WorldWideScience

Sample records for advanced human-system interfaces

  1. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs

  2. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development

  3. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant control rooms as a result of several factors. These include: (1) incorporation of new systems such as safety parameter display systems, (2) backfitting of current control rooms with new technologies when existing hardware is no longer supported by equipment vendors, and (3) development of advanced control room concepts. Control rooms of the future will be developed almost exclusively with advanced instrumentation and controls based upon digital technology. In addition, the control room operator will be interfacing with more intelligent systems which will be capable of providing information processing support to the operator. These developments may have significant implications for plant safety in that they will greatly affect the operator's role in the system as well as the ways in which he interacts with it. At present, however, the only guidance available to the Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces is NUREG-0700. It is a document which was written prior to these technological changes and is, therefore, tailored to the technologies used in traditional control rooms. Thus, the present guidance needs to be updated since it is inadequate to serve as the basis for NRC staff review of such advanced or hybrid control room designs. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline suitable for use in performing human factors reviews of advanced operator interfaces. This guideline will take the form of a portable, interactive, computer-based document that may be conveniently used by an inspector in the field, as well as a text-based document

  4. The development and evaluation of guidelines for the review of advanced human-system interfaces

    International Nuclear Information System (INIS)

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes a general approach to advanced human-system interface review, development of human factors guidelines to support NRC safety reviews of advanced systems, and the results of a guideline test and evaluation program

  5. Investigation on the design of human-system interface for advanced nuclear plant control room

    International Nuclear Information System (INIS)

    The Lungmen Nuclear Power Project (LMNPP), under construction in Taiwan, consists of two GE Advanced Boiling Water Reactor (ABWR) units, each with 1350 MW electrical output. Major Human-System Interfaces (HSIs) of LMNPP are different from traditional ones. Video display units (VDUs) are the main human-system interface for operators to manipulate and to know the status of the equipment and plant information. Based upon NUREG-0711, the applicable human factors engineering (HFE) guideline in the design of HSIs has been adopted. An important aspect of the Lungmen HFE program has been the direct involvement of the end user, Taiwan Power Company (TPC), throughout the design development and implementation to ensure not only that the process for the design is compliant with the HFE principles, but also that the necessary displays, control, and alarms are provided to support the identified personnel tasks. This paper reviews the applicable HFE principles and verification and validation (V and V) processes in the design of HSIs for the advanced LMNPP. This paper also presents three investigated topics of the LMNPP HSI design development and implementation process. From the perspective of licensing concern and experience feedback, the focus of this paper is on the topics of validation with simulator, alarm auto reset, and VDU operational configuration strategy. The objectives of investigating the latter topic were to ensure the VDU operational configuration strategy, after appropriate V and V, achieves its goals of reinforcing operation discipline and distributing operator crew task assignments and workload during typical operations, and to confirm the need for an intensive training program that addresses the knowledge and skill requirements of the operators to meet the task characteristics and the responses of the plant processes. The results to date and implications for going forward from this process are also presented. (authors)

  6. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  7. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    International Nuclear Information System (INIS)

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  8. The importance of simulation facilities for the development of review criteria for advanced human system interfaces

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed in the commercial nuclear industry as part of future reactor designs. The ACRs will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role (function) in the system, the method of information presentation, the ways in which the operator interacts with the system, and the requirements on the operator to understand and supervise an increasingly complex system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The NRC is developing guidelines to support their review of these advanced designs. As part of this effort, a methodology for guidance development was established, and topics in need of further research were identified. Simulators of various kinds are likely to play important roles in the development of review guidelines and in the evaluation of ACRs. This paper describes a general approach to review criteria development, and discusses the role of simulators in addressing research needs

  9. Evaluation of operators' mental workload of human-system interface automation in the advanced nuclear power plants

    International Nuclear Information System (INIS)

    It has been expected that the automation of certain tasks in a control room would help decrease operators' mental workload, enhance situation awareness, and improve the whole system performance. However, there have been too many automation-induced system failures that would warrant a fresh look on the influences of automation. Automation problems include the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills. This study evaluates operators' mental workload and system performance during a human-system interface (HSI) automation in an advanced nuclear power plant (NPP). The reactor shutdown task and alarm reset task simulations were conducted in this study to evaluate operators' mental workload and performance. The results of this study indicated that for ensuring safe operating in NPPs, the design of automation needs to be carefully implemented. Task characteristics and degrees of automation should be carefully evaluated while designing HSIs. The reactor shutdown tasks studied in this paper suggest that a high level of automation design for the long period and low workload would be sufficient. On the other hand, the degree of automation of alarm reset task does not show a significant difference to the operator's mental workload. In conclusion, the human-system interface automation in advanced NPPs is suggested to be more flexible and needs to be continually improved.

  10. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J. [Carlow International Inc., Falls Church, VA (United States)

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  11. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    International Nuclear Information System (INIS)

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  12. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    International Nuclear Information System (INIS)

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  13. Advanced control room design review guidelines: Integration of the NUREG-0700 guidelines and development of new human-system interface guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.J.

    1997-07-01

    This report documents the work conducted in four tasks of the Nuclear Regulatory Commission (NRC) project entitled Review Criteria for Human Factors Aspects of Advanced Controls and Instrumentation. The purpose of the first task was to integrate the applicable sections of NUREG-0700 into the advanced control room design review (ACRDR) guidelines to ensure that all applicable guidelines are together in one document and conveniently accessible to users. The primary objective of the second task was to formulate a strategy for the development of new ACRDR guidelines that have not otherwise been identified. The main focus of the third task was to modify the individual ACRDR guidelines generated to date to ensure that they are suitable for the intended nuclear power plant (NPP) control station system application. The goal of the fourth task was to develop human factors guidelines for two human-system interface categories that are missing from the current ACRDR guidelines document. During the first task those areas in NUREG-0700 that are not addressed by the ACRDR guidelines document were identified, the areas were subsequently reviewed against six recent industry human factors engineering review guidelines, and the NUREG-0700 guidelines were updated as necessary. In the second task 13 general categories of human-system interface guidelines that are either missing from or not adequately addressed by the ACRDR document were discovered. An approach was derived for the development of new ACRDR guidelines, a preliminary assessment of the available sources that may be useful in the creation of new guidelines and their applicability to the identified human-system interface categories was performed, and an estimate was made of the amount of time and level of effort required to complete the development of needed new ACRDR guidelines. During the third task those NPP control station systems to which the NUREG-0700 and ACRDR guidelines apply were identified, matrices of such

  14. The development and evaluation of human factors guidelines for the review of advanced human-system interfaces

    International Nuclear Information System (INIS)

    Advanced control rooms for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are approximately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline

  15. Project and implementation of the human/system interface laboratory

    International Nuclear Information System (INIS)

    Analog instrumentation is being increasingly replaced by digital technology in new nuclear power plants, such as Angra III, as well as in existing operating plants, such as Angra I and II, for modernization and life-extension projects. In this new technological environment human factors issues aims to minimize failures in nuclear power plants operation due to human error. It is well known that 30% to 50% of the detected unforeseen problems involve human errors. Presently, human factors issues must be considered during the development of advanced human-system interfaces for the plant. IAEA has considered the importance of those issues and has published TECDOC's and Safety Series Issues on the matter. Thus, there is a need to develop methods and criteria to asses, compare, optimize and validate the human-system interface associated with totally new or hybrid control rooms. Also, the use of computer based operator aids is en evolving area. In order to assist on the development of methods and criteria and to evaluate the effects of the new design concepts and computerized support systems on operator performance, research simulators with advanced control rooms technology, such the IEN's Human System Interface Laboratory, will provide the necessary setting. (author)

  16. Human-system Interfaces for Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins,J. (BNL); Fleger, S.; Barnes V. (NRC)

    2010-11-07

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, our study identified several topics for additional research.

  17. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    . As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  18. US-APWR human systems interface system verification and validation results. Application of the Mitsubishi advanced design to the US market

    International Nuclear Information System (INIS)

    The US-APWR, under Design Certification Review by the US Nuclear Regulatory Commission, is a four loop evolutionary pressurized water reactor with a four train active safety system by Mitsubishi Heavy Industries and Instrumentation and Control System (I and C)/Human Systems Interface (HSI) platform applied by Mitsubishi Electric Corporation. This design is currently being applied to the latest Japanese PWR plant under construction and to the nuclear power plant I and C modernization program in Japan. The US-APWR's fully digital I and C system and HSI platform utilizes computerized systems, including computer based procedures and alarm prioritization, relying principally on an HSI system with soft controls, console based video display units and a large overview wall display panel. Conventional hard controls are limited to Safety System level manual actions and a Diverse Actuation System. The overall design philosophy is based on the concept that operator performance will be enhanced through the integration of safety- and non-safety display and control systems in a robust digital environment. This philosophy is augmented, for diversity, by the application of independent safety-only soft displays and controls. As with all advanced designs, the digital systems resolve many long- standing issues of human and system performance while opening a number of new, less understood, questions. This paper discusses a testing program that begins to address these new questions and specifically explores the needs of moving a mature design into the US market with minimum changes from its original design. Details for the program took shape during 2007 and early 2008, resulting in an eight-week testing program during the months of July and August 2008. This extensive verification and validation program on the advanced design was undertaken with the objective of assessing United States operators' performance in this digital design environment. This testing program included analyses that

  19. Human-system interface for CAREM nuclear reactor

    International Nuclear Information System (INIS)

    Associated with activities to be developed by our working group on the construction of the reactor training simulator for the CAREM, we have planned the design of human-system interface (HSI) of the main control room. The goal of this study is to describe the planning and methodology used for the HSI interface design. The products of this process are the layout specifications of the Control Room and the screens specifications for control software. (author)

  20. Human-system interfaces for space cognitive awareness

    Science.gov (United States)

    Ianni, J.

    Space situational awareness is a human activity. We have advanced sensors and automation capabilities but these continue to be tools for humans to use. The reality is, however, that humans cannot take full advantage of the power of these tools due to time constraints, cognitive limitations, poor tool integration, poor human-system interfaces, and other reasons. Some excellent tools may never be used in operations and, even if they were, they may not be well suited to provide a cohesive and comprehensive picture. Recognizing this, the Air Force Research Laboratory (AFRL) is applying cognitive science principles to increase the knowledge derived from existing tools and creating new capabilities to help space analysts and decision makers. At the center of this research is Sensemaking Support Environment technology. The concept is to create cognitive-friendly computer environments that connect critical and creative thinking for holistic decision making. AFRL is also investigating new visualization technologies for multi-sensor exploitation and space weather, human-to-human collaboration technologies, and other technology that will be discussed in this paper.

  1. Design and Evaluation of Human System Interfaces (HSIs)

    International Nuclear Information System (INIS)

    In the safe operation of nuclear power plants and other complex process industries the performance of the control room crews plays an important role. In this respect a well-functioning and well-designed Human-System Interface (HSI) is crucial for safe and efficient operation of the plant. It is therefore essential that the design, development and evaluation of both control rooms and HSI-solutions are conducted in a well-structured way, applying sound human factors principles and guidelines in all phases of the HSI development process. Many nuclear power plants around the world are currently facing major modernisation of their control rooms. In this process computerised, screen-based HSIs replace old conventional operator interfaces. In new control rooms, both in the nuclear field and in other process industries, fully digital, screen-based control rooms are becoming the standard. It is therefore of particular importance to address the design and evaluation of screen-based HSIs in a systematic and consistent way in order to arrive at solutions which take proper advantage of the possibilities for improving operator support through the use of digital, screen-based HSIs, at the same time avoiding pitfalls and problems in the use of this technology. The Halden Reactor Project, in cooperation with the OECD Nuclear Energy Agency, organised an International Summer School on ''Design and Evaluation of Human-System Interfaces (HSIs)'' in Halden, Norway in the period August 25th - 29th, 2003. The Summer School addressed the different steps in design, development and evaluation of HSIs, and the human factors principles, standards and guidelines which should be followed in this process. The lectures comprised both theoretical background, as well as examples of good and bad HSI design, thereby providing practical advice in design and evaluation of operator interfaces and control room solutions to the participants in the Summer School. This CD contains the Proceedings of the

  2. Design and Evaluation of Human System Interfaces (HSIs)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the safe operation of nuclear power plants and other complex process industries the performance of the control room crews plays an important role. In this respect a well-functioning and well-designed Human-System Interface (HSI) is crucial for safe and efficient operation of the plant. It is therefore essential that the design, development and evaluation of both control rooms and HSI-solutions are conducted in a well-structured way, applying sound human factors principles and guidelines in all phases of the HSI development process. Many nuclear power plants around the world are currently facing major modernisation of their control rooms. In this process computerised, screen-based HSIs replace old conventional operator interfaces. In new control rooms, both in the nuclear field and in other process industries, fully digital, screen-based control rooms are becoming the standard. It is therefore of particular importance to address the design and evaluation of screen-based HSIs in a systematic and consistent way in order to arrive at solutions which take proper advantage of the possibilities for improving operator support through the use of digital, screen-based HSIs, at the same time avoiding pitfalls and problems in the use of this technology. The Halden Reactor Project, in cooperation with the OECD Nuclear Energy Agency, organised an International Summer School on ''Design and Evaluation of Human-System Interfaces (HSIs)'' in Halden, Norway in the period August 25th - 29th, 2003. The Summer School addressed the different steps in design, development and evaluation of HSIs, and the human factors principles, standards and guidelines which should be followed in this process. The lectures comprised both theoretical background, as well as examples of good and bad HSI design, thereby providing practical advice in design and evaluation of operator interfaces and control room solutions to the participants in the Summer School. This CD contains the

  3. Guidance for Human-system Interfaces to Automatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Higgins, J.; Stephen Fleger; Valerie Barnes

    2010-09-27

    Automation is ubiquitous in modern complex systems, and commercial nuclear- power plants are no exception. Automation is applied to a wide range of functions, including monitoring and detection, situation assessment, response planning, and response implementation. Automation has become a 'team player' supporting personnel in nearly all aspects of system operation. In light of its increasing use and importance in new- and future-plants, guidance is needed to conduct safety reviews of the operator's interface with automation. The objective of this research was to develop such guidance. We first characterized the important HFE aspects of automation, including six dimensions: Levels, functions, processes, modes, flexibility, and reliability. Next, we reviewed literature on the effects of all of these aspects of automation on human performance, and on the design of human-system interfaces (HSIs). Then, we used this technical basis established from the literature to identify general principles for human-automation interaction and to develop review guidelines. The guidelines consist of the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration.

  4. Development of comprehensive HFE guidelines for the evaluation of NPP human systems interfaces

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed in the commercial nuclear power industry as part of future reactor designs. The ACRs will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the ways in which the operator interacts with and supervises an increasingly complex system. The US Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The NRC is developing guidelines to support its review of these advanced designs. This paper discusses (1) the development of guidelines for advanced HSI review, (2) the integration of those guidelines with existing guidance, and (3) a methodology for further guidance development

  5. Human-system interface design review guideline: The development of draft revision 1 to NUREG-0700

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.; Stubler, W.; Brown, W. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-03-01

    Advanced human-system interface (HSI) technologies are being developed in the commercial nuclear power industry. These HSIs may have significant implications for plant safety in that they will affect the ways in which the operator interacts with and supervises an increasingly complex system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of nuclear plants to ensure that operator performance and reliability are supported. The NRC is developing guidance to support its review of these advanced designs. The guidance consists of an evaluation methodology and an extensive set of human factors guidelines which are used in one aspect of the evaluation. The paper describes the guidance development of the evaluation methodology and the guidelines.

  6. The impact of differences in operating practices on the development and use of advanced reactor design plant procedures: results from the US-APWR human-system interface test program

    International Nuclear Information System (INIS)

    The application of standardized plant designs across countries must be sensitive to the differences in operating practices and nowhere is this more evident than in the design of the Human-System Interface (HSI). This paper presents and discusses the critical differences that must be considered in the development and use of plant procedures. Specifically, the operating practices of Japan and the United States, and their resulting effects on the design and application of a procedure system are used as an example. Over a three-year period, the US-APWR program completed a series of human-in-the-loop dynamic tests, with the principal purpose of identifying the modifications needed in the basic Japanese HSI design as it moves into the United States (US). Using the Mitsubishi Electric Power Products (MEPPI) simulator, licensed US operating crews and preselected test scenarios, both subjective and objective data were collected on crew performance for various specific interface design elements. These data were then analyzed for impacts on individual and crew performance including workload, situation awareness, the ability to keep pace with evolving plant events and the ability to look ahead. As would be expected, one important topic that affected each of these performance areas was that of the procedure design and implementation. As the tests were performed, subsequent designs of the procedure system moved from a simple translation into English of the Japanese style procedures, to the currently in use format of US paper procedures, to the simple computerization of these US paper procedures, IEEE level 1, to the resulting final design of a computer based procedure (CBP) system, IEEE level 2, that supports the US operating practices. This paper describes the differences between the US and Japanese practices along with a discussion of why the authors believe both have been highly successful in their respective countries but are not one to one applicable between the countries

  7. Integration of a transient identification system in the Human System Interface Laboratory

    International Nuclear Information System (INIS)

    This paper presents the integration of an Transient Identification System in the Human System Interface Laboratory (HSIL). The system exploits the excellent performance of multilayer Artificial Neural Networks (ANN). To show the results was developed and included into the simulator a graphical interface. This interface was developed following the simulator standards. In order to validate the method, a Nuclear Power Plant (NPP) transient identification problem comprising 5 postulated accidents, simulated for a pressurized water reactor, was proposed in the validation process. Obtained results reveal the ability of the method in dealing with both dynamic identification of transients and correct 'don't know' response. (author)

  8. Human-centered design of the human-system interfaces of medical equipment: thyroid uptake system

    International Nuclear Information System (INIS)

    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human-system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system. (author)

  9. Human-centered design of the human-system interfaces of medical equipment: thyroid uptake system

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jonathan K.R.; Farias, Marcos S.; Santos, Isaac J.A. Luquetti, E-mail: luquetti@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Monteiro, Beany G. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Desenho Industrial

    2013-07-01

    Technology plays an important role in modern medical centers, making healthcare increasingly complex, relying on complex technical equipment. This technical complexity is particularly noticeable in the nuclear medicine. Poorly design human-system interfaces can increase the risks for human error. The human-centered approach emphasizes the development of the equipment with a deep understanding of the users activities, current work practices, needs and abilities of the users. An important concept of human-centered design is that the ease-of-use of the equipment can be ensured only if users are actively incorporated in all phases of the life cycle of design process. Representative groups of users are exposed to the equipment at various stages in development, in a variety of testing, evaluation and interviewing situations. The users feedback obtained is then used to refine the design, with the result serving as input to the next interaction of design process. The limits of the approach are that the users cannot address any particular future needs without prior experience or knowledge about the equipment operation. The aim of this paper is to present a methodological framework that contributes to the design of the human-system interfaces, through an approach related to the users and their activities. A case study is described in which the methodological framework is being applied in development of new human-system interfaces of the thyroid uptake system. (author)

  10. The human factors engineering process and human system interface - Design of the US-APWR

    International Nuclear Information System (INIS)

    The US-APWR, currently under Design Certification review by the U.S. Nuclear Regulatory Commission, is an evolutionary four loop pressurized water reactor with a four train active safety system designed by Mitsubishi Heavy Industries. The digital Instrumentation and Control (IC) System and Human Systems Interface (HSI) system are to be applied to the US-APWR. The US-APWR digital IC and HSI system (HSIS) utilize computerized systems, including computer-based procedures and alarm prioritization, relying principally on an HSIS with soft controls, console based visual display units (VDUs) and a large, heads up, overview display panel. Conventional hard-wired controls are limited to system level manual actions and a diverse actuation system (DAS). The overall design philosophy of the US-APWR is based on the concept that operator performance will be enhanced through the integration of safety and non-safety display and control systems in a robust digital environment. This philosophy is augmented, for diversity, by the application of independent safety soft displays and controls. In addition, non-digital diverse automatic and manual actuation system is introduced. As with all the advanced designs, the digital systems open a variety of questions. This paper discusses the digital HSIS of the US-APWR design, the VV program data collection and analysis, and the study results related to the ongoing discussion of the impacts of digital systems on human performance, such as workload, navigation, situation awareness, operator training and licensing. The result from the Phase 1 VV described in this paper suggests that the Japanese Standard HSI design can be readily adopted, understood and used by US nuclear power plant operators. All of the results are strong indications that the HSI design that was examined in this test is fundamentally a robust design for application in US plants

  11. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Higgins, J.C.

    2010-01-31

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  12. Step 1: Human System Integration Pilot-Technology Interface Requirements for Weather Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Hazardous Weather Avoidance. Technology concepts in use by the Access 5 Weather Management Work Package were considered. Beginning with the Human System Integration (HIS) high-level functional requirement for Hazardous Weather Avoidance, and Hazardous Weather Avoidance technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of hazardous weather, and (2) the control capability needed by the pilot to obtain hazardous weather information. Fundamentally, these requirements provide the candidate Hazardous Weather Avoidance technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Hazardous Weather Avoidance operations and functions should interface with the pilot to provide the necessary Weather Management functionality to the UA-pilot system. Requirements and guidelines for Hazardous Weather Avoidance are partitioned into four categories: (1) Planning En Route (2) Encountering Hazardous Weather En Route, (3) Planning to Destination, and (4) Diversion Planning Alternate Airport. Each requirement is stated and is supported with a rationale and associated reference(s).

  13. Experiences in the application of human factors engineering to human-system interface modernization

    Energy Technology Data Exchange (ETDEWEB)

    Trueba Alonso, Pedro; Fernandez Illobre, Luis; Ortega Pascual, Fernando [Tecnatom S.A., San Sebastian de los Reyes (Spain). Simulation and Control Rooms Div.

    2015-07-15

    Almost all the existing Nuclear Power Plants (NPPs) include plans to modernize their existing Instrumentation and Control (I and C) systems and associated Human System Interfaces (HSIs), due to obsolescence problems. Tecnatom, S.A. has been participating in modernization programs in NPPs to help them to plan, specify, design and implement the modernization of control rooms and associated I and C and HSIs. The application of Human Factors Engineering (HFE) in modernization programs is nowadays unavoidable. This is because is becoming a regulatory requirement, and also because it is needed to ensure that any plant modification, involving the modernization of I and C and HSI, is well designed to improve overall plant operations, reliability, and safety. This paper shows some experiences obtained during the application of HFE to the modernization of these HSIs. The experience applying HFE in modernizations and design modifications show a positive effect, improving the associated HSIs, with the acceptability of the final user.

  14. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, R.D.; Henriksen, K.; Jones, R. [Hughes Training, Inc., Falls Church, VA (United States); Morisseau, D.S.; Serig, D.I. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

    1995-07-01

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable.

  15. Human factors evaluation of teletherapy: Human-system interfaces and procedures. Volume 3

    International Nuclear Information System (INIS)

    A series of human factors evaluations was undertaken to better understand the contributing factors to human error in the teletherapy environment. Teletherapy is a multidisciplinary methodology for treating cancerous tissue through selective exposure to an external beam of ionizing radiation. The principal sources of radiation are a radioactive isotope, typically cobalt60 (Co-60), or a linear accelerator device capable of producing very high energy x-ray and electron beams. A team of human factors specialists conducted site visits to radiation oncology departments at community hospitals, university centers, and free-standing clinics. In addition, a panel of radiation oncologists, medical physicists, and radiation technologists served as subject matter experts. A function and task analysis was initially performed to guide subsequent evaluations in the areas of user-system interfaces, procedures, training and qualifications, and organizational policies and practices. The present report focuses on an evaluation of the human-system interfaces in relation to the treatment machines and supporting equipment (e.g., simulators, treatment planning computers, control consoles, patient charts) found in the teletherapy environment. The report also evaluates operating, maintenance and emergency procedures and practices involved in teletherapy. The evaluations are based on the function and task analysis and established human engineering guidelines, where applicable

  16. Human-system interface design review guideline -- Process and guidelines: Final report. Revision 1, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 1 consists of two major parts. Part 1 describes those aspects of the review process of the HSI design that are important to identifying and resolving human engineering discrepancies. Part 2 contains detailed guidelines for a human factors engineering review which identify criteria for assessing the implementation of an applicant`s or licensee`s HSI design.

  17. Guidelines for the modernization of nuclear power plant control room and human-system interfaces

    International Nuclear Information System (INIS)

    Several nuclear power plants are implementing instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance, while maintaining high levels of safety. As an integral part of the I and C modernization program, the control room and other human-system interfaces (HSIs) are also being modernized. Utilities identified the need for guidance for control rooms and HSIs to support and improve personnel performance, reduce the likelihood of human errors, increase the productivity of the plant, and take effective advantage of the benefits that can be achieved with the new technology being implemented. A project, initially jointly funded by the Electric Power Research Inst. (EPRI) and the U.S. Dept. of Energy (US DOE) and later by EPRI alone, has developed guidance that will facilitate planning, specification, design, implementation, operations, maintenance, training, and licensing activities for control rooms and HSIs. Although this guidance was developed for modernization of operating plants, most of the guidelines apply to new plants as well. (authors)

  18. Human-system interface design review guideline -- Process and guidelines: Final report. Revision 1, Volume 1

    International Nuclear Information System (INIS)

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant's HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 1 consists of two major parts. Part 1 describes those aspects of the review process of the HSI design that are important to identifying and resolving human engineering discrepancies. Part 2 contains detailed guidelines for a human factors engineering review which identify criteria for assessing the implementation of an applicant's or licensee's HSI design

  19. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    International Nuclear Information System (INIS)

    Integrated digital instrumentation and control (I and C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I and C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I and C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I and C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I and C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  20. Human-system safety methods for development of advanced air traffic management systems

    International Nuclear Information System (INIS)

    The Idaho National Engineering and Environmental Laboratory (INEEL) is supporting the National Aeronautics and Space Administration in the development of advanced air traffic management (ATM) systems as part of the Advanced Air Transportation Technologies program. As part of this program INEEL conducted a survey of human-system safety methods that have been applied to complex technical systems, to identify lessons learned from these applications and provide recommendations for the development of advanced ATM systems. The domains that were surveyed included offshore oil and gas, commercial nuclear power, commercial aviation, and military. The survey showed that widely different approaches are used in these industries, and that the methods used range from very high-level, qualitative approaches to very detailed quantitative methods such as human reliability analysis (HRA) and probabilistic safety assessment (PSA). In addition, the industries varied widely in how effectively they incorporate human-system safety assessment in the design, development, and testing of complex technical systems. In spite of the lack of uniformity in the approaches and methods used, it was found that methods are available that can be combined and adapted to support the development of advanced air traffic management systems (author) (ml)

  1. GUIDANCE FOR NUCLEAR POWER PLANT CONTROL ROOM AND HUMAN-SYSTEM INTERFACE MODERNIZATION

    International Nuclear Information System (INIS)

    Several nuclear power plants in the United States are starting instrumentation and control (I and C) modernization programs using digital equipment to address obsolescence issues and the need to improve plant performance while maintaining high levels of safety. As an integral part of the I and C modernization program at a nuclear power plant, the control room and other human-system interfaces (HSIs) are also being modernized. To support safe and effective operation, it is critical to plan, design, implement, train for, operate, and maintain the control room and HSI changes to take advantage of human cognitive processing abilities. A project, jointly funded by the Electric Power Research Institute (EPRI) and the United States Department of Energy (DOE) under the Nuclear Energy Plant Optimization (NEPO) Program, is developing guidance for specifying and designing control rooms, remote shut-down panels, HSIs etc. The guidance is intended for application by utilities and suppliers of control room and HSI modernization. The guidance will facilitate specification, design, implementation, operations, maintenance, training, and licensing activities. This guidance will be used to reduce the likelihood of human errors and licensing risk, to gain maximum benefit of implemented technology, and to increase performance. The guidance is of five types. The first is planning guidance to help a utility develop its plant-specific control room operating concepts, its plant-specific endpoint vision for the control room, its migration path to achieve that endpoint vision, and its regulatory, licensing, and human factors program plans. The second is process guidance for general HSI design and integration, human factors engineering analyses, verification and validation, in-service monitoring processes, etc. The third is detailed human factors engineering guidance for control room and HSI technical areas. The fourth is guidance for licensing. The fifth is guidance for special topics

  2. The Effect of Degraded Digital Instrumentation and Control systems on Human-system Interfaces and Operator Performance

    Energy Technology Data Exchange (ETDEWEB)

    OHara, J.M.; Gunther, B.; Martinez-Guridi, G. (BNL); Xing, J.; Barnes, V. (NRC)

    2010-11-07

    Integrated digital instrumentation and control (I&C) systems in new and advanced nuclear power plants (NPPs) will support operators in monitoring and controlling the plants. Even though digital systems typically are expected to be reliable, their potential for degradation or failure significantly could affect the operators performance and, consequently, jeopardize plant safety. This U.S. Nuclear Regulatory Commission (NRC) research investigated the effects of degraded I&C systems on human performance and on plant operations. The objective was to develop technical basis and guidance for human factors engineering (HFE) reviews addressing the operator's ability to detect and manage degraded digital I&C conditions. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we evaluated the potential effects of selected failure modes of the digital feedwater control system of a currently operating pressurized water reactor (PWR) on human-system interfaces (HSIs) and the operators performance. Our findings indicated that I&C degradations are prevalent in plants employing digital systems, and the overall effects on the plant's behavior can be significant, such as causing a reactor trip or equipment to operate unexpectedly. I&C degradations may affect the HSIs used by operators to monitor and control the plant. For example, deterioration of the sensors can complicate the operators interpretation of displays, and sometimes may mislead them by making it appear that a process disturbance has occurred. We used the findings as the technical basis upon which to develop HFE review guidance.

  3. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification. Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    International Nuclear Information System (INIS)

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces

  4. Human Factors Guidance for Control Room and Digital Human-System Interface Design and Modification, Guidelines for Planning, Specification, Design, Licensing, Implementation, Training, Operation and Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    R. Fink, D. Hill, J. O' Hara

    2004-11-30

    Nuclear plant operators face a significant challenge designing and modifying control rooms. This report provides guidance on planning, designing, implementing and operating modernized control rooms and digital human-system interfaces.

  5. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Command, Control, and Communications (C3)

    Science.gov (United States)

    2005-01-01

    The document provides the Human System Integration(HSI) high-level functional C3 HSI requirements for the interface to the pilot. Description includes (1) the information required by the pilot to have knowledge C3 system status, and (2) the control capability needed by the pilot to obtain C3 information. Fundamentally, these requirements provide the candidate C3 technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how C3 operations and functions should interface with the pilot to provide the necessary C3 functionality to the UA-pilot system. Requirements and guidelines for C3 are partitioned into three categories: (1) Pilot-Air Traffic Control (ATC) Voice Communications (2) Pilot-ATC Data Communications, and (3) command and control of the unmanned aircraft (UA). Each requirement is stated and is supported with a rationale and associated reference(s).

  6. Availability verification of information for human system interface in automatic SG level control using activity diagram

    International Nuclear Information System (INIS)

    Steam Generator (SG) level control system in OPR 1000 is one of representative automatic systems that falls under the Supervisory Control level in Endsley's taxonomy. Supervisory control of automated systems is classified as a form of out of the loop (OOTL) performance due to passive involvement in the systems operation, which could lead to loss of situation awareness (SA). There was a reported event, which was caused by inadequate human automation communication that contributed to an unexpected reactor trip in July 2005. A high SG level trip occurred in Yeonggwang (YGN) Unit 6 Nuclear Power Plant (NPP) due to human operator failure to recognize the need to change the control mode of the economizer valve controller (EVC) to manual mode during swap over (the transition from low power mode to high power mode) after the loss of offsite power (LOOP) event was recovered. This paper models the human system interaction in NPP SG level control system using Unified Modeling Language (UML) Activity Diagram. Then, it identifies the missing information for operators in the OPR1000 Main Control Room (MCR) and suggests some means of improving the human system interaction

  7. Regulatory Positions for Human-System Interfaces Modernization of Nuclear Power Plants; A Perspective of Human Factors Engineering

    International Nuclear Information System (INIS)

    US Electric Power Research Institute (EPRI) states that there are many reasons for modernization activities in Human-System Interfaces (HSIs) of nuclear power plants, including; (1) to address obsolescence and lack of spare parts, (2) to improve plant performance, HSIs functionality, and reliability, and (3) to enhance operator performance and reliability, etc. In these regards, in the case of Korea nuclear power industry, several NPPs have plan for plant modification. For an example, Kori 1 NPP was designed and built by thirty years ago and problems were foreseen with difficulty of abstaining spare parts, increased maintenance cost, and lack of competence related the operation with the old HSIs. According to these backgrounds, Korea Hydro and Nuclear Power Company (KHNP) is designing the new control room of Kori-1, including remote shutdown room and safety parameter display system (SPDS). For these plant modernization, Korea Institute of Nuclear Safety (KINS) is responsible for reviewing the safety of Human-System Interfaces and other-related activities. In this regard, the objective of this paper is to present the general regulatory positions on reviewing the HSIs modernization process

  8. Some aspects of digital I and C and digital human-system interface upgrades in nuclear power plants

    International Nuclear Information System (INIS)

    Digital I and C technology introduces some new terms and new processes like software life cycle, process computer configuration control, digital human-system interface (HSI), software V and V (Verification and Validation), software common mode failure potential, software documentation, etc. Based on the experience from NEK, and other NPPs and published reports from other organizations, this paper sheds light on challenging tasks related to some aspects of the digital I and C upgrades and especially the NPP MCR/MCB HSI (Nuclear Power Plant Main Control Room / Main Control Board Human-System Interface) upgrade. The Ref. [1], EPRI Report TR-1008122 was used as a guidance to analyze original NEK MCR/MCB HSI design (1970s), to describe migration from the original MCR/MCB HSI design to the 2005 AS-BUILT status and to propose the authors vision for the key planning aspects for I and C upgrades and MCR modernization. This paper submits the justified proposal for the endpoint vision and the migration path applicable to NEK MCR/MCB HSI modernization, as well as some of the possible risks and lessons learned. (author)

  9. Sitting in the Pilot's Seat; Optimizing Human-Systems Interfaces for Unmanned Aerial Vehicles

    Science.gov (United States)

    Queen, Steven M.; Sanner, Kurt Gregory

    2011-01-01

    One of the pilot-machine interfaces (the forward viewing camera display) for an Unmanned Aerial Vehicle called the DROID (Dryden Remotely Operated Integrated Drone) will be analyzed for optimization. The goal is to create a visual display for the pilot that as closely resembles an out-the-window view as possible. There are currently no standard guidelines for designing pilot-machine interfaces for UAVs. Typically, UAV camera views have a narrow field, which limits the situational awareness (SA) of the pilot. Also, at this time, pilot-UAV interfaces often use displays that have a diagonal length of around 20". Using a small display may result in a distorted and disproportional view for UAV pilots. Making use of a larger display and a camera lens with a wider field of view may minimize the occurrences of pilot error associated with the inability to see "out the window" as in a manned airplane. It is predicted that the pilot will have a less distorted view of the DROID s surroundings, quicker response times and more stable vehicle control. If the experimental results validate this concept, other UAV pilot-machine interfaces will be improved with this design methodology.

  10. Step 1:Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Collision Avoidance

    Science.gov (United States)

    2007-01-01

    This document provides definition of technology human interface requirements for Collision Avoidance (CA). This was performed through a review of CA-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Access 5 CA work package were considered... Beginning with the HSI high-level functional requirement for CA, and CA technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge CA system status, and (2) the control capability needed by the pilot to obtain CA information and affect an avoidance maneuver. Fundamentally, these requirements provide the candidate CA technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how CA operations and functions should interface with the pilot to provide the necessary CA functionality to the UA-pilot system .Requirements and guidelines for CA are partitioned into four categories: (1) General, (2) Alerting, (3) Guidance, and (4) Cockpit Display of Traffic Information. Each requirement is stated and is supported with a rationale and associated reference(s).

  11. Step 1: Human System Integration (HSI) FY05 Pilot-Technology Interface Requirements for Contingency Management

    Science.gov (United States)

    2005-01-01

    This document involves definition of technology interface requirements for Contingency Management. This was performed through a review of Contingency Management-related, HSI requirements documents, standards, and recommended practices. Technology concepts in use by the Contingency Management Work Package were considered. Beginning with HSI high-level functional requirements for Contingency Management, and Contingency Management technology elements, HSI requirements for the interface to the pilot were identified. Results of the analysis describe (1) the information required by the pilot to have knowledge of system failures and associated contingency procedures, and (2) the control capability needed by the pilot to obtain system status and procedure information. Fundamentally, these requirements provide the candidate Contingency Management technology concepts with the necessary human-related elements to make them compatible with human capabilities and limitations. The results of the analysis describe how Contingency Management operations and functions should interface with the pilot to provide the necessary Contingency Management functionality to the UA-pilot system. Requirements and guidelines for Contingency Management are partitioned into four categories: (1) Health and Status and (2) Contingency Management. Each requirement is stated and is supported with a rationale and associated reference(s).

  12. Advanced Stellar Compass, CHAMP, Interface Control Document

    DEFF Research Database (Denmark)

    Madsen, Peter Buch; Jørgensen, John Leif; Betto, Maurizio;

    1999-01-01

    The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, t...... mechanical interface and the TC/TM protocols for the communication between the Star Tracker and the OBDH.......The German government research establishment "GeoForschungsZentrum" developed under a contract to the German government a microsatellite named "Champ". The Space Instrumentation Group has made a Interface Control Document for the CHAMP, witch describes the Star Imager, the electrical interface, the...

  13. Optimizing human-system interface automation design based on a skill-rule-knowledge framework

    International Nuclear Information System (INIS)

    This study considers the technological change that has occurred in complex systems within the past 30 years. The role of human operators in controlling and interacting with complex systems following the technological change was also investigated. Modernization of instrumentation and control systems and components leads to a new issue of human-automation interaction, in which human operational performance must be considered in automated systems. The human-automation interaction can differ in its types and levels. A system design issue is usually realized: given these technical capabilities, which system functions should be automated and to what extent? A good automation design can be achieved by making an appropriate human-automation function allocation. To our knowledge, only a few studies have been published on how to achieve appropriate automation design with a systematic procedure. Further, there is a surprising lack of information on examining and validating the influences of levels of automation (LOAs) on instrumentation and control systems in the advanced control room (ACR). The study we present in this paper proposed a systematic framework to help in making an appropriate decision towards types of automation (TOA) and LOAs based on a 'Skill-Rule-Knowledge' (SRK) model. From the evaluating results, it was shown that the use of either automatic mode or semiautomatic mode is insufficient to prevent human errors. For preventing the occurrences of human errors and ensuring the safety in ACR, the proposed framework can be valuable for making decisions in human-automation allocation.

  14. Qualification of a Human-System Interface to Meet IEC 61513

    International Nuclear Information System (INIS)

    This paper describes the steps Atomic Energy of Canada Limited (AECLTM) undertook to qualify its Advanced Control Centre Information System (ACCISTM) to meet the requirements of IEC 61513. It will address the different strategies used for software versus hardware. As well, the paper will discuss the steps that have been taken to qualify third-party commercial-off-the-shelf products that are used in conjunction with a qualified product. ACCIS is a display, monitoring and supervisory control system that is designed to be readily configurable and scalable to satisfy the display requirements for single functions or complex industrial plant systems. The ACCIS software services are configured and deployed across a distributed computing environment to meet the needs of a given implementation. From small single-node applications to large, complex, multi-node configurations, system behaviour is largely configured via data specifications. This design reduces the costs associated with development of custom software and allows the user to have greater control of behavioral attributes of the system, including data sampling and storage rates, the appearance and behaviour of displays, alarm annunciation features, and the configuration of system health checks. Utilities and regulators are demanding that these computer-based systems are developed and maintained with an appropriate amount of engineering rigor. To meet this challenge, AECL is qualifying its ACCIS HSI, which is intended for use in all future CANada Nuclear Deuterium (CANDUTM) nuclear power plants, to meet the requirements of the International Electrotechnical Commission's (IEC) standard for instrumentation and control systems important to safety, IEC 61513. Transitioning to the IEC standards has not been without its challenges. While AECL previously used a software development model very similar to the IEC model, absorbing the volume of the IEC standards and understanding how they should be applied has been

  15. Human-system interface design review guideline -- Reviewer`s checklist: Final report. Revision 1, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant`s HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 2 is a complete set of the guidelines contained in Volume 1, Part 2, but in a checklist format that can be used by reviewers to assemble sets of individual guidelines for use in specific design reviews. The checklist provides space for reviewers to enter guidelines evaluations and comments.

