

    This paper investigates motion coupling disturbance (the so called surplus torque) in the hardware-in-the-loop (HIL) experiments. The‘‘velocity synchronization scheme’’ was proposed by Jiao for an electro-hydraulic load simulator (EHLS) in 2004. In some situations, however, the scheme is limited in the implementation for certain reasons, as is the case when the actuator’s valve signal is not available or it is seriously polluted by noise. To solve these problems, a ‘‘dual-loop scheme’’ is developed for EHLS. The dual-loop scheme is a combination of a torque loop and a position synchronization loop. The role of the position synchronization loop is to decouple the motion disturbance caused by the actuator system. To verify the feasibility and effectiveness of the proposed scheme, extensive simulations are performed using AMESim. Then, the performance of the developed method is validated by experiments.

  13. Assessment of hydraulic fish habitat condition using integrated toolkit: a case study of the Geum river basin, Republic of Korea.

    Science.gov (United States)

    Park, Sangyoung; Kim, Jeongkon; Ko, Ick Hwan; Arthington, Angela; Jones, Gary; Yum, Kyung Taek

    2010-01-01

    Artificial changes of rivers, including construction and operation of dams, inevitably lead to physical and ecological changes throughout waterways and their floodplains. In this study, a conceptual model coupled with integrated numerical modeling is presented for hydraulic fish habitat assessment of the Geum River basin, Republic of Korea. Based on the major events which might have affected the ecological system, a conceptual model was formulated to guide desktop and field studies, modeling and scenario evaluations. The result of hydraulic fish habitat assessment indicated that the construction of the Daecheong Multipurpose Dam (DMD) in the Geum River basin has altered flow magnitudes and reduced the river's flow variability. Changes are evident in the magnitude of medium and small flows and the river experiences increased low flows during the dry season. Black shiner, an endangered fish species in Korea, was selected and analyzed to explore relationships between flow regime change by dams and changes to its preferred habitats. As a result, fewer sensitive riffle-benthic species were observed in the reaches downstream of DMD due to the reduction of suitable habitat conditions such as riffle-pool sequences. The proposed conceptual model and integrated toolkit would allow river managers to isolate the physical and biological effects associated with dam operation and could be useful for developing river management strategies.

  14. Thermal-Hydraulics Study of a 75 kWth Aqueous Homogeneous Reactor for 99Mo Production

    Directory of Open Access Journals (Sweden)

    Daniel Milian Pérez

    2015-01-01

    Full Text Available Tc99m is a very useful radioisotope, which is used in nearly 80% of all nuclear medicine procedures. Tc99m is produced from 99Mo decay. A potentially advantageous alternative to meeting current and future demand for 99Mo is the use of Aqueous Homogeneous Reactors (AHR. In this paper, a thermal-hydraulics study of the core of a 75 kWth AHR conceptual design based on the ARGUS reactor for 99Mo production is presented. As the ARGUS heat removal systems were designed for working at 20 kWth, the main objective of the thermal-hydraulics study was evaluating the heat removal systems in order to show that sufficient cooling capacity exists to prevent fuel solution overheating. The numerical simulations of an AHR model were carried out using the Computational Fluid Dynamic (CFD code ANSYS CFX 14. Evaluation shows that the ARGUS heat removal systems working at 75 kWth are not able to provide sufficient cooling capacity to prevent fuel solution overheating. To solve this problem, the number of coiled cooling pipes inside the core was increased from one to five. The results of the CFD simulations with this modification in the design show that acceptable temperature distributions can be obtained.

  15. Neoadjuvant chemotherapy in advanced epithelial ovarian cancer: A survival study

    OpenAIRE

    Upasana Baruah; Debabrata Barmon; Amal Chandra Kataki; Pankaj Deka; Munlima Hazarika; Bhargab J Saikia

    2015-01-01

    Context: Patients with advanced ovarian cancer have a poor prognosis in spite of the best possible care. Primary debulking surgery has been the standard of care in advanced ovarian cancer; however, it is associated with high mortality and morbidity rates as shown in various studies. Several studies have discussed the benefit of neoadjuvant chemotherapy in patients with advanced ovarian cancer. Aims: This study aims to evaluate the survival statistics of the patients who have been managed with...

  16. Design study on the Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Full text: The design study on the Advanced Recycling Reactor (ARR) has been conducted. This paper presents the pre-conceptual design of the ARR that is a loop-typed sodium cooled reactor with MOX fuel. International Nuclear Recycling Alliance (INRA) takes advantage of international experience and uses the design based on Japan Sodium-cooled Fast Reactor (JSFR) as reference for FOA studies of US DOE, because Japan has conducted R and Ds for the JSFR incorporating thirteen technology enhancements expected to improve safety, enhance economics, and increase reactor reliability. The targets of the ARR are to generate electricity while consuming fuel containing transuranics and to attain cost competitiveness with the similar sized LWRs. INRA proposes 3 evolutions of the ARR; ARR1, a 500 MWe demonstration plant, online in 2025; ARR2, a 1,000 MWe commercial plant, online in 2035; ARR3, a 1,500 MWe full-scale commercial plant, online in 2050. INRA believes the scale-up factor of two is acceptable increase from manufacturing and licensing points of view. Major features of the ARR1 are the following: The reactor core is 70cm high and the volume fraction of fuel is approximately 32%. The conversion ratio of fissile is set up less than 0.6 and the amount of burned TRU is 45-51 kg/TWeh.Decay heat can be removed by natural circulation to improve safety. The primary cooling system consists of two-loop arrangement and the integrated IHX/Pump to improve economics. The steam generator with the straight double-walled tube is used to improve reliability. The ARR1 is co-located with a recycling facility. The overall plant facility arrangement is planned assuming to be constructed and installed in an inland area. The plant consists of a reactor building (including reactor auxiliary facilities and electrical/control systems), a turbine building, and a recycling building. The volume of the reactor building will be approximately 180,000 m3. The capital cost for the ARR1 and the ARR2 are

  17. Optimizing the Use of LiDAR for Hydraulic and Sediment Transport Model Development: Case Studies from Marin and Sonoma Counties, CA

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2013-12-01

    Effective floodplain management and restoration requires a detailed understanding of floodplain processes not readily achieved using standard one-dimensional hydraulic modeling approaches. The application of more advanced numerical models is, however, often limited by the relatively high costs of acquiring the high-resolution topographic data needed for model development using traditional surveying methods. The increasing availability of LiDAR data has the potential to significantly reduce these costs and thus facilitate application of multi-dimensional hydraulic models where budget constraints would have otherwise prohibited their use. The accuracy and suitability of LiDAR data for supporting model development can vary widely depending on the resolution of channel and floodplain features, the data collection density, and the degree of vegetation canopy interference among other factors. More work is needed to develop guidelines for evaluating LiDAR accuracy and determining when and how best the data can be used to support numerical modeling activities. Here we present two recent case studies where LiDAR datasets were used to support floodplain and sediment transport modeling efforts. One LiDAR dataset was collected with a relatively low point density and used to study a small stream channel in coastal Marin County and a second dataset was collected with a higher point density and applied to a larger stream channel in western Sonoma County. Traditional topographic surveying was performed at both sites which provided a quantitative means of evaluating the LiDAR accuracy. We found that with the lower point density dataset, the accuracy of the LiDAR varied significantly between the active stream channel and floodplain whereas the accuracy across the channel/floodplain interface was more uniform with the higher density dataset. Accuracy also varied widely as a function of the density of the riparian vegetation canopy. We found that coupled 1- and 2-dimensional hydraulic

  18. Advanced nuclear systems. Review study; Fortgeschrittene Nuklearsysteme. Review Study

    Energy Technology Data Exchange (ETDEWEB)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph [Interdisziplinaere Arbeitsgruppe Naturwissenschaft, Technik und Sicherheit (IANUS), Darmstadt University of Technology, Hochschulstrasse 10, D-64289 Darmstadt (Germany); Baehr, Roland; Hahn, Lothar [Institute for applied ecology (Oeko-Institut), Elisabethenstrasse 55-57, D-64283 Darmstadt (Germany)

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  19. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2015-06-01

    Full Text Available This work focuses on the chemical-mineralogical, textural and physical-mechanical properties of hydraulic lime mortars made with siliceous and calcareous aggregate. Mortars were cured at 60% and 90% of relative humidity, so as to assess the variability of mortar petrophysical properties in the hardened state due to the moisture conditions. The final aim was to determine the most adequate moisture conditions to be maintained during application and hardening of hydraulic mortars intended for repair interventions. We found out that using a calcareous aggregate and curing mortar at 90% of relative humidity give place to better textural and mechanical properties. However, these characteristics mostly depend on the maximum size of the aggregate grains, which should be smaller than 6 mm, in order to avoid the occurrence of mechanical discontinuities in the mortar.En este trabajo se han estudiado las propiedades químico-mineralógicas, texturales y físico-mecánicas de morteros de cal hidráulica elaborados con áridos silíceo y calcítico. Estos morteros se han curado al 60% y 90% de humedad relativa, con el fin de evaluar las eventuales diferencias en las propiedades petrofísicas de los morteros una vez endurecidos y así establecer cuál de los dos ambientes es recomendable durante la aplicación y fraguado de morteros de cal hidráulica destinados a obras de restauración. Se ha encontrado que el uso de un árido de composición calcítica y el curado al 90% de humedad relativa dan lugar a morteros hidráulicos con mejores características texturales y propiedades mecánicas. De todas formas, estas características dependen principalmente del tamaño máximo del árido empleado, que debería ser inferior a 6 mm para evitar discontinuidades mecánicas en el mortero.

  20. Thermal-hydraulic studies on self actuated shutdown system for Japan Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    The self-actuated shutdown system (SASS), which is selected for Japan Sodium-cooled Fast Reactor (JSFR), is a passive reactor shutdown system utilizing a Curie point electromagnet (CPEM). With CPEM, an excessive fuel outlet temperature rise is sensed and the control rods are released into the core, and the reactor can be shutdown. Therefore it is important for feasibility of SASS to be established by assuring a quick response of CPEM to the coolant temperature rise. In this paper, a device named 'flow collector', which collects flows discharged from six fuel subassemblies surrounding CPEM backup control rods, has been proposed to ensure a shorter response time. Three-dimensional thermal-hydraulic analysis has been performed to evaluate the response time of CPEM with the flow collector, and it is confirmed that the coolant discharged from the fuel subassemblies flows into CPEM with high velocity and the response time of CPEM can be significantly shortened. Based on this analysis, the safety analysis has been carried out, confirming that the maximum temperatures of core and coolant are lower than those imposed by the safety criteria, and feasibility of SASS is assured. (author)

  1. The Produce Technics Research about the Fabric Component on Advanced Downfall Coping Coal Hydraulic Pressure Support%放顶煤高端液压支架结构件制造工艺研究

    Institute of Scientific and Technical Information of China (English)

    魏鹏

    2014-01-01

    The text is according as advanced downfall coping coal hydraulic pressure support fabric component in recent years ,by controlling armor plate jointing ,fag end stress ,fag end distortion ,and its assort clearance ,we expatiated how to choose plate jointing ,logically choose fixing tolerance etc several pivotal advice ,lately we sumed up of the produce impact about advanced hydraulic pressure support .%对高强度低合金结构钢焊接、支架结构件残余应力及焊接残余变形的控制、高端液压支架结构件间配合间隙的合理选择板材下料、结构件拼装尺寸允差的合理选择等高端放顶煤液压支架制造过程中的几个关键问题进行了阐述,总结了高端放顶煤液压支架制造工艺。

  2. Management of a water distribution network by coupling GIS and hydraulic modeling: a case study of Chetouane in Algeria

    Science.gov (United States)

    Abdelbaki, Chérifa; Benchaib, Mohamed Mouâd; Benziada, Salim; Mahmoudi, Hacène; Goosen, Mattheus

    2016-04-01

    For more effective management of water distribution network in an arid region, Mapinfo GIS (8.0) software was coupled with a hydraulic model (EPANET 2.0) and applied to a case study region, Chetouane, situated in the north-west of Algeria. The area is characterized not only by water scarcity but also by poor water management practices. The results showed that a combination of GIS and modeling permits network operators to better analyze malfunctions with a resulting more rapid response as well as facilitating in an improved understanding of the work performed on the network. The grouping of GIS and modeling as an operating tool allows managers to diagnosis a network, to study solutions of problems and to predict future situations. The later can assist them in making informed decisions to ensure an acceptable performance level for optimal network operation.

  3. Numerical Study on the Permeability of the Hydraulic-Stimulated Fracture Network in Naturally-Fractured Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Zhaobin Zhang

    2016-09-01

    Full Text Available As hydraulic fracturing is a fluid-rock coupling process, the permeability of the hydraulic-stimulated fracture network in the initial stage has great effects on the propagation of the hydraulic fracture network in the following stages. In this work, the permeability of the hydraulic-stimulated fracture network in shale gas reservoirs is investigated by a newly-proposed model based on the displacement discontinuity method. The permeability of the fracture network relies heavily on fracture apertures, which can be calculated with high precision by the displacement discontinuity method. The hydraulic fracturing processes are simulated based on the natural fracture networks reconstructed from the shale samples in the Longmaxi formation of China. The flow fields are simulated and the permeability is calculated based on the fracture configurations and fracture apertures after hydraulic fracturing treatment. It is found that the anisotropy of the permeability is very strong, and the permeability curves have similar shapes. Therefore, a fitting equation of the permeability curve is given for convenient use in the future. The permeability curves under different fluid pressures and crustal stress directions are obtained. The results show that the permeability anisotropy is stronger when the fluid pressure is higher. Moreover, the permeability anisotropy reaches the minimum value when the maximum principle stress direction is perpendicular to the main natural fracture direction. The investigation on the permeability is useful for answering how the reservoirs are hydraulically stimulated and is useful for predicting the propagation behaviors of the hydraulic fracture network in shale gas reservoirs.

  4. Results from five years of treatability studies using hydraulic binders to stabilize low-level mixed waste at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    Gering, K.L.; Schwendiman, G.L.

    1997-05-01

    This paper summarizes work involving bench-scale solidification of nonincinerable, land disposal restricted low-level mixed waste. Waste forms included liquids, sludges, and solids; treatment techniques included hydraulic systems (Portland cement with and without additives), proprietary commercial formulations, and sulphur polymer cement. Solidification was performed to immobilize hazardous heavy metals (including mercury, lead, chromium, and cadmium), and volatile and semivolatile organic compounds. Pretreatment options for mixed wastes are discussed, using a decision tree based on the form of mixed waste and the type of hazardous constituents. Hundreds of small concrete monoliths were formed for a variety of waste types. The experimental parameters used for the hydraulic concrete systems include the ratio of waste to dry binder (Portland cement, proprietary materials, etc.), the total percentage of water in concrete, and the amount of concrete additives. The only parameter that was used for the sulfur polymer-based monoliths is ratio of waste to binder. Optimum concrete formulations or {open_quotes}recipes{close_quotes} for a given type of waste were derived through this study, as based on results from the Toxicity Characteristic Leaching Procedure analyses and a free liquids test. Overall results indicate that high waste loadings in the concrete can be achieved while the monolithic mass maintains excellent resistance to leaching of heavy metals. In our study the waste loadings in the concrete generally fell within the range of 0.5 to 2.0 kg mixed waste per kg dry binder. Likewise, the most favorable amount of water in concrete, which is highly dependent upon the concrete constituents, was determined to be generally within the range of 300 to 330 g/kg (30-33% by weight). The results of this bench-scale study will find applicability at facilities where mixed or hazardous waste solidification is a planned or ongoing activity. 19 refs., 1 fig., 5 tabs.

  5. Study of IMT-advanced heterogeneous network

    Institute of Scientific and Technical Information of China (English)

    Qin Fei; Peng Ying; Sun Shaohui; Wang Yingmin

    2011-01-01

    Referring to research on the Heterogeneous Network (Het-Net) application scenario and technique characters in IMT-Advaneed (The 4th Generation Mobile Communications) cellular system, this paper provides further analysis on main technique aspects of Heterogeneous Network, discussion on interference issue due to multi-layer building by access points and their corresponding solutions from standardization and engineering implementation. The proposed solution can effectively solve the interference problem in IMT-advanced Het-Net, and also improves the networking performance dramaticaUy for future mobile communication systems.

  6. Optimal Choice of Soil Hydraulic Parameters for Simulating the Unsaturated Flow: A Case Study on the Island of Miyakojima, Japan

    Directory of Open Access Journals (Sweden)

    Ken Okamoto

    2015-10-01

    Full Text Available We examined the influence of input soil hydraulic parameters on HYDRUS-1D simulations of evapotranspiration and volumetric water contents (VWCs in the unsaturated zone of a sugarcane field on the island of Miyakojima, Japan. We first optimized the parameters for root water uptake and examined the influence of soil hydraulic parameters (water retention curve and hydraulic conductivity on simulations of evapotranspiration. We then compared VWCs simulated using measured soil hydraulic parameters with those using pedotransfer estimates obtained with the ROSETTA software package. Our results confirm that it is important to always use soil hydraulic parameters based on measured data, if available, when simulating evapotranspiration and unsaturated water flow processes, rather than pedotransfer functions.

  7. Hydraulic conductivity of compacted zeolites.

    Science.gov (United States)

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  8. CONTRIBUTION TO THE EXPERIMENTAL STUDY OF THE HYDRAULIC JUMP EVOLVING IN AN U-SHAPED CHANNEL, WITH ROUGH BED

    Directory of Open Access Journals (Sweden)

    A. Ghomri

    2010-12-01

    Full Text Available This study aims to investigate the threshold-controlled hydraulic jump, moving in channel profile 'U' fully rough for a single roughness value  = 7,14 mm. Functional relations in dimensionless terms, linking the different characteristics of the jump, showing the effect of bottom friction channel, are obtained as: y2= (-14,19y1 + 6, 42 Q*; y2= 1,13y10,65 exp [0,95y10,61.s/h1] . The method is as follows: we vary the flow volume by manipulating the valve and their measurements are read directly on the meter display éctronique. Supply channel is by means of a pump flow up 40 l / s. The flume was designed in the laboratory 'LARHYSS, University of Biskra.

  9. Experimental study on the effects of big particles physical characteristics on the hydraulic transport inside a horizontal pipe

    Institute of Scientific and Technical Information of China (English)

    Salah Zouaoui; Hassane Djebouri; Kamal Mohammedi; Sofiane Khelladi; Aomar Ait Aider

    2016-01-01

    This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe. The particles are spherical and are large with respect to the diameter of the pipe (8%, 10%, 16%and 25%). Experiments were done to test the important parameters in solid transport (pressure, velocity, etc.). As a result, the relationship between the pressure gradient forces and the mixture velocity was sub-stantially different from the pure liquid flow. However, in a single-phase flow a monotonous behavior of the pres-sure drop curve is observed, and the curve of the solid particle flow attains its minimum at the critical velocity. The regimes are characterized with differential pressure measurements and visualizations.

  10. Experimental simulation study on hydraulic behavior of the main heat exchanger of Daqing 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    The hydraulic behavior of the main heat exchanger of Daqing 200 MW nuclear heating reactor is studied through a 1:2.33 test model. The design and other feature of the test model is described. The experimental results show that the flow resistance coefficient of the heat exchanger becomes self-simulation when Reynolds number is greater than 5000. The value of flow resistance coefficient at self-simulation condition and the distribution of pressure drop in the heat exchanger are given through experiment. The option design to reduce flow resistance is proposed. The designed and experimental value for the flow resistance coefficient are in good agreement. The variation of system parameters during flow excursion was described. The experimental results are of great significant for the final design of the main heat exchanger of Daqing 200 MW nuclear heating reactor. (2 refs., 5 figs., 1 tab.)

  11. Numerical Study of Thermal Hydraulics for Secondary side of Steam Generator by CUPID/MARS Coupled Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ryong; Yoon, Han Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As a thermal-hydraulic behavior in the secondary side of steam generator such as two-phase boiling flow, flow-induce vibration of U-tubes is quite complicated, the importance to numerically investigate the flow behavior has been arisen. Recently, multi-scale analyses have been developed to take into account the primary side as well. In this study, the coupled CUPID and MARS code was used for the simulation of boiler side of the PWR steam generator. Calculation results are compared with the existing code quantitatively. Coupled CUPID/MARS code was applied for the simulation of the steam generator. The primary side of the steam generator and other RCS was simulated by MARS and the secondary side was calculated by CUPID with porous media approach.

  12. Thermal-hydraulics and neutronics studies on the FP7 CP-ESFR oxide and carbide cores

    International Nuclear Information System (INIS)

    In the framework of the the Collaborative Project on European Sodium Fast Reactor (CP-ESFR) two core designs that are currently being proposed for the 3600 MWth sodium-cooled reactor concept: one is based on oxide fuel and the other on carbide fuel. Using the European Safety Assessment Platform (ESAP), JRC-IE has conducted static calculation on neutronics (incl. reactivity coefficients) and thermal-hydraulic characteristics for both oxide and carbide reference cores. The quantities evaluated include: keff, coolant heat-up, void, and Doppler reactivity coefficients, axial and radial expansion reactivity coefficients, pin-by-pin calculated power profiles, average and peak channel temperatures. This paper presents the ESAP models applied in the study together with the relevant results for the oxide and carbide core. (author)

  13. Hydrodynamic parameters diversification in the watercourse with the rapid hydraulic structures (case study of the Porębianka River, Polish Carpathians

    Directory of Open Access Journals (Sweden)

    Karol PLESIŃSKI

    2015-01-01

    Full Text Available In modern river training practices and philosophy one can notice coming more into use ecological friendly hydraulic structures. Those, which are especially needed for river training works, as far as expectation of Water Framework Directive is concerned, are rapid hydraulic structures (RHS. What is important, RHS in general do not stop fish and invertebrates against migrating upstream, provide natural and esthetical effects within the river channel, still working as hydraulic engineering structures. The main aim of the research was to describe changes of values of those parameters upstream and downstream of the RHS’s and to find out their influence on hydrodynamics of the stream. The study was undertaken on the Porębianka river in the Gorce Mountains, Polish Carpathians. Along this paper we described and measured some hydraulic parameters within the reach of chosen rapid hydraulic structures, which we found in the field. Observed hydrodynamic parameters within the reach of the RHS’s depend on the location of measuring point and the influence of individual part of the structure. At the same time maximum velocity does not always create the bigger shear force, because it is also depend on the velocity distribution along the hydrological profile

  14. Skills Required for Nursing Career Advancement: A Qualitative Study

    Directory of Open Access Journals (Sweden)

    Sheikhi

    2016-05-01

    Full Text Available Background Nurses require certain skills for progression in their field. Identifying these skills can provide the context for nursing career advancement. Objectives This study aimed to identify the skills needed for nurses’ career advancement. Materials and Methods A qualitative approach using content analysis was adopted to study a purposive sample of eighteen nurses working in teaching hospitals affiliated with the Qazvin, Shahid Beheshti, and Iran Universities of Medical Sciences. The data were collected through semi-structured interviews, and analyzed using conventional content analysis. Results The three themes extracted from the data included interpersonal capabilities, competency for career success, and personal capacities. The results showed that acquiring a variety of skills is essential for career advancement. Conclusions The findings showed that personal, interpersonal, and functional skills can facilitate nurses’ career advancement. The effects of these skills on career advancement depend on a variety of conditions that require further studies.

