WorldWideScience

Sample records for advanced htgr materials

  1. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  2. An investigation of structural design methodology for HTGR reactor internals with ceramic materials (Contract research)

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Nakagawa, Shigeaki; Iyoku, Tatsuo; Sawa, Kazuhiro

    2008-03-01

    To advance the performance and safety of HTGR, heat-resistant ceramic materials are expected to be used as reactor internals of HTGR. C/C composite and superplastic zirconia are the promising materials for this purpose. In order to use these new materials as reactor internals in HTGR, it is necessary to establish a structure design method to guarantee the structural integrity under environmental and load conditions. Therefore, C/C composite expected as reactor internals of VHTR is focused and an investigation on the structural design method applicable to the C/C composite and a basic applicability of the C/C composite to representative structures of HTGR were carried out in this report. As the results, it is found that the competing risk theory for the strength evaluation of the C/C composite is applicable to design method and C/C composite is expected to be used as reactor internals of HTGR. (author)

  3. Safety criteria for advanced HTGR concepts

    International Nuclear Information System (INIS)

    Kroeger, W.

    1989-01-01

    It is commonly agreed that advanced HTGR concepts must be licensable, which means that they must fulfil existing regulatory requirements. Furthermore, it is necessary to improve their public acceptance and they must even be suitable for urban sites. Therefore, they should be 'safer' than existing plants, which mainly means with respect to low-frequency or beyond-design severe accidents. Last but not least, the realization of advanced HTGR would be easier if commonly shared safety principles could be stated ensuring this further increased level of safety internationally. These qualitative statements need to be cast into quantitative guidelines which can be used as a rationale for safety evaluation. This paper tries to describe the status reached and to stimulate international activities. (author). 12 refs, 4 figs, 3 tabs

  4. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    International Nuclear Information System (INIS)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program

  5. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  6. HTGR structural-materials efforts in the US

    International Nuclear Information System (INIS)

    Rittenhouse, P.L.; Roberts, D.I.

    1982-07-01

    The status of ongoing structural materials programs being conducted in the US to support development and deployment of the high-temperature gas-cooled reactor (HTGR) is described. While the total US program includes work in support of all variants of this reactor system, the emphasis of this paper is on the work aimed at support of the steam cycle/cogeneration (SC/C) version of the HTGR. Work described includes activities to develop design and performance prediction data on metals, ceramics, and graphite

  7. Advanced Gas Cooled Reactor Materials Program. Reducing helium impurity depletion in HTGR materials testing

    International Nuclear Information System (INIS)

    Baldwin, D.H.

    1984-08-01

    Moisture depletion in HTGR materials testing rigs has been empirically studied in the GE High Temperature Reactor Materials Testing Laboratory (HTRMTL). Tests have shown that increased helium flow rates and reduction in reactive (oxidizable) surface area are effective means of reducing depletion. Further, a portion of the depletion has been shown to be due to the presence of free C released by the dissociation of CH 4 . This depletion component can be reduced by reducing the helium residence time (increasing the helium flow rate) or by reducing the CH 4 concentration in the test gas. Equipment modifications to reduce depletion have been developed, tested, and in most cases implemented in the HTRMTL to date. These include increasing the Helium Loop No. 1 pumping capacity, conversion of metallic retorts and radiation shields to alumina, isolation of thermocouple probes from the test gas by alumina thermowells, and substitution of non-reactive Mo-TZM for reactive metallic structural components

  8. The desorption of caesium from Peach Bottom HTGR steam generator materials

    International Nuclear Information System (INIS)

    Clark, M.J.

    1979-03-01

    The work at Harwell on the Peach Bottom End-of-Life Program in co-operation with the General Atomic Company (U.S.A.) is described. Materials taken from the Economiser, Evaporator and Superheater Sections of the Peach Bottom Unit No. 1. High Temperature Gas Cooled Reactor (HTGR) Heat Exchanger were placed in a reducing atmosphere comparable to the composition of an HTGR helium coolant gas, and the desorption of caesium isotopes measured under known conditions of flow, temperature and oxygen pressure. (author)

  9. Heat exchanger design considerations for high temperature gas-cooled reactor (HTGR) plants

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.; Van Hagan, T.H.; King, J.H.; Spring, A.H.

    1980-02-01

    Various aspects of the high-temperature heat exchanger conceptual designs for the gas turbine (HTGR-GT) and process heat (HTGR-PH) plants are discussed. Topics include technology background, heat exchanger types, surface geometry, thermal sizing, performance, material selection, mechanical design, fabrication, and the systems-related impact of installation and integration of the units in the prestressed concrete reactor vessel. The impact of future technology developments, such as the utilization of nonmetallic materials and advanced heat exchanger surface geometries and methods of construction, is also discussed

  10. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  11. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  12. High-temperature gas-cooled reactor (HTGR): long term program plan

    International Nuclear Information System (INIS)

    1980-01-01

    The FY 1980 effort was to investigate four technology options identified by program participants as potentially viable candidates for near-term demonstration: the Gas Turbine system (HTGR-GT), reflecting its perceived compatibility with the dry-cooling market, two systems addressing the process heat market, the Reforming (HTGR-R) and Steam Cycle (HTGR-SC) systems, and a more developmental reactor system, The Nuclear Heat Source Demonstration Reactor (NHSDR), which was to serve as a basis for both the HTGR-GT and HTGR-R systems as well as the further potential for developing advanced applications such as steam-coal gasification and water splitting

  13. Management of graphite material: a key issue for High Temperature Gas Reactor system (HTGR)

    International Nuclear Information System (INIS)

    Bourdeloie, C.; Marimbeau, P.; Robin, J.C.; Cellier, F.

    2005-01-01

    Graphite material is used in nuclear High Temperature Gas-cooled Reactors (HTGR, Fig.1) as moderator, thermal absorber and also as structural components of the core (Fig.2). This type of reactor was selected by the Generation IV forum as a potential high temperature provider for supplying hydrogen production plants and is under development in France in the frame of the AREVA ANTARES program. In order to select graphite grades to be used in these future reactors, the requirements for mechanical, thermal, physical-chemical properties must match the internal environment of the nuclear core, especially with regard to irradiation effect. Another important aspect that must be addressed early in design is the waste issue. Indeed, it is necessary to reduce the amount of nuclear waste produced by operation of the reactor during its lifetime. Preliminary assessment of the nuclear waste output for an ANTARES type 280 MWe HTGR over 60 year-lifetime gives an estimated 6000 m 3 of activated graphite waste. Thus, reducing the graphite waste production is an important issue for any HTGR system. First, this paper presents a preliminary inventory of graphite waste fluxes coming from a HTGR, in mass and volume, with magnitudes of radiological activities based on activation calculations of graphite during its stay in the core of the reactor. Normalized data corresponding to an output of 1 GWe.year electricity allows comparison of the waste production with other nuclear reactor systems. Second, possible routes to manage irradiated graphite waste are addressed in both the context of French nuclear waste management rules and by comparison to other national regulations. Routes for graphite waste disposal studied in different countries (concerning existing irradiated graphite waste) will be discussed with regard to new issues of large graphite waste from HTGR. Alternative or complementary solutions aiming at lowering volume of graphite waste to be managed will be presented. For example

  14. Studies of iodine adsorption and desorption on HTGR coolant circuit materials

    International Nuclear Information System (INIS)

    Osborne, M.F.; Compere, E.L.; de Nordwall, H.J.

    1976-04-01

    Safety studies of the HTGR system indicate that radioactive iodine, released from the fuel to the helium coolant, may pose a problem of concern if no attenuation of the amount of iodine released occurs in the coolant circuit. Since information on iodine behavior in this system was incomplete, iodine adsorption on HTGR materials was studied in vacuum as a function of iodine pressure and of adsorber temperature. Iodine coverages on Fe 3 O 4 and Cr 2 O 3 approached maxima of about 2 x 10 14 and 1 x 10 14 atoms/cm 2 , respectively, whereas the iodine coverage on graphite under similar conditions was found to be less by a factor of about 100. Iodine desorption from the same materials into vacuum or flowing helium was investigated, on a limited basis, as a function of iodine coverage, of adsorber temperature, and of dry vs wet helium. The rate of vacuum desorption from Fe 3 O 4 was related to the spectrum of energies of the adsorption sites. A small amount of water vapor in the helium enhanced desorption from iron powder but appeared to have less effect on desorption from the metal oxides

  15. FY1983 HTGR summary level program plan

    International Nuclear Information System (INIS)

    1983-01-01

    The major focus and priority of the FY1983 HTGR Program is the development of the HTGR-SC/C Lead Project through one of the candidate lead utilities. Accordingly, high priority will be given to work described in WBS 04 for site and user specific studies toward the development of the Lead Project. Asessment of advanced HTGR systems will continue during FY1983 in accordance with the High Temperature Process Heat (HTPH) Concept Evaluation Plan. Within the context of that plan, the assessment of the monolithic HTPH concepts has been essentially completed in FY1982 and FY1983 activities and will be limited to documentation only. the major advanced HTGR systems efforts in FY1983 will be focused on the further definition of the Modular Reactor Systems concepts in both the reforming (MRS-R) and Steam Cycle/Cogeneration 9MRS-SC/C) configurations in WBS 41. The effort will concentrate upon key technical issues and trade studies oriented to reduction in expected cost and schedule duration. With regard to the latter, the most significant will be trade study addressing the degree of modularization of reactor plant structures. particular attention will be given to the confinement building which currently defines the critical path for construction

  16. High-temperature process heat applications with an HTGR

    International Nuclear Information System (INIS)

    Quade, R.N.; Vrable, D.L.

    1980-04-01

    An 842-MW(t) HTGR-process heat (HTGR-PH) design and several synfuels and energy transport processes to which it could be coupled are described. As in other HTGR designs, the HTGR-PH has its entire primary coolant system contained in a prestressed concrete reactor vessel (PCRV) which provides the necessary biological shielding and pressure containment. The high-temperature nuclear thermal energy is transported to the externally located process plant by a secondary helium transport loop. With a capability to produce hot helium in the secondary loop at 800 0 C (1472 0 F) with current designs and 900 0 C (1652 0 F) with advanced designs, a large number of process heat applications are potentially available. Studies have been performed for coal liquefaction and gasification using nuclear heat

  17. High-temperature gas reactor (HTGR) market assessment, synthetic fuels analysis

    International Nuclear Information System (INIS)

    1980-08-01

    This study is an update of assessments made in TRW's October 1979 assessment of overall high-temperature gas-cooled reactor (HTGR) markets in the future synfuels industry (1985 to 2020). Three additional synfuels processes were assessed. Revised synfuel production forecasts were used. General environmental impacts were assessed. Additional market barriers, such as labor and materials, were researched. Market share estimates were used to consider the percent of markets applicable to the reference HTGR size plant. Eleven HTGR plants under nominal conditions and two under pessimistic assumptions are estimated for selection by 2020. No new HTGR markets were identified in the three additional synfuels processes studied. This reduction in TRW's earlier estimate is a result of later availability of HTGR's (commercial operation in 2008) and delayed build up in the total synfuels estimated markets. Also, a latest date for HTGR capture of a synfuels market could not be established because total markets continue to grow through 2020. If the nominal HTGR synfuels market is realized, just under one million tons of sulfur dioxide effluents and just over one million tons of nitrous oxide effluents will be avoided by 2020. Major barriers to a large synfuels industry discussed in this study include labor, materials, financing, siting, and licensing. Use of the HTGR intensifies these barriers

  18. Status of the United States National HTGR program

    International Nuclear Information System (INIS)

    1981-01-01

    The HTGR continues to appear as an increasingly attractive option for application to US energy markets. To examine that potential, a program is being pursued to examine the various HTGR applications and to provide information to decision-makers in both the public and private sectors. To date, this effort has identified a substantial technical and economic potential for Steam Cycle/Cogeneration applications. Advanced HTGR systems are currently being evaluated to determine their appropriate role and timing. The encouraging results which have been obtained lead to heightened anticipation that a role for the HTGR will be found in the US energy market and that an initiative culminating in a lead project will be evolved in the forseeable future. The US Program can continue to benefit from international cooperative activities to develop the needed technologies. Expansion of these cooperative activities will be actively pursued

  19. HTGR market assessment: interim report

    International Nuclear Information System (INIS)

    1979-09-01

    The purpose of this Assessment is to establish the utility perspective on the market potential of the HTGR. The majority of issues and conclusions in this report are applicable to both the HTGR-Gas Turbine (GT) and the HTGR-Steam Cycle (SC). This phase of the HTGR Market Assessment used the HTGR-GT as the reference design as it is the present focus of the US HTGR Program. A brief system description of the HTGR-GT is included in Appendix A. This initial report provides the proposed structure for conducting the HTGR Market Assessment plus preliminary analyses to establish the magnitude and nature of key factors that affect the HTGR market. The HTGR market factors and their relationship to the present HTGR Program are discussed. This report discusses two of these factors in depth: economics and water availability. The water availability situation in the US and its impact on the potential HTGR market are described. The approach for applying the HTGR within a framework of utility systems analyses is presented

  20. Effects of the HTGR-gas turbine on national reactor strategies

    International Nuclear Information System (INIS)

    Ligon, D.M.; Brogli, R.H.

    1979-11-01

    A specific role for the HTGR in a national energy strategy is examined. The issue is addressed in two ways. First, the role of the HTGR-GT Binary cycle plant is examined in a national energy strategy based on symbiosis between fast breeder and advanced converter reactors utilizing the thorium U233 fuel cycle. Second, the advantages of the HTGR-GT dry-cooled plant operating in arid regions is examined and compared with a dry-cooled LWR. An event tree analysis of potential benefits is applied

  1. Summary of foreign HTGR programs

    International Nuclear Information System (INIS)

    1980-06-01

    This report contains pertinent information on the status, objectives, budgets, major projects and facilities, as well as user, industrial and governmental organizations involved in major foreign gas-cooled thermal reactor programs. This is the second issue of this document (the first was issued in March 1979). The format has been revised to consolidate material according to country. These sections are followed by the foreign HTGR program index which serves as a quick reference to some of the many acronyms associated with the foreign HTGR programs

  2. HTGR generic technology program. Semiannual report ending March 31, 1980

    International Nuclear Information System (INIS)

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants

  3. HTGR R and D programs

    International Nuclear Information System (INIS)

    Neylan, A.J.; Brisbois, J.

    1979-01-01

    A significant R and D program (including in certain cases full-scale prototype tests) formed the basis for the design and key elements in the foregoing projects and is continuing to provide a basis for generic design development. HTGR R and D programs are both privately and government sponsored. This paper provides an overview of the background, current status and outstanding design issues/problems remaining in the area of NSS Plant, Materials and Fuel. The specific objectives and scope of all recently completed, ongoing and planned major HTGR R and D programs are presented

  4. HTGR technology development in Japan advances so much. Leading world technology to global standards

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Hino, Ryutaro; Kunitomi, Kazuhiko; Onuki, Kaoru; Inagaki, Yoshiyuki; Takeda, Tetsuaki; Sawa, Kazuhiro

    2007-01-01

    The JAEA has conducted research and development of HTGR for hydrogen production since 1969 and attained the operation of 950degC at reactor coolant outlet of the HTTR in 2004. This article describes present status and future plan of R and D in the area of HTGR technology and high temperature heat utilization and also introduces the design of the commercial HTGR cogeneration system based on R and D results leading to world standards. (T. Tanaka)

  5. Computer simulation of radiation damage in HTGR elements and structural materials

    International Nuclear Information System (INIS)

    Gann, V.V.; Gurin, V.A.; Konotop, Yu.F.; Shilyaev, B.A.; Yamnitskij, V.A.

    1980-01-01

    The problem of mathematical simulation of radiation damages in material and items of HTGR is considered. A system-program complex IMITATOR, intended for imitation of neutron damages by means of charged particle beams, is used. Account of material composite structure and certain geometry of items permits to calculate fields of primary radiation damages and introductions of reaction products in composite fuel elements, microfuel elements, their shells, composite absorbing elements on the base of boron carbide, structural steels and alloys. A good correspondence of calculation and experimental burn-out of absorbing elements is obtained, application of absorbing element as medium for imitation experiments is grounded [ru

  6. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1979

    International Nuclear Information System (INIS)

    1979-11-01

    The technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-79 are reported. The report covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop an MEU fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant

  7. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant.

  8. HTGR Generic Technology Program. Semiannual report for the period ending March 31, 1979

    International Nuclear Information System (INIS)

    1979-06-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-79. It covers a period when the major design direction of the National HTGR Program is in the process of changing from the HTGR-SC emphasis to an HTGR-GT emphasis in the near term. The HTGR Generic Technology Program activities have been redirected to ensure that the tasks covered are supportive of this changing emphasis in HTGR applications. The activities include the need to develop a medium enriched uranium (MEU) fuel, and the need to qualify materials and components for the higher temperatures of the gas turbine plant

  9. ORNL's NRC-sponsored HTGR safety and licensing analysis activities for Fort St. Vrain and advanced reactors

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Harrington, R.M.

    1985-01-01

    The ORNL safety analysis program for the HTGR was established in 1974 to provide technical assistance to the USNRC on licensing questions for both Fort St. Vrain and advanced plant concepts. The emphasis has been on development of major component and system dynamic simulation codes, and use of these codes to analyze specific licensing-related scenarios. The program has also emphasized code verification, using Fort St. Vrain data where applicable, and comparing results with industry-generated codes. By the use of model and parameter adjustment routines, safety-significant uncertainties have been identified. A major part of the analysis work has been done for the Fort St. Vrain HTGR, and has included analyses of FSAR accident scenario re-evaluations, the core block oscillation problem, core support thermal stress questions, technical specification upgrade review, and TMI action plan applicability studies. The large, 2240-MW(t) cogeneration lead plant design was analyzed in a multi-laboratory cooperative effort to estimate fission product source terms from postulated severe accidents

  10. Approach on a global HTGR R and D network

    International Nuclear Information System (INIS)

    Lensa, W. von

    1997-01-01

    The present situation of nuclear power in general and of the innovative nuclear reactor systems in particular requires more comprehensive, coordinated R and D efforts on a broad international level to respond to today's requirements with respect to public and economic acceptance as well as to globalization trends and global environmental problems. HTGR technology development has already reached a high degree of maturity that will be complemented by the operation of the two new test reactors in Japan and China, representing technological milestones for the demonstration of HTGR safety characteristics and Nuclear Process Heat generation capabilities. It is proposed by the IAEA 'International Working Group on Gas-Cooled Reactors' to establish a 'Global HTGR R and D Network' on basic HTGR technology for the stable, long-term advancement of the specific HTGR features and as a basis for the future market introduction of this innovative reactor system. The background and the motivation for this approach are illustrated, as well as first proposals on the main objectives, the structure and the further procedures for the implementation of such a multinational working sharing R and D network. Modern telecooperation methods are foreseen as an interactive tool for effective communication and collaboration on a global scale. (author)

  11. Construction of the HTTR and its testing program for advanced HTGR development

    International Nuclear Information System (INIS)

    Tanaka, T.; Baba, O.; Shiozawa, S.; Okubo, M.; Kunitomi, K.

    1996-01-01

    Concerning about global warming due to emission of greenhouse effect gas like CO 2 , it is essentially important to make efforts to obtain more reliable and stable energy supply by extended use of nuclear energy including high temperature heat from nuclear reactors, because it can supply a large amount of energy and its plants emit only little amount of CO 2 during their lifetime. Hence, efforts are to be continuously devoted to establish and upgrade technologies of High Temperature Gas-cooled Reactor (HTGR) which can supply high-temperature heat with high thermal efficiency as well as high heat-utilizing efficiency. It is also expected that making basic researches at high temperature using HTGR will contribute to innovative basic research in future. Then, the construction of High Temperature engineering Test Reactor (HTTR), which is an HTGR with a maximum helium coolant temperature of 950 deg. C at the reactor outlet, was decided by the Japanese Atomic Energy Commission (JAEC) in 1987 and is now under way by the Japan Atomic Energy Research Institute (JAERI). 2 refs, 2 figs, 1 tab., 2 photos

  12. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    International Nuclear Information System (INIS)

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants

  13. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Matt [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States); Hamilton, Chris [Ultra Safe Nuclear Corporation, Los Alamos, NM (United States)

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  14. HTGR Cost Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  15. Cesium transport data for HTGR systems

    International Nuclear Information System (INIS)

    Myers, B.F.; Bell, W.E.

    1979-09-01

    Cesium transport data on the release of cesium from HTGR fuel elements are reviewed and discussed. The data available through 1976 are treated. Equations, parameters, and associated variances describing the data are presented. The equations and parameters are in forms suitable for use in computer codes used to calculate the release of metallic fission products from HTGR fuel elements into the primary circuit. The data cover the following processes: (1) diffusion of cesium in fuel kernels and pyrocarbon, (2) sorption of cesium on fuel rod matrix material and on graphite, and (3) migration of cesium in graphite. The data are being confirmed and extended through work in progress

  16. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  17. HTGR fuel cycle

    International Nuclear Information System (INIS)

    1987-08-01

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL) [de

  18. Personnel radiation exposure in HTGR plants

    International Nuclear Information System (INIS)

    Su, S.; Engholm, B.A.