  16. Human-system interface design review guideline -- Review software and user's guide: Final report. Revision 1, Volume 3

    International Nuclear Information System (INIS)

    NUREG-0700, Revision 1, provides human factors engineering (HFE) guidance to the US Nuclear Regulatory Commission staff for its: (1) review of the human system interface (HSI) design submittals prepared by licensees or applications for a license or design certification of commercial nuclear power plants, and (2) performance of HSI reviews that could be undertaken as part of an inspection or other type of regulatory review involving HSI design or incidents involving human performance. The guidance consists of a review process and HFE guidelines. The document describes those aspects of the HSI design review process that are important to the identification and resolution of human engineering discrepancies that could adversely affect plant safety. Guidance is provided that could be used by the staff to review an applicant's HSI design review process or to guide the development of an HSI design review plan, e.g., as part of an inspection activity. The document also provides detailed HFE guidelines for the assessment of HSI design implementations. NUREG-0700, Revision 1, consists of three stand-alone volumes. Volume 3 contains an interactive software application of the NUREG-0700, Revision 1 guidance and a user's guide for this software. The software supports reviewers during review preparation, evaluation design using the human factors engineering guidelines, and in report preparation. The user's guide provides system requirements and installation instructions, detailed explanations of the software's functions and features, and a tutorial on using the software

  17. Application of a computational situation assessment model to human system interface design and experimental validation of its effectiveness

    International Nuclear Information System (INIS)

    Highlights: ► We validate the effectiveness of a proposed procedure thru an experiment. ► The proposed procedure addresses the salient coding of the key information. ► It was found that salience coding affects operators’ attention significantly. ► The first observation to the key information quickly guided to the correct situation awareness. ► It was validated the proposed procedure is effective for better situation awareness. - Abstract: To evaluate the effects of human cognitive characteristics on situation awareness, a computational situation assessment model of nuclear power plant operators has been developed, as well as a procedure to apply the developed model to the design of human system interfaces (HSIs). The concept of the proposed procedure is to identify the key information source, which is expected to guarantee fast and accurate diagnosis when operators attend to it. The developed computational model is used to search the diagnostic paths and the key information source. In this study, an experiment with twelve trained participants was executed to validate the effectiveness of the proposed procedure. Eighteen scenarios covering various accidents were administered twice for each subject, and experimental data were collected and analyzed. As a result of the data analysis, it was validated that the salience level of information sources significantly influences the attention of operators, and the first observation of the key information sources leads operators to a quick and correct situation assessment. Therefore, we conclude that the proposed procedure for applying the developed model to HSI design is effective

  18. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  19. Advanced User Interfaces for Product Management Systems

    OpenAIRE

    Gundelsweiler, Fredrik; Reiterer, Harald

    2008-01-01

    Few of today s EPDM (electronic product data management) systems make use of valuable approaches in user interface design and information visualization as suggested by researchers. In this paper, we describe a design approach addressing the problems of searching, browsing, visualizing and filtering information in hierarchically structured graphs. The main problem areas we identified are the amount of data, the possibly complex hierarchical structure in combination with a chronological version...

  20. Ergonomics evaluation as a powerful tool to redesign advanced interfaces of nuclear control rooms

    International Nuclear Information System (INIS)

    Ergonomics is the scientific discipline concerned with the understanding of interactions among humans and other elements of a system. Ergonomics contributes to the design and evaluation of tasks, jobs, products, environments and systems in order to make them compatible with the needs, abilities and limitations of people. In the safe operation of nuclear power plant the performance of the control room crews plays an important role. In this respect, well-designed human-system interfaces (HSI) are crucial for safe and efficient operation of the plant, reducing the occurrence of incidents, accidents and the risks for human error. The aim of this paper is to describe a case study in which a methodological framework was applied to redesign advanced interfaces of a nuclear simulator. (author)

  1. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  2. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    International Nuclear Information System (INIS)

    New and advanced reactors will use integrated digital instrumentation and control (I and C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I and C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I and C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I and C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I and C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I and C conditions as part of the design process and the HSI features and functions that support operators to monitor I and C performance and manage I and C degradations when they occur. In addition, we identified topics for future research.

  3. Advanced Stellar Compass - Adeos II - Interface Control Document

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren; Madsen, Peter Buch; Riis, Troels; Thuesen, Gøsta; Jørgensen, Finn

    This document describes the Advanced Stellar Compass (ASC) and defines the interfaces between the instrument and the ADEOS II satellite. The ASC is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of...... reliability issues. Section 6 deals with the testing and the calibration procedures and in section 7 the mechanical and electrical interfaces are given. In section 8 and 9 we address issues like manufacturing, transportation and storage, in section 10 the requirements imposed by the ASC on the system are...

  4. An advanced interactive interface for robotics elearning

    Directory of Open Access Journals (Sweden)

    Fernando Torres

    2008-11-01

    Full Text Available Virtual and remote laboratories have improved learning and training in the academic community. They allow students to acquire methods, skills and experience related to real equipment in an intuitive and cost-effective way. The purpose of this paper is to present the development and the implementation of an e-learning environment in the field of Robotics. The main aim of this application is to allow students to simulate and to teleoperate a robot arm in an easy and user-friendly way, although it also includes many novel advanced features. The application has been developed using Easy Java Simulations (EJS, an open-source tool for people who do not need complex programming skills.

  5. Sensors, controls, and man-machine interface for advanced teleoperation

    Science.gov (United States)

    Bejczy, A. K.

    1980-01-01

    Some advances are reviewed which have been made in teleoperator (i.e., mechanical activities performed by mechanical devices at a remote site under remote control) technology through introduction of sensors, computers, automation, and new man-machine interface devices and techniques for remote manipulator control. The state of the art is summarized and some basic problems and challenging developments are examined.

  6. Man-machine interface builders at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Argonne National Laboratory is constructing a 7-GeV Advanced Photon Source for use as a synchrotron radiation source in basic and applied research. The controls and computing environment for this accelerator complex includes graphical operator interfaces to the machine based on Motif, X11, and PHIGS/PEX. Construction and operation of the control system for this accelerator relies upon interactive interface builder and diagram/editor type tools, as well as a run-time environment for the constructed displays which communicate with the physical machine via network connections. This paper discusses our experience with several commercial CUI builders, the inadequacies found in these, motivation for the development of an application- specific builder, and design and implementation strategies employed in the development of our own Man-Machine Interface builder. 5 refs

  7. A Software Prototype Development of Human System Interfaces for Human Factors Engineering Validation Tests of SMART MCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Tae; Kang, Young Sun; Park, Byung Yul; Han, Kwan Ho; Yang, Sung Won; Oh, In Su; Kim, Myung Ju; Bae, Mun Jin; Nam, Gi Ho; Lim, Do Yeun [Human Data Co., Daejeon (Korea, Republic of)

    2009-12-15

    This report's aim is to develop a software prototype that will be used in the partial dynamic mockup of SMART MCR(main control room). The software mainly consist of the plant a dynamic model and various operation displays that will be installed into MCR. They includes the codes such as main data processing logics like alarm reduction logic and display methods like ecological interface display and elastic tile alarm display developed by KAERI. The unit test and integrated test of them are performed according to predefined test procedure

  8. The homes of tomorrow: service composition and advanced user interfaces

    Directory of Open Access Journals (Sweden)

    Claudio Di Ciccio

    2011-12-01

    Full Text Available Home automation represents a growing market in the industrialized world. Today’s systems are mainly based on ad hoc and proprietary solutions, with little to no interoperability and smart integration. However, in a not so distant future, our homes will be equipped with many sensors, actuators and devices, which will collectively expose services, able to smartly interact and integrate, in order to offer complex services providing even richer functionalities. In this paper we present the approach and results of SM4ALL- Smart hoMes for All, a project investigating automatic service composition and advanced user interfaces applied to domotics.

  9. Nanoscale biomaterial interface modification for advanced tissue engineering applications

    International Nuclear Information System (INIS)

    Recently, various stem cells, including mesenchymal stem cells (MSCs), have been found to have considerable potential for application in tissue engineering and future advanced therapies due to their biological capability to differentiate into specific lineages. Modified surface properties, such as composition, nano-roughness and wettability, affect the most important processes at the biomaterial interface. The aim of the present is work is to study the stem cells' (MSCs) adhesive potential, morphology, phenotypical characteristics in in vitro tests, and to distinguish betwen the different factors influencing the cell/biomaterial interaction, such as nano-topography, surface chemistry and surface free energy.

  10. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    International Nuclear Information System (INIS)

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated

  11. Human factors evaluation of remote afterloading brachytherapy. Supporting analyses of human-system interfaces, procedures and practices, training and organizational practices and policies. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L. [Pacific Science & Engineering Group, San Diego, CA (United States)] [and others

    1995-07-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the second, third, fourth, and fifth phases of the project, which involved detailed analyses of four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training practices and policies; and organizational practices and policies, respectively. Findings based on these analyses provided factual and conceptual support for the final phase of this project, which identified factors leading to human error in RAB. The impact of those factors on RAB performance was then evaluated and prioritized in terms of safety significance, and alternative approaches for resolving safety significant problems were identified and evaluated.

  12. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  13. EDITORIAL: Focus on Advances in Surface and Interface Science 2009 FOCUS ON ADVANCES IN SURFACE AND INTERFACE SCIENCE 2009

    Science.gov (United States)

    Aeschlimann, Martin; Schneider, Wolf-Dieter

    2009-12-01

    Nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. A detailed understanding of the elementary processes at surfaces and interfaces is therefore necessary to support and to advance the high technology that very much founds the prosperity and life style of our society. One of the challenges of modern surface science is thus to expand its range of investigations to all types of surfaces and interfaces and to develop a thorough understanding of the relationships between molecular-scale surface properties and parameters relevant to potential applications and devices. Beyond these technological drivers, however, is a rich range of novel and fundamental physical and chemical properties at surfaces and interfaces down to the nanoscale whose study represents outstanding intellectual challenges. The current research focuses on atomic- and molecular-level studies of the structure (atomic and electronic), bonding, reactivity, dynamics, restructuring, and magnetism at the surfaces and interfaces of metals, oxides, semiconductors, polymers, biological molecules, and liquids. Such investigations are becoming more and more important in view of the increasing emphasis on nanometer-scale structures in almost every technological application, from heterogeneous catalysis to microcircuit fabrication to magnetic data storage. As the scale of devices continues to be reduced, the distinction between bulk and surface properties becomes blurred, and all of the properties of materials tend to become interfacial This Focus Issue includes exciting new developments in the field of surface and interface science ranging, e.g., from the properties of metal-water interfaces to single-atom contacts. Special emphasis was taken to coupling theory with experiments aimed at elucidating fundamental atomic scale phenomena. It combines a broad expert and frontiers survey of research in this field today with an up

  14. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  15. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  16. Software Tools that Control a Framework of Perceptual Interfaces and Visual Display Systems for Human-System Interaction with Robotic and Autonomous Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Turbogizmo, LLC will develop new software technology for Human-System Interaction (HSI) for NASA that increases performance and reduces the risk of conducting...

  17. Third International Workshop on Model Driven Development of Advanced User Interfaces

    OpenAIRE

    Pleuss, A.; Van den Bergh, Jan; Sauer, S; Görlich, D; Hussmann, H.

    2008-01-01

    The workshop Model Driven Development of Advanced User Interfaces (MDDAUI) aims at integrating results from the area of human-computer interaction and user interface modeling with the concepts of model-driven engineering. This paper provides a summary on the third edition of MDDAUI held as part of the MoDELS 2007 conference in Nashville, USA. In particular, it presents the results of the two group discussions of the workshop.

  18. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  19. Advancing brain-machine interfaces: moving beyond linear state space models

    OpenAIRE

    Rouse, Adam G.; Schieber, Marc H.

    2015-01-01

    Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs). Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal moto...

  20. Development of an Integrated Test Facility (ITF) for the advanced man machine interface evaluation

    International Nuclear Information System (INIS)

    An Integrated Test Facilityu (ITF) is a human factors experimental environment to evaluate an advanced Man Machine Interface(MMI) design. The ITF includes a Human Machine Simulator (HMS) comprised of a nuclear power plant function simulator, man-machine interface, experiment control station for the experiment control and design, human behavioural data measurement system, and Data Analysis and Experiment Evaluation Supporting System(DAEXESS). The most important features of ITF is to secure the flexibility and expandibility of Man Machine Interface(MMI) design to change easily the environment of experiments to accomplish the experiment's objects. In this paper, we describe a development scope and characteristics of the ITF such as, hardware and software development scope and characteristics, system thermohydraulic modelling characteristics, and experiment station characteristics for the experiment variables design and control, to be used as an experiment enviroment for the evaluation of VDU-based control room

  1. Benchmarks for interface-tracking codes in the consortium for advanced simulation of LWRs (CASL)

    International Nuclear Information System (INIS)

    A major innovation pursued by the Consortium for Advanced Simulation of LWRs (CASL) is the use of Interface Tracking Methods (ITM) to generate high-fidelity closure relations for two-phase flow and heat transfer phenomena (e.g. nucleate boiling, bubble break-up and coalescence, vapor condensation, etc.), to be used in coarser CFD, subchannel and system codes. ITMs do not assume an idealized geometry of the interface between the liquid and vapor phases, but rather calculate it from ‘first principles’. Also, used within the context of high-fidelity turbulence simulations, such as Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES), ITMs can resolve the velocity (including the fluctuating field) and temperature/scalar gradients near the liquid-vapor interface, so prediction of the exchange of momentum, mass and heat at the interface in principle requires no empirical correlations. The physical complexity of the two-phase flow and heat transfer phenomena encountered in LWRs naturally lends itself to an ITM analysis approach. Several codes featuring ITM capabilities are available within CASL. These are TransAT, STAR-CCM+, PHASTA, FTC3D and FELBM. They use a variety of ITMs ranging from Volume-Of- Fluid to Level-Set, from Front-Tracking to Lattice-Boltzmann. A series of benchmark simulations is being developed to test the key capabilities of these codes and their ITMs. In this paper, three such benchmark simulations, testing DNS, LES and interface tracking, respectively, are briefly described. (author)

  2. Advances in software development for intelligent interfaces for alarm and emergency management consoles

    International Nuclear Information System (INIS)

    Recent advances in technology allow features like voice synthesis, voice and speech recognition, image understanding, and intelligent data base management to be incorporated in computer driven alarm and emergency management information systems. New software development environments make it possible to do rapid prototyping of custom applications. Three examples using these technologies are discussed. (1) Maximum use is made of high-speed graphics and voice synthesis to implement a state-of-the-art alarm processing and display system with features that make the operator-machine interface efficient and accurate. Although very functional, this system is not portable or flexible; the software would have to be substantially rewritten for other applications. (2) An application generator which has the capability of ''building'' a specific alarm processing and display application in a matter of a few hours, using the site definition developed in the security planning phase to produce the custom application. This package is based on a standardized choice of hardware, within which it is capable of building a system to order, automatically constructing graphics, data tables, alarm prioritization rules, and interfaces to peripherals. (3) A software tool, the User Interface Management System (UIMS), is described which permits rapid prototyping of human-machine interfaces for a variety of applications including emergency management, alarm display and process information display. The object-oriented software of the UIMS achieves rapid prototyping of a new interface by standardizing to a class library of software objects instead of hardware objects

  3. An advanced media interface for control of modern transport aircraft navigational systems

    Science.gov (United States)

    Jones, D. R.; Parrish, R. V.; Person, L. H., Jr.; Old, J. L.

    1984-01-01

    With the advent of digital avionics, the workload of the pilot in a moderen transport aircraft is increasing significantly. This situation makes it necessary to reduce pilot workload with the aid of new advanced technologies. As part of an effort to improve information management systems, NASA has, therefore, studied an advanced concept for managing the navigational tasks of a modern transport aircraft. This concept is mainly concerned with the simplification of the pilot interface. The advanced navigational system provides a simple method for a pilot to enter new waypoints to change his flight plan because of heavy traffic, adverse weather conditions, or other reasons. The navigational system was implemented and evaluated in a flight simulator representative of a modern transport aircraft. Attention is given to the simulator, flight simulation, multimode devices, and the navigational system.

  4. Nyquist AD Converters, Sensor Interfaces, and Robustness Advances in Analog Circuit Design, 2012

    CERN Document Server

    Baschirotto, Andrea; Steyaert, Michiel

    2013-01-01

    This book is based on the presentations during the 21st workshop on Advances in Analog Circuit Design.  Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.  Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of Nyquist A/D converters, capacitive sensor interfaces, reliability, variability, and connectivity.

  5. Advances in software development for intelligent interfaces for alarm and emergency management consoles

    International Nuclear Information System (INIS)

    Recent advances in technology allow features like voice synthesis, voice and speech recognition, image understanding, and intelligent data base management to be incorporated in computer driven alarm and emergency management information systems. New software development environments make it possible to do rapid prototyping of custom applications. Three examples using these technologies are discussed. 1) Maximum use is made of high-speed graphics and voice synthesis to implement a state-of-the-art alarm processing and display system with features that make the operator-machine interface efficient and accurate. 2) An application generator which has the capability of ''building'' a specific alarm processing and display application in a matter of a few hours, using the site definition developed in the security planning phase to produce the custom application. 3) A software tool, is described which permits rapid prototyping of human-machine interfaces for a variety of applications including emergency management, alarm display and process information display

  6. Advanced graphic interface man machine for a simulator of nuclear processes for training in classroom

    International Nuclear Information System (INIS)

    This work describes a working prototype that will serve as experimental platform for the specification and development of a commercial classroom analysis simulator. The classroom analysis simulator will be used as analytical tool for an optimal and more efficient training of operation personnel of Laguna Verde Power Plant. The focus of this work is on the advanced graphical interface of the classroom analysis simulator and those issues involved with its design. This interface offers two distinctive features: 1) virtual representation of instrumentation and controls of different control panels; and 2) direct manipulation as main interaction method. These features provide an easy and intuitive way to manipulate and monitor virtual instrumentation as well as an effortless manner to control the interface. By using object menus with special control features, it is possible to perform visualization functions such as navigation among control panels, location of instrumentation, panning, zooming and reset. The system and its interface provide immediate feedback and reversible operation capabilities allowing an easy, fast and natural human-machine interaction within a graphical environment that the operator is familiar with. The system gives also access and displays a functional copy of the Laguna Verde Safety Parameters Display System. In addition, a special set of graphic displays representing the full animation of transients and severe accidents via output data files from specialized nuclear codes are being designed. The features of the system mentioned above, supported by advanced mathematical models, currently under development, will provide an exceptional simulation environment. It is expected that the simulator will be used not only as an alternative to reduce expensive load of the current hard wire simulator, but also as a powerful extension analytical tool. (Author)

  7. A study on advanced man-machine interface system for autonomous nuclear power plants

    International Nuclear Information System (INIS)

    A man-machine interface(MMI) system of an autonomous nuclear power plant has an advanced function compared with that of the present nuclear power plants. The MMI has a function model of a plant state, and updates and revises this function model by itself. This paper describes the concept of autonomous nuclear power plants, a plant simulator of an autonomous power plant, a contracted function model of a plant state, three-dimensional color graphic display of a plant state, and an event-tree like expression for plant states. (author)

  8. Advancing brain-machine interfaces: moving beyond linear state space models.

    Science.gov (United States)

    Rouse, Adam G; Schieber, Marc H

    2015-01-01

    Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs). Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal motor behavior. We consider (i) the dynamic range and precision of natural movements, (ii) differences between cortical activity and actual body movement, (iii) kinematic and muscular synergies, and (iv) the implications of large neuronal populations. We advance the hypothesis that a given population of recorded neurons may transmit more useful information than can be captured by a single, linear model across all movement phases and contexts. We argue that incorporating these various non-linear characteristics will be an important next step in advancing BMIs to more closely match natural motor performance. PMID:26283932

  9. Advancing brain-machine interfaces: Moving beyond linear state space models

    Directory of Open Access Journals (Sweden)

    Adam G Rouse

    2015-07-01

    Full Text Available Advances in recent years have dramatically improved output control by Brain-Machine Interfaces (BMIs. Such devices nevertheless remain robotic and limited in their movements compared to normal human motor performance. Most current BMIs rely on transforming recorded neural activity to a linear state space composed of a set number of fixed degrees of freedom. Here we consider a variety of ways in which BMI design might be advanced further by applying non-linear dynamics observed in normal motor behavior. We consider i the dynamic range and precision of natural movements, ii differences between cortical activity and actual body movement, iii kinematic and muscular synergies, and iv the implications of large neuronal populations. We advance the hypothesis that a given population of recorded neurons may transmit more useful information than can be captured by a single, linear model across all movement phases and contexts. We argue that incorporating these various non-linear characteristics will be an important next step in advancing BMIs to more closely match natural motor performance.

  10. Advancement in thermal interface materials for future high-performance electronic applications. Part 1.

    Energy Technology Data Exchange (ETDEWEB)

    Jakaboski, Blake Elaine; Wong, Chung-Nin Channy; Huber, Dale L.; Rightley, Michael J.; Emerson, John Allen

    2006-02-01

    As electronic assemblies become more compact and increase in processing bandwidth, escalating thermal energy has become more difficult to manage. The major limitation has been nonmetallic joining using poor thermal interface materials (TIM). The interfacial, versus bulk, thermal conductivity of an adhesive is the major loss mechanism and normally accounts for an order magnitude loss in conductivity per equivalent thickness. The next generation TIM requires a sophisticated understanding of material and surface sciences, heat transport at submicron scales, and the manufacturing processes used in packaging of microelectronics and other target applications. Only when this relationship between bond line manufacturing processes, structure, and contact resistance is well-understood on a fundamental level will it be possible to advance the development of miniaturized microsystems. This report examines using thermal and squeeze-flow modeling as approaches to formulate TIMs incorporating nanoscience concepts. Understanding the thermal behavior of bond lines allows focus on the interfacial contact region. In addition, careful study of the thermal transport across these interfaces provides greatly augmented heat transfer paths and allows the formulation of very high resistance interfaces for total thermal isolation of circuits. For example, this will allow the integration of systems that exhibit multiple operational temperatures, such as cryogenically cooled detectors.

  11. MAAP-impair interface for analysis of iodine behavior in advanced reactor accidents

    International Nuclear Information System (INIS)

    As part of the US Department of Energy (US DOE) Advanced Reactor Severe Accident Program, a study was initiated to provide an ex-vessel iodine analytical capability to estimate source terms for severe accidents in advanced light water reactors. This capability has been developed by creating a software link, MID, between the MAAP and IMPAIR computer codes. The interface allows IMPAIR to access the thermal-hydraulic and fission product results provided by MAAP and use these results to drive the chemical reaction and physical mass transfer models in IMPAIR. The first phase of the development is designed to provide iodine analytical capability up to the point of reactor vessel failure. A follow-on study is planned to address iodine behavior in accident scenarios that go beyond vessel failure. A number of MAAP-IMPAIR demonstration calculations have been performed for the General Electric simplified boiling water reactor and Westinghouse AP600 reactor designs. These calculations demonstrated that the software interface provided the necessary link to create a functional ex-vessel iodine analytic capability. They also clearly indicated that both the chemical and the physical behavior of iodine species in the containment are strongly dependent upon the containment thermal-hydraulic conditions

  12. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    Energy Technology Data Exchange (ETDEWEB)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  13. MCAM 5: an advanced interface program for multiple Monte Carlo Codes

    International Nuclear Information System (INIS)

    The Automatic Modeling Program for Neutronics and Radiation Transport Simulation (MCAM) developed in China, is an advanced interface program between CAD (Computer Aided Design) systems and Monte Carlo (MC) codes. It can significantly reduce the manpower and enhance reliability for constructing MC codes input of complex systems. The latest version MCAM 4.8 was a mature and efficient version which was benchmarked with ITER benchmark model and has been used by hundreds of institutes in more than 40 countries all over the world. It can deal with MCNP and TRIPOLI models. The main function of MCAM is to convert geometries in CAD systems to geometries in MC codes input files. The MCAM version 5.2 is going to be released with added capabilities to support SuperMC, Geant4 and FLUKA Monte Carlo codes

  14. Comprehensive support for nuclear decommissioning based on 3D simulation and advanced user interface technologies

    International Nuclear Information System (INIS)

    There is an increasing international focus on the need to optimise decommissioning strategies, driven by the anticipation of high costs and major effort for the decommissioning of nuclear facilities in the coming decades. The goals are to control and mitigate costs and negative impacts on workers, the general public, and the environment. The methods presently employed for many decommissioning tasks do not apply the latest advancements of science and technology. Therefore, there is growing interest in research and development into the adoption of novel techniques for improving safety, reducing costs, and increasing transparency. This paper provides a comprehensive overview of the authors' results from investigating how current and emerging technologies can be applied to enhance the international decommissioning strategy, focussing in particular on three-dimensional simulation, virtual reality, advanced user interfaces, mobile and wearable devices, and geographical information systems. Our results demonstrate that emerging technologies have great potential for supporting adoption of new instrumentation, improving data and knowledge management, optimising project plans, briefing and training field operators, and for communication, surveillance, and education in general. (author)

  15. Human Systems Interface Design Methods Using Ecological Interface Design Principles

    International Nuclear Information System (INIS)

    The results of this study categorized into two parts. The first part is the guidelines for EID designs. The procedure to observe for EID design is composed of 6 steps; 1) to define a target system, 2) to make an abstraction hierarchy model, 3) to check the link structure among each components included in the layers of abstraction hierarchy model, 4) to transform information requirements to variables, 5) to make the graphs related to each variables, 6) to check the graphs by visual display design principles and heuristic rules. The second part is an EID design alternative for nuclear power plant. The EID for high level function represents the energy balance and energy flow in each loop of nuclear power plant. The EID for middle level function represents the performance indicators of each equipment involved in the all processes of changing from coolants to steam. The EID for low level function represents the values measured in each equipment such as temperature, pressure, water level and so on

  16. Numerical Evaluation of Fluid Mixing Phenomena in Boiling Water Reactor Using Advanced Interface Tracking Method

    Science.gov (United States)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low.

  17. Envisioning Advanced User Interfaces for E-Government Applications: A Case Study

    Science.gov (United States)

    Calvary, Gaëlle; Serna, Audrey; Coutaz, Joëlle; Scapin, Dominique; Pontico, Florence; Winckler, Marco

    The increasing use of the Web as a software platform together with the advance of technology has promoted Web applications as a starting point for improving communication between citizens and administration. Currently, several e-government Web portals propose applications for accessing information regarding healthcare, taxation, registration, housing, agriculture, education, and social services, which otherwise may be difficult to obtain. However, the adoption of services provided to citizens depends upon how such applications comply with the users' needs. Unfortunately, building an e-government website doesn't guarantee that all citizens who come to use it can access its contents. These services need to be accessible to all citizens/customers equally to ensure wider reach and subsequent adoption of the e-government services. User disabilities, computer or language illiteracy (e.g., foreign language), flexibility on information access (e.g., user remotely located in rural areas, homeless, mobile users), and ensuring user privacy on sensitive data are some of the barriers that must be taken into account when designing the User Interface (UI) of e-government applications.

  18. Advanced growth and surface analysis system for in situ studies of interface formation. Annual technical report

    International Nuclear Information System (INIS)

    This is the first annual report for developing an advanced integrated in situ UHV growth/analysis system for synchrotron radiation studies of interface and surface reactions which lead to epitaxial structures on Si, Ge, and Si1-xGex alloys. This equipment will allow one to use techniques based on synchrotron radiation, such as photoemission, x-ray standing wave (XSW), and surface x-ray absorption spectroscopy (SXAFS) to determining the electronic states and atomic configurations of surfaces in metal-silicon, metal-germanium and metal-silicon-germanium alloys. Since the award of the contract the authors have completed a detailed design of the overall system, identified commercially available equipment which fits the requirements and have purchased or ordered all of this equipment. They have also custom designed a considerable amount of equipment which is not available commercially because of the special requirements. This includes both of the UHV chambers, sample manipulators, and a mobile support stand. In this report, they will describe the design and purchase status of the system. An overview of the equipment purchase status is given in Appendix 1. The details of their custom designed growth and analytical chambers are given in Appendix 2

  19. Advanced GIS data assimilation interface for evaluation of flood resilient systems

    Science.gov (United States)

    Richard, J.; Giangola-Murzyn, A.; Gires, A.; Tchiguirinskaia, I.; Schertzer, D.

    2012-04-01

    The runoff in peri-urban catchments results from complex interactions of multi-component, multi-functional systems. These interactions increase the space-time variability of the flow depth and discharge. The Geographic Information System (GIS) technologies are well-established tools for the storage, display and interpretation of spatially distributed data required for spatially distributed hydrological modelling. An advanced GIS data assimilation interface is a requisite to obtain a distributed hydrological model that is both transportable from catchment to catchment and is easily adaptable to the data resolution. This should be achieved both for the cartographic data and the linked information data. Spatial distribution of the flow parameters during the storm event under different numerical scenarios is indispensable to evaluate the efficiency of flood resilience technologies, including for providing predictive tools for flood resilient urban system management. In the case of Multi-Hydro-Version2 that has been developed within the EU FP7 SMARTesT project, several types of information are to be distributed on a regular grid. The grid cell size has to be chosen individually for each of the project case studies and each cell has to be filled up with information. The main requested data are topography and land use. The former corresponds to a quantitative information (elevation) to be as precise as possible, whereas the latter correspond to a qualitative description done with the help of a series of discrete classes, e.g.: house, road, gully, water,etc. The refinement of the class number is in fact limited by the grid resolution. Pedology is also very important, but reliable data are much less available, in particular in an electronic format. The model uses also the runoff that occurred before the event, the initial soil moisture and the elevation of the water in water bodies (e.g. puddles). These parameters are not easily accessible for a large studied area, so they

  20. Seismological investigations of the subduction zone plate interface: New advances and challenges

    Science.gov (United States)

    Rietbrock, Andreas; Garth, Tom; Hicks, Stephen

    2015-04-01

    In the last decade, huge advances have been made in analysing the slip distribution of large megathrust earthquakes and how slip relates to geodetic locking, shedding light on the character of the seismic cycle in subduction zones. Recently, a number of studies have suggested that at convergent plate boundaries, geodetic locking may be closely related to slip distribution of subsequent large earthquakes, as found recently for the Maule 2010 and Tohoku 2011 earthquakes. However, the physical (e.g. seismic) properties along the subduction zone interface are still poorly constrained, posing a major limitation to our physical understanding of both geodetic locking and earthquake rupture process. Here, we present high-resolution seismic tomography results (P- and S-wave velocity), as well as earthquake locations to make a detailed investigation of seismic properties along the portion of the plate interface that ruptured during the 2010 Maule earthquake. Additionally, to test the robustness of our models, we performed numerous numerical tests including changes to the parameterization, synthetic recovery tests and bootstrap analysis. We find P-wave velocities of about 5.7 km/s at 10 km depth and linearly increasing to 7.5 km/s at a depth of 30 km. Between 30 km and 43 km, P-wave velocities are relatively constant at around 7.5 km/s before a subsequent increase to 8.3 km/s at larger depths (>60 km) is observed. The Poisson's ratio is significantly elevated, at values of up to 0.35 at shallow depths of 10km to 15km, before reaching less elevated values of 0.28-0.29 in the depth range between 20km and 43km. Comparison of these velocities to petrological models shows good agreement below 30 - 50 km depth. At shallower depths though P-wave velocities are significantly lower, which together with the elevated poisons ratio indicates that this portion of the mega thrust is highly hydrated, suggesting that material properties may in part control the seismogenic character of

  1. A study on dynamic evaluation methods for human-machine interfaces in advanced control rooms

    International Nuclear Information System (INIS)

    Extensive efforts have been performed to reveal factors that largely affect to the safety of nuclear power plants (NPPs). Among them, human factors were known as a dominant cause of a severe accident, such as Three Mile Island and Chernobyl accidents. Thus a lot of efforts to resolve human factors related problems have been spent, and one of these efforts is an advanced control room (ACR) design to enhance human performance and the safety of NPPs. There are two important trends in the design of ACRs. The first one is increasing automation level, and the second one is the development of computer based compact workstations for control room operations including intelligent operator aid systems. However, several problems have been reported when another factors are not properly incorporated into the design of ACRs. Among them, one of the most important factors that significantly affect to operator performance is the design of human machine interfaces (HMIs). Thus, HMI evaluation should be emphasized to ensure appropriateness of HMI designs and the safety of NPPs. In general, two kinds of evaluations have been frequently used to assess appropriateness of the proposed HMI design. The one is the static evaluation and the other is the dynamic evaluation. Here, the static evaluation is the one based on guidelines that are extracted from various researches on HMI designs. And the dynamic evaluation generally attempts to evaluate and predict human performance through a model that can describe cognitive behaviors of human or interactions between HMIs and human. However, the static evaluation seems to be inappropriate because it can't properly capture context of task environment that strongly affects to human performance. In addition, in case of dynamic evaluations, development of a model that can sufficiently describe interactions or cognitive behaviors of human operators is very arduous and laborious. To overcome these problems, dynamic evaluation methods that can

  2. Advanced Maintenance Simulation by Means of Hand-Based Haptic Interfaces

    Science.gov (United States)

    Nappi, Michele; Paolino, Luca; Ricciardi, Stefano; Sebillo, Monica; Vitiello, Giuliana

    Aerospace industry has been involved in virtual simulation for design and testing since the birth of virtual reality. Today this industry is showing a growing interest in the development of haptic-based maintenance training applications, which represent the most advanced way to simulate maintenance and repair tasks within a virtual environment by means of a visual-haptic approach. The goal is to allow the trainee to experiment the service procedures not only as a workflow reproduced at a visual level but also in terms of the kinaesthetic feedback involved with the manipulation of tools and components. This study, conducted in collaboration with aerospace industry specialists, is aimed to the development of an immersive virtual capable of immerging the trainees into a virtual environment where mechanics and technicians can perform maintenance simulation or training tasks by directly manipulating 3D virtual models of aircraft parts while perceiving force feedback through the haptic interface. The proposed system is based on ViRstperson, a virtual reality engine under development at the Italian Center for Aerospace Research (CIRA) to support engineering and technical activities such as design-time maintenance procedure validation, and maintenance training. This engine has been extended to support haptic-based interaction, enabling a more complete level of interaction, also in terms of impedance control, and thus fostering the development of haptic knowledge in the user. The user’s “sense of touch” within the immersive virtual environment is simulated through an Immersion CyberForce® hand-based force-feedback device. Preliminary testing of the proposed system seems encouraging.

  3. Development of an advanced human-machine interface for next generation nuclear power plants

    International Nuclear Information System (INIS)

    An advanced human-machine interface (HMI) has been developed to enhance the safety and availability of a nuclear power plant (NPP) by improving operational reliability. The key elements of the proposed HMI are the large display panels which present synopsis of plant status and the compact, computer-based work stations for monitoring, control and protection functions. The work station consists of four consoles such as a dynamic alarm console (DAC), a system information console (SIC), a computerized operating-procedure console (COC), and a safety system information console (SSIC). The DAC provides clean alarm pictures, in which information overlapping is excluded and alarm impacts are discriminated, for quick situation awareness. The SIC supports a normal operation by offering all necessary system information and control functions over non-safety systems. In addition, it is closely linked to the other consoles in order to automatically display related system information according to situations of the DAC and the COC. The COC aids operators with proper operating procedures during normal plant startup and shutdown or after a plant trip, and it also reduces their physical/mental burden through soft automation. The SSIC continuously displays safety system status and enables operators to control safety systems. The proposed HMI has been evaluated using the checklists that are extracted from various human factors guidelines. From the evaluation results, it can be concluded that the HMI is so designed as to address the human factors issues reasonably. After sufficient validation, the concept and the design features of the proposed HMI will be reflected in the design of the main control room of the Korean Next Generation Reactor (KNGR)

  4. Spaceflight Human System Standards

    Science.gov (United States)

    Holubec, Keith; Tillman, Barry; Connolly, Jan

    2009-01-01

    NASA created a new approach for human system integration and human performance standards. NASA created two documents a standard and a reference handbook. The standard is titled NASA Space Flight Human-System Standard (SFHSS) and consists of two-volumes: Volume 1- Crew Health This volume covers standards needed to support astronaut health (medical care, nutrition, sleep, exercise, etc.) Volume 2 Human Factors, Habitability and Environmental Health This volume covers the standards for system design that will maintain astronaut performance (ie., environmental factors, design of facilities, layout of workstations, and lighting requirements). It includes classic human factors requirements. The new standards document is written in terms so that it is applicable to a broad range of present and future NASA systems. The document states that all new programs prepare system-specific requirements that will meet the general standards. For example, the new standard does not specify a design should accommodate specific percentiles of a defined population. Rather, NASA-STD-3001, Volume 2 states that all programs shall prepare program-specific requirements that define the user population and their size ranges. The design shall then accommodate the full size range of those users. The companion reference handbook, Human Integration Design Handbook (HIDH), was developed to capture the design consideration information from NASA-STD-3000, and adds spaceflight lessons learned, gaps in knowledge, example solutions, and suggests research to further mature specific disciplines. The HIDH serves two major purposes: HIDH is the reference document for writing human factors requirements for specific systems. HIDH contains design guidance information that helps insure that designers create systems which safely and effectively accommodate the capabilities and limitations of space flight crews.

  5. Advanced liquid chromatography-mass spectrometry interface based on electron ionization.

    Science.gov (United States)

    Cappiello, A; Famiglini, G; Pierini, E; Palma, P; Trufelli, H

    2007-07-15

    Major progress in interfacing liquid chromatography and electron ionization mass spectrometry is presented. The minimalism of the first prototype, called the Direct-EI interface, has been widely refined, improved, and applied to modern instrumentation. The simple interfacing principle is based on the straight connection between a nanoHPLC system and a mass spectrometer equipped with an EI source forming a solid and reliable unicum resembling the immediacy and straightforwardness of GC/MS. The interface shows a superior performance in the analysis of small-medium molecular weight compounds, especially when compared to its predecessors, and a unique trait that excels particularly in the following aspects: (1) It delivers high-quality, fully library matchable mass spectra of most sub-1 kDa molecules amenable by HPLC. (2) It is a chemical ionization free interface (unless operated intentionally) with accurate reproduction of the expected isotope ion abundances. (3) Response is never influenced by matrix components in the sample or in the mobile phase (nonvolatile salts are also well accepted). A deep evaluation of these aspects is presented and discussed in detail. Other characteristics of the interface performance such as limits of detections, range of linear response, and intra- and interday signal stability were also considered. The usefulness of the interface has been tested in a few real-world applications where matrix components played a detrimental role with other LC/MS techniques. PMID:17569502

  6. Human factors challenges for advanced process control

    International Nuclear Information System (INIS)

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls

  7. HSI Prototypes for Human Systems Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Idaho National Lab. (INL), Idaho Falls, ID (United States); McDonald, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report describes in detail the design and features of three Human System Interface (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energy’s Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  8. HSI Prototypes for Human Systems Simulation Laboratory

    International Nuclear Information System (INIS)

    This report describes in detail the design and features of three Human System Interface (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energy's Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  9. Wettability and interface considerations in advanced heat-resistant Ni-base composites

    International Nuclear Information System (INIS)

    Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990's due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al2O3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-of the

  10. Intelligent Human Machine Interface Design for Advanced Product Life Cycle Management Systems

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and implementing an intelligent and user friendly human machine interface for any kind of software or hardware oriented application is always be a challenging task for the designers and developers because it is very difficult to understand the psychology of the user, nature of the work and best suit of the environment. This research paper is basically about to propose an intelligent, flexible and user friendly machine interface for Product Life Cycle Management products or PDM Systems since studies show that usability and human computer interaction issues are a major cause of acceptance problems introducing or using such systems. Going into details of the proposition, we present prototype implementations about theme based on design requirements, designed designs and technologies involved for the development of human machine interface.

  11. NASA Human System Risk Assessment Process

    Science.gov (United States)

    Francisco, D.; Romero, E.

    2016-01-01

    two-page assessment representing the state of knowledge/evidence of that risk, available risk mitigations, traceability to the Space Flight Human System Standards (SFHSS) and program requirements, and future work required. These data then can drive coordinated budgets across the Human Research Program, the International Space Station, Crew Health and Safety and Advanced Exploration System budgets to provide the most economical and timely mitigations. The risk assessments were completed for the 6 DRMs and serve as the baseline for which subsequent research and technology development and crew health care portfolios can be assessed. The HSRB reviews each risk at least annually or when new evidence/information is available that adds to the body of evidence. The current status of each risk can be reported to program management for operations, budget reviews and general oversight of the human system risk management program.

  12. Human systems dynamics: Toward a computational model

    Science.gov (United States)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  13. Thermogravimetric and microscopic analysis of SiC/SiC materials with advanced interfaces

    International Nuclear Information System (INIS)

    The chemical stability of SiC/SiC composites with fiber/matrix interfaces consisting of multilayers of SiC/SiC and porous SiC have been evaluated using a thermal gravimetric analyzer (TGA). Previous evaluations of SiC/SiC composites with carbon interfacial layers demonstrated the layers are not chemically stable at goal use temperatures of 800-1100 degrees C and O2 concentrations greater than about 1 ppm. No measureable mass change was observed for multilayer and porous SiC interfaces at 800-1100 degrees C and O2 concentrations of 100 ppm to air; however, the total amount of oxidizable carbon is on the order of the sensitivity of the TGA. Further studies are in progress to evaluate the stability of these materials

  14. Advanced User Interface Generation in the Software Framework for Magnetic Measurements at CERN

    CERN Document Server

    Arpaia, P; La Commara, Giuseppe; Arpaia, Pasquale

    2010-01-01

    A model-based approach, the Model-View-Interactor Paradigm, for automatic generation of user interfaces in software frameworks for measurement systems is proposed. The Model-View-Interactor Paradigm is focused on the ``interaction{''} typical in a software framework for measurement applications: the final user interacts with the automatic measurement system executing a suitable high-level script previously written by a test engineer. According to the main design goal of frameworks, the proposed approach allows the user interfaces to be separated easily from the application logic for enhancing the flexibility and reusability of the software. As a practical case study, this approach has been applied to the flexible software framework for magnetic measurements at the European Organization for Nuclear research (CERN). In particular, experimental results about the scenario of permeability measurements are reported.

  15. Advanced 3D Audio Algorithms by a Flexible, Low Level Application Programming Interface

    OpenAIRE

    Simeonov, A; Zoia, G.; Lluis Garcia, R.; Mlynek, D.

    2004-01-01

    The constantly increasing demand for a better quality in sound and video for multimedia content and virtual reality compels the implementation of more and more sophisticated 3D audio models in authoring and playback tools. A very careful and systematic analysis of the best available development libraries in this area was carried out, considering different Application Programming Interfaces, their features, extensibility, and portability among each other. The results show that it is often diff...