  15. Skills Required for Nursing Career Advancement: A Qualitative Study

    Science.gov (United States)

    Sheikhi, Mohammad Reza; Fallahi-Khoshnab, Masoud; Mohammadi, Farahnaz; Oskouie, Fatemeh

    2016-01-01

    Background Nurses require certain skills for progression in their field. Identifying these skills can provide the context for nursing career advancement. Objectives This study aimed to identify the skills needed for nurses’ career advancement. Materials and Methods A qualitative approach using content analysis was adopted to study a purposive sample of eighteen nurses working in teaching hospitals affiliated with the Qazvin, Shahid Beheshti, and Iran Universities of Medical Sciences. The data were collected through semi-structured interviews, and analyzed using conventional content analysis. Results The three themes extracted from the data included interpersonal capabilities, competency for career success, and personal capacities. The results showed that acquiring a variety of skills is essential for career advancement. Conclusions The findings showed that personal, interpersonal, and functional skills can facilitate nurses’ career advancement. The effects of these skills on career advancement depend on a variety of conditions that require further studies. PMID:27556054

  16. Experimental study on the bank erosion and interaction with near-bank bed evolution due to fluvial hydraulic force

    Institute of Scientific and Technical Information of China (English)

    Ming-hui YU; Hong-yan WEI; Song-bai WU

    2015-01-01

    Bank erosion is a typical process of lateral channel migration, which is accompanied by vertical bed evolution. As a main sediment source, the failed bank soil may directly cause the increase of sediment concentration and considerable channel evolution in a short time. The paper presents an experimental study on non-cohesive and cohesive homogenous bank failure processes, influence of the failed bank soil on bank re-collapse, as well as the interaction between bank failure and near-bank bed evolution due to fluvial hydraulic force. A series of experiments were carried out in a 180° bend rectangular flume. The results reveal the iteration cycle between bank erosion and bed deformation: undercutting of the riverbank, slip failure of the submerged zone of the bank, as well as cantilever failure of the overhang, failed bank soil staying at bank toe temporarily or hydraulic transportation, exchange between the failed bank soil and bed material, bed material load being re-transported either as bed load or as suspended load, and bed deformation. Same as bank failure, the mixing of failed bank soil and bed material is more severe near the curved flow apex. Moreover, non-cohesive bank failure tends to occur near the water surface while cohesive bank failure near the bank toe. For non-cohesive dense (sandy) soil, the bank erosion amount and residual amount of failed bank soil on the bed increase with the near-bank velocity or bed erodibility. But for cohesive soil, only bank erosion amount follows the above rule. The results are expected to provide theoretical basis for river management and flood prevention.

  17. Study of the hydraulic regime of the St. Lawrence River between Montreal and the city of Quibec

    Energy Technology Data Exchange (ETDEWEB)

    Robert, S.; Rassam, J.-C.; Lariviere, R. (Hydro-Quebec, Montreal, PQ (Canada)); Piotte, D.; Boivin, R.; Hausser, R. (Lasalle Hydraulic Lab., PQ (Canada))

    1992-01-01

    Results are presented from a major hydraulic regime study of the St. Lawrence River carried out over a distance of 285 km between the Beauharnois and Carillon generating stations and Quebec City. The results focus mainly on the parameters that explain water level variations where the river is used most intensively for commercial shipping. Outflows from generating stations give rise to water level variations that could theoretically have an impact on the river. The upstream network, basically consisting of two lakes, was modelled using Hydro-Quebec's ARCHIP model. The downstream network simulations were performed in the transient flow regime with the Environment Canada hydrodynamic model 1D. Five main tributaries were incorporated into this model, and the downstream network was calibrated by adjusting the model's physical parameters to data observed during three 3-week periods. Using a series of numerical simulations, the factors that affect water levels were isolated and their particular contributions were estimated. In particular, the effects of the flows, local inflows, flow variations, and tide on the water levels along the St. Lawrence maritime channel were analyzed. It was shown that, although the water levels depend strongly on average discharge rates from Beauharnois and Carillon generating stations, they are less sensitive to discharge variations resulting from daily generating station operations. The effect of the tide is an important factor in the hydraulic behavior of the St. Lawrence River, even as high as Montreal, where the tide can explain water level variations of 30 cm at times during the year when the flow rate is low. 4 refs., 9 figs., 3 tabs.

  18. ECO-HYDRAULICS TECHNIQUES FOR CONTROLLING EUTROPHICATION OF SMALL SCENERY LAKES-A CASE STUDY OF LUDAO LAKE IN SHANGHAI

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Ludao Lake with an area of 0.86 km2 and 50% water surface ratio, was taken as an example to study the eco-hydraulics techniques for preventing lake eutrophication. Besides external water inflow and outflow, the term related to internal local flow circulation was added in the continuity equation of two-dimensional horizontal hydrodynamic model, and further the hydrodynamic model was calibrated by the scenario of no water exchange. The velocity of 0.2 m/s was suggested to be the critical velocity of controlling algal bloom. To achieve the critical velocity in the whole lake, three factors were analyzed, which are wind, artificial external inflow augmentation and internal local flow disturbance by pump circulation. It is found that the role of wind can be disregarded. For the eco-hydraulics technique of external lake water inflow augmentation, the water flowing route should be firstly optimized, further, the lake inflow has a critical value under specified water level due to the narrow inlets, so the whole lake is difficult to reach the critical velocity to prevent algal bloom, and a combination of external inflow augmentation and internal local flowing disturbance should be considered. Simulation results show that the combination of external water inflow augmentation and internal local flow disturbance requires less eco-flow to achieve the global critical velocity than the sole internal local flow disturbance, for the Ludao Lake, the former requires total eco-flow of 25 m3/s, which reduces by 50% than the latter requiring total eco-flow of 52 m3/s.

  19. Application feasibility study of evaluation technology for long-term rock behavior. 1. Coupled hydraulic and mechanical analysis to evaluate rock behavior of shaft in fault

    International Nuclear Information System (INIS)

    The main shaft of Mizunami URL is located in fault, and the hydrological anisotropy due to the geology is observed. Lining deformation may cause by increase of lining stress with degradation of drain material or aquifer of changes in the future. In this study, by implementing coupled hydraulic and mechanical analyses, validity of methods of analysis is considered as compared to measuring for hydrological anisotropy. According to the result of these analyses, water pressure dependency was not shown, but the main shaft behavior was simulated taking account of hydrological anisotropy. Also validity of methods of coupled hydraulic and mechanical analyses as deterioration prediction was confirmed. (author)

  20. Theoretical and numerical study of hydraulic characteristics of orifice energy dissipator

    Institute of Scientific and Technical Information of China (English)

    Ning HE; Zhen-xing ZHAO

    2010-01-01

    Different factors affecting the efficiency of the orifice energy dissipator were investigated based on a series of theoretical analyses and numerical simulations.The main factors investigated by dimension analysis were identified,including the Reynolds number(Re),the ratio of the orifice diameter to the inner diameter of the pipe(d/D),and the ratio of distances between orifices to the inner diameter of the pipe(L/D).Then,numerical simulations were conducted with a k-ε two-equation turbulence model.The calculation results show the following:Hydraulic characteristics change dramatically as flow passes through the orifice,with abruptly increasing velocity and turbulent energy,and decreasing pressure.The turbulent energy appears to be low in the middle and high near the pipe wall.For the energy dissipation setup with only one orifice,when Re is smaller than 105,the orifice energy dissipation coefficient K increases rapidly with the increase of Re.When Re is larger than 105,K gradually stabilizes.As d/D increases,K and the length of the recirculation region L1 show similar variation patterns,which inversely vary with d/D.The function curves can be approximated as straight lines.For the energy dissipation model with two orifices,because of different incoming flows at different orifices,the energy dissipation coefficient of the second orifice(K2)is smaller than that of the first.If L/D is less than 5,the K value of the L/D model,depending on the variation of K2,increases with the spacing between two orifices L,and an orifice cannot fulfill its energy dissipation function.If L/D is greater than 5,K2 tends to be steady; thus,the K value of the L/D model gradually stabilizes.Then,the flow fully develops,and L has almost no impact on the value of K.

  1. Evolution of developments and applications of advanced thermal-hydraulics and neutronic codes. Conclusions from Annapolis Workshop and Ankara Seminar, Objectives of the Present Workshop

    International Nuclear Information System (INIS)

    In the nuclear reactor safety area, during the last 30-40 years, thermal-hydraulics has been one of the key disciplines for simulation and analysis of transient and accident scenarios and also for the definition of preventive and mitigative measures in relation to these scenarios. A workshop was organised by OECD/NEA-CSNI at Annapolis (1996) where codes, physical models, numeric and new computer architecture were examined. In parallel a Specialist meeting on instrumentation in two phase flows was held in Santa Barbara beginning of 1997 in order to investigate new techniques for getting measurements of new physical parameters necessary for assessing the new physical models. Among the different applications of thermal-hydraulic codes, the use of Best Estimate methods in safety evaluation is certainly one of the major challenges for which the safety and economic issues are quite important. For these reasons OECD/NEA-CSNI organised a seminar in Ankara in 1998 entirely devoted to the use of Best Estimate methods in thermal-hydraulics analysis. This seminar allowed to get a better view of where we were in such applications and which were the remaining problems and issues. The present workshop held in Barcelona beginning of year 2000 will be a good opportunity for providing an updated review of the gained progresses and for analysing if the objectives and programs are still progressing in the right direction. In order to do such exercise, we will first recall the questions which were raised in Annapolis and the main conclusions which were drawn from these questions. The conclusions of Ankara Meeting will be reviewed in a second step. Finally we will list the objectives of this workshop in Barcelona which is held in the continuity of Annapolis Workshop and Ankara Seminar. (authors)

  2. Advanced Burner Reactor Preliminary NEPA Data Study.

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, L. L.; Cahalan, J. E.; Deitrich, L. W.; Fanning, T. H.; Grandy, C.; Kellogg, R.; Kim, T. K.; Yang, W. S.; Nuclear Engineering Division

    2007-10-15

    The Global Nuclear Energy Partnership (GNEP) is a new nuclear fuel cycle paradigm with the goals of expanding the use of nuclear power both domestically and internationally, addressing nuclear waste management concerns, and promoting nonproliferation. A key aspect of this program is fast reactor transmutation, in which transuranics recovered from light water reactor spent fuel are to be recycled to create fast reactor transmutation fuels. The benefits of these fuels are to be demonstrated in an Advanced Burner Reactor (ABR), which will provide a representative environment for recycle fuel testing, safety testing, and modern fast reactor design and safeguard features. Because the GNEP programs will require facilities which may have an impact upon the environment within the meaning of the National Environmental Policy Act of 1969 (NEPA), preparation of a Programmatic Environmental Impact Statement (PEIS) for GNEP is being undertaken by Tetra Tech, Inc. The PEIS will include a section on the ABR. In support of the PEIS, the Nuclear Engineering Division of Argonne National Laboratory has been asked to provide a description of the ABR alternative, including graphics, plus estimates of construction and operations data for an ABR plant. The compilation of this information is presented in the remainder of this report. Currently, DOE has started the process of engaging industry on the design of an Advanced Burner Reactor. Therefore, there is no specific, current, vendor-produced ABR design that could be used for this PEIS datacall package. In addition, candidate sites for the ABR vary widely as to available water, geography, etc. Therefore, ANL has based its estimates for construction and operations data largely on generalization of available information from existing plants and from the environmental report assembled for the Clinch River Breeder Reactor Plant (CRBRP) design [CRBRP, 1977]. The CRBRP environmental report was chosen as a resource because it thoroughly

  3. Experimental Study on the Hydraulic Fractures' Morphology of Coal Bed%煤岩水力压裂裂缝形态实验研究

    Institute of Scientific and Technical Information of China (English)

    程远方; 徐太双; 吴百烈; 李娜; 袁征; 孙元伟; 王欣

    2013-01-01

    The correct judgment of the hydraulic fractures' morphology is very important part for fracturing operation design and productivity prediction. This paper studied the true tri-axial hydraulic fracture experiment of coal and obtained the judgment criterions for the conversion conditions between horizontal, vertical and complicated fracture. The result shows that the hydraulic fractures morphology will be changed between vertical and horizontal fracture when the stress difference (the minimum horizontal stress minus vertical stress) span from 4MPa to 6MPa. High confining pressures will make the hydraulic fractures morphology complicated when the stress difference is stable. The nature fractures and cleats have different effects on the initiation and extending process of hydraulic fracture. The stress states of coal bed decide the hydraulic fracture strike. When the stress difference coefficient,i, e. Kv,belongs to 0. 6 to 0. 7,the nature fractures and cleats have significant influence on the hydraulic fractures morphology. From the Kv value, we can know that it need harsh stress condition to make the hydraulic fractures horizontal at the stage of initiation without near wellbore nature fracture.%水力裂缝形态的正确判断是压裂施工设计和产能预测的重要部分,针对煤岩进行真三轴水力压裂,研究水平裂缝、垂直裂缝和复杂裂缝之间的转换条件,得出判断依据.实验证实:应力差(最小水平地应力减去垂向应力)为4~6MPa时,水力裂缝形态在垂直裂缝和水平裂缝间转变;在等应力差状态下,高围压状态会使水力裂缝形态趋于复杂;天然裂缝和割理对水力裂缝起裂与延伸过程产生不同影响;煤岩应力状态主导水力裂缝走向,当应力差异系数Kv在0.6~0.7之间时,煤岩内部天然裂缝和割理对水力裂缝形态有显著影响;并且在不考虑井眼附近天然裂缝时,需要苛刻的应力条件使水力裂缝的起裂阶段表现为水平裂缝.

  4. Magnetic suspension and balance system advanced study, 1989 design

    Science.gov (United States)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  5. Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array

    OpenAIRE

    Yiyu Lu; Shaojie Zuo; Zhaolong Ge; Songqiang Xiao; Yugang Cheng

    2016-01-01

    High-pressure hydraulic fracturing technology in coal and coal bed methane mines can lead to roof and floor damage, and fracture initiation disorder that leads to a “blank area”, and other issues. A new method of hydraulic fracturing is proposed to increase the homogeneous permeability of coal in underground coalmines. Numerical and other simulation tests for different forms of a tree-type, branched borehole model are presented. The results show that the branched array causes cracks to initia...

  6. Development of visualization software for thermal-hydraulic analysis in a tight-lattice bundle using AVS

    International Nuclear Information System (INIS)

    Thermal-hydraulic safety in a tight-lattice bundle has been analyzed to contribute thermal design of an advanced water-cooled reactor core. Since the analytical geometry is complicated, it is difficult to understand the analysis results using general visualization software. In this study, the visualization program for the thermal-hydraulic analysis in the tight-lattice bundle was developed using the software AVS/Express. It can reproduce the three-dimensional view and graphs of the analysis results and it is helpful in understanding the thermal-hydraulic phenomena in the tight-lattice bundle. (author)

  7. Advances in froth treatment pilot plant studies

    Energy Technology Data Exchange (ETDEWEB)

    Shelfantook, W.E. [Syncrude Canada Ltd., Edmonton, AB (Canada)

    1997-11-01

    Bench-scale studies have been performed to find ways to produce diluted bitumen containing less than 1 per cent water. The studies showed that using diluents of high paraffin concentration and elevated solvent ratios could yield very dry diluted bitumen. The laboratory studies led to a series of pilot studies in froth treatment conducted at the facilities of the Canadian Oilsand Network for Research and Development (CONRAD). The pilot studies focused on defining the operating envelope for the Paraffin Froth Treatment Process and establishing the process` response to solvent ratio and temperature. Many different solvent materials were tested to determine their impact on process performance. The work has been part of a development plan for Oilsand leases north of Fort McMurray.

  8. Evaluation of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. Part 1. Single-stage regulated pump turbines for operating heads of 500 to 1000 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Blomquist, C.A.; Degnan, J.R.

    1979-10-01

    High-head, large-capacity turbomachinery is needed for the concept of underground pumped hydroelectric storage to be technically and economically attractive. Single-stage, reversible, Francis-type pump turbines with adjustable wicket gates appear to offer the most economically attractive option for heads between about 500 and 1000 m. The feasibility of developing these types of machines for capacities up to 500 MW and operating heads up to 1000 m has been evaluated. Preliminary designs have been generated for six single-stage pump turbines. The designs are for capacities of 350 and 500 MW and for operating heads of 500, 750, and 1000 m. The report contains drawings of the machines along with material specifications and hydraulic performance data. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost. The stress and deflection responses of the 500-MW, 100-m-head pump turbine, determined by detailed finite element analysis techniques, give solid evidence of the integrity of the conceptual designs of the six units and indicate no unsolvable problems. Results of a life expectancy analysis of the wicket gates indicate that a near infinite life can be expected for these components when they are subjected to normal design loads. Efficiencies of 90.7 and 91.4% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1000-m-head unit. Performances of the other five machines are comparable. The specific costs of the pump turbines in mid-1978 US dollars per kW vary from 19.2 to 11.8 over a head range of from 500 to 1000 m for the 500-MW machines and from 20.0 to 12.3 for the 350-MW machines.

  9. 随机单裂隙饱和/非饱和渗透系数研究%Study of saturated/unsaturated hydraulic conductivity of a random crack

    Institute of Scientific and Technical Information of China (English)

    李锦辉; 蔡成志

    2012-01-01

    The presence of cracks can trigger landslide after rainfall. The saturated/unsaturated hydraulic conductivity is a key parameter to study the slope stability. In this research a random crack is made using high-resolution machine. An apparatus is developed to conduct seepage experiment through the random crack; and the saturated hydraulic conductivity of the crack can be obtained. The unsaturated hydraulic conductivity is predicted using the saturated hydraulic conductivity and the soil water characteristic curve. Results show that the saturated hydraulic conductivity is 0.1 m/s when the average aperture of the random crack is 0.4 mm. The hydraulic effective aperture is 0.35 mm, which is smaller than the average aperture. The hydraulic conductivity is proportional to the square of the average aperture, which is consistent with the cubic law. The unsaturated hydraulic conductivity curve shows that the hydraulic conductivity decreases very fast when the matric suction is larger than the air entry value. When the matric suction reaches the suction corresponding to the residual water content the influence of matric suction on the hydraulic conductivity is limited. Finally, the hydraulic conductivity approaches a constant value.%裂隙易在降雨作用下诱发滑坡等灾害,裂隙的饱和/非饱和渗透特性是研究此类问题的关键.利用精密数控机床制作随机粗糙裂隙面,并研制了一套仪器进行此随机粗糙裂隙的渗流试验,得到了裂隙的饱和渗透系数,然后通过间接方法预测此裂隙的非饱和渗透系数.研究发现,当裂隙平均开度为0.4 mm时,其饱和渗透系数为0.1 m/s.通过立方定律得到的水力等效隙宽为0.35 mm,小于其平均隙宽.同时裂隙的渗透系数与平均隙宽的平方成正比,这与立方定律的趋势相一致.研究得到了不同隙宽裂隙的非饱和渗透系数函数,当基质吸力小于进气值时,渗透系数为一常数,即为饱和渗透系数;当基质吸

  10. Advances in phylogenetic studies of Nematoda

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nematoda is a metazoan group with extremely high diversity only next to Insecta. Caenorhabditis elegans is now a favorable experimental model animal in modern developmental biology, genetics and genomics studies. However, the phylogeny of Nematoda and the phylogenetic position of the phylum within animal kingdom have long been in debate. Recent molecular phylogenetic studies gave great challenges to the traditional nematode classification. The new phylogenies not only placed the Nematoda in the Ecdysozoan and divided the phylum into five clades, but also provided new insights into animal molecular identification and phylogenetic biodiversity studies. The present paper reviews major progress and remaining problems in the current molecular phylogenetic studies of Nematoda, and prospects the developmental tendencies of this field.

  11. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    Science.gov (United States)

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  12. Environmental restoration: Integrating hydraulic control of groundwater, innovative contaminant removal technologies and wetlands restoration--A case study at SRS

    International Nuclear Information System (INIS)

    The groundwater remediation program at the F and H Seepage Basins, Savannah River Sits (SRS) is a case study of the integration of various environmental restoration technologies at a single waste site. Hydraulic control measures are being designed to mitigate the discharge of groundwater plumes to surface water. One of the primary constituents of the plumes is tritium. An extraction and reinjection scenario is being designed to keep the tritium in circulation in the shallow groundwater, until it can naturally decay. This will be accomplished by extracting groundwater downgradient of the waste sites, treatment, and reinjection of the tritiated water into the water table upgradient of the basins. Innovative in-situ technologies, including electrolytic migration, are being field tested at the site to augment the pump-treat-reinject system. The in-situ technologies target removal of contaminants which are relatively immobile, yet represent long term risks to human health and the environment. Wetland restoration is an integral part of the F and H remediation program. Both in-situ treatment of the groundwater discharging the wetlands to adjust the pH, and replacement of water loss due to the groundwater extraction program ar being considered. Toxicity studies indicate that drought and the effects of low pH groundwater discharge have been factors in observed tree mortality in wetlands near the waste sites

  13. Conceptual Thermal Hydraulic Design of a 20MW Multipurpose Research Reactor (KAERI/VAEC joint study on a new research reactor for Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Hee Taek; Seo, Chul Gyo; Park, Jong Hark; Park, Cheol [Kaeri, Daejeon (Korea, Republic of); Vinh, Le Vinh; Nghiem, Huynh Ton; Dang, Vo Doan Hai [Dalat Nuclear Research Reactor, Hanoi (Viet Nam)

    2007-08-15

    The conceptual thermal hydraulics design analyses for the 20 MW reference AHR core have been jointly performed by the KAERI and DNRI(VAEC). The preliminary core thermal hydraulic characteristics and safety margins for the AHR core were studied for various core flow rates, fuel assembly powers and core inlet temperatures. Statistical method was applied to the thermal hydraulic design of the reactor core. The MATRA{sub h} subchannel code has been applied to evaluate the thermal hydraulic performances of the AHR and the resulting thermal margins of the core under the forced convection cooling mode during a nominal power operation and the natural circulation mode during a reactor shutdown condition. In addition, typical accident analyses were carried out for a loss of flow accident by a primary pump seizure and a reactivity induced accident by a CAR rod withdrawal during a normal full power operation. The normal full power operation of the AHR was ensured with a sufficient safety margin for the onset of nucleate boiling phenomena. The AHR also had a sufficient natural circulation cooling capability to cool the core without the onset of nucleate boiling in the channel after a normal reactor shutdown and the anticipated transients. It was confirmed by the typical accident analyses that the AHR core was sufficiently protected from the loss of flow by the primary cooling pump seizure and the overpower transients by the CAR withdrawal from the MCHFR and fuel temperature points of view.