    1981-01-01

    Occupational radiation exposures in high-temperature gas-cooled reactor (HTGR) plants were assessed. The expected rate of dose accumulations for a large HTGR steam cycle unit is 0.07 man-rem/MW(e)y, while the design basis is 0.17 man-rem/MW(e)y. The comparable figure for actual light water reactor experience is 1.3 man-rem/MW(e)y. The favorable HTGR occupational exposure is supported by results from the Peach Bottom Unit No. 1 HTGR and Fort St. Vrain HTGR plants and by operating experience at British gas-cooled reactor stations

  19. Promising materials for HTGR high temperature heat exchangers

    International Nuclear Information System (INIS)

    Kuznetsov, E.V.; Tokareva, T.B.; Ryabchenkov, A.V.; Novichkova, O.V.; Starostin, Yu.D.

    1989-01-01

    The service conditions for high-temperature heat-exchangers with helium coolant of HTGRs and requirements imposed on materials for their production are discussed. The choice of nickel-base alloys with solid-solution hardening for long-term service at high temperatures is grounded. Results of study on properties and structure of types Ni-25Cr-5W-5Mo and Ni-20Cr-20W alloy in the temperature range of 900 deg. - 1,000 deg. C are given. The ageing of Ni-25Cr-5W-5Mo alloy at 900 deg. - 950 deg. C results in decreased corrosion-mechanical properties and is caused by the change of structural metal stability. Alloy with 20% tungsten retains a high stability of both structure and properties after prolonged exposure in helium at above temperatures. The alloy has also increased resistance to delayed fracture and low-cycle fatigue at high temperatures. The developed alloy of type Ni-20Cr-20W with microalloying is recommended for production of tubes for HTGR high-temperature heat-exchangers with helium coolant. (author). 3 refs, 8 figs

  20. Development of processes and equipment for the refabrication of HTGR fuels

    International Nuclear Information System (INIS)

    Sease, J.D.; Lotts, A.L.

    1976-06-01

    Refabrication is in the step in the HTGR thorium fuel cycle that begins with a nitrate solution containing 238 U and culminates in the assembly of this material into fuel elements for use in an HTGR. Refabrication of HTGR fuel is essentially a manufacturing operation and consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and SiC, preparation of fuel rods, and assembly of fuel rods in fuel elements. All the equipment for refabrication of 238 U-containing fuel must be designed for completely remote operation and maintenance in hot cell facilities. This paper describes the status of processes and equipment development for the remote refabrication of HTGR fuels. The feasibility of HTGR refabrication processes has been proven by laboratory development. Engineering-scale development is now being performed on a unit basis on the majority of the major equipment items. Engineering-scale equipment described includes full-scale resin loading equipment, a 5-in.-dia (0.13-m) microsphere coating furnace, a fuel rod forming machine, and a cure-in-place furnace

  1. HTGR Application Economic Model Users' Manual

    International Nuclear Information System (INIS)

    Gandrik, A.M.

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  2. Thermal stress analysis of HTGR fuel and control rod fuel blocks in the HTGR in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new approach that utilizes the equivalent solid plate method has been applied to the thermal stress analysis of HTGR fuel and control rod fuel blocks. Cases were considered where these blocks, loaded with reprocessed HTGR fuel pellets, were being cured at temperatures up to 1800 0 C. A two-dimensional segment of a fuel block cross section including fuel, coolant holes, and graphite matrix was analyzed using the ORNL HEATING3 heat transfer code to determine the temperature-dependent effective thermal conductivity for the perforated region of the block. Using this equivalent conductivity to calculate the temperature distributions through different cross sections of the blocks, two-dimensional thermal-stress analyses were performed through application of the equivalent solid plate method. In this approach, the perforated material is replaced by solid homogeneous material of the same external dimensions but whose material properties have been modified to account for the perforations

  3. Utilization of HTGR on active carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukitaka, E-mail: yukitaka@nr.titech.ac.jp

    2014-05-01

    A new energy transformation concept based on carbon recycling, called as active carbon recycling energy system, ACRES, was proposed for a zero carbon dioxide emission process. The ACRES is driven availably by carbon dioxide free primary energy. High temperature gas cooled reactor (HTGR) is a candidate of the energy sources for ACRES. A smart ironmaking system with ACRES (iACRES) is one of application examples. The contribution of HTGR on iACRES was discussed thermodynamically in this study. A carbon material is re-used cyclically as energy carrier media in ACRES. Carbon monoxide (CO) had higher energy densities than hydrogen and was compatible with conventional process. Thus, CO was suitable recycling media for ACRES. Efficient regeneration of CO was a key technology for ACRES. A combined system of hydrogen production by water electrolysis and CO{sub 2} hydrogen reduction was candidate. CO{sub 2} direct electrolysis was also one of the candidates. HTGR was appropriate heat source for both water and CO{sub 2} electrolysises, and CO{sub 2} hydrogen reduction. Thermodynamic energy balances were calculated for both systems with HTGR for an ironmaking system. The direct system showed relatively advantage to the combined system in the stand point of enthalpy efficiency and simplicity of the process. One or two plants of HTGR are corresponding with ACRES system for one unit of conventional blast furnace. The proposed ACRES system with HTGR was expected to form the basis of a new energy industrial process that had low CO{sub 2} emission.

  4. Peach Bottom HTGR decommissioning and component removal

    International Nuclear Information System (INIS)

    Kohler, E.J.; Steward, K.P.; Iacono, J.V.

    1977-07-01

    The prime objective of the Peach Bottom End-of-Life Program was to validate specific HTGR design codes and predictions by comparison of actual and predicted physics, thermal, fission product, and materials behavior in Peach Bottom. Three consecutive phases of the program provide input to the HTGR design methods verifications: (1) Nondestructive fuel and circuit gamma scanning; (2) removal of steam generator and primary circuit components; and (3) Laboratory examinations of removed components. Component removal site work commenced with establishment of restricted access areas and installation of controlled atmosphere tents to retain relative humidity at <30%. A mock-up room was established to test and develop the tooling and to train operators under simulated working conditions. Primary circuit ducting samples were removed by trepanning, and steam generator access was achieved by a combination of arc gouging and grinding. Tubing samples were removed using internal cutters and external grinding. Throughout the component removal phase, strict health physics, safety, and quality assurance programs were implemented. A total of 148 samples of primary circuit ducting and steam generator tubing were removed with no significant health physics or safety incidents. Additionally, component removal served to provide access fordetermination of cesium plateout distribution by gamma scanning inside the ducts and for macroexamination of the steam generator from both the water and helium sides. Evaluations are continuing and indicate excellent performance of the steam generator and other materials, together with close correlation of observed and predicted fission product plateout distributions. It is concluded that such a program of end-of-life research, when appropriately coordinated with decommissioning activities, can significantly advance nuclear plant and fuel technology development

  5. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  6. The commercial application prospect of HTGR plant in China

    International Nuclear Information System (INIS)

    Wang Yingsu

    2008-01-01

    With an introduction of the features and current situation of the HTGR power generation as well as the development of HTGR demonstration project in China, the article analyzes the necessity of developing HTGR power plants. The article proposes to exercise the advantages of HTGR to full extent so as to further develop HTGR power plants. It is believed that HTGR is of great commercial promotion value under appropriate circumstances. (authors)

  7. Public acceptance of HTGR technology - HTR2008-58218

    International Nuclear Information System (INIS)

    Hannink, R.; Kuhr, R.; Morris, T.

    2008-01-01

    Nuclear energy projects continue to evoke strong emotional responses from the general public throughout the world. High Temperature Gas-Cooled Reactor (HTGR) technology offers improved safety and performance characteristics that should enhance public acceptance but is burdened with demonstrating a different set of safety principles. This paper summarizes key issues impacting public acceptance and discusses the importance of openly engaging the public in the early stages of new HTGR projects. The public gets information about new technologies through schools and universities, news and entertainment media, the internet, and other forms of information exchange. Development of open public forums, access to information in understandable formats, participation of universities in preparing and distributing educational materials, and other measures will be needed to support widespread public confidence in the improved safety and performance characteristics of HTGR technology. This confidence will become more important as real projects evolve and participants from outside the nuclear industry begin to evaluate the real and perceived risks, including potential impacts on public relations, branding, and shareholder value when projects are announced. Public acceptance and support will rely on an informed understanding of the issues and benefits associated with HTGR technology. Major issues of public concern include nuclear safety, avoidance of greenhouse gas emissions, depletion of natural gas resources, energy security, nuclear waste management, local employment and economic development, energy prices, and nuclear proliferation. Universities, the media, private industry, government entities, and other organizations will all have roles that impact public acceptance, which will likely play a critical role in the future markets, siting, and permitting of HTGR projects. (authors)

  8. USNRC HTGR safety research program overview

    International Nuclear Information System (INIS)

    Foulds, R.B.

    1982-01-01

    An overview is given of current activities and planned research efforts of the US Nuclear Regulatory Commission (NRC) HTGR Safety Program. On-going research at Brookhaven National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, and Pacific Northwest Laboratory are outlined. Tables include: HTGR Safety Issues, Program Tasks, HTGR Computer Code Library, and Milestones for Long Range Research Plan

  9. HTGR analytical methods and design verification

    International Nuclear Information System (INIS)

    Neylan, A.J.; Northup, T.E.

    1982-05-01

    Analytical methods for the high-temperature gas-cooled reactor (HTGR) include development, update, verification, documentation, and maintenance of all computer codes for HTGR design and analysis. This paper presents selected nuclear, structural mechanics, seismic, and systems analytical methods related to the HTGR core. This paper also reviews design verification tests in the reactor core, reactor internals, steam generator, and thermal barrier

  10. Status of CHAP: composite HTGR analysis program

    International Nuclear Information System (INIS)

    Secker, P.A.; Gilbert, J.S.

    1975-12-01

    Development of an HTGR accident simulation program is in progress for the prediction of the overall HTGR plant transient response to various initiating events. The status of the digital computer program named CHAP (Composite HTGR Analysis Program) as of June 30, 1975, is given. The philosophy, structure, and capabilities of the CHAP code are discussed. Mathematical descriptions are given for those HTGR components that have been modeled. Component model validation and evaluation using auxiliary analysis codes are also discussed

  11. Status of international HTGR development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial sector participation. The programs have produced four electricity-producing prototype/demonstration reactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these ractors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  12. HTGR Application Economic Model Users' Manual

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  13. Selection of LEU/Th reference fuel for the HTGR-SC/C lead plant

    International Nuclear Information System (INIS)

    Turner, R.F.; Neylan, A.J.; Baxter, A.M.; McEachern, D.W.; Stansfield, O.M.

    1983-05-01

    This paper describes the reference fuel materials for the high-temperature gas-cooled reactor (HTGR) plant for steam cycle/cogeneration (SC/C). A development and testing program carried out in 1978 through 1982 led to the selection of coated fuel particles of uranium-oxycarbide (UCO) for fissile materials and thorium oxide (ThO 2 ) for fertiel materials. Low-enriched uranium (LEU) is the enrichment basis for the HTGR-SC/C application. While UC 2 and UO 2 would also meet the essential criteria for fissile fuel, the UCO, alternative was selected on the basis of improved performance, economics, and process conditions

  14. HTGR fuel element structural design consideration

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1987-01-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabilistic stress analysis techniques coupled with probabilistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistant with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the U.S.A. is discussed in the context of stress analysis uncertainty and structural criteria development. (author)

  15. HTGR fuel element structural design considerations

    International Nuclear Information System (INIS)

    Alloway, R.; Gorholt, W.; Ho, F.; Vollman, R.; Yu, H.

    1986-09-01

    The structural design of the large HTGR prismatic core fuel elements involve the interaction of four engineering disciplines: nuclear physics, thermo-hydraulics, structural and material science. Fuel element stress analysis techniques and the development of structural criteria are discussed in the context of an overview of the entire design process. The core of the proposed 2240 MW(t) HTGR is described as an example where the design process was used. Probabalistic stress analysis techniques coupled with probabalistic risk analysis (PRA) to develop structural criteria to account for uncertainty are described. The PRA provides a means for ensuring that the proposed structural criteria are consistent with plant investment and safety risk goals. The evaluation of cracked fuel elements removed from the Fort St. Vrain reactor in the USA is discussed in the context of stress analysis uncertainty and structural criteria development

  16. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  17. HTGR safety research concerns at NRC

    International Nuclear Information System (INIS)

    Minogue, R.B.

    1982-01-01

    A general discussion of HTGR technical and safety-related problems is given. The broad areas of current research programs specific to the Fort St. Vrain reactor and applicable to HTGR technology are summarized

  18. Effects of HTGR helium on the high cycle fatigue of structural materials

    International Nuclear Information System (INIS)

    Soo, P.; Sabatini, R.L.; Gerlach, L.

    1982-01-01

    High cycle fatigue tests have been conducted on Incoloy 800H and Hastelloy X in air and in HTGR helium environments containing low and high levels of moisture. For the helium environments, a higher mositure level usually gives a lower fatigue strength. For air, however, the strength is usually much lower than those for helium. For long test times at higher test temperatures, the fatigue strengths for Incoloy 800H often show a large decrease, and the fatigue limits are much lower than those anticipated from low cycle tests. Optical and scanning electron microscope observations were made to correlate fatigue life with surface and bulk microstructural changes in the material during test. Oxide scale cracking and spallation, surface recrystallization and intergranular attack appear to contribute to losses in fatigue strength

  19. Development of structural design procedure of plate-fin heat exchanger for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Mizokami, Yorikata, E-mail: yorikata_mizokami@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-Chome, Hyogo-ku, Kobe 652-8585 (Japan); Igari, Toshihide [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Kawashima, Fumiko [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan); Sakakibara, Noriyuki [Mitsubishi Heavy Industries, Ltd., 5-717-1, Fukahori-machi, Nagasaki 851-0392 (Japan); Tanihira, Masanori [Mitsubishi Heavy Industries, Ltd., 16-5, Konan 2-Chome, Minato-ku, Tokyo 108-8215 (Japan); Yuhara, Tetsuo [The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hiroe, Tetsuyuki [Kumamoto University, 39-1 Kurokami 2-Chome, Kumamoto 860-8555 (Japan)

    2013-02-15

    Highlights: ► We propose high temperature structural design procedure for plate-fin heat exchanger ► Allowable stresses for brazed structures will be newly discussed ► Validity of design procedure is confirmed by carrying out partial model tests ► Proposed design procedure is applied to heat exchangers for HTGR. -- Abstract: Highly efficient plate-fin heat exchanger for application to HTGR has been focused on recently. Since this heat exchanger is fabricated by brazing a lot of plates and fins, a new procedure for structural design of brazed structures in the HTGR temperature region up to 950 °C is required. Firstly in this paper influences on material strength due to both thermal aging during brazing process and helium gas environment were experimentally examined, and failure mode and failure limit of brazed side-bar structures were experimentally clarified. Secondly allowable stresses for aging materials and brazed structures were newly determined on the basis of the experimental results. For the purpose of validating the structural design procedure including homogenization FEM modeling, a pressure burst test and a thermal fatigue test of partial model for plate-fin heat exchanger were carried out. Finally, results of reference design of plate-fin heat exchangers of recuperator and intermediate heat exchanger for HTGR plant were evaluated by the proposed design criteria.

  20. Use of non-proliferation fuel cycles in the HTGR

    International Nuclear Information System (INIS)

    Baxter, A.M.; Merrill, M.H.; Dahlberg, R.C.

    1978-10-01

    All high-temperature gas-cooled reactors (HTGRs) built or designed to date utilize a uranium-thorium fuel cycle (HEU/Th) in which fully-enriched uranium (93% U-235) is the initial fuel and thorium is the fertile material. The U-233 produced from the thorium is recycled in subsequent loadings to reduce U-235 makeup requirements. However, the recent interest in proliferation-proof fuel cycles for fission reactors has prompted a review and evaluation of possible alternate cycles in the HTGR. This report discusses these alternate fuel cycles, defines those considered usable in an HTGR core, summarizes their advantages and disadvantages, and briefly describes the effect on core design of the most important cycles. Examples from design studies are also given. These studies show that the flexibility afforded by the HTGR coated-particle fuel design allows a variety of alternative cycles, each having special advantages and attractions under different circumstances. Moreover, these alternate cycles can all use the same fuel block, core layout, control scheme, and basic fuel zoning concept

  1. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    International Nuclear Information System (INIS)

    Piet, Steven J.; Bays, Samuel E.; Soelberg, Nick

    2010-01-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR 'full recycle' service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the 'pebble bed' approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R and D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in 'limited separation' or 'minimum fuel treatment' separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  2. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  3. HTGR type reactors for the heat market

    International Nuclear Information System (INIS)

    Oesterwind, D.

    1981-01-01

    Information about the standard of development of the HTGR type reactor are followed by an assessment of its utilization on the heat market. The utilization of HTGR type reactors is considered suitable for the production of synthesis gas, district heat, and industrial process heat. A comparison with a pit coal power station shows the economy of the HTGR. Finally, some aspects of introducing new technologies into the market, i.e. small plants in particular are investigated. (UA) [de

  4. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  5. HTGR safety philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Joksimovic, V.; Fisher, C. R. [General Atomic Co., San Diego, CA (USA)

    1981-01-15

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity.

  6. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joksimovic, V.; Fisher, C.R.

    1981-01-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the U.S. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity. (author)

  7. HTGR safety philosophy

    International Nuclear Information System (INIS)

    Joskimovic, V.; Fisher, C.R.

    1980-08-01

    The accident at the Three Mile Island has focused public attention on reactor safety. Many public figures advocate a safer method of generating nuclear electricity for the second nuclear era in the US. The paper discusses the safety philosophy of a concept deemed suitable for this second nuclear era. The HTGR, in the course of its evolution, included safety as a significant determinant in design philosophy. This is particularly evident in the design features which provide inherent safety. Inherent features cause releases from a wide spectrum of accident conditions to be low. Engineered features supplement inherent features. The significance of HTGR safety features is quantified and order-of-magnitude type of comparisons are made with alternative ways of generating electricity

  8. 1170-MW(t) HTGR-PS/C plant application study report: SRC-II process application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    The solvent refined coal (SRC-II) process is an advanced process being developed by Gulf Mineral Resources Ltd. (a Gulf Oil Corporation subsidiary) to produce a clean, non-polluting liquid fuel from high-sulfur bituminous coals. The SRC-II commercial plant will process about 24,300 tonnes (26,800 tons) of feed coal per stream day, producing primarily fuel oil plus secondary fuel gases. This summary report describes the integration of a high-temperature gas-cooled reactor operating in a process steam/cogeneration mode (HTGR-PS/C) to provide the energy requirements for the SRC-II process. The HTGR-PS/C plant was developed by General Atomic Company (GA) specifically for industries which require energy in the form of both steam and electricity. General Atomic has developed an 1170-MW(t) HTGR-PS/C design which is particularly well suited to industrial applications and is expected to have excellent cost benefits over other sources of energy

  9. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Materials for heat exchangers in the high temperature gas-cooled reactor (HTGR) are subjected to cyclic loading, extending the necessity to design against fatigue failure into the temperature region where creep processes become significant. Therefore, the fatigue life must be considered in terms of creep-fatigue interaction. In addition, since HTGR heat exchangers are subjected to holds at constant strain levels or constant stress levels in high-temperature environments, the cyclic life is substantially reduced. Of major concern in the design and analysis of HTGR heat exchangers is the accounting for the interaction of creep and fatigue. The accounting is done in conformance to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Case N-47, which allows the use of the linear damage criterion for interaction of creep and fatigue. This method separates the damage incurred in the material into two parts: one due to fatigue and one due to creep. The summation of the creep-fatigue damage must be less than 1.0. Recent material test data have indicated that the assumption of creep and fatigue damage equals unity at failure may not always be valid for materials like Alloy 800H, which is used in the higher temperature sections of HTGR steam generators. Therefore, a more conservative creep-fatigue damage relationship was postulated for Alloy 800H. This more conservative bilinear damage relationship consists of a design locus drawn from D F =1.0, D C =0 to D F =0.1, D C =0.1 to D F =0, D C =1.0. D F is the fatigue damage and D C is the creep damage. A more conservative damage relationship for 2-1/4 Cr-1 Mo material consisted of including factors that degrade the fatigue curves. These revised relationships were used in a structural evaluation of the HTGR steam cycle/cogeneration (SC/C) steam generator design. The HTGR-SC/C steam generator, a once-through type, is comprised of an economizer-evaporator-superheater (ESS) helical bundle of 2-1/4 Cr-1

  10. Bibliographical survey of heat exchangers for nuclear power plants and problems of HTGR

    International Nuclear Information System (INIS)

    Yamao, Hiroyuki; Okamoto, Yoshizo; Sanokawa, Konomo

    1977-04-01

    The problems in development of heat exchangers for nuclear reactors have been examined in literature survey through Annual Index Subjects of NSA (Nuclear Science Abstracts) for the past ten years. R and D on heat exchangers for LMFBR, HTGR, LWR and HWR are on the increase. In the case of HTGRs, R and D on heat resisting materials including the corrosion and on hydrogen permeation of heat exchanger walls in high temperature pressure helium environment are important. Future R and D subjects for HTGR heat exchangers in showing the high temperature endurance are presented. (auth.)