  16. Advanced zinc-doped adhesives for high performance at the resin-carious dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; García-Godoy, Franklin; Toledano-Osorio, Manuel; Aguilera, Fátima S

    2016-09-01

    The purpose of this study was to evaluate the remineralization ability of an etch-and-rinse Zn-doped resin applied on caries-affected dentin (CAD). CAD surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5M ethylenediaminetetraacetic acid (EDTA). 10wt% ZnO nanoparticles or 2wt% ZnCl2 were added into the adhesive Single Bond (SB), to create the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl2, EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl2. Bonded interfaces were submitted to mechanical loading or stored during 24h. Remineralization of the bonded interfaces was studied by AFM nano-indentation (hardness and Young׳s modulus), Raman spectroscopy [mapping with principal component analysis (PCA), and hierarchical cluster analysis (HCA)] and Masson׳s trichrome staining technique. Dentin samples treated with PA+SB-ZnO attained the highest values of nano-mechanical properties. Load cycling increased both mineralization and crystallographic maturity at the interface; this effect was specially noticed when using ZnCl2-doped resin in EDTA-treated carious dentin. Crosslinking attained higher frequencies indicating better conformation and organization of collagen in specimens treated with PA+SB-ZnO, after load cycling. Trichrome staining technique depicted a deeper demineralized dentin fringe that became reduced after loading, and it was not observable in EDTA+SB groups. Multivariate analysis confirmed de homogenizing effect of load cycling in the percentage of variances, traces of centroids and distribution of clusters, especially in specimens treated with EDTA+SB-ZnCl2. PMID:27232828

  17. Intelligent systems and advanced user interfaces for design, operation, and maintenance of command management systems

    Science.gov (United States)

    Potter, William J.; Mitchell, Christine M.

    1993-01-01

    Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard

  18. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    Science.gov (United States)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  19. Interfacing comprehensive rotorcraft analysis with advanced aeromechanics and vortex wake models

    Science.gov (United States)

    Liu, Haiying

    This dissertation describes three aspects of the comprehensive rotorcraft analysis. First, a physics-based methodology for the modeling of hydraulic devices within multibody-based comprehensive models of rotorcraft systems is developed. This newly proposed approach can predict the fully nonlinear behavior of hydraulic devices, and pressure levels in the hydraulic chambers are coupled with the dynamic response of the system. The proposed hydraulic device models are implemented in a multibody code and calibrated by comparing their predictions with test bench measurements for the UH-60 helicopter lead-lag damper. Predicted peak damping forces were found to be in good agreement with measurements, while the model did not predict the entire time history of damper force to the same level of accuracy. The proposed model evaluates relevant hydraulic quantities such as chamber pressures, orifice flow rates, and pressure relief valve displacements. This model could be used to design lead-lag dampers with desirable force and damping characteristics. The second part of this research is in the area of computational aeroelasticity, in which an interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is established. This interface enables data exchange between CFD and CSD with the goal of achieving accurate airloads predictions. In this work, a loose coupling approach based on the delta-airloads method is developed in a finite-element method based multibody dynamics formulation, DYMORE. To validate this aerodynamic interface, a CFD code, OVERFLOW-2, is loosely coupled with a CSD program, DYMORE, to compute the airloads of different flight conditions for Sikorsky UH-60 aircraft. This loose coupling approach has good convergence characteristics. The predicted airloads are found to be in good agreement with the experimental data, although not for all flight conditions. In addition, the tight coupling interface between the CFD program, OVERFLOW

  20. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  1. Hanford waste vitrification plant process description, process advancements, and Hanford site interfaces

    International Nuclear Information System (INIS)

    Westinghouse Hanford Company, a prime operating contractor to the U.S. Department of Energy in Richland, Washington, has the lead responsibility for development, design, construction, and operation of the Hanford Waste Vitrification Plant. The Hanford Waste Vitrification Plant will be built for the U.S. Department of Energy to vitrify existing and future liquid high level and transuranic wastes produced by defense activities at the Hanford Site. Start of construction is scheduled for mid1991. Hot startup currently is scheduled for December 1999, and acceleration of the hot startup schedule is under consideration. Requirements related to interfaces with existing Hanford Site facilities and other site specific requirements are discussed in this paper. Design of the feed transfer and lag storage, radioactive liquid waste treatment and recycle, and process off gas treatment systems is significantly affected by site specific requirements. Recent developments in design of these systems are described. 3 figs

  2. New Analytical Methods for the Surface/Interface and the Micro-Structures in Advanced Nanocomposite Materials by Synchrotron Radiation

    International Nuclear Information System (INIS)

    Analytical methods of surface/interface structure and micro-structure in advanced nanocomposite materials by using the synchrotron radiation are introduced. Recent results obtained by the energy-tunable and highly collimated brilliant X-rays, in-situ wide angle/small angle X-ray diffraction with high accuracy are reviewed. It is shown that small angle X-ray scattering is one of the best methods to characterize nanoparticle dispersibility, filler aggregate/agglomerate structures and in-situ observation of hierarchical structure deformation in filled rubber under cyclic stretch. Grazing Incidence(small and wide angle) X-ray Scattering are powerful to analyze the sintering process of metal nanoparticle by in-situ observation as well as the orientation of polymer molecules and crystalline orientation at very thin surface layer (ca 7nm) of polymer film. While the interaction and conformation of adsorbed molecule at interface can be investigated by using high energy X-ray XPS with Enough deep position (ca 9 micron m). (author)

  3. New Analytical Methods for the Surface/ Interface and the Micro-Structures in Advanced Nanocomposite Materials by Synchrotron Radiation

    Directory of Open Access Journals (Sweden)

    K. Nakamae

    2010-12-01

    Full Text Available Analytical methods of surface/interface structure and micro-structure in advanced nanocomposite materials by using the synchrotron radiation are introduced. Recent results obtained by the energy-tunable and highly collimated brilliant X-rays, in-situ wide angle/small angle X-ray diffraction with high accuracy are reviewed. It is shown that small angle X-ray scattering is one of the best methods to characterize nanoparticle dispersibility, filler aggregate/agglomerate structures and in-situ observation of hierarchical structure deformation in filled rubber under cyclic stretch. Grazing Incidence(small and wide angle X-ray Scattering are powerful to analyze the sintering process of metal nanoparticle by in-situ observation as well as the orientation of polymer molecules and crystalline orientation at very thin surface layer (ca 7nm of polymer film. While the interaction and conformation of adsorbed molecule at interface can be investigated by using high energy X-ray XPS with Enough deep position (ca 9 micron m.

  4. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    Science.gov (United States)

    Sakurai, Kenji

    2010-12-01

    measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki

  5. The interface between formal and informal support in advanced old age: a ten-year study

    Directory of Open Access Journals (Sweden)

    Franca Armi

    2008-10-01

    Full Text Available The aim of this paper is to investigate the interface between the formal and informal support provided to very old people against a background of increasing need for care and a decreasing number of potential informal caregivers. We used a sample of 323 community-dwelling octogenarians participating in the Swiss Interdisciplinary Longitudinal Study on the Oldest Old (SWILSOO (n=1441 interviews. Descriptive analyses and a multilevel model were used to test whether formal and informal services complemented or substituted one another. The study revealed that the amount of informal services increased significantly as the frequency of formal aid increased, indicating that the two networks were complementary in the majority of the cases. In 21.2% of the cases, the formal network partly substituted the informal network (as an adjustment and only in 6.4% of the cases did the informal support end after the formal support had increased (radical substitution. The concern that the introduction of formal services may curb the readiness of relatives and friends to provide care is thus unfounded.

  6. Advances in adsorption of surfactants and their mixtures at solid/solution interfaces.

    Science.gov (United States)

    Zhang, Rui; Somasundaran, P

    2006-11-16

    Surfactants and their mixtures can drastically change the interfacial properties and hence are used in many industrial processes such as dispersion/flocculation, flotation, emulsification, corrosion inhibition, cosmetics, drug delivery, chemical mechanical polishing, enhanced oil recovery, and nanolithography. A review of studies on adsorption of single surfactant as well as mixtures of various types (anionic-cationic, anionic-nonionic, cationic-nonionic, cationic-zwitterionic and nonionic-nonionic) is presented here along with mechanisms involved. Results obtained using techniques such as zeta potential, flotation, AFM, specular neutron reflectivity, small angle neutron scattering, fluorescence, ESR, Raman spectroscopy, ellipsometry, HPLC and ATR-IR are reviewed along with those from traditional techniques to elucidate the mechanisms of adsorption and particularly to understand synergistic/antagonistic interactions at solution/liquid interfaces and nanostructures of surface aggregates. In addition, adsorption of several mixed surfactant systems is considered due to their industrial relevance. Finally an attempt is made to derive structure-property relationships to provide a solid foundation for the design and use of surfactant formulations for industrial applications. PMID:17052678

  7. Advances on the Failure Analysis of the Dam—Foundation Interface of Concrete Dams

    Directory of Open Access Journals (Sweden)

    Luis Altarejos-García

    2015-12-01

    Full Text Available Failure analysis of the dam-foundation interface in concrete dams is characterized by complexity, uncertainties on models and parameters, and a strong non-linear softening behavior. In practice, these uncertainties are dealt with a well-structured mixture of experience, best practices and prudent, conservative design approaches based on the safety factor concept. Yet, a sound, deep knowledge of some aspects of this failure mode remain unveiled, as they have been offset in practical applications by the use of this conservative approach. In this paper we show a strategy to analyse this failure mode under a reliability-based approach. The proposed methodology of analysis integrates epistemic uncertainty on spatial variability of strength parameters and data from dam monitoring. The purpose is to produce meaningful and useful information regarding the probability of occurrence of this failure mode that can be incorporated in risk-informed dam safety reviews. In addition, relationships between probability of failure and factors of safety are obtained. This research is supported by a more than a decade of intensive professional practice on real world cases and its final purpose is to bring some clarity, guidance and to contribute to the improvement of current knowledge and best practices on such an important dam safety concern.

  8. Advancing the detection of steady-state visual evoked potentials in brain–computer interfaces

    Science.gov (United States)

    Abu-Alqumsan, Mohammad; Peer, Angelika

    2016-06-01

    Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain–computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably.

  9. AFDM: An advanced fluid-dynamics model. Volume 6: EOS-AFDM interface

    Energy Technology Data Exchange (ETDEWEB)

    Henneges, G.; Kleinheins, S. [comps.] [Kernforschungszentrum Karlsruhe (Germany)

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices.

  10. Empirical research on an ecological interface design for improving situation awareness of operators in an advanced control room

    International Nuclear Information System (INIS)

    Highlights: ► An EID prototype for monitoring primary side of nuclear power plant is proposed. ► The effectiveness of the prototype is validated using a partial scoped dynamic mockup in terms of situation awareness. ► The validation is based on comparison of a mimic display with an EID plus mimics. - Abstract: The purpose of this study is to validate whether an ecological interface design (EID) improves operators’ situation awareness in an advanced control room of a nuclear power plant (NPP). EID is defined as an approach to interface design that was introduced specifically for complex socio-technical, real-time, and dynamic systems. The EID technology has not yet been adapted to the nuclear power industry due to lack of empirical studies. Especially in a situational awareness aspect, many researchers have predicted that the EID will support operators to detect unanticipated events. Just a few studies, however, unveiled the positive effect of the EID display on human performance using a full scoped simulator. In this study, to investigate whether an EID improves operators’ situational awareness, we developed an EID prototype for nuclear power operations and a partial scoped dynamic mockup to validate the effectiveness of the EID prototype. Three experienced operators were involved as subjects in our study and they were fully well trained for using the EID prototype. We compared two types of situations in terms of situation awareness. One is mimic based information display and the other is a mimic plus EID based information display. The result of our study revealed that a mimic plus EID based information display is more effective than a mimic based information display in terms of situation awareness. This study is significant in that the EID as an emerging technology is adoptable to a digitalized control room in an aspect of improving operators’ situation awareness.

  11. Human System Risk Management for Space Flight

    Science.gov (United States)

    Davis, Jeffrey

    2015-01-01

    , established a comprehensive risk management and configuration management plan and data sharing policy. These major developments of standards, the HRP, the HMTA and a forum for review of human system risks (HSRB) facilitated the integration of human research, medical operations, systems engineering and many other disciplines in the comprehensive review of human system risks. The HSRB began a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30 where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit 6 and 12 months, deep space sortie for 30 days and 1 year, a one year lunar mission, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary assessment representing the state of knowledge/evidence base for that risk, the available risk mitigations, traceability to the SFHSS and program requirements, and future work required. These data then can drive coordinated budgets across the HRP, the International Space Station, Crew Health and Safety and Advanced Exploration System budgets. These risk assessments were completed for 6 DRMs in December of 2014 and serve as the baseline for which subsequent research and technology development and crew health care portfolios can be assessed. The HSRB will review each risk at least annually and especially when new information is available that must be considered for effective risk mitigation. The current status of each risk can be reported to program management for operations, budget

  12. Data management and communication networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : its functionality and design requirements

    International Nuclear Information System (INIS)

    The DAta management and Communication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development and communication networks of KALIMER MMIS

  13. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  14. Development of an on-line early fault detection expert system using an advanced man-machine interface

    International Nuclear Information System (INIS)

    The paper describes the principal features of an expert system currently under development for fault diagnosis on an Italian nuclear power plant. The system development starts with the definition of a methodology to acquire from a plant simulator the basic information that is needed to build a prototype knowledge base that will be subsequently improved by plant experts. The main advantages of this approach are the rapid creation of a first working version of the system and the possibility to submit to the experts a well defined formal structure in which changes or implementations of new items into the knowledge base are feasible without much programming effort. The system is developed in the OPS5 production rule system, in which an extension of the basic OPS5 functions is generated, allowing a backward chaining search strategy. An advanced man-machine interface is also under development based on CRT colour graphic displays in which a mimic background depicts the plant areas under investigation and the foreground is used to highlight all the current fault candidates and to give a graphic presentation of the search trees investigated during the inferential process. (author). 6 refs, 1 fig., 1 tab

  15. Numerical Investigation of Cross Flow Phenomena in a Tight-Lattice Rod Bundle Using Advanced Interface Tracking Method

    Science.gov (United States)

    Zhang, Weizhong; Yoshida, Hiroyuki; Ose, Yasuo; Ohnuki, Akira; Akimoto, Hajime; Hotta, Akitoshi; Fujimura, Ken

    In relation to the design of an innovative FLexible-fuel-cycle Water Reactor (FLWR), investigation of thermal-hydraulic performance in tight-lattice rod bundles of the FLWR is being carried out at Japan Atomic Energy Agency (JAEA). The FLWR core adopts a tight triangular lattice arrangement with about 1 mm gap clearance between adjacent fuel rods. In view of importance of accurate prediction of cross flow between subchannels in the evaluation of the boiling transition (BT) in the FLWR core, this study presents a statistical evaluation of numerical simulation results obtained by a detailed two-phase flow simulation code, TPFIT, which employs an advanced interface tracking method. In order to clarify mechanisms of cross flow in such tight lattice rod bundles, the TPFIT is applied to simulate water-steam two-phase flow in two modeled subchannels. Attention is focused on instantaneous fluctuation characteristics of cross flow. With the calculation of correlation coefficients between differential pressure and gas/liquid mixing coefficients, time scales of cross flow are evaluated, and effects of mixing section length, flow pattern and gap spacing on correlation coefficients are investigated. Differences in mechanism between gas and liquid cross flows are pointed out.

  16. Human System Integration: Regulatory Analysis

    Science.gov (United States)

    2005-01-01

    This document was intended as an input to the Access 5 Policy Integrated Product team. Using a Human System Integration (HIS) perspective, a regulatory analyses of the FARS (specifically Part 91), the Airman s Information Manual (AIM) and the FAA Controllers Handbook (7110.65) was conducted as part of a front-end approach needed to derive HSI requirements for Unmanned Aircraft Systems (UAS) operations in the National Airspace System above FL430. The review of the above aviation reference materials yielded eighty-four functions determined to be necessary or highly desirable for flight within the Air Traffic Management System. They include categories for Flight, Communications, Navigation, Surveillance, and Hazard Avoidance.

  17. A feasibility study for the establishment of HSIF for the research of advanced control room and nuclear human resource education/training

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Inseok; Lee, C. K.; Kim, J. T.; and others

    2013-08-15

    According to the objective; A feasibility study for the establishment of HSIF(human system interface facility) for the research of advanced using APR 1400 simulator for R and D(research and development) of advanced I and C system/HMI and nuclear human resource education/training, the following are researched. - Concept for establishment of APR 1400 simulation model - Concept for development of Interface and Program for nuclear human resource education/training - Concept of the Interface development for the validation of NPP I and C system - Concept of Graphic Builder to easily establish the interface of control board.

  18. An optimal range of information quantity on computer-based procedure interface design in the advanced main control room

    International Nuclear Information System (INIS)

    The quantification of information in the interface design is a critical issue. Too much information on an interface can confuse a user while executing a task, and too little information may result in poor user performance. This study focused on the quantification of visible information on computer-based procedures (CBPs). Levels of information quantity and task complexity were considered in this experiment. Simulated CBPs were developed to consist of three levels: high (at least 10 events, i.e. 3.32 bits), medium (4–8 events, i.e. 2–3 bits), and low information quantity (1 or 2 events, i.e. 0 or 1 bits). Task complexity comprised two levels: complex tasks and simple tasks. The dependent variables include operation time, secondary task performance, and mental workload. Results suggested that medium information quantity of five to eight events has a remarkable advantage in supporting operator performance under both simple and complex tasks. This research not only suggested the appropriate range of information quantity on the CBP interface, but also complemented certain deficient results of previous CBP interface design studies. Additionally, based on results obtained by this study, the quantification of information on the CBP interface should be considered to ensure safe operation of nuclear power plants. (author)

  19. Rehabilitation and Visual Impairment: A Human System.

    Science.gov (United States)

    Vander Kolk, Charles J.

    1982-01-01

    The rehabilitation of visually impaired persons can be conceptualized by a human systems approach. This paper explaines seven levels of human systems, related factors, and 10 assumptions that lead to high standards for rehabilitation workers and organizations. The concepts are applied to work with clients and use in rehabilitation agencies.…

  20. Advanced control room design review guidelines: Merging old and new

    International Nuclear Information System (INIS)

    The nuclear power industry is currently developing operator interface systems based on innovative applications of digital computers. To assure that this advanced technology is incorporated in a way that maximizes the potential safety benefits of the technology and minimizes the potential negative effects on human performance, human factors principles must be considered. NUREG-0700 contains guidelines for the review of operator interfaces. However, in light of the rapid technological advances in digital technology which have taken place in the eleven years since its publication, it is no longer adequate to assess the rapidly changing human-system interfaces. A research program, the purpose of which is to upgrade NUREG-0700, has been initiated. Thus far a set of draft advanced control room design review (ACRDR) guidelines has been complied. Three tasks, which were oriented towards integrating the applicable guidelines in NUREG-0700 into the ACRDR document, are described in the paper

  1. Instrumentation and control and human machine interface science and technology road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology road-map being developed to address the major challenges in this technical area for the Gen IV and other U.S. Dept. of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems as well as their licensing considerations. The ICHMI road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  2. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues

  3. Advancing techniques to constrain the geometry of the seismic rupture plane on subduction interfaces a priori: Higher-order functional fits

    Science.gov (United States)

    Hayes, G.P.; Wald, D.J.; Keranen, K.

    2009-01-01

    Ongoing developments in earthquake source inversions incorporate nonplanar fault geometries as inputs to the inversion process, improving previous approaches that relied solely on planar fault surfaces. This evolution motivates advancing the existing framework for constraining fault geometry, particularly in subduction zones where plate boundary surfaces that host highly hazardous earthquakes are clearly nonplanar. Here, we improve upon the existing framework for the constraint of the seismic rupture plane of subduction interfaces by incorporating active seismic and seafloor sediment thickness data with existing independent data sets and inverting for the most probable nonplanar subduction geometry. Constraining the rupture interface a priori with independent geological and seismological information reduces the uncertainty in the derived earthquake source inversion parameters over models that rely on simpler assumptions, such as the moment tensor inferred fault plane. Examples are shown for a number of wellconstrained global locations. We expand the coverage of previous analyses to a more uniform global data set and show that even in areas of sparse data this approach is able to accurately constrain the approximate subduction geometry, particularly when aided with the addition of data from local active seismic surveys. In addition, we show an example of the integration of many two-dimensional profiles into a threedimensional surface for the Sunda subduction zone and introduce the development of a new global threedimensional subduction interface model: Slab1.0. ?? 2009 by the American Geophysical Union.

  4. Cycling of mercury across the sediment-water interface in seepage lakes: Chapter 13, Advances in Chemistry

    Science.gov (United States)

    Hurley, James P.; Krabbenhoft, David P.; Babiarz, C.L.; Andren, Anders

    1994-01-01

    The magnitude and direction of Hg fluxes across the sediment—water interface were estimated by groundwater, dry bulk sediment, sediment pore water, sediment trap, and water-column analyses in two northern Wisconsin seepage lakes. Little Rock Lake (Treatment Basin) received no groundwater discharge during the study period (1988—1990), and Follette Lake received continuous groundwater discharge. In Little Rock Lake, settling of particulate matter accounted for the major Hg delivery mechanism to the sediment—water interface. Upward diffusion of Hg from sediment pore waters below 2—4-cm sediment depth was apparently a minor source during summer stratification. Time-series comparisons suggested that the observed buildup of Hg in the hypolimnion of Little Rock Lake was attributable to dissolution and diffusion of Hg from recently fallen particulate matter close to the sediment—water interface. Groundwater inflow represented an important source of new Hg, and groundwater outflow accounted for significant removal of Hg from Pallette Lake. Equilibrium speciation calculations revealed that association of Hg with organic matter may control solubility in well-oxygenated waters, whereas in anoxic environments sulfur (polysulfide and bisulfide) complexation governs dissolved total Hg levels.

  5. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng

    2015-09-01

    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible. PMID:26305572

  6. Human-Systems Integration Processes (HSIP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In FY12, this project removed the commercial-specific content from the Commercial Human-Systems Integration Design Processes (CHSIP), identified gaps in the...

  7. Advanced Simulation and Optimization Tools for Dynamic Aperture of Non-scaling FFAGs and Accelerators including Modern User Interfaces

    International Nuclear Information System (INIS)

    With the U.S. experimental effort in HEP largely located at laboratories supporting the operations of large, highly specialized accelerators, colliding beam facilities, and detector facilities, the understanding and prediction of high energy particle accelerators becomes critical to the success, overall, of the DOE HEP program. One area in which small businesses can contribute to the ongoing success of the U.S. program in HEP is through innovations in computer techniques and sophistication in the modeling of high-energy accelerators. Accelerator modeling at these facilities is performed by experts with the product generally highly specific and representative only of in-house accelerators or special-interest accelerator problems. Development of new types of accelerators like FFAGs with their wide choices of parameter modifications, complicated fields, and the simultaneous need to efficiently handle very large emittance beams requires the availability of new simulation environments to assure predictability in operation. In this, ease of use and interfaces are critical to realizing a successful model, or optimization of a new design or working parameters of machines. In Phase I, various core modules for the design and analysis of FFAGs were developed and Graphical User Interfaces (GUI) have been investigated instead of the more general yet less easily manageable console-type output COSY provides.

  8. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  9. Web-based Java application to advanced JT-60 Man-Machine Interfacing System for remote experiments

    International Nuclear Information System (INIS)

    Since remote participation in ITER experiments is planned, it is expected to demonstrate that the JT-60SA experiment is controlled from a Japanese remote experiment center located in Rokkasho-mura, Aomori-ken, Japan as a part of the ITER-BA project. Functions required for this experiment are monitoring of the discharge sequence status, handling of the discharge parameter, checking of experiment data, and monitoring of plant data, all of which are included in the existing JT-60 Man-Machine Interfacing System (MMIF). The MMIF is now only available to on-site users at the Naka site due to network safety. The motivation for remote MMIF is prompted by the issue of developing and achieving compatibility with network safety. The Java language has been chosen to implement this task. This paper deals with details of the JT-60 MMIF for the remote experiment that has evolved using the Java language

  10. Recent advances in chemical synthesis methodology of inorganic materials and theoretical computations of metal nanoparticles/carbon interfaces

    Science.gov (United States)

    Harris, Andrew G.

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials

  11. Interface technology based on human cognition and understanding for the operation and maintenance of advanced human cooperative plants

    International Nuclear Information System (INIS)

    'Development of Intelligent Systems Technology for Advanced Human Cooperative Plants' was implemented as 'Nuclear Energy Fundamentals Crossover Research' by 3 institutes (The Institute of Physical and Chemical Research; RIKEN, National Institute of Advanced Industrial Science and Technology; AIST and National Maritime Research Institute; NMRI). Aiming at appropriate interaction between human and agents in Digital Maintenance Field which spreads widely in time and space, NMRI developed technologies on contraction of plant information, generalization and intuition of the information through visual presentation. Intuitive presentation gave on-site information for identifying the source of abnormalities to human operators. And a human-machine cooperation infrastructure for plant maintenance was proposed and developed, where an overview display was used to show position and state information of all the agents in the plant and each agent view was used to show the corresponding agent's information in detail. A part of this technology was implemented in a demonstration program. Two agents were developed to support human operators' plant maintenance activities in this program. This demonstration showed the effectiveness of human-agent cooperation for early plant abnormality detection. (author)

  12. Water at Interfaces.

    Science.gov (United States)

    Björneholm, Olle; Hansen, Martin H; Hodgson, Andrew; Liu, Li-Min; Limmer, David T; Michaelides, Angelos; Pedevilla, Philipp; Rossmeisl, Jan; Shen, Huaze; Tocci, Gabriele; Tyrode, Eric; Walz, Marie-Madeleine; Werner, Josephina; Bluhm, Hendrik

    2016-07-13

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives many electrochemical reactions, and the liquid/vapor interface, which governs the uptake and release of trace gases by the oceans and cloud droplets. In this article we review some of the recent experimental and theoretical advances in our knowledge of the properties of aqueous interfaces and discuss open questions and gaps in our understanding. PMID:27232062

  13. Human Systems Integration in the Federal Government

    Science.gov (United States)

    Jones, Patricia M.; Graves, Gaye L.; Allard, Terry; Blackhurst, Jack; Fitts, David J.; Peters, Sean; Piccione, Dino; Shattuck, Lawrence G.

    2010-01-01

    Human Systems Integration principles and methods can be used to help integrate people, technology, and organizations in an effective and efficient manner. Over the past decade, a wide range of tools, techniques, and technologies have been developed by federal agencies to achieve significant cost and performance benefits. In this discussion, we will explore trends in military human systems integration and learn about the critical role being played by human performance and effectiveness research. We will also examine case studies on the planning and design of future human space flight vehicles, the national air space system and the first nuclear reactors to be built in the United States in over 30 years. And with an eye toward sustaining the discipline s principles and methods, we ll take a look at educating and training the next generation of human systems integration practitioners.

  14. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: III - Numerical Evaluation of Fluid Mixing Phenomena using Advanced Interface-Tracking Method -

    Science.gov (United States)

    Yoshida, Hiroyuki; Nagayoshi, Takuji; Takase, Kazuyuki; Akimoto, Hajime

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed by correlations with empirical results of actual-size tests. However, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. Development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. We tried to verify the TPFIT code by comparing it with the 2-channel air-water and steam-water mixing experimental results. The predicted result agrees well the observed results and bubble dynamics through the gap and cross flow behavior could be effectively predicted by the TPFIT code, and pressure difference between fluid channels is responsible for the fluid mixing.

  15. The Development of A Human Systems Simulation Laboratory: Strategic Direction

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; Katya le Blanc; David Gertman

    2012-07-01

    The Human System Simulation Laboratory (HSSL) at the Idaho National Laboratory is one of few facilities of its kind that allows human factors researchers to evaluate various aspects of human performance and human system interaction for proposed reactor designs and upgrades. A basic system architecture, physical configuration and simulation capability were established to enable human factors researchers to support multiple, simultaneous simulations and also different power plant technologies. Although still evolving in terms of its technical and functional architecture, the HSSL is already proving its worth in supporting current and future nuclear industry needs for light water reactor sustainability and small modular reactors. The evolution of the HSSL is focused on continual physical and functional refinement to make it a fully equipped, reconfigurable facility where advanced research, testing and validation studies can be conducted on a wider range of reactor technologies. This requires the implementation of additional plant models to produce empirical research data on human performance with emerging human-system interaction technologies. Additional beneficiaries of this information include system designers and HRA practitioners. To ensure that results of control room crew studies will be generalizable to the existing and evolving fleet of US reactors, future expansion of the HSSL may also include other SMR plant models, plant-specific simulators and a generic plant model aligned to the current generation of pressurized water reactors (PWRs) and future advanced reactor designs. Collaboration with industry partners is also proving to be a vital component of the facility as this helps to establish a formal basis for current and future human performance experiments to support nuclear industry objectives. A long-range Program Plan has been developed for the HSSL to ensure that the facility will support not only the Department of Energy’s Light Water Reactor

  16. Tool for Human-Systems Integration Assessment: HSI Scorecard

    Science.gov (United States)

    Whitmore, Nihriban; Sandor, Aniko; McGuire, Kerry M.; Berdich, Debbie

    2009-01-01

    This paper describes the development and rationale for a human-systems integration (HSI) scorecard that can be used in reviews of vehicle specification and design. This tool can be used to assess whether specific HSI related criteria have been met as part of a project milestone or critical event, such as technical reviews, crew station reviews, mockup evaluations, or even review of major plans or processes. Examples of HSI related criteria include Human Performance Capabilities, Health Management, Human System Interfaces, Anthropometry and Biomechanics, and Natural and Induced Environments. The tool is not intended to evaluate requirements compliance and verification, but to review how well the human related systems have been considered for the specific event and to identify gaps and vulnerabilities from an HSI perspective. The scorecard offers common basis, and criteria for discussions among system managers, evaluators, and design engineers. Furthermore, the scorecard items highlight the main areas of system development that need to be followed during system lifecycle. The ratings provide a repeatable quantitative measure to what has been often seen as only subjective commentary. Thus, the scorecard is anticipated to be a useful HSI tool to communicate review results to the institutional and the project office management.

  17. Study and Development of a Simulation System for Dynamic Evaluation on Man-machine Interface Design of Advanced Main Control Rooms of Nuclear Power Plants

    Institute of Scientific and Technical Information of China (English)

    YangXiaojing; ZhouZhiwei; ChenXiaoming; MaYuanle; LiFu; DongYujie; WuWei; OhiTadashi

    2005-01-01

    Since the man-machine interfaces (MMI) of a main control room provide the control platform of a nuclear power plant (NPP),the development of the design quality of MMIs plays a very important role in the operation of a NPP. With the development of digital technology, the development of the advanced main control rooms (AMCRs) has become an inexorable trend. Therefore, the positive and the negative effects of AMCRs on human factors engineering need to be evaluated. For this p~, a simulation system has been studied and developed to quantitatively evaluate a MMI design from the viewpoint of human factors. The simulation system takes advantage of computer simulation technology to simulate an operating process of an interaction between operators and a MMI design under an instruction of an operation procedure of the AMCR of a NPP. Meanwhile, the necessary data are recorded for evaluation. It integrates two editors and one simulator. In the paper, the simulation system is presented in detail. Furthermore, one sample is given to show the results of each of these three subsystems.

  18. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  19. Human Factors in Human-Systems Integration

    Science.gov (United States)

    Fitts, David J.; Sandor, Aniko; Litaker, Harry L., Jr.; Tillman, Barry

    2008-01-01

    Any large organization whose mission is to design and develop systems for humans, and train humans needs a well-developed integration and process plan to deal with the challenges that arise from managing multiple subsystems. Human capabilities, skills, and needs must be considered early in the design and development process, and must be continuously considered throughout the development lifecycle. This integration of human needs within system design is typically formalized through a Human-Systems Integration (HSI) program. By having an HSI program, an institution or organization can reduce lifecycle costs and increase the efficiency, usability, and quality of its products because human needs have been considered from the beginning.

  20. Advanced control room evaluation: General approach and rationale

    International Nuclear Information System (INIS)

    Advanced control rooms (ACRs) for future nuclear power plants (NPPs) are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale and general approach to the development of a human factors review guideline for ACRs. The factors influencing the guideline development are discussed, including the review environment, the types of advanced technologies being addressed, the human factors issues associated with advanced technology, and the current state-of-the-art of human factors guidelines for advanced human-system interfaces (HSIs). The proposed approach to ACR review would track the design and implementation process through the application of review guidelines reflecting four review modules: planning, design process analysis, human factors engineering review, and dynamic performance evaluation. 21 refs

  1. Linking morphology across the glaciofluvial interface: A 10Be supported chronology of glacier advances and terrace formation in the Garonne River, northern Pyrenees, France

    Science.gov (United States)

    Stange, K. M.; van Balen, R. T.; Kasse, C.; Vandenberghe, J.; Carcaillet, J.

    2014-02-01

    The Garonne River drains an important part of the northern Pyrenees and its northern foreland. We investigated the middle reaches of the Garonne River establishing a detailed morphogenetic profile of its foreland terrace staircase and the preserved palaeoglacier margins. We particularly focussed on the glaciofluvial interface, linking (also genetically) the fluvial sediment archives in the foreland with the terminal glacial basin upstream of the Pyrenees mountain front. Using cosmogenic nuclide 10Be analyses, two terrace exposures have been dated, including a prominent fluvioglacial outwash fan at the foreland transition. We identified three terminal margins of late Pleistocene glacier advances. The prominent Garonne staircase consists of three major terrace complexes, comprising eight individual terrace levels. Results indicate a young age of the lower terrace complex of the Garonne staircase (MIS 4-2). The morphogenetic relationships and the new 10Be exposure age constraints suggest that during the last glaciation (Würmian) the Garonne glacier reached its maximum extent at the north Pyrenean mountain front, apparently already during MIS 4. Two different ice margins were associated with MIS 2, indicating close to maximum ice-extent during early MIS 2 (LGM) and relatively stationary ice-recession in the late MIS 2. The extensive Garonne terrace complexes formed under cold-climate conditions and were abandoned by incision during major glacial-interglacial transitions. During warm-cold climate transitions lateral erosion caused the reworking of previously abandoned palaeofloodplains. The long-term (Quaternary) incision of the Garonne and other north Pyrenean rivers indicates that the proximal Aquitaine foreland basin experienced uplift. However, non-uniform lateral course migrations and valley asymmetries of the north Pyrenean piedmont rivers indicate that uplift magnitude is variable, with maximum amounts in the centre of the molasse-fan of Lannemezan: Rivers on

  2. An interface redesign for the feed-water system of the advanced boiling water reactor in a nuclear power plant in Taiwan

    International Nuclear Information System (INIS)

    A well-designed human-computer interface for the visual display unit in the control room of a complex environment can enhance operator efficiency and, thus, environmental safety. In fact, a cognitive gap often exists between an interface designer and an interface user. Therefore, the issue of the cognitive gap of interface design needs more improvement and investigation. This is an empirical study that presents the application of an ecological interface design (EID) using three cases and demonstrates that an EID framework can support operators in various complex situations. Specifically, it analyzes different levels of automation and emergency condition response at the Lungmen Nuclear Power Plant in Taiwan. A simulated feed-water system was developed involving two interface styles. This study uses the NASA Task Load Index to objectively evaluate the mental workload of the human operators and the Situation Awareness Rating Technique to subjectively assess operator understanding and response, and is a pilot study investigating EID display format use at nuclear power plants in Taiwan. Results suggest the EID-based interface has a remarkable advantage over the original interface in supporting operator performance in the areas of response time and accuracy rate under both normal and emergency situations and provide supporting evidence that an EID-based interface can effectively enhance monitoring tasks in a complex environment. (author)

  3. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  4. Intelligent Multimedia Interfaces

    OpenAIRE

    Maybury, Mark T.

    1992-01-01

    On Monday, 15 July 1991, prior to the Ninth National Conference on Artificial Intelligence (AAAI-91) in Anaheim, California, over 50 scientists and engineers attended the AAAI-91 Workshop on Intelligent Multimedia Interfaces. The purpose of the workshop was threefold: (1) bring together researchers and practitioners to report on current advances in intelligent multimedia interface systems and their underlying theories, (2) foster scientific interchange among these individuals, and (3) evaluat...

  5. Human Systems Integration (HSI) Practitioner's Guide

    Science.gov (United States)

    Zumbado, Jennifer Rochlis

    2015-01-01

    The NASA/SP-2015-3709, Human Systems Integration (HSI) Practitioner's Guide, also known as the "HSIPG," provides a tool for implementing HSI activities within the NASA systems engineering framework. The HSIPG is written to aid the HSI practitioner engaged in a program or project (P/P), and serves as a knowledge base to allow the practitioner to step into an HSI lead or team member role for NASA missions. Additionally, this HSIPG is written to address the role of HSI in the P/P management and systems engineering communities and aid their understanding of the value added by incorporating good HSI practices into their programs and projects. Through helping to build a community of knowledgeable HSI practitioners, this document also hopes to build advocacy across the Agency for establishing strong, consistent HSI policies and practices. Human Systems Integration (HSI) has been successfully adopted (and adapted) by several federal agencies-most notably the U.S. Department of Defense (DoD) and the Nuclear Regulatory Commission (NRC)-as a methodology for reducing system life cycle costs (LCCs). These cost savings manifest themselves due to reductions in required numbers of personnel, the practice of human-centered design, decreased reliance on specialized skills for operations, shortened training time, efficient logistics and maintenance, and fewer safety-related risks and mishaps due to unintended human/system interactions. The HSI process for NASA establishes how cost savings and mission success can be realized through systems engineering. Every program or project has unique attributes. This HSIPG is not intended to provide one-size-fits-all recommendations for HSI implementation. Rather, HSI processes should be tailored to the size, scope, and goals of individual situations. The instructions and processes identified here are best used as a starting point for implementing human-centered system concepts and designs across programs and projects of varying types, including

  6. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  7. Integrating Spaceflight Human System Risk Research

    Science.gov (United States)

    Mindock, J.; Lumpkins, S.; Anton, W.; Havenhill, M.; Shelhamer, M.; Canga, M.

    2016-01-01

    NASA is working to increase the likelihoods of human health and performance success during exploration missions, and subsequent crew long-term health. To manage the risks in achieving these goals, a system modeled after a Continuous Risk Management framework is in place. "Human System Risks" (Risks) have been identified, and approximately 30 are being actively addressed by NASA's Human Research Program (HRP). Research plans for each of HRP's Risks have been developed and are being executed. Ties between the research efforts supporting each Risk have been identified, however, this has been in an ad hoc fashion. There is growing recognition that solutions developed to address the full set of Risks covering medical, physiological, behavioral, vehicle, and organizational aspects of the exploration missions must be integrated across Risks and disciplines. We will discuss how a framework of factors influencing human health and performance in space is being applied as the backbone for bringing together sometimes disparate information relevant to the individual Risks. The resulting interrelated information is allowing us to identify and visualize connections between Risks and research efforts in a systematic and standardized way. We will discuss the applications of the visualizations and insights to research planning, solicitation, and decision-making processes.

  8. Integrating Spaceflight Human System Risk Research

    Science.gov (United States)

    Mindock, Jennifer; Lumpkins, Sarah; Anton, Wilma; Havenhill, Maria; Shelhamer, Mark; Canga, Michael

    2016-01-01

    NASA is working to increase the likelihood of human health and performance success during exploration missions as well as to maintain the subsequent long-term health of the crew. To manage the risks in achieving these goals, a system modelled after a Continuous Risk Management framework is in place. "Human System Risks" (Risks) have been identified, and approximately 30 are being actively addressed by NASA's Human Research Program (HRP). Research plans for each of HRP's Risks have been developed and are being executed. Inter-disciplinary ties between the research efforts supporting each Risk have been identified; however, efforts to identify and benefit from these connections have been mostly ad hoc. There is growing recognition that solutions developed to address the full set of Risks covering medical, physiological, behavioural, vehicle, and organizational aspects of exploration missions must be integrated across Risks and disciplines. This paper discusses how a framework of factors influencing human health and performance in space is being applied as the backbone for bringing together sometimes disparate information relevant to the individual Risks. The resulting interrelated information enables identification and visualization of connections between Risks and research efforts in a systematic and standardized manner. This paper also discusses the applications of the visualizations and insights into research planning, solicitation, and decision-making processes.

  9. Photochemistry at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eisenthal, Kenneth B

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  10. Semantic form as interface

    OpenAIRE

    Bierwisch, Manfred

    2009-01-01

    The term interface had a remarkable career over the past several decades, motivated largely by its use in computer science. Although the concept of a "surface common to two areas" (Oxford Advanced Learner's Dictionary, 1980) is intuitively clear enough, the range of its application is not very sharp and well defined, a "common surface" is open to a wide range of interpretations.