  14. Advanced Multiple Processor Configuration Study. Final Report.

    Science.gov (United States)

    Clymer, S. J.

    This summary of a study on multiple processor configurations includes the objectives, background, approach, and results of research undertaken to provide the Air Force with a generalized model of computer processor combinations for use in the evaluation of proposed flight training simulator computational designs. An analysis of a real-time flight…

  15. [Advances in studies on flavonoids of licorice].

    Science.gov (United States)

    Xing, Guo-xiu; Li, Nan; Wang, Tong; Yao, Mei-yan

    2003-07-01

    The progress in the research of the active ingredients of licorice flavonoid and the pharmacological activities was reviewed. Licorice flavonoid constituents mainly included flavones, flavonals, isoflavones, chalcones, bihydroflavones and bihydrochalcones. Pharmacological investigation concluded that they had antioxidant, antibacterial, antitumer and inhibiting HIV activities. It is important to study further the flavonoid constituents and pharmacological activities. PMID:15139098

  16. Advanced NSTS propulsion system verification study

    Science.gov (United States)

    Wood, Charles

    1989-01-01

    The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.

  17. Advances from neuroimaging studies in eating disorders

    Science.gov (United States)

    Frank, Guido K.W.

    2016-01-01

    Over the past decade brain imaging has helped better define eating disorder related brain circuitry. Brain research on gray and white matter volumes had been inconsistent, possibly due to the effects of acute starvation, exercise, medication and comorbidity, but newer studies controlled for such effects. Those studies suggest larger left medial orbitofrontal gyrus rectus volume in ill adult and adolescent anorexia nervosa after recovery from anorexia nervosa, and in adult bulimia nervosa. The orbitofrontal cortex is important in terminating food intake and altered function could contribute to self-starvation. The right insula, which processes taste but also interoception, was enlarged in ill adult and adolescent anorexia nervosa, as well as adults recovered from the illness. The fixed perception of being fat in anorexia nervosa could be related to altered insula function. A few studies investigated WM integrity, with the most consistent finding of reduced fornix integrity in anorexia and bulimia nervosa, a limbic pathway important in emotion but also food intake regulation. Functional brain imaging using basic sweet taste stimuli in eating disorders during the ill state or after recovery implicated repeatedly reward pathways, including insula and striatum. Brain imaging that targeted dopamine related brain activity using taste-reward conditioning tasks suggested that this circuitry is hypersensitive in anorexia nervosa, but hypo-responsive in bulimia nervosa and obesity. Those results are in line with basic research and suggest adaptive reward system changes in the human brain in response to extremes of food intake, changes that could interfere with normalization of eating behavior. PMID:25902917

  18. Advances from neuroimaging studies in eating disorders.

    Science.gov (United States)

    Frank, Guido K W

    2015-08-01

    Over the past decade, brain imaging has helped to better define eating disorder-related brain circuitry. Brain research on gray matter (GM) and white matter (WM) volumes had been inconsistent, possibly due to the effects of acute starvation, exercise, medication, and comorbidity, but newer studies have controlled for such effects. Those studies suggest larger left medial orbitofrontal gyrus rectus volume in ill adult and adolescent anorexia nervosa after recovery from anorexia nervosa, and in adult bulimia nervosa. The orbitofrontal cortex is important in terminating food intake, and altered function could contribute to self-starvation. The right insula, which processes taste but also interoception, was enlarged in ill adult and adolescent anorexia nervosa, as well as adults recovered from the illness. The fixed perception of being fat in anorexia nervosa could be related to altered insula function. A few studies investigated WM integrity, with the most consistent finding of reduced fornix integrity in anorexia and bulimia nervosa-a limbic pathway that is important in emotion but also food intake regulation. Functional brain imaging using basic sweet taste stimuli in eating disorders during the ill state or after recovery implicated repeatedly reward pathways, including insula and striatum. Brain imaging that targeted dopamine-related brain activity using taste-reward conditioning tasks suggested that this circuitry is hypersensitive in anorexia nervosa, but hyporesponsive in bulimia nervosa and obesity. Those results are in line with basic research and suggest adaptive reward system changes in the human brain in response to extremes of food intake-changes that could interfere with normalization of eating behavior. PMID:25902917

  19. Advanced studies on human gene ZNF322

    Institute of Scientific and Technical Information of China (English)

    LI Yongqing; WANG Yuequn; YUAN Wuzhou; DENG Yun; ZHU Chuanbing; WU Xiushan

    2007-01-01

    The human novel gene of ZNF322 is cloned from human fetal eDNA library using the primers on the basis of the ZNF322 sequence analyzed with computer.The gene is located on Chromosome 6p22.1,and encodes a protein consisting of 402 amino acid residues and containing nine tandem C2H2-type zinc-finger motifs.Northern blot result shows that the gene is expressed in all examined adult tissues.Subcellular location study indicates that ZNF322-EGFP fusion protein is distributed in the nucleus and cytoplasm.Reporter gene assays show that ZNF322 is a potential transcriptional activator.

  20. A review of theoretical and experimental studies underlying the thermal-hydraulic design of fast reactor fuel elements

    International Nuclear Information System (INIS)

    The economic performance of fast reactors is closely linked to the achievable burn-up of heavy atoms, that is to the endurance life of the fuel pins. The safety case must also be concerned with the integrity of the cladding, since this is the primary containment envelope for fission products. It is thus important to ensure that cladding temperatures during reactor operation are limited to levels which incur no serious impairment of mechanical properties. The function of thermal-hydraulic analysis is to provide fuel element designers with the means of achieving this objective. This paper reviews the theoretical approaches which have been developed and applied in the UK in the design of LMFBR fuel and breeder sub-assemblies, control rods and experimental clusters. It also presents results of experimental studies undertaken to develop a better understanding of coolant flow distribution and mixing problems in these components, and to provide essential data for computer codes. Problem areas in this field are highlighted, particularly the difficulties arising due to irradiation induced distortions. Reference is made to the experimental and theoretical developments which are in progress, or may be required, to provide adequate predictions of fuel pin temperatures at high burn-up. (author)

  1. A Numerical Study on the Improvement of Suction Performance and Hydraulic Efficiency for a Mixed-Flow Pump Impeller

    Directory of Open Access Journals (Sweden)

    Sung Kim

    2014-01-01

    Full Text Available This paper describes a numerical study on the improvement of suction performance and hydraulic efficiency of a mixed-flow pump by impellers. The design of these impellers was optimized using a commercial CFD (computational fluid dynamics code and DOE (design of experiments. The design variables of meridional plane and vane plane development were defined for impeller design. In DOE, variables of inlet part were selected as main design variables in meridional plane, and incidence angle was selected in vane plane development. The verification of the experiment sets that were generated by 2k factorial was done by numerical analysis. The objective functions were defined as the NPSHre (net positive suction head required, total efficiency, and total head of the impellers. The importance of the geometric design variables was analyzed using 2k factorial designs. The interaction between the NPSHre and total efficiency, according to the meridional plane and incidence angle, was discussed by analyzing the 2k factorial design results. The performance of optimally designed model was verified by experiments and numerical analysis and the reliability of the model was retained by comparison of numerical analysis and comparative analysis with the reference model.

  2. Recent Advances in the Studies on Luotonins

    Directory of Open Access Journals (Sweden)

    Yurngdong Jahng

    2011-06-01

    Full Text Available Luotonins are alkaloids from the aerial parts of Peganum nigellastrum Bunge. that display three major skeleton types. Luotonins A, B, and E are pyrroloquinazolino-quinoline alkaloids, luotonins C and D are canthin-6-one alkaloids, and luotonin F is a 4(3H-quinazolinone alkaloid. All six luotonins have shown promising cytotoxicities towards selected human cancer cell lines, especially against leukemia P-388 cells. Luotonin A is the most active one, with its activity stemming from topoisomerase I-dependent DNA-cleavage. Such intriguing biological activities and unique structures have led not only to the development of synthetic methods for the efficient synthesis of these compounds, but also to interest in structural modifications for improving the biological properties. Recent progress in the study of luotonins is covered.

  3. Advanced Sensors and Applications Study (ASAS)

    Science.gov (United States)

    Chism, S. B.; Hughes, C. L.

    1976-01-01

    The present EOD requirements for sensors in the space shuttle era are reported with emphasis on those applications which were deemed important enough to warrant separate sections. The application areas developed are: (1) agriculture; (2) atmospheric corrections; (3) cartography; (4) coastal studies; (5) forestry; (6) geology; (7) hydrology; (8) land use; (9) oceanography; and (10) soil moisture. For each application area. The following aspects were covered: (1) specific goals and techniques, (2) individual sensor requirements including types, bands, resolution, etc.; (3) definition of mission requirements, type orbits, coverages, etc.; and (4) discussion of anticipated problem areas and solutions. The remote sensors required for these application areas include; (1) camera systems; (2) multispectral scanners; (3) microwave scatterometers; (4) synthetic aperture radars; (5) microwave radiometers; and (6) vidicons. The emphasis in the remote sensor area was on the evaluation of present technology implications about future systems.

  4. Study and Implementation of Advanced Neuroergonomic Techniques

    Directory of Open Access Journals (Sweden)

    B.F.Momin

    2012-08-01

    Full Text Available Research in the area of neuroergonomics has blossomed in recent years with the emergence of noninvasive techniques for monitoring human brain function that can be used to study various aspects of human behavior in relation to technology and work, including mental workload, visual attention, working memory, motor control, human-automation interaction, and adaptive automation. Consequently, this interdisciplinary field is concerned with investigations of the neural bases of human perception,cognition, and performance in relation to systems and technologies in the real world -- for example, in the use of computers and various other machines at home or in the workplace, and in operating vehiclessuch as aircraft, cars, trains, and ships. We will look at recent trends in functional magnetic resonance imaging (fMRI, with a special focus on the questions that have been addressed. This focus is particularly important for functional neuroimaging, whose contributions will be measured by the depth of the questions asked. The ever-increasing understanding of the brain and behavior at work in the real world, the development of theoretical underpinnings, and the relentless spread of facilitative technology in the West and abroad are inexorably broadening the substrates for this interdisciplinary area of research and practice. Neuroergonomics blends neuroscience and ergonomics to the mutual benefit of both fields, and extends the study of brain structure and function beyond the contrived laboratory settings often used in neuropsychological, psychophysical, cognitive science, and other neurosciencerelated fields. Neuroergonomics is providing rich observations of the brain and behavior at work, at home, in transportation, and in other everyday environments in human operators who see, hear, feel, attend, remember, decide, plan, act, move, or manipulate objects among other people and technology in diverse,real-world settings. The neuroergonomics approach is

  5. ATF [Advanced Toroidal Facility]-2 studies

    International Nuclear Information System (INIS)

    Design studies for a low-aspect-ratio, large next-generation stellarator, ATF-II, with high-current-density, high-field, stable NbTi/Cu helical windings are described. The design parameters are an average plasma radius of 0.52 m, a major radius of 2 m, and a field on axis of 4-5 T, with 10 to 15 MW of heating power. Such a device would be comparable in scope to other next-generation stellarators but would have roughly the same aspect ratio as the tokamaks without, however, the need for current drive to sustain steady-state operation. A number of low-aspect-ratio physics issues need to be addressed in the design of ATF-II, primarily compromises between high-beta capability and good confinement properties. A six-field-period Compact Torsatron is chosen as a reference design for ATF-II, and its main features and performance predictions are discussed. An integrated (beta capability and confinement) optimization approach and optimization of superconducting windings are also discussed. 36 refs., 13 figs., 2 tabs

  6. Neoadjuvant chemotherapy in advanced epithelial ovarian cancer: A survival study

    Directory of Open Access Journals (Sweden)

    Upasana Baruah

    2015-01-01

    Full Text Available Context: Patients with advanced ovarian cancer have a poor prognosis in spite of the best possible care. Primary debulking surgery has been the standard of care in advanced ovarian cancer; however, it is associated with high mortality and morbidity rates as shown in various studies. Several studies have discussed the benefit of neoadjuvant chemotherapy in patients with advanced ovarian cancer. Aims: This study aims to evaluate the survival statistics of the patients who have been managed with interval debulking surgery (IDS from January 2007 to December 2009. Materials and Methods: During the period from January 2007 to December 2009, a retrospective analysis of 104 patients who underwent IDS for stage IIIC or IV advanced epithelial ovarian cancer at our institute were selected for the study. IDS was attempted after three to five courses of chemotherapy with paclitaxal (175 mg/m 2 and carboplatin (5-6 of area under curve. Overall survival (OS and progression free survival (PFS were compared with results of primary debulking study from existing literature. OS and PFS rates were estimated by means of the Kaplan-Meier method. Results were statistically analyzed by IBM SPSS Statistics 19. Results: The median OS was 26 months and the median PFS was 18 months. In multivariate analysis it was found that both OS and PFS was affected by the stage, and extent of debulking. Conclusions: Neoadjuvant chemotherapy, followed by surgical cytoreduction is a promising treatment strategy for the management of advanced epithelial ovarian cancers.

  7. In-core fuel management, safety, and thermal hydraulics studies for upgrading TRIGA MARK II research reactor

    International Nuclear Information System (INIS)

    Bangladesh Atomic Energy Commission has approved a project to upgrade the research reactor to higher flux to meet the growing demand of medical radio-isotopes production and other irradiation facilities. Preliminary studies with the various core parameters showed that it might be possible to create new irradiation flux traps, increase the neutron flux at desired location, and at the same time the fuel burn-up can be made optimal. This will need major reshuffling and reconfiguration of the core with fuel rods initially loaded. The principal objective of this study is focused to make the above improvements in the core without disturbing the safety parameters. This presentation deals with the neutronic and thermal hydraulic analysis of the 3 MW TRIGA MARK II research reactor to upgrade it to a higher flux. To realize this objective, the overall strategy followed is: (I) generation of problem dependent cross section library from basic Evaluated Nuclear Data Files such as ENDF/B-VI, JENDL 3.2 with NJOY94.10+, (ii) use WIMSD-5 package to generate cell constants for all of the materials in the core and its immediate neighborhood, (iii) use CITATION to perform 3-D global analysis of the core to study multiplication factor, neutron flux and power distribution, power peaking factors, temperature reactivity coefficients, etc., (iv) check the validity of the deterministic codes with the Monte Carlo code MCNP-4B2, (v) couple output of CITATION with PARET to study thermal hydraulic behavior to predict safety margins, and (vi) reshuffle the current core configuration to achieve the desired objectives. The computational methods, tools and techniques, customization of cross section libraries, various models for cells and super cells, and a lot of associated utilities have been standardized and established/validated for the overall core analysis. Analyses using the 4-group, and 7-group libraries of macroscopic cross sections generated from the 69-group WIMSD-5 library were performed

  8. Determination of hydraulic conductivity of fractured rock masses:A case study for a rock cavern project in Singapore

    Institute of Scientific and Technical Information of China (English)

    Zhipeng Xu; Zhiye Zhao; Jianping Sun; Ming Lu

    2015-01-01

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, construction stage, and post-construction stage), suitable models and methods are proposed to determine the hy-draulic conductivities at different locations and depths, which will be used at other locations in the future.

  9. Study of thermal and hydraulic phenomena accompanying a rapid power excursion on a heating channel

    International Nuclear Information System (INIS)

    This document provides a study of power excursion phenomena and is divided into five sections. In the first chapter a summary of the principal research conducted world-wide on the thermal and hydrodynamic aspects of power excursions actualized either in the reactors or on installations outside of the pile is provided. In a second chapter, on the basis of the bibliographic study conducted previously, the characteristics and performance that an installation capable of correctly simulating a power excursion are indicated and the experimental device designed and developed is described with emphasis on the measurement methods used. In the third chapter the principal experimental results obtained, as well as their physical interpretation, are given. In the fourth chapter a simplified theoretical model that makes it possible to determine the manner of variation of the phenomena observed during our experiments is proposed, and in the fifth chapter what our study has added to the understanding of the phenomena that arise during a power excursion and the direction that the research should be continued is discussed. 38 refs., 69 figs

  10. Environmental aspects of hydraulic fracturing - Main results and recommendations from two studies on behalf of the German Environment Agency

    Science.gov (United States)

    Krischbaum, Bernd; Bertram, Andreas; Böttcher, Christian; Iyimen-Schwarz, Züleyha; Rechenberg, Jörg; Dannwolf, Uwe; Meiners, Georg

    2016-04-01

    The German Environment Agency (UBA) accompanies the debate on fracking for years. Two major reports on risks and environmental impacts regarding the exploration and exploitation of unconventional natural gas, in particular shale gas have been published. On the basis of these studies as well as on scientific evidence UBA considers ecological barriers as a sustainable means to minimize the risks to environment and human health. 1) Recent studies show that the contamination of shallow aquifers by rise of fluids through natural faults or artificially created fractures is extremely unlikely. However, activities on the surface and lack of wellbore integrity pose threats and substantial risks for the quality of shallow aquifers. 2) The need for thorough groundwater monitoring is fully accepted, yet its range and design is subject to discussion. 3) Formerly, analysis and mass balances of flowback and produced water have been insufficient, thus there is a lack of exact information on proportions of frac-fluids, flowback and formation water respectively, as well as data on possible reaction products. 4) Currently, neither on national nor on European level best reference techniques (BREF) for the treatment and disposal of flowback and produced water are available. 5) In addition, land consumption, emission of greenhouse gases, and induced seismicity are major issues. UBA recommends amongst others the implementation of an environmental impact assessment (EIA) for fracking activities, the prohibition of fracking in water protection areas as well as their catchments, and the disclosure of all frac-fluid chemicals within a national chemical registry. To achieve these objectives the German Environment Agency suggests a step-by-step approach. The paper will present the main results from the studies and the recommendations of the German Environment Agency regarding hydraulic fracturing for unconventional gas exploitation.

  11. A Method to Study Thickness Reduction in Electro-hydraulic Forming of Cones

    Directory of Open Access Journals (Sweden)

    Liviu Coman

    2010-10-01

    Full Text Available In this paper are presented some of the authors experimental researches connected to the electrohydroimpulses drawing of the thin conical parts made from aluminium, and also to the quality of these parts. Experimental conditions are specified and comparatively presented some results obtained for the same kind of parts, but in the case of magnetic impulses drawing (magneto – dynamic deformation. As a criterion for the quality of the parts obtained by electrohydroimpulses drawing in monoimpulse regime, the distribution of material’s thickness reduction lengthways with the cone element is adopted, for different geometries of the cone. The study is achieved for various intermediate deformation stages and discharge energies.

  12. Conditional Inference and Advanced Mathematical Study: Further Evidence

    Science.gov (United States)

    Inglis, Matthew; Simpson, Adrian

    2009-01-01

    In this paper, we examine the support given for the "theory of formal discipline" by Inglis and Simpson (Educational Studies Mathematics 67:187-204, "2008"). This theory, which is widely accepted by mathematicians and curriculum bodies, suggests that the study of advanced mathematics develops general thinking skills and, in particular, conditional…

  13. Preliminary study of CANDU moderator thermal hydraulics using the CUPID code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gi; Jeong Jae Jun [Pusan National Univ., Busan (Korea, Republic of); Lee, Jae Ryong; Kim, Hyoung Tae [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    When the moderator cooling system fails, moderator may act as to remove decay heat which occurs in fuel. During loss of coolant accident (LOCA), the film boiling occurs in the Calandria tube (CT) because the hot pressure tube would deform into contacting with the calandria tube. And lower subcooling would decrease the margin of the CT to dryout. So, it is important to estimate a local subcooling of the moderator inside the Calandria vessel. However, in order to predict the internal temperature the study of empirical experiments and calculations are needed because only the inlet/outlet temperature can be measured in real reactor. In this study, the internal flow of the moderator was predicted by using the CUPID code, which has been developed in KAERI. The CUPID adopts three dimensional, transient, two phase and three field model, and includes various physical models and correlations of the interfacial mass, momentum and energy transfer for the closure relations of the two fluid model. The CUPID code shows single phase and two phase flow through two phase flow calculations of virtual can be applied.

  14. Study of a particle method for thermal-hydraulic analysis. 2

    International Nuclear Information System (INIS)

    In liquid metal fast breeder reactors (LMFBRs), liquid metal of sodium is used as the coolant under the atmospheric pressure. Thus, the coolant system has free surfaces in the components. In addition, the structures should be thin enough to reduce thermal stresses because the coolant is used in a wide range of temperature. Therefore, troubles may take place due to the sloshing, its interactions with structures and fluid-structure coupling vibration induced by flows. However, there have been no numerical methods to analyze large deformations of free surfaces and structures. Moving Particle Semi-implicit (MPS) method can be applied to topological change as well as large deformations of continuum since the calculation is based on macroscopic particles. We have developed an algorithm for incompressible flow analysis and flows with wave breaking on a free surface were successfully calculated. The objectives of the present study are development of the MPS method to analyze fluid-structure interactions and analysis of sloshing in a tank made of elastic walls. As a conclusion , a numerical method for fluid-structure interactions with large deformations of free surfaces and structures is developed based on the MPS method in the present study. (J.P.N.)

  15. Study of ice formation in the porosity of hydraulic binder based materials

    International Nuclear Information System (INIS)

    This work concerns the nuclear waste management problematic, and aims at contributing to a better prediction of concrete freeze / thaw behaviour. Ice formation in the porosity of cement pastes and concrete was studied using differential scanning calorimetry and a thermodynamic model. It is shown that ice formation low temperatures in the pores can't be explained considering only interstitial solution under-cooling induced by crystal size restrictions, dissolved chemical elements, and containment pressures. On the other hand, taking into account the nucleation theory and the porosity division degree, three ice formation mechanisms can be defined, near -10, -25 et -40 deg. C. These results allow to explain freeze / thaw behaviour differences between blended and portland cement based materials, as well as, probably, between some high performance concrete, and allow to consider using differential scanning calorimetry as a tool for testing concrete freeze / thaw behaviour. In addition, this study highlights an irreversible shrinkage for cement pastes and concrete induced by freeze / thaw cycles without provision of water, and, on the basis of small angle neutrons scattering measures, the presence of a fractal surface type porosity in high performance cement pastes. (author)

  16. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider. PMID:26399946

  17. Study of heat and hydraulic diffusions in clays under thermal loading

    International Nuclear Information System (INIS)

    This study is a cost-sharing research programme on radioactive waste disposal and radioactive waste management. The thermal conductivity of clays is the fundamental parameter which governs the thermal diffusion and the pore pressure of the rock mass under thermal loading. Experiments have been undertaken in a reduced model, respecting representative boundary conditions. They show that the thermal conductivity depends on temperature in an unfavourable sense to the decrease of heat. On the other hand, the outflow of pore water, from the source to the exterior, has a low amplitude. A single model of porous medium allows the observations and illustrates the effects of the variation of conductivity on the behaviour of rock mass. Finally, thanks to the numerical formulations specially developed, we examine the incident of the particularities of proposed models on the thermohydromechanical behaviour of geometrically simple structures subjected to a given thermal loading

  18. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...