  11. HTGR Fuel Technology Program. Semiannual report for the period ending March 31, 1981

    International Nuclear Information System (INIS)

    1981-05-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at General Atomic during the first half of FY-81. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was initiated during this period was the preparation of input data for a long-range technology program plan

  12. HTGR Fuel-Technology Program. Semiannual report for the period ending September 30, 1982

    International Nuclear Information System (INIS)

    1982-11-01

    This document reports the technical accomplishments on the HTGR Fuel Technology Program at GA Technologies Inc. during the second half of FY-1982. The activities include the fuel process, fuel materials, fuel cycle, fission product transport, and core component verification testing tasks necessary to support the design and development of a steam cycle/cogeneration (SC/C) version of the HTGR with a follow-on reformer (R) version. An important effort which was completed during this period was the preparation of input data for a long-range technology program plan

  13. National HTGR safety program

    International Nuclear Information System (INIS)

    Davis, D.E.; Kelley, A.P. Jr.

    1982-01-01

    This paper presents an overview of the National HTGR Program in the US with emphasis on the safety and licensing strategy being pursued. This strategy centers upon the development of an integrated approach to organizing and classifying the functions needed to produce safe and economical nuclear power production. At the highest level, four plant goals are defined - Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness. The HTGR features which support the attainment of each goal are described and finally a brief summary is provided of the current status of the principal safety development program supporting the validation of the four plant goals

  14. HTGR Industrial Application Functional and Operational Requirements

    International Nuclear Information System (INIS)

    Demick, L.E.

    2010-01-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  15. HTGR development in the United States of America

    International Nuclear Information System (INIS)

    Fox, J.E.

    1991-01-01

    The status of high temperature gas-cooled reactors (HTGR) development in the United States of America is described, including the organizational structure for the development support, HTGR development programme, and plans for future activities in the field

  16. Proceedings of the 1st JAEA/KAERI information exchange meeting on HTGR and nuclear hydrogen technology

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sakaba, Nariaki; Nishihara, Tetsuo; Yan, Xing L.; Hino, Ryutaro

    2007-03-01

    Japan Atomic Energy Agency (JAEA) has completed an implementation with Korea Atomic Energy Research Institute (KAERI) on HTGR and nuclear hydrogen technology, 'The Implementation of Cooperative Program in the Field of Peaceful Uses of Nuclear Energy between KAERI and JAEA. 'To facilitate efficient technology development on HTGR and nuclear hydrogen by the IS process, an information exchange meeting was held at the Oarai Research and Development Center of JAEA on August 28-30, 2006 under Program 13th of the JAEA/KAERI Implementation, 'Development of HTGR and Nuclear Hydrogen Technology'. JAEA and KAERI mutually showed the status and future plan of the HTTR (High-Temperature Engineering Test Reactor) project in Japan and of the NHDD (Nuclear Hydrogen Development and Demonstration) project in Korea, respectively, and discussed collaboration items. This proceedings summarizes all materials of presented technical discussions on HTGR and hydrogen production technology as well as the meeting briefing including collaboration items. (author)

  17. Generator technology for HTGR power plants

    International Nuclear Information System (INIS)

    Lomba, D.; Thiot, D.

    1997-01-01

    Approximately 15% of the worlds installed capacity in electric energy production is from generators developed and manufactured by GEC Alsthom. GEC Alsthom is now working on the application of generators for HTGR power conversion systems. The main generator characteristics induced by the different HTGR power conversion technology include helium immersion, high helium pressure, brushless excitation system, magnetic bearings, vertical lineshaft, high reliability and long periods between maintenance. (author)

  18. Fission product release from HTGR fuel under core heatup accident conditions - HTR2008-58160

    International Nuclear Information System (INIS)

    Verfondern, K.; Nabielek, H.

    2008-01-01

    Various countries engaged in the development and fabrication of modern fuel for the High Temperature Gas-Cooled Reactor (HTGR) have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under operating and accidental conditions of future HTGRs. Within the IAEA directed Coordinated Research Project CRP6 on 'Advances in HTGR Fuel Technology Development' active since 2002, the 13 participating Member States have agreed upon benchmark studies on fuel performance during normal operation and under accident conditions. While the former has been completed in the meantime, the focus is now on the extension of the national code developments to become applicable to core heatup accident conditions. These activities are supported by the fact that core heatup simulation experiments have been resumed recently providing new, highly valuable data. Work on accident performance will be - similar to the normal operation benchmark - consisting of three essential parts comprising both code verification that establishes the correspondence of code work with the underlying physical, chemical and mathematical laws, and code validation that establishes reasonable agreement with the existing experimental data base, but including also predictive calculations for future heating tests and/or reactor concepts. The paper will describe the cases to be studied and the calculational results obtained with the German computer model FRESCO. Among the benchmark cases in consideration are tests which were most recently conducted in the new heating facility KUEFA. Therefore this study will also re-open the discussion and analysis of both the validity of diffusion models and the transport data of the principal fission product species in the HTGR fuel materials as essential input data for the codes. (authors)

  19. Regulatory Framework of Safety for HTGR

    International Nuclear Information System (INIS)

    Huh, Chang Wook; Suh, Nam Duk

    2011-01-01

    Recent accident in Fukushima Daiichi plant in Japan makes big impacts on the future of nuclear business. Many countries are changing their nuclear projects and increased safety of nuclear plants is asked for from the public. Without providing safety the society accepts, it might be almost impossible to build new plants further. In this sense high temperature gas-cooled reactor (HTGR) which is under development needs to be licensed reflecting this new expectation regarding safety. It means we should have higher level of safety goal and a systematic regulatory framework to assure the safety. In our previous paper, we evaluated the current safety goal and design practice in view of this new safety expectation after Fukushima accident. It was argued that a top-down approach starting from safety goal is necessary to develop safety requirements or to assure safety. Thus we need to propose an ultimate safety goal public accepts and then establish a systematic regulatory framework. In this paper we are going to provide a conceptual regulatory framework to guarantee the safety of HTGR. Section 2 discusses the recent trend of IAEA safety requirements and then summarize the HTGR design approach. Incorporating these discussions, we propose a conceptual framework of regulation for safety of HTGR

  20. Recent developments in graphite. [Use in HTGR and aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  1. 2000 MW(t) HTGR-DC-GT Modesto Site dry cooled model 346 concice

    International Nuclear Information System (INIS)

    1979-07-01

    Construction information is presented for a 800 MW(e) HTGR power reactor. The information is itemized for each reactor component or system and incudes quantity, labor hours, labor cost, material cost, and total costs

  2. Present status of HTGR projects and their heat applications in Russia

    International Nuclear Information System (INIS)

    Grebennik, V.N.; Glushkov, E.S.; Kukharkin, N.E.; Ponomarev-Stepnoi, N.N.

    1996-01-01

    This paper describes the main technical decision and parameters of the HTGR of different power and considers a few schemes of HTGR plants with a gas turbine cycle. Also, the future prospects on heat utilization of HTGR in Russia is presented. (J.P.N.)

  3. Design of the HTGR for process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.; Quade, R.N.

    1980-05-01

    This paper discusses a design study of an advanced 842-MW(t) HTGR with a reactor outlet temperature of 850 0 C (1562 0 F), coupled with a chemical process whose product is hydrogen (or a mixture of hydrogen and carbon monoxide) generated by steam reforming of a light hydrocarbon mixture. This paper discusses the plant layout and design for the major components of the primary and secondary heat transfer systems. Typical parametric system study results illustrate the capability of a computer code developed to model the plant performance and economics

  4. Volume 1. Probabilistic analysis of HTGR application studies. Technical discussion

    International Nuclear Information System (INIS)

    May, J.; Perry, L.

    1980-01-01

    The HTGR Program encompasses a number of decisions facing both industry and government which are being evaluated under the HTGR application studies being conducted by the GCRA. This report is in support of these application studies, specifically by developing comparative probabilistic energy costs of the alternative HTGR plant types under study at this time and of competitive PWR and coal-fired plants. Management decision analytic methodology was used as the basis for the development of the comparative probabilistic data. This study covers the probabilistic comparison of various HTGR plant types at a commercial development stage with comparative PWR and coal-fired plants. Subsequent studies are needed to address the sequencing of HTGR plants from the lead plant to the commercial plants and to integrate the R and D program into the plant construction sequence. The probabilistic results cover the comparison of the 15-year levelized energy costs for commercial plants, all with 1995 startup dates. For comparison with the HTGR plants, PWR and fossil-fired plants have been included in the probabilistic analysis, both as steam electric plants and as combined steam electric and process heat plants

  5. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part...

  6. HTGR strategy for reduced proliferation potential

    International Nuclear Information System (INIS)

    Stewart, H.B.; Dahlberg, R.C.

    1978-01-01

    The HTGR stratregy for reduced proliferation potential is one aspect of a potential broader nuclear strategy aimed primarily toward a transition nuclear period between today's uranium-consumption reactors and the long-range balanced system of breeder and advanced near-breeder reactors. In particular, the normal commerce of U-233 could be made acceptable by: (a) dependence on the gamma radiation from U-232 daughter products, (b) enhancement of that radioactivity by incomplete fission-product decontamination of the bred-fuel, or (c) denaturing of the U-233 with U-238. These approaches would, of course, supplement institutional initiatives to improve proliferation resistance such as the collocation of facilities and the establishment of secure energy centers. 6 refs

  7. Strategy to support HTGR fuel for the 10 MW Indonesia’s experimental power reactor (RDE)

    International Nuclear Information System (INIS)

    Taswanda Taryo; Geni Rina Sunaryo; Ridwan; Meniek Rachmawati

    2018-01-01

    The Indonesia’s 10 MW experimental power reactor (RDE) is developed based on high temperature gas-cooled reactor (HTGR) and the program of the RDE was firstly introduced to the Agency for National Development Planning (BAPPENAS) at the beginning of 2014. The RDE program is expected to have positive impacts on community prosperity, self-reliance and sovereignty of Indonesia. The availability of RDE will be able to accelerate advanced nuclear power technology development and hence elevate Indonesia to be the nuclear champion in the ASEAN region. The RDE is expected to be operable in 2022/2023. In terms of fuel supply for the reactor, the first batch of RDE fuel will be inclusive in the RDE engineering, procurement and construction (RDE-EPC) contract for the assurance of the RDE reactor operation from 2023 to 2027. Consideration of RDE fuel plant construction is important as RDE can be the basis for the development of reactors of similar type with small-medium power(25 MWe–200/300 MWe), which are preferable for eastern part of Indonesia. To study the feasibility of the construction of RDE fuel plant, current state of the art of the R&D on HTGR fuel in some advanced countries such as European countries, the United States, South Africa and Japan will be discussed and overviewed to draw a conclusion about the prospective countries for supporting the fuel for long-term RDE operation. The strategy and road map for the preparation of the RDE fuel plant construction with the involvement of national stake holders have been developed. The best possible vendor country to support HTGR fuel for long-term operation is finally accomplished. In the end, this paper can be assigned as a reference for the planning and construction of HTGR RDE fuel fabrication plant in Indonesia. (author)

  8. Scaling laws for HTGR core block seismic response

    International Nuclear Information System (INIS)

    Dove, R.C.

    1977-01-01

    This paper discusses the development of scaling laws, physical modeling, and seismic testing of a model designed to represent a High Temperature Gas-Cooled Reactor (HTGR) core consisting of graphite blocks. The establishment of the proper scale relationships for length, time, force, and other parameters is emphasized. Tests to select model materials and the appropriate scales are described. Preliminary results obtained from both model and prototype systems tested under simulated seismic vibration are presented

  9. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  10. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  11. HTGR fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-01-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents. The slow release of fission products over hundreds of hours allows for decay of short-lived isotopes. The slow and limited release of fission products under HTGR accident conditions results in very low off-site doses. The slow nature of the accident provides more time for operator action to mitigate the accident and for local and state authorities to respond. These features can be used to take advantage of close-in siting for process applications, flexibility in site selection, and emergency planning

  12. Exergy analysis of HTGR-GT

    International Nuclear Information System (INIS)

    Cao Jianhua; Wang Jie; Yang Xiaoyong; Yu Suyuan

    2005-01-01

    The High Temperature Gas-cooled Reactor (HTGR) coupled with gas turbine for high efficiency in electricity production is supposed to be one of the candidates for the future nuclear power plants. The HTGR gas turbine cycle is theoretically based on the Brayton cycle with recuperated, intercooled and precooled sub-processes. In this paper, an exergy analysis of the Brayton Cycle on HTGR is presented. The analyses were done for four typical reactor outlet temperatures and the exergy loss distribution and exergy loss ratio of each sub-process was quantified. The results show that more than a half of the exergy loss takes place in the reactor, while the low pressure compressor (LPC), the high pressure compressor (HPC) and the intercooler denoted by compress system together, play a much small role in the contribution of exergy losses. With the rise of the reactor outlet temperature, both the exergy loss and exergy loss ratio of the reactor can be greatly cut down, so is the total exergy loss of the cycle; while the exergy loss ratios of the recuperator and precooler have a small rise. The total exergy efficiency of the cycle is quite high (50% more or less). (authors)

  13. Component design considerations for gas turbine HTGR waste-heat power plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; Vrable, D.L.

    1976-01-01

    Component design considerations are described for the ammonia waste-heat power conversion system of a large helium gas-turbine nuclear power plant under development by General Atomic Company. Initial component design work was done for a reference plant with a 3000-MW(t) High-Temperature Gas-Cooled Reactor (HTGR), and this is discussed. Advanced designs now being evaluated include higher core outlet temperature, higher peak system pressures, improved loop configurations, and twin 4000-MW(t) reactor units. Presented are the design considerations of the major components (turbine, condenser, heat input exchanger, and pump) for a supercritical ammonia Rankine waste heat power plant. The combined cycle (nuclear gas turbine and waste-heated plant) has a projected net plant efficiency of over 50 percent. While specifically directed towards a nuclear closed-cycle helium gas-turbine power plant (GT-HTGR), it is postulated that the bottoming waste-heat cycle component design considerations presented could apply to other low-grade-temperature power conversion systems such as geothermal plants

  14. Study on the inspection item and inspection method of HTGR fuel

    International Nuclear Information System (INIS)

    Na, Sang Ho; Kim, Y. K.; Jeong, K. C.; Oh, S. C.; Cho, M. S.; Kim, Y. M.; Lee, Y. W.

    2006-01-01

    The type of HTGR(High Temperature Gas-cooled Reactor) fuel is different according to the reactor type. Generally the HTGR fuel has two types. One is a block type, which is manufactured in Japan or America. And the other is a pebble type, which is manufactured in China. Regardless of the fuel type, the fuel manufacturing process started from the coated particle, which is consisted of fuel kernel and the 4 coating layers. Korea has a plan to fabricate a HTGR fuel in near future. The appropriate quality inspection standards are requested to produce a sound and reliable coated particle for HTGR fuel. Therefore, the inspection items and the inspection methods of HTGR fuel between Japan and China, which countries have the manufacturing process, are investigated to establish a proper inspection standards of our product characteristics

  15. An introduction to our activities supporting HTGR developments in Japan

    International Nuclear Information System (INIS)

    An, S.; Hayashi, T.; Tsuchie, Y.

    1997-01-01

    On the view point the most important for the HTGR development promotion now in Japan is to have people know about HTGR, the Research Association of HTGR Plants(RAHP) has paid the best efforts for making an appealing report for the past two years. The outline of the report is described with an introduction of some basic experiments done on the passive decay heat removal as one of the activities carried out in a member of the association. (author)

  16. Is there a chance for commercializing the HTGR in Indonesia?

    International Nuclear Information System (INIS)

    Arbie, B.; Akhmad, Y.R.

    1997-01-01

    Indonesia is one of the developing countries in Asia-Pacific regions that actively improving or at least continuously maintain its economic growth. For this purpose, to fulfill a domestic energy demand is a vital role to achieve the goals of Indonesian development. Pertamina, the state-owned oil company, has recently called for a significant increase in domestic gas consumption in a bid to delay Indonesia becoming a net oil importer. Therefore, there is good chance for gas industry to increase their roles in generating electricity and producing automotive fuels. The latter is an interesting field of study to be correlated with the utilization of HTGR technology where the heat source could be used in the reforming process to convert natural gas into syngas as feed material in producing automotive fuels. Since the end of 1995 National Atomic Energy Agency of Indonesia (BATAN) has made an effort to increase its role in the national energy program and Batan is also able to revolve in the Giant Natuna Project or the other natural gas field projects to promote syngas production applying HTGR technology. A series of meeting with Pertamina and BPPT (the Agency for the Assessment and Application of Technology) had been performed to promote utilization of HTGR technology in the Natuna Project. In this paper governmental policy for natural gas production that may closely relate to syngas production and preliminary study for production of syngas at the Natuna Project will be discussed. It is concluded that to gain the possibility of the HTGR acceptance in the project a scenario for production and distribution should be arranged in other to achieve the break even point for automotive fuel price at about 10 US$/GJ (fuel price in 1996) in Indonesia. (author)

  17. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  18. Prospects of HTGR process heat application and role of HTTR

    International Nuclear Information System (INIS)

    Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    At Japan Atomic Energy Research Institute, an effort on development of process heat application with high temperature gas cooled reactor (HTGR) has been continued for providing a future clean alternative to the burning of fossil energy for the production of industrial process heat. The project is named 'HTTR Heat Utilization Project', which includes a demonstration of hydrogen production using the first Japanese HTGR of High Temperature Engineering Test Reactor (HTTR). In the meantime, some countries, such as China, Indonesia, Russia and South Africa are trying to explore the HTGR process heat application for industrial use. One of the key issues for this application is economy. It has been recognized for a long time and still now that the HTGR heat application system is not economically competitive to the current fossil ones, because of the high cost of the HTGR itself. However, the recent movement on the HTGR development, as represented by South Africa Pebble Beds Modular Reactor (SA-PBMR) Project, has revealed that the HTGRs are well economically competitive in electricity production to fossil fuel energy supply under a certain condition. This suggests that the HTGR process heat application will also possibly get economical in the near future. In the present paper, following a brief introduction describing the necessity of the HTGRs for the future process heat application, Japanese activities and prospect of the development on the process heat application with the HTGRs are described in relation with the HTTR Project. In conclusion, the process heat application system with HTGRs is thought technically and economically to be one of the most promising applications to solve the global environmental issues and energy shortage which may happen in the future. However, the commercialization for the hydrogen production system from water, which is the final goal of the HTGR process heat application, must await the technology development to be completed in 2030's at the

  19. Status of international HTGR [high-temperature gas-cooled reactor] development

    International Nuclear Information System (INIS)

    Homan, F.J.; Simon, W.A.

    1988-01-01

    Programs for the development of high-temperature gas-cooled reactor (HTGR) technology over the past 30 years in eight countries are briefly described. These programs have included both government sector and industrial participation. The programs have produced four electricity-producing prototype/demonstration reaactors, two in the United States, and two in the Federal Republic of Germany. Key design parameters for these reactors are compared with the design parameters planned for follow-on commercial-scale HTGRs. The development of HTGR technology has been enhanced by numerous cooperative agreements over the years, involving both government-sponsored national laboratories and industrial participants. Current bilateral cooperative agreements are described. A relatively new component in the HTGR international cooperation is that of multinational industrial alliances focused on supplying commercial-scale HTGR power plants. Current industrial cooperative agreements are briefly discussed

  20. HTGR fuel particle crusher: Mark 2 design

    Energy Technology Data Exchange (ETDEWEB)

    Baer, J.W.

    1979-06-01

    The double-roll crusher for fracturing the silicon carbide coatings of high-temperature gas-cooled reactor (HTGR) fuel particles has been redesigned to improve the equipment. The housing was simplified and reduced to a two-piece assembly; the bearings were changed to accommodate thermal effects; the bearing protection seals were improved with triple redundancy; the bearing preload arrangement was simplified and improved; and localized wear areas were reinforced with better materials or special treatment. In addition, the crusher drive was changed for impoved characteristics and an increase in power.

  1. HTGR fuel particle crusher: Mark 2 design

    International Nuclear Information System (INIS)

    Baer, J.W.

    1979-06-01

    The double-roll crusher for fracturing the silicon carbide coatings of high-temperature gas-cooled reactor (HTGR) fuel particles has been redesigned to improve the equipment. The housing was simplified and reduced to a two-piece assembly; the bearings were changed to accommodate thermal effects; the bearing protection seals were improved with triple redundancy; the bearing preload arrangement was simplified and improved; and localized wear areas were reinforced with better materials or special treatment. In addition, the crusher drive was changed for impoved characteristics and an increase in power

  2. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  3. HTGR Fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents

  4. Friction, adhesion and corrosion performance of metallurgical coatings in HTGR-helium

    International Nuclear Information System (INIS)

    Engel, R.; Kleemann, W.