  11. Construction of new operation interface for the LABIHS simulator using the ELIPSE E3 studio software

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, Silas C.; Oliveira, Mauro V., E-mail: silas@ien.gov.b, E-mail: mvitor@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The Human-System Interface Laboratory (LABIHS), located at the Instituto de Engenharia Nuclear (IEN), has a compact simulator that simulate the processes of a pressurized water reactor nuclear power plant of 930 MWe of power. This simulator is composed by a HP-UX workstation computer, where the simulation software runs, and a set of computer stations, that represent an advanced control room, where the simulator is operated by software control panels that represent several systems of the simulated nuclear power plant. The current HSIs for the LABIHS simulator was built using iLog software tool. The development of new human-system interfaces (HSIs) for the simulator is one of the research fields of LABIHS. This paper presents the screen components development process for a new HSI for the LABIHS simulator, using the software Elipse{sup TM} E3 Studio. These new components developed using the E3 Studio are similar to the ones used in the current simulator interface. The article shows some comparisons between the component and screen development with Elipse{sup TM} E3 Studio processes and using iLog Studio. (author)

  12. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    Science.gov (United States)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  13. Development of Human System Integration at NASA

    Science.gov (United States)

    Whitmore, Mihriban; McGuire, Kerry; Thompson, Shelby; Vos, Gordon

    2012-01-01

    Human Systems Integration seeks to design systems around the capabilities and limitations of the humans which use and interact with the system, ensuring greater efficiency of use, reduced error rates, and less rework in the design, manufacturing and operational deployment of hardware and software. One of the primary goals of HSI is to get the human factors practitioner involved early in the design process. In doing so, the aim is to reduce future budget costs and resources in redesign and training. By the preliminary design phase of a project nearly 80% of the total cost of the project is locked in. Potential design changes recommended by evaluations past this point will have little effect due to lack of funding or a huge cost in terms of resources to make changes. Three key concepts define an effective HSI program. First, systems are comprised of hardware, software, and the human, all of which operate within an environment. Too often, engineers and developers fail to consider the human capacity or requirements as part of the system. This leads to poor task allocation within the system. To promote ideal task allocation, it is critical that the human element be considered early in system development. Poor design, or designs that do not adequately consider the human component, could negatively affect physical or mental performance, as well as, social behavior. Second, successful HSI depends upon integration and collaboration of all the domains that represent acquisition efforts. Too often, these domains exist as independent disciplines due to the location of expertise within the service structure. Proper implementation of HSI through participation would help to integrate these domains and disciplines to leverage and apply their interdependencies to attain an optimal design. Via this process domain interests can be integrated to perform effective HSI through trade-offs and collaboration. This provides a common basis upon which to make knowledgeable decisions. Finally

  14. Operator role definition and human-system integration

    International Nuclear Information System (INIS)

    This paper discusses operator role definition and human-system integration from a perspective of systems engineering and allocation of functions. Current and traditional allocation of tasks/functions can no longer by applied to systems that are significantly more sophisticated and dynamic than current system designs. For such advanced and automated designs, explicit attention must be given to the role of the operator in order to facilitate efficient system performance. Furthermore, such systems will include intelligent automated systems which will support the cognitive activities of the operator. If such systems share responsibility and control with the human operator, these computer-based assistants/associates should be viewed as intelligent team members. As such, factors such as trust, intentions, and expectancies, among team members must be considered by the systems designer. Such design considerations are discussed in this paper. This paper also discusses the area of dynamic allocation of functions, and the need for models of the human operator in support of machine forecast of human performance. The Integrated Reactor Operator/System (INTEROPS) model is discussed as an example of a cognitive model capable of functioning beyond a rule-based behavioral structure

  15. Advanced Technology in Brain-computer Interface%无创高通讯速率的实时脑-机接口系统

    Institute of Scientific and Technical Information of China (English)

    高上凯

    2007-01-01

    @@ 脑-机接口(brain computer interface,简称BCI)是通过实时记录人脑的脑电波,在一定程度上解读人的简单思维,并将其翻译成控制命令,来实现对计算机、家用电器、机器人等设备的控制(参见图1).

  16. Distributed User Interfaces

    CERN Document Server

    Gallud, Jose A; Penichet, Victor M R

    2011-01-01

    The recent advances in display technologies and mobile devices is having an important effect on the way users interact with all kinds of devices (computers, mobile devices, laptops, tablets, and so on). These are opening up new possibilities for interaction, including the distribution of the UI (User Interface) amongst different devices, and implies that the UI can be split and composed, moved, copied or cloned among devices running the same or different operating systems. These new ways of manipulating the UI are considered under the emerging topic of Distributed User Interfaces (DUIs). DUIs

  17. Constellation Program Human-System Integration Requirements. Revision E, Nov. 19, 2010

    Science.gov (United States)

    Dory, Jonathan

    2010-01-01

    The Human-Systems Integration Requirements (HSIR) in this document drive the design of space vehicles, their systems, and equipment with which humans interface in the Constellation Program (CxP). These requirements ensure that the design of Constellation (Cx) systems is centered on the needs, capabilities, and limitations of the human. The HSIR provides requirements to ensure proper integration of human-to-system interfaces. These requirements apply to all mission phases, including pre-launch, ascent, Earth orbit, trans-lunar flight, lunar orbit, lunar landing, lunar ascent, Earth return, Earth entry, Earth landing, post-landing, and recovery. The Constellation Program must meet NASA's Agency-level human rating requirements, which are intended to ensure crew survival without permanent disability. The HSIR provides a key mechanism for achieving human rating of Constellation systems.

  18. Microprocessor interfacing

    CERN Document Server

    Vears, R E

    2014-01-01

    Microprocessor Interfacing provides the coverage of the Business and Technician Education Council level NIII unit in Microprocessor Interfacing (syllabus U86/335). Composed of seven chapters, the book explains the foundation in microprocessor interfacing techniques in hardware and software that can be used for problem identification and solving. The book focuses on the 6502, Z80, and 6800/02 microprocessor families. The technique starts with signal conditioning, filtering, and cleaning before the signal can be processed. The signal conversion, from analog to digital or vice versa, is expl

  19. A Conceptual Framework of Human Reliability Analysis for Execution Human Error in NPP Advanced MCRs

    International Nuclear Information System (INIS)

    The operation environment of Main Control Rooms (MCRs) in Nuclear Power Plants (NPPs) has changed with the adoption of new human-system interfaces that are based on computer-based technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called Advanced MCRs. Among the many features of Advanced MCRs, soft controls are a particularly important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, and touch screens, operators can select a specific screen, then choose the controller, and finally manipulate the given devices. Due to the different interfaces between soft control and hardwired conventional type control, different human error probabilities and a new Human Reliability Analysis (HRA) framework should be considered in the HRA for advanced MCRs. In other words, new human error modes should be considered for interface management tasks such as navigation tasks, and icon (device) selection tasks in monitors and a new framework of HRA method taking these newly generated human error modes into account should be considered. In this paper, a conceptual framework for a HRA method for the evaluation of soft control execution human error in advanced MCRs is suggested by analyzing soft control tasks

  20. A Conceptual Framework of Human Reliability Analysis for Execution Human Error in NPP Advanced MCRs

    Energy Technology Data Exchange (ETDEWEB)

    Jang, In Seok; Kim, Ar Ryum; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of); Jung, Won Dea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-08-15

    The operation environment of Main Control Rooms (MCRs) in Nuclear Power Plants (NPPs) has changed with the adoption of new human-system interfaces that are based on computer-based technologies. The MCRs that include these digital and computer technologies, such as large display panels, computerized procedures, and soft controls, are called Advanced MCRs. Among the many features of Advanced MCRs, soft controls are a particularly important feature because the operation action in NPP Advanced MCRs is performed by soft control. Using soft controls such as mouse control, and touch screens, operators can select a specific screen, then choose the controller, and finally manipulate the given devices. Due to the different interfaces between soft control and hardwired conventional type control, different human error probabilities and a new Human Reliability Analysis (HRA) framework should be considered in the HRA for advanced MCRs. In other words, new human error modes should be considered for interface management tasks such as navigation tasks, and icon (device) selection tasks in monitors and a new framework of HRA method taking these newly generated human error modes into account should be considered. In this paper, a conceptual framework for a HRA method for the evaluation of soft control execution human error in advanced MCRs is suggested by analyzing soft control tasks.

  1. X-ray structural study of Ge(001):Te 1x1 performed at the advanced photon source. Current status of the surface-interface structure beamline at SPring-8

    CERN Document Server

    Sakata, O

    2002-01-01

    This article is composed of two parts. In the first half, we describe a study that we performed at 5ID-C of the Dupont- Northwestern University-Dow (DND) CAT in the Advanced Photon Source, the Argonne National Laboratory for 1998 to 2000. A surface structure of Ge(001):Te 1x1 was determined by least-squares fits of x-ray scattered intensities with calculations based on some surface atomic structural models. The fitted structural model has a characteristic that a direction of a Ge-Ge dimer bond on the first Ge atomic layer is perpendicular to a Te missing row. It was distinct from those based on first-principles total energy calculations. In the second half, we introduce up-to-the-minute status of BL13XU for surface-interface structural studies at SPring-8. Scientific research goals we desire are mentioned as well. (author)

  2. Interface superconductivity

    International Nuclear Information System (INIS)

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high Tc in a monolayer of FeSe deposited on SrTiO3 are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO3 and SrTiO3. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO3 and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high Tc in a monolayer of FeSe deposited on SrTiO3

  3. Characterization of Evidence for Human System Risk Assessment

    Science.gov (United States)

    Steinberg, S. L.; Van Baalen, M.; Rossi, M.; Riccio, G.; Romero, E.; Francisco, D.

    2016-01-01

    Understanding the kinds of evidence available and using the best evidence to answer a question is critical to evidenced-based decision-making, and it requires synthesis of evidence from a variety of sources. Categorization of human system risks in spaceflight, in particular, focuses on how well the integration and interpretation of all available evidence informs the risk statement that describes the relationship between spaceflight hazards and an outcome of interest. A mature understanding and categorization of these risks requires: 1) sufficient characterization of risk, 2) sufficient knowledge to determine an acceptable level of risk (i.e., a standard), 3) development of mitigations to meet the acceptable level of risk, and 4) identification of factors affecting generalizability of the evidence to different design reference missions. In the medical research community, evidence is often ranked by increasing confidence in findings gleaned from observational and experimental research (e.g., "levels of evidence"). However, an approach based solely on aspects of experimental design is problematic in assessing human system risks for spaceflight. For spaceflight, the unique challenges and opportunities include: (1) The independent variables in most evidence are the hazards of spaceflight, such as space radiation or low gravity, which cannot be entirely duplicated in terrestrial (Earth-based) analogs, (2) Evidence is drawn from multiple sources including medical and mission operations, Lifetime Surveillance of Astronaut Health (LSAH), spaceflight research (LSDA), and relevant environmental & terrestrial databases, (3) Risk metrics based primarily on LSAH data are typically derived from available prevalence or incidence data, which may limit rigorous interpretation, (4) The timeframe for obtaining adequate spaceflight sample size (n) is very long, given the small population, (5) Randomized controlled trials are unattainable in spaceflight, (6) Collection of personal and

  4. Designing Interfaces

    CERN Document Server

    Tidwell, Jenifer

    2010-01-01

    Despite all of the UI toolkits available today, it's still not easy to design good application interfaces. This bestselling book is one of the few reliable sources to help you navigate through the maze of design options. By capturing UI best practices and reusable ideas as design patterns, Designing Interfaces provides solutions to common design problems that you can tailor to the situation at hand. This updated edition includes patterns for mobile apps and social media, as well as web applications and desktop software. Each pattern contains full-color examples and practical design advice th

  5. Cooperative research for human factors review of advanced control rooms

    International Nuclear Information System (INIS)

    This project has been performed as cooperative research between KAERI and USNRC. Human factors issues related to soft controls, which is one of key features of advanced HSI, are identified in this project. The issues are analyzed for the evaluation approaches in either experimental or analytical ways. Also, issues requiring additional researches for the evaluation of advanced HSI are identified in the areas of advanced information systems design, computer-based procedure systems, soft controls, human systems interface and plant modernization process, and maintainability of digital systems. The issues are analyzed to discriminate the urgency of researches on it to high, medium, and low levels in consideration of advanced HSI development status in Korea, and some of the issues that can be handled by experimental researches are identified. Additionally, an experimental study is performed to compare operator's performance on human error detection in advanced control rooms vs. in conventional control rooms. It is found that advanced control rooms have several design characteristics hindering operator's error detection performance compared to conventional control rooms

  6. Reconstructions at complex oxide interfaces

    OpenAIRE

    Kleibeuker, J. E.

    2012-01-01

    Perovskite-type oxides, ABO3, are of high interest since they exhibit a wide variety of properties. Having comparable oxygen backbone structures, perovskite-type oxides can easily be stacked on top of each other with atomic precision. This may result in advanced materials with new or enhanced functionalities. Moreover, near the interface, interplay between the different materials occurs, which may lead to interesting functionalities confined at the interface. For the development of device app...

  7. Multimodal Neuroelectric Interface Development

    Science.gov (United States)

    Trejo, Leonard J.; Wheeler, Kevin R.; Jorgensen, Charles C.; Totah, Joseph (Technical Monitor)

    2001-01-01

    This project aims to improve performance of NASA missions by developing multimodal neuroelectric technologies for augmented human-system interaction. Neuroelectric technologies will add completely new modes of interaction that operate in parallel with keyboards, speech, or other manual controls, thereby increasing the bandwidth of human-system interaction. We recently demonstrated the feasibility of real-time electromyographic (EMG) pattern recognition for a direct neuroelectric human-computer interface. We recorded EMG signals from an elastic sleeve with dry electrodes, while a human subject performed a range of discrete gestures. A machine-teaming algorithm was trained to recognize the EMG patterns associated with the gestures and map them to control signals. Successful applications now include piloting two Class 4 aircraft simulations (F-15 and 757) and entering data with a "virtual" numeric keyboard. Current research focuses on on-line adaptation of EMG sensing and processing and recognition of continuous gestures. We are also extending this on-line pattern recognition methodology to electroencephalographic (EEG) signals. This will allow us to bypass muscle activity and draw control signals directly from the human brain. Our system can reliably detect P-rhythm (a periodic EEG signal from motor cortex in the 10 Hz range) with a lightweight headset containing saline-soaked sponge electrodes. The data show that EEG p-rhythm can be modulated by real and imaginary motions. Current research focuses on using biofeedback to train of human subjects to modulate EEG rhythms on demand, and to examine interactions of EEG-based control with EMG-based and manual control. Viewgraphs on these neuroelectric technologies are also included.

  8. Interface-assisted molecular spintronics

    International Nuclear Information System (INIS)

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing

  9. Review of advanced control rooms: Methodological considerations for the use of HFE guidelines

    International Nuclear Information System (INIS)

    Control rooms for advanced nuclear power plants use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system and the ways in which operators interact with the system. The US Nuclear Regulatory Commission (NRC) reviews HSIs to ensure that they are designed to accepted human factors engineering (HFE) principles. The principal review guidance, however, is more than ten-years old (US NRC, 1981). Accordingly, an Advanced HSI Design Review Guideline (DRG) was developed to provide criteria for these reviews. The DRG contains seven major sections: Information Display, User-System Interaction, Process Control and Input Devices, Alarms, Analysis and Decision Aids, Inter-Personnel Communication, and Workplace Design (see O'Hara ampersand Brown, 1993). The purpose of this paper is to describe the methodology for DRG use

  10. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  11. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Katya Le Blanc; alan mecham; william phoenix; Magdy Tawfik; Jeffrey Joe

    2010-06-01

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to review operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the

  12. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    International Nuclear Information System (INIS)

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratory's (INL's) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to review operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 'Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the

  13. Soft Interfaces

    Science.gov (United States)

    Gilles de Gennes, Pierre; Edwards, Introduction By Sam

    1997-04-01

    Paul Adrien Maurice Dirac, one of the greatest physicists of the twentieth century, died in 1984. Dirac's college, St. John's of Cambridge, generously endowed annual lectures to be held at Cambridge University in his memory. This volume contains a much expanded version of the 1994 Dirac Lecture by Nobel Laureate Pierre Gilles de Gennes. The book presents an impressionistic tour of the physics of soft interfaces. Full of insight and interesting asides, it not only provides an accessible introduction to this topic, but also lays down many markers and signposts that will be of interest to researchers in physics or chemistry. Features discussions of wetting and dewetting, the dynamics of different types of interface and adhesion and polymer/polymer welding.

  14. Interface learning

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2014-01-01

    students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum......"Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework for...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop the...

  15. Museets interface

    DEFF Research Database (Denmark)

    Pold, Søren

    Søren Pold gør sig overvejelser med udgangspunkt i museumsprojekterne Kongedragter.dk og Stigombord.dk. Han argumenterer for, at udviklingen af internettets interfaces skaber nye måder at se, forstå og interagere med kulturen på. Brugerne får nye medievaner og perceptionsmønstre, der må medtænkes...

  16. Surface and interface effects in VLSI

    CERN Document Server

    Einspruch, Norman G

    1985-01-01

    VLSI Electronics Microstructure Science, Volume 10: Surface and Interface Effects in VLSI provides the advances made in the science of semiconductor surface and interface as they relate to electronics. This volume aims to provide a better understanding and control of surface and interface related properties. The book begins with an introductory chapter on the intimate link between interfaces and devices. The book is then divided into two parts. The first part covers the chemical and geometric structures of prototypical VLSI interfaces. Subjects detailed include, the technologically most import

  17. Lessons learned from HRA and human-system modeling efforts

    International Nuclear Information System (INIS)

    Human-System modeling is not unique to the field of Human Reliability Analysis (HRA). Since human factors professionals first began their explorations of human activities, they have done so with the concept of open-quotes systemclose quotes in mind. Though the two - human and system - are distinct, they can be properly understood only in terms of each other: the system provides a context in which goals and objectives for work are defined, and the human plays either a pre-defined or ad hoc role in meeting these goals. In this sense, every intervention which attempts to evaluate or improve upon some system parameter requires that an understanding of human-system interactions be developed. It is too often the case, however, that somewhere between the inception of a system and its implementation, the human-system relationships are overlooked, misunderstood, or inadequately framed. This results in mismatches between demands versus capabilities of human operators, systems which are difficult to operate, and the obvious end product-human error. The lessons learned from human system modeling provide a valuable feedback mechanism to the process of HRA, and the technologies which employ this form of modeling

  18. Bubble and drop interfaces

    CERN Document Server

    Miller

    2011-01-01

    The book aims at describing the most important experimental methods for characterizing liquid interfaces, such as drop profile analysis, bubble pressure and drop volume tensiometry, capillary pressure technique, and oscillating drops and bubbles. Besides the details of experimental set ups, also the underlying theoretical basis is presented in detail. In addition, a number of applications based on drops and bubbles is discussed, such as rising bubbles and the very complex process of flotation. Also wetting, characterized by the dynamics of advancing contact angles is discussed critically. Spec

  19. Development of a HRA method based on Human Factor Issues for advanced NPP

    International Nuclear Information System (INIS)

    A design of instrumentation and control (I and C) systems for various plant systems including nuclear power plants (NPPs) is rapidly moving toward fully digital I and C and modern computer techniques have been gradually introduced into the design of advanced main control room (MCR). In advanced MCR, computer based Human-System Interfaces (HSIs) such as CRT based displays, large display panels (LDP), advanced information system, soft control and computerized procedure system (CPS) are applied in advanced MCR. Human operators in an advanced MCR still play an important role. However, various research and experiences from NPPs with an advanced MCR show that characteristics of human operators' task would be changed due to the use of inexperienced HSIs. This gives implications to the PSFs (Performance Shaping Factors) in HRA (Human Reliability Analysis). PSF in HRA is an aspect of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance resulting in increasing or decreasing the likelihood of human error. These PSFs have been suggested in various ways depending on the HRA methods used. In most HRA methods, however, there is a lack of inconsistency for the derivation of the PSFs and a lack of considerations of how the changes implemented in advanced MCR give impact on the operators' task. In this study, a framework for the derivation of and evaluation in the PSFs to be used in HRA for advanced NPPs is suggested

  20. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author)

  1. Interfacing DNA nanodevices with biology

    DEFF Research Database (Denmark)

    Vinther, Mathias; Kjems, Jørgen

    2016-01-01

    in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of DNA nanotechnology for such use. We summarize which requirements DNA nanostructures must fulfil to function in cellular...... environments and inside living organisms. In addition, we highlight recent advances in interfacing DNA nanostructures with biology....

  2. Soft Interfaces

    International Nuclear Information System (INIS)

    This book presents an extended form of the 1994 Dirac Memorial Lecture delivered by Pierre Gilles de Gennes at Cambridge University. The main task of the presentation is to show the beauty and richness of structural forms and phenomena which are observed at soft interfaces between two media. They are much more complex than forms and phenomena existing in each phase separately. Problems are discussed including both traditional, classical techniques, such as the contact angle in static and dynamic partial wetting, as well as the latest research methodology, like 'environmental' scanning electron microscopes. The book is not a systematic lecture on phenomena but it can be considered as a compact set of essays on topics which particularly fascinate the author. The continuum theory widely used in the book is based on a deep molecular approach. The author is particularly interested in a broad-minded rheology of liquid systems at interfaces with specific emphasis on polymer melts. To study this, the author has developed a special methodology called anemometry near walls. The second main topic presented in the book is the problem of adhesion. Molecular processes, energy transformations and electrostatic interaction are included in an interesting discussion of the many aspects of the principles of adhesion. The third topic concerns welding between two polymer surfaces, such as A/A and A/B interfaces. Of great worth is the presentation of various unsolved, open problems. The kind of topics and brevity of description indicate that this book is intended for a well prepared reader. However, for any reader it will present an interesting picture of how many mysterious processes are acting in the surrounding world and how these phenomena are perceived by a Nobel Laureate, who won that prize mainly for his investigations in this field. (book review)

  3. Interface engineering in organic transistors

    Directory of Open Access Journals (Sweden)

    Yeong Don Park

    2007-03-01

    Full Text Available Recent technological advances in organic field-effect transistors (OFETs have triggered intensive research into the molecular and mesoscale structures of organic semiconductor films that determine their charge-transport characteristics. Since the molecular structure and morphology of an organic semiconductor are largely determined by the properties of the interface between the organic film and the insulator, a great deal of research has focused on interface engineering. We review recent progress in interface engineering for the fabrication of high-performance OFETs and, in particular, engineering of the interfaces between semiconductors and insulators. The effects of interfacial characteristics on the molecular and mesoscale structures of π-conjugated molecules and the performance of OFET devices are discussed.

  4. Surfaces and interfaces of electronic materials

    CERN Document Server

    Brillson, Leonard J

    2012-01-01

    An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural propertie

  5. 先进控制与西门子PCS7系统接口的应用开发%Application development of advanced control and Siemens PCS37 system interface

    Institute of Scientific and Technical Information of China (English)

    董庆龙

    2015-01-01

    文中结合某炼油厂常减压装置炉温优化项目的实施过程,阐述了在西门子PCS7控制系统中嵌入第三方先进控制程序和控制接口程序的开发。炉温优化先进控制项目,综合考虑了影响炉温的众多因素,应用复杂控制策略,控制加热炉出口温度平稳,实现了装置的平稳运行。%Combined with the implementation process of the furnace temperature optimization project of the atmospheric and vacuum distillation unit,this paper set forth the development of insertion of the third-party’s advanced control program and control interface program into Siemens PCS37 control system. In the furnace temperature optimization control project, numerous factors influencing furnace temperature were considered,complex control strategy was applied,the heating furnace exit temperature was controlled stable,smooth operation of the unit was realized.

  6. NASA UAS Integration into the NAS Project: Human Systems Integration

    Science.gov (United States)

    Shively, Jay

    2016-01-01

    This presentation provides an overview of the work the Human Systems Integration (HSI) sub-project has done on detect and avoid (DAA) displays while working on the UAS (Unmanned Aircraft System) Integration into the NAS project. The most recent simulation on DAA interoperability with Traffic Collision Avoidance System (TCAS) is discussed in the most detail. The relationship of the work to the larger UAS community and next steps are also detailed.

  7. Organizational needs: A co-creation and human systems perspective

    OpenAIRE

    Korhonen, Heidi

    2013-01-01

    The concept of need is embedded in economic systems. Since the concept originates in individual psychology, it is not well understood at the organizational level and other higher systemic levels. We address this gap by drawing on research on human needs, on organizations, and on value co-creation in nested human systems. We present a framework that summarizes essentials of well-being, behavior and the change dynamics of needs at individual, organizational, and ecosystemic levels of human syst...

  8. Human Systems Integration in Practice: Constellation Lessons Learned

    Science.gov (United States)

    Zumbado, Jennifer Rochlis

    2012-01-01

    NASA's Constellation program provided a unique testbed for Human Systems Integration (HSI) as a fundamental element of the Systems Engineering process. Constellation was the first major program to have HSI mandated by NASA's Human Rating document. Proper HSI is critical to the success of any project that relies on humans to function as operators, maintainers, or controllers of a system. HSI improves mission, system and human performance, significantly reduces lifecycle costs, lowers risk and minimizes re-design. Successful HSI begins with sufficient project schedule dedicated to the generation of human systems requirements, but is by no means solely a requirements management process. A top-down systems engineering process that recognizes throughout the organization, human factors as a technical discipline equal to traditional engineering disciplines with authority for the overall system. This partners with a bottoms-up mechanism for human-centered design and technical issue resolution. The Constellation Human Systems Integration Group (HSIG) was a part of the Systems Engineering and Integration (SE&I) organization within the program office, and existed alongside similar groups such as Flight Performance, Environments & Constraints, and Integrated Loads, Structures and Mechanisms. While the HSIG successfully managed, via influence leadership, a down-and-in Community of Practice to facilitate technical integration and issue resolution, it lacked parallel top-down authority to drive integrated design. This presentation will discuss how HSI was applied to Constellation, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers. This presentation will discuss how Human Systems Integration (HSI) was applied to NASA's Constellation program, the lessons learned and best practices it revealed, and recommendations to future NASA program and project managers on how to accomplish this critical function.

  9. Advances in PHWR design

    International Nuclear Information System (INIS)

    Recent advances by AECL in improved performance, cost reduction and safety improvement of CANDU reactors are described. Topics include: computer-aided design tools, up-front licensing, site utilization, plant life management, construction techniques, plant control, safety-critical software, advanced fuels, human-machine interface, heat sinks, radiation protection, feedback to design, emergency core cooling and probabilistic safety assessment

  10. NASA-STD-3001, Space Flight Human-System Standard and the Human Integration Design Handbook

    Science.gov (United States)

    Whitmore, Mihriban; Boyer, Jennifer; Holubec, Keith

    2012-01-01

    NASA-STD-3001 Space Flight Human-System Standard Volume 1, Crew Health, Volume 2, Human Factors, Habitability and Environmental Health, and the Human Integration Design Handbook (HIDH) have replaced the Man-Systems Integration Standards (MSIS), NASA-STD-3000. For decades, NASA-STD-3000 was a significant contribution to human spaceflight programs and to human-systems integration. However, with research program and project results being realized, advances in technology, and the availability of new information in a variety of topic areas, the time had arrived to update this extensive suite of standards and design information. NASA-STD-3001, Volume 2 contains the Agency level standards from the human and environmental factors disciplines that ensure human spaceflight operations are performed safely, efficiently, and effectively. The HIDH is organized in the same sequence and serves as the companion document to NASA-STD-3001, Volume 2, providing a compendium of human spaceflight history and knowledge. The HIDH is intended to aid interpretation of NASA-STD-3001, Volume 2 standards and to provide guidance for requirement writers and vehicle and habitat designers. Keywords Human Factors, Standards, Environmental Factors, NASA

  11. Advances in Neurotechnology for Brain Computer Interfaces

    OpenAIRE

    Fazli, Siamac

    2011-01-01

    Gehirn Computer Schnittstellen haben in den letzten 10 Jahren ein enormes wissenschaftliches Interesse hervorgerufen. Allerdings offenbart diese spannende Technology bei näherer Betrachtung noch einige Hürden, welche bisher die Entwicklung von massentauglichen Anwendungen verhindert haben. Unter Anderem eine lange Vorbereitungszeit eines BCI Systems, die fehlende Steuermöglichkeiten für manche Benutzer, sowie die nicht Stationaritäten innerhalb einer Aufnahme. Diese Dissertation führt eine Re...

  12. System dynamics model for environment - human systems interaction in the mining industry

    International Nuclear Information System (INIS)

    Use of advanced technology in the mining activities are polluting the natural environment, interfering with the normal life of the miners/residents. In this paper, health hazards due to underground workings and effect of environmental conditions on men are discussed. A composite system inter-relationship of the mining industries with the Government, society and environmental sectors is established. Allowing certain level of pollution, a system dynamics model is developed considering the parameters like more revenues from the mining industries, degradation of quality of life index - environmental index on long-term and short-term basis, new diseases due to pollution, social awareness, health care facilities, tax exemption etc. This model will help us to understand the optimisation of the parameters to establish the better interaction in the environment-human systems in the mining industries. 14 refs., 4 figs., 2 tabs

  13. Interfaces habladas

    Directory of Open Access Journals (Sweden)

    María Teresa Soto Sanfiel

    2012-04-01

    Full Text Available Este artículo describe y piensa al fenómeno de las Interfaces habladas (IH desde variados puntos de vista y niveles de análisis. El texto se ha concebido con los objetivos específicos de: 1.- procurar una visión panorámica de aspectos de la producción y consumo comunicativo de las IH; 2.- ofrecer recomendaciones para su creación y uso eficaz, y 3.- llamar la atención sobre su proliferación e inspirar su estudio desde la comunicación. A pesar de la creciente presencia de las IF en nues-tras vidas cotidianas, hay ausencia de textos que las caractericen y analicen por sus aspectos comunicativos. El trabajo es pertinente porque el fenómeno significa un cambio respecto a estadios comunica-tivos precedentes con consecuencias en las concepciones intelectuales y emocionales de los usuarios. La proliferación de IH nos abre a nue-vas realidades comunicativas: hablamos con máquinas.

  14. More playful user interfaces: interfaces that invite social and physical interaction

    NARCIS (Netherlands)

    Nijholt, Anton

    2015-01-01

    This book covers the latest advances in playful user interfacesinterfaces that invite social and physical interaction. These new developments include the use of audio, visual, tactile and physiological sensors to monitor, provide feedback and anticipate the behavior of human users. The decreasing

  15. Improved safety in advanced control complexes, without side effects

    International Nuclear Information System (INIS)

    If we only look for a moment at the world around us, it is obvious that advances in digital electronic equipment and Human-System Interface (HSI) technology are occurring at a phenomenal pace. This is evidenced from our home entertainment systems to the dashboard and computer-based operation of our new cars. Though the nuclear industry has less vigorously embraced these advances, their application is being implemented through individual upgrades to current generation nuclear plants and as plant-wide control complexes for advanced plants. In both venues modem technology possesses widely touted advantages for improving plant availability as well as safety. The well-documented safety benefits of digital Instrumentation and Controls (I ampersand C) include higher reliability resulting from redundancy and fault tolerance, inherent self-test and self-diagnostic capabilities which have replaced error-prone human tasks, resistance to setpoint drift increasing available operating margins, and the ability to run complex, real-time, computer-based algorithms directly supporting an operator's monitoring and control task requirements. 22 refs., 3 figs., 5 tabs

  16. Guidelines for the review of advanced controls and displays

    International Nuclear Information System (INIS)

    Advanced control room (ACR) concepts are being developed and refined in the commercial nuclear industry as part of future reactor designs. These ACRs will utilize advanced human-system interface (HSI) technologies which may have significant implications for plant safety in that they may affect: (1) the operators' overall role (function) in the system; (2) the methods by which operators receive information about system status; (3) the ways in which the operators interact with the system; and (4) the requirements on operators to understand and supervise an increasingly complex system. The Nuclear Regulatory Commission (NRC) reviews control room designs to ensure that they incorporate good human factors engineering principles so as to support operator performance and reliability necessary to protect public health and safety. The principal guidance available to the NRC (NUREG-0700) was developed more than ten years ago and does not address new technologies. Accordingly, the guidance must be updated. This paper discusses the development of an NRC Advanced Control Room Design Review Guideline

  17. Next Generation Search Interfaces

    Science.gov (United States)

    Roby, W.; Wu, X.; Ly, L.; Goldina, T.

    2015-09-01

    Astronomers are constantly looking for easier ways to access multiple data sets. While much effort is spent on VO, little thought is given to the types of User Interfaces we need to effectively search this sort of data. For instance, an astronomer might need to search Spitzer, WISE, and 2MASS catalogs and images then see the results presented together in one UI. Moving seamlessly between data sets is key to presenting integrated results. Results need to be viewed using first class, web based, integrated FITS viewers, XY Plots, and advanced table display tools. These components should be able to handle very large datasets. To make a powerful Web based UI that can manage and present multiple searches to the user requires taking advantage of many HTML5 features. AJAX is used to start searches and present results. Push notifications (Server Sent Events) monitor background jobs. Canvas is required for advanced result displays. Lesser known CSS3 technologies makes it all flow seamlessly together. At IPAC, we have been developing our Firefly toolkit for several years. We are now using it to solve this multiple data set, multiple queries, and integrated presentation problem to create a powerful research experience. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). Firefly is the core for applications serving many project archives, including Spitzer, Planck, WISE, PTF, LSST and others. It is also used in IRSA's new Finder Chart and catalog and image displays.

  18. Space Medicine in the Human System Integration Process

    Science.gov (United States)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.

  19. Impact of Advanced HSIs on Human Reliability

    International Nuclear Information System (INIS)

    This study investigated how a digitalized control room may influence operators' performance. The new HSI system is highly supportive of knowledge-based works and during complex scenarios. The most noticeable enhancement and gained improvement came from the utilization of the CPS. The results also showed that for different task types, the effects of distinctive features are diverse. Since there is large flexibility in the design of advanced HSI systems, HRA should also consider the detailed design analysis for the plant of interest. Current designs of advanced Main Control Room (MCR) apply digital technology whose features include the Advanced Alarm System (AAS), Digital Information Display System (DIDS), Computerized Procedure System (CPS), and Soft Controls (SCs). Despite the significant improvements made to these features, the full impact have yet to be thoroughly assessed using Human Reliability Analysis (HRA). Furthermore, the evaluation criteria for these new features have not been provided; and there are no available data to perform adjustments for human error probabilities (HEPs), which have been developed for conventional control rooms. The aim of this study is to examine the potential effects of the new Human-System Interface (HSI) features on human reliability. Firstly, the characteristics and functions of the AAS, DIDS, CPS and SCs are assessed and categorized. Secondly, tasks related to the features are discussed, focusing on the differences between conventional and digital control rooms. Qualitative investigation of the impacts is performed by reviewing available literatures. Finally, a new model for the quantitative estimation of HEPs based on the Korean Standard HRA (K-HRA) method is proposed

  20. Consider neuromusculoskeletal redundancy and extended proprioception when designing smart structures to interface with humans

    Science.gov (United States)

    Winters, Jack M.

    1996-05-01

    Despite many well-intentioned attempts to utilize state-of-the-art advanced control systems technology to design contact devices such as powered orthoses, there have been more failures than successes. In part this is due to our limited understanding of neuromechanical function, and of how to optimally design human-technology interfaces. This paper develops a theoretical foundation for mechanical impedance and postural stability for large-scale human systems, and for the analysis and design of human-technology contact interfaces. We start with four basic presuppositions: redundancy is a fundamental feature of biosystem design, muscle actuators possess intrinsic nonlinear stiffness which can be modulated, mechanical interaction between the human and an environment is fundamentally bicausal, and objects with certain properties can become almost a natural extension of the human body. We then develop the key concepts of intimate contact and extended proprioception, and provide examples of how these principles can be applied to practical problems in orthotics, focusing on posture-assist technologies. Finally, suggestions are put forward for applying smart materials and structures to innovative orthotic design.

  1. Interface solutions for interface side effects?

    Directory of Open Access Journals (Sweden)

    Stoffregen Thomas A.

    2011-12-01

    Full Text Available Human-computer interfaces often give rise to a variety of side effects, including eyestrain, headache, fatigue, and motion sickness (aka cybersickness, simulator sickness. We might hope that improvements in interface design would tend to reduce these side effects. Unfortunately, history reveals just the opposite: The incidence and severity of motion sickness (for example is positively related to the progressive sophistication of display technology and systems. In this presentation, I enquire about the future of interface technologies in relation to side effects. I review the types of side effects that occur and what is known about the causes of interface side effects. I suggest new ways of understanding relations between interface technologies and side effects, and new ways to approach the problem of interface side effects.

  2. Brain-Computer Interfacing for Intelligent Systems

    OpenAIRE

    Nijholt, Anton; Tan, Desney; Pfurtscheller, Gert; Brunner, Clemens; R. Millán, del, José; Allison, Brandan; Graimann, Bernhard; Florin POPESCU; Blankertz, Benjamin; Müller, Klaus-R

    2008-01-01

    Advances in cognitive neuroscience and brain-imaging technologies give us the unprecedented ability to interface directly with brain activity. These technologies let us monitor physical processes in the brain that correspond with certain forms of thought. Researchers have begun using these technologies to build brain-computer interfaces (BCIs)—communication systems that don't depend on the brain's normal output pathways of peripheral nerves and muscles. Four short articles provide a quick ove...

  3. Process for Selecting System Level Assessments for Human System Technologies

    Science.gov (United States)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  4. Human-computer interface and human reliability

    International Nuclear Information System (INIS)

    Issues associated with the impact of human-computer interfaces on human performance and reliability are discussed. Potential benefits of computer-based interfaces are identified as are concerns which could mitigate these benefits. In this paper it is suggested that the primary issues affecting human reliability in advanced systems involve allocation of function strategies which support operator situation awareness, specification of cognitive processing resources so minimal competition for shared resources occurs, and design of the user interface and information displays which supports task accomplishment and rapid assimilation of information by the operator. Examples of problems associated with each of these issues are briefly discussed

  5. User interface design of electronic appliances

    CERN Document Server

    Baumann, Konrad

    2002-01-01

    This simple and manageable guide to user interface design is written for the professional in industry working on product development and the decision process. It is directed not only to the human factors specialists, but also to technicians, designers, marketing and product managers and students.The book presents guidelines for user interface design including a catalogue of input and output devices for electronic appliances, adding material on the design process, interaction design, advanced input, speech interfaces, evaluation, standards, the move from usability to pleasure and cultural diffe

  6. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  7. Human-System Integration Scorecard Update to VB.Net

    Science.gov (United States)

    Sanders, Blaze D.

    2009-01-01

    The purpose of this project was to create Human-System Integration (HSI) scorecard software, which could be utilized to validate that human factors have been considered early in hardware/system specifications and design. The HSI scorecard is partially based upon the revised Human Rating Requirements (HRR) intended for NASA's Constellation program. This software scorecard will allow for quick appraisal of HSI factors, by using visual aids to highlight low and rapidly changing scores. This project consisted of creating a user-friendly Visual Basic program that could be easily distributed and updated, to and by fellow colleagues. Updating the Microsoft Word version of the HSI scorecard to a computer application will allow for the addition of useful features, improved easy of use, and decreased completion time for user. One significant addition is the ability to create Microsoft Excel graphs automatically from scorecard data, to allow for clear presentation of problematic areas. The purpose of this paper is to describe the rational and benefits of creating the HSI scorecard software, the problems and goals of project, and future work that could be done.

  8. Applying the crew reliability model for team error analysis in the modernized main control room of advanced nuclear power plants

    International Nuclear Information System (INIS)

    This study implemented a crew reliability model (CRM) for analyzing human errors in a modernized main control room of advanced nuclear power plants. Instrumentation and controls systems in the main control room recently have changed most significantly with the digitalization of human-system interfaces. Ensuring the safe operation of nuclear power plants is an important driving force of these changes. Probabilistic risk assessment (PRA) is one of the most common methods to respond to these changes. PRA uses human reliability analysis (HRA) to assess human risk. In emergency situation, failure to detect a problem can have significant influences in process control and considerable effort has been invested in attempting to minimize this error through improved interface design, training, and the allocation of responsibilities within a control room team. This study provides a direction related to the crew errors. Furthermore, this study found that implementing the CRM fully considers the influences of team errors on the target system. The proposed model can be applied to specific systems in conjunction with a consideration of critical elements; they are design basis accidents, critical human actions, human error modes, and performance shaping factors. This model can be used to assist human error analysis in the main control room. Advanced technologies can reduce the occurrence of existed human errors from tradition human-system interfaces. However, the highly integrated room may hide some potential human errors that need to be further investigated. Furthermore, the use of a single example in this study is insufficient. Investigation of further examples in a future study would be useful for verification and validation of the proposed model. (author)

  9. Team-computer interfaces in complex task environments

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M.

    1990-09-01

    This research focused on the interfaces (media of information exchange) teams use to interact about the task at hand. This report is among the first to study human-system interfaces in which the human component is a team, and the system functions as part of the team. Two operators dynamically shared a simulated fluid flow process, coordinating control and failure detection responsibilities through computer-mediated communication. Different computer interfaces representing the same system information were used to affect the individual operators' mental models of the process. Communication was identified as the most critical variable, consequently future research is being designed to test effective modes of communication. The results have relevance for the development of team-computer interfaces in complex systems in which responsibility must be shared dynamically among all members of the operation.

  10. Interface localization near criticality

    CERN Document Server

    Delfino, Gesualdo

    2016-01-01

    The theory of interface localization in near-critical planar systems at phase coexistence is formulated from first principles. We show that mutual delocalization of two interfaces, amounting to interfacial wetting, occurs when the bulk correlation length critical exponent $\

  11. Microcomputer interfacing and applications

    CERN Document Server

    Mustafa, M A

    1990-01-01

    This is the applications guide to interfacing microcomputers. It offers practical non-mathematical solutions to interfacing problems in many applications including data acquisition and control. Emphasis is given to the definition of the objectives of the interface, then comparing possible solutions and producing the best interface for every situation. Dr Mustafa A Mustafa is a senior designer of control equipment and has written many technical articles and papers on the subject of computers and their application to control engineering.

  12. A software prototype development of human system interfaces for human factors engineering validation tests of SMART MCR

    International Nuclear Information System (INIS)

    An integrated system validation test bed used for human factors engineering validation test is being developed. This study has a goal to develop a software prototype for HFE validation of SMART MCR design. To achieve these, first, some prototype specifications of the software was developed. Then software prototypes of alarm reduction logic system, Plant Protection System, ESF-CCS, Elastic Tile Alarm Indication, and EID-based HSIs were implemented as codes. Test procedures for the software prototypes were established to verify the completeness of the codes implemented. The careful software test has been done according to these test procedures, and the result were documented

  13. A software prototype development of human system interfaces for human factors engineering validation tests of SMART MCR

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Tae; Han, Kwan Ho; Yang, Seung Won [Human Data Co., Daejeon (Korea, Republic of)

    2011-02-15

    An integrated system validation test bed used for human factors engineering validation test is being developed. This study has a goal to develop a software prototype for HFE validation of SMART MCR design. To achieve these, first, some prototype specifications of the software was developed. Then software prototypes of alarm reduction logic system, Plant Protection System, ESF-CCS, Elastic Tile Alarm Indication, and EID-based HSIs were implemented as codes. Test procedures for the software prototypes were established to verify the completeness of the codes implemented. The careful software test has been done according to these test procedures, and the result were documented

  14. Water at Interfaces

    DEFF Research Database (Denmark)

    Björneholm, Olle; Hansen, Martin Hangaard; Hodgson, Andrew;

    2016-01-01

    The interfaces of neat water and aqueous solutions play a prominent role in many technological processes and in the environment. Examples of aqueous interfaces are ultrathin water films that cover most hydrophilic surfaces under ambient relative humidities, the liquid/solid interface which drives...