  19. Numerical study on hydraulic performance of submerged propellers in oxidation ditch

    Institute of Scientific and Technical Information of China (English)

    Wu Siyuan; Zhou Daqing; Zheng Yuan

    2014-01-01

    The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant.The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conver-sion efficiency.So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers.On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetra-hedral mesh were generated.Based on Navier -Stokes equations and standard k -εturbulence model, the flow was simulated by using a simple algorithm.Through changing some design parameters of pro-pellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions.The study can provide theoretical and project guidance for submerged propellers design.

  20. Numerical and experimental studies of hydraulic noise induced by surface dipole sources in a centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 戴菡葳; 丁剑; 谈明高; 王勇; 黄浩钦

    2016-01-01

    The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experi- mental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.

  1. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  2. Characterizing hydraulic conductivity with the direct-push permeameter

    Science.gov (United States)

    Butler, J.J.; Dietrich, P.; Wittig, V.; Christy, T.

    2007-01-01

    The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a depth at which a K estimate is desired. A short hydraulic test is then performed by injecting water through the screen at a constant rate (less than 4 L/min) while pressure changes are monitored at the transducer locations. Hydraulic conductivity is calculated using the injection rate and the pressure changes in simple expressions based on Darcy's Law. In units of moderate or higher hydraulic conductivity (more than 1 m/d), testing at a single level can be completed within 10 to 15 min. Two major advantages of the method are its speed and the insensitivity of the K estimates to the zone of compaction created by tool advancement. The potential of the approach has been assessed at two extensively studied sites in the United States and Germany over a K range commonly faced in practical field investigations (0.02 to 500 m/d). The results of this assessment demonstrate that the DPP can provide high-resolution K estimates that are in good agreement with estimates obtained through other means. ?? 2007 National Ground Water Association.

  3. A study on the effects of different hydraulic loading rates (HLR) on pollutant removal efficiency of subsurface horizontal-flow constructed wetlands used for treatment of domestic wastewaters.

    Science.gov (United States)

    Çakir, Recep; Gidirislioglu, Ali; Çebi, Ulviye

    2015-12-01

    The research into the treatment of domestic wastewaters originating from Büyükdöllük village in Edirne Province was carried out over a 3 year experimental period. The wastewaters of the settlement were treated using a constructed wetland with subsurface horizontal flow, and the effects of different hydraulic loading levels on removal efficiency were studied. In order to achieve this goal, three equal chambers (ponds) of 300 m(2) each were constructed and planted with Phragmites australis. Each of the chambers was loaded with domestic wastewater with average flow discharge creating hydraulic loading rates of 0. m(3) day(-1) m(-2); 0.075 m(3) day(-1) m(-2) and 0.125 m(3) day(-1) m(-2), respectively. According to the results of the study, the inlet levels of the pollutant parameters with carbon origin in the water samples taken from the system entrance are high and the average values for three years are respectively: Biological Oxygen Demand, BOD5 -324.5 mg L(-1); Chemical Oxygen Demand, COD -484,0 mg L(-1); suspended solids (TSS) -147.3 mg L(-1) and Oil and Grease -0.123 mg L(-1). It was also determined that the removal rates of the system were closely dependent on the applied hydraulic loading levels and the highest removal rates of 64.9%, 62.5%, 86.3% and 80.34% for BOD5, COD, TSS and Oil and Grease, respectively, were determined in the pond with a hydraulic loading rate of 0.050 m(3) day(-1) m(-2). Lower removal of 57.9%, 55.5%, 81.4% and 74.5% for BOD5, COD, TSS and Oil and Grease were recorded in the pond with a hydraulic loading rate of 0.075 m(3) day(-1) m(-2); and these values were 49.1%, 47.8%, 70.9% and 62.1% for the pond with a hydraulic loading rate of 0.125 m(3) day(-1) m(-2). High removal rates were also recorded for the other investigated pollution parameters.

  4. An Appraisal of Qualifying Role of Hydraulic Heritage Systems: A Case Study of Qanat in the Central Iran

    NARCIS (Netherlands)

    Fasihi Harandi, M.; De Vries, M.J.

    2014-01-01

    Hydraulic heritage systems, both underground and exposed, have been known to be sustainable for millennia. Persian and also Roman aqueducts are examples of such hydrosystems. Their value is often overlooked but they have undeniable advantages: they have functional interconnectedness with their surro

  5. Numerical simulation study on turbulence of hydraulic jump with low Froude number%低佛氏数水跃紊流数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    张春财; 杜宇

    2012-01-01

    【Objective】The research studied the hydraulic jump characteristic of low Froude number.【Method】By using VOF method in water surface upstream and downstram of the gate and 2-d k-ε RNG turbulence model,hydraulic jump with low Froude number(Fr1=2.0-4.5) was simulated numerically.Water depth after hydraulic jump,length of hydraulic jump and distribution of flow velocity of hydraulic jump with low Froude number were analyzed.Furthermore,pressure,turbulent kinetic energy,turbulent dissipation and coefficient of energy dissipation in the hydraulic jump region and the open cannel flow region were studied.【Result】The length of hydraulic jump whose degree of submergence is more than 1.2 is longer than that of calculated by empirical formula,and increases along with the increase of Froude number.The maximum velocity reduces along the flowing of the main flow in the hydraulic jump region,and the reduction of the average velocity in section is small in open channel flow region after hydraulic jump.The pressure distribution of hydraulic jump is closely related to flow aeration.Turbulent kinetic energy and coefficient of energy dissipation are the maximum near the boundary of the main flow and ground droller in the hydraulic jump.The higher the Froude number is,the higher the theoretical and practical coefficient of energy dissipation is.The theory coefficient of energy dissipation is higher than actual coefficient considering the turbulent kinetic energy after hydraulic jump.【Conclusion】Because low-head key water control project has larger flood discharge power,less energy dissipation hydraulic characteristic of hydraulic jump with low Froude number should be seriously considered,and reasonable energy dissipation instrument should be designed to solve its problems of energy dissipation and erosion-control.%【目的】研究低佛氏数(Fr。)水跃紊流的水力特性。【方法】采用VOF方法处理闸门上、下游表面,用二维RNG型肛e

  6. Erratum to "SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies" [Int. J. Numer. Meth. Fluids, 2013, 72 (3), 269-300

    OpenAIRE

    Delestre, Olivier; Lucas, Carine; Ksinant, Pierre-Antoine; Darboux, Frédéric; Laguerre, Christian; Vo, Thi Ngoc Tuoi; James, François; Cordier, Stéphane

    2014-01-01

    Numerous codes are being developed to solve shallow water equations. Because these are used in hydraulic and environmental studies, their capability to simulate flow dynamics properly is critical to guarantee infrastructure and human safety. Although validating these codes is an important issue, code validations are currently restricted because analytic solutions to the shallow water equations are rare and have been published on an individual basis over a period of more than five decades. Thi...

  7. Control issues for a hydraulically powered dissimilar teleoperated system

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, J.F.; Kress, R.L.

    1995-12-31

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented. (Schilling`s Titan II hydraulic manipulators are the slave manipulators and the master manipulators are from the Oak Ridge National Laboratory-developed Advanced Servo Manipulator.)

  8. A fundamental study for safety in advanced PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Kang, C. S.; Lee, E. C.; Kim, S. N.; Lee, J. S.; Kim, M. H.; Chae, W. S.; Kim, M. H.; Lee, D. H.; No, S. T.; Jeon, G. D.; Lee, T. H.; Kim, B. S.; Park, H. J.; Yoon, J. I.; Kim, J. H.; Jeon, J. H.; Jang, W. H.; Sa, Y. C.; Lee, H. W.; Kim, S. J.; Kim, J. W.; Kim, Y. H.; Lee, S. W.; Yang, C. G.; Kim, Y. S.; Ha, J. B.; Son, M. S.; An, Y. C.; Bae, S. W. [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    For the development of integral type small and medium reactor which is remarkably safer than existing plants, the operability of passive safety systems should be studied and its applicability to the integral type reactor should be evaluated. The purposes of this study are to evaluate the characteristics of various passive safety systems and provide the proper data for the future design with performing experiments and developing analytical methodology. Thus in this study, the following techniques for small reactors and passive safety systems subject to this study are evaluated and a part of basic experiments and numerical works necessary to the experiments were performed, First, heat pipes used in containment vessel which removes hear by passive mechanism during accidents, second, natural circulation characteristics for the passive safety analysis of integrated reactor, third, heat evaluation of the effective function of hydraulic valve in passive decay heat removal systems, fifth, the determination of the improved source term for the integral reactor, and the last, passive containment cooling system, which is the first step in the analysis of the integrated safety and the environmental impacts of nuclear power plant. 184 refs., 49 tabs., 188 figs. (author)

  9. Study on local thermal–hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature

    International Nuclear Information System (INIS)

    Highlights: • Flow and temperature at high temperature cannot be fully-developed. • Non-dimensional velocity and temperature are proposed to evaluate performances. • Local Nusselt number and friction factor at high and low temperature are similar. • Bigger inclined angle should be used in cold region when using hybrid channels. • Optimal inclined angles are depended on operating conditions. - Abstract: High temperature heat exchanger is one of the most important components to transfer heat from the first loop to the second loop in the very high temperature reactor in nuclear energy application. In order to enhance the heat transfer performance, a mini-channel heat exchanger called printed circuit heat exchanger has attracted more attention in recent years. In this paper, the thermal–hydraulic performance of zigzag-type printed circuit heat exchanger with helium as the working fluid operating at the typical temperature of 900 °C in the very high temperature reactor is studied. It is found that the flow and temperature at high temperature cannot achieve a fully-developed condition due to the significant variation of thermal physical properties arisen from the large temperature difference. However, the non-dimensional velocity and temperature can become steady after the second pitch and is similar to the fluid flow behaviors at low temperature. Therefore the local Nusselt number and friction factor at high temperature can match well with those at low temperature when the Reynolds number is bigger than 900. With the increase of inclined angle, the heat transfer and pressure drop increase. It is recommended to put the channel with a larger inclined angle to the cold region when using the hybrid channels. The heat transfer enhancement method with inclined angles completely depends on the operating conditions

  10. Advanced dementia research in the nursing home: the CASCADE study.

    Science.gov (United States)

    Mitchell, Susan L; Kiely, Dan K; Jones, Richard N; Prigerson, Holly; Volicer, Ladislav; Teno, Joan M

    2006-01-01

    Despite the growing number of persons with advanced dementia, and the need to improve their end-of-life care, few studies have addressed this important topic. The objectives of this report are to present the methodology established in the CASCADE (Choices, Attitudes, and Strategies for Care of Advanced Dementia at the End-of-Life) study, and to describe how challenges specific to this research were met. The CASCADE study is an ongoing, federally funded, 5-year prospective cohort study of nursing [nursing home (NH)] residents with advanced dementia and their health care proxies (HCPs) initiated in February 2003. Subjects were recruited from 15 facilities around Boston. The recruitment and data collection protocols are described. The demographic features, ownership, staffing, and quality of care of participant facilities are presented and compared to NHs nationwide. To date, 189 resident/HCP dyads have been enrolled. Baseline data are presented, demonstrating the success of the protocol in recruiting and repeatedly assessing NH residents with advanced dementia and their HCPs. Factors challenging and enabling implementation of the protocol are described. The CASCADE experience establishes the feasibility of conducting rigorous, multisite dementia NH research, and the described methodology serves as a detailed reference for subsequent CASCADE publications as results from the study emerge. PMID:16917187

  11. Promoting water hydraulics in Malaysia: A green educational approach

    Science.gov (United States)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  12. Design study on advanced reprocessing systems for FR fuel cycle

    International Nuclear Information System (INIS)

    A design study has been carried out for four advanced reprocessing technologies for the future fast rector (FR) recycle systems (advanced aqueous, and three non-aqueous systems based on oxide electrowinning, metal electrorefining, and fluoride volatility methods). The systems were evaluated mainly from the viewpoint of economics. It has been shown that, for MOX fuel reprocessing, all the systems with a capacity of 200 t/y attains the economical target, whereas for such a small capacity as 50 t/y, only the non-aqueous systems have potential to attain the target. For metallic and nitride fuel, a metal electrorefining system has been shown to be advantageous. (author)

  13. From "fixing women" to "institutional transformation": An ADVANCE case study

    Science.gov (United States)

    Yennello, Sherry; Kaunas, Christine

    2015-12-01

    The United States' position in the global economy requires an influx of women into science, technology, engineering, and mathematics (STEM) fields in order to remain competitive. Despite this, the representation of women in STEM continues to be low. The National Science Foundation's ADVANCE Program addresses this issue by funding projects that aim to increase the representation of women in academic STEM fields through transformation of institutional structures that impede women's progress in academic STEM fields. This paper includes a case study of the Texas A&M University ADVANCE Program.

  14. Numerical simulations of hydraulic redistribution across climates: The role of the root hydraulic conductivities

    Science.gov (United States)

    Quijano, Juan C.; Kumar, Praveen

    2015-10-01

    Hydraulic redistribution, a process by which vegetation roots redistribute soil moisture, has been recognized as an important mechanism impacting several processes that regulate plant water uptake, energy and water partitioning, and biogeochemical cycling. We analyze how the magnitude of hydraulic redistribution varies across ecosystems that are exposed to different climates and seasonal patterns of incoming shortwave radiation and precipitation. Numerical simulation studies are performed over 10 Ameriflux sites, which show that hydraulic redistribution predictions are significantly influenced by the specified root hydraulic conductivities. We performed sensitivity analyses by considering expected ranges of root conductivities based on previous experimental studies, and found contrasting patterns in energy-limited and water-limited ecosystems. In energy-limited ecosystems, there is a threshold above which high root conductivities enhance hydraulic redistribution with no increase in transpiration, while in water-limited ecosystems increase in root conductivities was always associated with enhancements in both transpiration and hydraulic redistribution. Further we found differences in the magnitude and seasonality of hydraulic redistribution and transpiration across different climates, regulated by interplay between precipitation and transpiration. The annual hydraulic redistribution to transpiration flux ratio (HR/Tr) was significant in Mediterranean climates (HR/Tr ≈ 30%), and in the tropical humid climates (HR/Tr ≈ 15%). However, in the continental climates hydraulic redistribution occurs only during sporadic precipitation events throughout the summer resulting in lower annual magnitudes (HR/Tr hydrology, and enhance our understanding about the variability of hydraulic redistribution across different climates.

  15. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P

    1991-01-01

    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  16. Thermal-Hydraulics Research in the Valencia Polytechnic University

    International Nuclear Information System (INIS)

    The research on thermal-hydraulics at the Polytechnic University of Valencia is performed by the TIN group (thermal-hydraulic and Nuclear Engineering). The group activities are currently carried out at the Energy Engineering Institute. The main research topics are: transient analysis of reactors, nuclear reactor stability, passive and advanced safety reactors, two-phase flow in nuclear reactors. (Author)

  17. Advanced turbine systems study system scoping and feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

  18. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...... a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....

  19. Critical review of hydraulic modeling on atmospheric heat dissipation

    International Nuclear Information System (INIS)

    Objectives of this study were: to define the useful roles of hydraulic modeling in understanding the predicting atmospheric effects of heat dissipation systems; to assess the state-of-the-art of hydraulic modeling of atmospheric phenomena; to inventory potentially useful existing hydraulic modeling facilities both in the United States and abroad; and to scope hydraulic model studies to assist the assessment of atmospheric effects of nuclear energy centers

  20. Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study.

    Science.gov (United States)

    Chooi, K Y; Comerford, A; Sherwin, S J; Weinberg, P D

    2016-06-01

    The hydraulic resistances of the intima and media determine water flux and the advection of macromolecules into and across the arterial wall. Despite several experimental and computational studies, these transport processes and their dependence on transmural pressure remain incompletely understood. Here, we use a combination of experimental and computational methods to ascertain how the hydraulic permeability of the rat abdominal aorta depends on these two layers and how it is affected by structural rearrangement of the media under pressure. Ex vivo experiments determined the conductance of the whole wall, the thickness of the media and the geometry of medial smooth muscle cells (SMCs) and extracellular matrix (ECM). Numerical methods were used to compute water flux through the media. Intimal values were obtained by subtraction. A mechanism was identified that modulates pressure-induced changes in medial transport properties: compaction of the ECM leading to spatial reorganization of SMCs. This is summarized in an empirical constitutive law for permeability and volumetric strain. It led to the physiologically interesting observation that, as a consequence of the changes in medial microstructure, the relative contributions of the intima and media to the hydraulic resistance of the wall depend on the applied pressure; medial resistance dominated at pressures above approximately 93 mmHg in this vessel.

  1. Simulation Study on the Hydraulic System Fault Injection%液压系统故障注入仿真研究

    Institute of Scientific and Technical Information of China (English)

    丁遥; 陈小虎; 阳能军; 高淑祥

    2014-01-01

    The control method is an important part of the fault injection studies. PID controller was introduced into the hydraulic system,the parameter was established using MATLAB/Simulink simulation,the results proved that PID control could improve the sys-tem performance effectively. Then the hydraulic system simulation model based on PID control was established using AMESim software. Hydraulic cylinder fault injection was realized through parameter settings. Conclusions were obtained which were required through a lot of experiments before.%控制是故障注入研究的重要部分。将PID控制器引入液压系统控制,利用MATLAB/Simulink仿真软件进行仿真,确立了控制参数,证明了PID控制能有效改善系统的响应性能,然后利用AMESim软件建立了基于PID控制的液压系统仿真模型,通过参数设置实现了液压缸故障注入,得到了需要大量实验得出的结论。

  2. A Study on Wavelet Data Compression of a Real-Time Monitoring System for Large Hydraulic Machines

    Institute of Scientific and Technical Information of China (English)

    WANG Hai; ZHENG Liyuan

    2001-01-01

    The general concept of data compression consists in removing the redundancy existing in data to find a more compact representation. This paper is concerned with a new method of compression using the second generation wavelets based on the lifting scheme, which is a simple but powerful wavelet construction method. It has been proved by its successful application to a real-time monitoring system of large hydraulic machines that it is a promising compression method.

  3. A study on Waveley Data Compression of a Real—Time Monitoring System for Large Hydraulic Machines

    Institute of Scientific and Technical Information of China (English)

    王海; 郑莉媛

    2001-01-01

    The general concept of data compression consists in removing the redundancy existing in data to find a more compact representation.This paper is concerned with a new method of compression using the second generation wavelets based on the lifting scheme,which is a simple but powerful wavelet construction method .It has been proved by its successful application to a real-time monitoring system of large hydraulic machines that it is a promising compression method.

  4. An Appraisal of Qualifying Role of Hydraulic Heritage Systems: A Case Study of Qanat in the Central Iran

    OpenAIRE

    M Fasihi Harandi; De Vries, M.J.

    2014-01-01

    Hydraulic heritage systems, both underground and exposed, have been known to be sustainable for millennia. Persian and also Roman aqueducts are examples of such hydrosystems. Their value is often overlooked but they have undeniable advantages: they have functional interconnectedness with their surrounding society and ecology, which sometimes leads to revitalization plans. By using the notion ‘qualifying role’, this paper will raise questions concerning the disregarded functions and early and ...

  5. Determination of hydraulic conductivity of fractured rock masses: A case study for a rock cavern project in Singapore

    OpenAIRE

    Zhipeng Xu; Zhiye Zhao; Jianping Sun; Ming Lu

    2015-01-01

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, constru...

  6. FRF based position controller design through system identification for A hydraulic cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hyoung Kyu; Kim, Dong Hwan [Dept. of Mechanical Design and Robot Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of); Park, Jong Won [Reliability Assessment Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    In this study, we have focused on the design of a controller and an operating program for the operation of the hydraulic actuators used in a shaker. To control the motion of the shaker accurately, the position of each hydraulic cylinder should be controlled precisely even under an uncertain environment. For this purpose, we have suggested a control algorithm using an FRF (frequency response function) based control which senses the behavior of the actuator in advance, calculates a transfer function through the system identification method, and provides the final control input. The experimental results on the performance of this system were compared with that of a simple PID control algorithm.

  7. Natural Attenuation of Fuel Hydrocarbon Contaminants:Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    Institute of Scientific and Technical Information of China (English)

    LU Guo-ping; ZHENG Chun-miao

    2004-01-01

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  8. Experimental Study of Crack Initiation and Extension Induced by Hydraulic Fracturing in a Tree-Type Borehole Array

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-06-01

    Full Text Available High-pressure hydraulic fracturing technology in coal and coal bed methane mines can lead to roof and floor damage, and fracture initiation disorder that leads to a “blank area”, and other issues. A new method of hydraulic fracturing is proposed to increase the homogeneous permeability of coal in underground coalmines. Numerical and other simulation tests for different forms of a tree-type, branched borehole model are presented. The results show that the branched array causes cracks to initiate from the bottom of the array, and these extend along the direction of the adjacent boreholes. Generally, as the number of branched boreholes increases, the coal seam fracture network also increase, improving the distribution of the fracture network, making the fracturing effect better. The branched boreholes appear to reduce initiation pressure and, with increasing branches, the initiation pressure decreases. A model with four tree-type, branched boreholes leads to a reduction in initiation pressure of 69%. In terms of permeability improvement technology in underground coalmines, a branched hydraulic fracturing borehole array has the advantages of reducing initiation pressure, controlling crack initiation and extension, enhancing the fracturing effect and reducing the destruction of the roof and floor.

  9. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  10. NATO Advanced Study Institute on Methods in Computational Molecular Physics

    CERN Document Server

    Diercksen, Geerd

    1992-01-01

    This volume records the lectures given at a NATO Advanced Study Institute on Methods in Computational Molecular Physics held in Bad Windsheim, Germany, from 22nd July until 2nd. August, 1991. This NATO Advanced Study Institute sought to bridge the quite considerable gap which exist between the presentation of molecular electronic structure theory found in contemporary monographs such as, for example, McWeeny's Methods 0/ Molecular Quantum Mechanics (Academic Press, London, 1989) or Wilson's Electron correlation in moleeules (Clarendon Press, Oxford, 1984) and the realization of the sophisticated computational algorithms required for their practical application. It sought to underline the relation between the electronic structure problem and the study of nuc1ear motion. Software for performing molecular electronic structure calculations is now being applied in an increasingly wide range of fields in both the academic and the commercial sectors. Numerous applications are reported in areas as diverse as catalysi...