    1981-01-01

    The friction-, adhesion-, thermal cycling- and corrosion performance of several metallurgical coating systems have been tested in a simulated HTGR-test atmosphere at elevated temperatures. The coatings were applied to a solid solution strengthened Ni-based superalloy. Component design requires coatings for the protection of mating surfaces, since under reactor operating conditions, contacting surfaces of metallic components under high pressures are prone to friction and wear damage. The coatings will have to protect the metal surface for 30 years up to 950 0 C in HTGR-helium. The materials tested were various refractory carbides with or without metallic binders and intermetallic compounds. The coatings evaluated were applied by plasma spraying-, detonation gun- and chemical vapor deposition techniques. These yielded two types of coatings which employ different mechanisms to improve the tribiological properties and maintain coating integrity. (Auth.)

  5. HTGR fuel particle crusher design evaluation

    International Nuclear Information System (INIS)

    Johanson, N.W.

    1978-10-01

    This report describes an evaluation of the design of the existing engineering-scale fuel particle crushing system for the HTGR reprocessing cold pilot plant at General Atomic Company (GA). The purpose of this evaluation is to assess the suitability of the existing design as a prototype of the HTGR Recycle Reference Facility (HRRF) particle crushing system and to recommend alternatives where the existing design is thought to be unsuitable as a prototype. This evaluation has led to recommendations for an upgraded design incorporating improvements in bearing and seal arrangement, housing construction, and control of roll gap thermal expansion. 23 figures, 6 tables

  6. The prospects of HTGR in China

    International Nuclear Information System (INIS)

    Sun, Y.; Tong, Y.; Wu, Z.

    1994-01-01

    Present situations of the energy market in China are briefly introduced, while the forecast of the possible development of the Chinese energy market is shortly discussed. The discussion focuses on the expected roles of high temperature gas-cooled reactors (HTGR) in the Chinese energy market in the next century. The history and present status of the development of HTGR technologies in China are presented. In the National High-Tech Programme, a 10 MW helium-cooled test reactor (HTR-10) is projected to be built within this century. The main technical and safety features of the HTR-10 reactor are discussed. (author)

  7. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  8. HTGR reactor physics, thermal-hydraulics and depletion uncertainty analysis: a proposed IAEA coordinated research project

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Reitsma, Frederik; Ivanov, Kostadin

    2011-01-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis and uncertainty analysis methods. In order to benefit from recent advances in modeling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Uncertainty and sensitivity studies are an essential component of any significant effort in data and simulation improvement. In February 2009, the Technical Working Group on Gas-Cooled Reactors recommended that the proposed IAEA Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling be implemented. In the paper the current status and plan are presented. The CRP will also benefit from interactions with the currently ongoing OECD/NEA Light Water Reactor (LWR) UAM benchmark activity by taking into consideration the peculiarities of HTGR designs and simulation requirements. (author)

  9. Steam generator design considerations for modular HTGR plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; DeFur, D.D.

    1986-01-01

    Studies are in progress to develop a standard High Temperature Gas-Cooled Reactor (HTGR) plant design that is amenable to serial production and is licensable. Based on the results of trade studies performed in the DOE-funded HTGR program, activities are being focused to emphasize a modular concept based on a 350 MW(t) annular reactor core with prismatic fuel elements. Utilization of a multiplicity of the standard module affords flexibility in power rating for utility electricity generation. The selected modular HTGR concept has the reactor core and heat transport systems housed in separate steel vessels. This paper highlights the steam generator design considerations for the reference plant, and includes a discussion of the major features of the heat exchanger concept and the technology base existing in the U.S

  10. Analysis of some accident conditions in confirmation of the HTGR safety

    Energy Technology Data Exchange (ETDEWEB)

    Grebennik, V. N.; Grishanin, E. I.; Kukharkin, N. E.; Mikhailov, P. V.; Pinchuk, V. V.; Ponomarev-Stepnoy, N. N.; Fedin, G. I.; Shilov, V. N.; Yanushevich, I. V. [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1981-01-15

    This report concerns some accident conditions for the HTGR-50 demonstrational reactor which along with the safety features common to the typical HTGR differs in design. The analyses carried out on the accident situations showed that due to the high heat capacity of the graphite core and negative temperature effect of the reactivity the HTGR-50 reactor is effectively selfcontrolled at different perturbations of the reactivity and has low sensitivity to the failure of the core cooling. The primary circuit depressurization accident should be thoroughly studied because of the dangerous consequences i.e. the core overheating and the reactivity release into the environment. As a whole, the studies now in progress show that the problem of the HTGR safety can be successfully solved.

  11. Analysis of some accident conditions in confirmation of the HTGR safety

    International Nuclear Information System (INIS)

    Grebennik, V.N.; Grishanin, E.I.; Kukharkin, N.E.; Mikhailov, P.V.; Pinchuk, V.V.; Ponomarev-Stepnoy, N.N.; Fedin, G.I.; Shilov, V.N.; Yanushevich, I.V.

    1981-01-01

    This report concerns some accident conditions for the HTGR-50 demonstrational reactor which along with the safety features common to the typical HTGR differs in design. The analyses carried out on the accident situations showed that due to the high heat capacity of the graphite core and negative temperature effect of the reactivity the HTGR-50 reactor is effectively selfcontrolled at different perturbations of the reactivity and has low sensitivity to the failure of the core cooling. The primary circuit depressurization accident should be thoroughly studied because of the dangerous consequences i.e. the core overheating and the reactivity release into the environment. As a whole, the studies now in progress show that the problem of the HTGR safety can be successfully solved

  12. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  13. Flowsheet development for HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Baxter, B.; Benedict, G.E.; Zimmerman, R.D.

    1976-01-01

    Development studies to date indicate that the HTGR fuel blocks can be effectively crushed with two stages of eccentric jaw crushing, followed by a double-roll crusher, a screener and an eccentrically mounted single-roll crusher for oversize particles. Burner development results indicate successful long-term operation of both the primary and secondary fluidized-bed combustion systems can be performed with the equipment developed in this program. Aqueous separation development activities have centered on adapting known Acid-Thorex processing technology to the HTGR reprocessing task. Significant progress has been made on dissolution of burner ash, solvent extraction feed preparation, slurry transfer, solids drying and solvent extraction equipment and flowsheet requirements

  14. User's manual for the Composite HTGR Analysis Program (CHAP-1)

    International Nuclear Information System (INIS)

    Gilbert, J.S.; Secker, P.A. Jr.; Vigil, J.C.; Wecksung, M.J.; Willcutt, G.J.E. Jr.

    1977-03-01

    CHAP-1 is the first release version of an HTGR overall plant simulation program with both steady-state and transient solution capabilities. It consists of a model-independent systems analysis program and a collection of linked modules, each representing one or more components of the HTGR plant. Detailed instructions on the operation of the code and detailed descriptions of the HTGR model are provided. Information is also provided to allow the user to easily incorporate additional component modules, to modify or replace existing modules, or to incorporate a completely new simulation model into the CHAP systems analysis framework

  15. Beginning-of-life neutronic analysis of a 3000-MW(t) HTGR

    International Nuclear Information System (INIS)

    Vigil, J.C.

    1975-12-01

    The results of a study of safety-related neutronic characteristics for the beginning-of-life core of a 3000-MW(t) High-Temperature Gas-Cooled Reactor are presented. Emphasis was placed on the temperature-dependent reactivity effects of fuel, moderator, control poisons, and fission products. Other neutronic characteristics studied were gross and local power distributions, neutron kinetics parameters, control rod and other material worths and worth distributions, and the reactivity worth of a selected hypothetical perturbation in the core configuration. The study was performed for the most part using discrete-ordinates transport theory codes and neutron cross sections that were interpolated from a four-parameter nine-group library supplied by the HTGR vendor. A few comparison calculations were also performed using nine-group data generated with an independent cross-section processing code system. Results from the study generally agree well with results reported by the HTGR vendor

  16. Conceptual design of small-sized HTGR system (1). Major specifications and system designs

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tazawa, Yujiro; Yan, Xing L.; Tachibana, Yukio

    2011-06-01

    Japan Atomic Energy Agency (JAEA) has started a conceptual design of a 50MWt small-sized high temperature gas cooled reactor (HTGR) for steam supply and electricity generation (HTR50S), which is a first-of-kind of the commercial plant or a demonstration plant of a small-sized HTGR system for steam supply to the industries and district heating and electricity generation by a steam turbine, to deploy in developing countries in the 2030s. The design philosophy is that the HTR50S is a high advanced reactor, which is reducing the R and D risk based on the HTTR design, upgrading the performance and reducing the cost for commercialization by utilizing the knowledge obtained by the HTTR operation and the GTHTR300 design. The major specifications of the HTR50S were determined and targets of the technology demonstration using the HTR50S (e.g., the increasing the power density, reduction of the number of uranium enrichment in the fuel, increasing the burn up, side-by-side arrangement between the reactor pressure vessel and the steam generator) were identified. In addition, the system design of HTR50S, which offers the capability of electricity generation, cogeneration of electricity and steam for a district heating and industries, was performed. Furthermore, a market size of small-sized HTGR systems was investigated. (author)

  17. HTGR-GT and electrical load integrated control

    International Nuclear Information System (INIS)

    Chan, T.; Openshaw, F.; Pfremmer, D.

    1980-05-01

    A discussion of the control and operation of the HTGR-GT power plant is presented in terms of its closely coupled electrical load and core cooling functions. The system and its controls are briefly described and comparisons are made with more conventional plants. The results of analyses of selected transients are presented to illustrate the operation and control of the HTGR-GT. The events presented were specifically chosen to show the controllability of the plant and to highlight some of the unique characteristics inherent in this multiloop closed-cycle plant

  18. Study on commercial HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo

    2000-07-01

    The Japanese energy demand in 2030 will increase up to 117% in comparison with one in 2000. We have to avoid a large consumption of fossil fuel that induces a large CO 2 emission from viewpoint of global warming. Furthermore new energy resources expected to resolve global warming have difficulty to be introduced more because of their low energy density. As a result, nuclear power still has a possibility of large introduction to meet the increasing energy demand. On the other hand, in Japan, 40% of fossil fuels in the primary energy are utilized for power generation, and the remaining are utilized as a heat source. New clean energy is required to reduce the consumption of fossil fuels and hydrogen is expected as a alternative energy resource. Prediction of potential hydrogen demand in Japan is carried out and it is clarified that the demand will potentially increase up to 4% of total primary energy in 2050. In present, steam reforming method is the most economical among hydrogen generation processes and the cost of hydrogen production is about 7 to 8 yen/m 3 in Europe and the United States and about 13 yen/m 3 in Japan. JAERI has proposed for using the HTGR whose maximum core outlet temperature is at 950degC as a heat source in the steam reforming to reduced the consumption of fossil fuels and resulting CO 2 emission. Based on the survey of the production rate and the required thermal energy in conventional industry, it is clarified that a hydrogen production system by the steam reforming is the best process for the commercial HTGR nuclear heat utilization. The HTGR steam reforming system and other candidate nuclear heat utilization systems are considered from viewpoint of system layout and economy. From the results, the hydrogen production cost in the HTGR stream reforming system is expected to be about 13.5 yen/m 3 if the cost of nuclear heat of the HTGR is the same as one of the LWR. (author)

  19. CONTEMPT-G computer program and its application to HTGR containments

    International Nuclear Information System (INIS)

    Macnab, D.I.

    1976-03-01

    The CONTEMPT-G computer program has been developed by General Atomic Company to simulate the temperature-pressure response of a containment atmosphere to postulated depressurization of High-Temperature Gas-Cooled Reactor (HTGR) primary or secondary coolant circuits. The mathematical models currently used in the code are described, and applications of the code in examples of the atmospheric response of a representative containment to a variety of postulated HTGR accident conditions are presented. In particular, maximum containment temperature and pressure, equilibrated long-term prestressed concrete reactor vessel and containment pressures, and peak containment conditions following steam pipe ruptures are examined for a representative 770-MW(e) HTGR

  20. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  1. The materials programme for the high-temperature gas-cooled reactor in the Federal Republic of Germany: Status of the development of high-temperature materials, integrity concept, and design codes

    International Nuclear Information System (INIS)

    Nickel, H.; Bodmann, E.; Seehafer, H.J.

    1990-01-01

    During the last 15 years, the research and development of materials for high temperature gas-cooled reactor (HTGR) applications in the Federal Republic of Germany have been concentrated on the qualification of high-temperature structural alloys. Such materials are required for heat exchanger components of advanced HTGRs supplying nuclear process heat in the temperature range between 750 deg. and 950 deg. C. The suitability of the candidate alloys for service in the HTGR has been established, and continuing research is aimed at verification of the integrity of components over the envisaged service lifetimes. The special features of the HTGR which provide a high degree of safety are the use of ceramics for the core construction and the low power density of the core. The reactor integrity concept which has been developed is based on these two characteristics. Previously, technical guidelines and design codes for nuclear plants were tailored exclusively to light water reactor systems. An extensive research project was therefore initiated which led to the formulation of the basic principles on which a high temperature design code can be based. (author)

  2. Effect of fission product interactions on the corrosion and mechanical properties of HTGR alloys

    International Nuclear Information System (INIS)

    Aronson, S.; Chow, J.G.Y.; Soo, P.; Friedlander, M.

    1978-01-01

    Preliminary experiments have been carried out to determine how fission product interactions may influence the mechanical integrity of reference HTGR structural metals. In this work Type 304 stainless steel, Incoloy 800 and Hastelloy X were heated to 550 to 650 0 C in the presence of CsI. It was found that no corrosion of the alloys occurred unless air or oxygen was also present. A mechanism for the observed behavior is proposed. A description is also given of some long term exposures of HTGR materials to more prototypic, low concentrations of I 2 , Te 2 and CsI in the presence of low partial pressures of O 2 . These samples are scheduled for mechanical bend tests after exposure to determine the degree of embrittlement

  3. Technical review of process heat applications using the HTGR

    International Nuclear Information System (INIS)

    Brierley, G.

    1976-06-01

    The demand for process heat applications is surveyed. Those applications which can be served only by the high temperature gas-cooled reactor (HTGR) are identified and the status of process heat applications in Europe, USA, and Japan in December 1975 is discussed. Technical problems associated with the HTGR for process heat applications are outlined together with an appraisal of the safety considerations involved. (author)

  4. Status of reprocessing technology in the HTGR fuel cycle

    International Nuclear Information System (INIS)

    Kaiser, G.; Merz, E.; Zimmer, E.

    1977-01-01

    For more than ten years extensive R and D work has been carried out in the Federal Republic of Germany in order to develop the technology necessary for closing the fuel cycle of high-temperature gas-cooled reactors. The efforts are concentrated primarily on fuel elements having either highly enriched 235 U or recycled 233 U as the fissile and thorium as the fertile material embedded in a graphite matrix. They include the development of processes and equipment for reprocessing and remote preparation of coated microspheres from the recovered uranium. The paper reviews the issues and problems associated with the requirements to deal with high burn-up fuel from HTGR's of different design and composition. It is anticipated that a grind-burn-leach head-end treatment and a modified THOREX-type chemical processing are the optimum choice for the flowsheet. An overview of the present status achieved in construction of a small reprocessing facility, called JUPITER, is presented. It includes a discussion of problems which have already been solved and which have still to be solved like the treatment of feed/breed particle systems and for minimizing environmental impacts envisaged with a HTGR fuel cycle technology. Also discussed is the present status of remote fuel kernel fabrication and coating technology. Additional activities include the design of a mock-up prototype burning head-end facility, called VENUS, with a throughput equivalent to about 6000 MW installed electrical power, as well as a preliminary study for the utilisation of the Karlsruhe LWR prototype reprocessing plant (WAK) to handle HTGR fuel after remodelling of the installations. The paper concludes with an outlook of projects for the future

  5. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  6. Management feature of transuranic for HTGR and LWR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Long-lived actinides from spent fuels can cause potential long-term environ- mental hazards. The generation and incineration of transuranic in different closed fuel cycles were studied. U and Pu were recycled from spent fuel in the 250 MW high-temperature gas-cooled reactor-pebble-bed-module (HTR-PM) U-Pu fuelled core, and then PuO 2 and MOX fuel elements were designed based on this recycled U and Pu. These fuel elements were used to build up a new PuO 2 or MOX fuelled core with the same geometry of the original reactor. Characteristics of transuranic incineration with HTGR open and closed fuel cycles were studied with VSOP code, and the corresponding results from the light water reactor were compared and analyzed. The transuranic generation with HTGR open fuel cycle is almost half of the corresponding result of the light water reactor. Thus, HTGR closed fuel cycles can effectively burn transuranic. (authors)

  7. Tribological study on machine elements of HTGR components

    International Nuclear Information System (INIS)

    Nemoto, M.; Asanabe, S.; Kawaguchi, K.; Ono, S.; Oyamada, T.

    1980-01-01

    There are some tribological features peculiar to machines used in a high-temperature gas-cooled reactor (HTGR) plant. In this kind of plant, water-lubricated bearing combined with the buffer gas sealing system and/or gas-lubricated bearings are often applied in order to prevent degrading of the purity of coolant helium gas. And, it is essential for the reliability and safety design of the sliding members in the HTGR to obtain fundamental data on their friction and wear in high-temperature helium atmosphere. In this paper, the results of tests on these bearings and sliding members are introduced, which are summarized as follows: (1) Water-lubricated shrouded step thrust bearing and buffer gas sealing system were tested separately under the conditions simulated to those of circulators used in commercial plants. The results showed that each elements satisfies the requirements. (2) A hydrostatically gas-lubricated, pivoted pad journal bearing with a moat-shaped rectangular groove is found to be promising for use as a high-load bearing, which is indispensable for the development of a large-type circulator. (3) Use of ceramic coating and carbon graphite materials is effective for the prevention of adhesive wear which is apt to occur in metal-to-metal combinations. (author)

  8. Tribological study on machine elements of HTGR components

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Ono, Shigeharu; Asanabe, Sadao; Kawaguchi, Katsuyuki; Oyamada, Tetsuya.

    1981-11-01

    There are some tribological features peculiar to machines used in a high-temperature gas-cooled reactor (HTGR) plant. In this kind of plant, water-lubricated bearing combined with the buffer gas sealing system and/or gas-lubricated bearings are often applied in order to prevent degrading of the purity of coolant helium gas. And, it is essential for the reliability and safety design of the sliding members in the HTGR to obtain fundamental data on their friction and wear in high-temperature helium atmosphere. In this paper, the results of tests on these bearings and sliding members are introduced, which are summarized as follows: (1) Water-lubricated shrouded step thrust bearing and buffer gas sealing system were tested separately under the condition simulated to those of circulators used in commercial plants. The results showed that each elements satisfies the requirements. (2) A hydrostatically gas-lubricated, pivoted pad journal bearing with a moat-shaped rectangular groove is found to be promising for use as a high-load bearing, which is indispensable for the development of a large-type circulator. (3) Use of ceramic coating and carbon graphite materials is effective for the prevention of adhesive wear which is apt to occur in metal-to-metal combinations. (author)

  9. SC-HTGR Performance Impact for Arid Sites

    International Nuclear Information System (INIS)

    Lommers, L.; Geschwindt, J.; Southworth, F.; Shahrokhi, F.

    2014-01-01

    The SC-HTGR provides high temperature steam which can support industrial process heat applications as well as high efficiency electricity generation. The increased generating efficiency resulting from using high steam temperature provides greater plant output than lower temperature concepts, and it also reduces the fraction of waste heat which must be rejected. This capability is particularly attractive for sites with little or no water for heat rejection. This high temperature capability provides greater flexibility for these sites, and it results in a smaller performance penalty than for lower temperature systems when dry cooling must be used. The performance of the SC-HTGR for a conventional site with wet cooling is discussed first. Then the performance for arid sites is evaluated. Dry cooling performance is evaluated for both moderately arid sites and very hot sites. Offdesign performance of the dry cooling system under extreme conditions is also considered. Finally, operating strategies are explored for sites where some cooling water may be available but only in very limited quantities. Results of these assessments confirm that the higher operating temperatures of the SC-HTGR are very beneficial for arid sites, providing significant advantages for both gross and net power generation. (author)

  10. Assessment of the licensing aspects of HTGR in Yugoslavia

    International Nuclear Information System (INIS)

    Varazdinec, Z.

    1990-01-01

    This paper deals not only with the licensing procedure in Yugoslavia, but also reflects the Utility/Owner approach to the assessment of the licensability of the HTGR during the site selection process and especially during bid evaluation process. Besides the description of the existing procedure which was implemented on licensing of LWR program, the assessment of some licensing aspects of HTGR has been presented to describe possible implementation on licensing procedure. (author)

  11. Assessment of the licensing aspects of HTGR in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Varazdinec, Z [Institut za Elektroprivredu-Zagreb, Zagreb (Yugoslavia)

    1990-07-01

    This paper deals not only with the licensing procedure in Yugoslavia, but also reflects the Utility/Owner approach to the assessment of the licensability of the HTGR during the site selection process and especially during bid evaluation process. Besides the description of the existing procedure which was implemented on licensing of LWR program, the assessment of some licensing aspects of HTGR has been presented to describe possible implementation on licensing procedure. (author)

  12. Application of the lines-of-protection concept to the HTGR-SC/C

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this document is to present a method for structuring the safety related design and development plans for the HTGR. This method centers on and develops the concept that the HTGR inherently (and by design) provides independent and successive LOPs against potential core related accidents and any resulting public harm. To exemplify the LOP concept and its application to the HTGR, this document identifies some key bases and assumptions, describes the four LOPs selected for the HTGR, identifies the associated safety goals and plant success criteria, and establishes methods for safety research and development prioritization. A task breakdown structure is then described, which in a complete hierarchial fashion can be used to catalog all safety related tasks necessary to demonstrate LOP success as well as catalog safety research areas which cannot be conveniently grouped under the LOPs

  13. CHAP: a composite nuclear plant simulation program applied to the 3000 MW(t) HTGR

    International Nuclear Information System (INIS)

    Secker, P.A.; Bailey, P.G.; Gilbert, J.S.; Willcutt, G.J.E. Jr.; Vigil, J.C.