  15. Complex Interfaces Under Change

    DEFF Research Database (Denmark)

    Rosbjerg, Dan

    mechanical processes that develop within this structure. Water-related processes at the interfaces between the compartments are complex, depending both on the interface itself, and on the characteristics of the interfaced compartments. Various aspects of global change directly or indirectly impact these...

  16. INTELLIGENT USER INTERFACE IN FUZZY ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ben Khayut

    2014-01-01

    Full Text Available Human-Computer Interaction with the traditional User Interface is done using a specified in advance script dialog “menu”, mainly based on human intellect and unproductive use of navigation. This approach doesn’t lead to making qualitative decision in control systems, where the situations and processes cannot be structured in advance. Any dynamic changes in the controlled business process (as example, in organizational unit of the information fuzzy control system make it necessary to modify the script dialogue in User Interface. This circumstance leads to a redesign of the components of the User Interface and of the entire control system. In the Intelligent User Interface, where the dialog situations are unknown in advance, fuzzy structured and artificial intelligence is crucial, the redesign described above is impossible. To solve this and other problems, we propose the data, information and knowledge based technology of Smart/ Intelligent User Interface (IUI design, which interacts with users and systems in natural and other languages, utilizing the principles of Situational Control and Fuzzy Logic theories, Artificial Intelligence, Linguistics, Knowledge Base technologies and others. The proposed technology of IUI design is defined by multi-agents of a Situational Control and of data, information and knowledge, b modelling of Fuzzy Logic Inference, c Generalization, Representation and Explanation of knowledge, c Planning and Decisionmaking, d Dialog Control, e Reasoning and Systems Thinking, f Fuzzy Control of organizational unit in real-time, fuzzy conditions, heterogeneous domains, and g multi-lingual communication under uncertainty and in Fuzzy Environment.

  17. Interface reactions in film materials

    Institute of Scientific and Technical Information of China (English)

    Fengwu Zhu; Zhonghai Zhai; Guanghua Yu

    2003-01-01

    Interface reaction (IR) is a frequently observed phenomenon in the study of advanced thin film materials. It is very important to study the reaction conditions at which IR happens and then to suppress or make use of it, the necessary conditions, including both thermodynamical and dynamical conditions of IR were discussed in detail. IRs in various systems, including oxide/silicon,oxide/metal, metal/metal, metal/semiconductor and semiconductor/semiconductor, were reviewed. Methods to suppress and make use of IR were also introduced.

  18. Quantization of interface currents

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  19. More playful user interfaces: an introduction

    NARCIS (Netherlands)

    Nijholt, Anton; Nijholt, Anton

    2015-01-01

    In this chapter we embed recent research advances in creating playful user interfaces in a historical context. We have observations on spending leisure time, in particular predictions from previous decades and views expressed in Science Fiction novels. We confront these views and predictions with wh

  20. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    International Nuclear Information System (INIS)

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs

  1. Development of human factors validation system for the advanced control room of APR1400

    International Nuclear Information System (INIS)

    A human factors validation system for the main control room (MCR) of Advanced Power Reactor 1400 MWe (APR1400) has been developed as it adopts digitalized human-system interfaces (HSIs). The integrated validation system is composed of process/plant models, HSIs, and the human performance evaluation support system (HUPESS). A real-time thermal-hydraulic code, RELAP5 R/T, was used and modified to simulate the dynamic characteristics of the APR1400, and simulation software, 3KeyMaster, was used to model the balance of plant systems. The HSIs developed in this study include all facilities in the APR1400 MCR, such as large display panels, 3 identified operator workstations, and a safety console. In addition, the remote shutdown workstation has been developed. The display systems in the HSIs have been developed using ProcSee, which is a software tool for developing and displaying dynamic graphical user interfaces. This paper describes the configurations of HSIs including display systems, the dynamic models of the APR1400 simulator, the instructor station, and the HUPESS. This paper also presents the results of plant simulation performance tests at transient compared with the results of RELAP5/MOD3.3 calculations. The human factors validation system for the advanced control room of APR1400 provides high degrees of physical, functional, and dynamic fidelities, and can be used in the validation process of the APR1400 HSI design. (author)

  2. Protein interface classification by evolutionary analysis

    Directory of Open Access Journals (Sweden)

    Duarte Jose M

    2012-12-01

    Full Text Available Abstract Background Distinguishing biologically relevant interfaces from lattice contacts in protein crystals is a fundamental problem in structural biology. Despite efforts towards the computational prediction of interface character, many issues are still unresolved. Results We present here a protein-protein interface classifier that relies on evolutionary data to detect the biological character of interfaces. The classifier uses a simple geometric measure, number of core residues, and two evolutionary indicators based on the sequence entropy of homolog sequences. Both aim at detecting differential selection pressure between interface core and rim or rest of surface. The core residues, defined as fully buried residues (>95% burial, appear to be fundamental determinants of biological interfaces: their number is in itself a powerful discriminator of interface character and together with the evolutionary measures it is able to clearly distinguish evolved biological contacts from crystal ones. We demonstrate that this definition of core residues leads to distinctively better results than earlier definitions from the literature. The stringent selection and quality filtering of structural and sequence data was key to the success of the method. Most importantly we demonstrate that a more conservative selection of homolog sequences - with relatively high sequence identities to the query - is able to produce a clearer signal than previous attempts. Conclusions An evolutionary approach like the one presented here is key to the advancement of the field, which so far was missing an effective method exploiting the evolutionary character of protein interfaces. Its coverage and performance will only improve over time thanks to the incessant growth of sequence databases. Currently our method reaches an accuracy of 89% in classifying interfaces of the Ponstingl 2003 datasets and it lends itself to a variety of useful applications in structural biology and

  3. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  4. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    International Nuclear Information System (INIS)

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation

  5. SCHEME (Soft Control Human error Evaluation MEthod) for advanced MCR HRA

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Inseok; Jung, Wondea [KAERI, Daejeon (Korea, Republic of); Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The Technique for Human Error Rate Prediction (THERP), Korean Human Reliability Analysis (K-HRA), Human Error Assessment and Reduction Technique (HEART), A Technique for Human Event Analysis (ATHEANA), Cognitive Reliability and Error Analysis Method (CREAM), and Simplified Plant Analysis Risk Human Reliability Assessment (SPAR-H) in relation to NPP maintenance and operation. Most of these methods were developed considering the conventional type of Main Control Rooms (MCRs). They are still used for HRA in advanced MCRs even though the operating environment of advanced MCRs in NPPs has been considerably changed by the adoption of new human-system interfaces such as computer-based soft controls. Among the many features in advanced MCRs, soft controls are an important feature because the operation action in NPP advanced MCRs is performed by soft controls. Consequently, those conventional methods may not sufficiently consider the features of soft control execution human errors. To this end, a new framework of a HRA method for evaluating soft control execution human error is suggested by performing the soft control task analysis and the literature reviews regarding widely accepted human error taxonomies. In this study, the framework of a HRA method for evaluating soft control execution human error in advanced MCRs is developed. First, the factors which HRA method in advanced MCRs should encompass are derived based on the literature review, and soft control task analysis. Based on the derived factors, execution HRA framework in advanced MCRs is developed mainly focusing on the features of soft control. Moreover, since most current HRA database deal with operation in conventional type of MCRs and are not explicitly designed to deal with digital HSI, HRA database are developed under lab scale simulation.

  6. Development of a qualitative evaluation framework for performance shaping factors (PSFs) in advanced MCR HRA

    International Nuclear Information System (INIS)

    Highlights: → Context changes in advanced MCR have impact on PSFs. → PSFs in the 1st and 2nd generation HRA methods are reviewed. → We made a qualitative evaluation framework for PSF based on human factor issues. - Abstract: Human reliability analysis (HRA) is performed as part of the probabilistic risk assessment to identify and quantify human actions and the associated impacts on structures, systems, and components of complex facilities. In performing HRA, conditions that influence human performance have been analyzed in terms of several context factors. These context factors, which are called performance shaping factors (PSFs) are used to adjust the basic human error probability (BHEP), and PSFs have been derived in various ways depending on the HRA methods used. As the design of instrumentation and control (I and C) systems for nuclear power plants (NPPs) is rapidly moving toward fully digital I and C, and modern computer techniques have been gradually introduced into the design of advanced main control room (MCR), computer-based human-system interfaces (HSIs), such as CRT-based displays, large display panels (LDPs), advanced information systems, soft control, and computerized procedure system (CPS) will be applied in advanced MCR. Environmental changes in MCR have some implications for PSFs, and they have an influence on when PSFs should be applied in HRA because different situations might induce different internal or external factors which can lead to human errors. In this study, PSFs for advanced MCR HRA are derived, and a new qualitative evaluation framework for these PSFs is suggested. First, PSFs from various HRA methods are collected, and these PSFs are further grouped into PSFs categories to be used in advanced MCR HRA. Second, human factor (HF) issues in advanced MCR are analyzed and derived to be used as an evaluation framework for PSFs.

  7. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves; Hornbæk, Kasper

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these...... shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...... shape-changing interfaces be used for, (b) which parts of the design space are not well understood, and (c) why studying user experience with shape-changing interfaces is important....

  8. Universal computer interfaces

    CERN Document Server

    Dheere, RFBM

    1988-01-01

    Presents a survey of the latest developments in the field of the universal computer interface, resulting from a study of the world patent literature. Illustrating the state of the art today, the book ranges from basic interface structure, through parameters and common characteristics, to the most important industrial bus realizations. Recent technical enhancements are also included, with special emphasis devoted to the universal interface adapter circuit. Comprehensively indexed.

  9. Definition of interfaces

    OpenAIRE

    Almaghout, Hala; Bicici, Ergun; Doherty, Stephen; Gaspari, Federico; Groves, Declan; Toral, Antonio; Vangenabith, Josef; Popovic, Maja; Piperidis, Stelios

    2013-01-01

    The aim of this report is to define the interfaces for the tools used in the MT development and evaluation scenarios as included in the QTLaunchPad (QTLP) infrastructure. Specification of the interfaces is important for the interaction and interoperability of the tools in the developed QTLP infrastructure. In addressing this aim, the report provides: 1. Descriptions of the common aspects of the tools and their standardized data formats; 2. Descriptions of the interfaces for the tools f...

  10. Experimental evaluation of human-system interaction on alarm design

    International Nuclear Information System (INIS)

    This study evaluates the practicability of automatic reset alarm system in Fourth Nuclear Power Plant (FNPP) of Taiwan. The features of auto-reset alarm system include dynamic prioritization of all alarm signals and fast system reset. Two experiments were conducted to evaluate the effect of automatic/manual reset on operation time, situational awareness (SA), task load index (TLX), and subjective ratings. All participants, including Experts and Novices, took part in the experiment on the alarm system simulator with Load Rejection procedure. The experimental results imply that the auto-reset alarm system may be applied in an advanced control room under Load Rejection procedure, because all participants' operation time were reduced as well as Novice's SA were raised up. Nevertheless, to ensure operating safety in FNPP, the effects of the auto-reset alarm system in other procedures/special situations still need to be tested in the near future

  11. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  12. Energetics of molecular interfaces

    Directory of Open Access Journals (Sweden)

    David Cahen

    2005-07-01

    Full Text Available Transport of charge carriers through interfaces is crucial to all electronic and optoelectronic devices, in particular devices based on organic molecular films and, especially, monomolecular layers and single molecules. The energetics of molecular interfaces are exceedingly important, therefore, and must be understood in detail so that we can model and control their behavior. This knowledge, however, is not always sufficient, as the very physics of charge carrier transport through molecular interfaces remains, at times, unclear. This article provides an overview of the main issues being researched actively in the field of interfaces involving organic molecules, and points out areas where progress has been made and where basic questions remain unanswered.

  13. Development of human performance evaluation battery for integrated system validation of the HSI for an advanced control room

    International Nuclear Information System (INIS)

    The human-system interface (HSI) plays a vital role in the operation of a nuclear power plant. To ensure a human factors engineered advanced control room HSI design in support of reliable and safe operation of the plant, Taiwan Power Company has incorporated elements of the HFE Program Review Model (HFE PRM), prescribed in NUREG-0711 [1], into the HFE program for its Lungmen Nuclear Power Project. At present, the control room HSI design is undergoing verification and validation. Although NUREG/CR-6393[2] has introduced review criteria and methodology for integrated system validation, these criteria and methodology need to be elaborated for proper implementation. The purpose of this paper is to describe the development of suitable performance evaluation tools to be used to collect objective task performance measures, cognitive measures, as well as physical measures for HFE validation for the Lungmen project. (authors)

  14. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  15. SIGMA WEB INTERFACE FOR REACTOR DATA APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pritychenko,B.; Sonzogni, A.A.

    2010-05-09

    We present Sigma Web interface which provides user-friendly access for online analysis and plotting of the evaluated and experimental nuclear reaction data stored in the ENDF-6 and EXFOR formats. The interface includes advanced browsing and search capabilities, interactive plots of cross sections, angular distributions and spectra, nubars, comparisons between evaluated and experimental data, computations for cross section data sets, pre-calculated integral quantities, neutron cross section uncertainties plots and visualization of covariance matrices. Sigma is publicly available at the National Nuclear Data Center website at http://www.nndc.bnl.gov/sigma.

  16. The Gigabit Link Interface Board (GLIB) ecosystem

    CERN Document Server

    Vichoudis, P; Baron, S; Barros Marin, M; Bobillier, V; Chramowitz, J; Haas, S; Hansen, M; Joos, M; Lobato Pardavila, L; Petit, P; Prosser, A; Vasey, F

    2013-01-01

    The Gigabit Link Interface Board (GLIB) project is an FPGA-based platform for users of high-speed optical links in high energy physics experiments. The major hardware component of the platform is the GLIB Advanced Mezzanine Card (AMC). Additionally to the AMC, auxiliary components are developed that enhance GLIB platform's I/O bandwidth and compatibility with legacy and future triggering and/or data acquisition interfaces. This article focuses on the development of the auxiliary components that together with the GLIB AMC offer a complete solution for beam/irradiation tests of detector modules and evaluation of optical links.

  17. Curriculum Design for Upper- and Advanced-Level GIS Classes: Are New Skills being Taught and Integrated?. GI_Forum|GI_Forum 2016, Volume 1 – open:spatial:interfaces|

    OpenAIRE

    Frazier, Amy; Greene, Christopher; Mitchell, Danielle; Kedron, Peter

    2016-01-01

    Geographic Information System (GIS) skills are increasingly marketable across a wide range of industries, subject areas and specialized fields. As a result, GIS courses draw students from a plethora of disciplines beyond geography, including business, social sciences, agriculture, geology, natural resources and computer science. At advanced teaching levels, this disciplinary diversity generates questions about how complex GIS skills are being taught to students who do not necessarily have a b...

  18. Interface or Interlace?

    DEFF Research Database (Denmark)

    Hansen, Lone Koefoed; Wamberg, Jacob

    2005-01-01

    Departing from an analysis of the computer's indeterminate location between medium and machine, this paper problematises the idea of a clear-cut interface in complex computing, especially Augmented Reality. The idea and pratice of the interface is derived from the medium as a representational...... art works, especially Phunsombatlert's Path of Illusion, Dobson's Blendie, the Canadian collective Whisper and Rinaldo's Augmented Fish Reality....

  19. Icinga Monitoring System Interface

    CERN Document Server

    Neculae, Alina Georgiana

    2014-01-01

    The aim of this project is to develop a web interface that would be used by the Icinga monitoring system to manage the CMS online cluster, in the experimental site. The interface would allow users to visualize the information in a compressed and intuitive way, as well as modify the information of each individual object and edit the relationships between classes.

  20. Interface colloidal robotic manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  1. User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms; Myers, Brad A

    2008-01-01

    User Interfaces have been around as long as computers have existed, even well before the field of Human-Computer Interaction was established. Over the years, some papers on the history of Human-Computer Interaction and User Interfaces have appeared, primarily focusing on the graphical interface era...... and early visionaries such as Bush, Engelbart and Kay. With the User Interface being a decisive factor in the proliferation of computers in society and since it has become a cultural phenomenon, it is time to paint a more comprehensive picture of its history. This SIG will investigate the possibilities...... of  launching a concerted effort towards creating a History of User Interfaces. ...

  2. A web based Radiation Oncology Dose Manager with a rich User Interface developed using AJAX, ruby, dynamic XHTML and the new Yahoo/EXT User Interface Library.

    Science.gov (United States)

    Vali, Faisal; Hong, Robert

    2007-01-01

    With the evolution of AJAX, ruby on rails, advanced dynamic XHTML technologies and the advent of powerful user interface libraries for javascript (EXT, Yahoo User Interface Library), developers now have the ability to provide truly rich interfaces within web browsers, with reasonable effort and without third-party plugins. We designed and developed an example of such a solution. The User Interface allows radiation oncology practices to intuitively manage different dose fractionation schemes by helping estimate total dose to irradiated organs. PMID:18694240

  3. Automatic, optimized interface placement in forward flux sampling simulations

    CERN Document Server

    Kratzer, Kai; Allen, Rosalind J

    2013-01-01

    Forward flux sampling (FFS) provides a convenient and efficient way to simulate rare events in equilibrium or non-equilibrium systems. FFS ratchets the system from an initial state to a final state via a series of interfaces in phase space. The efficiency of FFS depends sensitively on the positions of the interfaces. We present two alternative methods for placing interfaces automatically and adaptively in their optimal locations, on-the-fly as an FFS simulation progresses, without prior knowledge or user intervention. These methods allow the FFS simulation to advance efficiently through bottlenecks in phase space by placing more interfaces where the probability of advancement is lower. The methods are demonstrated both for a single-particle test problem and for the crystallization of Yukawa particles. By removing the need for manual interface placement, our methods both facilitate the setting up of FFS simulations and improve their performance, especially for rare events which involve complex trajectories thr...

  4. A continuously growing web-based interface structure databank

    International Nuclear Information System (INIS)

    The macroscopic properties of materials can be significantly influenced by the presence of microscopic interfaces. The complexity of these interfaces coupled with the vast configurational space in which they reside has been a long-standing obstacle to the advancement of true bottom-up material behavior predictions. In this vein, atomistic simulations have proven to be a valuable tool for investigating interface behavior. However, before atomistic simulations can be utilized to model interface behavior, meaningful interface atomic structures must be generated. The generation of structures has historically been carried out disjointly by individual research groups, and thus, has constituted an overlap in effort across the broad research community. To address this overlap and to lower the barrier for new researchers to explore interface modeling, we introduce a web-based interface structure databank (www.isdb.cee.cornell.edu) where users can search, download and share interface structures. The databank is intended to grow via two mechanisms: (1) interface structure donations from individual research groups and (2) an automated structure generation algorithm which continuously creates equilibrium interface structures. In this paper, we describe the databank, the automated interface generation algorithm, and compare a subset of the autonomously generated structures to structures currently available in the literature. To date, the automated generation algorithm has been directed toward aluminum grain boundary structures, which can be compared with experimentally measured population densities of aluminum polycrystals. (paper)

  5. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  6. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    2007-01-01

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  7. The computer graphics interface

    CERN Document Server

    Steinbrugge Chauveau, Karla; Niles Reed, Theodore; Shepherd, B

    2014-01-01

    The Computer Graphics Interface provides a concise discussion of computer graphics interface (CGI) standards. The title is comprised of seven chapters that cover the concepts of the CGI standard. Figures and examples are also included. The first chapter provides a general overview of CGI; this chapter covers graphics standards, functional specifications, and syntactic interfaces. Next, the book discusses the basic concepts of CGI, such as inquiry, profiles, and registration. The third chapter covers the CGI concepts and functions, while the fourth chapter deals with the concept of graphic obje

  8. The Java Legacy Interface

    DEFF Research Database (Denmark)

    Korsholm, Stephan

    The Java Legacy Interface is designed to use Java for encapsulating native legacy code on small embedded platforms. We discuss why existing technologies for encapsulating legacy code (JNI) is not sufficient for an important range of small embedded platforms, and we show how the Java Legacy...... Interface offers this previously missing functionality. We describe an implementation of the Java Legacy Interface for a particular virtual machine, and how we have used this virtual machine to integrate Java with an existing, commercial, soft real-time, C/C++ legacy platform....

  9. The interface effect

    CERN Document Server

    Galloway, Alexander R

    2013-01-01

    Interfaces are back, or perhaps they never left. The familiar Socratic conceit from the Phaedrus, of communication as the process of writing directly on the soul of the other, has returned to center stage in today's discussions of culture and media. Indeed Western thought has long construed media as a grand choice between two kinds of interfaces. Following the optimistic path, media seamlessly interface self and other in a transparent and immediate connection. But, following the pessimistic path, media are the obstacles to direct communion, disintegrating self and other into misunderstanding

  10. Autonomic html interface generator for web applications

    CERN Document Server

    Bassil, Youssef; 10.5121/ijwest.2012.3104

    2012-01-01

    Recent advances in computing systems have led to a new digital era in which every area of life is nearly interrelated with information technology. However, with the trend towards large-scale IT systems, a new challenge has emerged. The complexity of IT systems is becoming an obstacle that hampers the manageability, operability, and maintainability of modern computing infrastructures. Autonomic computing popped up to provide an answer to these ever-growing pitfalls. Fundamentally, autonomic systems are self-configuring, self-healing, self-optimizing, and self-protecting; hence, they can automate all complex IT processes without human intervention. This paper proposes an autonomic HTML web-interface generator based on XML Schema and Style Sheet specifications for self-configuring graphical user interfaces of web applications. The goal of this autonomic generator is to automate the process of customizing GUI web-interfaces according to the ever-changing business rules, policies, and operating environment with th...

  11. ASC-PROBA Interface Control Document

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Finn E;

    1999-01-01

    This document describes the Advanced Stellar Compass (ASC) and defines the interfaces between the instrument and the PROBA satellite. The ASC is a highly advanced and autonomous Stellar Reference Unit designed, developed and produced by the Space Instrumentation Group of the Department of...... Automation of the Technical University of Denmark. The document is structured as follows. First we present the ASC - heritage, system description, performance - then we address more specifically the environmental properties, like the EMC compatibility and thermal characteristics, and the design and...

  12. Brain Computer Interfaces, a Review

    Directory of Open Access Journals (Sweden)

    Luis Fernando Nicolas-Alonso

    2012-01-01

    Full Text Available A brain-computer interface (BCI is a hardware and software communications system that permits cerebral activity alone to control computers or external devices. The immediate goal of BCI research is to provide communications capabilities to severely disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. Here, we review the state-of-the-art of BCIs, looking at the different steps that form a standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, classification and the control interface. We discuss their advantages, drawbacks, and latest advances, and we survey the numerous technologies reported in the scientific literature to design each step of a BCI. First, the review examines the neuroimaging modalities used in the signal acquisition step, each of which monitors a different functional brain activity such as electrical, magnetic or metabolic activity. Second, the review discusses different electrophysiological control signals that determine user intentions, which can be detected in brain activity. Third, the review includes some techniques used in the signal enhancement step to deal with the artifacts in the control signals and improve the performance. Fourth, the review studies some mathematic algorithms used in the feature extraction and classification steps which translate the information in the control signals into commands that operate a computer or other device. Finally, the review provides an overview of various BCI applications that control a range of devices.

  13. Continuous Liquid Interface Production (CLIP)

    Science.gov (United States)

    Tumbleston, John

    Continuous liquid interface production (CLIP) can rapidly produce 3D parts using a range of polymeric materials. A DLP-based form of additive manufacturing, CLIP proceeds via projecting a sequence of UV images through an oxygen-permeable, UV-transparent window below a liquid resin bath. A thin uncured liquid layer, or dead zone, is created above the window and maintains a liquid interface below the advancing part. Above the dead zone, the curing part is drawn out of the resin bath creating suction forces that renew reactive liquid resin. The dead zone is created due to oxygen inhibition of photopolymerization, a process that is traditionally a nuisance in other photopolymerization applications. However, for CLIP oxygen inhibition and creation of the dead zone allows for a continuous mode of printing where UV exposure, resin renewal, and part elevation are conducted simultaneously. This continual process is fundamentally different from traditional bottom-up stereolithography printers where these steps must be conducted in separate and discrete steps. Furthermore, the relatively gentle nature of CLIP due to the established dead zone enables the use of unique materials with a wide range of mechanical properties. This presentation will showcase the CLIP technology and provide a detailed picture of interactions between different resin and process parameters. New applications for 3D printing that span the micro- to macro-scale enabled by CLIP's combination of unique materials and part production speed will also be presented.

  14. The ATLAS metadata interface

    International Nuclear Information System (INIS)

    AMI was chosen as the ATLAS dataset selection interface in July 2006. It is the main interface for searching for ATLAS data using physics metadata criteria. AMI has been implemented as a generic database management framework which allows parallel searching over many catalogues, which may have differing schema. The main features of the web interface will be described; in particular the powerful graphic query builder. The use of XML/XLST technology ensures that all commands can be used either on the web or from a command line interface via a web service. We also describe the overall architecture of ATLAS metadata and the different actors and granularity involved, and the place of AMI within this architecture. We discuss the problems involved in the correlation of metadata of differing granularity, and propose a solution for information mediation

  15. Interface Anywhere Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To illustrate the viability of this technology, a prototype Natural User Interface (NUI) was developed as a proof-of-concept for system control.  Gesture and...

  16. Electrons at helium interfaces

    OpenAIRE

    Leiderer, Paul

    1984-01-01

    Two-dimensional layers of charges trapped at the boundaries between the various helium phases strongly interact with these interfaces at high electric fields. The coupling, which leads to an electrohydrodynamic instability, provides new methods for studying helium properties.

  17. Scalable coherent interface

    International Nuclear Information System (INIS)

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  18. More playful user interfaces: an introduction

    OpenAIRE

    Nijholt, Anton

    2015-01-01

    In this chapter we embed recent research advances in creating playful user interfaces in a historical context. We have observations on spending leisure time, in particular predictions from previous decades and views expressed in Science Fiction novels. We confront these views and predictions with what has really happened since the advent of computers, the Internet, Worldwide Web and sensors and actuators that are increasingly becoming integrated in our environments and in devices that are wit...

  19. Testing of the Automated Fluid Interface System

    Science.gov (United States)

    Johnston, A. S.; Tyler, Tony R.

    1998-01-01

    The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.

  20. Silent Speech Interfaces

    OpenAIRE

    Denby, B; Schultz, T.; Honda, K.; Hueber, T.; Gilbert, J.M.; Brumberg, J.S.

    2010-01-01

    Abstract The possibility of speech processing in the absence of an intelligible acoustic signal has given rise to the idea of a `silent speech? interface, to be used as an aid for the speech handicapped, or as part of a communications system operating in silence-required or high-background-noise environments. The article first outlines the emergence of the silent speech interface from the fields of speech production, automatic speech processing, speech pathology research, and telec...

  1. Serial interface controller

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, A.

    1995-04-14

    The idea of building a Serial Interface Controller (SIC) proposed by Paul O`Connor, Instrumentation Division, BNL is to determine the feasibility of incorporating a Serial Interface Controlled CMOS IC`s for charge amplification, shaping, analog storage and multiplexing used in particle detectors for high energy physics experiments. The serial data pumped into the CMOS ICs will be used to control many circuit parameters like digitally controlled gain, shaping time, precision preamplifier calibration circuits and many other parameters like timing discriminators mode of operation. The SIC board built will be tested on a Serial Interface Controlled Digital - to - Analog Convertor, which follows either Motorola`s SPI/QSPI or National Semiconductors Microwire interface technique. The DAC chosen for this was MAXIM`s MAX537, a Quad, 12-bit DAC. The function of this controller can be achieved by using some on-shelf micro-controllers like the Motorola`s MC68HC11, which offers dedicated SPI ports. The drawback encountered in using this controller is the overhead involved in putting together an user interface where the user can dynamically change its settings and load the SIC device. This is very critical in testing fewer number of CMOS IC`s having SIC. The SIC board described here takes care of this dynamic user interface issue.

  2. Risk Interfaces to Support Integrated Systems Analysis and Development

    Science.gov (United States)

    Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria

    2016-01-01

    Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4

  3. Development of the Advanced CANDU Reactor control centre

    International Nuclear Information System (INIS)

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  4. Development of the advanced CANDU reactor control centre

    International Nuclear Information System (INIS)

    The next generation CANDU control centre is being designed for the Advanced CANDU Reactor (ACR) station. The design is based upon the recent Qinshan control room with further upgrades to meet customer needs with respect to high capacity factor with low Operation, Maintenance and Administration (OM and A) costs. This evolutionary design includes the long proven functionality at several existing CANDU control centres such as the 4-unit station at Darlington, with advanced features made possible by new control and display technology. Additionally, ACR control centres address characteristics resulting from Human Factors Engineering (HFE) analysis of control centre operations in order to further enhance personnel awareness of system and plant status. Statistics show that up to 70% of plant significant events, which have caused plant outages, have a root cause attributable to the human from such sources as complex interfaces, procedures, maintenance and management practices. Consequently, special attention is made for the application of HFE throughout the ACR design process. The design process follows a systematic analytical approach to define operations staff information and information presentation requirements. The resultant human-system interfaces (HSI) such as those for monitoring, annunciation and control information are then verified and validated against the system design requirements to provide a high confidence level that adequate and correct information is being provided in a timely manner to support the necessary operational tasks. The ACR control centre provides plant staff with an improved operability capability due to the combination of systematic design and enhanced operating features. Significant design processes (i.e. development) or design features which contribute to this improved operability, include: Design Process: Project HFE Program Plan - intent, scope, timeliness and interfacing; HFE aspects of design process - procedures and instructions

  5. Software Architecture of the Spitzer Archive Interface

    Science.gov (United States)

    Chavez, J.; Wu, X.; Roby, W.; Hoac, A.; Goldina, T.; Hartley, B.

    2007-10-01

    The Spitzer Science Center (SSC) provides a set of user tools to support search and retrieval of Spitzer Archive (SA) data via the Internet. This presentation describes the software architecture and design principles that support the Archive Interface subsystem of the SA (Handley 2007). The Archive Interface is an extension of the core components of the Uplink subsystem and provides a set web services to allow open access to the SA data set. Web services technology provides a basis for searching the archive and retrieving data products. The archive interface provides three modes of access: a rich client, a Web browser, and scripts (via Web services). The rich client allows the user to perform complex queries and submit requests for data that are asynchronously down-loaded to the local workstation. Asynchronous down-load is a critical feature given the large volume of a typical data set (on the order of 40~GB). For basic queries and retrieval of data the Web browser interface is provided. For advanced users, scripting languages with web services capabilities (i.e. Perl) can used to query and down-load data from the SA. The archive interface subsystem is the primary means for searching and retrieving data from the SA and is critical to the success of the Spitzer Space Telescope.

  6. Proceedings of the 5. International Topical Meeting on Nuclear Plant Instrumentation Controls, and Human Machine Interface Technology

    International Nuclear Information System (INIS)

    ' contains papers on digital systems reliability, digital I and C technology, control systems, and architectural configurations. 'Hardware and Communications' contains papers on advanced sensors and measurement techniques, cyber-security, wireless technology application, component aging, and environmental compatibility. 'Techniques' contains papers on reactor noise analysis, signal-processing methods, diagnostics, prognostics, predictive maintenance, and system analysis tools. 'Future and Applications' contains papers on educating the next generation of nuclear power ICHMI professionals, Generation IV and research reactor I and C, application of next-generation I and C systems, lessons learned in digital upgrades, and approaches to setpoints. 'Qualification and Regulation' contains papers on safety critical software, qualification issues in an evolving regulatory environment, current licensing issues for advanced I and C technologies, digital I and C assessment methodologies, and software quality assurance. The HMIT papers are organized into three tracks. 'Advances in Human-System Interfaces' contains papers dealing with topics such as advances in control room design, user interaction with automation, visualization technology, computerized procedure systems and other operator support technology, and new HMIT. 'Human Factors Engineering Design and Evaluation' focuses on recent developments, and paper topics include design and analysis tools, function-based approaches to control room design, use of knowledge capture and engineering, virtual reality, advances and challenges in human reliability analysis, and approaches to verification and validation. 'HMIT Operational Considerations' includes paper topics such as regulatory challenges and approaches to advanced systems, regulatory oversight and involvement in safety culture, and innovative approaches to training and training technologies

  7. Humans vs Hardware: The Unique World of NASA Human System Risk Assessment

    Science.gov (United States)

    Anton, W.; Havenhill, M.; Overton, Eric

    2016-01-01

    Understanding spaceflight risks to crew health and performance is a crucial aspect of preparing for exploration missions in the future. The research activities of the Human Research Program (HRP) provide substantial evidence to support most risk reduction work. The Human System Risk Board (HSRB), acting on behalf of the Office of Chief Health and Medical Officer (OCHMO), assesses these risks and assigns likelihood and consequence ratings to track progress. Unfortunately, many traditional approaches in risk assessment such as those used in the engineering aspects of spaceflight are difficult to apply to human system risks. This presentation discusses the unique aspects of risk assessment from the human system risk perspective and how these limitations are accommodated and addressed in order to ensure that reasonable inputs are provided to support the OCHMO's overall risk posture for manned exploration missions.

  8. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  9. User interface description languages for next generation user interfaces

    OpenAIRE

    Shaer, Orit; Jacob, Robert; Green, Mark; LUYTEN, Kris

    2008-01-01

    In recent years HCI researchers have developed a broad range of new interfaces that diverge from the "window, icon, menu, pointing device" (WIMP) paradigm, employing a variety of novel interaction techniques and devices. Developers of these next generation user interfaces face challenges that are currently not addressed by state of the art user interface software tools. As part of the user interface software community’s effort to address these challenges, the concept of a User Interface Descr...

  10. Psychometric Properties of the Spanish Human System Audit Short-Scale of Transformational Leadership

    OpenAIRE

    Berger, Rita; Romeo Delgado, Marina; Guàrdia Olmos, Joan; Yepes i Baldó, Montserrat; Soria Verde, Miguel Ángel

    2012-01-01

    The aim of this research is to examine the psychometric properties of a Spanish version of the Human System Audit transformational leadership short-scale (HSA-TFL-ES). It is based on the concept of Bass developed in 1985. The HSA-TFL is a part of the wider Human System Audit frame. We analyzed the HSA-TFL-ES in five different samples with a total number of 1,718 workers at five sectors. Exploratory Factor Analysis corroborated a single factor in all samples that accounted for 66% to 73% of va...

  11. High temperature interface superconductivity

    Science.gov (United States)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  12. Workshop on Interface Phenomena

    CERN Document Server

    Kreuzer, Hans

    1987-01-01

    This book contains the proceedings of the first Workshop on Interface Phenomena, organized jointly by the surface science groups at Dalhousie University and the University of Maine. It was our intention to concentrate on just three topics related to the kinetics of interface reactions which, in our opinion, were frequently obscured unnecessarily in the literature and whose fundamental nature warranted an extensive discussion to help clarify the issues, very much in the spirit of the Discussions of the Faraday Society. Each session (day) saw two principal speakers expounding the different views; the session chairmen were asked to summarize the ensuing discussions. To understand the complexity of interface reactions, paradigms must be formulated to provide a framework for the interpretation of experimen­ tal data and for the construction of theoretical models. Phenomenological approaches have been based on a small number of rate equations for the concentrations or mole numbers of the various species involved i...

  13. Intelligent User Interface in Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Ben Khayut

    2014-04-01

    Full Text Available Human-Computer Interaction with the traditional Use r Interface is done using a specified in advance sc ript dialog “menu”, mainly based on human intellect and unproductive use of navigation. This approach doesn’t lead to making qualitative decision in cont rol systems, where the situations and processes can not be structured in advance. Any dynamic changes in th e controlled business process (as example, in organizational unit of the information fuzzy contro l system make it necessary to modify the script di alogue in User Interface. This circumstance leads to a red esign of the components of the User Interface and o f the entire control system. In the Intelligent User Inte rface, where the dialog situations are unknown in advance, fuzzy structured and artificial intelligen ce is crucial, the redesign described above is impo ssible. To solve this and other problems, we propose the da ta, information and knowledge based technology of Smart/ Intelligent User Interface (IUI design, whi ch interacts with users and systems in natural and other languages, utilizing the principles of Situational Control and Fuzzy Logic theories, Artificial Intell igence, Linguistics, Knowledge Base technologies and others . The proposed technology of IUI design is defined by multi-agents of a Situational Control and of data, information and knowledge, b modelling of Fuzzy L ogic Inference, c Generalization, Representation and Ex planation of knowledge, c Planning and Decision- making, d Dialog Control, e Reasoning and Systems Thinking, f Fuzzy Control of organizational unit in real-time, fuzzy conditions, heterogeneous domains, and g multi-lingual communication under uncertain ty and in Fuzzy Environment.

  14. Nonlinear optics at interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory.

  15. Modal Interfaces in Hawaii

    Science.gov (United States)

    Wright, E. Alvey

    1974-01-01

    Hawaii, an archipelago where transportation distances are short but the interfaces are many, seeks elimination of modal changes by totally-submerged hydrofoil craft operating at the water surface directly between tourist resort destinations, by dual mode rapid transit vehicles operating directly between the deplaning bridges at Honolulu International Airport and hotel porte-cochere at Waikiki, by demand responsive vehicles for collection and distribution operating on fixed guideways for line haul, and by roll-on/roll-off inter-island ferries for all models of manually operated ground vehicles. The paper also describes facilitation of unavoidable interfaces by innovative sub-systems.

  16. CAMAC to GPIB interface

    International Nuclear Information System (INIS)

    A CAMAC module developed at the Los Alamos Scientific Laboratory allows any device conforming to the GPIB standard to be connected to a CAMAC system. This module incorporates a microprocessor to control up to 14 GPIB-compatible instruments using a restricted set of CAMAC F-N-A commands. The marriage of a device-independent bus (IEEE Standard 488-1975) to a computer-independent bus (IEEE Standard 583-1975) provides a general method for interfacing a system of programmable instruments to any computer. This module is being used to interface a variety of interactive devices on a control console to a control computer

  17. UIL -User Interface Language

    CERN Document Server

    Lewis, J; CERN. Geneva

    1990-01-01

    Some widget examples, widget categories, the push button widget, menus, the FORM widget, using UIL for an application program, the MOTIF Resource Manager (MRM), execution thread of an application using UIL and MRM, opening hierarchies, binding UIL names to application addresses, fetching widget hierarchies and managing them, changing widget resources using UIL and MRM, fetching literal values from the UID file. Introduction to the User Interface Language, defining a user interface, advantages of using UIL, accessing UID files from the application, UIL Syntax, the UIL module structure, defining a widget instance hierarchy, declaration of literals colors, icons, fonts

  18. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  19. Unstable nonlocal interface dynamics.

    Science.gov (United States)

    Nicoli, Matteo; Cuerno, Rodolfo; Castro, Mario

    2009-06-26

    Nonlocal effects occur in many nonequilibrium interfaces, due to diverse physical mechanisms like diffusive, ballistic, or anomalous transport, with examples from flame fronts to thin films. While dimensional analysis describes stable nonlocal interfaces, we show the morphologically unstable condition to be nontrivial. This is the case for a family of stochastic equations of experimental relevance, paradigmatically including the Michelson-Sivashinsky system. For a whole parameter range, the asymptotic dynamics is scale invariant with dimension-independent exponents reflecting a hidden Galilean symmetry. The usual Kardar-Parisi-Zhang nonlinearity, albeit irrelevant in that parameter range, plays a key role in this behavior. PMID:19659099

  20. Development and testing of the Automated Fluid Interface System

    Science.gov (United States)

    Milton, Martha E.; Tyler, Tony R.

    1993-05-01

    The Automated Fluid Interface System (AFIS) is an advanced development program aimed at becoming the standard interface for satellite servicing for years to come. The AFIS will be capable of transferring propellants, fluids, gasses, power, and cryogens from a tanker to an orbiting satellite. The AFIS program currently under consideration is a joint venture between the NASA/Marshall Space Flight Center and Moog, Inc. An engineering model has been built and is undergoing development testing to investigate the mechanism's abilities.

  1. A reusable smart interface for gas sensor resistance measurement

    OpenAIRE

    Merino Panadés, José Luis; Bota Ferragut, Sebastián Antonio; Casanova Mohr, Raimon; Diéguez Barrientos, Àngel; Cané i Ballart, Carles; Samitier i Martí, Josep

    2004-01-01

    The advances of the semiconductor industry enable microelectromechanical systems sensors, signal conditioning logic and network access to be integrated into a smart sensor node. In this framework, a mixed-mode interface circuit for monolithically integrated gas sensor arrays was developed with high-level design techniques. This interface system includes analog electronics for inspection of up to four sensor arrays and digital logic for smart control and data communication. Although different ...

  2. Interface shear and pressure characteristics of wheelchair seat cushions

    Directory of Open Access Journals (Sweden)

    Jonathan S. Akins

    2011-03-01

    Full Text Available Pressure ulcer incidence rates have remained constant despite advances in support surface technology. Interface shear stress is recognized as a risk factor for pressure ulcer development and is the focus of many shear reduction technologies incorporated into wheelchair cushions; however, shear reduction has not been quantified in the literature. We evaluated 21 commercial wheelchair seat cushions using a new methodology developed to quantify interface shear stress, interface pressure, and horizontal stiffness. Interface shear stress increased significantly with applied horizontal indenter displacement, while no significant difference was found for interface pressure. Material of construction resulted in significant differences in interface shear stress, interface pressure, and horizontal stiffness. This study shows that the existing International Organization for Standardization (ISO 16840-2 horizontal stiffness measure provides similar information to the new horizontal stiffness measure. The lack of a relationship between interface shear stress and the overall horizontal stiffness measure, however, suggests that a pressure and shear force sensor should be used with the ISO 16840-2 horizontal stiffness measure to fully quantify a cushion's ability to reduce interface shear stress at the patient's bony prominences.