  11. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  12. Validation study of thermal-hydraulic analysis program spiral for fuel pin bundle of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Full text of publication follows: Japan Nuclear Cycle Development Institute (JNC) has been developing a numerical simulation system in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel subassemblies of sodium-cooled fast reactors under various operating conditions such as normal operation, transient condition or deformed geometry condition from the viewpoint of the assessment of fuel pin structure integrity. This paper describes the validation study of SPIRAL that is one component code of the numerical simulation system and contributes to detailed simulations of local flow and temperature fields in a wire-wrapped fuel pin bundle. SPIRAL is a multi-dimensional finite element method code that can treat complicated geometries like a fuel pin bundle. For numerical stabilization, one can choose Streamline Upwind Petrov Galerkin method and Balancing Tensor Diffusivity method. Semi-implicit solution scheme (fractional step method) developed by Ramaswamy is used for time integration. As the pressure equation matrix solver, ICCG or Gaussian elimination is applied. Energy conservation equations of coolant and structure are also solved and therefore temperature distributions of both coolant and fuel pins can be calculated. Several turbulence models, high/low Reynolds number isotropic/anisotropic models, were incorporated to the code. The code was parallelized using MPI for enhancing simulation efficiency. Pre-processor is also available for numerical grid generation for wire-wrapped fuel pin bundles by curvilinear coordinate system. Fundamental validity related to solving mass, momentum and energy conservation equations and applicability of turbulence models were confirmed by simulating several basic problems. As typical examples, two kinds of simulations using high Re number models, backward facing step flow and 4- fuel-pin bundle in rectangular duct, are introduced in this paper. The simulation results indicate that RNG k-ε model shows relatively

  13. Correlation of Hydraulic Fracturing Induced Seismicity with Operation Parameters of Shale Gas Extraction: Two Case Studies in Western Canada

    Science.gov (United States)

    Farahbod, A. M.; Kao, H.; Cassidy, J. F.; Snyder, D. B.; Cairns, S.; Walker, D.

    2015-12-01

    Northeast British Columbia, specifically the Horn River Basin (HRB) and Montney Trend, are among the largest shale gas production regions in western Canada. In contrast, there has been no large-scale hydraulic fracturing (HF) operation in the Northwest Territories in the Norman Wells region of the central Mackenzie valley. In this study, we investigate the effect of injection pressure, operation duration and injected volume on the observed seismicity in the HRB and Norman Wells regions and compare our observations with the pre-HF records. In the HRB, we apply the single-station location and waveform correlation methods to establish a homogenous earthquake catalog (2006/12-2011/12). In the Northwest Territories, we combine data from a local seismograph network of 4 stations plus a dense array of 7 stations located from 1 km to 50 km from the operation wells to locate earthquakes (2013/09-2014/07). In the HRB, the initial effect of an increased injected volume is an increase in earthquake frequency but not magnitude. Local earthquakes gradually become larger in magnitude as the scale of HF in the region expands. While the injection pressure during HF operations has been regulated at a relatively constant level, the massive increase of injection volume in 2010 and 2011 coincides with a series of ML>3 events. Relatively large seismic moment release (>1014 N m) occurred only when the monthly injected volume exceeded ~150,000 m3. In addition, we observe variable time lags, from days to up to 4 months between intense HF and the occurrence of a significant local earthquake. On the other hand, in the Norman Wells region, two small-scale HF were performed in 2014 with a total injected volume of ~ 14000 m3. We observed an increase in the number of micro-earthquakes (M < 2.0) during the HF period without a clear change in the overall seismic pattern. From these two observations, we conclude that HF operations do not necessarily result in an increase in the occurrence rate of

  14. Hydraulic conductivity of GCLs in MSW landfills

    Institute of Scientific and Technical Information of China (English)

    LI Guo-cheng; YANG Wu-chao; DAN Tang-hui

    2008-01-01

    The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the in-fluence of the effective stress, chemical interactions, freeze - thaw cycles and temperature gradients. The chan-ges of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity, regardless of the cation concentration or the thickness of the adsorbed layer. The hydraulic conductivity is relat-ed to the relative abundance of monovalent and divalent cation(RMD), and RMD has a great effect on the hy-draulic conductivity in weak solution. The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal, which has been proved after 150 freeze-thaw cycles. The potential of desiccation cracking increases with the increasing temperature gradient and is related to the ini-tial subsoil water content, the applied overburden stress, etc.

  15. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  16. Soil hydraulic properties of a Nitisol in Kabete, Kenya

    OpenAIRE

    Karuku, GN; Gachene, CKK; Karanja, N.; Cornelis, Wim; Verplancke, Hubert; Kironchi, G

    2012-01-01

    Water relations are among the most important physical phenomena that affect the use of soils for agricultural, ecological, environmental, and engineering purposes. To formulate soil-water relationships, soil hydraulic properties are required as essential inputs. The most important hydraulic properties are the soil-water retention curve and the hydraulic conductivity. The objective of this study was to determine the soil hydraulic properties of a Nitisol, at Kabete Campus Field Station. Use of...

  17. INFORMATION-MEASURING TEST SYSTEM OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSIONS

    OpenAIRE

    ZHUKOVYTSKYY I.V.; KLIUSHNYK I.A.; OCHKASOV O.B.; KORENIYK R.O.

    2015-01-01

    Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of...

  18. Thermal-hydraulics of the Loviisa reactor pressure vessel overcooling transients

    International Nuclear Information System (INIS)

    In the Loviisa reactor pressure vessel safety analyses, the thermal-hydraulics of various overcooling transients has been evaluated to give pertinent initial data for fracture-mechanics calculations. The thermal-hydraulic simulations of the developed overcooling scenarios have been performed using best-estimate thermal-hydraulic computer codes. Experimental programs have been carried out to study phenomena related to natural circulation interruptions in the reactor coolant system. These experiments include buoyancy-induced phenomena such as thermal mixing and stratification of cold high-pressure safety injection water in the cold legs and the downcomer, and oscillations of the single-phase natural circulation. In the probabilistic pressurized thermal shock study, the Loviisa training simulator and the advanced system code RELAP5/MOD2 were utilized to simulate selected sequences. Flow stagnation cases were separately calculated with the REMIX computer program. The methods employed were assessed for these calculations against the plant data and own experiments

  19. Advances of Studies on the Viral Proteins of PRRSV

    Institute of Scientific and Technical Information of China (English)

    Cao; Zongxi; Shi; Zhihai; Lin; Zhemin; Jiao; Peirong; Zhang; Guihong

    2014-01-01

    Porcine reproductive and respiratory syndrome( PRRS) is one of viral diseases with severe reproductive obstacle of pregnant sows and respiratory tract symptoms and higher mortality of piglets as characteristics,which is caused by porcine reproductive and respiratory syndrome virus( PRRSV). PRRS has brought great threats to swine industry in the world. The advances of studies on the viral proteins of PRRSV were reviewed from the genome,non-structural proteins and structural proteins of PRRSV.

  20. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  1. Oluvil Port Development Project.:3rd party opinion on report by Lanka Hydraulic Institute Ltd: Oluvil Port Development Project: Studies on Beach Erosion, June 2011.

    OpenAIRE

    Frigaard, Peter; Margheritini, Lucia

    2011-01-01

    Oluvil Port Development Project is the first development of a large port infrastructure in the entire eastern coastline of Sri Lanka. The project is supported by the Danish Foreign Ministry. Feasibility studies and detailed design studies were carried out by Lanka Hydraulic Institute Ltd during the years 1995 to 2003. The design was reviewed by COWI a/s. Construction of the port was started in 2008. MT Højgaard a/s acted as contractor. The outer breakwaters were constructed as first part of t...

  2. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  3. [Latest Advance of Study on Pathogenesis of Immune Thrombocytopenia].

    Science.gov (United States)

    Yang, Min; Liu, Wen-Jun

    2016-06-01

    Immune thrombocytopenia (ITP) is recognized as a multifactorial cell-specific autoimmune disorder, and its pathogenesis is still not very clear. Traditional concept suggests that the platelet destruction mediated by autoantibodies is the pathophysiology mechanism of ITP, while many studies in recent years have shown that the abnormities of T lymphocyte, dendritic cell (DC), natural killer cell (NK), cytokine, programmed cell death (PCD), oxidative stress (OS), infection, pregnancy and drugs etc play an important role in the pathogenesis of ITP. Since the study of ITP has made a series of important achievements in recent years, this review focuses on the latest advance of studies on pathogenesis of ITP. PMID:27342542

  4. A scientific case study of an advanced LISA mission

    International Nuclear Information System (INIS)

    A brief status report of an ongoing scientific case study of the Advanced Laser Interferometer Antenna (ALIA) mission is presented. Key technology requirements and primary science objectives of the mission are covered in the study. Possible descope options for the mission and the corresponding compromise in science are also considered and compared. Our preliminary study indicates that ALIA holds promise in mapping out the mass and spin distribution of intermediate mass black holes possibly present in dense star clusters at low redshift as well as in shedding important light on the structure formation in the early Universe.

  5. Study of consolidation chemotherapy in advanced epithelial ovarian carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng Ning-hai; Huang Hui-fang; Pan Lin-ya; Shen Keng; Wu Ming; Yang Jia-xin

    2007-01-01

    Objective: A prospective randomized study was designed to evaluate the role of consolidation chemotherapy in advanced epithelial ovarian carcinoma.Methods: 50 patients with advanced epithelial ovarian carcinoma treated in our hospital during the period from March 2000 to October 2005 were enrolled in this study.All patients had achieved clinical complete remission by means of standard treatments, and were randomly divided into consolidation chemotherapy group and control group.Relapse rate, and disease-free survival(DFS) time were analyzed in both groups.Results: 24 patients were assigned in consolidation chemotherapy group, and 26 patients in control group.Tumor relapse interval in consolidation group was (26.5±7.4) months, vs.(16.8±7.0) months in control group respectively, P=0.001.Time to relapse(TTR) in consolidation group was (19.2±6.8) months, vs.(10.0±6.9)months in control group, P=0.002.Analysis of DFS time and overall survival time, Log Rank test:P=0.042 and P= 0.062, respectively.Conclusions: Consolidation chemotherapy could be the relevant factor that postpones tumor relapse interval and prolongs DFS time in advanced epithelial ovarian carcinoma patients who had achived chlinical complete remission.But so far the statistic result of our clinical study is beyond the conclusion that consolidation chemotherapy can decrease relapse rate or increase survival rate.Muhicenter randomized clinical trial should be performed to confirm the role of consolidation chemotherapy in advanced epithelial ovarian carcinoma.

  6. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  7. Experimental and Dynamic Study of the Piston Rod Lateral Friction for the Twin-Tube Hydraulic Shock Absorber

    OpenAIRE

    Yanqing Liu; Jianwu Zhang; Xiaoming Cheng

    2003-01-01

    In this paper, dynamic loads acting on a twin-tube hydraulic shock absorber are derived out both in wheel and axle planes by modeling mechanically car rear suspensions, and internal and external forces that yield lateral surface damage and wear-out of the piston rod for the absorber are analyzed according to bench and real road test measures. From viewpoint of vehicle system dynamics and experiment, such key factors as road unevenness, very high car speed and severe shock induced vibrations a...

  8. Comparison Study on Thermal-Hydraulic Analysis Depending on Liquid Relief Valve Response for an Station Blackout in CANDU-6

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. M.; Kho, D. W. [KHNP-CRI, Daejeon (Korea, Republic of); Choi, S. H.; Moon, B. J.; Kim, S. R. [Nuclear Engineering Service and Solution Co., Daejeon (Korea, Republic of)

    2014-10-15

    The purpose of this analysis is to compare the results of thermal-hydraulic analysis depending on liquid relief valve response during a station black out (SBO) events in CANDU-6. The primary heat transport system (PHTS) behavior following the postulated SBO is analyzed using CATHENA code. In the paper, analysis was performed to evaluate the effect on coolant system where LRVs are assumed to be opened or opened according to normal open characteristics in the condition of SBO. The result showed that the primary pressure boundary is extended from LRV to DCT and the effects on primary system behavior were neglectable.

  9. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  10. Amazon flood wave hydraulics

    Science.gov (United States)

    Trigg, Mark A.; Wilson, Matthew D.; Bates, Paul D.; Horritt, Matthew S.; Alsdorf, Douglas E.; Forsberg, Bruce R.; Vega, Maria C.

    2009-07-01

    SummaryA bathymetric survey of 575 km of the central Amazon River and one of its tributaries, the Purus, are combined with gauged data to characterise the Amazon flood wave, and for hydraulic modelling of the main channel for the period June 1995-March 1997 with the LISFLOOD-FP and HEC-RAS hydraulic models. Our investigations show that the Amazon flood wave is subcritical and diffusive in character and, due to shallow bed slopes, backwater conditions control significant reach lengths and are present for low and high water states. Comparison of the different models shows that it is necessary to include at least the diffusion term in any model, and the RMSE error in predicted water elevation at all cross sections introduced by ignoring the acceleration and advection terms is of the order of 0.02-0.03 m. The use of a wide rectangular channel approximation introduces an error of 0.10-0.15 m on the predicted water levels. Reducing the bathymetry to a simple bed slope and with mean cross section only, introduces an error in the order of 0.5 m. These results show that when compared to the mean annual amplitude of the Amazon flood wave of 11-12 m, water levels are relatively insensitive to the bathymetry of the channel model. The implication for remote sensing studies of the central Amazon channel, such as those proposed with the Surface Water and Ocean Topography mission (SWOT), is that even relatively crude assumptions regarding the channel bathymetry will be valid in order to derive discharge from water surface slope of the main channel, as long as the mean channel area is approximately correct.

  11. Hydraulic characterization of " Furcraea andina

    Science.gov (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  12. GCFR thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  13. Study on Detailed Calculation and Experiment Methods of Neutronics, Fuel Materials, and Thermal Hydraulics for a Commercial Type Japanese Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Toshikazu Takeda

    2012-01-01

    Full Text Available This paper discusses the objectives and results of a multiyear R&D project to improve the modeling accuracy for the detailed calculation of the Japanese Sodium-cooled Fast Reactor (JSFR, although the preliminary design of JSFR is prepared using conventional methods. For detailed design calculations, new methods are required because the JSFR has special features, which cannot be accurately modeled with existing codes. An example is the presence of an inner duct in the fuel assemblies. Therefore, we have developed new calculational and experimental methods in three areas: (1 for neutronics, we discuss the development of methods and codes to model advanced FBR fuel subassemblies, (2 for fuel materials, modeling and measurement of the thermal conductivity of annular fuel is discussed, and (3 for thermal hydraulics, we describe advances in modeling and calculational models for the intermediate heat exchanger and the calculational treatment of thermal stratification in the hot plenum of an FBR under low flow conditions. The new methods are discussed and the verification tests are described. In the validation test, measured data from the prototype FBR Monju is partly used.

  14. Wave Energy Study in China: Advancements and Perspectives

    Institute of Scientific and Technical Information of China (English)

    游亚戈; 郑永红; 沈永明; 吴必军; 刘荣

    2003-01-01

    The history and current status of research and development of wave energy in the world is briefly introduced. The main problems existing in these studies are pointed out. The description is focused on the current status and the advancements achieved in China. After analysis of the wave energy resources and practical situations in China, it is pointed out that the studies on wave energy should be not only concentrated on the conversion efficiency and costs of wave energy devices, but also focused on the technology of independent operation and stable output of electricity. Finally, the perspectives of application of wave energy in China are discussed.

  15. New advances in pollination biology and the studies in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pollination biology is the study of the various biological features in relation to the event of pollen transfer. It is one of the central concerns of plant reproductive ecology and evolutionary biology. In this paper, we attempt to introduce the main advances and some new interests in pollination biology and make a brief review of the research work that has been done in China in recent years. We also give some insights into the study that we intend to carry out in this field in the future.

  16. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  17. Large-eddy simulation in hydraulics

    CERN Document Server

    Rodi, Wolfgang

    2013-01-01

    Complex turbulence phenomena are of great practical importance in hydraulics, including environmental flows, and require advanced methods for their successful computation. The Large Eddy Simulation (LES), in which the larger-scale turbulent motion is directly resolved and only the small-scale motion is modelled, is particularly suited for complex situations with dominant large-scale structures and unsteadiness. Due to the increasing computer power, LES is generally used more and more in Computational Fluid Dynamics. Also in hydraulics, it offers great potential, especially for near-field probl

  18. Thermal-hydraulic system study of a high pressure, high temperature helium loop using RELAP5-3D code

    International Nuclear Information System (INIS)

    Highlights: ► A thermal-hydraulic system analysis for a high pressure, high temperature helium loop has been investigated. ► The loop belongs to the Helium Loop Karlsruhe (HELOKA) facility, which contains the European Helium Cooled Pebble Beds Test Blanket Module (HCPB TBM) as the test module. ► The loop including all components has been modeled using the system code REALP5-3D, and the main control strategy has been implemented as well. ► With this model, the loop dynamics in conditions relevant for blanket module operation have been demonstrated. - Abstract: The thermal-hydraulic system analysis for the Helium Loop Karlsruhe (HELOKA) facility, a high pressure, high temperature experimental helium loop having the European Helium Cooled Pebble Beds Test Blanket Module (HCPB TBM) as the test module, was investigated. Using the system code REALP5-3D, all components in the loop are modeled as well as the main control strategy. With this model, the loop dynamics in conditions relevant for blanket module operation are simulated and analyzed.

  19. Preliminary Study of Advanced Turboprops for Low Energy Consumption

    Science.gov (United States)

    Kraft, G. A.; Strack, W. C.

    1975-01-01

    The fuel savings potential of advanced turboprops (operational about 1985) was calculated and compared with that of an advanced turbofan for use in an advanced subsonic transport. At the design point, altitude 10.67 km and Mach 0.80, turbine-inlet temperature was fixed at 1590 K while overall pressure ratio was varied from 25 to 50. The regenerative turboprop had a pressure ratio of only 10 and an 85 percent effective rotary heat exchanger. Variable camber propellers were used with an efficiency of 85 percent. The study indicated a fuel savings of 33 percent, a takeoff gross weight reduction of 15 percent, and a direct operating cost reduction of 18 percent was possible when turboprops were used instead of the reference turbofan at a range of 10 200 km. These reductions were 28, 11, and 14 percent, respectively, at a range of 5500 km. Increasing overall pressure ratio from 25 to 50 saved little fuel and slightly increased takeoff gross weight.

  20. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species

    Science.gov (United States)

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D.; Amodeo, Gabriela

    2015-01-01

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected. PMID:26602985

  1. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species.

    Science.gov (United States)

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D; Amodeo, Gabriela

    2015-01-01

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected. PMID:26602985

  2. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species.

    Science.gov (United States)

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D; Amodeo, Gabriela

    2015-11-24

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected.

  3. Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System

    Science.gov (United States)

    Jeevarajan, Judith A.; Irlbeck, Bradley W.

    2004-01-01

    Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.

  4. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Stingaciu, Laura-Roxana

    2010-07-01

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  5. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    International Nuclear Information System (INIS)

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  6. National Laboratory of Hydraulics. 1996 progress report

    International Nuclear Information System (INIS)

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.)

  7. Contribution to the study of thermal-hydraulic problems in nuclear reactors; Contribution a l`etude de problemes de thermohydraulique dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, G

    1998-07-07

    In nuclear reactors, whatever the type considered, Pressurized Water Water Reactors (PWRs), Fast Breeder reactors (FBRs)..., thermal-hydraulics, the science of fluid mechanics and thermal behaviour, plays an essential role, both in nominal operating and accidental conditions. Fluid can either be the primary fluid (liquid or gas) or a very specific fluid called corium, which, in case of severe accident, could result from core and environning structure melting. The work reported here represents a 20-year contribution to thermal-hydraulic issues which could occur in FBRs and PWRs. Working on these two types of reactors, both in nominal and severe accident situations, has allowed me to compare the problems and to realize the importance of communication between research teams. The evolution in the complexity of studied problems, unavoidable in order to reduce costs and significantly improve safety, has led me from numerical modelling of single-phase flow turbulence to high temperature real melt experiments. The difficulties encountered in understanding the observed phenomena and in increasing experimental databases for computer code qualification have often entailed my participation in specific measurement device developments or adaptations, in particular non-intrusive devices generally based on optical techniques. Being concerned about the end-use of this research work, I actively participated in `in-situ` thermalhydraulic experiments in the FBRs: Phenix and Super-Phenix, of which I appreciated their undeniable scientific contribution. In my opinion, the thermal-hydraulic questions related to severe accidents are the most complex as they are at the cross-roads of several scientific specialities. Consequently, they require a multi-disciplinary approach and a continuous see-saw motion between experimentalists and modelling teams. After a brief description of the various problems encountered, the main ones are reported. Finally, the importance for research teams to

  8. Study on the system development for evaluating long-term alteration of hydraulic field in near field

    International Nuclear Information System (INIS)

    For the high performance evaluation of reliability of TRU waste repository, the system development for evaluating long-term alteration in consideration of the changes action of barrier materials of hydraulic field in Near Field is required. In this research, system development for evaluating long-term alteration of hydraulic field in Near Field was examined. Examination of the basic specification of chemical/dynamic alteration action analysis system used as the composition element of this system and a whole system were performed. The research result of this year is shown below. 1) The system by which the chemical changes happened by Near Field as influence of the exudation liquid from cement material are evaluated was examined. In this year, document investigation about the various processes about chemical alteration and extraction of a choice, presentation of the uncertainty about a model or data, preliminary modeling, a simple analysis tool creation and sensitivity analysis, extraction of the process which should be taken into consideration in a system valuation modeling and a phenomenon analysis model, and a corresponding mathematics model, optimization of the software composition for development of a system valuation modeling, the exercise by the preliminary system analysis model, the experiment plan for the corroboration of a model were shown. 2) In consideration of change of the physical characteristic accompanying chemical alteration of bentonite material and cement material, the system by which dynamic changes action of repository is evaluated was examined. In this year, arrangement of the dynamics action of repository for long-term were shown. Extraction of a phenomenon made applicable to evaluation was shown. And the dynamic models were investigated and the prototype of the dynamics model that can take into consideration the characteristic of bentonite material was shown. And the basic composition of a dynamic changes action analysis system was shown. 3

  9. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  10. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  11. Mirror Advanced Reactor Study (MARS) final report summary

    International Nuclear Information System (INIS)

    The Mirror Advanced Reactor Study (MARS) has resulted in an overview of a first-generation tandem mirror reactor. The central cell fusion plasma is self-sustained by alpha heating (ignition), while electron-cyclotron resonance heating and negative ion beams maintain the electrostatic confining potentials in the end plugs. Plug injection power is reduced by the use of high-field choke coils and thermal barriers, concepts to be tested in the Tandem Mirror Experiment-Upgrade (TMX-U) and Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory

  12. Preliminary design studies of an advanced general aviation aircraft

    Science.gov (United States)

    Barrett, Ron; Demoss, Shane; Dirkzwager, AB; Evans, Darryl; Gomer, Charles; Keiter, Jerry; Knipp, Darren; Seier, Glen; Smith, Steve; Wenninger, ED

    1991-01-01

    The preliminary design results are presented of the advanced aircraft design project. The goal was to take a revolutionary look into the design of a general aviation aircraft. Phase 1 of the project included the preliminary design of two configurations, a pusher, and a tractor. Phase 2 included the selection of only one configuration for further study. The pusher configuration was selected on the basis of performance characteristics, cabin noise, natural laminar flow, and system layouts. The design was then iterated to achieve higher levels of performance.