    1977-01-01

    The Composite HTGR Analysis Program (CHAP) is a general systems analysis program which has been developed at LASL. The program is being used for simulating large HTGR nuclear power plant operation and accident transients. The general features and analytical methods of the CHAP program are discussed. Features of the large HTGR model and results of model transients are also presented

  14. Uncertainties in HTGR neutron-physical characteristics due to computational errors and technological tolerances

    International Nuclear Information System (INIS)

    Glushkov, E.S.; Grebennik, V.N.; Davidenko, V.G.; Kosovskij, V.G.; Smirnov, O.N.; Tsibul'skij, V.F.

    1991-01-01

    The paper is dedicated to the consideration of uncertainties is neutron-physical characteristics (NPC) of high-temperature gas-cooled reactors (HTGR) with a core as spherical fuel element bed, which are caused by calculations from HTGR parameters mean values affecting NPC. Among NPC are: effective multiplication factor, burnup depth, reactivity effect, control element worth, distribution of neutrons and heat release over a reactor core, etc. The short description of calculated methods and codes used for HTGR calculations in the USSR is given and evaluations of NPC uncertainties of the methodical character are presented. Besides, the analysis of the effect technological deviations in parameters of reactor main elements such as uranium amount in the spherical fuel element, number of neutron-absorbing impurities in the reactor core and reflector, etc, upon the NPC is carried out. Results of some experimental studies of NPC of critical assemblies with graphite moderator are given as applied to HTGR. The comparison of calculations results and experiments on critical assemblies has made it possible to evaluate uncertainties of calculated description of HTGR NPC. (author). 8 refs, 8 figs, 6 tabs

  15. HTGR [High Temperature Gas-Cooled Reactor] ingress analysis using MINET

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Yang, J.W.; Kroeger, P.G.; Mallen, A.N.; Aronson, A.L.

    1989-04-01

    Modeling of water/steam ingress into the primary (helium) cooling circuit of a High Temperature Gas-Cooled Reactor (HTGR) is described. This modeling was implemented in the MINET Code, which is a program for analyzing transients in intricate fluid flow and heat transfer networks. Results from the simulation of a water ingress event postulated for the Modular HTGR are discussed. 27 refs., 6 figs., 6 tabs

  16. Small demonstration HTGR concept

    International Nuclear Information System (INIS)

    Kiryushin, A.I.

    1989-01-01

    Currently the USSR is investigating two high-temperature gas-cooled reactors. The first plant is the VGM, a modular type HTGR with power rating of 180-250 MWth. The second plant is the VG-400 with 1000 MWth and a prestressed concrete reactor vessel. The paper contains the description of the VGM design and its main components. (author). 1 fig., 1 tab

  17. Distribution of 60Co and 54Mn in graphite material of irradiated HTGR fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Kobayashi, Fumiaki; Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-05-01

    Distribution of 60 Co and 54 Mn was measured in the graphite sleeves and blocks of the third and fourth HTGR fuel assemblies irradiated in the Oarai Gas Loop-1 (OGL-1), which is a high temperature inpile gas loop installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Axial and circumferential profiles were obtained by gamma spectrometry, and radial profiles by lathe sectioning with gamma spectrometry. Distribution of 60 Co is in good agreement with that of thermal neutron flux, and the Co content in the graphite is estimated to be -- 1 x 10 -9 in weight fraction. Concentration of 54 Mn decreases toward the axial center in its axial profile, and radially is almost uniform inside and appreciably higher at free surfaces. An estimated Fe content of --10 -8 in wight fraction is smaller by two orders of magnitude than that from chemical analysis. Higher concentraion of 60 Co and 54 Mn at the free surfaces suggests the importance of transportation process of these nuclides in the coolant loop. (author)

  18. Evaluation of creep-fatigue/ environment interaction in Ni-base wrought alloys for HTGR application

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1986-01-01

    High Temperature Gas-cooled Reactor (HTGR) systems should be designed based on the high temperature structural strength design procedures. On the development of design code, the determination of failure criteria under cyclic loading and severe environments is one of the most important items. By using the previous experimental data for Ni-base wrought alloys, Inconel 617 and Hastelloy XR, several evaluation methods for creep-fatigue interaction were examined for their capability to predict their cyclic loading behavior for HTGR application. At first, the strainrange partitioning method, the frequency modified damage function and the linear damage summation rule were discussed. However, these methods were not satisfactory with the above experimental results. Thus, in this paper, a new fracture criterion, which is a modification of the linear damage summation rule, is proposed based on the experimental data. In this criterion, fracture is considered to occur when the sum of the fatigue damage, which is the function of the applied cyclic strain magnitude, and the modified creep damage, which is the function of the applied cyclic stress magnitude (determined as time devided by cyclic creep rupture time reflecting difference of creep damages by tensile creep and compressive creep), reaches a constant value. This criterion was successfully applied to the life prediction of materials at HTGR temperatures. (author)

  19. Review of tritium behavior in HTGR systems

    International Nuclear Information System (INIS)

    Gainey, B.W.

    1976-01-01

    The available experimental evidence from laboratory and reactor studies pertaining to tritium production, capture, release, and transport within an HTGR leading to release to the environment is reviewed. Possible mechanisms for release, capture, and transport are considered and a simple model was used to calculate the expected tritium release from HTGRs. Comparison with Federal regulations governing tritium release confirm that expected HTGR releases will be well within the allowable release limits. Releases from HTGRs are expected to be somewhat less than from LWRs based on the published LWR operating data. Areas of research deserving further study are defined but it is concluded that a tritium surveillance at Fort St. Vrain is the most immediate need

  20. HTGR high temperature process heat design and cost status report

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes the status of the studies conducted on the 850 0 C ROT indirect cycle and the 950 0 C ROT direct cycle through the end of Fiscal Year 1981. Volume I provides summaries of the design and optimization studies and the resulting capital and product costs, for the HTGR/thermochemical pipeline concept. Additionally, preliminary evaluations are presented for coupling of candidate process applications to the HTGR system

  1. Volume 2. Probabilistic analysis of HTGR application studies. Supporting data

    International Nuclear Information System (INIS)

    1980-09-01

    Volume II, Probabilistic Analysis of HTGR Application Studies - Supporting Data, gives the detail data, both deterministic and probabilistic, employed in the calculation presented in Volume I. The HTGR plants and the fossil plants considered in the study are listed. GCRA provided the technical experts from which the data were obtained by MAC personnel. The names of the technical experts (interviewee) and the analysts (interviewer) are given for the probabilistic data

  2. HTGR accident and risk assessment

    International Nuclear Information System (INIS)

    Silady, F.A.; Everline, C.J.; Houghton, W.J.

    1982-01-01

    This paper is a synopsis of the high-temperature gas-cooled reactor probabilistic risk assessments (PRAs) performed by General Atomic Company. Principal topics presented include: HTGR safety assessments, peer interfaces, safety research, process gas explosions, quantitative safety goals, licensing applications of PRA, enhanced safety, investment risk assessments, and PRA design integration

  3. Generation of a Broad-Group HTGR Library for Use with SCALE

    International Nuclear Information System (INIS)

    Ellis, Ronald James; Lee, Deokjung; Wiarda, Dorothea; Williams, Mark L.; Mertyurek, Ugur

    2012-01-01

    With current and ongoing interest in high temperature gas reactors (HTGRs), the U.S. Nuclear Regulatory Commission (NRC) anticipates the need for nuclear data libraries appropriate for use in applications for modeling, assessing, and analyzing HTGR reactor physics and operating behavior. The objective of this work was to develop a broad-group library suitable for production analyses with SCALE for HTGR applications. Several interim libraries were generated from SCALE fine-group 238- and 999-group libraries, and the final broad-group library was created from Evaluated Nuclear Data File/B Version ENDF/B-VII Release 0 cross-section evaluations using new ORNL methodologies with AMPX, SCALE, and other codes. Furthermore, intermediate resonance (IR) methods were applied to the HTGR broadgroup library, and lambda factors and f-factors were incorporated into the library s nuclear data files. A new version of the SCALE BONAMI module named BONAMI-IR was developed to process the IR data in the new library and, thus, eliminate the need for the CENTRM/PMC modules for resonance selfshielding. This report documents the development of the HTGR broad-group nuclear data library and the results of test and benchmark calculations using the new library with SCALE. The 81-group library is shown to model HTGR cases with similar accuracy to the SCALE 238-group library but with significantly faster computational times due to the reduced number of energy groups and the use of BONAMI-IR instead of BONAMI/CENTRM/PMC for resonance self-shielding calculations.

  4. Creep behavior of materials for high-temperature reactor application

    International Nuclear Information System (INIS)

    Schneider, K.; Hartnagel, W.; Iischner, B.; Schepp, P.

    1984-01-01

    Materials for high-temperature gas-cooled reactor (HTGR) application are selected according to their creep behavior. For two alloys--Incoloy-800 used for the live steam tubing of the thorium high-temperature reactor and Inconel-617 evaluated for tubings in advanced HTGRs--creep curves are measured and described by equations. A microstructural interpretation is given. An essential result is that nonstable microstructures determine the creep behavior

  5. Present Status of HTGR Utilization System Development in Japan

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiaki

    2000-01-01

    Efforts are to be continuously devoted to establish and upgrade HTGR technology in the world. Japan Atomic Energy Research Institute (JAERI) has conducted the R and D of HTGRs since the 1960's in Japan, focusing on mainly the construction of High Temperature engineering Test Reactor (HTTR) which is an HTGR with a maximum helium gas temperature of 950 o C at the reactor outlet and HTGR utilization systems. The HTTR achieved first criticality on November 10, 1998 and will restart from January in 2001. In the R and D program of HTGR utilization systems, JAERI has conducted hydrogen production systems with HTGR to demonstrate the applicability of nuclear heat for extensive energy demands besides the electric power generation. JAERI has developed a hydrogen production system by steam reforming process of natural gas using nuclear heat supplied from the HTTR. Prior to the demonstration test of HTTR hydrogen production system, a 1/30-scale out-of-pile test facility is under construction for safety review and detailed design of the system. The out-of-pile test facility will be started in 2001 and will be continued about 4 years. The hydrogen permeation and corrosion tests have been carried out since 1997. Check and review for the demonstration program in the HTTR hydrogen production system will be made in 2001. Then the HTTR hydrogen production system is scheduled to be constructed from 2003 and demonstratively operated from around 2006. In parallel with the R and D of the HTTR hydrogen production system, hydrogen production method by thermochemical water splitting, so-called IS process, has been studied in JAERI. The IS process is placed as one of future candidates of the heat utilization systems of the HTTR following the steam reforming system. Continuous and stoichiometric production of hydrogen and oxygen for 48 hours was successfully achieved with a laboratory-scale apparatus mainly made of glass. Following this achievement, the study has been continued with a larger

  6. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  7. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  8. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  9. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  10. Status of the HTGR development program in Japan

    International Nuclear Information System (INIS)

    Saito, S.

    1991-01-01

    According to the revision of the Long-Term Program for Development and Utilization of Nuclear Energy issued by the Japanese Atomic Energy Commission, High Temperature Engineering Test Reactor (HTTR), which is the first HTGR in Japan, will be constructed by the Japan Atomic Energy Research Institute (JAERI) in order to establish and upgrade the technology basis for an HTGR, serving at the same time as a potential tool for new and innovative basic research. The budget for the construction of the HTTR was approved by the Government and JAERI is now proceeding with the construction design of the HTTR, focussing the first criticality in the end of FY 1995. In order to establish and upgrade HTGR technology basis systematically and efficiently, and also to carry out innovative basic research on high temperature technologies, Japan will perform necessary R and D mainly at JAERI, which is a leading organization of the R and D. In addition, in order to promote the R and D on HTGRs more efficiently, Japan will promote the existing international cooperation with the research organizations in foreign countries. (author). 5 figs, 3 tabs

  11. HTGR depressurization analysis

    International Nuclear Information System (INIS)

    Boccio, J.L.; Colman, J.; Skalyo, J.; Beerman, J.

    1979-01-01

    Relaxation of the prima facie assumption of complete mixing of primary and secondary containment gases during HTGR depressurization has led to a study program designed to identify and selectively quantify the relevant gas dynamic processes which prevail during the depressurization event. Uncertainty in the degree of gas mixedness naturally leads to uncertainty in containment vessel design pressure and heat loads and possible combustion hazards therein. This paper succinctly details an analytical approach and modeling methodology of the exhaust jet structure/containment vessel interaction during penetration failures. (author)

  12. HTGR safety research program

    International Nuclear Information System (INIS)

    Barsell, A.W.; Olsen, B.E.; Silady, F.A.

    1981-01-01

    An HTGR safety research program is being performed supporting and guided in priorities by the AIPA Probabilistic Risk Study. Analytical and experimental studies have been conducted in four general areas where modeling or data assumptions contribute to large uncertainties in the consequence assessments and thus, in the risk assessment for key core heat-up accident scenarios. Experimental data have been obtained on time-dependent release of fission products from the fuel particles, and plateout characteristics of condensible fission products in the primary circuit. Potential failure modes of primarily top head PCRV components as well as concrete degradation processes have been analyzed using a series of newly developed models and interlinked computer programs. Containment phenomena, including fission product deposition and potential flammability of liberated combustible gases have been studied analytically. Lastly, the behaviour of boron control material in the core and reactor subcriticality during core heatup have been examined analytically. Research in these areas has formed the basis for consequence updates in GA-A15000. Systematic derivation of future safety research priorities is also discussed. (author)

  13. Air ingress behavior during a primary-pipe rupture accident of HTGR

    International Nuclear Information System (INIS)

    Takeda, Tetsuaki

    1997-11-01

    The inherent properties of a HTGR facilitates the design with high degree of passive safe performances, compared to other type. However, it is still not clear if the present HTGR can maintain a passive safe function during a primary-pipe rupture accident, or what would be design criteria to guarantee the HTGR with the high degree of passive safe performances during the accident. To investigate safe characteristics, the study has been performed experimentally and analytically on the air ingress behavior during the accident. It was indicated that there are two stages in the accident of the HTGR having a reverse U-shaped channel. In the first stage, an air ingress process limits molecular diffusion and natural circulation of the gas mixture having a very slow velocity. In the second stage, the air ingress process limits the ordinary natural circulation of air throughout the reactor. A numerical calculation code has been developed to analyze thermal-hydraulic behavior during the first stage. This code provides a numerical method for analyzing a transport phenomena in a multi-component gas system by solving one-dimensional basic equations and using a flow network model. It was possible to predict or analyze the air ingress process regarding the density of the gas mixture, concentration of each gas species and duration of the first stage of the accident. It was indicated that the safe characteristics of the HTGR from the present experiment as follows. The safety cooling rate that the air ingress process terminates during the first stage exists in the HTGR having the reverse U-shaped channel. Moreover, the ordinary natural circulation of air can not produce in the second stage by injecting helium from the bottom of the pressure vessel corresponding the low-temperature side channel. Therefore, it was found that the idea of helium injection is one of useful methods for the prevention of air ingress and of graphite corrosion in the future HTGRs. (J.P.N.). 74 refs

  14. Universally applicable design concept of stably controlling an HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Shibata, Taiju; Nishihara, Tetsuo; Shiozawa, Shusaku

    1996-01-01

    An HTGR-hydrogen production system should be designed to have stable controllability because of a large difference in thermal dynamics between reactor and hydrogen production system and such a control design concept should be universally applicable to a variety of hydrogen production processes by the use of nuclear heat from HTGR. A transient response analysis of an HTGR-steam reforming hydrogen production system showed that a steam generator installed in a helium circuit for cooling the nuclear reactor provides stable controllability of the total system, resulting in avoiding a reactor scram. A survey of control design-related characteristics among several hydrogen production processes revealed the similarity of endothermic chemical reactions by the use of high temperature heat and that steam is required as a reactant of the endothermic reaction or for preheating a reactant. Based on these findings, a system design concept with stable controllability and universal applicability was proposed to install a steam generator as a downstream cooler of an endothermic reactor in the helium circuit of an HTGR-hydrogen production system. (author)

  15. Status, results and usefulness of risk analyses for HTGR type reactors of different capacity accessory to planning

    International Nuclear Information System (INIS)

    Kroeger, W.; Mertens, J.

    1985-01-01

    As regards system-inherent risks, HTGR type reactors are evaluated with reference to the established light-water-moderated reactor types. Probabilistic HTGR risk analyses have shown modern HTGR systems to possess a balanced safety concept with a risk remaining distinctly below legally accepted values. Inversely, the development and optimization of the safety concepts have been (and are being) essentially co-determined by the probabilistic analyses, as it is technically sensible and economically necessary to render the specific safety-related HTGR properties eligible for licensing. (orig./HP) [de

  16. HTGR gas turbine program. Semiannual progress report, April 1-September 30, 1978

    International Nuclear Information System (INIS)

    1979-12-01

    This report describes work performed under the gas turbine HTGR (HTGR-GT) program, Department of Energy Contract DE-AT03-76-SF70046, during the period April 1, 1978 through September 30, 1978. The work reported covers the demonstration and commercial plant concept studies including plant layout, heat exchanger studies, turbomachine studies, systems analysis, and reactor core engineering

  17. Present activity of the feasibility study of HTGR-GT system

    International Nuclear Information System (INIS)

    Muto, Y.; Miyamoto, Y.; Shiozawa, S.

    2001-01-01

    In JAERI a feasibility study of the High Temperature Gas-cooled Reactor-Gas Turbine (HTGR-GT) system has been carried out since January, 1997 as an assigned work by the Science and Technology Agency. The study aims at obtaining a promising concept of HTGR-GT system that yields a high thermal efficiency and at the same time is economically competitive. Designs of a few candidate systems will be undertaken and their power generation costs will be evaluated in parallel with design works, some experimental works such as the fabrication of a plate-fin type heat exchanger core and material tests will be carried out. The study will be continued till 2000 fiscal year. In 1997 fiscal year, a preliminary design of a direct cycle plant of 600 MWt was developed. A reactor inlet gas temperature of 460 deg. C, a reactor outlet gas temperature of 850 deg. C and a helium gas pressure of 6MPa were selected. Some advanced technologies were adopted such as a monolithic fuel compact and a control rod sheath made of carbon/carbon composite material. They were very effective to enhance the heat transfer of fuel and to reduce the core bypass flow. As a result, a power density of 6MW/m 3 and the maximum burnup of 10 5 MWD/ton were achieved. A single-shaft horizontal turbomachine of 3600 rpm was selected to ease the mechanical design of the rotor supported by magnetic bearings. The turbine, two compressors, a generator and six units of intercooler were placed in a turbine vessel, Plate-fin type recuperator and precooler are installed in a vertical heat exchanger vessel. By this design, a net thermal efficiency of 45.7% is expected to be achieved. To develop a high performance plate-fin recuperator, a core model of W200 mm x L200 mm x H200 mm with small fin size of 1.15 mm height was fabricated and as a result of tests, leak tightness, component strength and bonding appearance were found to be satisfactory. In 1998 fiscal year, a design of a direct cycle plant of 300 MWt is undertaken. The

  18. Results for Phase I of the IAEA Coordinated Research Program on HTGR Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, Friederike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied. High Temperature Gas-cooled Reactors (HTGR) has its own peculiarities, coated particle design, large graphite quantities, different materials and high temperatures that also require other simulation requirements. The IAEA has therefore launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the HTR-PM (INET, China). This report summarizes the contributions of the HTGR Methods Simulation group at Idaho National Laboratory (INL) up to this point of the CRP. The activities at INL have been focused so far on creating the problem specifications for the prismatic design, as well as providing reference solutions for the exercises defined for Phase I. An overview is provided of the HTGR UAM objectives and scope, and the detailed specifications for Exercises I-1, I-2, I-3 and I-4 are also included here for completeness. The main focus of the report is the compilation and discussion of reference results for Phase I (i.e. for input parameters at their nominal or best-estimate values), which is defined as the first step of the uncertainty quantification process. These reference results can be used by other CRP participants for comparison with other codes or their own reference

  19. HTGR nuclear heat source component design and experience

    International Nuclear Information System (INIS)

    Peinado, C.O.; Wunderlich, R.G.; Simon, W.A.