  3. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  4. Development of a framework to estimate human error for diagnosis tasks in advanced control room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ar Ryum; Jang, In Seok; Seong, Proong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In the emergency situation of nuclear power plants (NPPs), a diagnosis of the occurring events is crucial for managing or controlling the plant to a safe and stable condition. If the operators fail to diagnose the occurring events or relevant situations, their responses can eventually inappropriate or inadequate Accordingly, huge researches have been performed to identify the cause of diagnosis error and estimate the probability of diagnosis error. D.I Gertman et al. asserted that 'the cognitive failures stem from erroneous decision-making, poor understanding of rules and procedures, and inadequate problem solving and this failures may be due to quality of data and people's capacity for processing information'. Also many researchers have asserted that human-system interface (HSI), procedure, training and available time are critical factors to cause diagnosis error. In nuclear power plants, a diagnosis of the event is critical for safe condition of the system. As advanced main control room is being adopted in nuclear power plants, the operators may obtain the plant data via computer-based HSI and procedure. Also many researchers have asserted that HSI, procedure, training and available time are critical factors to cause diagnosis error. In this regards, using simulation data, diagnosis errors and its causes were identified. From this study, some useful insights to reduce diagnosis errors of operators in advanced main control room were provided.

  5. Structure and mechanics of interfaces in biological materials

    Science.gov (United States)

    Barthelat, Francois; Yin, Zhen; Buehler, Markus J.

    2016-04-01

    Hard biological materials — for example, seashells, bone or wood — fulfil critical structural functions and display unique and attractive combinations of stiffness, strength and toughness, owing to their intricate architectures, which are organized over several length scales. The size, shape and arrangement of the ‘building blocks’ of which these materials are made are essential for defining their properties and their exceptional performance, but there is growing evidence that their deformation and toughness are also largely governed by the interfaces that join these building blocks. These interfaces channel nonlinear deformations and deflect cracks into configurations in which propagation is more difficult. In this Review, we discuss comparatively the composition, structure and mechanics of a set of representative biological interfaces in nacre, bone and wood, and show that these interfaces possess unusual mechanical characteristics, which can encourage the development of advanced bioinspired composites. Finally, we highlight recent examples of synthetic materials inspired from the mechanics and architecture of natural interfaces.

  6. Designing groundwater visualization interfaces

    OpenAIRE

    Médard De Chardon, Cyrille

    2009-01-01

    Groundwater systems are inherently complex owing to their three-dimensional nature. The impacts of land use activities on groundwater quality and quantity, groundwater pumping, and the interaction of groundwater with surface waters are fundamental hydrogeologic concepts that require effective communication strategies. Using interactive visual interfaces may improve upon current educational techniques and encourage increased public participation in groundwater protection, conservation, and man...

  7. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  8. Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids

    Science.gov (United States)

    Arrigan, Damien W. M.; Liu, Yang

    2016-06-01

    Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.

  9. NASA Space Flight Human System Standard, Volume 2, and HIDH (Human Integration Design Handbook)

    Science.gov (United States)

    Connolly, Janis; Fitts, David; Stroud, Kenneth; Boyer, Jennifer; Holubec, Keith; Tillman, Barry

    2009-01-01

    This viewgraph presentation reports on the review and re-issuance of the NASA Space Flight Human System Standard, Volume 2, and the Human Integration Design Handbook. These standards were last updated in 1995. The target date for the release is September 2009.

  10. Advanced teleoperation in nuclear applications

    International Nuclear Information System (INIS)

    A new generation of integrated remote maintenance systems is being developed to meet the needs of future nuclear fuel reprocessing at the Oak Ridge National Laboratory. Development activities cover all aspects of an advanced teleoperated maintenance system with particular emphasis on a new force-reflecting servomanipulator concept. The new manipulator, called the advanced servomanipulator, is microprocessor controlled and is designed to achieve force-reflection performance near that of mechanical master/slave manipulators. The advanced servomanipulator uses a gear-drive transmission which permits modularization for remote maintainability (by other advanced servomanipulators) and increases reliability. Human factors analysis has been used to develop an improved man/machine interface concept based upon colorgraphic displays and menu-driven tough screens. Initial test and evaluation of two advanced servomanipulator slave arms and several other development components have begun. 9 references, 5 figures

  11. Spin filtering effect of ferromagnetic metal-organic interfaces

    Science.gov (United States)

    Cinchetti, Mirko

    2011-03-01

    The study of the spin properties of organic semiconductors (OSC) is recently receiving great attention. Being characterized by moderate spin-relaxation lengths, one of the most promising routes to employ OSC for spintronics applications is probably to exploit the high spin injection achievable across ferromagnetic metal-organic interfaces [1,2]. Combined with the extreme flexibility and tunability of OSC, it is expected that such hybrid interfaces will constitute a fundamental building block for advanced spintronics devices, where spin-injection is controlled by fine-tuning of the interface physical ad chemical properties. An example has been recently presented in, where doping of the OSC copper phthalocyanine (CuPc) has been successfully used to tune the spin functionality of a cobalt-CuPc interface. In particular, the presence of a spin-polarized hybrid interface state, acting as a spin-filter at the interface, has been used to enhance the efficiency of spin injection to values above 100%. In order to exploit such great potential of hybrid organic-inorganic interfaces, fundamental knowledge about their spin-dependent properties is essential. Besides the cobalt-CuPc interface, we have studied the iron-CuPc, cobalt- tris[8-hydroxyquinoline]aluminium (Alq3) and iron-Alq3 interfaces. We applied several complementary experimental techniques, namely spin polarized scanning tunnelling microscopy and spectroscopy together with spin polarized ultraviolet photoemission spectroscopy and spin- and time-resolved two-photon photoemission. We found evidence for spin-polarized interface states and show that they act as a spin-filter for electrons crossing the interface between the ferromagnetic metal and the OSC. Correspondingly, we observed a pronounced spin-dependency of the lifetime of electrons injected in the above mentioned hybrid spin-polarized interface states.

  12. Local Electronic And Dielectric Properties at Nanosized Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonnell, Dawn A. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-02-23

    Final Report to the Department of Energy for period 6/1/2000 to 11/30/2014 for Grant # DE-FG02-00ER45813-A000 to the University of Pennsylvania Local Electronic And Dielectric Properties at Nanosized Interfaces PI: Dawn Bonnell The behavior of grain boundaries and interfaces has been a focus of fundamental research for decades because variations of structure and composition at interfaces dictate mechanical, electrical, optical and dielectric properties in solids. Similarly, the consequence of atomic and electronic structures of surfaces to chemical and physical interactions are critical due to their implications to catalysis and device fabrication. Increasing fundamental understanding of surfaces and interfaces has materially advanced technologies that directly bear on energy considerations. Currently, exciting developments in materials processing are enabling creative new electrical, optical and chemical device configurations. Controlled synthesis of nanoparticles, semiconducting nanowires and nanorods, optical quantum dots, etc. along with a range of strategies for assembling and patterning nanostructures portend the viability of new devices that have the potential to significantly impact the energy landscape. As devices become smaller the impact of interfaces and surfaces grows geometrically. As with other nanoscale phenomena, small interfaces do not exhibit the same properties as do large interfaces. The size dependence of interface properties had not been explored and understanding at the most fundamental level is necessary to the advancement of nanostructured devices. An equally important factor in the behavior of interfaces in devices is the ability to examine the interfaces under realistic conditions. For example, interfaces and boundaries dictate the behavior of oxide fuel cells which operate at extremely high temperatures in dynamic high pressure chemical environments. These conditions preclude the characterization of local properties during fuel cell

  13. PREFACE: Water at interfaces Water at interfaces

    Science.gov (United States)

    Gallo, P.; Rovere, M.

    2010-07-01

    This special issue is devoted to illustrating important aspects and significant results in the field of modeling and simulation of water at interfaces with solutes or with confining substrates, focusing on a range of temperatures from ambient to supercooled. Understanding the behavior of water, in contact with different substrates and/or in solutions, is of pivotal importance for a wide range of applications in physics, chemistry and biochemistry. Simulations of confined and/or interfacial water are also relevant for testing how different its behavior is with respect to bulk water. Simulations and modeling in this field are of particular importance when studying supercooled regions where water shows anomalous properties. These considerations motivated the organization of a workshop at CECAM in the summer of 2009 which aimed to bring together scientists working with computer simulations on the properties of water in various environments with different methodologies. In this special issue, we collected a variety of interesting contributions from some of the speakers of the workshop. We have roughly classified the contributions into four groups. The papers of the first group address the properties of interfacial and confined water upon supercooling in an effort to understand the relation with anomalous behavior of supercooled bulk water. The second group deals with the specific problem of solvation. The next group deals with water in different environments by considering problems of great importance in technological and biological applications. Finally, the last group deals with quantum mechanical calculations related to the role of water in chemical processes. The first group of papers is introduced by the general paper of Stanley et al. The authors discuss recent progress in understanding the anomalies of water in bulk, nanoconfined, and biological environments. They present evidence that liquid water may display 'polymorphism', a property that can be present in

  14. Easy-to-use interface

    Energy Technology Data Exchange (ETDEWEB)

    Blattner, M M; Blattner, D O; Tong, Y

    1999-04-01

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future.

  15. Easy-to-use interface

    International Nuclear Information System (INIS)

    Easy-to-use interfaces are a class of interfaces that fall between public access interfaces and graphical user interfaces in usability and cognitive difficulty. We describe characteristics of easy-to-use interfaces by the properties of four dimensions: selection, navigation, direct manipulation, and contextual metaphors. Another constraint we introduced was to include as little text as possible, and what text we have will be in at least four languages. Formative evaluations were conducted to identify and isolate these characteristics. Our application is a visual interface for a home automation system intended for a diverse set of users. The design will be expanded to accommodate the visually disabled in the near future

  16. Participation in the ABWR Man-Machine interface design. Applicability to the Spanish Electrical Sector

    International Nuclear Information System (INIS)

    Project coordinated by DTN within the advanced reactor programme. Participation in the design activities for the Advanced Boiling Water Reactor (ABWR) man-machine interface was divided into two phases: Phase I: Preparation of drawings for designing, developing and assessing the advanced control room Phase II: Application of these drawings in design activities Participation in this programme has led to the following possible future applications to the electrical sector: 1. Design and implementation of man-machine interfaces 2. Human factor criteria 3. Assessment of man-machine interfaces 4. Functional specification, computerised operating procedures 5. Computerised alarm prototypes. (Author)

  17. Advanced Agriculture system

    Directory of Open Access Journals (Sweden)

    Shrinivas R. Zanwar

    2012-05-01

    Full Text Available This article addresses the advanced system which improves agriculture processes like cultivation on ploughed land, based on robotic platform. We have developed a robotic vehicle having four wheels and steered by DC motor. The advanced autonomous system architecture gives us the opportunity to develop a complete new range of agricultural equipment based on small smart machines. The machine will cultivate the farm by considering particular rows and specific column at fixed distance depending on crop. The obstacle detection problem will also be considered, sensed by infrared sensor. The whole algorithm, calculation, processing, monitoring are designed with motors & sensor interfaced with microcontroller. The result obtained through example activation unit is also presented. The dc motor simulation with feedforward and feedback technique shows precise output. With the help of two examples, a DC motor and a magnetic levitation system, the use of MATLAB and Simulink for modeling, analysis and control is designed.

  18. Politics at the interface

    DEFF Research Database (Denmark)

    Kannabiran, Gobinaath; Petersen, Marianne Graves

    2010-01-01

    At the birth of participatory design, there was a strong political consciousness surrounding the design of new technology, the design process in particular, establishing a rich set of methods and tools for user-centered design. Today, the term design has extended its scope of concern beyond...... the process of design and into how users interact with the designed product on a day-to-day basis. This paper is an attempt to call to attention the need for a new set of methods, attitudes and approaches, along with the existing, to discuss, analyze and reflect upon the politics at the interface....... By presenting a critical analysis of two design cases, we elicit the importance of such an agenda and the implications for design in doing so. We use the Foucauldian notion of power to analyze the power relationships in these two cases and to articulate the politics at the interface. We conclude by emphasizing...

  19. Urban Media and Interfaces

    DEFF Research Database (Denmark)

    Halse, Joachim; Damsholt, Tine

    2013-01-01

    For ten weeks in 2013, nineteen eclectic students from Anthropology, Ethnology and Design formed cross-disciplinary teams to research existing practices and possible futures in Blågården. Social media is radically changing how urban space is explored, experienced and communicated. For example......, Wonderful Copenhagen and Socialsquare jointly raise these questions: What is the role of social media as interface between the area around Blågårds Plads, its local communities and (potential) visitors, considering perspectives of security, control and planning? What are the challenges and opportunities...... pertaining to local knowledge and social media? Our students' projects are displayed for your enjoyment and exploration! (http://cargocollective.com/umai/About-Urban-Media-and-Interfaces) Tine Damsholt, Karen Waltorp & Joachim Halse – Faculties of Social Sciences, Humanities and Design...

  20. User interface design considerations

    DEFF Research Database (Denmark)

    Andersen, Simon Engedal; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    user interface of EESCoolTools these issues led to a series of simulation tools each with a specific purpose and a carefully selected set of input and output variables. To allow a more wide range of questions to be answered by the same model, the user can change between different sets of input and...... have a lot of flexibility in choosing input variables and in assigning values of parameters....

  1. Computer Interfaced Gauss Meter

    OpenAIRE

    Lo, Steven; Lai, Alan; Dao, Christine; Hung Vu, Hung

    2013-01-01

    Goal: Gauss Meter Model X01.  Gauss meter model X01 is the hand-held device designed to meet the needs of magnetic industry to measure magnetic fields accurately, provided high-end functionality and performance in an affordable laptop instrument. Magnet testing and sorting have never been easier. Additional features including calculating magnetic field intensity versus time and displaying magnetic field direction on a Graphical User Interface on Computer.  Introduction/Background:  Magnetic f...

  2. Practical Brain Computer Interfacing

    OpenAIRE

    Valbuena Varon, Diana Alexandra

    2011-01-01

    A brain-computer interface (BCI) is a communication system that enables users to voluntary send messages or commands without movement. The classical goal of BCI research is to support communication and control for users with impaired communication due to illness or injury. Typical BCI applications are the operation of computer cursors, spelling programs or external devices, such as wheelchairs, robots and neural prostheses. The user sends modulated information to the BCI by engaging in mental...

  3. Standard interface file handbook

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, A.; Huria, H.C. [Cincinnati Univ., OH (United States)

    1992-10-01

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided.

  4. SNE Industrial Fieldbus Interface

    Science.gov (United States)

    Lucena, Angel; Raines, Matthew; Oostdyk, Rebecca; Mata, Carlos

    2011-01-01

    Programmable logic controllers (PLCs) have very limited diagnostic and no prognostic capabilities, while current smart sensor designs do not have the capability to communicate over Fieldbus networks. The aim is to interface smart sensors with PLCs so that health and status information, such as failure mode identification and measurement tolerance, can be communicated via an industrial Fieldbus such as ControlNet. The SNE Industrial Fieldbus Interface (SIFI) is an embedded device that acts as a communication module in a networked smart sensor. The purpose is to enable a smart sensor to communicate health and status information to other devices, such as PLCs, via an industrial Fieldbus networking protocol. The SNE (Smart Network Element) is attached to a commercial off-the-shelf Any bus-S interface module through the SIFI. Numerous Anybus-S modules are available, each one designed to interface with a specific Fieldbus. Development of the SIFI focused on communications using the ControlNet protocol, but any of the Anybus-S modules can be used. The SIFI communicates with the Any-bus module via a data buffer and mailbox system on the Anybus module, and supplies power to the module. The Anybus module transmits and receives data on the Fieldbus using the proper protocol. The SIFI is intended to be connected to other existing SNE modules in order to monitor the health and status of a transducer. The SIFI can also monitor aspects of its own health using an onboard watchdog timer and voltage monitors. The SIFI also has the hardware to drive a touchscreen LCD (liquid crystal display) unit for manual configuration and status monitoring.

  5. Adaptive Brain Interfaces

    OpenAIRE

    Millán, José del R.

    2003-01-01

    Severely disabled people are largely excluded from the benefits information and communication technologies have brought to our industries, economies, appliances, and general quality of life. But what if that technology would allow them to communicate their wishes or control electronic devices directly through their thoughts alone? This is the goal and promise of the Adaptive Brain Interfaces (ABI) project, which aims to augment natural human capabilities by enabling people to interact with co...

  6. MAN – MACHINE INTERFACE

    OpenAIRE

    S.Bhuvaneswari; R.Hemachandran; Suman Kumar Pandey

    2012-01-01

    Agents trained by learning techniques provide a powerful approximation of state spaces in games that are too large for naive approaches. In the study Genetic Algorithms and Manual Interface was implemented and used to train agents for the board game LUDO. The state space of LUDO is generalized to a small set and encoded to suit the different techniques. The impact of variables and tactics applied in training are determined. Agents based on the techniques performed satisfactory aga...

  7. Standard interface file handbook

    International Nuclear Information System (INIS)

    This handbook documents many of the standard interface file formats that have been adopted by the US Department of Energy to facilitate communications between and portability of, various large reactor physics and radiation transport software packages. The emphasis is on those files needed for use of the VENTURE/PC diffusion-depletion code system. File structures, contents and some practical advice on use of the various files are provided

  8. Optical Neural Interfaces

    OpenAIRE

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals.

  9. Interface Microstructures in Concrete

    Directory of Open Access Journals (Sweden)

    Puertas, Francisca

    1991-03-01

    Full Text Available This paper constitutes a compilation as well as an interpretation of the present state of knowledge about the different microstructures developed in the interface areas of concrete, that is, the cement paste-aggregates, the cement paste-reinforcement, the cement paste-fiber, etc. The Chemical reactions taking place in interface areas, the development and morphology of such areas and their strength ^since interfaces are taken as the weakest points of concrete are the aspects dealt with in some detail in this work.

    El presente trabajo constituye un resumen y también una interpretación del estado actual del conocimiento respecto de las diferentes microestructuras que se desarrollan en las zonas interfaciales de los hormigones, es decir: pasta de cemento-áridos, pasta de cemento-armaduras, pasta de cemento-fibras, etc. Las reacciones químicas que tienen lugar en la zona interfacial, el desarrollo y morfología de dicha zona y su resistencia (las interfases se consideran como uno de los puntos débiles del hormigón son los aspectos que con cierto detalle se tratan en el trabajo.

  10. Assessing Electromyographic Interfaces

    Directory of Open Access Journals (Sweden)

    Joaquim Armando Pires Jorge

    2009-01-01

    Full Text Available Electronic apppliances are increasingly a part of our everyday lives. In particular, mobile devices, with their reduced dimensions with power rivaling desktop computers, have substantially augmented our communication abilities offering instant availability, anywhere, to everyone. These devices have become essential for human communication but also include a more comprehensive tool set to support productivity and leisure applications.However, the many applications commonly available are not adapted to people with special needs. Rather, most popular devices are targeted at teenagers or young adults with excellent eyesight and coordination. What is worse, most of the commonly used assistive control interfaces are not available in a mobile environment where user's position, accommodation and capacities can vary even widely.To try and address people with special needs new approaches and techniques are sorely needed. This paper presents a control interface to allow tetraplegic users to interact with electronic devices. Our method uses myographic information (Electromyography or EMG collected from residually controlled body areas. User evaluations validate electromyography as a daily wearable interface. In particular our results show that EMG can be used even in mobility contexts.

  11. An Approach to Interface Synthesis

    DEFF Research Database (Denmark)

    Madsen, Jan; Hald, Bjarne

    1995-01-01

    Presents a novel interface synthesis approach based on a one-sided interface description. Whereas most other approaches consider interface synthesis as optimizing a channel to existing client/server modules, we consider the interface synthesis as part of the client/server module synthesis (which...... may contain the re-use of existing modules). The interface synthesis approach describes the basic transformations needed to transform the server interface description into an interface description on the client side of the communication medium. The synthesis approach is illustrated through a point......-to-point communication, but is applicable to synthesis of a multiple client/server environment. The interface description is based on a formalization of communication events....

  12. Vibrational spectroscopy at electrified interfaces

    CERN Document Server

    Wieckowski, Andrzej; Braunschweig, Björn

    2013-01-01

    Reviews the latest theory, techniques, and applications Surface vibrational spectroscopy techniques probe the structure and composition of interfaces at the molecular level. Their versatility, coupled with their non-destructive nature, enables in-situ measurements of operating devices and the monitoring of interface-controlled processes under reactive conditions. Vibrational Spectroscopy at Electrified Interfaces explores new and emerging applications of Raman, infrared, and non-linear optical spectroscopy for the study of charged interfaces. The book draws from hu

  13. Progress report (interface segment)

    International Nuclear Information System (INIS)

    Full text: 1. Presentations and status reports. T. Fukahori (JAEA) reported on the plans for the www interface layout. Discussions included which functions were needed for new RIPL-3 web pages. The results are summarized in next section. 2. Layout of the interfaces and retrieval tools and web. RIPL-3 home page will include some description about RIPL-3 and link to the Technical report in pdf-format. The web page for 'mass' segment contains same contents as RIPL-2 except the removal of the information about ground state deformation. The abundance data will be replaced by data from the new BNL wallet card (2005 version). The Q-value calculation tool will be also improved. The 'Nuclear Matter Density' will be renamed 'Nucleon Density Distribution'. 'Levels' segment will be same as before, and the deformation parameters for excited levels will be moved from 'optical' segment and given the name 'deformation'. 'Resonances' segment will be same as before - may be replaced with the new Mughabghab tables. 'Optical' segment will be same as before, and the deformation parameters for excited levels will be moved to 'optical' segment and given the name 'deformation'. The optical model calculation with ECIS and OPTMAN will be considered and double-folding calculation tool will possibly be provided. 'Densities' segment will be same as before, and the plotting programs will be checked. The 3-7 sets of combination of GC, BSFG, GSFM with/without enhancement factors will be given. 'Gamma' segment will be same as before, with addition of MLO and theoretical GDR calculation. 'Fission' segment will be same as before, and 'Exp.' will be renamed. New barrier evaluations will be added, for example, transition (2+) states. The fission spectrum calculation tool (codes and inputs) may be added. The fundamental format will be kept as before. For new items such as deformed 'nucleon density distribution', double-folding potential, evaluated fission barrier (extension into 3 or more) and fission

  14. EDITORIAL: Focus on the neural interface Focus on the neural interface

    Science.gov (United States)

    Durand, Dominique M.

    2009-10-01

    The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that

  15. NASA's UAS Integration into the NAS: A Report on the Human Systems Integration Phase 1 Simulation Activities

    Science.gov (United States)

    Fern, Lisa; Rorie, R. Conrad; Shively, R. Jay

    2014-01-01

    In 2011 the National Aeronautics and Space Administration (NASA) began a five-year Project to address the technical barriers related to routine access of Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). Planned in two phases, the goal of the first phase was to lay the foundations for the Project by identifying those barriers and key issues to be addressed to achieve integration. Phase 1 activities were completed two years into the five-year Project. The purpose of this paper is to review activities within the Human Systems Integration (HSI) subproject in Phase 1 toward its two objectives: 1) develop GCS guidelines for routine UAS access to the NAS, and 2) develop a prototype display suite within an existing Ground Control Station (GCS). The first objective directly addresses a critical barrier for UAS integration into the NAS - a lack of GCS design standards or requirements. First, the paper describes the initial development of a prototype GCS display suite and supporting simulation software capabilities. Then, three simulation experiments utilizing this simulation architecture are summarized. The first experiment sought to determine a baseline performance of UAS pilots operating in civil airspace under current instrument flight rules for manned aircraft. The second experiment examined the effect of currently employed UAS contingency procedures on Air Traffic Control (ATC) participants. The third experiment compared three GCS command and control interfaces on UAS pilot response times in compliance with ATC clearances. The authors discuss how the results of these and future simulation and flight-testing activities contribute to the development of GCS guidelines to support the safe integration of UAS into the NAS. Finally, the planned activities for Phase 2, including an integrated human-in-the-loop simulation and two flight tests are briefly described.

  16. Molecular dynamics simulations of water permeation across Nafion membrane interfaces.

    Science.gov (United States)

    Daly, Kevin B; Benziger, Jay B; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-07-24

    Permeation of water across the membrane/vapor and membrane/liquid-water interfaces of Nafion is studied using nonequilibrium molecular dynamics (NEMD) simulations, providing direct calculations of mass-transfer resistance. Water mass transfer within one nanometer of the vapor interface is shown to be 2 orders of magnitude slower than at any other point within the membrane, in qualitative agreement with permeation experiments. This interfacial resistance is much stronger than the resistance suggested by prior simulation work calculating self-diffusivity near the interface. The key difference between the prior approach and the NEMD approach is that the NEMD approach implicitly incorporates changes in solubility in the direction normal to the interface. Water is shown to be very insoluble near the vapor interface, which is rich in hydrophobic perfluorocarbon chains, in agreement with advancing contact angle experiments. Hydrophilic side chains are buried beneath this hydrophobic layer and aligned toward the interior of the membrane. Hydrophilic pores are not exposed to the vapor interface as proposed in prior theoretical work. At the membrane/liquid-water interface, highly swollen polymer chains extend into the liquid-water phase, forming a nanoscopically rough interface that is consistent with atomic force microscopy experiments. In these swollen conformations, hydrophilic side chains are exposed to the liquid-water phase, suggesting that the interface is hydrophilic, in agreement with receding contact angle experiments. The mass-transfer resistance of this interface is negligible compared to that of the bulk, in qualitative agreement with permeation experiments. The water activity at the vapor and liquid-water interfaces are nearly the same, yet large conformational and transport differences are observed, consistent with a mass-transfer-based understanding of Schroeder's paradox for Nafion. PMID:24971638

  17. Spherical model of growing interfaces

    OpenAIRE

    Henkel, Malte; Durang, Xavier

    2015-01-01

    Building on an analogy between the ageing behaviour of magnetic systems and growing interfaces, the Arcetri model, a new exactly solvable model for growing interfaces is introduced, which shares many properties with the kinetic spherical model. The long-time behaviour of the interface width and of the two-time correlators and responses is analysed. For all dimensions $d\

  18. Psychometric properties of the Spanish Human System Audit Short-Scale of transformational leadership.

    Science.gov (United States)

    Berger, Rita; Romeo, Marina; Guardia, Joan; Yepes, Montserrat; Soria, Miguel Angel

    2012-03-01

    The aim of this research is to examine the psychometric properties of a Spanish version of the Human System Audit transformational leadership short-scale (HSA-TFL-ES). It is based on the concept of Bass developed in 1985. The HSA-TFL is a part of the wider Human System Audit frame. We analyzed the HSA-TFL-ES in five different samples with a total number of 1,718 workers at five sectors. Exploratory Factor Analysis corroborated a single factor in all samples that accounted for 66% to 73% of variance. The internal consistency in all samples was good (alpha = .92 - .95). Evidence was found for the convergent validity of the HSA-TFL-ES and the Multifactor Leadership Questionnaire. These results suggested that the HSA-TFL short-scale is a psychometrically sound measure of this construct and can be used for a combined and first overall measurement. PMID:22379726

  19. Augmented Human Engineering: A Theoretical and Experimental Approach to Human Systems Integration

    OpenAIRE

    Fass, Didier

    2012-01-01

    This chapter focuses on one of the main issues for augmented human engineering: integrating the biological user's needs in its methodology for designing human-artefact systems integration requirements and specifications. To take into account biological, anatomical and physiological requirements we need a validated theoretical framework. We explain how to ground augmented human engineering on the Chauvet mathematical theory of integrative physiology as a fundamental framework for human system ...

  20. A Human Systems Integration analysis of the Army suicide prevention program

    OpenAIRE

    Bell, Bridgette R.

    2013-01-01

    Approved for public release; distribution is unlimited A Human Systems Integration (HSI) analysis of the Army Suicide Prevention Program (ASPP) was conducted to gain feedback from soldiers and leaders. The scope of this study limited analysis to the prevention activities associated with the ASPP system. A retrospective analysis of Army suicide statistics from 20082011 was conducted prior to data collection. During 24 in-person interviews, soldiers assessed the importance of the four user n...

  1. Step 1: Human System Integration Simulation and Flight Test Progress Report

    Science.gov (United States)

    2005-01-01

    The Access 5 Human Systems Integration Work Package produced simulation and flight demonstration planning products for use throughout the program. These included: Test Objectives for Command, Control, Communications; Pilot Questionnaire for Command, Control, Communications; Air Traffic Controller Questionnaire for Command, Control, Communications; Test Objectives for Collision Avoidance; Pilot Questionnaire for Collision Avoidance; Plans for Unmanned Aircraft Systems Control Station Simulations Flight Requirements for the Airspace Operations Demonstration

  2. Human Systems Integration and Automation Issues in Small Unmanned Aerial Vehicles

    Science.gov (United States)

    McCauley, Michael E.; Matsangas, Panagiotis

    2004-01-01

    The goal of this report is to identify Human System Integration (HSI) and automation issues that contribute to improved effectiveness and efficiency in the operation of U.S. military Small Unmanned Aerial Vehicles (SUAVs). HSI issues relevant to SUAV operations are reviewed and observations from field trials are summarized. Short-term improvements are suggested research issues are identified and an overview is provided of automation technologies applicable to future SUAV design.

  3. Human Systems Integration (HSI) Case Studies from the NASA Constellation Program

    Science.gov (United States)

    Baggerman, Susan; Berdich, Debbie; Whitmore, Mihriban

    2009-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program is responsible for planning and implementing those programs necessary to send human explorers back to the moon, onward to Mars and other destinations in the solar system, and to support missions to the International Space Station. The Constellation Program has the technical management responsibility for all Constellation Projects, including both human rated and non-human rated vehicles such as the Crew Exploration Vehicle, EVA Systems, the Lunar Lander, Lunar Surface Systems, and the Ares I and Ares V rockets. With NASA s new Vision for Space Exploration to send humans beyond Earth orbit, it is critical to consider the human as a system that demands early and continuous user involvement, inclusion in trade offs and analyses, and an iterative "prototype/test/ redesign" process. Personnel at the NASA Johnson Space Center are involved in the Constellation Program at both the Program and Project levels as human system integrators. They ensure that the human is considered as a system, equal to hardware and software vehicle systems. Systems to deliver and support extended human habitation on the moon are extremely complex and unique, presenting new opportunities to employ Human Systems Integration, or HSI practices in the Constellation Program. The purpose of the paper is to show examples of where human systems integration work is successfully employed in the Constellation Program and related Projects, such as in the areas of habitation and early requirements and design concepts.

  4. Biosignals as an Advanced Man-Machine Interface

    NARCIS (Netherlands)

    Broek, van den Egon L.; Lisy, Viliam; Westerink, Joyce H.D.M.; Schut, Marleen H.; Tuinenbreijer, Kees; Filho, T.F.B.; Gamboa, H.

    2009-01-01

    As is known for centuries, humans exhibit an electrical profile. This profile is altered through various physiological processes, which can be measured through biosignals; e.g., electromyography (EMG) and electrodermal activity (EDA). These biosignals can reveal our emotions and, as such, can serve

  5. The homes of tomorrow: service composition and advanced user interfaces

    OpenAIRE

    Claudio Di Ciccio; Massimo Mecella; Mario Caruso; Vincenzo Forte; Ettore Iacomussi; Katharina Rasch; Leonardo Querzoni; Giuseppe Santucci; Giuseppe Tino

    2011-01-01

    Home automation represents a growing market in the industrialized world. Today’s systems are mainly based on ad hoc and proprietary solutions, with little to no interoperability and smart integration. However, in a not so distant future, our homes will be equipped with many sensors, actuators and devices, which will collectively expose services, able to smartly interact and integrate, in order to offer complex services providing even richer functionalities. In this paper we present the approa...

  6. Advanced human-machine interface for collaborative building control

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  7. Advanced electron microscopy characterization of complex oxide interfaces

    OpenAIRE

    Sánchez Santolino, Gabriel

    2015-01-01

    Pequeños cambios a nivel atómico de la estructura, composición o estado electrónico de un material pueden producir sorprendentes efectos macroscópicos. En particular, en óxidos complejos basados en metales de transición, un gran número de fenómenos físicos como transiciones metal-aislante, magnetorresistencia colosal o multiferroicidad son extremadamente sensibles a estas variaciones. Por tanto, para abordar el estudio de sistemas con tales características, técnicas experimentales con capacid...

  8. Advanced Thermal Interface Material Systems for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate aim of proposed efforts are to develop innovative material and process (M&P) engineering technology to reduce thermal resistance between space...

  9. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  10. Advanced human-machine interface for collaborative building control

    Science.gov (United States)

    Zheng, Xianjun S.; Song, Zhen; Chen, Yanzi; Zhang, Shaopeng; Lu, Yan

    2015-08-11

    A system for collaborative energy management and control in a building, including an energy management controller, one or more occupant HMIs that supports two-way communication between building occupants and a facility manager, and between building occupants and the energy management controller, and a facility manager HMI that supports two-way communication between the facility manager and the building occupants, and between the facility manager and the energy management controller, in which the occupant HMI allows building occupants to provide temperature preferences to the facility manager and the energy management controller, and the facility manager HMI allows the facility manager to configure an energy policy for the building as a set of rules and to view occupants' aggregated temperature preferences, and the energy management controller determines an optimum temperature range that resolves conflicting occupant temperature preferences and occupant temperature preferences that conflict with the facility manager's energy policy for the building.

  11. Frequency Adaptability of Harmonics Controllers for Grid-Interfaced Converters

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    A wider spread adoption of power electronic converters interfaced renewable energy systems has brought more attention to harmonic issues to the electrical grid, and means are taken to improve it in the control. More advanced closed-loop harmonic controllers are thus demanded to enhance the renewa...

  12. Brain-Computer Interfaces and Human-Computer Interaction

    NARCIS (Netherlands)

    Tan, Desney; Nijholt, Anton; Tan, Desney S.; Nijholt, Anton

    2010-01-01

    Advances in cognitive neuroscience and brain imaging technologies have started to provide us with the ability to interface directly with the human brain. This ability is made possible through the use of sensors that can monitor some of the physical processes that occur within the brain that correspo

  13. REAL- ESTATE INTERFACE

    OpenAIRE

    Jawad, Mohamad

    2016-01-01

    The purpose of the thesis was to implement the most efficient user interface (UI) for Real-estate in Finland for client companies due to their desire of having this feature in their system. The prototype was supposed to show the clients how the feature works to get needed data for real-estate properties in Finland in their map system. National Land Survey MML of Finland was chosen for tracking the real-estate properties data in the system. The real-estate prototype was developed by Micros...

  14. User interface concerns

    Science.gov (United States)

    Redhed, D. D.

    1978-01-01

    Three possible goals for the Numerical Aerodynamic Simulation Facility (NASF) are: (1) a computational fluid dynamics (as opposed to aerodynamics) algorithm development tool; (2) a specialized research laboratory facility for nearly intractable aerodynamics problems that industry encounters; and (3) a facility for industry to use in its normal aerodynamics design work that requires high computing rates. The central system issue for industry use of such a computer is the quality of the user interface as implemented in some kind of a front end to the vector processor.

  15. Sistema Brain Computer Interface

    OpenAIRE

    Martín Barraza, Juan Ignacio

    2015-01-01

    En este trabajo de final de grado se realizará una aplicación de un sistema Brain Computer Interface en el cual, a partir del dipositivo Mind Wave de la compañía Neurosky, se pretenderá controlar el prototipo de una mano humana. Esta será controlada a partir de las ondas cerebrales medidas por el sensor que el dispositivo dispone. A continuación, la información captada por nuestro medidor de señales de electroencefalográficas será enviada por radiofrecuencia a un stick USB que viene incorpora...

  16. Urban Sound Interfaces

    DEFF Research Database (Denmark)

    Breinbjerg, Morten

    2012-01-01

    This paper draws on the theories of Michel de Certeau and Gaston Bachelard to discuss how media architecture, in the form of urban sound interfaces, can help us perceive the complexity of the spaces we inhabit, by exploring the history and the narratives of the places in which we live. In this...... paper, three sound works are discussed in relation to the iPod, which is considered as a more private way to explore urban environments, and as a way to control the individual perception of urban spaces....

  17. MAN – MACHINE INTERFACE

    Directory of Open Access Journals (Sweden)

    S.Bhuvaneswari

    2012-02-01

    Full Text Available Agents trained by learning techniques provide a powerful approximation of state spaces in games that aretoo large for naive approaches. In the study Genetic Algorithms and Manual Interface was implementedand used to train agents for the board game LUDO. The state space of LUDO is generalized to a small setand encoded to suit the different techniques. The impact of variables and tactics applied in training aredetermined. Agents based on the techniques performed satisfactory against a baseline finite agent, and aGenetic Algorithm based agent performed satisfactory against competitors from the course. Better statespace representations will improve the success of learning based agents.

  18. Interfacing with the Night

    OpenAIRE

    McLean, Alex; Parkinson, Adam

    2014-01-01

    In  this  paper,  the  authors  consider  the  interfaces  between academia and dance music. Dance music and club culture are, we argue, important to computer music and the live performance of electronic music, but there are many different difficulties encountered when trying to present electronic dance music within academic contexts. The authors draw upon their experiences as promoters, performers, researchers and audience members to discuss these difficulties and how and why we might negoti...

  19. Man - Machine Interface

    Directory of Open Access Journals (Sweden)

    S.Bhuvaneswari

    2012-01-01

    Full Text Available Agents trained by learning techniques provide a powerful approximation of state spaces in games that are too large for naive approaches. In the study Genetic Algorithms and Manual Interface was implemented and used to train agents for the board game LUDO. The state space of LUDO is generalized to a small set and encoded to suit the different techniques. The impact of variables and tactics applied in training are determined. Agents based on the techniques performed satisfactory against a baseline finite agent, and a Genetic Algorithm based agent performed satisfactory against competitors from the course. Better state space representations will improve the success of learning based agents.

  20. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  1. Laparoscopic simulation interface

    Science.gov (United States)

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  2. Portraying User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    The user interface is coming of age. Papers adressing UI history have appeared in fair amounts in the last 25 years. Most of them address particular aspects such as an in­novative interface paradigm or the contribution of a visionary or a research lab. Contrasting this, papers addres­sing UI...... history. Next the paper analyses a selected sample of papers on UI history at large. The analysis shows that the current state-of-art is featured by three aspects: Firstly internalism, in that the papers adress the tech­nologies in their own right with little con­text­ualization, secondly whiggism in that...... they largely address prevailing UI techno­logies, and thirdly history from above in that they focus on the great deeds of the visionaries. The paper then compares this state-of-art in UI history to the much more mature fields history of computing and history of technology. Based hereon, some...

  3. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  4. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  5. The LOCUS interface to the MFE database

    International Nuclear Information System (INIS)

    The MFE database now consists of over 900 shots from TFTR, PDX, PLT, T-10, JT-60, TEXT, JET and ASDEX. A variety of discharge conditions is represented, ranging from single time slice Ohmic discharges to multiple time-slice auxiliary heated discharges. Included with most datasets is a reference that describes the experiment being performed when the data was taken. The MFE database is currently implemented under INGRES on a VAX that is on Internet. LOCUS, a database utility, developed at the Princeton Plasma Physics Laboratory is now available as an interface to the database. The LOCUS front end provides a graphic interface to the database from any generic graphics terminal that supports Tektronix 4010 emulation. It provides a variety of procedures for extracting, manipulating and graphing data from the MFE database. In order to demonstrate the capabilities of the LOCUS interface, the authors examine, in detail, one of the recently added JET, H-mode discharges. In this example, they address some new concepts such as monitor functions, which have been introduced in order to help users more fully understand the multiple time-slice datasets. They also describe some of the more advanced techniques available in LOCUS for data access and manipulation. Specific areas of interest that are discussed are searching for and retrieving datasets, graphics, data fitting, and linear regression analysis

  6. Advanced Microsensors

    Science.gov (United States)

    1991-01-01

    This video looks at a spinoff application of the technology from advanced microsensors -- those that monitor and determine conditions of spacecraft like the Space Shuttle. The application featured is concerned with the monitoring of the health of premature babies.

  7. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali

    2012-01-01

    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  8. Human-computer interface

    Science.gov (United States)

    Anderson, Thomas G.

    2004-12-21

    The present invention provides a method of human-computer interfacing. Force feedback allows intuitive navigation and control near a boundary between regions in a computer-represented space. For example, the method allows a user to interact with a virtual craft, then push through the windshield of the craft to interact with the virtual world surrounding the craft. As another example, the method allows a user to feel transitions between different control domains of a computer representation of a space. The method can provide for force feedback that increases as a user's locus of interaction moves near a boundary, then perceptibly changes (e.g., abruptly drops or changes direction) when the boundary is traversed.

  9. Space as interface

    DEFF Research Database (Denmark)

    Lykke-Olesen, Andreas

    2006-01-01

    This Ph.D. dissertation takes its offset in the migration of technology and computing power into our physical environment. The consequence of this movement, termed ubiquitous computing (Wieser, 1991), is a new relationship between humans, technology and spaces. In this new context, I seek...... to conceptualize space as more than the physical container for human activity. I do this by investigating space as interface. Based on a theory of space and place set forth by Tuan (Tuan, 1977), and informed by an explorative research approach, I make the distinction between space and place as a Euclidian space...... and a Phenomenological experienced place. In this perspective, place is created by humans as they appropriate space in investing it with emotions and memories and hereby making it meaningful. Space consists of formable physical and digital space, whereas place is made up by four dimensions relating to personal, physical...