  13. Creating Educational Technology Curricula for Advanced Studies in Learning Technology

    Directory of Open Access Journals (Sweden)

    Minoru Nakayama

    2016-08-01

    Full Text Available Curriculum design and content are key factors in the area of human resource development. To examine the possibility of using a collaboration of Human Computer Interaction (HCI and Educational Technology (ET to develop innovative improvements to the education system, the curricula of these two areas of study were lexically analyzed and compared. As a further example, the curriculum of a joint course in HCI and ET was also lexically analyzed and the contents were examined. These analyses can be used as references in the development of human resources for use in advanced learning environments.

  14. Electric hydraulic interaction

    OpenAIRE

    Helle, Ola Høydal

    2011-01-01

    The hydraulic models representing hydro turbines and conduit system found instandard model libraries of power system analysis tools are often simplied mod-els. Subsequently, important information about the dynamics of the hydraulicsystem may not be properly represented by such models, putatively resultingin insucient representation of the interaction between the electric system andhydraulic system.In this master thesis three dierent hydraulic models for hydro power plantsequipped with Francis...

  15. Submarine hydraulic control analysis

    OpenAIRE

    Bower, Michael J.

    1980-01-01

    Approved for public release; distribution unlimited A mathematical model was developed to include line effects in the submarine hydraulic system dynamic performance analysis. The project was undertaken in an effort to demonstrate the necessity of coupling the entire hydraulic power network for an accurate analysis of any of the subsystems rather than the current practice of treating a component loop as an isolated system. It was intended that the line model could be co...

  16. Feasibility study Part I - Thermal hydraulic analysis of LEU target for 99Mo production in Tajoura reactor

    International Nuclear Information System (INIS)

    The Renewable Energies and Water Desalination Research Center (REWDRC), Libya, will implement the technology for 99Mo isotope production using LEU foil target, to obtain new revenue streams for the Tajoura nuclear research reactor and desiring to serve the Libyan hospitals by providing the medical radioisotopes. Design information is presented for LEU target with irradiation device and irradiation Beryllium (Be) unit in the Tajoura reactor core. Calculated results for the reactor core with LEU target at different level of power are presented for steady state and several reactivity induced accident situations. This paper will present the steady state thermal hydraulic design and transient analysis of Tajoura reactor was loaded with LEU foil target for 99Mo production. The results of these calculations show that the reactor with LEU target during the several cases of transient are in safe and no problems will occur. (author)

  17. Thermal-hydraulic evaluation study of the effectiveness of emergency core cooling system for light water reactors

    International Nuclear Information System (INIS)

    In order to evaluate the core cooling capability of the emergeny core cooling system, which is a safety guard system of light water reactors for a loss-of-coolant accident, a variety of large scale test were performed. Through the results, many phenomena were investigated and the predictabity of analytical codes were examined. The tests conducted were a single-vessel blowdown test, emergency core cooling test in a PWR simulation facility, spray cooling test for a BWR, large scale reflood test and a separate effect test on countercurrent flow. These test results were examined to clarify thermal-hydraulic phenomena and the effect of various test parameters and were utilized to improve predictability of the analytical codes. Some models for flow behavior in the upper core were also developed. By evaluating the effectiveness of various emergency core cooling system configurations, more effective cooling system than the current one was proposed and demonstrated. (author)

  18. A CLINICAL STUDY OF LOCALLY ADVANCED CARCINOMA OF BREAST

    Directory of Open Access Journals (Sweden)

    Mrinalini

    2015-06-01

    Full Text Available BACKGROUND : In India it is observed that most of the patients of breast cancer clinically present in late stage due to their ignorance of disease despite so much advancement in its detection and management. Locally advanced breast cancer (LABC accounts for 30 - 35% of all cases of breast cancers in India. This study aims to evaluate C linical features, Investigations, various Treatment modalities and the Clinico - pathological correlation & outcome of various treatment modalities of LABC, with special emphasis on Neo - adjuvant chemotherapy (NACT in Indian setting. MATERIAL AND METHOD : This was a non - randomised prospective observational study. We analyzed 57 patients of LABC Stage IIIB & IIIC presenting at Government Medical College, Nagpur, Maharashtra, a tertiary care C entre from September 2012 to November 2014. RESULTS : Stage IIIB comprised 84.21% patients while remaining 15.79% were having Stage IIIC disease. Skin involvement was observed in 91.23% patients. 15.79% showed supraclavicular lymph node involvement. 32 patients received NACT (2 to 6 cycles. Out of these 32, complete clinical response (cCR was 12.5%, partial response (cPR was 68.75% and pathological CR (pCR was 6.25% with Total Objective response (cCR+cPR 81.25%. Feasibility of Breast Conserving Surgery (BCS was observed in 12.5% patients. 25 patients underwent primary surgery followed by adjuvant chemotherapy. Modified Radical Mastectomy was performed in 89.48% patients. CONCLUSIONS : With overall clinical response of 81.25%, n eoadjuvant chemotherapy is the best treatment option for patients with Locally Advanced Breast Cancer with added advantage of in vivo testing the sensitivity of chemotherapeutic agents, early management of micrometastasis and down staging the primary tumour with feasibility of BCS. Patients presenting LABC constitute a diverse group for whic h a variety of treatment modalities should be instituted with co o rdinated treatment planning among surgeons

  19. Thermal-Hydraulic System Study of the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) for ITER Using System Code RELAP5

    Institute of Scientific and Technical Information of China (English)

    Jin Xuezhou; R. Meyder

    2005-01-01

    The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5-models are modified to take the cyclic operation of the circulator, heat exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.

  20. A state-of-the-art report on the study of the nuclear reactor thermal hydraulics using integral test facilities

    International Nuclear Information System (INIS)

    Since the integral reactor (SMART) currently under development by KAERI includes distinct design features which are different from those of the conventional large scale commercial reactors, it is necessary to perform integral effect test which will be used to observe overall thermal hydraulic behavior and to verify the safety of the SMART. The integral effect test for the SMART currently promoting by the thermal hydraulic safety research team will provide experimental data to support the reactor design by the performance verification test of the reactor and safety systems, and will provide data to guarantee the safety of SMART design and to verify safety analysis codes for SMART by the integral tests. A proper scaling methodology should be applied to reflect the distinct concepts of the SMART and important physical phenomena should be preserved in this integral test facility. Thus, this report compares the conventional scaling methods and their limitation in detail, and identifies scaling distortions produced practically and examines the methods to remove or minimize the distortion. Also, by comparing in detail the design data of the conventional integral test facilities, this report summarizes comprehensively the limitations, scaling distortions and counter-measures to decrease the distortion. This report is thought to be very useful for the design and manufacturing of the integral test facility for the SMART, and is expected to be used as a guide at the conceptual design and scientific design stages of the integral test facility to simulate the operational and accidental transients to be occurred in the SMART reactor. (author). 44 refs., 27 tabs., 28 figs

  1. Orbit transfer rocket engine technology program: Advanced engine study

    Science.gov (United States)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  2. Methods and advances in the study of aeroelasticity with uncertainties

    Institute of Scientific and Technical Information of China (English)

    Dai Yuting; Yang Chao

    2014-01-01

    Uncertainties denote the operators which describe data error, numerical error and model error in the mathematical methods. The study of aeroelasticity with uncertainty embedded in the subsystems, such as the uncertainty in the modeling of structures and aerodynamics, has been a hot topic in the last decades. In this paper, advances of the analysis and design in aeroelasticity with uncertainty are summarized in detail. According to the non-probabilistic or probabilistic uncer-tainty, the developments of theories, methods and experiments with application to both robust and probabilistic aeroelasticity analysis are presented, respectively. In addition, the advances in aeroelastic design considering either probabilistic or non-probabilistic uncertainties are introduced along with aeroelastic analysis. This review focuses on the robust aeroelasticity study based on the structured singular value method, namely the l method. It covers the numerical calculation algo-rithm of the structured singular value, uncertainty model construction, robust aeroelastic stability analysis algorithms, uncertainty level verification, and robust flutter boundary prediction in the flight test, etc. The key results and conclusions are explored. Finally, several promising problems on aeroelasticity with uncertainty are proposed for future investigation.

  3. 液压卷带装置动态性能试验研究%Test study on dynamic performance of hydraulic belt-winding device

    Institute of Scientific and Technical Information of China (English)

    戴珊珊

    2011-01-01

    介绍了卷带装置的液压系统组成及工作原理,分析了液压泵的功率特性,搭建了液压卷带装置试验台,介绍了试验原理和硬件组成。通过大量试验,研究了启动时卷带装置的动态性能以及不同负载下系统的恒功率特性。%The constitution and the working principle of the hydraulic system of the belt-winding device are described, and the power characteristics of the hydraulic pump are analyzed. A test bench for the belt-winding device is built and its constitution and working principle are introduced. Based on a large number of tests, dynamic characteristics of the belt-winding device during starting process and constant-power characteristics of the system in different load modes are studied.

  4. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  5. NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics

    CERN Document Server

    1985-01-01

    Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...

  6. NATO Advanced Study Institute on Magnetic Resonance : Introduction, Advanced Topics and Applications to Fossil Energy

    CERN Document Server

    Fraissard, Jacques

    1984-01-01

    This volume contains the lectures presented at an Advanced Study Institute on "Magnetic Resonance Techniques in Fossil Energy Problems," which was held at the village of Maleme, Crete, in July of 1983. As of this writing, a different popular attitude prevails from that when the ASI was proposed as far as how critical the world energy picture is. In the popular press, a panglossian attitude (the "petroleum glut" of the 80's) has replaced the jeremiads of the 70's ( a catastrophic "energy crisis"). Yet, there are certain important constants: (a) for the foreseeable future, fossil energy sources (petroleum, coal, oil shale, etc. ) will continue to be of paramount importance; and (b) science and technology of the highest order are needed to extend the fossil ener~y resource base and to utilize it in a cost-effective manner that is also environmentally acceptable. It is precisely this second item that this volume addresses. The volume introduces the phenomenology of magnetic resonance ~n a unified and detailed man...

  7. NATO Advanced Study Institute on Physics of New Laser Sources

    CERN Document Server

    Arecchi, F; Mooradian, Aram; Sona, Alberto

    1985-01-01

    This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Physics of New Laser Sources", the twelfth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini" San Miniato, Tuscany, July 11-21, 1984. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or for those wishing to switch into this area after working previously in other areas. From the outset, the School has been under the direction of Prof. F. T. Arecchi, then at the University of Pavia, now at the University of Florence, and Dr. D. Roess of Heraeus, Hanau. In 1981, Prof. H. Walther, University of Munich and Max-Planck Institut fur Quantenoptik joined as co-director. Each year the Directors choose a subj~ct of particular int...

  8. Conceptual design study of advanced acoustic-composite nacelles

    Science.gov (United States)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  9. Data Analytics of Hydraulic Fracturing Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jovan Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-11

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  10. PLC Based Hydraulic Auto Ladle System

    OpenAIRE

    Amogh Tayade; Anuja Chitre

    2014-01-01

    In this paper we have implemented a PLC based Hydraulic Auto Ladle System for Casting Department of Victory Precisions Pvt. Ltd. Chakan, Pune. This project work presents the study and design of PLC based Hydraulic Auto Ladle System. Aluminium pouring is the key process in Casting and Forging industry. Different products are manufactured by the company for automobile sector using aluminium. Programmable Logic Controller (PLC) is used for the automation of pouring process. Au...

  11. Energy Harvesting from Hydraulic and Vibration Sources

    OpenAIRE

    Mohammad pour, Nima

    2014-01-01

    This doctoral thesis, is divided in two main parts. The former is about load optimisation for a hydraulic energy harvester while the latter focuses on the design and fabrication of piezoelectric energy harvesters for the single supply pre-biasing circuit. An abstract for each part is reported below: � Part I: The hydraulic power available in water pipes is usually wasted while it could be harvested and used to supply low power systems. To address this shortcoming, this study presents how load...

  12. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor; Analisis para el acoplamiento del codigo NESTLE para la cinetica tridimensional del nucleo al codigo avanzado de sistemas termo-hidraulicos, RELAP5/SCDAPSIM y su aplicacion al reactor de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Salazar C, J.H.; Nunez C, A. [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C. [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)]. E-mail: hsalazar22@prodigy.net.mx

    2004-07-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  13. Advanced Exploration Systems (AES) Logistics Reduction and Repurposing Project: Advanced Clothing Ground Study Final Report

    Science.gov (United States)

    Byrne, Vicky; Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini

    2013-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The goal of the Advanced Exploration Systems (AES) Logistics Reduction & Repurposing (LRR) project is to bring new ideas and technologies that will enable human presence in farther regions of space. The LRR project has five tasks: 1) Advanced Clothing System (ACS) to reduce clothing mass and volume, 2) Logistics to Living (L2L) to repurpose existing cargo, 3) Heat Melt Compactor (HMC) to reprocess materials in space, 4) Trash to Gas (TTG) to extract useful gases from trash, and 5) Systems Engineering and Integration (SE&I) to integrate these logistical components. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The ACS task is to find ways to further reduce this logistical burden while examining human response to different types of clothes. The ACS task has been broken into a series of studies on length of wear of various garments: 1) three small studies conducted through other NASA projects (MMSEV, DSH, HI-SEAS) focusing on length of wear of garments treated with an antimicrobial finish; 2) a ground study, which is the subject of this report, addressing both length of wear and subject perception of various types of garments worn during aerobic exercise; and 3) an ISS study replicating the ground study, and including every day clothing to collect information on perception in reduced gravity in which humans experience physiological changes. The goal of the ground study is first to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment, and second to learn why. Human factors considerations included in the study consist of the Institutional Review Board approval, test protocol and participants' training, and a web

  14. Study on New Electro-hydraulic Proportional Control System of Fast Forging Hydraulic Press%快锻液压机新型电液比例控制系统研究

    Institute of Scientific and Technical Information of China (English)

    赵静一; 曹文熬; 王彪

    2011-01-01

    Electro-hydraulic proportional control system was widely used in fast forging hydraulic press.The new electro-hydraulic proportional control system by using three-way cartridge valve was presented, and its mathematical model and simulation model were built.The new control system was compared with control system mount of high pressure unloading valve separately.The results show that control performance is even better for system controlled by three-way cartridge valve, without mount of high pressure unloading valve separately, and manufacturing cost and energy are saved by using accumulator as auxiliary power source.%电液比例控制系统在快锻液压机中的应用日益广泛.提出采用三通插装阀的新型电液比例控制系统的方案,建立其数学模型和仿真模型并与单独设置高压卸荷阀的控制系统进行对比.结果表明:系统用三通比例插装阀控制,无需单独设置高压卸荷阀,控制性能更好,并用蓄能器作辅助动力源,起到节约制造成本和节能的效果.

  15. Studies of a modular advanced stellarator reactor ASRA6C

    International Nuclear Information System (INIS)

    This study is directed towards the clarification of critical issues of advanced modular stellerator reactors exploiting the inherent potential of steady state operation, and is not a point design study of a reactor. Critical technology issues arise from the three-dimensional magnetic field structure. The first wall, blanket and shield are more complex than those of axi-symmetric systems, but this is eased at moderate to large aspect ratio typical of stellarators. Several blanket options have been studied and a thin blanket (21 cm) was the first choice for the design. Superconducting modular coils were investigated with respect to the conductor and mechanical supports. From the analysis of forces and stresses caused by the electromagnetic loads the coils are considered to be feasible, although shear stresses might pose a critical issue. Demountable intermagnetic support elements were designed for use at separation areas between the cryostat modules. A scheme for remote reactor maintenance was also developed. The plasma physics issues of different configurations were studied using extrapolations of transport behaviour and equilibrium from theory and present experiments. These studies indicate that the confinement and equilibrium behaviour is adequate for ignited operation at an average value of 5% beta. Impurities may pose a critical issue. Several impurity control operations were investigated; a pumped limiter configuration utilizing the 'ergodic layer' at the plasma edge was chosen for edge plasma and impurity control. A general conclusion of the study is that the modular stellerator configuration offers interesting prospects regarding the development towards steady-state reactors. (orig.)

  16. Studies of a modular advanced stellarator reactor ASRA6C

    International Nuclear Information System (INIS)

    This study is directed towards the clarification of critical issues of advanced modular stellerator reactors exploiting the inherent potential of steady state operation, and is not a point design study of a reactor. Critical technology issues arise from the three-dimensional magnetic field structure. The first wall, blanket and shield are more complex than those of axi-symmetric systems, but this is eased at moderate to large aspect ratio typical of stellerators. Several blanket options have been studied and a thin blanket (21 cm) was the first choice for the design. Superconducting modular coils were investigated with respect to the conductor and mechanical supports. From the analysis of forces and stresses caused by the electromagnetic loads the coils are considered to be feasible, although shear stresses might pose a critical issue. Demountable intermagnetic support elements were designed for use at separation areas between the cryostat modules. A scheme for remote reactor maintenance was also developed. The plasma physics issues of different configurations were studied using extrapolations of transort behaviour and equilibrium from theory and present experiments. These studies indicate that the confinement and equilibrium behaviour is adequate for ignited operation at an average value of 5% beta. Impurities may pose a critical issue. Several impurity control operations were investigated; a pumped limiter configuration utilizing the 'ergodic layer' at the plasma edge was chosen for edge plasma and impurity control. A general conclusion of the study is that the modular stellerator configuration offers interesting prospects regarding the development towards steady-state reactors. (orig.)

  17. Reactor core calculations incorporating subassembly thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Lynas, S.W. [Applied Modelling and Computation Group Imperial Coll. Centre for Environmental Technology Royal School of Mines Prince Consort Road London (United Kingdom); Jones, J.R.

    1997-12-31

    Three dimensional reactor physics calculations performed in parallel with subassembly thermal hydraulic analysis can be used to examine local reactivity effects and increase modelling accuracy. Coupling together codes for coarse mesh neutronics and subassembly thermal hydraulics aids fault studies (fuel clad integrity, safety margin indication etc) and the examination of the interaction between physics and thermal hydraulics during transient events such as LOCA, boron dilution and control rod ejection. Local heating of the coolant decreases reactivity and the fission power peaking factor. Doppler feedback is stronger in the hot region of the fuel, also reducing peak power and reactivity. These thermal hydraulic feedback effects can play an important role in decelerating power excursions and their representation is described in this paper. (author)

  18. Reactor core calculations incorporating subassembly thermal hydraulics

    International Nuclear Information System (INIS)

    Three dimensional reactor physics calculations performed in parallel with subassembly thermal hydraulic analysis can be used to examine local reactivity effects and increase modelling accuracy. Coupling together codes for coarse mesh neutronics and subassembly thermal hydraulics aids fault studies (fuel clad integrity, safety margin indication etc) and the examination of the interaction between physics and thermal hydraulics during transient events such as LOCA, boron dilution and control rod ejection. Local heating of the coolant decreases reactivity and the fission power peaking factor. Doppler feedback is stronger in the hot region of the fuel, also reducing peak power and reactivity. These thermal hydraulic feedback effects can play an important role in decelerating power excursions and their representation is described in this paper. (author)

  19. Experimental and Dynamic Study of the Piston Rod Lateral Friction for the Twin-Tube Hydraulic Shock Absorber

    Directory of Open Access Journals (Sweden)

    Yanqing Liu

    2003-01-01

    Full Text Available In this paper, dynamic loads acting on a twin-tube hydraulic shock absorber are derived out both in wheel and axle planes by modeling mechanically car rear suspensions, and internal and external forces that yield lateral surface damage and wear-out of the piston rod for the absorber are analyzed according to bench and real road test measures. From viewpoint of vehicle system dynamics and experiment, such key factors as road unevenness, very high car speed and severe shock induced vibrations are investigated, by which stochastic bending moments and dramatically increasing shock loading are introduced directly to the piston rod. From viewpoint of the whole car assembly, on the other hand, due to hardly perfectly placements of the piston rods in their positions between the car suspension and body, unacceptable manufacturing quality of the body may cause additional dynamic forces on the piston rod. Significant results obtained by theoretical and experimental analysis of lateral frictions of the piston rod are presented systematically for improving design of the shock absorber.

  20. Case studies in advanced monitoring with the Chronicle device.

    Science.gov (United States)

    Bourge, Robert C

    2006-01-01

    Three case studies illustrate the utility of advanced implantable hemodynamic monitors (IHMs). The cases include a 70-year-old with ischemic cardiomyopathy, chronic kidney disease, and recurrent volume overload; a 53-year-old with ischemic heart disease, mild effort-related angina, and New York Heart Association class III chronic heart failure; and a 21-year-old with severe dilated cardiomyopathy, all 3 patients having an IHM. The outcomes in these cases illustrate the capability of the IHM system for monitoring and detecting early changes in hemodynamic data and the use of these data to adjust medical therapies and reduce morbidity and risk of hospitalization. When pathologic hemodynamic changes are observed, this alerts the cardiologist to search for underlying causes, even when a patient on initial questioning denies any change in compliance or symptoms. PMID:16955061

  1. Advances in Studies of Increase of Farmers’ Income

    Institute of Scientific and Technical Information of China (English)

    Hua; LIANG; Zhongming; SHEN

    2015-01-01

    The issue concerning increase of farmers’ income is always a hot spot from central to local areas. Scholars of economics,sociology,and history have made extensive theoretical and empirical studies on this and relevant achievements are abundant. This paper firstly summarized relevant literature research achievements of domestic and foreign scholars. From various agricultural supporting and benefiting policies of central and local government in recent years,it found out major factors restricting growth of farmers’ income. From economic development rules,combining theories of regional comparative advantages,agricultural development and regional economic development,it is expected to solve problems in increase of farmers’ income,and realize scientific policies and management,accurate strategies,advanced and feasible decisions. Finally,it came up with pertinent recommendations for increasing farmers’ income.

  2. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  3. NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications

    CERN Document Server

    2008-01-01

    Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...

  4. A Review on Mechanical and Hydraulic System Modeling of Excavator Manipulator System

    Directory of Open Access Journals (Sweden)

    Jiaqi Xu

    2016-01-01

    Full Text Available A recent trend in the development of off-highway construction equipment, such as excavators, is to use a system model for model-based system design in a virtual environment. Also, control system design for advanced excavation systems, such as automatic excavators and hybrid excavators, requires system models in order to design and simulate the control systems. Therefore, modeling of an excavator is an important first step toward the development of advanced excavators. This paper reviews results of recent studies on the modeling of mechanical and hydraulic subsystems for the simulation, design, and control development of excavator systems. Kinematic and dynamic modeling efforts are reviewed first. Then, various approaches in the hydraulic system modeling are presented.