    1982-05-01

    The high-temperature gas-cooled reactor (HTGR) nuclear heat source components have been under design and development since the mid-1950's. Two power plants have been designed, constructed, and operated: the Peach Bottom Atomic Power Station and the Fort St. Vrain Nuclear Generating Station. Recently, development has focused on the primary system components for a 2240-MW(t) steam cycle HTGR capable of generating about 900 MW(e) electric power or alternately producing high-grade steam and cogenerating electric power. These components include the steam generators, core auxiliary heat exchangers, primary and auxiliary circulators, reactor internals, and thermal barrier system. A discussion of the design and operating experience of these components is included

  20. Nondestructive assay of HTGR fuel rods

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1974-01-01

    Performance characteristics of three different radioactive source NDA systems are compared for the assay of HTGR fuel rods and stacks of rods. These systems include the fast neutron Sb-Be assay system, the 252 Cf ''Shuffler,'' and the thermal neutron PAPAS assay system. Studies have been made to determinethe perturbation on the measurements from particle size, kernel Th/U ratio, thorium content, and hydrogen content. In addition to the total 235 U determination, the pellet-to-pellet or rod-to-rod uniformity of HTGR fuel rod stacks has been measured by counting the delayed gamma rays with a NaI through-hole in the PAPAS system. These measurements showed that rod substitutions can be detected easily in a fuel stack, and that detailed information is available on the loading variations in a uniform stack. Using a 1.0 mg 252 Cf source, assay rates of 2 to 4 rods/s are possible, thus facilitating measurement of 100 percent of a plant's throughput. (U.S.)

  1. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2008

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Tachibana, Yukio; Sun Yuliang

    2009-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2008. (author)

  2. Information exchange on HTGR and nuclear hydrogen technology between JAEA and INET in 2009

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Wang Hong

    2010-07-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation activities on HTGR and nuclear hydrogen technology between JAEA and INET in 2009. (author)

  3. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    International Nuclear Information System (INIS)

    Dodd, D.H.; Hienen, J.F.A. van.

    1995-10-01

    This report presents the results of task B.3 of the 'Technology Assessment of the High Temperature Reactor' project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL)

  4. The radiological risks associated with the thorium fuelled HTGR fuel cycle. A comparative risk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.H.; Hienen, J.F.A. van

    1995-10-01

    This report presents the results of task B.3 of the `Technology Assessment of the High Temperature Reactor` project. The objective of task B.3 was to evaluate the radiological risks to the general public associated with the sustainable HTGR cycle. Since the technologies to be used at several stages of this fuel cycle are still in the design phase and since a detailed specification of this fuel cycle has not yet been developed, the emphasis was on obtaining a global impression of the risk associated with a generic thorium-based HTGR fuel cycle. This impression was obtained by performing a comparative risk analysis on the basis of data given in the literature. As reference for the comparison a generic uranium fuelled LWR cycle was used. The major benefit with respect to the radiological rsiks of basing the fuel cycle around modular HTGR technology instead of the LWR technology is the increase in reactor safety. The design of the modular HTGR is expected to prevent the release of a significant amount of radioactive material to the environment, and hence early deaths in the surrounding population, during accident conditions. This implies that there is no group risk as defined in the Dutch risk management policy. The major benefit of thorium based fuel cycles over uranium based fuel cycles is the reduction in the radiological risks from unraium mining and milling. The other stages of the nuclear fuel cycle which make a significant contribution to the radiological risks are electricity generation, reprocessing and final disposal. The risks associated with the electricity generation stage are dominated by the risks from fission products, activated corrosion products and the activation products tritium and carbon-14. The risks associated with the reprocessing stage are determined by fission and activation products (including actinides). (orig./WL).

  5. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  6. US HTGR Deployment Challenges and Strategies HTR 2014 Conference Proceedings

    International Nuclear Information System (INIS)

    Shahrokhi, Farshid; Lommers, Lewis; Mayer, John III; Southworth, Finis

    2014-01-01

    The NGNP Industry Alliance (NIA), LLC (www.NGNPAliance.org), is a consortium of high temperature gas-cooled reactor (HTGR) designers, utility plant owner/operators, critical plant hardware suppliers, and end-user groups. The NIA is promoting the design and commercialization of a HTGR for industrial process heat applications and electricity generation. In 2012, NIA selected the AREVA Steam Cycle HTGR (SC-HTGR) as its primary reactor design choice for its first implementation in mid -2020s. The SC-HTGR can produce 625 MWth of process steam at 550°C or 275 MWe of electricity in a co-generation configuration. The standard plant is a four-pack of 625MWth modules providing steam and electricity co-generation. The safety characteristics of the HTGR technology allows close colocation of the nuclear plant and the industrial end-user. The plant design also allows the process steam used for the industrial applications to be completely segregated and separate from primary Helium coolant and the secondary nuclear steam supply systems. The process steam at temperatures up to 550°C is provided for a variety of direct or indirect applications. End-user requirements are met for a wide range of steam flow, pressure and temperature conditions. Very high reliability (>99.99%) is maintained by the use of multi-reactor modules and conventional gas-fired back-up. Intermittent steam loads can also be efficiently met through co-generation of electricity for internal use or external distribution and sale. The NIA technology development and deployment challenges are met with strategies that provide investment and partnerships opportunities for plant design and equipment supply, and by cooperative government research, sovereign or private investment, and philanthropic opportunities. Our goal is to create intellectual property (IP) and investor value as the design matures and a license is obtained. The strategy also includes involvement of the initial customer in sharing the value created in

  7. Further HTGR core support structure reliability studies. Interim report No. 1

    International Nuclear Information System (INIS)

    Platus, D.L.

    1976-01-01

    Results of a continuing effort to investigate high temperature gas cooled reactor (HTGR) core support structure reliability are described. Graphite material and core support structure component physical, mechanical and strength properties required for the reliability analysis are identified. Also described are experimental and associated analytical techniques for determining the required properties, a procedure for determining number of tests required, properties that might be monitored by special surveillance of the core support structure to improve reliability predictions, and recommendations for further studies. Emphasis in the study is directed towards developing a basic understanding of graphite failure and strength degradation mechanisms; and validating analytical methods for predicting strength and strength degradation from basic material properties

  8. 1170-MW(t) HTGR-PS/C plant application study report: Geismar, Louisiana refinery/chemical complex application

    International Nuclear Information System (INIS)

    McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to an industrial complex at Geismar, Louisiana. This study compares the HTGR with coal and oil as process plant fuels. This study uses a previous broad energy alternative study by the Stone and Webster Corporation on refinery and chemical plant needs in the Gulf States Utilities service area. The HTGR-PS/C was developed by General Atomic (GA) specifically for industries which require both steam and electric energy. The GA 1170-MW(t) HTGR-PC/C design is particularly well suited to industrial applications and is expected to have excellent cost benefits over other energy sources

  9. Development of a pneumatic transfer system for HTGR recycle fuel particles

    International Nuclear Information System (INIS)

    Mack, J.E.; Johnson, D.R.

    1978-02-01

    In support of the High-Temperature Gas-Cooled Reactor (HTGR) Fuel Refabrication Development Program, an experimental pneumatic transfer system was constructed to determine the feasibility of pneumatically conveying pyrocarbon-coated fuel particles of Triso and Biso designs. Tests were conducted with these particles in each of their nonpyrophoric forms to determine pressure drops, particle velocities, and gas flow requirements during pneumatic transfer as well as to evaluate particle wear and breakage. Results indicated that the material can be pneumatically conveyed at low pressures without excessive damage to the particles or their coatings

  10. HTGR containment design options: an application of probabilistic risk assessment

    International Nuclear Information System (INIS)

    1977-08-01

    Through the use of probabilistic risk assessment (PRA), it is possible to quantitatively evaluate the radiological risk associated with a given reactor design and to place such risk into perspective with alternative designs. The merits are discussed for several containment alternatives for the HTGR from the viewpoints of economics and licensability, as well as public risk. The quantification of cost savings and public risk indicates that presently acceptable public risk can be maintained and cost savings of $40 million can result from use of a vented confinement for the HTGR

  11. GTOROTO: a simulation system for HTGR core seismic behavior

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Nakamura, Yasuhiro; Onuma, Yoshio

    1980-07-01

    One of the most important design of HTGR core is its aseismic structure. Therefore, it is necessary to predict the forces and motion of the core blocks. To meet the requirement, many efforts to develop analytical methods and computer programs are made. A graphic simulation system GTOROTO with a CRT graphic display and lightpen was developed to analyze the HTGR core behavior in seismic excitation. Feature of the GTOROTO are as follows: (1) Behavior of the block-type HTGR core during earthquake can be shown on the CRT-display. (2) Parameters of the computing scheme can be changed with the lightpen. (3) Routines of the computing scheme can be changed with the lightpen and an alteration switch. (4) Simulation pictures are shown automatically. Hardcopies are available by plotter in stopping the progress of simulation pictures. Graphic representation can be re-start with the predetermined program. (5) Graphic representation informations can be stored in assembly language on a disk for rapid representation. (6) A computer-generated cinema can be made by COM (Computer Output Microfilming) or filming directly the CRT pictures. These features in the GTOROTO are provided in on-line conversational mode. (author)

  12. Reduced risk HTGR concept for industrial heat application

    International Nuclear Information System (INIS)

    Boardman, C.E.; Lipps, A.J.

    1982-01-01

    The industrial process heat market has been identified as major market for the High Temperature Gas-Cooled Reactor (HTGR), however, this market introduces stringent availability requirements on the reactor system relative to electric plants which feed a large existing grid. The characteristics and requirements of the industrial heat markets are summarized; the risks associated with serving this market with a single large HTGR will be discussed; and the modular concept, which has the potential to reduce both safety and investment risks, will be described. The reference modular concept described consists of several small, relatively benign nuclear heat sources linked together to supply heat energy to a balance-of-plant incorporating a process gas train/thermochemical pipe line system and a normal steam-electric plant

  13. HTGR-Integrated Coal To Liquids Production Analysis

    International Nuclear Information System (INIS)

    Gandrik, Anastasia M.; Wood, Rick A.

    2010-01-01

    As part of the DOE's Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to 'shift' the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700 C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: (1) 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66

  14. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  15. Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials

    International Nuclear Information System (INIS)

    Thompson, L.D.

    1981-02-01

    This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H 2 /5 Pa CO/5 Pa CH 4 / 2 O (500 μatm H 2 /50 μatm CO/50 μatm CH 4 / 2 O) at 900 0 C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables

  16. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  17. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    Science.gov (United States)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  18. 1170-MW(t) HTGR-PS/C plant application-study report: alumina-plant application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.; Stanley, J.D.

    1981-05-01

    This report considers the HTGR-PS/C application to producing alumina from bauxite. For the size alumina plant considered, the 1170-MW(t) HTGR-PS/C supplies 100% of the process steam and electrical power requirements and produces surplus electrical power and/or process steam, which can be used for other process users or electrical power production. Presently, the bauxite ore is reduced to alumina in plants geographically separated from the electrolysis plant. The electrolysis plants are located near economical electric power sources. However, with the integration of an 1170-MW(t) HTGR-PS/C unit in a commercial alumina plant, the excess electric power available [approx. 233 MW(e)] could be used for alumina electrolysis

  19. Review of fatigue criteria development for HTGR core supports

    International Nuclear Information System (INIS)

    Ho, F.H.; Vollman, R.E.

    1979-10-01

    Fatigue criteria for HTGR core support graphite structure are presented. The criteria takes into consideration the brittle nature of the material, and emphasizes the probabilistic approach in the treatment of strength data. The stress analysis is still deterministic. The conventional cumulative damage approach is adopted here. A specified minimum S-N curve is defined as the curve with 99% probability of survival at a 95% confidence level to accommodate random variability of the material strength. A constant life diagram is constructed to reconcile the effect of mean stress. The linear damage rule is assumed to account for the effect of random cycles. An additional factor of safety of three on cycles is recommended. The uniaxial S-N curve is modified in the medium-to-high cycle range (> 2 x 10 3 cycles) for mutiaxial fatigue effects

  20. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  1. Present status of research on and development of HTGR techniques in the People's Republic of China

    International Nuclear Information System (INIS)

    Zhu Yongjun

    1989-01-01

    China is a developing country rich in coal, petroleum and hydropower resources. In the past ten years, energy production in China has had a large increase, but along with the development of economy, energy demands increase even more rapidly. Many problems exist in China's energy system. Considering the large energy demand in the near future and long-term energy strategy, China has already decided to develop nuclear power gradually. The first several nuclear power stations are being and will be built in the South-east sea shore region. Two 900 MW PWRs (from France) and one 300 MW PWR (home made) are now under construction at Daya Bay (Kwangton Province) and Qin Shan (Zhejiang Province). The succeeding PWR power plants are being planned. PWR nuclear power station has been selected for the beginning of China's nuclear power plan. For large scale utilization of nuclear power in the next century, the development of advanced reactor type with good safety and economy performances and high uranium utilization rate (uranium resources in China is not rich enough) is strategically important. HTGR, due to its inherent safety characteristics, high heat efficiency, flexible fuel system and wide application fields, is a prospective advanced reactor type. Research and development on HTGR have already been included in China's national technical development program and are going on smoothly

  2. Conceptual design of the special nuclear material nondestructive assay and accountability system for the HTGR fuel refabrication pilot plant

    International Nuclear Information System (INIS)

    Jenkins, J.D.; McNeany, S.R.; Rushton, J.E.

    1975-07-01

    The conceptual design of the fissile material assay and accountability system for the HTGR refabrication pilot plant has been established. The primary feature affecting the design is the high, time varying, gamma activity of the process material due to the unavoidable presence of uranium-232. This imposes stringent requirements for remote operation and remote maintainability of system components. At the same time, the remote operation lends itself to implementation of an automated data collection and processing system for real-time accountability. The high time-varying gamma activity of the material also precludes application of a number of techniques presently employed for light-water reactor fuel assay. The techniques selected for application in the refabrication facility are (1) active thermal neutron interrogation with fast-fission or delayed-neutron counting for fuel-rod and small-sample assay, (2) calorimetry for high-level waste assay, and (3) passive gamma scanning for low-level waste assay, and rapid on-line relative rod-loading measurements. The principal nondestructive assay subsystems are identified as (1) on-line devices for 100 percent product fuel rod assay and quality control, (2) a multipurpose device in the sample inspection laboratory for small- sample assay and secondary standards calibration, and (3) equipment for assay of high- and low-uranium content scrap and waste materials. A data processing system, which coordinates data from these subsystems with information from other process control sensors, is included to provide real-time material balance information. (U.S.)

  3. Consideration on developing of leaked inflammable gas detection system for HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Nakamura, Masashi

    1999-09-01

    One of most important safety design issues for High Temperature Gas-cooled Reactor (HTGR) - Hydrogen Production System (HTGR-HPS) is to ensure reactor safety against fire and explosion at the hydrogen production plant. The inflammable gas mixture in the HTGR-HPS does not use oxygen in any condition and are kept in high pressure in the normal operation. The piping system and/or heat transfer tubes which have the potential possibility of combustible materials ingress into the Reactor Building (R/B) due to the failure are designed to prevent the failure against any events. Then, it is not necessary to consider their self-combustion in vessels nor leakage in the R/B. The only one case which we must consider is the ex-building fire or explosion caused by their leakage from piping or vessel. And it is important to mitigate their effects by means of early detection of gas leakage. We investigated our domestic standards on gas detection, applications of gas detectors, their detection principles, performance, sensitivity, reliability, their technical trends, and so on. We proposed three gas detection systems which may be applied in HTGR-HPS. The first one is the universal solid sensor system; it may be applied when there is no necessity to request their safety credits. The second is the combination of the improved solid sensor system and enhanced beam detector system; it may be applied when it is necessary to request their safety credit. And the third is the combination of the universal solid sensor system and the existing beam detector system; it may be applied when the plant owner request higher detector sensitivity than usual, from the view point of public acceptance, though there is not necessity to request their safety credits. To reduce the plant cost by refusing of safety credits to the gas leakage detection system, we proposed that the equipment required to isolate from others should be installed in the inertrized compartments. (author)

  4. Dynamic response of a multielement HTGR core

    International Nuclear Information System (INIS)

    Reich, M.; Bezler, P.; Koplik, B.; Curreri, J.; Goradia, H.; Lasker, L.

    1977-01-01

    One of the primary factors in determining the structural integrity and consequently the safety of a High Temperature Gas-Cooled Reactor (HTGR) is the dynamic response of the core when subjected to a seismic excitation. The HTGR core under consideration consists of several thousands of hexagonal elements arranged in vertical stacks containing about eight elements per stack. There are clearance gaps between adjacent elements, which can change substantially due to radiation effects produced during their active lifetime. Surrounding the outer periphery of the core are reflector blocks and restraining spring-pack arrangements which bear against the reactor vessel structure (PCRV). Earthquake input motions to this type of core arrangement will result in multiple impacts between adjacent elements as well as between the reflector blocks and the restraining spring packs. The highly complex nonlinear response associated with the multiple collisions across the clearance gaps and with the spring packs is the subject matter of this paper. Of particular importance is the ability to analyze a complex nonlinear system with gaps by employing a model with a reduced number of masses. This is necessary in order to obtain solutions in a time-frame and at a cost which is not too expensive. In addition the effect of variations in total clearance as well as the initial distribution of clearances between adjacent elements is of primary concern. Both of these aspects of the problem are treated in the present analysis. Finally, by constraining the motion of the reflector blocks, a more realistic description of the dynamic response of the multi-element HTGR core is obtained

  5. Advanced Fuel UCO Preparation Technology for HTGR (Characteristics of Carbon Black)

    International Nuclear Information System (INIS)

    Jeong, Kyung Chai; Oh, S. C.; Kim, Y. K.; Cho, M. S.; Kim, W. K.; Kim, Y. M.; Lee, Y. W.; Cho, H. J.; Shin, E. J.

    2010-06-01

    NGNP program for high specification of HTGR nuclear fuel through the GEN IV study is be progressed. Furthermore, because the NGNP program have a highly focused goal like UCO kernel, kernel fabrication and coating types varied which made selection of a US reference fabrication process. In this study, it was evaluated from the reviews on the UO2 and UCO kernel fabrication technologies and its particle characteristics. For improving the UCO qualities, first it was improved the kernel fabrication processes and carbon dispersion method also. New method for carbon dispersion in broth solution was developed, and its characteristics was evaluated from the AGR irradiation tests used the UCO kernel. In fabrication process, also process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment

  6. Dynamics and control modeling of the closed-cycle gas turbine (GT-HTGR) power plant

    International Nuclear Information System (INIS)

    Bardia, A.

    1980-02-01

    The simulation if presented for the 800-MW(e) two-loop GT-HTGR plant design with the REALY2 transient analysis computer code, and the modeling of control strategies called for by the inherently unique operational requirements of a multiple loop GT-HTGR is described. Plant control of the GT-HTGR is constrained by the nature of its power conversion loops (PCLs) in which the core cooling flow and the turbine flow are directly related and thus changes in flow affect core cooling as well as turbine power. Additionally, the high thermal inertia of the reactor core precludes rapid changes in the temperature of the turbine inlet flow

  7. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bostelmann, F. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  8. Feasibility study of the Dragon reactor for HTGR fuel testing

    International Nuclear Information System (INIS)

    Wallroth, C.F.

    1975-01-01

    The Organization of European Community Development (OECD) Dragon high-temperature reactor project has performed HTGR fuel and fuel element testing for about 10 years. To date, a total of about 250 fuel elements have been irradiated and the test program continues. The feasibility of using this test facility for HTGR fuel testing, giving special consideration to U. S. needs, is evaluated. A detailed description for design, preparation, and data acquisition of a test experiment is given together with all possible options on supporting work, which could be carried out by the experienced Dragon project staff. 11 references. (U.S.)