  10. Oscars and Interfaces

    Directory of Open Access Journals (Sweden)

    Antony Unwin

    2012-06-01

    Full Text Available Graphical user interfaces (GUIs are gradually becoming more powerful and more accepted. They are the standard way of interacting with the web and play an increasing role in many software applications. Nevertheless, they have not been generally adopted, and critics point to particular weaknesses and disadvantages. Many of these are due more to flaws in design and implementation than to the basic concepts of GUIs. More attention could be paid to what users want to do and how a GUI might be developed to support these goals. Using a dataset about Oscar nominees and winners, this paper considers what analyses statisticians might carry out and what kind of GUI would be appropriate for these tasks. (It also offers some insights into the Oscars dataset.

  11. Nuclear data interface retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Mark G [Los Alamos National Laboratory

    2008-01-01

    The Nuclear Data Interface (NDI) code library and data formats are the standards for multigroup nuclear data at Los Alamos National Laboratory. NDI's analysis, design, implementation, testing, integration, and maintenance required a ten person-year and ongoing effort by the Nuclear Data Team. Their efforts provide a unique, contemporary experience in producing a standard component library. In reflection upon that experience at NDI's decennial, we have identified several factors critical to NDI's success: it addressed real problems with appropriate simplicity, it fully supported all users, it added extra value through the code to the raw nuclear data, and its team went the distance from analysis through maintenance. In this report we review these critical success factors and discuss their implications for future standardization projects.

  12. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  13. Ions at hydrophobic interfaces

    International Nuclear Information System (INIS)

    We review the present understanding of the behavior of ions at the air–water and oil–water interfaces. We argue that while the alkali metal cations remain strongly hydrated and are repelled from the hydrophobic surfaces, the anions must be classified into kosmotropes and chaotropes. The kosmotropes remain strongly hydrated in the vicinity of a hydrophobic surface, while the chaotropes lose their hydration shell and can become adsorbed to the interface. The mechanism of adsorption is still a subject of debate. Here, we argue that there are two driving forces for anionic adsorption: the hydrophobic cavitational energy and the interfacial electrostatic surface potential of water. While the cavitational contribution to ionic adsorption is now well accepted, the role of the electrostatic surface potential is much less clear. The difficulty is that even the sign of this potential is a subject of debate, with the ab initio and the classical force field simulations predicting electrostatic surface potentials of opposite sign. In this paper, we will argue that the strong anionic adsorption found in the polarizable force field simulations is the result of the artificial electrostatic surface potential present in the classical water models. We will show that if the adsorption of anions were as large as predicted by the polarizable force field simulations, the excess surface tension of the NaI solution would be strongly negative, contrary to the experimental measurements. While the large polarizability of heavy halides is a fundamental property and must be included in realistic modeling of the electrolyte solutions, we argue that the point charge water models, studied so far, are incompatible with the polarizable ionic force fields when the translational symmetry is broken. The goal for the future should be the development of water models with very low electrostatic surface potential. We believe that such water models will be compatible with the polarizable force fields

  14. The Interface Fresnel Zone revisited

    OpenAIRE

    Favretto-Cristini, Nathalie; Cristini, Paul; De Bazelaire, Eric

    2006-01-01

    We determine the part of reflectors which actually affects the reflected wavefield, which is of particular interest for the characterization of the interfaces from physical and seismic viewpoints, and for seismic resolution. We reformulate the concepts of Fresnel volumes (FV) and Interface Fresnel zones (IFZ), by accounting for all possible rays defining the isochrone for the source-receiver pair and the specular reflected wave. In the case of a plane homogeneous interface, the results obtain...

  15. Audio Interfaces for Improved Accessibility

    OpenAIRE

    Duarte, Carlos; Carrico, Lu&#;s

    2008-01-01

    This chapter focused on how endowing interfaces with audio interaction capabilities can improve their accessibility. To exemplify this outcome the development of several versions of a Digital Talking Book player was presented. This allowed us to show it is possible to maintain the same set of features while stripping the interface of visual components, and still keep it usable for the visually impaired population. The interface development concerns focused on both ends of the interaction spec...

  16. Detonation interaction with an interface

    OpenAIRE

    Lieberman, D. H.; Shepherd, J. E.

    2007-01-01

    Detonation interaction with an interface was investigated, where the interface separated a combustible from an oxidizing or inert mixture. The ethylene-oxygen combustible mixture had a fuel-rich composition to promote secondary combustion with the oxidizer in the turbulent mixing zone (TMZ) that resulted from the interaction. Sharp interfaces were created by using a nitro-cellulose membrane to separate the two mixtures. The membrane was mounted on a wood frame and inserted in the experimental...

  17. Reference Operational Concepts for Advanced Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques Victor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Farris, Ronald Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report represents the culmination of a four-year research project that was part of the Instrumentation and Control and Human Machine Interface subprogram of the DOE Advanced Reactor Technologies program.

  18. Capillary flows with forming interfaces

    CERN Document Server

    Shikhmurzaev, Yulii D

    2007-01-01

    PREFACEINTRODUCTION Free-surface flows in nature and industryScope of the bookFUNDAMENTALS OF FLUID MECHANICS Main concepts Governing equations Elements of thermodynamics Classical boundary conditions Physically meaningful solutions and paradoxes of modelingMOVING CONTACT LINES: AN OVERVIEW Essence of the problem Experimental observations Molecular dynamics simulations Review of theoriesThe key to the moving contact-line problemBOUNDARY CONDITIONS ON FORMING INTERFACES Modeling of interfacesConservation lawsLiquid-gas and liquid-solid interfacesLiquid-liquid interfaces SummaryOpen questions an

  19. Antisite defects at oxide interfaces

    Science.gov (United States)

    Chen, Hanghui; Millis, Andrew

    2016-03-01

    We use ab initio calculations to estimate the formation energies of cation (transition-metal) antisite defects at oxide interfaces and to understand the basic physical effects that drive or suppress the formation of these defects. Antisite defects are found to be favored in systems with substantial charge transfer across the interface, while Jahn-Teller distortions and itinerant ferromagnetism can prevent antisite defects and help stabilize atomically sharp interfaces. Our results enable identification of classes of systems that may be more and less susceptible to the formation of antisite defects, and they motivate experimental studies and further theoretical calculations to elucidate the local structure and stability of oxide interface systems.

  20. More playful user interfaces interfaces that invite social and physical interaction

    CERN Document Server

    2015-01-01

    This book covers the latest advances in playful user interfacesinterfaces that invite social and physical interaction. These new developments include the use of audio, visual, tactile and physiological sensors to monitor, provide feedback and anticipate the behavior of human users. The decreasing cost of sensor and actuator technology makes it possible to integrate physical behavior information in human-computer interactions. This leads to many new entertainment and game applications that allow or require social and physical interaction in sensor- and actuator-equipped smart environments. The topics discussed include: human-nature interaction, human-animal interaction and the interaction with tangibles that are naturally integrated in our smart environments. Digitally supported remote audience participation in artistic or sport events is also discussed. One important theme that emerges throughout the book is the involvement of users in the digital-entertainment design process or even design and implement...

  1. Distributable user interfaces

    OpenAIRE

    González Villanueva, Pedro

    2014-01-01

    Computer systems have evolved considerably in a short period of time, and, so, we can talk nowadays about Personal Devices instead of Personal Device. This is due to the wide variety of devices that we use today, because technology has advanced to meet the needs of people, such as being in touch, being connected at any time, having a device adapted to every circumstance and performing any task from any of our devices. With such a wide range of devices at our disposal, there is the possibil...

  2. Advancements in Violin-Related Human-Computer Interaction

    DEFF Research Database (Denmark)

    Overholt, Daniel

    2014-01-01

    of human intelligence and emotion is at the core of the Musical Interface Technology Design Space, MITDS. This is a framework that endeavors to retain and enhance such traits of traditional instruments in the design of interactive live performance interfaces. Utilizing the MITDS, advanced Human...

  3. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  4. USMC UGS technology advancements

    Science.gov (United States)

    Hartup, David C.; Barr, Michael E.; Hirz, Philip M.; Kipp, Jason; Fishburn, Thomas A.; Waller, Ezra S.; Marks, Brian A.

    2008-04-01

    Technology advancements for the USMC UGS system are described. Integration of the ARL Blue Radio/CSR into the System Controller and Radio Repeater permit the TRSS system to operate seamlessly within the Family of UGS concept. In addition to the Blue Radio/CSR, the TRSS system provides VHF and SATCOM radio links. The TRSS system is compatible with a wide range of imagers, including those with both analog and digital interfaces. The TRSS System Controller permits simultaneous monitoring of 2 camera inputs. To complement enhanced compatibility and improved processing, the mechanical housing of the TRSS System Controller has been updated. The SDR-II, a system monitoring device, also incorporates four Blue Radio/CSRs along with other communication capabilities, making it an ideal choice for a monitoring station within the Family of UGS. Field testing of L-3 Nova's UGS system at YPG has shown flawless performance, capturing all 126 targets.

  5. An optical brain computer interface

    OpenAIRE

    Coyle, S; Ward, Tomas; Markham, Charles

    2004-01-01

    This paper describes a novel approach to brain computer interfacing that uses optical analysis to provide physiological measures of brain function. We describe the optical analysis technique involved and the application of this method to development of our first prototype optical brain computer interface

  6. Integrating and Interfacing Library Systems.

    Science.gov (United States)

    Boss, Richard W.

    1985-01-01

    This overview of local library online systems that integrate several functions covers functional integration, benefits of integrated systems, turnkey systems, minicomputer and microcomputer-based systems, interfacing automated systems, types of interfaces, linking homogenous and heterogeneous systems, role of vendors, library applications, linking…

  7. GRAPHIC INTERFACES FOR ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ion PANA,

    2012-05-01

    Full Text Available Using effective the method of calculating Fitness for Service requires the achievement of graphical interfaces. This paper presents an example of such interfaces, made with Visual Basic program and used in the evaluation of pipelines in a research contract [4

  8. Online Remote Sensing Interface

    Science.gov (United States)

    Lawhead, Joel

    2007-01-01

    BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.

  9. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  10. Reflectometry on curved interfaces

    International Nuclear Information System (INIS)

    Reflectometry is known since long as an interferometric method which can be used to characterize surfaces and thin films regarding their structure and, to a certain degree, composition as well. Properties like layer structures, layer thickness, density, and interface roughness can be determined by fitting the obtained reflectivity data with an appropriate model using a recursive fitting routine. However, one major drawback of the reflectometric method is its restriction to planar surfaces. In this article we demonstrate an approach to apply X-ray and neutron reflectometry to curved surfaces by means of the example of bent bare and coated glass slides. We prove the possibility to observe all features like Fresnel decay, Kiessig fringes, Bragg peaks and off-specular scattering and are able to interpret the data using common fitting software and to derive quantitative results about roughness, layer thickness and internal structure. The proposed method has become practical due to the availability of high quality 2D-detectors. It opens up the option to explore many kinds and shapes of samples, which, due to their geometry, have not been in the focus of reflectometry techniques until now

  11. New DOMS interface

    International Nuclear Information System (INIS)

    In Nagoya University, the computerized on-line microscope for emulsion analysis for cosmic ray research has been developed since 1973. In the past, the emulsion analysis with microscopes was based on specifically trained observation capability. However, it is indispensable to improve the analysis speed and objectivity by the automation with a computer. The emulsion analysis system in Nagoya University completed in 1978 is composed of more than one DOMS (digitized on-line microscope) which is a Chiyoda microscope with a DC motor and a linear encoder and large and medium size precise stages produced by Mitaka Koki Co. The system is linked with a host computer through controllers. Each measuring terminal operates as an intelligent terminal connected with a serial line. A new DOMS interface is newly designed by standardizing the above controllers, and intended to make the same programs easy to use for the purpose of equalizing the quality of data. Design work premised on the assumption that users can set up systems by combining necessary modules depending on their purposes by packing hardware into modules for every function, following the CAMAC concept. In this report, the total system configuration, crate controller, motor drive, position counter, display, graphic video RAM and ROM writer are described. (Wakatsuki, Y.)

  12. Reflectometry on curved interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Früh, Johannes, E-mail: johannes.frueh@hit.edu.cn [Harbin Institute of Technology, Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Micro/Nano Technology Research Centre, Yikuang Street 2, Harbin 150080 (China); Rühm, Adrian [Max-Planck Institute for Intelligent Systems (formerly Max-Planck Institute for Metals Research), ZWE FRM II, Heisenbergstr. 3, 70569 Stuttgart (Germany); Möhwald, Helmuth [Max-Planck Institute of Colloids and Interfaces, Department of Interfaces, Am Mühlenberg 1, 14424 Golm/Potsdam (Germany); Krastev, Rumen [Natural and Medical Sciences Institute at the University of Tuebingen, Marktwiesenstr. 55, 72770 Reutlingen (Germany); Köhler, Ralf, E-mail: ralf.koehler@helmholtz-berlin.de [University of Technology Berlin, Stranski-Laboratorium, Straße des 17. Juni 124, 10623 Berlin (Germany); Helmholtz-Centre Berlin for Materials and Energy, Institute for Soft Matter and Functional Materials, Hahn-Meitner Platz 1, 14109 Berlin (Germany)

    2015-01-15

    Reflectometry is known since long as an interferometric method which can be used to characterize surfaces and thin films regarding their structure and, to a certain degree, composition as well. Properties like layer structures, layer thickness, density, and interface roughness can be determined by fitting the obtained reflectivity data with an appropriate model using a recursive fitting routine. However, one major drawback of the reflectometric method is its restriction to planar surfaces. In this article we demonstrate an approach to apply X-ray and neutron reflectometry to curved surfaces by means of the example of bent bare and coated glass slides. We prove the possibility to observe all features like Fresnel decay, Kiessig fringes, Bragg peaks and off-specular scattering and are able to interpret the data using common fitting software and to derive quantitative results about roughness, layer thickness and internal structure. The proposed method has become practical due to the availability of high quality 2D-detectors. It opens up the option to explore many kinds and shapes of samples, which, due to their geometry, have not been in the focus of reflectometry techniques until now.

  13. Atomic matching across internal interfaces

    International Nuclear Information System (INIS)

    The atomic structure of internal interfaces in dense-packed systems has been investigated by high-resolution electron microscopy (HREM). Similarities between the atomic relaxations in heterophase interfaces and certain large-angle grain boundaries have been observed. In both types of interfaces localization of misfit leads to regions of good atomic matching within the interface separated by misfit dislocation-like defects. It appears that, whenever possible, the GB structures assume configurations in which the atomic coordination is not too much different from the ideal lattice. It is suggested that these kinds of relaxations primarily occur whenever the translational periods along the GB are large or when the interatomic distances are incommensurate. Incorporation of low index planes into the GB appears to lead to preferred, i.e. low energy structures, that can be quite dense with good atomic matching across a large fraction of the interface

  14. Interface Input/Output Automata

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Nyman, Ulrik; Wasowski, Andrzej

    2006-01-01

    Building on the theory of interface automata by de Alfaro and Henzinger we design an interface language for Lynch’s I/O, a popular formalism used in the development of distributed asynchronous systems, not addressed by previous interface research. We introduce an explicit separation of assumptions...... from guarantees not yet seen in other behavioral interface theories. Moreover we derive the composition operator systematically and formally, guaranteeing that the resulting compositions are always the weakest in the sense of assumptions, and the strongest in the sense of guarantees. We also present a...... method for solving systems of relativized behavioral inequalities as used in our setup and draw a formal correspondence between our work and interface automata....

  15. Analyses of crack growth along interface of patterned wafer-level Cu-Cu bonds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Hutchinson, John W.

    2009-01-01

    computational model provides the resistance curve of macroscopic crack driving force versus crack advance as dependent on the work of separation and strength of the interface as well as the pattern geometry and the parameters controlling the plasticity of the Cu films. Plasticity in the Cu films makes a major...... with lines of unbonded interface, all aligned parallel to the crack front. The interface toughness model employs a cohesive zone to represent separation of the interface and J(2) flow theory of plasticity to characterize the Cu films. Remote mode I loading is imposed on the elastic Si substrates. The...

  16. Building the System Interface Management Environment for the Development of Complex System

    Directory of Open Access Journals (Sweden)

    Sung Gyun Oh

    2015-07-01

    Full Text Available Advanced systems have common characteristics of complexity as the level of their demanded emergent capability and the resulting interfaces among their components increase. These characteristics make it difficult to manage the interfaces and the failure of the management can lead to the failure of development projects. This study proposes a model-based systems engineering approach to facilitate the interface management for an IPT environment. A demonstration of the proposed approach to the magnetic levitation railway development project is provided to identify and control interfaces.

  17. U.S. Department of Energy Roadmap on Instrumentation, Controls, and Human-Machine Interface Technologies in Current and Future Nuclear Power Plants

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) recently sponsored the creation of a roadmap for instrumentation, controls, and human-machine interface (ICHMI) technology development. The roadmap represents the collective efforts of a group of subject matter experts from the DOE national laboratories, academia, vendors, the U.S. Nuclear Regulatory Commission (NRC), and utilities. It is intended to provide the underpinnings to the government sponsored ICHMI research, development, and demonstration (RD and D) performed in the United States for the next several years. A distinguishing feature of this roadmapping effort is that it is not limited to a technology progression plan but includes a detailed rationale, aimed at the nonspecialist, for the existence of a focused ICHMI RD and D program. Eight specific technology areas were identified for focused RD and D as follows: (1) sensors and electronics for harsh environments,(2) uncertainty characterization for diagnostics/prognostics applications, (3) quantification of software quality for high-integrity digital applications, (4) intelligent controls for nearly autonomous operation of advanced nuclear plants, (5) plant network architecture, (6) intelligent aiding technology for operational support, (7) human system interaction models and analysis tools, and (8) licensing and regulatory challenges and solutions.

  18. Advanced ferroelectricity

    CERN Document Server

    Blinc, R

    2011-01-01

    Advances in the field of ferroelectricity have implications both for basic physics and for technological applications such as memory devices, spintronic applications and electro-optic devices, as well as in acoustics, robotics, telecommunications and medicine. This book provides an account of recent developments in the field.

  19. Intelligent virtual interfaces for telerobotics

    Science.gov (United States)

    Grinstein, Georges G.; Maybury, Mark T.; Mitchell, Richard B.

    1992-11-01

    One promise of telerobotics is the ability to interact in environments that are distant (e.g., deep sea or deep space), dangerous (e.g., nuclear, chemical, or biological environments), or inaccessible by humans for political or legal reasons. A key component to such interactions are sophisticated human-computer interfaces that can replicate sufficient information about a local environment to permit remote navigation and manipulation. This environment replication can, in part, be provided by technologies such as virtual reality. In addition, however, telerobotic interfaces may need to enhance human-machine interaction to assist users in task performance, for example, governing motion or manipulation controls to avoid obstacles or to restrict interaction with certain objects (e.g., avoiding contact with a live mine or a deep sea treasure). Thus, effective interactions within remote environments require intelligent virtual interfaces to telerobotic devices. In part to address this problem, MITRE is investigating virtual reality architectures that will enable enhanced interaction within virtual environments. Key components to intelligent virtual interfaces include spoken language processing, gesture recognition algorithms, and more generally, task recognition. In addition, these interfaces will eventually have to take into account properties of the user, the task, and discourse context to be more adaptive to the current situation at hand. While our work has not yet investigated the connection of virtual interfaces to external robotic devices, we have begun developing the key components for intelligent virtual interfaces for information and training systems.

  20. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  1. Interface cracks in piezoelectric materials

    Science.gov (United States)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  2. Playful user interfaces interfaces that invite social and physical interaction

    CERN Document Server

    2014-01-01

    The book is about user interfaces to applications that have been designed for social and physical interaction. The interfaces are ‘playful’, that is, users feel challenged to engage in social and physical interaction because that will be fun. The topics that will be present in this book are interactive playgrounds, urban games using mobiles, sensor-equipped environments for playing, child-computer interaction, tangible game interfaces, interactive tabletop technology and applications, full-body interaction, exertion games, persuasion, engagement, evaluation, and user experience. Readers of the book will not only get a survey of state-of-the-art research in these areas, but the chapters in this book will also provide a vision of the future where playful interfaces will be ubiquitous, that is, present and integrated in home, office, recreational, sports and urban environments, emphasizing that in the future in these environments game elements will be integrated and welcomed.

  3. Practical speech user interface design

    CERN Document Server

    Lewis, James R

    2010-01-01

    Although speech is the most natural form of communication between humans, most people find using speech to communicate with machines anything but natural. Drawing from psychology, human-computer interaction, linguistics, and communication theory, Practical Speech User Interface Design provides a comprehensive yet concise survey of practical speech user interface (SUI) design. It offers practice-based and research-based guidance on how to design effective, efficient, and pleasant speech applications that people can really use. Focusing on the design of speech user interfaces for IVR application

  4. The molecule-metal interface

    CERN Document Server

    Koch, Norbert; Wee, Andrew Thye Shen

    2013-01-01

    Reviewing recent progress in the fundamental understanding of the molecule-metal interface, this useful addition to the literature focuses on experimental studies and introduces the latest analytical techniques as applied to this interface.The first part covers basic theory and initial principle studies, while the second part introduces readers to photoemission, STM, and synchrotron techniques to examine the atomic structure of the interfaces. The third part presents photoelectron spectroscopy, high-resolution UV photoelectron spectroscopy and electron spin resonance to study the electroni

  5. Automated Fluid Interface System (AFIS)

    Science.gov (United States)

    1990-01-01

    Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.

  6. Designing end-user interfaces

    CERN Document Server

    Heaton, N

    1988-01-01

    Designing End-User Interfaces: State of the Art Report focuses on the field of human/computer interaction (HCI) that reviews the design of end-user interfaces.This compilation is divided into two parts. Part I examines specific aspects of the problem in HCI that range from basic definitions of the problem, evaluation of how to look at the problem domain, and fundamental work aimed at introducing human factors into all aspects of the design cycle. Part II consists of six main topics-definition of the problem, psychological and social factors, principles of interface design, computer intelligenc

  7. Search-User Interface Design

    CERN Document Server

    Wilson, Max

    2011-01-01

    Search User Interfaces (SUIs) represent the gateway between people who have a task to complete, and the repositories of information and data stored around the world. Not surprisingly, therefore, there are many communities who have a vested interest in the way SUIs are designed. There are people who study how humans search for information, and people who study how humans use computers. There are people who study good user interface design, and people who design aesthetically pleasing user interfaces. There are also people who curate and manage valuable information resources, and people who desi

  8. The Ni-YSZ interface

    DEFF Research Database (Denmark)

    Jensen, Karin Vels

    The anode/electrolyte interface in solid oxide fuel cells (SOFC) is known to cause electrical losses. Geometrically simple Ni/yttria-stabilised zirconia (YSZ) interfaces were examined to gain information on the structural and chemical changes occurring during experiments at 1000°C in an atmosphere...... content (99.8% Ni and 99.995% Ni) were used to examine the impact of impurities on the polarisation resistance and contact area morphology. The electropolished nickel wires were pressed against a polished 8 mol% YSZ surface. Extensive structural changes from a flat interface to a hill and valley structure...

  9. Preface (to Playful User Interfaces)

    OpenAIRE

    Nijholt, Anton

    2014-01-01

    This book is about user interfaces to applications that can be considered as ‘playful’. The interfaces to such applications should be ‘playful’ as well. The application should be fun, and interacting with such an application should, of course, be fun as well. Maybe more. Why not expect that the interface is persuasive, engaging, challenging and aims at helping to provide the user with fun, trying to keep the user motivated, not frustrated or bored, or, in terms of ‘flow theory’, in a state wh...

  10. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described

  11. Preventing Chronic Pain: A Human Systems Approach—Results From a Massive Open Online Course

    Science.gov (United States)

    Anderson, Kathleen; Clavel, Alfred; Fricton, Regina; Hathaway, Kate; Kang, Wenjun; Jaeger, Bernadette; Maixner, William; Pesut, Daniel; Russell, Jon; Weisberg, Mark B.; Whitebird, Robin

    2015-01-01

    Chronic pain conditions are the top reason patients seek care, the most common reason for disability and addiction, and the biggest driver of healthcare costs; their treatment costs more than cancer, heart disease, dementia, and diabetes care. The personal impact in terms of suffering, disability, depression, suicide, and other problems is incalculable. There has been much effort to prevent many medical and dental conditions, but little effort has been directed toward preventing chronic pain. To address this deficit, a massive open online course (MOOC) was developed for students and healthcare professionals. “Preventing Chronic Pain: A Human Systems Approach” was offered by the University of Minnesota through the online platform Coursera. The first offering of this free open course was in the spring of 2014 and had 23 650 participants; 53% were patients or consumers interested in pain. This article describes the course concepts in preventing chronic pain, the analytic data from course participants, and postcourse evaluation forms. PMID:26421231

  12. Preventing Chronic Pain: A Human Systems Approach-Results From a Massive Open Online Course.

    Science.gov (United States)

    Fricton, James; Anderson, Kathleen; Clavel, Alfred; Fricton, Regina; Hathaway, Kate; Kang, Wenjun; Jaeger, Bernadette; Maixner, William; Pesut, Daniel; Russell, Jon; Weisberg, Mark B; Whitebird, Robin

    2015-09-01

    Chronic pain conditions are the top reason patients seek care, the most common reason for disability and addiction, and the biggest driver of healthcare costs; their treatment costs more than cancer, heart disease, dementia, and diabetes care. The personal impact in terms of suffering, disability, depression, suicide, and other problems is incalculable. There has been much effort to prevent many medical and dental conditions, but little effort has been directed toward preventing chronic pain. To address this deficit, a massive open online course (MOOC) was developed for students and healthcare professionals. "Preventing Chronic Pain: A Human Systems Approach" was offered by the University of Minnesota through the online platform Coursera. The first offering of this free open course was in the spring of 2014 and had 23 650 participants; 53% were patients or consumers interested in pain. This article describes the course concepts in preventing chronic pain, the analytic data from course participants, and postcourse evaluation forms. PMID:26421231

  13. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  14. Advanced Nanoemulsions

    Science.gov (United States)

    Fryd, Michael M.; Mason, Thomas G.

    2012-05-01

    Recent advances in the growing field of nanoemulsions are opening up new applications in many areas such as pharmaceuticals, foods, and cosmetics. Moreover, highly controlled nanoemulsions can also serve as excellent model systems for investigating basic scientific questions about soft matter. Here, we highlight some of the most recent developments in nanoemulsions, focusing on methods of formation, surface modification, material properties, and characterization. These developments provide insight into the substantial advantages that nanoemulsions can offer over their microscale emulsion counterparts.

  15. Advanced LIGO

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O.; Ain, A.

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recyc...

  16. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  17. Materials interface engineering for solution-processed photovoltaics

    KAUST Repository

    Graetzel, Michael

    2012-08-15

    Advances in solar photovoltaics are urgently needed to increase the performance and reduce the cost of harvesting solar power. Solution-processed photovoltaics are cost-effective to manufacture and offer the potential for physical flexibility. Rapid progress in their development has increased their solar-power conversion efficiencies. The nanometre (electron) and micrometre (photon) scale interfaces between the crystalline domains that make up solution-processed solar cells are crucial for efficient charge transport. These interfaces include large surface area junctions between photoelectron donors and acceptors, the intralayer grain boundaries within the absorber, and the interfaces between photoactive layers and the top and bottom contacts. Controlling the collection and minimizing the trapping of charge carriers at these boundaries is crucial to efficiency. © 2012 Macmillan Publishers Limited. All rights reserved.

  18. RGtk2: A Graphical User Interface Toolkit for R

    Directory of Open Access Journals (Sweden)

    Duncan Temple Lang

    2011-01-01

    Full Text Available Graphical user interfaces (GUIs are growing in popularity as a complement or alternative to the traditional command line interfaces to R. RGtk2 is an R package for creating GUIs in R. The package provides programmatic access to GTK+ 2.0, an open-source GUI toolkit written in C. To construct a GUI, the R programmer calls RGtk2 functions that map to functions in the underlying GTK+ library. This paper introduces the basic concepts underlying GTK+ and explains how to use RGtk2 to construct GUIs from R. The tutorial is based on simple and pratical programming examples. We also provide more complex examples illustrating the advanced features of the package. The design of the RGtk2 API and the low-level interface from R to GTK+ are discussed at length. We compare RGtk2 to alternative GUI toolkits for R.

  19. Interfacing design and making of Ceramics

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2014-01-01

    as a pattern of circles, which size and 3d inner pattern are reflecting the position and speed of the hand. The second level has to do with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers....... and Aesthetics in the conference. Digital technology as 3D printing with ceramic allows to bridge from the digital design environment to fabrication. At the same time novel digital means can create new interfaces between the human, space and the material. Here advances in 3d motion capture technology and sensors...... investigates the idea of an interactive digital design tool for designing wall like composition with 3d ceramics and is working on two levels. One which has to do with a digital interactive system that responds on the movement of the hands; at a certain distance the user’s hands appear on a monitor screen...

  20. Intelligent Interfaces to Empower People with Disabilities

    Science.gov (United States)

    Betke, Margrit

    Severe motion impairments can result from non-progressive disorders, such as cerebral palsy, or degenerative neurological diseases, such as Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS), or muscular dystrophy (MD). They can be due to traumatic brain injuries, for example, due to a traffic accident, or to brainstem strokes [9, 84]. Worldwide, these disorders affect millions of individuals of all races and ethnic backgrounds [4, 75, 52]. Because disease onset of MS and ALS typically occurs in adulthood, afflicted people are usually computer literate. Intelligent interfaces can immensely improve their daily lives by allowing them to communicate and participate in the information society, for example, by browsing the web, posting messages, or emailing friends. However, people with advanced ALS, MS, or MD may reach a point when they cannot control the keyboard and mouse anymore and also cannot rely on automated voice recognition because their speech has become slurred.

  1. Interfacing network coding with TCP: an implementation

    CERN Document Server

    Sundararajan, Jay Kumar; Medard, Muriel; Mitzenmacher, Michael; Barros, Joao

    2009-01-01

    In previous work (`Network coding meets TCP') we proposed a new protocol that interfaces network coding with TCP by means of a coding layer between TCP and IP. Unlike the usual batch-based coding schemes, the protocol uses a TCP-compatible sliding window code in combination with new rules for acknowledging bytes to TCP that take into account the network coding operations in the lower layer. The protocol was presented in a theoretical framework and considered only in conjunction with TCP Vegas. In this paper we present a real-world implementation of this protocol that addresses several important practical aspects of incorporating network coding and decoding with TCP's window management mechanism. Further, we work with the more widespread and practical TCP Reno. Our implementation significantly advances the goal of designing a deployable, general, TCP-compatible protocol that provides the benefits of network coding.

  2. Gibbs-Thomson condition for the rapidly moving interface in a binary system

    Science.gov (United States)

    Salhoumi, A.; Galenko, P. K.

    2016-04-01

    Using a phase-field model for fast phase transformations we derive an interface condition for the rapidly moving solid-liquid interface. The model is described by equations for the hyperbolic transport and fast interface dynamics, which are reduced to a sole equation of the phase field with the driving force given by deviations of temperature and concentration from their equilibrium values within the diffuse interface. It is shown that the obtained interface condition presents the acceleration- and velocity-dependent Gibbs-Thomson interfacial condition. This condition is identical to the advanced Born-Infeld equation for the hyperbolic motion by mean curvature with the driving force. As a limiting case, the interface condition presents "velocity-driving force" relationships found earlier as traveling wave solutions for slow and fast phase field profiles. Predictions of the analytical solutions are qualitatively compared with literature data of atomistic simulations on crystal growth kinetics.

  3. AUTONOMIC HTML INTERFACE GENERATOR FOR WEB APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Youssef Bassil

    2012-02-01

    Full Text Available Recent advances in computing systems have led to a new digital era in which every area of life is nearlyinterrelated with information technology. However, with the trend towards large-scale IT systems, a newchallenge has emerged. The complexity of IT systems is becoming an obstacle that hampers themanageability, operability, and maintainability of modern computing infrastructures. Autonomiccomputing popped up to provide an answer to these ever-growing pitfalls. Fundamentally, autonomicsystems are self-configuring, self-healing, self-optimizing, and self-protecting; hence, they can automate allcomplex IT processes without human intervention. This paper proposes an autonomic HTML web-interfacegenerator based on XML Schema and Style Sheet specifications for self-configuring graphical userinterfaces of web applications. The goal of this autonomic generator is to automate the process ofcustomizing GUI web-interfaces according to the ever-changing business rules, policies, and operatingenvironment with the least IT labor involvement. The conducted experiments showed a successfulautomation of web interfaces customization that dynamically self-adapts to keep with the always-changingbusiness requirements. Future research can improve upon the proposed solution so that it supports the selfconfiguringof not only web applications but also desktop applications.

  4. REXIB: Remote Experiments Interface Builder

    Directory of Open Access Journals (Sweden)

    Jose M. Ferreira

    2006-08-01

    Full Text Available Remote Experimentation is an educational resource that allows teachers to strengthen the practical contents of science & engineering courses. However, building up the interfaces to remote experiments is not a trivial task. Although teachers normally master the practical contents addressed by a particular remote experiment they usually lack the programming skills required to quickly build up the corresponding web interface. This paper describes the automatic generation of experiment interfaces through a web-accessible Java application. The application displays a list of existent modules and once the requested modules have been selected, it generates the code that enables the browser to display the experiment interface. The tools’ main advantage is enabling non-tech teachers to create their own remote experiments.

  5. The Simple Publishing Interface (SPI)

    NARCIS (Netherlands)

    Ternier, Stefaan; Massart, David; Totschnig, Michael; Klerkx, Joris; Duval, Erik

    2010-01-01

    Ternier, S., Massart, D., Totschnig, M., Klerkx, J., & Duval, E. (2010). The Simple Publishing Interface (SPI). D-Lib Magazine, September/October 2010, Volume 16 Number 9/10, doi:10.1045/september2010-ternier

  6. Intelligent noncontact surgeon-computer interface using hand gesture recognition

    Science.gov (United States)

    Zhao, Michael; Nowatzyk, Andreas G.; Lu, Thomas; Farkas, Daniel L.

    2008-02-01

    We present the development of advanced neural network and 3D image processing algorithms to identify hand gestures for a novel Surgeon-Computer-Interface (SCI) in the operating room. Feature extraction methods have been identified to reliably extract unique attributes and recognize dynamic hand gestures such as "Point and Click" and "Hand Waiving" features. We show an experimental demonstration of a non-linear neural network classifier that is capable of reliably recognizing 8 complex hand gesture patterns.

  7. Virtual reality and brain computer interface in neurorehabilitation

    OpenAIRE

    Salisbury, David B.; Dahdah, Marie; Driver, Simon; Parsons, Thomas D; Richter, Kathleen M.

    2016-01-01

    The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second s...

  8. Early Interfaced Neural Activity from Chronic Amputated Nerves

    OpenAIRE

    Garde, Kshitija; Keefer, Edward; Botterman, Barry; Galvan, Pedro; Romero, Mario I.

    2009-01-01

    Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive i...

  9. Early interfaced neural activity from chronic amputated nerves

    OpenAIRE

    Kshitija Garde; Barry Botterman; Pedro Galvan

    2009-01-01

    Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive i...

  10. Video Game Device Haptic Interface for Robotic Arc Welding

    Energy Technology Data Exchange (ETDEWEB)

    Corrie I. Nichol; Milos Manic

    2009-05-01

    Recent advances in technology for video games have made a broad array of haptic feedback devices available at low cost. This paper presents a bi-manual haptic system to enable an operator to weld remotely using the a commercially available haptic feedback video game device for the user interface. The system showed good performance in initial tests, demonstrating the utility of low cost input devices for remote haptic operations.

  11. Unraveling electronic and magnetic structure at cuprate-manganite interfaces

    Science.gov (United States)

    Freeland, John

    2014-03-01

    Oxide interfaces offer a rich variety of physics and a pathway to create new classes of functional oxide materials. The interface between the cuprate high-temperature superconductors and ferromagnetic manganites is of particular interest due to the strongly antagonistic nature of the superconducting and ferromagnetic phases. Advancements in the synthesis of oxide heterostructure offers the opportunity to merge these two dissimilar oxides with atomic precision to understand the fundamental limits of bringing such states into close proximity. However, the main challenge is to understand the physical framework that describes the behavior of strongly correlated electrons near oxide interfaces. One aspect that will be addressed here is the use of advanced tools to gain detailed electronic and magnetic information from the boundary region. In this talk, recent work will be addressed both in connection to visualizing the interface with spatially resolved tools as well as harnessing layer-by-layer growth to explore the limits in ultrathin superlattices. These insights allow us to better understand the physics behind the interfacial spin and orbital reconstruction observed in this system. Work at Argonne is supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  12. User Interface Goals, AI Opportunities

    OpenAIRE

    Lieberman, Henry; Massachusetts Institute of Technology Media Lab

    2009-01-01

    This is an opinion piece about the relationship between the fields of human-computer interaction (HCI), and artificial intelligence (AI). The ultimate goal of both fields is to make user interfaces more effective and easier to use for people. But historically, they have disagreed about whether "intelligence" or "direct manipulation" is the better route to achieving this. There is an unjustified perception in HCI that AI is unreliable. There is an unjustified perception in AI that interfaces a...

  13. Coal-shale interface detection

    Science.gov (United States)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  14. Coal-shale interface detector

    Science.gov (United States)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  15. Active matter clusters at interfaces.

    Science.gov (United States)

    Copenhagen, Katherine; Gopinathan, Ajay

    2016-03-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  16. Hydrophobic effect at aqueous interfaces

    Science.gov (United States)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  17. Active matter clusters at interfaces.

    Directory of Open Access Journals (Sweden)

    Katherine eCopenhagen

    2016-03-01

    Full Text Available Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped, where inertia dominates, the clusters show more complex behaviors crossing the interface multiple times and deviating from the predictable refraction and reflection for the low velocity clusters. We then present an extreme limit of the model in the absence of rotational damping where clusters can become stuck spiraling along the interface or move in large circular trajectories after leaving the interface. Our results show a wide range of behaviors that occur when collectively moving active biological matter moves across interfaces and these insights can be used to control motion by patterning environments.

  18. Science at the interface

    International Nuclear Information System (INIS)

    the stakes against those who might want to enter. Laboratory sciences interface nature in a peculiar way: by barring real natural objects from entering the lab and by substituting for them reconfigured versions of these objects to work with in research. These supplemental versions of natural objects do refer back to natural processes or conditions, but at the same time they are also autonomous new objects and processes with differential qualities and reproductive powers within laboratory contexts. Laboratory sciences have the disadvantage that their products must be freshly contextualized when they leave the lab to reenter natural environments. In the natural sciences, re-contextualization is often accomplished by transferring some of the conditions that obtained in the lab onto the natural environment. Re-contextualization in the natural sciences may also just be a metaphor for a long chain of processes, involving specialized disciplines, by which some natural scientific results are used to create technologies which are then used in practice - a process that often fails, involves political strategies of persuasion and other complications. Contextualization involves adaptation not only to new laboratory external physical environments but also to the social world. One direction of social science research maintains that a form of (re) contextualization of a much larger scope and impact is evident today in contemporary societies, affecting in tendency all sciences and technological fields. This assessment is encapsulated in the idea that we have progressed from Mode 1 science and technology to a Mode 2 situation where knowledge is generated in the context of application and implication. (author)

  19. The advanced controls program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory (ORNL), under sponsorship of the US Department of Energy (DOE), is conducting research that will lead to advanced, automated control of new liquid-metal-reactor (LMR) nuclear power plants. Although this program of research (entitled the ''Advanced Controls Program'') is focused on LMR technology, it will be capable of providing control design, test, and qualification capability for other advanced reactor designs (e.g., the advanced light water reactor [ALWR] and high temperature gas-cooled reactor [HTGR] designs), while also benefiting existing nuclear plants. The Program will also have applicability to complex, non-nuclear process control environments (e.g., petrochemical, aerospace, etc.). The Advanced Controls Program will support capabilities throughout the entire plant design life cycle, i.e., from the initial interactive first-principle dynamic model development for the process, systems, components, and instruments through advanced control room qualification. The current program involves five principal areas of research activities: (1) demonstrations of advanced control system designs, (2) development of an advanced controls design environment, (3) development of advanced control strategies, (4) research and development (R ampersand D) in human-system integration for advanced control system designs, and (5) testing and validation of advanced control system designs. Discussion of the research in these five areas forms the basis of this paper. Also included is a description of the research directions of the program. 8 refs

  20. Advanced DVI+

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Tae Soon; Lee, S. T.; Euh, D. J.; Chu, I. C.; Youn, Y. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    A new advanced safety feature of DVI+ (Direct Vessel Injection Plus) for the APR+ (Advanced Power Reactor Plus), to mitigate the ECC (Emergency Core Cooling) bypass fraction and to prevent switching an ECC outlet to a break flow inlet during a DVI line break, is presented for an advanced DVI system. In the current DVI system, the ECC water injected into the downcomer is easily shifted to the broken cold leg by a high steam cross flow which comes from the intact cold legs during the late reflood phase of a LBLOCA (Large Break Loss Of Coolant Accident). For the new DVI+ system, an ECBD (Emergency Core Barrel Duct) is installed on the outside of a core barrel cylinder. The ECBD has a gap (From the core barrel wall to the ECBD inner wall to the radial direction) of 3/25-7/25 of the downcomer annulus gap. The DVI nozzle and the ECBD are only connected by the ECC water jet, which is called a hydrodynamic water bridge, during the ECC injection period. Otherwise these two components are disconnected from each other without any pipes inside the downcomer. The ECBD is an ECC downward isolation flow sub-channel which protects the ECC water from the high speed steam crossflow in the downcomer annulus during a LOCA event. The injected ECC water flows downward into the lower downcomer through the ECBD without a strong entrainment to a steam cross flow. The outer downcomer annulus of the ECBD is the major steam flow zone coming from the intact cold leg during a LBLOCA. During a DVI line break, the separated DVI nozzle and ECBD have the effect of preventing the level of the cooling water from being lowered in the downcomer due to an inlet-outlet reverse phenomenon at the lowest position of the outlet of the ECBD.