  5. Advanced methods for the study of PWR cores

    International Nuclear Information System (INIS)

    This document gathers the transparencies presented at the 6. technical session of the French nuclear energy society (SFEN) in October 2003. The transparencies of the annual meeting are presented in the introductive part: 1 - status of the French nuclear park: nuclear energy results, management of an exceptional climatic situation: the heat wave of summer 2003 and the power generation (J.C. Barral); 2 - status of the research on controlled thermonuclear fusion (J. Johner). Then follows the technical session about the advanced methods for the study of PWR reactor cores: 1 - the evolution approach of study methodologies (M. Lambert, J. Pelet); 2 - the point of view of the nuclear safety authority (D. Brenot); 3 - the improved decoupled methodology for the steam pipe rupture (S. Salvatores, J.Y. Pouliquen); 4 - the MIR method for the pellet-clad interaction (renovated IPG methodology) (E. Baud, C. Royere); 5 - the improved fuel management (IFM) studies for Koeberg (C. Cohen); 6 - principle of the methods of accident study implemented for the European pressurized reactor (EPR) (F. Foret, A. Ferrier); 7 - accident studies with the EPR, steam pipe rupture (N. Nicaise, S. Salvatores); 8 - the co-development platform, a new generation of software tools for the new methodologies (C. Chauliac). (J.S.)

  6. Advanced studies on Simulation Methodologies for very Complicated Fracture Phenomena

    Science.gov (United States)

    Nishioka, Toshihisa

    2010-06-01

    Although nowadays, computational techniques are well developed, for Extremely Complicated Fracture Phenomena, they are still very difficult to simulate, for general engineers, researchers. To overcome many difficulties in those simulations, we have developed not only Simulation Methodologies but also theoretical basis and concepts. We sometimes observe extremely complicated fracture patterns, especially in dynamic fracture phenomena such as dynamic crack branching, kinking, curving, etc. For examples, although the humankind, from primitive men to modern scientists such as Albert Einstein had watched the post-mortem patterns of dynamic crack branching, the governing condition for the onset of the phenomena had been unsolved until our experimental study. From in these studies, we found the governing condition of dynamic crack bifurcation, as follows. When the total energy flux per unit time into a propagating crack tip reaches the material crack resistance, the crack braches into two cracks [total energy flux criterion]. The crack branches many times whenever the criterion is satisfied. Furthermore, the complexities also arise due to their time-dependence and/or their-deformation dependence. In order to make it possible to simulate such extremely complicated fracture phenomena, we developed many original advanced computational methods and technologies. These are (i)moving finite element method based on Delaunay automatic triangulation (MFEMBOAT), path independent,(ii) equivalent domain integral expression of the dynamic J integral associated with a continuous auxiliary function,(iii) Mixed phase path-prediction mode simulation, (iv) implicit path prediction criterion. In this paper, these advanced computational methods are thoroughly explained together with successful comparison with the experimental results. Since multiple dynamic crack branching phenomena may be most complicated fracture due to complicated fracture paths, and its time dependence (transient), this

  7. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  8. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  9. Hydraulic benchmark data for PWR mixing vane grid

    International Nuclear Information System (INIS)

    The purpose of the present study is to present new hydraulic benchmark data obtained for PWR rod bundles for the purpose of benchmarking Computational Fluid Dynamics (CFD) models of the rod bundle. The flow field in a PWR fuel assembly downstream of structural grids which have mixing vane grids attached is very complex due to the geometry of the subchannel and the high axial component of the velocity field relative to the secondary flows which are used to enhance the heat transfer performance of the rod bundle. Westinghouse has a CFD methodology to model PWR rod bundles that was developed with prior benchmark test data. As improvements in testing techniques have become available, further PWR rod bundle testing is being performed to obtain advanced data which has high spatial and temporal resolution. This paper presents the advanced testing and benchmark data that has been obtained by Westinghouse through collaboration with Texas A&M University. (author)

  10. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  11. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew

    2006-01-01

    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  12. Fire resistant hydraulic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Deakin, P. (Croda Application Chemicals Ltd. (UK). Mining Sales and Service)

    The use of fire resistant fluids is now widespread and in certain applications, namely underground, mandatory within the coal mining industry. However, safety is a paramount objective in all industries and within the author's company which supplies and services other industries such as metal forming and automotive construction, greater emphasis is being placed on the use of fire resistant hydraulic fluids. Their involvement with development, manufacture and application is continually expanding. This document describes the various fire resistant hydraulic fluids and why they are used in particular applications. 1 tab.

  13. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  14. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  15. Study on Rotary Valves in the Hydraulic Steering System%液压转向系统中转阀的研究

    Institute of Scientific and Technical Information of China (English)

    张文亭

    2015-01-01

    This paper studies the flow rotary valve steady state characteristics in the hydraulic steering system, designs the test bench, verifies the theoretical model of the valve, and determines the pressure sensitivity of the valve,presents a simple methodology for the steady-state identification of the flow control valves, used in the preliminary design stage by all the manufacturers.%本文主要研究了液压转向系统中流量转阀的稳态特性,设计了测试实验台,验证了该阀的理论模型,分析确定了阀的压力灵敏度,并通过测试某品牌汽车转向系统的流量转阀获得实验过程和结果,可以供厂商借鉴使用。

  16. Experimental and numerical study of long-term cooling of VVER-640 reactor in the Pactel facility using thermal hydraulic codes

    Energy Technology Data Exchange (ETDEWEB)

    Banati, J.; Virtanen, E.; Purhonen, H. [Lappeenranta University of Technology, Lappeenranta (Finland); Alexandrine, S. [Scientific and Engineering Center for Nucl. and Radiation Safety, Moscow (Russian Federation); Volkova, S.N. [Alexandrov Research Institute of Technology, NITI, Sosnovy Bor (Russian Federation)

    2001-07-01

    The present paper is a result of joint efforts of Finnish and Russian research institutes in evaluation of the passive safety features of the new VVER-640 reactor design. For better understanding of the complex thermal hydraulic phenomena during the long-term cooling in the final stage of a large break LOCA, experiments were carried out in the PACTEL facility. In order to increase the confidence with numerical methods and to contribute to the validation process, the transients were simulated by computer codes, such as the RELAP, APROS, CATHARE and KORSAR. The calculated results are compared to the measured database and conclusions are drawn for the modeling abilities of the system codes to reproduce the main features of the transients. The current study is extended with discussion of various modeling aspects, characterization of the natural circulation, as well as code-specific nodalization problems. (authors)

  17. Variation in reach-scale hydraulic conductivity of streambeds

    Science.gov (United States)

    Stewardson, M. J.; Datry, T.; Lamouroux, N.; Pella, H.; Thommeret, N.; Valette, L.; Grant, S. B.

    2016-04-01

    Streambed hydraulic conductivity is an important control on flow within the hyporheic zone, affecting hydrological, ecological, and biogeochemical processes essential to river ecosystem function. Despite many published field measurements, few empirical studies examine the drivers of spatial and temporal variations in streambed hydraulic conductivity. Reach-averaged hydraulic conductivity estimated for 119 surveys in 83 stream reaches across continental France, even of coarse bed streams, are shown to be characteristic of sand and finer sediments. This supports a model where processes leading to the accumulation of finer sediments within streambeds largely control hydraulic conductivity rather than the size of the coarse bed sediment fraction. After describing a conceptual model of relevant processes, we fit an empirical model relating hydraulic conductivity to candidate geomorphic and hydraulic drivers. The fitted model explains 72% of the deviance in hydraulic conductivity (and 30% using an external cross-validation). Reach hydraulic conductivity increases with the amplitude of bedforms within the reach, the bankfull channel width-depth ratio, stream power and upstream catchment erodibility but reduces with time since the last streambed disturbance. The correlation between hydraulic conductivity and time since a streambed mobilisation event is likely a consequence of clogging processes. Streams with a predominantly suspended load and less frequent streambed disturbances are expected to have a lower streambed hydraulic conductivity and reduced hyporheic fluxes. This study suggests a close link between streambed sediment transport dynamics and connectivity between surface water and the hyporheic zone.

  18. Advance study of fiber-reinforced self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 4, Sofia 1113 (Bulgaria); Georgiev, I., E-mail: ivan.georgiev@parallel.bas.bg [Institute of Information and Communication Technologies & Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Sofia 1113 (Bulgaria); Stary, J., E-mail: stary@ugn.cas.cz [Institute of Geonics Czech Academy of Sciences, Studentska str., Ostrava 1768 (Czech Republic)

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  19. Topical advances and recent studies in paleolimnological research

    Directory of Open Access Journals (Sweden)

    Thomas J. Whitmore

    2014-04-01

    Full Text Available Paleolimnology combines the disciplines of limnology, geology and ecology, but because of challenges that separate investigators from direct knowledge about past lake conditions, the field is multidisciplinary by necessity. As a result, paleolimnology is influenced continuously by advances in many disciplines. As with limnological studies in recent decades, paleolimnology has diverged largely from the ecological and theoretical focuses of early investigators, but recent studies demonstrate the need for more integration of ecological and paleolimnological research. This paper provides a brief overview of recent paleolimnological investigations that have addressed questions related to theoretical ecology, as well as applied lake-management and climate research issues. We examine the use of transfer function models for estimating past water-quality conditions, and important caveats expressed by investigators about limitations in the development and use of such models. Paleolimnological research has contributed new insights about biological, physical and chemical processes in lakes that have been subject to change because of climate drivers and anthropogenic influences. These findings are relevant to predicting how lakes will respond to climate change, and will require new management approaches in the future. As the range of paleolimnological studies expands, there will be greater need for basic limnological research in order for paleolimnological investigators to better understand how sediments reflect lake processes of those regions.

  20. Advance study of fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  1. New advances in the study of Alpine glaciations

    Institute of Scientific and Technical Information of China (English)

    ShangZhe Zhou

    2014-01-01

    The European Alps is the birthplace of glaciology and in particular Quaternary glaciology and for over one hundred years has been a model region for studying mountain glaciations. In this paper, we review the achievements from this region, which will benefit glaciological studies of the Tibetan Plateau, China. According to new evidences of glaciofluvial de-posits discovered in valleys and forelands of the Alps, researchers have progressed from an original four Pleistocene gla-ciations to seven glaciations:Biber, Donua, Günz, Haslach, Mindel, Riss and Würm. The earliest one Biber possibly oc-curred between the Pliocene and Pleistocene, but the chronology before Riss is still in doubt. Recent years, Riss and Würm glaciations have been supported by a large numbers of cosmogenic exposure dating. In particular, cosmogenic nuclide exposure dating has been carried out for different moraine boulders in numerous valleys, which reveals a series of climatic change events, and they are comparable to post-glacial age records of northern Europe. The advancement of glaciological studies in the Alps is important in promoting glaciological research in the Tibetan Plateau.

  2. NATO Advanced Study Institute on Atoms in Strong Fields

    CERN Document Server

    Clark, Charles; Nayfeh, Munir

    1990-01-01

    This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscop...

  3. Advance study of fiber-reinforced self-compacting concrete

    International Nuclear Information System (INIS)

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete

  4. Advanced mathematical study and the development of conditional reasoning skills.

    Science.gov (United States)

    Attridge, Nina; Inglis, Matthew

    2013-01-01

    Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.

  5. Advanced mathematical study and the development of conditional reasoning skills.

    Directory of Open Access Journals (Sweden)

    Nina Attridge

    Full Text Available Since the time of Plato, philosophers and educational policy-makers have assumed that the study of mathematics improves one's general 'thinking skills'. Today, this argument, known as the 'Theory of Formal Discipline' is used in policy debates to prioritize mathematics in school curricula. But there is no strong research evidence which justifies it. We tested the Theory of Formal Discipline by tracking the development of conditional reasoning behavior in students studying post-compulsory mathematics compared to post-compulsory English literature. In line with the Theory of Formal Discipline, the mathematics students did develop their conditional reasoning to a greater extent than the literature students, despite them having received no explicit tuition in conditional logic. However, this development appeared to be towards the so-called defective conditional understanding, rather than the logically normative material conditional understanding. We conclude by arguing that Plato may have been correct to claim that studying advanced mathematics is associated with the development of logical reasoning skills, but that the nature of this development may be more complex than previously thought.

  6. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  7. Optimization study and neutronic and thermal-hydraulic design calculations of a 75 KWTH aqueous homogeneous reactor for medical isotopes production

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Daniel Milian; Lorenzo, Daniel E. Milian; Garcia, Lorena P. Rodriguez; Llanes, Jesus Salomon; Hernandez, Carlos R. Garcia, E-mail: dperez@instec.cu, E-mail: dmilian@instec.cu, E-mail: lorenapilar@instec.cu, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Lira, Carlos A. Brayner de Oliveira, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Rodriguez, Manuel Cadavid, E-mail: mcadavid2001@yahoo.com [Tecnologia Nuclear Medica Spa, TNM (Chile)

    2015-07-01

    {sup 99m}Tc is the most common radioisotope used in nuclear medicine. It is a very useful radioisotope, which is used in about 30-40 million procedures worldwide every year. Medical diagnostic imaging techniques using {sup 99m}Tc represent approximately 80% of all nuclear medicine procedures. Although {sup 99m}Tc can be produced directly on a cyclotron or other type of particle accelerator, currently is almost exclusively produced from the beta-decay of its 66-h parent {sup 99}Mo. {sup 99}Mo production system in an Aqueous Homogeneous Reactor (AHR) is potentially advantageous because of its low cost, small critical mass, inherent passive safety, and simplified fuel handling, processing and purification characteristics. In this paper, an AHR conceptual design using Low Enriched Uranium (LEU) is studied and optimized for the production of {sup 99}Mo. Aspects related with the neutronic behavior such as optimal reflector thickness, critical height, medical isotopes production and the reactivity feedback introduced in the solution by the volumetric expansion of the fuel solution due to thermal expansion of the fuel solution and the void volume generated by radiolytic gas bubbles were evaluated. Thermal-hydraulics studies were carried out in order to show that sufficient cooling capacity exists to prevent fuel overheating. The neutronic and thermal-hydraulics calculations have been performed with the MCNPX computational code and the version 14 of ANSYS CFX respectively. The neutronic calculations demonstrated that the reactor is able to produce 370 six-day curies of {sup 99}Mo in 5 days operation cycles and the CFD simulation demonstrated that the heat removal systems provide sufficient cooling capacity to prevent fuel overheating, the maximum temperature reached by the fuel (89.29 deg C) was smaller to the allowable temperature limit (90 deg C). (author)

  8. Dutchess Co, NY, Detailed Hydraulics

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  9. HYDRAULICS, PREBLE COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  10. HYDRAULICS, TUSCARAWAS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  11. Hydraulic Analyses, Rains County, Texas

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  12. HYDRAULICS, WARREN COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  13. The Comparative Study of Split Grouting Mechanism and Hydraulic Fracturing Mechanism%土石坝坝体灌浆劈裂与水力劈裂的机理研究

    Institute of Scientific and Technical Information of China (English)

    王学武; 党发宁

    2011-01-01

    从发生机理、变形机理和力学机理方面对土石坝坝体的灌浆劈裂与水力劈裂进行了比较研究。基于断裂力学理论,将灌浆劈裂分为土体挤密、土体拉裂和土体断裂发展三个阶段进行了断裂机理分析,将水力劈裂的土体断裂发展分为浅层裂缝、深层裂缝和穿透型裂缝形成三个过程进行了断裂机理分析,并分别给出了断裂判据。%The occurrence mechanism, deformation mechanism and mechanics mechanism of split grouting and hydraulic fracturing are compared, the process of split grouting is composed of three stages: soil campaction, soil crack and soil frature development. Mechanics mechanism is studied in detail of split grouting and hydraulic fracturing, based on fracture mechanics theory, frature criterion is given finally. Studies have shown that the both belong to the scope of hydraulic fracturing, but the mechanism of split grouting is more complicated than the mechanism of hydraulic fracturing, split grouting is divided into three stages, but there is only one stage of hydraulic fracturing。Mastering the various stages of the mechanism has guiding significance for the study of the split grouting and hydraulic fracturing.

  14. Foresight Study on Advanced Conversion Technologies of Fossil Fuels

    International Nuclear Information System (INIS)

    The Observatorio de Prospectiva Tecnologica Industrial (OPTI) is a Foundation supported by the Ministry of Industry and Energy, (MINER) and has as main objective to provide a basic information and knowledge on technology evolution. This information will be accessible to the Administration and to the Companies and can be taking into account in planning and decision making of technology policies. Ciemat is member of OPTI and is the organism in charge of the actions in the Energy sector. CIEMAT has the responsibility on the realisation of the sector studies to get in three years (1998 to 2001) a foresight vision of the critical technology topics. The OPTI integrated strategic plan undertake the analysis of other seven technology sectors, with the same criteria on methodological aspects. Delphi method was used for the realization of the studies. It consisted of a survey conducted in two rounds using a questionnaire to check the experts opinion. The time frame of the studies was defined from 1999 to 2015. The study presented in this document has been performed by CIEMAT in the second stage of the OPTI activities. The main goal behind this study is to identify the advanced clean and efficient technologies for the conversion of fossil fuels to promote in our country. The questionnaire was addressed to 250 experts and the response rate was about the 37%, ratifying the final results. The spanish position and the barriers for the development of each technology has been determined and also the recommended measures to facilitate their performance in the future. This basic information is consider of main interest, taking in account the actual energetic situation with a foreseeable demand increase and fossil fuels dependence. (Author) 17 refs

  15. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  16. NATO Advanced Study Institute on Chemical Transport in Melasomatic Processes

    CERN Document Server

    1987-01-01

    As indicated on the title page, this book is an outgrowth of the NATO Advanced Study Institute (ASI) on Chemical Transport in Metasomatic Processes, which was held in Greece, June 3-16, 1985. The ASI consisted of five days of invited lectures, poster sessions, and discussion at the Club Poseidon near Loutraki, Corinthia, followed by a two-day field trip in Corinthia and Attica. The second week of the ASI consisted of an excursion aboard M/S Zeus, M/Y Dimitrios II, and the M/S Irini to four of the Cycladic Islands to visit, study, and sample outstanding exposures of metasomatic activity on Syros, Siphnos, Seriphos, and Naxos. Nine­ teen invited lectures and 10 session chairmen/discussion leaders participated in the ASI, which was attended by a total of 92 professional scientists and graduate stu­ dents from 15 countries. Seventeen of the invited lectures and the Field Excursion Guide are included in this volume, together with 10 papers and six abstracts representing contributed poster sessions. Although more...

  17. NATO Advanced Study Institute on Turbulence, Weak and Strong

    CERN Document Server

    Cardoso, O

    1994-01-01

    The present volume comprises the contributions of some of the participants of the NATO Advance Studies Institute "Turbulence, Weak and Strong", held in Cargese, in August 1994. More than 70 scientists, from seniors to young students, have joined to­ gether to discuss and review new (and not so new) ideas and developments in the study of turbulence. One of the objectives of the School was to incorporate, in the same meeting, two aspects of turbulence, which are obviously linked, and which are often treated sep­ arately: fully developed turbulence (in two and three dimensions) and weak turbulence (essentially one and two-dimensional systems). The idea of preparing a dictionary rather than ordinary proceedings started from the feeling that the terminology of turbulence includes many long, technical, poorly evocative words, which are usually not understood by people exterior to the field, and which might be worth explaining. Students who start working in the field of turbulence face a sort of curious situation:...

  18. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  19. ESTIMATION OF HYDRAULIC CONDUCTIVITY AND CONTENT OF FINES FROM EXPERIMENTAL LAWS THAT CORELATE HYDRAULIC AND ELECTRIC PARAMETERS

    OpenAIRE

    Héctor José Peinado-Guevara; Carlos René Green-Ruìz; Omar Delgado-Rodríguez; Jaime Herrera-Barrientos; Salvador Belmonte-Jiménez; María de los Ángeles Ladrón de Guevara Torres; Vladimir Shevnin

    2010-01-01

    Hydraulic conductivity is a basic element in the advancement of knowledge of a geological environment in both the flow and transport processes of pollutants for conservation projects, managementand environmental management and also for the development of public policies for protection of ecosystems, among others. The aim of this paper is to obtain the hydraulic conductivity (K) and the finescontent (C) of saturated granular half using two empirical laws. One correlates the electrical conducti...

  20. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators

    Directory of Open Access Journals (Sweden)

    M Osman Abdalla

    2013-01-01

    Full Text Available Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulated in FLUENT. Results show that the small outlet ports are the sources of energy loss in hydraulic cylinders. A new hydraulic system was proposed as a solution to relieve the hydraulic resistance in the actuators. The proposed system is a four ports hydraulic cylinder fitted with a novel flow control valve. The proposed four ports cylinder was simulated and parameters such as ports sizes, loads and pressures are varied during the simulation. The hydraulic resisting forces, piston speed and mass flow rates are computed. Results show that the hydraulic resistance is significantly reduced in the proposed four ports actuators; and the proposed cylinders run faster than the conventional cylinders and a considerable amount of energyis saved as well.

  1. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  2. 车载式重锤震源气动液控系统研究%Pneumatic Hydraulic Control Study on Vehicle Weight Drop Seismic Source

    Institute of Scientific and Technical Information of China (English)

    林玉兰; 李进付; 付广萌; 郭振; 陈志礼

    2015-01-01

    炸药震源和可控震源在现行陆地地震勘探中得到了广泛应用。但炸药震源存在重复性差、环境破坏性大、施工复杂等缺点;可控震源中的重锤式震源虽然特别适合建筑物比较密集的中浅层地质勘探,但存在出力小、行程固定等问题。为适应中西部中浅地层地质勘查需求,实现冲击能量60 kJ、同一地点作业4次且作业不启泵的性能指标要求,采用开放气缸加速重锤结构作为震击出力结构,采用液压系统作为出力结构的控制与操作系统。在气动系统与液控系统方案研究基础上,对其气动系统、液控系统的核心构件进行设计计算,设计出一种运载方便、出力可控、动作快速、能多次重复锤击的车载式气动液控重锤震源系统。为中西部中浅地层地质勘查提供一种车载式重锤气动液控震源解决方案。%Dynamite and vibroseis source are widely used in existing land seismic exploration. However,the dynamite source has problems of poor reproducibility,environmental destructive-ness,and complicated construction;though the Vehicle Weight Drop Seismic Source is particularly suitable for shallow geological exploration in more intensive building area,it has problems of small force,fixed stroke etc.In order to meet the requirement of Midwest Shallow Strata Geolog-ical Survey,to achieve performance requirements such as Impact Energy reaching 60 kJ,working four times in one place without starting the pump;it adopts open cylinder acceleration weight drop as shock output structure,hydraulic system as the control and operation system of output struc-ture.Then,it calculates pneumatic hydraulic control system’s core component by means of stud-ying solutions of the pneumatic hydraulic control system.Meanwhile,it designs a vehicle weight drop source system which is cargo convenient,of controllable output size,fast,and repeatedly hammering.Thus it may provide a solution of the

  3. Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database

    Science.gov (United States)

    Levack, Daniel

    1993-01-01

    The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.

  4. Implementation of Advanced Warehouses in a Hospital Environment - Case study

    Science.gov (United States)

    Costa, J.; Sameiro Carvalho, M.; Nobre, A.