  9. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  10. Research on solvent extraction process for reprocessing of Th-U fuel from HTGR

    International Nuclear Information System (INIS)

    Bao Borong; Wang Gaodong; Qian Jun

    1992-05-01

    The unique properties of spent fuel from HTGR (high temperature gas cooled reactor) have been analysed. The single solvent extraction process using 30% TBP for separation and purification of Th-U fuel has been studied. In addition, the solvent extraction process for second uranium purification is also investigated to meet different needs of reprocessing and reproduction of Th-U spent fuel from HTGR

  11. Examination on small-sized cogeneration HTGR for developing countries

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Tachibana, Yukio; Shimakawa, Satoshi; Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing; Murakami, Tomoyuki; Ohashi, Kazutaka; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; Mozumi, Yasuhiro; Imai, Yoshiyuki; Tanaka, Nobuyuki; Okuda, Hiroyuki; Iwatsuki, Jin; Kubo, Shinji; Takada, Shoji; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-03-01

    The small-sized and safe cogeneration High Temperature Gas-cooled Reactor (HTGR) that can be used not only for electric power generation but also for hydrogen production and district heating is considered one of the most promising nuclear reactors for developing countries where sufficient infrastructure such as power grids is not provided. Thus, the small-sized cogeneration HTGR, named High Temperature Reactor 50-Cogeneration (HTR50C), was studied assuming that it should be constructed in developing countries. Specification, equipment configuration, etc. of the HTR50C were determined, and economical evaluation was made. As a result, it was shown that the HTR50C is economically competitive with small-sized light water reactors. (author)

  12. Information exchange mainly on HTGR operation and maintenance technique between JAEA and INET in 2005

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Hino, Ryutaro; Yu Suyuan

    2006-06-01

    The worldwide interests in the HTGR (High Temperature Gas-cooled Reactor) have been growing because the high temperature heat produced by the reactor can be utilized not only for efficient power generation but also for broad process heat applications, especially for thermo-chemical hydrogen production to fuel a prospective hydrogen economy in future. Presently only two HTGR reactors are operational in the world, including the HTTR (High Temperature Engineering Test Reactor) in Japan Atomic Energy Agency (JAEA) and the HTR-10 in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in China. JAEA and INET have cooperated since 1986 in the field of HTGR development, particularly on the HTTR and HTR-10 projects. This report describes the cooperation with emphasis on HTGR operation and maintenance techniques between JAEA and INET and outlines cooperation activities during the fiscal year 2005. (author)

  13. GCRA perspective on the HTGR-GT plant configuration

    International Nuclear Information System (INIS)

    1979-06-01

    Design specifications for the HTGR type reactor and gas turbine combination are presented concerning the turbomachinery; generator and isophase bus duct; PCRV and internals; heat exchangers; operability; maintenance; safety and licensing; core design; and fuel design

  14. HTGR generic technology program plan (FY 80)

    International Nuclear Information System (INIS)

    1980-01-01

    Purpose of the program is to develop base technology and to perform design and development common to the HTGR Steam Cycle, Gas Turbine, and Process Heat Plants. The generic technology program breaks into the base technology, generic component, pebble-bed study, technology transfer, and fresh fuel programs

  15. LWR and HTGR coolant dynamics: the containment of severe accidents

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Gherson, P.; Nourbakhsh, H.P.; Hu, K.; Iyer, K.; Viskanta, R.; Lommers, L.

    1983-07-01

    This is the final report of a project containing three major tasks. Task I deals with the fundamental aspects of energetic fuel/coolant interactions (steam explosions) as they pertain to LWR core melt accidents. Task II deals with the applied aspects of LWR core melt accident sequences and mechanisms important to containment response, and includes consideration of energetic fuel/coolant interaction events, as well as non-explosive ones, corium material disposition and eventual coolability, and containment pressurization phenomena. Finally, Task III is concerned with HTGR loss of forced circulation accidents. This report is organized into three major parts corresponding to these three tasks respectively

  16. 1170-MW(t) HTGR-PS/C plant application study report: heavy oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report describes the application of a high-temperature gas-cooled reactor (HTGR) which operates in a process steam/cogeneration (PS/C) mode in supplying steam for enhanced recovery of heavy oil and in exporting electricity. The technical and economic merits of an 1170-MW(t) HTGR-PS/C are compared with those of coal-fired plants and (product) oil-fired boilers for this application. The utility requirements for enhanced oil recovery were calculated by establishing a typical pattern of injection wells and production wells for an oil field similar to that of Kern County, California. The safety and licensing issues of the nuclear plant were reviewed, and a comparative assessment of the alternative energy sources was performed. Technically and economically, the HTGR-PS/C plant has attractive merits. The major offsetting factors would be a large-scale development of a heavy oil field by a potential user for the deployment of a 1170-MW(t) HTGR-PS/C; plant and the likelihood of available prime heavy oil fields for the mid-1990 operation

  17. Safety Design Approach for the Development of Safety Requirements for Design of Commercial HTGR

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Nakagawa, Shigeaki; Tachibana, Yukio; Nishihara, Tetsuo; Yan, Xing; Sakaba, Nariaki; Kunitomi, Kazuhiko

    2014-01-01

    The research committee on “Safety requirements for HTGR design” was established in 2013 under the Atomic Energy Society of Japan to develop the draft safety requirements for the design of commercial High Temperature Gas-cooled Reactors (HTGRs), which incorporate the HTGR safety features demonstrated using the High Temperature Engineering Test Reactor (HTTR), lessons learned from the accident of Fukushima Daiichi Nuclear Power Station and requirements for the integration of the hydrogen production plants. The safety design approach for the commercial HTGRs which is a basement of the safety requirements is determined prior to the development of the safety requirements. The safety design approaches for the commercial HTGRs are to confine the radioactive materials within the coated fuel particles not only during normal operation but also during accident conditions, and the integrity of the coated fuel particles and other requiring physical barriers are protected by the inherent and passive safety features. This paper describes the main topics of the research committee, the safety design approaches and the safety functions of the commercial HTGRs determined in the research committee. (author)

  18. HTGR experience, programs, and future applications

    International Nuclear Information System (INIS)

    Moore, R.A.; Kantor, M.E.; Brey, H.L.; Olson, H.G.

    1982-01-01

    This paper reviews the current status of the programs for the development of high-temperature gas-cooled reactors (HTGRs) in the major industrial countries of the world. Existing demonstration plants and facilities are briefly described, and national programs for exploiting the unique high-temperature capabilities of the HTGR for commercial production of electricity and in process steam/heat application are discussed. (orig.)

  19. HTGR safety research program. Progress report, April--June 1975

    International Nuclear Information System (INIS)

    Kirk, W.L.

    1975-09-01

    Progress in HTGR safety research is reported under the following headings: fission product technology; primary coolant impurities; structural investigation; safety instrumentation and control systems; phenomena modeling and systems analysis. (JWR)

  20. ORR irradiation experiment OF-1: accelerated testing of HTGR fuel

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Long, E.L. Jr.; Kania, M.J.; Thoms, K.R.; Allen, E.J.

    1977-08-01

    The OF-1 capsule, the first in a series of High-Temperature Gas-Cooled Reactor fuel irradiations in the Oak Ridge Research Reactor, was irradiated for more than 9300 hr at full reactor power (30 MW). Peak fluences of 1.08 x 10 22 neutrons/cm 2 (> 0.18 MeV) were achieved. General Atomic Company's magazine P13Q occupied the upper two-thirds of the test space and the ORNL magazine OF-1 the lower one-third. The ORNL portion tested various HTGR recycle particles and fuel bonding matrices at accelerated flux levels under reference HTGR irradiation conditions of temperature, temperature gradient, and fast fluence exposure

  1. The HTR-10 test reactor project and potential use of HTGR for non-electric application in China

    International Nuclear Information System (INIS)

    Sun Yuliang; Zhong Daxin; Xu Yuanhui; Wu Zhongxin

    1997-01-01

    Coal is the dominant source of energy in China. This use of coal results in two significant problems for China; it is a major burden on the train, road and waterway transportation infrastructures and it is a significant source of environmental pollution. In order to ease the problems caused by the burning of coal and to help reduce the energy supply shortage in China, national policy has directed the development of nuclear power. This includes the erection of nuclear power plants with water cooled reactors and the development of advanced nuclear reactor types, specifically, the high temperature gas cooled reactor (HTGR). The HTGR was chosen for its favorable safety features and its ability to provide high reactor outlet coolant temperatures for efficient power generation and high quality process heat for industrial applications. As the initial modular HTGR development activity within the Chinese High Technology Programme, a 10MW helium cooled test reactor is currently under construction on the site of the Institute of Nuclear Energy Technology northwest of Beijing. This plant features a pebble-bed helium cooled reactor with initial criticality anticipated in 1999. There will be two phases of high temperature heat utilization from the HTR-10. The first phase will utilize a reactor outlet temperature of 700 deg. C with a steam generator providing steam for a steam turbine cycle which works on an electrical/heat co-generation basis. The second phase is planned for a core outlet temperature of 900 deg. C to investigate a steam cycle/gas turbine combined cycle system with the gas turbine and the steam cycle being independently parallel in the secondary side of the plant. This paper provides a review of the technical design, licensing, safety and construction schedule for the HTR-10. It also addresses the potential uses of the HTGR for non-electric applications in China including process steam for the petrochemical industry, heavy oil recovery, coal conversion and

  2. FY 1981 HTGR program summary-level program outline (revision 1/30/81)

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of the DOE HTGR Program is the development of technology for the most important HTGR applications. Through this support, DOE seeks to encourage private sector initiatives which will lead to the development of commercially attractive HTGR applications that concurrently support national energy goals. Currently perceived as important to national energy goals are applications that primarily address the process heat market with a view toward reduction of national requirements for oil, natural gas and coal. A high priority during FY 1981, therefore, will be to further identify and define the details of the Technology Program so as to assure that it is both necessary and sufficient to provide the required support. In the establishment of a supportive Technology Program, key elements which will be addressed are as follows: studies will be conducted to further identify and characterize important unique HTGR applications and to evaluate their potential in the context of market opportunities, utility/user interest, and national objectives to develop new energy supply options; based upon the configurations and operating characteristics projected for selected applications, Technology Program requirements must be identified to support development, verification, and ultimately licensing of components and systems comprising the facilities of interest; and in the context of limited resources, sufficient analysis and evaluation must be accomplished so as to prioritize technology elements in accordance with appropriately developed criteria

  3. Proceedings of the 2nd JAERI symposium on HTGR technologies October 21 ∼ 23, 1992, Oarai, Japan

    International Nuclear Information System (INIS)

    1993-01-01

    The Japan Atomic Energy Research Institute (JAERI) held the 2nd JAERI Symposium on HTGR Technologies on October 21 to 23, 1992, at Oarai Park Hotel at Oarai-machi, Ibaraki-ken, Japan, with support of International Atomic Energy Agency (IAEA), Science and Technology Agency of Japan and the Atomic Energy Society of Japan on the occasion that the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, is now being proceeded smoothly. In this symposium, the worldwide present status of research and development (R and D) of the HTGRs and the future perspectives of the HTGR development were discussed with 47 papers including 3 invited lectures, focusing on the present status of HTGR projects and perspectives of HTGR Development, Safety, Operation Experience, Fuel and Heat Utilization. A panel discussion was also organized on how the HTGRs can contribute to the preservation of global environment. About 280 participants attended the symposium from Japan, Bangladesh, Germany, France, Indonesia, People's Republic of China, Poland, Russia, Switzerland, United Kingdom, United States of America, Venezuela and the IAEA. This paper was edited as the proceedings of the 2nd JAERI Symposium on HTGR Technologies, collecting the 47 papers presented in the oral and poster sessions along with 11 panel exhibitions on the results of research and development associated to the HTTR. (author)

  4. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  5. Preliminary Study on the Development of MIDAS/GCR to Simulate the Plate-out Phenomena from a HTGR

    International Nuclear Information System (INIS)

    Park, Jong-Hwa; Kim, Dong-Ha; Lee, Won-Jae

    2006-01-01

    In HTGR, the dominant removal mechanism of the condensable fission product gas is a 'plate-out' on various kinds of surfaces over the primary coolant loop. The plate-outs are complex phenomena that are dependent on the mass transfer rate from the coolant to the fixed surface, the adsorption and desorption of the gas fission product, the material of the surfaces, the operation temperature, the fission product species, etc. In a normal operation, the important information on a plate-out is the amount and the distribution and the type of isotope. This information is applied to construct a safety engineering system, to calculate the necessary shielding and to estimate the impact on the environment. The status of a model development and available data are performed extensively but the data still has a large uncertainty. The objective of this study is to compare the condensation model of a gas fission product in the MIDAS for a PWR with the PADLOC model for a HTGR developed by GA and to perform a feasibility calculation on OGL-1 with MIDAS. The results of the model review on MIDAS and PADLOC, the feasibility calculation results on OGL-1 with MIDAS and the phenomena to be implemented into MIDAS to simulate the plate-out phenomena from HTGR are identified and listed

  6. Development of seismic analysis model for HTGR core on commercial FEM code

    International Nuclear Information System (INIS)

    Tsuji, Nobumasa; Ohashi, Kazutaka

    2015-01-01

    The aftermath of the Great East Japan Earthquake prods to revise the design basis earthquake intensity severely. In aseismic design of block-type HTGR, the securement of structural integrity of core blocks and other structures which are made of graphite become more important. For the aseismic design of block-type HTGR, it is necessary to predict the motion of core blocks which are collided with adjacent blocks. Some seismic analysis codes have been developed in 1970s, but these codes are special purpose-built codes and have poor collaboration with other structural analysis code. We develop the vertical 2 dimensional analytical model on multi-purpose commercial FEM code, which take into account the multiple impacts and friction between block interfaces and rocking motion on contact with dowel pins of the HTGR core by using contact elements. This model is verified by comparison with the experimental results of 12 column vertical slice vibration test. (author)

  7. New HTGR plant concept with inherently safe features aimed at small energy users needs

    International Nuclear Information System (INIS)

    McDonald, C.F.; Silady, F.S.; Shenoy, A.S.

    1982-01-01

    A small high-temperature gas-cooled reactor (HTGR) concept is proposed which could provide the energy needs for certain sectors of industrialized nations and the developing countries. The key to the economic success for small reactors, which have potential benefits for special markets, lies in altering the traditional scaling laws. Toward this goal, a small HTGR concept embodying passive decay heat removal features is currently being evaluated. This paper emphasizes the safety-related aspects of a small HTGR. The proposed small reactor concept is new and still in the design development stage, and a significant effort must be expended to establish a design which is technically and economically feasible and will meet the increasingly demanding safety and licensing goals for reactors of the future

  8. Recent activities on the HTGR for its commercialization in the 21st century

    International Nuclear Information System (INIS)

    Minatsuki, I.; Uchida, S.; Nomura, S.; Yamada, S.

    1997-01-01

    Currently, the greatest concern about energy is the need to rapidly increase the energy supply, while also conserving energy reserves and protecting the worldwide environment in the coming century. Furthermore, the direct use of thermal energy from nuclear reactors is an effective way to widen the application of nuclear energy. From this standpoint, Mitsubishi Heavy Industries (MHI) has been continuing the various activities related to the High Temperature Gas Cooled Reactor (HTGR). At present, MHI is participating in the High Temperature Engineering Test Reactor (HTTR) project, which is under construction at Oarai promoted by the Japan Atomic Energy Research Institute, as the primary fabricator. Moreover MHI has been conducting research and development to investigate the feasibility of HTGR commercialization in future. In this paper, the results of various studies are summarized to introduce our HTGR activities

  9. Safety aspects of solvent nitration in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Wilbourn, R.G.

    1977-06-01

    Reprocessing of HTGR fuels requires evaporative concentration of uranium and thorium nitrate solutions. The results of a bench-scale test program conducted to assess the safety aspects of planned concentrator operations are reported

  10. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  11. Process options and projected mass flows for the HTGR refabrication scrap recovery system

    International Nuclear Information System (INIS)

    Tiegs, S.M.

    1979-03-01

    The two major uranium recovery processing options reviewed are (1) internal recovery of the scrap by the refabrication system and (2) transfer to and external recovery of the scrap by the head end of the reprocessing system. Each option was reviewed with respect to equipment requirements, preparatory processing, and material accountability. Because there may be a high cost factor on transfer of scrap fuel material to the reprocessing system for recovery, all of the scrap streams will be recycled internally within the refabrication system, with the exception of reject fuel elements, which will be transferred to the head end of the reprocessing system for uranium recovery. The refabrication facility will be fully remote; thus, simple recovery techniques were selected as the reference processes for scrap recovery. Crushing, burning, and leaching methods will be used to recover uranium from the HTGR refabrication scrap fuel forms, which include particles without silicon carbide coatings, particles with silicon carbide coatings, uncarbonized fuel rods, carbon furnace parts, perchloroethylene distillation bottoms, and analytical sample remnants. Mass flows through the reference scrap recovery system were calculated for the HTGR reference recycle facility operating with the highly enriched uranium fuel cycle. Output per day from the refabrication scrap recovery system is estimated to be 4.02 kg of 2355 U and 10.85 kg of 233 U. Maximum equipment capacities were determined, and future work will be directed toward the development and costing of the scrap recovery system chosen as reference

  12. Safety analysis of coupling system of hybrid (MED-RO) nuclear desalination system utilising waste heat from HTGR

    International Nuclear Information System (INIS)

    Raha, Abhijit; Kishore, G.; Rao, I.S.; Adak, A.K.; Srivastava, V.K.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    To meet the generation IV goals, High Temperature Gas Cooled Reactors (HTGRs) are designed to have relatively higher thermal efficiency and enhanced safety and environmental characteristics. It can provide energy for combined production of hydrogen, electricity and other industrial applications. The waste heat available in the HTGR power cycle can also be utilized for the desalination of seawater for producing potable water. Desalination is an energy intensive process, so use of waste heat from HTGR certainly makes desalination process more affordable to create fresh water resources. So design of the coupling system, as per the safety design requirement of nuclear desalination plant, of desalination plant with HTGR is very crucial. In the first part of this paper, design of the coupling system between hybrid Multi Effect Desalination-Reverse Osmosis (MED-RO) nuclear desalination plant and HTGR to utilize the waste heat in HTGR are discussed. In the next part deterministic safety analysis of the designed coupling system of are presented in detail. It was found that all the coupling system meets the acceptance criteria for all the Postulated Initiating Events (PIE's) limited to DBA. (author)

  13. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-7 and -8

    International Nuclear Information System (INIS)

    Valentine, K.H.; Homan, F.J.; Long, E.L. Jr.; Tiegs, T.N.; Montgomery, B.H.; Hamner, R.L.; Beatty, R.L.

    1977-05-01

    The HRB-7 and -8 experiments were designed as a comprehensive test of mixed thorium-uranium oxide fissile particles with Th:U ratios from 0 to 8 for HTGR recycle application. In addition, fissile particles derived from Weak-Acid Resin (WAR) were tested as a potential backup type of fissile particle for HTGR recycle. These experiments were conducted at two temperatures (1250 and 1500 0 C) to determine the influence of operating temperature on the performance parameters studied. The minor objectives were comparison of advanced coating designs where ZrC replaced SiC in the Triso design, testing of fuel coated in laboratory-scale equipment with fuel coated in production-scale coaters, comparison of the performance of 233 U-bearing particles with that of 235 U-bearing particles, comparison of the performance of Biso coatings with Triso coatings for particles containing the same type of kernel, and testing of multijunction tungsten-rhenium thermocouples. All objectives were accomplished. As a result of these experiments the mixed thorium-uranium oxide fissile kernel was replaced by a WAR-derived particle in the reference recycle design. A tentative decision to make this change had been reached before the HRB-7 and -8 capsules were examined, and the results of the examination confirmed the accuracy of the previous decision. Even maximum dilution (Th/U approximately equal to 8) of the mixed thorium-uranium oxide kernel was insufficient to prevent amoeba of the kernels at rates that are unacceptable in a large HTGR. Other results showed the performance of 233 U-bearing particles to be identical to that of 235 U-bearing particles, the performance of fuel coated in production-scale equipment to be at least as good as that of fuel coated in laboratory-scale coaters, the performance of ZrC coatings to be very promising, and Biso coatings to be inferior to Triso coatings relative to fission product retention

  14. Sustainable and safe energy supply with seawater uranium fueled HTGR and its economy

    International Nuclear Information System (INIS)

    Fukaya, Y.; Goto, M.

    2017-01-01

    Highlights: • We discussed uranium resources with an energy security perspective. • We concluded seawater uranium is preferable for sustainability and energy security. • We evaluated electricity generation cost of seawater uranium fueled HTGR. • We concluded electricity generation with seawater uranium is reasonable. - Abstract: Sustainable and safe energy supply with High Temperature Gas-cooled Reactor (HTGR) fueled by uranium from seawater have been investigated and discussed. From the view point of safety feature of self-regulation with thermal reactor of HTGR, the uranium resources should be inexhaustible. The seawater uranium is expected to be alternative resources to conventional resources because it exists so much in seawater as a solute. It is said that 4.5 billion tons of uranium is dissolved in the seawater, which corresponds to a consumption of approximately 72 thousand years. Moreover, a thousand times of the amount of 4.5 trillion tU of uranium, which corresponds to the consumption of 72 million years, also is included in the rock on the surface of the sea floor, and that is also recoverable as seawater uranium because uranium in seawater is in an equilibrium state with that. In other words, the uranium from seawater is almost inexhaustible natural resource. However, the recovery cost with current technology is still expensive compared with that of conventional uranium. Then, we assessed the effect of increase in uranium purchase cost on the entire electricity generation cost. In this study, the economy of electricity generation of cost of a commercial HTGR was evaluated with conventional uranium and seawater uranium. Compared with ordinary LWR using conventional uranium, HTGR can generate electricity cheaply because of small volume of simple direct gas turbine system compared with water and steam systems of LWR, rationalization by modularizing, and high thermal efficiency, even if fueled by seawater uranium. It is concluded that the HTGR

  15. HTGR gas turbine power plant preliminary design

    International Nuclear Information System (INIS)

    Koutz, S.L.; Krase, J.M.; Meyer, L.

    1973-01-01

    The preliminary reference design of the HTGR gas turbine power plant is presented. Economic and practical problems and incentives related to the development and introduction of this type of power plant are evaluated. The plant features and major components are described, and a discussion of its performance, economics, development, safety, control, and maintenance is presented. 4 references

  16. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, M.J.