  1. Advanced mathematics

    CERN Document Server

    Gupta, CB; Kumar, V

    2009-01-01

    About the Book: This book `Advanced Mathematics` is primarily designed for B.Tech., IV Semester (EE and EC branch) students of Rajasthan Technical University. The subject matter is discussed in a lucid manner. The discussion is covered in five units: Unit I: deals with Numerical Analysis, Unit-II: gives different aspects of Numerical Analysis, Unit-III: Special Function, Unit-IV:Statistics and Probability, Calculus of Variation and Transforms are discussed in Unit V. All the theoretical concepts are explained through solved examples. Besides, a large number of unsolved problems on each top

  2. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  3. A Study on Robot-Human System with Consideration of Individual Preferences

    Science.gov (United States)

    Jindai, Mitsuru; Shibata, Satoru; Yamamoto, Tomonori; Watanabe, Tomio

    In this study, we propose an object-handing robot system with a multimodal human-machine interface which is composed of speech recognition and image processing units. Using this multimodal human-machine interface, the cooperator can order the object-handing robot system using voice commands and hand gestures. In this robot system, the motion parameters of the robot, which are maximum velocity, velocity profile peak and handing position, can be adjusted by the voice commands or the hand gestures in order to realize the most appropriate motion of the robot. Furthermore, the cooperator can order the handing of objects using voice commands along with hand gestures. In these voice commands, the cooperator can use adverbs. This permits the cooperator to realize efficient adjustments, because the adjustment value of each motion parameters is determined by adverbs. In particular, adjustment values corresponding to adverbs are estimated by fuzzy inference in order to take into consideration the ambiguities of human speech.

  4. Nanoscale deformation measurements for reliability assessment of material interfaces

    Science.gov (United States)

    Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2006-03-01

    With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.

  5. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  6. Harnessing the Risk-Related Data Supply Chain: An Information Architecture Approach to Enriching Human System Research and Operations Knowledge

    Science.gov (United States)

    Buquo, Lynn E.; Johnson-Throop, Kathy A.

    2011-01-01

    An Information Architecture facilitates the understanding and, hence, harnessing of the human system risk-related data supply chain which enhances the ability to securely collect, integrate, and share data assets that improve human system research and operations. By mapping the risk-related data flow from raw data to useable information and knowledge (think of it as a data supply chain), the Human Research Program (HRP) and Space Life Science Directorate (SLSD) are building an information architecture plan to leverage their existing, and often shared, IT infrastructure.

  7. Advanced LIGO

    CERN Document Server

    ,

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, ...

  8. Standardized Modular Power Interfaces for Future Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but

  9. Theory of Interface States at Silicon / Transition - - Silicide Interfaces.

    Science.gov (United States)

    Lim, Hunhwa

    The Si/NiSi(,2)(111) interface is of both fundamental and techno- logical interest: From the fundamental point of view, it is the best characterized of all semiconductor/metal interfaces, with two well-determined geometries (A and B) involving nearly perfect bonding. (This is because Si and NiSi(,2) have nearly the same lattice spacing.) Consequently, a theoretical treatment of this system makes sense--as it would not for messier systems--and one can have some confidence that the theoretical predictions are relevant to experimental observa- tions. From the technological point of view, Si/NiSi(,2) is representative of the class of semiconductor/metal interfaces that are currently of greatest interest in regard to electronic devices--Si/transition -metal-silicide interfaces. The calculations of this dissertation are for the intrinsic interface states of Si/NiSi(,2)-A geometry. These calculations also provide a foundation for later studies of defects at this interface, and for studies of other related systems, such as CoSi(,2). The calculations employ empirical tight-binding Hamiltonians for both Si and NiSi(,2) (with the parameters fitted to prior calculations of the bulk band structures, which appear to be in agreement with the available experimental data on bulk Si and NiSi(,2)). They also employ Green's function techniques--in particular, the subspace Hamiltonian technique. Our principal results are the following: (1) Interface state disper- sion curves are predicted along the symmetry lines (')(GAMMA)(')M, (')M(')K and (')K(')(GAMMA) of the surface Brillouin zone. (2) A prominent band of interface states is found which disperses downward from an energy within the Si band gap to an energy below the Si valence band edge E(,(upsilon)) as the planar wavevector (')k increases from (')(GAMMA) ((')k = 0) to (')M or (')K (symmetry points at boundary of the surface Brillouin zone). This band of inter- face states should be observable. It produces a peak in the surface

  10. DIRAC: Secure web user interface

    International Nuclear Information System (INIS)

    Traditionally the interaction between users and the Grid is done with command line tools. However, these tools are difficult to use by non-expert users providing minimal help and generating outputs not always easy to understand especially in case of errors. Graphical User Interfaces are typically limited to providing access to the monitoring or accounting information and concentrate on some particular aspects failing to cover the full spectrum of grid control tasks. To make the Grid more user friendly more complete graphical interfaces are needed. Within the DIRAC project we have attempted to construct a Web based User Interface that provides means not only for monitoring the system behavior but also allows to steer the main user activities on the grid. Using DIRAC's web interface a user can easily track jobs and data. It provides access to job information and allows performing actions on jobs such as killing or deleting. Data managers can define and monitor file transfer activity as well as check requests set by jobs. Production managers can define and follow large data productions and react if necessary by stopping or starting them. The Web Portal is build following all the grid security standards and using modern Web 2.0 technologies which allow to achieve the user experience similar to the desktop applications. Details of the DIRAC Web Portal architecture and User Interface will be presented and discussed.

  11. Toward a formal definition of water scarcity in natural-human systems

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A. J.; Chang, H.; Dello, K.; Grant, G.; Hulse, D.; McDonnell, J. J.; Lancaster, S.; Moradkhani, H.; Morzillo, A. T.; Mote, P.; Nolin, A.; Santelmann, M.; Wu, J.

    2013-07-01

    Water scarcity may appear to be a simple concept, but it can be difficult to apply to complex natural-human systems. While aggregate scarcity indices are straightforward to compute, they do not adequately represent the spatial and temporal variations in water scarcity that arise from complex systems interactions. The uncertain effects of future climate change on water scarcity add to the need for clarity on the concept of water scarcity. Starting with a simple but robust definition—the marginal value of a unit of water we—highlight key aspects of water scarcity and illustrate its many biophysical and socioeconomic determinants. We make four central observations. First, water scarcity varies greatly across location, time, and a multitude of uses that are valued either directly or indirectly by society. Second, water scarcity is fundamentally a normative, anthropocentric concept and, thus, can and should be distinguished from the related, purely descriptive notion of water deficit. While such an anthropocentric perspective may seem limiting, it has the potential to encompass the vast range of interests that society has in water. Third, our ability to understand and anticipate changes in water scarcity requires distinguishing between the factors that affect the value or benefits of water from those affecting the costs of transforming water in space, time and form. Finally, this robust and rigorous definition of water scarcity will facilitate better communication and understanding for both policymakers and scientists.

  12. Flow in presence of interfaces

    Science.gov (United States)

    Lunati, I.

    2011-12-01

    Although most physical properties and empirical laws are well defined and experimentally tested only for homogeneous systems, being able to solve environmental problems requires dealing with systems that are inherently heterogeneous. This is particularly true for applications in hydrogeology, where properties (such as permeability) can vary over orders of magnitude. The most challenging cases are those of flow in presence of interfaces, i.e., region characterized by sharp and abrupt contrasts in properties or state. Interfaces require a special treatment, both conceptually and numerically (e.g., quantity such as pressure can become discontinuous), and must be accurately described because of the important phenomena that can take place (e.g., reaction or instability) and influence the behavior of the system at large scales. We discuss the problems related with an accurate description of the propagation of a fluid-fluid interface in a pore geometry, and with the evolution of an unstable front between two fluids of different densities.

  13. Physics of Surfaces and Interfaces

    CERN Document Server

    Ibach, Harald

    2006-01-01

    This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. The Physics of Surfaces and Interfaces is designed as a handbook for the researcher as well as a study-text for graduate students in physics or chemistry with special interest in the surface sciences, material science, or the nanosciences. The experienced researcher, professional or academic teacher will appreciate the opportunity to share many insights and ideas that have grown out of the author's long experience. Readers will likewise appreciate the wide range of topics treated, each supported by extensive references. Graduate students will benefit f...

  14. Multi-robot control interface

    Science.gov (United States)

    Bruemmer, David J.; Walton, Miles C.

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  15. Conjugated Polymer Surfaces and Interfaces

    Science.gov (United States)

    Salaneck, W. R.; Stafstrom, S.; Brédas, J. L.

    2003-10-01

    The authors illustrate the basic physics and materials science of conjugated polymers and their interfaces, particularly, but not exclusively, as they are applied to polymer-based light emitting diodes. The approach is to describe the basic physical and associated chemical principles that apply to these materials, which in many instances are different from those that apply to their inorganic counterparts. The main aim of the authors is to highlight specific issues and properties of polymer surfaces and interfaces that are relevant in the context of the emerging field of polymer-based electronics in general, and polymer-based light emitting diodes in particular. Both theoretical and experimental methods used in the study of these systems are discussed. This book will be of interest to graduate students and research workers in departments of physics, chemistry, electrical engineering and materials sciences studying polymer surfaces and interfaces and their application in polymer-based electronics.

  16. Spherical model of growing interfaces

    Science.gov (United States)

    Henkel, Malte; Durang, Xavier

    2015-05-01

    Building on an analogy between the ageing behaviour of magnetic systems and growing interfaces, the Arcetri model, a new exactly solvable model for growing interfaces is introduced, which shares many properties with the kinetic spherical model. The long-time behaviour of the interface width and of the two-time correlators and responses is analysed. For all dimensions d ≠ 2, universal characteristics distinguish the Arcetri model from the Edwards-Wilkinson model, although for d > 2 all stationary and non-equilibrium exponents are the same. For d = 1 dimensions, the Arcetri model is equivalent to the p = 2 spherical spin glass. For 2 < d < 4 dimensions, its relaxation properties are related to the ones of a particle-reaction model, namely a bosonic variant of the diffusive pair-contact process. The global persistence exponent is also derived.

  17. Advances in Industrial Engineering Applications and Pratice

    DEFF Research Database (Denmark)

    Sørensen, Torben

    1997-01-01

    This paper address how neutral product model interfaces can be developed to provide intelligent and flexible means for information management in manufacturing of discrete mechanical products. The use of advanced computer based systems, such as CAD, CAE, CNC, and robotics, offers a potential...... Aided Control Systems Design) and CAR (Computer Aided Robotics), have not, until now, propagated through the same evolution, even though similar integration measures are needed here as well. The interface development addressed here illustrates new and practical aspects of how the standardized STEP...

  18. Fluorescent fluid interface position sensor

    Science.gov (United States)

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  19. Interface-læring

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2015-01-01

    Interface-læring er den læringsoplevelse, der kan opstå i grænsefladen mellem to væsensforskellige læringsmiljøer, når de mødes og griber ind i hinanden. Et gymnasium og et museum er eksempler på to sådanne læringsmiljøer. Artiklen præsenterer nogle af de væsentligste resultater fra min ph.d. afh.......d. afhandling Interface Learning - New goals for museum and upper secondary school collaboration (2014)....

  20. Chemical reactions at aqueous interfaces

    Science.gov (United States)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  1. Usable Interface Design for Everyone

    OpenAIRE

    Castro, Carlos; García, Enrique; Sainz, Beatriz; Burón, Javier; Ramírez, José Miguel; Zato, José Gabriel; Sánchez, Rafael; Bell, John; Alcantud Marín, Francisco

    2010-01-01

    En el diseño de "interfaces para todo el mundo" para los sistemas interactivos, es importante tener en cuenta factores como el costo, el mercado de destino, el estado del medio ambiente,etc. Los interfaces de usuario son fundamentales para el proceso de desarrollo de cualquier aplicación, y su diseño debe estar contemplado desde el principio. De las distintas partes de un sistema (hardware y software), es la interfaz el sistema que permite al usuario el acceso a los recursos informáticos. Lo...

  2. Performance Metrics for Haptic Interfaces

    CERN Document Server

    Samur, Evren

    2012-01-01

    Haptics technology is being used more and more in different applications, such as in computer games for increased immersion, in surgical simulators to create a realistic environment for training of surgeons, in surgical robotics due to safety issues and in mobile phones to provide feedback from user action. The existence of these applications highlights a clear need to understand performance metrics for haptic interfaces and their implications on device design, use and application. Performance Metrics for Haptic Interfaces aims at meeting this need by establishing standard practices for the ev

  3. Coordinating user interfaces for consistency

    CERN Document Server

    Nielsen, Jakob

    2001-01-01

    In the years since Jakob Nielsen's classic collection on interface consistency first appeared, much has changed, and much has stayed the same. On the one hand, there's been exponential growth in the opportunities for following or disregarding the principles of interface consistency-more computers, more applications, more users, and of course the vast expanse of the Web. On the other, there are the principles themselves, as persistent and as valuable as ever. In these contributed chapters, you'll find details on many methods for seeking and enforcing consistency, along with bottom-line analys

  4. Interface solitons in thermal nonlinear media

    OpenAIRE

    Ma, Xuekai; Yang, Zhenjun; Lu, Daquan; Hu, Wei

    2011-01-01

    We demonstrate the existence of fundamental and dipole interface solitons in one-dimensional thermal nonlinear media with a step in linear refractive index. Fundamental interface solitons are found to be always stable and the stability of dipole interface solitons depends on the difference in linear refractive index. The mass center of interface solitons always locates in the side with higher index. Two intensity peaks of dipole interface solitons are unequal except some specific conditions, ...

  5. Team performance in process control: influences of interface design and staffing levels.

    Science.gov (United States)

    Sebok, A

    2000-08-01

    A study performed at the OECD Halden Reactor Project compared the effects of interface design and staffing levels on various aspects of team performance. Teams of nuclear power plant operators participated in challenging simulator scenarios, working in either a simulated conventional plant, with a hard-control interface, or in a simulated advanced plant, with a computerized interface. Two-team staffing levels, normal and minimum, were evaluated in each plant condition. All teams participated in the same five study conditions, lasting 1-3 h each. Several measures assessed team performance: situation awareness, workload, rated team interactions, rated overall performance and objective performance. The findings revealed that combinations of interface design and staffing levels supported different aspects of performance. Larger crews consistently performed better than smaller crews in the conventional plant. In the advanced plant, both crew types performed equally well; however, smaller crews had better situation awareness than larger crews. In general, performance was better for crews using the advanced plant interface, but workload was higher. Workload also was consistently higher in the smaller crews than in the larger crews, regardless of interface type. Links between the performance measures were also noted. PMID:10975181

  6. Future advances.

    Science.gov (United States)

    Celesia, Gastone G; Hickok, Gregory

    2015-01-01

    Future advances in the auditory systems are difficult to predict, and only educated guesses are possible. It is expected that innovative technologies in the field of neuroscience will be applied to the auditory system. Optogenetics, Brainbow, and CLARITY will improve our knowledge of the working of neural auditory networks and the relationship between sound and language, providing a dynamic picture of the brain in action. CLARITY makes brain tissue transparent and offers a three-dimensional view of neural networks, which, combined with genetically labeling neurons with multiple, distinct colors (Optogenetics), will provide detailed information of the complex brain system. Molecular functional magnetic resonance imaging (MRI) will allow the study of neurotransmitters detectable by MRI and their function in the auditory pathways. The Human Connectome project will study the patterns of distributed brain activity that underlie virtually all aspects of cognition and behavior and determine if abnormalities in the distributed patterns of activity may result in hearing and behavior disorders. Similarly, the programs of Big Brain and ENIGMA will improve our understanding of auditory disorders. New stem-cell therapy and gene therapies therapy may bring about a partial restoration of hearing for impaired patients by inducing regeneration of cochlear hair cells. PMID:25726297

  7. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    Science.gov (United States)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-01

    Pulse or impact welding traditionally has been referred to as "solid-state" welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  8. Interface losses in multimaterial resonators

    DEFF Research Database (Denmark)

    Villanueva, L.G.; Amato, B.; Larsen, Tom;

    2014-01-01

    vibrational modes to achieve a total of more than 3000 experimental points that allow us to quantify the contribution of surface and volume intrinsic (material related) losses in MEMS resonators. We conclude that the losses in the interface between silicon nitride and aluminum is a very important contributor...

  9. Miniaturized neural interfaces and implants

    Science.gov (United States)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  10. Adhesive forces at bimetallic interfaces

    International Nuclear Information System (INIS)

    Force concepts in condensed systems have progressed significantly in recent years. In the context of bimetallic interfaces we consider the Pauli-Hellman-Feynman theorem, use it to check the variational calculations of interfacial energies and estimate the force constants. (author). 13 refs, 2 figs, 2 tabs

  11. Graphical fiber shaping control interface

    Science.gov (United States)

    Basso, Eric T.; Ninomiya, Yasuyuki

    2016-03-01

    In this paper, we present an improved graphical user interface for defining single-pass novel shaping techniques on glass processing machines that allows for streamlined process development. This approach offers unique modularity and debugging capability to researchers during the process development phase not usually afforded with similar scripting languages.

  12. Gluing Soft Interfaces by Nanoparticles

    Science.gov (United States)

    Cao, Zhen; Dobrynin, Andrey

    Using a combination of the molecular dynamics simulations and scaling analysis we studied reinforcement of interface between two soft gel-like materials by spherical nanoparticles. Analysis of the simulations shows that the depth of penetration of a nanoparticle into a gel is determined by a balance of the elastic energy of the gel and nanoparticle deformations and the surface energy of nanoparticle/gel interface. In order to evaluate work of adhesion of the reinforced interface, the potential of mean force for separation of two gels was calculated. These simulations showed that the gel separation proceeds through formation of necks connecting nanoparticle with two gels. The shapes of the necks are controlled by a fine interplay between nanoparticle/gel surface energies and elastic energy of the neck deformation. Our simulations showed that by introducing nanoparticles at soft interfaces, the work required for separation of two gels could be 10-100 times larger than the work of adhesion between two gels without nanoparticle reinforcement. These results provide insight in understanding the mechanism of gluing soft gels and biological tissues by nano- and micro-sized particles. NSF DMR-1409710.

  13. Emotional brain-computer interfaces

    NARCIS (Netherlands)

    Garcia Molina, G.; Tsoneva, T.; Nijholt, A.; Nijholt, A.; Heylen, D.K.J.

    2013-01-01

    Research in brain-computer interface (BCI) has significantly increased during the last few years. Additionally to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As any human-machine interaction system, BCIs can benefit

  14. Design of digital control system human-computer interface for HTR-10

    International Nuclear Information System (INIS)

    Advanced digital distributed computer system (termed DCS) is adopted in 10 MW High Temperature Gas-cooled test Reactor (termed HTR-10). The design rules and the contents about the Human-Computer Interface of the digital control system of HTR-10 are introduced in detail. The design is done with applying HS2000 software as the configuration platform. On the screen tableau all operations are carried out. It is shown that the Human-Computer Interface of the digital control system of HTR-10 be possessed of complete control function, friendly interface and easy operation by means of the tests and embody the advantages of the digital control system

  15. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  16. Designing an operator interface? Consider user`s `psychology`

    Energy Technology Data Exchange (ETDEWEB)

    Toffer, D.E. [Fluor Daniel Inc., Bakersfield, CA (United States)

    1995-11-01

    The modern operator interface is a channel of communication between operators and the plant that, ideally, provides them with information necessary to keep the plant running at maximum efficiency. Advances in automation technology have increased information flow from the field to the screen. New and improved Supervisory Control and Data Acquisition (SCADA) packages provide designers with powerful and open design considerations. All too often, however, systems go to the field designed for the software rather than the operator. Plant operators` jobs have changed fundamentally, from controlling their plants from out in the field to doing so from within control rooms. Control room-based operation does not denote idleness. Trained operators should be engaged in examination of plant status and cognitive evaluation of plant efficiencies. Designers who are extremely computer literate, often do not consider demographics of field operators. Many field operators have little knowledge of modern computer systems. As a result, they do not take full advantage of the interface`s capabilities. Designers often fail to understand the true nature of how operators run their plants. To aid field operators, designers must provide familiar controls and intuitive choices. To achieve success in interface design, it is necessary to understand the ways in which humans think conceptually, and to understand how they process this information physically. The physical and the conceptual are closely related when working with any type of interface. Designers should ask themselves: {open_quotes}What type of information is useful to the field operator?{close_quotes} Let`s explore an integration model that contains the following key elements: (1) Easily navigated menus; (2) Reduced chances for misunderstanding; (3) Accurate representations of the plant or operation; (4) Consistent and predictable operation; (5) A pleasant and engaging interface that conforms to the operator`s expectations. 4 figs.

  17. A sharp interface method for SPH

    Science.gov (United States)

    Zhang, Mingyu; Deng, Xiao-Long

    2015-12-01

    A sharp interface method (SIM) for smoothed particle hydrodynamics (SPH) has been developed to simulate two-phase flows with clear interfaces. The level set function is introduced to capture the interface implicitly. The interface velocity is used to evolve the level set function. The smoothness of the level set function helps to improve the accuracy of the interface curvature. Material discontinuity across the interface is dealt with by the ghost fluid method. The interface states are calculated by applying the jump conditions and are extended to the corresponding ghost fluid particles. The ghost fluid method helps to get smooth and stable calculation near the interface. The performance of the developed method is validated by benchmark tests. The developed SIM for SPH can be applied to simulate low speed two-phase flows of high density ratios with clear interface accurately and stably.

  18. Advances in high-speed low-latency communications for nanopositioning in advanced microscopy

    Science.gov (United States)

    Jordan, Scott C.

    2012-06-01

    We present a comparison of classical and recently developed communications interfacing technologies relevant to scanned imaging. We adopt an applications perspective, with a focus on interfacing techniques as enablers for enhanced resolution, speed, stability, information density or similar benefits. A wealth of such applications have emerged, ranging from nanoscale-stabilized force microscopy yielding 100X resolution improvement thanks to leveraging the latest in interfacing capabilities, to novel approaches in analog interfacing which improve data density and DAC resolution by several orders of magnitude. Our intent is to provide tools to understand, select and implement advanced interfacing to take applications to the next level. We have entered an era in which new interfacing techniques are enablers, in their own right, for novel imaging techniques. For example, clever leveraging of new interfacing technologies has yielded nanoscale stabilization and atomic-force microscopy (AFM) resolution enhancement. To assist in choosing and implementing interfacing strategies that maximize performance and enable new capabilities, we review available interfaces such as USB2, GPIB and Ethernet against the specific needs of positioning for the scanned-imaging community. We spotlight recent developments such as LabVIEW FPGA, which allows non-specialists to quickly devise custom logic and interfaces of unprecedentedly high performance and parallelism. Notable applications are reviewed, including a clever amalgamation of AFM and optical tweezers and a picometer-scaleaccuracy interferometer devised for ultrafine positioning validation. We note the Serial Peripheral Interface (SPI), emerging as a high-speed/low-latency instrumentation interface. The utility of instrument-specific parallel (PIO) and TTL sync/trigger (DIO) interfaces is also discussed. Requirements of tracking and autofocus are reviewed against the time-critical needs of typical applications (to avoid, for example

  19. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    International Nuclear Information System (INIS)

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy's (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE

  20. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Inst. for Energy Technology, Halden (Norway); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The Institute for Energy Technology (IFE), runs the OECD Halden Reactor Project (HRP), featuring a state-of-the-art research simulator facility in Halden, Norway, called HAMMLAB. HAMMLAB serves two main purposes: the study of human behaviour in interaction with complex process systems; and the development, test and evaluation of prototype control centres and their individual systems. By studying operator performance in HAMMLAB and integrating the knowledge gained into new designs, the HRP contributes to improving operational safety, reliability, efficiency and productivity. The U.S. Department of Energy’s (DOE) Light Water Reactor Sustainability (LWRS) Program has contracted IFE to assist DOE national laboratory staff at Idaho National Laboratory (INL) in adapting HAMMLAB design concepts for the purpose of control room modernization at nuclear power plants in the U.S. In support of this effort, the DOE has built a simulator research facility at INL called the Human Systems Simulation Laboratory (HSSL). The HSSL is centered on control room modernization, in which industry provided plant instrumentation and controls are modified for upgrade opportunities. The HSSL houses the LWRS simulator, which is a reconfigurable full-scale and full-scope control room simulator. Consisting of 45 large touchscreens on 15 panels, the LWRS simulator is currently using this glass top technology to digitally represent and replicate the functionality of the analog I&C systems in existing control rooms. The LWRS simulator is reconfigurable in that different plant training simulator models obtained from the utilities can be run on the panels, and the panels can be physically moved and arranged to mimic the layout of those control rooms. The glass top technology and reconfigurability capabilities allow the LWRS simulator to be the research platform that is necessary to design, prototype, and validate human-system interface (HSI) technologies that can replace existing analog I&C. IFE has

  1. Through the Interface - a human activity approach to user interfaces

    DEFF Research Database (Denmark)

    Bødker, Susanne

    In providing a theoretical framework for understanding human- computer interaction as well as design of user interfaces, this book combines elements of anthropology, psychology, cognitive science, software engineering, and computer science. The framework examines the everyday work practices of us...... users when analyzing and designing computer applications. The text advocates the unique theory that computer application design is fundamentally a collective activity in which the various practices of the participants meet in a process of mutual learning.......In providing a theoretical framework for understanding human- computer interaction as well as design of user interfaces, this book combines elements of anthropology, psychology, cognitive science, software engineering, and computer science. The framework examines the everyday work practices of...

  2. Survey of the problems posed by the man-machine interface, as seen from the angle of facility operators

    International Nuclear Information System (INIS)

    The man-machine interface in nuclear power plants is an area very much influenced by the vigorous progress in computer technology. The paper describes the causes underlying the innovative power in this field and its impacts on the man-machine interface in nuclear power plants. The benefits brought by the advanced computer systems in the design of the man-machine interface as well as the problems posed through application in practice to safety-relevant plant systems are discussed, and examples are given showing the experience accumulated so far, and the significant changes effected in the man-machine interface. (orig.)

  3. 极端事件对人类系统的影响%Impacts of Climate Extremes on Human Systems

    Institute of Scientific and Technical Information of China (English)

    吴绍洪; 尹云鹤

    2012-01-01

    IPCC launched the special report of "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX), of which impacts on human systems is one of the most important contents. This paper introduces the main assessment results. Extreme impacts can result from extreme weather and climate events, but can also occur without extreme events. The severity of the impacts of extreme and non-extreme weather and climate events depends strongly on the level of exposure and vulnerability to these events. Settlement patterns, urbanization, and changes in socioeconomic status have all influenced observed trends in vulnerability and exposure to climate extremes. Coastal settlements are exposed and vulnerable to climate extremes in both developed and developing countries, such as in small island states and Asian megadeltas. Vulnerable populations also include refugees, internally displaced people, and those living in marginal areas. Extreme events will have greater impacts on sectors with close links to climate, such as water, agriculture and food security, health, and tourism.%在IPCC特别报告《管理极端事件和灾害风险,推进气候变化适应》中,极端天气气候事件对人类系统的影响是最重要的影响评估内容之一,其评估结果为:极端影响可能缘于极端天气气候事件,但也可能并非极端事件的后果.暴露度和脆弱性是灾害风险的重要决定因素;极端和非极端天气气候事件的严重程度和影响在很大程度上取决于对这些事件的脆弱性和暴露度水平;人居模式、城市化和社会经济状况的变化已经影响观测到的脆弱性和暴露度的变化趋势;无论在发达国家还是发展中国家,沿海人居环境均暴露于极端事件,并受其影响,如小岛屿国家和亚洲大三角洲地区;脆弱人口还包括难民、国内流离失所的人和那些生活在边远地区的人;极端事件将极大地影响与气候联系密切的

  4. Nucleation processes of nanobubbles at a solid/water interface

    Science.gov (United States)

    Fang, Chung-Kai; Ko, Hsien-Chen; Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2016-04-01

    Experimental investigations of hydrophobic/water interfaces often return controversial results, possibly due to the unknown role of gas accumulation at the interfaces. Here, during advanced atomic force microscopy of the initial evolution of gas-containing structures at a highly ordered pyrolytic graphite/water interface, a fluid phase first appeared as a circular wetting layer ~0.3 nm in thickness and was later transformed into a cap-shaped nanostructure (an interfacial nanobubble). Two-dimensional ordered domains were nucleated and grew over time outside or at the perimeter of the fluid regions, eventually confining growth of the fluid regions to the vertical direction. We determined that interfacial nanobubbles and fluid layers have very similar mechanical properties, suggesting low interfacial tension with water and a liquid-like nature, explaining their high stability and their roles in boundary slip and bubble nucleation. These ordered domains may be the interfacial hydrophilic gas hydrates and/or the long-sought chemical surface heterogeneities responsible for contact line pinning and contact angle hysteresis. The gradual nucleation and growth of hydrophilic ordered domains renders the original homogeneous hydrophobic/water interface more heterogeneous over time, which would have great consequence for interfacial properties that affect diverse phenomena, including interactions in water, chemical reactions, and the self-assembly and function of biological molecules.

  5. Design of operator interfaces for ''bumpless'' transfers between operator behaviors

    International Nuclear Information System (INIS)

    Advances in the science and art of man-machine interface design have taken major strides forward for interface design practitioners with the advent of the computer. one concern still extant, however, is the need for design of interfaces that minimize confusion when an operator is required to shift from the different levels of cognitive control of skill, rule, and knowledge-based behaviors, (e.g., if an operator is following a set of procedures and a procedural error is noted by the operator, the behavior may, of necessity, shift from rule-based to a knowledge-based behavior). Shifting of the cognitive control levels requires that the information to be displayed to the operator should be designed so that a ''bumpless'' transfer can be made between the behavioral modes, thus reducing the possibility of error. This paper introduces a way to design human interfaces so that skill, rule, and knowledge-based behaviors are supported and provides for the necessary interchanges between behavioral types

  6. Early interfaced neural activity from chronic amputated nerves

    Directory of Open Access Journals (Sweden)

    Kshitija Garde

    2009-05-01

    Full Text Available Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation, currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative on-dependent multi-electrode arrays of open design allow the early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. .

  7. Structural coupling across the direct EuO/Si interface

    Science.gov (United States)

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Likhachev, Igor A.; Lobanovich, Eduard F.; Parfenov, Oleg E.; Pashaev, Elkhan M.; Sadofyev, Yuri G.; Subbotin, Ilia A.; Yakunin, Sergey N.; Storchak, Vyacheslav G.

    2016-01-01

    The ferromagnetic semiconductor EuO is believed to be an effective spin injector when directly integrated with silicon (Si). Injection through spin-selective ohmic contact requires superb structural quality of the interface EuO/Si. A recent breakthrough in manufacturing free-of-buffer-layer EuO/Si junctions calls for structural studies of the interface between the semiconductors. The synthesis of EuO employs an advanced protection of the Si substrate surface and a two-step growth protocol. It prevents unwanted chemical reactions at the interface. Ex situ high-resolution x-ray diffraction (XRD) and reflectivity (XRR) accompanied by in situ reflection high-energy electron diffraction reveal direct coupling at the interface. A combined analysis of XRD and XRR data provides a common structural model. The structural quality of the EuO/Si spin contact far exceeds that of previous reports and thus makes a step forward to the ultimate goals of spintronics.

  8. Design principles of a web interface for monitoring tools

    Energy Technology Data Exchange (ETDEWEB)

    Aiftimiei, C; Pra, S D; Fantinel, S [INFN-Padova, Padova (Italy); Andreozzi, S; Fattibene, E; Misurelli, G [INFN-CNAF, Bologna (Italy); Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A [INFN-Bari, Bari (Italy)], E-mail: giuseppe.misurelli@cnaf.infn.it, E-mail: enrico.fattibene@cnaf.infn.it

    2008-07-15

    A monitoring tool of a complex Grid system can gather a huge amount of information that have to be presented to the users in the most comprehensive way. Moreover different types of consumers could be interested in inspecting and analyzing different subsets of data. The main goal in designing a Web interface for the presentation of monitoring information is to organize the huge amount of data in a simple, user-friendly and usable structure. One more problem is to consider different approaches, skills and interests that all the possible categories of users have in looking for the desired information. Starting from the Information Architecture guidelines for the Web, it is possible to design Web interfaces towards a closer user experience and to deal with an advanced user interaction through the implementation of many Web standard technologies. In this paper, we will present a number of principles for the design of Web interface for monitoring tools that provide a wider, richer range of possibilities for what concerns the user interaction. These principles are based on an extensive review of the current literature in Web design and on the experience with the development of the GridICE monitoring tool. The described principles can drive the evolution of the Web interface of Grid monitoring tools.

  9. Design principles of a web interface for monitoring tools

    International Nuclear Information System (INIS)

    A monitoring tool of a complex Grid system can gather a huge amount of information that have to be presented to the users in the most comprehensive way. Moreover different types of consumers could be interested in inspecting and analyzing different subsets of data. The main goal in designing a Web interface for the presentation of monitoring information is to organize the huge amount of data in a simple, user-friendly and usable structure. One more problem is to consider different approaches, skills and interests that all the possible categories of users have in looking for the desired information. Starting from the Information Architecture guidelines for the Web, it is possible to design Web interfaces towards a closer user experience and to deal with an advanced user interaction through the implementation of many Web standard technologies. In this paper, we will present a number of principles for the design of Web interface for monitoring tools that provide a wider, richer range of possibilities for what concerns the user interaction. These principles are based on an extensive review of the current literature in Web design and on the experience with the development of the GridICE monitoring tool. The described principles can drive the evolution of the Web interface of Grid monitoring tools

  10. UNIVERSAL INTERFACE TO MULTIPLE OPERATIONS SYSTEMS

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1986-01-01

    Alternative ways to provide access to operations systems that maintain, test, and configure complex telephone networks are being explored. It is suggested that a universal interface that provides simultaneous access to multiple operations systems that execute in different hardware and software...... environments, can be provided by an architecture that is based on the separation of presentation issues from application issues and on a modular interface management system that consists of a virtual user interface, physical user interface, and interface agent. The interface functionality that is needed...

  11. Quantitative estimation of compliance of human systemic veins by occlusion plethysmography with radionuclide

    International Nuclear Information System (INIS)

    Volume-pressure relationship and compliance of human systemic veins were estimated quantitatively and noninvasively using radionuclide. The effect of nitroglycerin (NTG) on these parameters was examined. Plethysmography with radionuclide (RN) was performed using the occlusion method on the forearm in 56 patients with various cardiac diseases after RN angiocardiography with 99mTc-RBC. The RN counts-venous pressure curve was constructed from (1) the changes in radioactivity from region of interest on the forearm that were considered to reflect the changes in the blood volume of the forearm, and (2) the changes in the pressure of the forearm vein (fv) due to venous occlusion. The specific compliance of the forearm veins (Csp.fv; (1/V)·(ΔV/ΔP)) was obtained graphically from this curve at each patient's venous pressure (Pv). Csp.fv was 0.044±0.012 mmHg-1 in class I (mean±SD; n=13), 0.033±0.007 mmHg-1 in class II (n=30), and 0.019±0.007 mmHg-1 in class III (n=13), of the previous NYHA classification of work tolerance. There were significant differences in Csp.fv among the three classes. The systemic venous blood volume (Vsv) was determined by subtracting the central blood volume, measured by RN-angiocardiography, from total blood volume, measured by the indicator dilution method utilizing 131I-human serum albumin. Systemic venous compliance (Csv) was calculated from Csv=Csp.fv·Vsv. The Csv was 127.2±24.8 ml·mmHg-1 (mean±SD) in class I, 101.1±24.1 ml·mmHg-1 in class II and 62.2±28.1 ml·mmHg-1 in class III. There were significant differences in Csv among the three classes. The class I Csv value was calculated to be 127.2±24.8 ml·mmHg-1 and the Csv/body weight was calculated to be 2.3±0.7 ml·mmHg-1·kg-1 of body weight. The administration of NTG increased Csv significantly in all cases. (J.P.N.)

  12. Advanced Extravehicular Mobility Unit Informatics Software Design

    Science.gov (United States)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  13. Virtual reality and brain computer interface in neurorehabilitation.

    Science.gov (United States)

    Salisbury, David B; Dahdah, Marie; Driver, Simon; Parsons, Thomas D; Richter, Kathleen M

    2016-04-01

    The potential benefit of technology to enhance recovery after central nervous system injuries is an area of increasing interest and exploration. The primary emphasis to date has been motor recovery/augmentation and communication. This paper introduces two original studies to demonstrate how advanced technology may be integrated into subacute rehabilitation. The first study addresses the feasibility of brain computer interface with patients on an inpatient spinal cord injury unit. The second study explores the validity of two virtual environments with acquired brain injury as part of an intensive outpatient neurorehabilitation program. These preliminary studies support the feasibility of advanced technologies in the subacute stage of neurorehabilitation. These modalities were well tolerated by participants and could be incorporated into patients' inpatient and outpatient rehabilitation regimens without schedule disruptions. This paper expands the limited literature base regarding the use of advanced technologies in the early stages of recovery for neurorehabilitation populations and speaks favorably to the potential integration of brain computer interface and virtual reality technologies as part of a multidisciplinary treatment program. PMID:27034541

  14. The Portals 4.0 network programming interface.

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin Thomas Tauke; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E. [IBM; Underwood, Keith Douglas [Intel Corporation, Albuquerque, NM; Maccabe, Arthur Bernard [Oak Ridge National Laboratory, Oak Ridge, TN; Hudson, Trammell B. [OS Research, Brooklyn, NY

    2012-11-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities.

  15. The portals 4.0.1 network programming interface.

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin Thomas Tauke; Wheeler, Kyle Bruce; Hemmert, Karl Scott; Riesen, Rolf E. [IBM; Underwood, Keith Douglas [Intel Corporation, Albuquerque, NM; Maccabe, Arthur Bernard [Oak Ridge National Laboratory, Oak Ridge, TN; Hudson, Trammell B. [OS Research, Brooklyn, NY

    2013-04-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of machines employing advanced network interface architectures that support enhanced offload capabilities. 3

  16. Perspectives and Potential of the Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    MUSSATTO, G. G.

    2014-06-01

    Full Text Available A Brain-Computer Interface (BCI, also known as Brain-Machine Interface, is a system that allows for the interaction between the user and its surroundings using control signals generated by his brain activity. The improvement of the research on BCI correlates mainly with the advances of Neurophisiology and Computer Science. Initial research was dedicated to the development of devices for the communication of individuals who lost voluntary muscle control but had no cognitive impairment. Nowadays, we find applications in the fields of mobility, communication and the treatment of diseases of user who may or may not have movement impairment. Considering the expansion scenario of the BCI applications, this paper presents a pedagogical description of the recent publication on this field of study. Hence, we descrive the basic concepts related to this research area, as well as some of its applications and limitations.

  17. Active matter clusters at interfaces

    CERN Document Server

    Copenhagen, Katherine

    2016-01-01

    Collective and directed motility or swarming is an emergent phenomenon displayed by many self-organized assemblies of active biological matter such as clusters of embryonic cells during tissue development, cancerous cells during tumor formation and metastasis, colonies of bacteria in a biofilm, or even flocks of birds and schools of fish at the macro-scale. Such clusters typically encounter very heterogeneous environments. What happens when a cluster encounters an interface between two different environments has implications for its function and fate. Here we study this problem by using a mathematical model of a cluster that treats it as a single cohesive unit that moves in two dimensions by exerting a force/torque per unit area whose magnitude depends on the nature of the local environment. We find that low speed (overdamped) clusters encountering an interface with a moderate difference in properties can lead to refraction or even total internal reflection of the cluster. For large speeds (underdamped), wher...

  18. Towards personalized adaptive user interfaces

    International Nuclear Information System (INIS)

    An approach towards standardization of the general rules for synthesis and design of man machine interfaces that include dynamic adaptive behavior is presented. The link between the personality type (Myers-Briggs or Kersey Temperament sorter) and the personal preferences of the users (Kansei) for the purpose of building Graphical User Interface (GU]) was investigated. The rules for a personalized el-notional GUI based on the subjective preferences of the users were defined. The results were tested on a modified TETRIS game that displayed background characters capable of emotional response. When the system responded to a user in a manner that is customized to his or her preferences, the reaction time was smaller and the information transfer was faster. Usability testing methods were used and it was shown that development of pleasant cartoon face GUI based on the users inborn personality tendencies was feasible. (Author)

  19. Brookhaven fastbus/unibus interface

    Energy Technology Data Exchange (ETDEWEB)

    Benenson, G.; Bauernfeind, J.; Larsen, R.C.; Leipuner, L.B.; Morse, W.M.; Adair, R.K.; Black, J.K.; Campbell, S.R.; Kasha, H.; Schmidt, M.P.

    1983-01-01

    A typical high energy physics experiment requires both a high speed data acquisition and processing system, for data collection and reduction; and a general purpose computer to handle further reduction, bookkeeping and mass storage. Broad differences in architecture, format or technology, will often exist between these two systems, and interface design can become a formidable task. The PDP-11 series minicomputer is widely used in physics research, and the Brookhaven FASTBUS is the only standard high speed data acquisition system which is fully implemented in a current high energy physics experiment. This paper will describe the design and operation of an interface between these two systems. The major issues are elucidated by a preliminary discussion on the basic principles of Bus Systems, and their application to Brookhaven FASTBUS and UNIBUS.

  20. Soft matter at aqueous interfaces

    CERN Document Server

    Liu, Yi

    2016-01-01

    This book covers the science of interfaces between an aqueous phase and a solid, another liquid or a gaseous phase, starting from the basic physical chemistry all the way to state-of-the-art research developments. Both experimental and theoretical methods are treated thanks to the contributions of a distinguished list of authors who are all active researchers in their respective fields. The properties of these interfaces are crucial for a wide variety of processes, products and biological systems and functions, such as the formulation of personal care and food products, paints and coatings, microfluidic and lab-on-a-chip applications, cell membranes, and lung surfactants. Accordingly, research and expertise on the subject are spread over a broad range of academic disciplines and industrial laboratories. This book brings together knowledge from these different places with the aim of fostering education, collaborations and research progress.