    2015-05-01

    In Portugal, there is an increase of costs in the healthcare sector due to several factors such as the aging of the population, the increased demand for health care services and the increasing investment in new technologies. Thus, there is a need to reduce costs, by presenting the effective and efficient management of logistics supply systems with enormous potential to achieve savings in health care organizations without compromising the quality of the provided service, which is a critical factor, in this type of sector. In this research project the implementation of Advanced Warehouses has been studied, in the Hospital de Braga patient care units, based in a mix of replenishment systems approaches: the par level system, the two bin system and the consignment model. The logistics supply process is supported by information technology (IT), allowing a proactive replacement of products, based on the hospital services consumption records. The case study was developed in two patient care units, in order to study the impact of the operation of the three replenishment systems. Results showed that an important inventory holding costs reduction can be achieved in the patient care unit warehouses while increasing the service level and increasing control of incoming and stored materials with less human resources. The main conclusion of this work illustrates the possibility of operating multiple replenishment models, according to the types of materials that healthcare organizations deal with, so that they are able to provide quality health care services at a reduced cost and economically sustainable. The adoption of adequate IT has been shown critical for the success of the project.

  5. Hydro Turbine and Governor Modelling: Electric - Hydraulic Interaction

    OpenAIRE

    Lucero Tenorio, Luz Alexandra

    2010-01-01

    This Master’s Thesis work deals with the development of improved hydro turbine models for the evaluation of a hydraulic power generating system performance in response to small disturbances in power system analysis tool. These improved models must be able to reflect the possible interaction between the hydraulic system and power system in the computer simulations of a power plant equipped with Francis turbines.The accuracy of a Hydraulic Power Generating System is studied by means of analysis...

  6. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    Science.gov (United States)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  7. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    Science.gov (United States)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  8. Field study of disposed solid wastes from advanced coal processes

    International Nuclear Information System (INIS)

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells

  9. Orbital transfer rocket engine technology: Advanced engine study

    Science.gov (United States)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  10. Study on advancement of in vivo counting using mathematical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kinase, Sakae [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-05-01

    To obtain an assessment of the committed effective dose, individual monitoring for the estimation of intakes of radionuclides is required. For individual monitoring of exposure to intakes of radionuclides, direct measurement of radionuclides in the body - in vivo counting- is very useful. To advance in a precision in vivo counting which fulfills the requirements of ICRP 1990 recommendations, some problems, such as the investigation of uncertainties in estimates of body burdens by in vivo counting, and the selection of the way to improve the precision, have been studied. In the present study, a calibration technique for in vivo counting application using Monte Carlo simulation was developed. The advantage of the technique is that counting efficiency can be obtained for various shapes and sizes that are very difficult to change for phantoms. To validate the calibration technique, the response functions and counting efficiencies of a whole-body counter installed in JAERI were evaluated using the simulation and measurements. Consequently, the calculations are in good agreement with the measurements. The method for the determination of counting efficiency curves as a function of energy was developed using the present technique and a physiques correction equation was derived from the relationship between parameters of correction factor and counting efficiencies of the JAERI whole-body counter. The uncertainties in body burdens of {sup 137}Cs estimated with the JAERI whole-body counter were also investigated using the Monte Carlo simulation and measurements. It was found that the uncertainties of body burdens estimated with the whole-body counter are strongly dependent on various sources of uncertainty such as radioactivity distribution within the body and counting statistics. Furthermore, the evaluation method of the peak efficiencies of a Ge semi-conductor detector was developed by Monte Carlo simulation for optimum arrangement of Ge semi-conductor detectors for

  11. Hydraulic Response of Highly Compressible Aquitards During Consolidation

    Science.gov (United States)

    Rudolph, D. L.; Frind, E. O.

    1991-01-01

    The transient hydraulic behavior of highly compressible aquitards is investigated through numerical analysis and field studies. Variations in the hydraulic parameters of an aquitard during consolidation are accounted for by incorporating empirical relationships derived from standard consolidation tests into the one-dimensional flow equation. The resulting equation is highly nonlinear. The hydraulic response of an aquitard with physical properties typical of the compressible clays of Mexico City is evaluated with both standard linear analysis and with a nonlinear approach where the hydraulic parameters are stress-dependent. The results indicate that decreases in the hydraulic diffusivity of the aquitard due to consolidation lead to diminished leakage flux, slower groundwater velocities and solute transport rates, longer transient response periods and less land subsidence than would be predicted by classical linear theory. Evaluation of field data from a site near Mexico City indicates that significant interpretive errors may arise if the stress dependence of the hydraulic parameters is ignored in these types of systems.

  12. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren;

    2006-01-01

    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  13. Microbial effect on soil hydraulic properties

    Science.gov (United States)

    Furman, Alex; Rosenzweig, Ravid; Volk, Elazar; Rosenkranz, Hella; Iden, Sascha; Durner, Wolfgang

    2014-05-01

    Although largely ignored, the soil contains large amount of biofilms (attached microbes) that can affect many processes. While biochemical processes are studied, biophysical processes receive only little attention. Biofilms may occupy some of the pore space, and by that affect the soil hydraulic properties. This effect on unsaturated soils, however, was not intensively studied. In this research we directly measure the hydraulic properties, namely the soil's unsaturated hydraulic conductivity function and retention curve, for soils containing real biofilm. To do that we inoculate soil with biofilm-forming bacteria and incubate it with sufficient amounts of nutrient until biofilm is formed. The hydraulic properties of the incubated soil are then measured using several techniques, including multi-step outflow and evaporation method. The longer measurements (evaporation method) are conducted under refrigeration conditions to minimize microbial activity during the experiment. The results show a clear effect of the biofilm, where the biofilm-affected soil (sandy loam in our case) behaves like a much finer soil. This qualitatively makes sense as the biofilm generates an effective pore size distribution that is characterized by smaller pores. However, the effect is much more complex and needs to be studied carefully considering (for example) dual porosity models. We compare our preliminary results with other experiments, including flow-through column experiments and experiments with biofilm analogues. Clearly a better understanding of the way microbial activity alters the hydraulic properties may help designing more efficient bioremediation, irrigation, and other soil-related processes.

  14. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  15. Estimation of effective soil hydraulic parameters for water management studies in semi-arid zones. Integral use of modelling, remote sensing and parameter estimation

    NARCIS (Netherlands)

    Jhorar, R.K.

    2002-01-01

    Key words: evapotranspiration, effective soil hydraulic parameters, remote sensing, regional water management, groundwater use, Bhakra Irrigation System, India.The meaningful application of water management simulation models at regional scale for the analysis of alternate water manage

  16. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models

    OpenAIRE

    Paola Patiño; Camilo Cruz; Patricia Torres; Santiago Laín

    2012-01-01

    Hydrodynamic phenomena take place within water treatment plants associated with physical, operational and environmental factors which can affect the water quality. This study evaluated a hydraulic clarifier’s hydrodynamic pattern using sludge recirculation through continuous tracer test leading to determining hydraulic behaviour indicators and simplified flow models. The clarifier had dual flow with a predominantly complete mixture during the hours in which higher temperatures were reported f...

  17. Temporal changes of hydraulic conductivity of cultivated soil studied with help of multipoint tension infiltrometer and X-ray computed tomography

    Science.gov (United States)

    Klipa, Vladimir; Zumr, David; Snehota, Michal; Dohnal, Michal

    2016-04-01

    Soil aggregates, its shape, size and spatial distribution affect the pores arrangement and thus govern the hydraulic conductivity of soil and soil moisture regime. On arable lands the soil is exposed to rapid structural changes within each growing season due to agrotechnical practices, quick crop and root growth, soil biota and climatic conditions. This contribution is mainly focused on temporal changes of unsaturated hydraulic conductivity of cultivated soil. The research is supplemented by detailed analysis of CT images of soil samples for better understanding of structural change of soil during the year and its impact on soil hydraulic conductivity. The infiltration experiments were done using automated multipoint tension infiltrometer recently developed at CTU in Prague on the plots located on the Nucice experimental catchment. The catchment is situated in a moderately hilly area in central Bohemia (Czech Republic). Fourteen regular infiltration campaigns (77 individual infiltration experiments) were conducted from October 2012 until July 2015 on a single arable plot. In general, agricultural practice captured involved complete life cycle from sowing, through harvest, to postharvest stubble breaking. Weather conditions during infiltration experiments ranged from clear-sky to light rain, with temperatures between 8 and 30°C. All measurements were consistently performed with small suction of 3 cm and hydraulic conductivities were determined using extended semiempirical estimation procedure of Zhang. Results show that unsaturated hydraulic conductivity was the lowest in early spring and did increase at beginning of summer in the years 2012 - 2014. During the summer and autumn (2012 - 2014) the unsaturated hydraulic conductivity remained relatively unchanged. On the contrary, results in the year 2015 show opposite trend - the highest hydraulic conductivity was observed in early spring and did gradually decrease until the end of July. In both cases, however, the

  18. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    International Nuclear Information System (INIS)

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author)

  19. Research on the improvement of nuclear safety -Thermal hydraulic tests for reactor safety system-

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Moon Kee; Park, Choon Kyung; Yang, Sun Kyoo; Chun, Se Yung; Song, Chul Hwa; Jun, Hyung Kil; Jung, Heung Joon; Won, Soon Yun; Cho, Yung Roh; Min, Kyung Hoh; Jung, Jang Hwan; Jang, Suk Kyoo; Kim, Bok Deuk; Kim, Wooi Kyung; Huh, Jin; Kim, Sook Kwan; Moon, Sang Kee; Lee, Sang Il [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-06-01

    The present research aims at the development of the thermal hydraulic verification test technology for the safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. In this research, test facilities simulating the primary coolant system and safety system are being constructed for the design verification tests of the existing and advanced nuclear power plant. 97 figs, 14 tabs, 65 refs. (Author).

  20. Spatial variability in streambed hydraulic conductivity of contrasting stream morphologies

    DEFF Research Database (Denmark)

    Sebök, Éva; Calvache, Carlos Duque; Engesgaard, Peter Knudegaard;

    2015-01-01

    Streambed hydraulic conductivity is one of the main factors controlling variability in surface water-groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were...... therefore determined from in-stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in-stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater-dominated stream. Seasonal...

  1. VIRTUAL DESIGN OF A NEW TYPE OF HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using virtual reality to design a new type of hydraulic support is discussed. That is how to make use of the virtual design to develop coal mining machine in practice. The advantages of virtual design are studied and the simple virtual reality system is built. The 3D parts and elements of hydraulic support are modeled with parametric design in CAD software, then exported to VR environment, in which the virtual hydraulic support is assembled, operated and tested. With the method, the errors and faults of design can be fined easily, many improvements are made and the new hydraulic support is developed successfully.

  2. Pressure Fluctuations on the Bed of Surge Tank at the H.P. Zimapan, Hgo., with Different Arrangements Studied on Hydraulic Model, with the Lowest Operation Conditions

    OpenAIRE

    H. Marengo–Mogollón; F.J. Ochoa–Álvarez; C. Cortés–Cortés

    2009-01-01

    In this paper, the pressure fluctuations of the surge tank in the Zimapan Hydroelectric Project are compared in a hydraulic model. The shaft is located lateral, over the conduction tunnel and in the simple form (permitting the tunnel entering the shaft), with and without orifice plates taking into account the demand and supply condition of energy with the minimum level of water of the conduction. It was determined the hydraulic efficiency and it was found that it was the best constructive opt...

  3. Flutter study of an advanced composite wing with external stores

    Science.gov (United States)

    Cole, Stanley R.; Rivera, Jose A., Jr.; Nagaraja, K. S.

    1987-01-01

    A flutter test using a scaled model of an advanced composite wing for a Navy attack aircraft has been conducted in the NASA Langley Research Center Transonic Dynamics Tunnel. The model was a wall-mounted half-span wing with a semi-span of 6.63 ft. The wing had an aspect ratio of 5.31, taper ratio of 0.312, and quarter-chord sweep of 25 degrees. The model was supported in a manner that simulated the load path in the carry-through structure of the aircraft and the symmetric boundary condition at the fuselage centerline. The model was capable of carrying external stores from three pylon locations on the wing. Flutter tests were conducted for the wing with and without external stores. No flutter was encountered for the clean wing at test conditions which simulated the scaled airplane operating envelope. Flutter boundaries were obtained for several external store configurations. The flutter boundaries for the fuel tanks were nearly Mach number independent (occurring at constant dynamic pressure). To study the aerodynamic effect of the fuel tank stores, pencil stores (slender cylindrical rods) which had the same mass and pitch and yaw inertia as the fuel tanks were tested on the model. These pencil store configurations exhibited a transonic dip in the flutter dynamic pressure, indicating that the aerodynamic effect of the actual fuel tanks on flutter was significant. Several flutter analyses methods were used in an attempt to predict the flutter phenomenon exhibited during the wind-tunnel test. The analysis gave satisfactory predictions of flutter for the pencil store configurations, but unsatisfactory correlation for the actual fuel tank configurations.

  4. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  5. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  6. Advanced processes for minor actinides recycling: studies towards potential industrialization

    International Nuclear Information System (INIS)

    In June 2006, a new act on sustainable management of radioactive waste was voted by the French parliament with a national plan on radioactive materials and radioactive waste management (PNG-MDR). Concerning partitioning and transmutation, the program is connected to 4. generation reactors, in which transmutation of minor actinides could be operated. In this frame, the next important milestone is 2012, with the assessment of the possible transmutation roads, which are either homogeneous recycling of the minor actinides in the whole reactor fleet, with a low content of M.A (∼3%) in all fuel assemblies, or heterogeneous recycling of the minor actinides in about one third of the reactor park, with a higher content of M.A. (∼20%) in dedicated targets dispatched in the periphery of the reactor. Advanced processes for the recycling of minor actinides are being developed to address the challenges of these various management options. An important part of the program consists in getting closer to process implementation conditions. The processes based on liquid-liquid extraction benefit from the experience gained by operating the PUREX process at the La Hague plant. In the field of extracting apparatus, a large experience is available. In the field of extracting apparatus, a large experience is already available. Nevertheless, the processes present specificities which have to be considered more precisely. They have been classified in the following fields: - Evolution of the simulation codes, including phenomenological representations: with such a simulation tool, it will be possible to assess operating tolerances, lead sensitivity studies and calculate transient states; - Definition of the implementation conditions in continuous contactors (such as pulse columns), according to the extractant physico-chemical characteristics; - Scale-up of new extractants, such as malonamides used in the DIAMEX process, facing purity specifications and costs estimation; - Solvent clean

  7. EQUILIBRIO HIDRÁULICO EN SISTEMAS DE BOMBEO MINERO: ESTUDIO DE CASO HYDRAULIC BALANCE ON MINE PUMPING SYSTEMS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Luis Enrique Ortiz Vidal

    2010-12-01

    Full Text Available Fue evaluada la influencia del uso de los métodos de Hazen-Williams y Darcy-Weisbach en el establecimiento del equilibrio hidráulico para un sistema de bombeo minero. Empresas mineras con actividad subterránea hacen uso de estaciones de bombeo para evacuar el agua, producto de la profundización de sus labores. Proyectistas y vendedores de equipos de bombeo usan diferentes expresiones para la estimación de la pérdida de carga total del sistema, parámetro importante para la determinación del equilibrio hidráulico. El presente estudio tiene como objetivo analizar y validar la aplicación de algunas de estas expresiones para un sistema de bombeo minero. Las principales características del estudio de caso son: caudal de agua de 1.350 l/s; tuberías de acero y HDPE de 16 in y 18 in de diámetro, respectivamente; longitud total de la tubería de 2.900 m; y una altura geodésica de 230 m. Los cálculos fueron realizados con los métodos ya mencionados teniendo las expresiones de Haaland, Swamee-Jain y Churchill como factores de fricción. Los resultados obtenidos fueron comparados con los medidos en campo, teniéndose una desviación máxima del sistema de 28,6% y 3,1% para la pérdida de carga y Hman total, respectivamente.This study evaluates the influence of the Hazen-Williams and Darcy-Weisbach methods on the hydraulic balance of a mine pumping system. Underground mining sompanies use pumping stations for evacuate the produced water. Designers and equipment sellers use different expressions to estimate the head loss. This study analyzes and validates the implementation of some of these expressions to a mine pumping system. The features of the case study are: water flow rate of 1350 l/s, steel and HDPE diameter pipes of 16in. and 18in., respectively. The total pipe length is 2900m, and the hydraulic height difference is 230 m. The calculations were performed by the above-mention methods, taking the expressions of Haaland, Swamee-Jain and

  8. Recent Advances in Studies of Coastal Marsh Sedimentation

    Science.gov (United States)

    Pasternack, G. B.; Leonard, L. A.

    2001-05-01

    Limited understanding of sedimentation processes in coastal marshes is a key constraint on the management of environmental impacts associated with sea level rise, degrading quality and quantity of aquatic habitats, and downstream impacts of watershed land use. The problem is exacerbated by complex interactions among physical, ecological, and chemical variables that impact sedimentation over a large range of spatio-temporal scales. These challenges are being met by increasingly sophisticated approaches which cross-fertilize from other disciplines or go even further to integrate multidisciplinary perspectives. One example of the former has been improved precision of fine scale measurements of fluid mechanics and sediment transport over marsh plains and application of those measurements in geomorphologic and coastal engineering models. This advancement has improved our understanding of marsh dynamics at a mechanistic level, which is key for improving the predictive capabilities of wetland models. An example of a multidisciplinary approach that has become very common is the combined usage of multiple monitoring, isotopic, and palynological methods for estimating sedimentation and erosion at a site over a range of time scales. By applying such combinations, it has been possible to piece apart the relative roles of natural processes such as sea level rise and storms from human impacts such as flow constrictions, channel dredging, and sediment supply changes. Beyond improving approaches used to study marshes, past work has led to new questions about marsh morphodynamics and how coastal marshes interact with upland watersheds. With the aid of chaos theory, some recent studies have asserted that coastal marsh channels are fractal and thus must follow universal laws in common with watershed drainages and other dendritic systems. Also, where marshes exist among a mosaic of habitats on a delta, research has revealed the relative roles of watershed versus coastal processes in

  9. Advanced control of a water supply system: a case study

    NARCIS (Netherlands)

    Bakker, M.; Rajewicz, T.; Kien, H.; Vreeburg, J.H.G.; Rietveld, L.C.

    2014-01-01

    Conventional automatic production flow control and pump pressure control of water supply systems are robust and simple: production flow is controlled based on the level in the clear water reservoir and pump pressure is controlled on a static set-point. Recently, more advanced computer-based control

  10. The hydraulic capacity of deteriorating sewer systems.

    Science.gov (United States)

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted. PMID:16477988

  11. HYBRID CONTROL OF HYDRAULIC PRESS MACHINE BASED ON ROBUST CONTROL

    Institute of Scientific and Technical Information of China (English)

    FANG Yu; YANG Jian; CHAI Xiaodong

    2008-01-01

    A robust control algorithm is proposed to focus on the non-linearity and variables of the hydraulic press machine with the proportional valve. The proposed robust controller does not need to design stable compensator in advance, which is simple in design and has large scope of uncertainty applications. The feedback gains of the proposed robust controller are small, so it is easily implemented in engineering applications. The theoretical and experimental research on the position and speed control of the hydraulic press machine is carried out. The control requirements of the hydraulic press machine during the working process are met in the position and speed at the same time. Experimental results show that the proposed controller has better robustness subject to load variables and adaptability of parameter variations of the hydraulic press machine with the proportional valve.

  12. Readability of state-sponsored advance directive forms in the United States: a cross sectional study

    OpenAIRE

    Mueller Paul S; Reid Kevin I; Mueller Luke A

    2010-01-01

    Abstract Background State governments provide preprinted advance directive forms to the general public. However, many adults in the United States (US) lack the skills necessary to read and comprehend health care-related materials. In this study, we sought to determine the readability of state government-sponsored advance directive forms. Methods A cross sectional study design was used. The readability of advance directive forms available online from all 50 US states and the District of Columb...

  13. Linking earthquakes and hydraulic fracturing operations

    Science.gov (United States)

    Balcerak, Ernie

    2013-01-01

    Hydraulic fracturing, also known as fracking, to extract oil and gas from rock, has been a controversial but increasingly common practice; some studies have linked it to groundwater contamination and induced earthquakes. Scientists discussed several studies on the connection between fracking and earthquakes at the AGU Fall Meeting in San Francisco in December.

  14. NATO Advanced Study Institute International Advanced Course on The Liquid State and Its Electrical Properties

    CERN Document Server

    Christophorou, L; Luessen, L

    1988-01-01

    As the various disciplines of science advance, they proliferate and tend to become more esoteric. Barriers of specialized terminologies form, which cause scientists to lose contact with their colleagues, and differences in points-of-view emerge which hinder the unification of knowledge among the various disciplines, and even within a given discipline. As a result, the scientist, and especially the student, is in many instances offered fragmented glimpses of subjects that are funda­ mentally synthetic and that should be treated in their own right. Such seems to be the case of the liquid state. Unlike the other states of matter -- gases, solids, and plasmas -- the liquid state has not yet received unified treatment, probably because it has been the least explored and remains the least understood state of matter. Occasionally, events occur which help remove some of the barriers that separate scientists and disciplines alike. Such an event was the ASI on The Liquid State held this past July at the lovely Hotel T...

  15. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  16. High hydraulic performance in horizontal waterwheels

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, T.; Montoro, L. [Area de Mecnica de Fluids, Escola Politcnica Superior, Universitat de Girona, 17071 Girona, Catalonia (Spain)

    2010-11-15

    Slow rotating waterwheels have been recently proposed as affordable sources of renewable energy in rural areas. In terms of hydraulic efficiency, classical horizontal waterwheels reach values on the order of 50%, being well below those obtained from overshot (71%), waterfall (66%) and, even, undershot (65%) vertical ones. Based on the study of an horizontal waterwheel built prior to 1940s that includes features from both elementary turbines and antique waterwheels, we conclude that horizontal waterwheels may actually reach hydraulic efficiencies as high as 81%. These quantitative results are obtained by analytical approximations and, more important, by numerical integrations through accurate computational fluid dynamics (CFD) simulations. In addition, we show that such a high hydraulic efficiency does not substantially vary when changing the net available head. We suggest that this relevant progress made on improving the efficiency of classical horizontal waterwheels may have implications in future designs of nano/micro hydropower devices. (author)

  17. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  18. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  19. Advances in the study of hybrid finite elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.

  20. Genesis methodology quantitative risk assessment of innovative technologies in hydraulic engineering

    OpenAIRE

    Bekker Aleksandr T.; Zolotov Boris A.; Ljubimov Valeriy S.; Nosovsky Valeriy S.

    2015-01-01

    The historical development of studies to determine the risk of innovative technologies in hydraulic engineering. The proposed methodology for quantitative risk calculation can be used in hydraulic engineering, and serve as a basis for calculating the risk of industrial techniques.