    1980-01-01

    A control algorithm has been derived for a HTGR Fuel Rod Fabrication Process utilizing the method of Box and Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented

  17. Radiation resistance of pyrocarbon-boned fuel and absorbing elements for HTGR

    International Nuclear Information System (INIS)

    Gurin, V.A.; Konotop, Yu.F.; Odejchuk, N.P.; Shirochenkov, S.D.; Yakovlev, V.K.; Aksenov, N.A.; Kuprienko, V.A.; Lebedev, I.G.; Samsonov, B.V.

    1990-01-01

    In choosing the reactor type, problems of nuclear and radiation safety are outstanding. The analysis of the design and experiments show that HTGR type reactors helium cooled satisfy all the safety requirements. It has been planned in the Soviet Union to construct two HTGR plants, VGR-50 and VG-400. Later it was decided to construct an experimental plant with a low power high temperature reactor (VGM). Spherical uranium-graphite fuel elements with coated fuel particles are supposed to be used in HTGR core. A unique technology for producing spherical pyrocarbon-bound fuel and absorbing elements of monolithic type has been developed. Extended tests were done to to investigate fuel elements behaviour: radiation resistance of coated fuel particles with different types of fuel; influence of the coated fuel particles design on gaseous fission products release; influence of non-sphericity on coated fuel particle performance; dependence of gaseous fission products release from fuel elements on the thickness of fuel-free cans; confining role of pyrocarbon as a factor capable of diminishing the rate of fission products release; radiation resistance of spherical fuel elements during burnup; radiation resistance of spherical absorbing elements to fast neutron fluence and boron burnup

  18. Pre elementary design of primary reformer for hydrogen plant coupled with HTGR type NPP

    International Nuclear Information System (INIS)

    Dedy Priambodo; Erlan Dewita; Sudi Ariyanto

    2012-01-01

    Hydrogen has a high potent for new energy, because of it availability. Steam reforming is a fully developed commercial technology and is the most economical method for production of hydrogen. Steam reforming uses an external source of hot gas to heat tubes in which a catalytic reaction takes place that converts steam and lighter hydrocarbons such as natural gas (methane) or refinery feedstock into hydrogen and carbon monoxide (syngas) at high temperature on primary reformer (800-900°C). Utilization of helium from HTGR as heating medium for primary reformer has consequence to type and shape of its reactor. The main goal of this paper is to determine type/shape and pre elementary design of chemical reactor for the cogeneration system of Hydrogen Plant and HTGR The primary reformer for this system is Fixed Bed Multitube reactor with specification tube: NPS 3,5 Sch 40 ST 40S, 0.281 in thickness, number of tube 849 pieces and ASTM HH 30 for tube material. Tube arrangement is 'triangular pitch' on shell Split-Ring Floating Head from Steel Alloy SA 301 Grade B equipted with 8 baffles. (author)

  19. The HTTR project as the world leader of HTGR research and development

    International Nuclear Information System (INIS)

    Shiozawa, Shusaku; Komori, Yoshihiro; Ogawa, Masuro

    2005-01-01

    As a next generation type nuclear system which will expand nuclear energy use area with high temperature nuclear heat utilization and improve economic competitiveness greatly, High Temperature Gas-cooled Reactor (HTGR) has become the R and D item of prime importance at home as well as abroad to establish hydrogen society to cope with global environmental problems. JAERI has conducted R and D on HTGR as the world leader such as to achieve a reactor outlet coolant temperature of 950 degC in the HTTR (High Temperature Engineering Test Reactor) in April 2004 as the world's first and also to succeed in continuous hydrogen production with a bench-scale apparatus of closed cycle iodine-sulfur (IS) process for six and half hours in August 2003 as the world's first. Overview and present status of HTTR program were presented in details with background and main R and D results as well as international trend of HTGR development and future program on pilot tests facilities for hydrogen production demonstration in Japan. (T. Tanaka)

  20. Feasibility of monitoring the strength of HTGR core support graphite: Part III

    International Nuclear Information System (INIS)

    Morgan, W.C.; Davis, T.J.; Thomas, M.T.

    1983-02-01

    Methods are being developed to monitor, in-situ, the strength changes of graphite core-support components in a High-Temperature Gas-Cooled Reactor (HTGR). The results reported herein pertain to the development of techniques for monitoring the core-support blocks; the PGX graphite used in these studies is the grade used for the core-support blocks of the Fort St. Vrain HTGR, and is coarser-grained than the grades used in our previous investigations. The through-transmission ultrasonic velocity technique, developed for monitoring strength of the core-support posts, is not suitable for use on the core-support blocks. Eddy-current and ultrasonic backscattering techniques have been shown to be capable of measuring the density-depth profile in oxidized PGX and, combined with a correlation of strength versus density, could yield an estimate of the strength-depth profile of in-service HTGR core support blocks. Correlations of strength versus density and other properties, and progress on the development of the eddy-current and ultrasonic backscattering techniques are reported

  1. Uranium loss from BISO-coated weak-acid-resin HTGR fuel

    International Nuclear Information System (INIS)

    Pearson, R.L.; Lindemer, T.B.

    1977-02-01

    Recycle fuel for the High-Temperature Gas-Cooled Reactor (HTGR) contains a weak-acid-resin (WAR) kernel, which consists of a mixture of UC 2 , UO 2 , and free carbon. At 1900 0 C, BISO-coated WAR UC 2 or UC 2 -UO 2 kernels lose a significant portion of their uranium in several hundred hours. The UC 2 decomposes and uranium diffuses through the pyrolytic coating. The rate of escape of the uranium is dependent on the temperature and the surface area of the UC 2 , but not on a temperature gradient. The apparent activation energy for uranium loss, ΔH, is approximately 90 kcal/mole. Calculations indicate that uranium loss from the kernel would be insignificant under conditions to be expected in an HTGR

  2. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  3. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  4. Estimation and control in HTGR fuel rod fabrication

    International Nuclear Information System (INIS)

    Downing, D.J.; Bailey, J.M.

    1980-01-01

    A control algorithm has been derived for an HTGR Fuel Rod Fabrication Process utilizing the method of G.E.P. Box and G.M. Jenkins. The estimator is a Kalman filter and is compared with a Least Square estimator and a standard control chart. The effects of system delays are presented. 1 ref

  5. Reprocessing flowsheet and material balance for MEU spent fuel

    International Nuclear Information System (INIS)

    Abraham, L.

    1978-10-01

    In response to nonproliferation concerns, the high-temperature gas-cooled reactor (HTGR) Fuel Recycle Development Program is investigating the processing requirements for a denatured medium-enriched uranium--thorium (MEU/Th) fuel cycle. Prior work emphasized the processing requirements for a high-enriched uranium--thorium (HEU/Th) fuel cycle. This report presents reprocessing flowsheets for an HTGR/MEU fuel recycle base case. Material balance data have been calculated for reprocessing of spent MEU and recycle fuels in the HTGR Recycle Reference Facility (HRRF). Flowsheet and mass flow effects in MEU-cycle reprocessing are discussed in comparison with prior HEU-cycle flowsheets

  6. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  7. Evaluation of the significance of inverse oxidation for HTGR graphites

    International Nuclear Information System (INIS)

    Lee, B.S.; Heiser, J. III; Sastre, C.

    1983-01-01

    The inverse oxidation refers to a higher mass loss inside the graphite than the outside. In 1980, Wichner et al reported this phenomenon (referred to as inside/out corrosion) observed in some H451 graphites, and offered an explanation that a catalyst (almost certainly Fe) is activated by the progressively increasing reducing conditions found in the graphite interior. Recently, Morgan and Thomas (1982) investigated this phenomenon is PGX graphites, and agreed on the existing mechanism to explain this pheomenon. They also called for attention to the possibility that this phenomenon may occur under HTGR (High Temperature Gas-Cooled Reactor) operating conditions. The purpose of this paper is to confirm the above mentioned explanation for this phenomenon and to evaluate the significance of this effect for HTGR graphites under realistic reactor conditions

  8. Very small HTGR nuclear power plant concepts for special terrestrial applications

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  9. Potential of the HTGR hydrogen cogeneration system in Japan

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Mouri, Tomoaki; Kunitomi, Kazuhiko

    2007-01-01

    A high temperature gas cooled reactor (HTGR) is one of the next generation nuclear systems. The HTGR hydrogen cogeneration system can produce not only electricity but also hydrogen. Then it has a potential to supply massive low-cost hydrogen without greenhouse gas emission for the future hydrogen society. Japan Atomic Energy Agency (JAEA) has been carried out the design study of the HTGR hydrogen cogeneration system (GTHTR300C). The thermal power of the reactor is 600 MW. The hydrogen production plant utilizes 370 MW and can supply 52,000 m 3 /h (0.4 Bm 3 /y) of hydrogen. Present industrial hydrogen production capacity in Japan is about 18 Bm 3 /y and it will decrease by 15 Bm 3 /y in 2030 due to the aging facilities. On the other hand, the hydrogen demand for fuel cell vehicle (FCV) in 2030 is estimated at 15 Bm 3 /y at a maximum. Since the hydrogen supply may be short after 2030, the additional hydrogen should be produced by clean hydrogen process to reduce greenhouse gas emission. This hydrogen shortage is a potential market for the GTHTR300C. The hydrogen production cost of GTHTR300C is estimated at 20.5 JPY/Nm 3 which has an economic competitiveness against other industrial hydrogen production processes. 38 units of the GTHTR300C can supply a half of this shortage which accounts for the 33% of hydrogen demand for FCV in 2100. According to the increase of hydrogen demand, the GTHTR300C should be constructed after 2030. (author)

  10. Recent evolution of HTGR instrumentation in the USA

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1982-06-01

    The reactor instrumentation system for the 2240 MW(t) HTGR includes ex-core neutron detectors for automatic nuclear power control, separate ex-core neutron detectors for automatic protection purposes (reactor trip), reactor core outlet thermocouples that measure the temperature of the primary coolant (helium) as it exits the nuclear core, cold helium thermocouples that measure the temperature of the primary coolant as it enters the core, external pressure differential gages that measure primary coolant flow, in-core fission chambers that are utilized to map neutron flux, and ex-core primary coolant moisture monitors. All of these subsystems, except for the in-core flux mapping units, are also part of the Fort St. Vrain HTGR, which has provided significant experience for the design of the new system. In-core flux mapping is not necessary at FSV for normal operation because its relatively small core is fairly ''visible'' from the location of the ex-core instruments. However, temporary in-core fission couples, microphones, and displacement sensors, as well as sensitive ex-core accelerometers were utilized to identify periodic core block lateral movement and measure neutron flux and primary coolant temperatures. A search for in-core sensors to facilitate mapping neutron flux distributions in the larger core of the 2240 MW(t) HTGR has led to the selection of a high temperature fission chamber, which has been tested up to 1000 deg. C at General Atomic. The chamber shows adequate signal to noise ratio and repeatability. Other reactor instruments planned for the 2240 MW(t) are of the FSV type (i.e. thermocouples) or improved versions of the FSV design (i.e. moisture monitors). New concepts such as acoustic thermometers are also being considered

  11. Comparisons among different development ways of advanced reactors in China

    International Nuclear Information System (INIS)

    Guo Xingqu; Lin Jianwen; Wang Ruoli

    1992-03-01

    For the development of nuclear energy in the 21st century, China will select a new type reactor to develop, which will have higher fuel efficiency, high safety and better economics. The selection is among the types of FBR (fast breeder reactor), HTGR (high temperature gas-cooled reactor) and FFHR (fusion-fission hybrid reactor). Since the evaluation of advanced reactors involves many uncertain factors and the difficulty of quantization, both the AHP (analytic hierarchy process) method and expert consultation are adopted. Four aspects are taken in the norm system of AHP, i.e. safety, maturity of technology, economy and appropriateness. By using questionnaire method to experts and studying related documents, five types of advanced reactor are selected, i.e. oxide fueled FBR, metal fueled FBR, uranium fueled HTGR, U-Th fueled HTGR and FFBR. Their evaluation parameters are a comprehensively assessed and sorted. About 130 experts and professors who have been working in the research institutes and government agencies of nuclear field are asked to give their comments on the development of advanced reactors. The response rate of questionnaires is 86%, and the data collected are processed by computers. From the evaluation result of AHP method and expert consultation of the fast breeder reactor, especially, the metal fueled FBR, should have the priority in nuclear energy development in the 21st century in China

  12. Sensitivity and Uncertainty Analysis of IAEA CRP HTGR Benchmark Using McCARD

    International Nuclear Information System (INIS)

    Jang, Sang Hoon; Shim, Hyung Jin

    2016-01-01

    The benchmark consists of 4 phases starting from the local standalone modeling (Phase I) to the safety calculation of coupled system with transient situation (Phase IV). As a preliminary study of UAM on HTGR, this paper covers the exercise 1 and 2 of Phase I which defines the unit cell and lattice geometry of MHTGR-350 (General Atomics). The objective of these exercises is to quantify the uncertainty of the multiplication factor induced by perturbing nuclear data as well as to analyze the specific features of HTGR such as double heterogeneity and self-shielding treatment. The uncertainty quantification of IAEA CRP HTGR UAM benchmarks were conducted using first-order AWP method in McCARD. Uncertainty of the multiplication factor was estimated only for the microscopic cross section perturbation. To reduce the computation time and memory shortage, recently implemented uncertainty analysis module in MC wielandt calculation was adjusted. The covariance data of cross section was generated by NJOY/ERRORR module with ENDF/B-VII.1. The numerical result was compared with evaluation result of DeCART/MUSAD code system developed by KAERI. IAEA CRP HTGR UAM benchmark problems were analyzed using McCARD. The numerical results were compared with Serpent for eigenvalue calculation and DeCART/MUSAD for S/U analysis. In eigenvalue calculation, inconsistencies were found in the result with ENDF/B-VII.1 cross section library and it was found to be the effect of thermal scattering data of graphite. As to S/U analysis, McCARD results matched well with DeCART/MUSAD, but showed some discrepancy in 238U capture regarding implicit uncertainty.

  13. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  14. Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

    Directory of Open Access Journals (Sweden)

    Kępisty Grzegorz

    2015-09-01

    Full Text Available In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5. The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

  15. Irradiation Performance of HTGR Fuel in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Ueta, Shohei; Sakaba, Nariaki; Shaimerdenov, Asset; Gizatulin, Shamil; Chekushina, Lyudmila; Chakrov, Petr; Honda, Masaki; Takahashi, Masashi; Kitagawa, Kenichi

    2014-01-01

    A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO_2 (less than 10 % of "2"3"5U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel. (author)

  16. Overview of HTGR heat utilization system development at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Akino, N.; Shimizu, S.; Hada, K.; Inagaki, Y.; Onuki, K.; Takeda, T.; Nishihara, T.

    1998-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted research and development of nuclear heat utilization systems of a High Temperature Gas cooled Reactor (HTGR), which are capable to meet a large amount of energy demand without significant CO 2 emission to relax the global warming issue. The High Temperature engineering Test Reactor (HTTR) with thermal output of 30 MW and outlet coolant temperature of 950 deg C, the first HTGR in Japan, is under construction on the JAERI site, and its first criticality is scheduled for mid-1998. After the reactor performance and safety demonstration tests for several years, a hydrogen production system will be connected to the HTTR. A demonstration program on hydrogen production started in January 1997, in JAERI, as a study consigned by the Science and Technology Agency. A hydrogen production system connected to the HTTR is designed to be able to produce hydrogen by steam reforming of natural gas, using nuclear heat of 10 MW from the HTTR. The safety principle and standard are investigated for the HTTR hydrogen production system. In order to confirm safety, controllability and performance of key components in the HTTR hydrogen production system, an out-of-pile test facility on the scale of approximately 1/30 of the HTTR hydrogen production system is installed. It is equipped with an electric heater as a heat source instead of the HTTR. The out-of-pile test will be performed for four years after 2001. The HTTR hydrogen production system will be demonstratively operated after 2005 at its earliest plan. Other basic studies on the hydrogen production system using thermochemical water splitting, an iodine sulphur (IS) process, and technology of distant heat transport with microencapsulated phase change material have been carried out for more effective and various uses of nuclear heat. (author)

  17. An Experiment on the Carbonization of Fuel Compact Matrix Graphite for HTGR

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Joo Hyoung; Cho, Moon Sung

    2012-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a properly prepared matrix graphite powder, pressed into a spherical shape or a cylindrical compact, and finally heat-treated at about 1800 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, over coating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K, In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is of extreme importance to investigate the relationship among the process parameters of the matrix graphite powder preparation, fabrication parameters of fuel element green compact and the carbonization condition, which has a strong influence on further steps and the material properties of fuel element. In this work, the carbonization behavior of green compact samples prepared from the matrix graphite powder mixtures with different binder materials was investigated in order to elucidate the behavior of binders during the carbonization heat treatment by analyzing the change in weight, density and its

  18. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  19. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  20. Application of the lines of protection concept to the HTGR-SC/C

    International Nuclear Information System (INIS)

    1981-09-01

    This study of the application of the line of protection (LOP) concept to high temperature gas-cooled reactors (HTGRs) was motivated by a desire to develop a simple and straightforward HTGR safety concept that embodies many of the more complicated and seemingly conflicting concepts facing nuclear industry safety today. These concepts include: (1) defense in depth; (2) design basis events; (3) core damage events (degraded cores); (4) probabilistic analysis and risk assessment; (5) numerical safety goals; and (6) plant investment protection. The LOP concept described herein attempts to incorporate many of the important principles of each into a cohesive framework which provides an overall logic, meaning, and direction for conducting HTGR design and research activities

  1. Proceedings of the 1st JAERI symposium on HTGR technologies

    International Nuclear Information System (INIS)

    1990-07-01

    This report was edited as the Proceedings of the 1st JAERI Symposium on HTGR Technologies, - Design, Licensing Requirements and Supporting Technologies -, collecting the 21 papers presented in the Symposium. The 19 of the presented papers are indexed individually. (J.P.N.)

  2. 60-MW/sub t/ methanation plant design for HTGR process heat

    International Nuclear Information System (INIS)

    Davis, C.R.; Arcilla, N.T.; Hui, M.M.; Hutchins, B.A.

    1982-07-01

    This report describes a 60 MW(t) Methanation Plant for generating steam for industrial applications. The plant consists of four 15 MW(t) methanation trains. Each train is connected to a pipeline and receives synthesis gas (syngas) from a High Temperature Gas-Cooled Reactor Reforming (HTGR-R) plant. Conversion of the syngas to methane and water releases exothermic heat which is used to generate steam. Syngas is received at the Methanation Plant at a temperature of 80 0 F and 900 psia. One adiabatic catalytic reactor and one isothermal catalytic reactor, in each methanation train, converts the syngas to 92.2% (dry bases) methane. Methane and condensate are returned at temperatures of 100 to 125 0 F and at pressures of 860 to 870 psia to the HTGR-R plant for the reproduction of syngas

  3. HTGR-GT primary coolant transient resulting from postulated turbine deblading

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Deremer, R.K.

    1980-11-01

    The turbomachine is located within the primary coolant system of a nuclear closed cycle gas turbine plant (HTGR-GT). The deblading of the turbine can cause a rapid pressure equilibration transient that generates significant loads on other components in the system. Prediction of and design for this transient are important aspects of assuring the safety of the HTGR-GT. This paper describes the adaptation and use of the RATSAM program to analyze the rapid fluid transient throughout the primary coolant system during a spectrum of turbine deblading events. Included are discussions of (1) specific modifications and improvements to the basic RATSAM program, which is also briefly described; (2) typical results showing the expansion wave moving upstream from the debladed turbine through the primary coolant system; and (3) the effect on the transient results of different plenum volumes, flow resistances, times to deblade, and geometries that can choke the flow

  4. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved

  5. Overall simulation of a HTGR plant with the gas adapted MANTA code

    International Nuclear Information System (INIS)

    Emmanuel Jouet; Dominique Petit; Robert Martin

    2005-01-01

    Full text of publication follows: AREVA's subsidiary Framatome ANP is developing a Very High Temperature Reactor nuclear heat source that can be used for electricity generation as well as cogeneration including hydrogen production. The selected product has an indirect cycle architecture which is easily adapted to all possible uses of the nuclear heat source. The coupling to the applications is implemented through an Intermediate Heat exchanger. The system code chosen to calculate the steady-state and transient behaviour of the plant is based on the MANTA code. The flexible and modular MANTA code that is originally a system code for all non LOCA PWR plant transients, has been the subject of new developments to simulate all the forced convection transients of a nuclear plant with a gas cooled High Temperature Reactor including specific core thermal hydraulics and neutronics modelizations, gas and water steam turbomachinery and control structure. The gas adapted MANTA code version is now able to model a total HTGR plant with a direct Brayton cycle as well as indirect cycles. To validate these new developments, a modelization with the MANTA code of a real plant with direct Brayton cycle has been performed and steady-states and transients compared with recorded thermal hydraulic measures. Finally a comparison with the RELAP5 code has been done regarding transient calculations of the AREVA indirect cycle HTR project plant. Moreover to improve the user-friendliness in order to use MANTA as a systems conception, optimization design tool as well as a plant simulation tool, a Man- Machine-Interface is available. Acronyms: MANTA Modular Advanced Neutronic and Thermal hydraulic Analysis; HTGR High Temperature Gas-Cooled Reactor. (authors)

  6. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  7. INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE

    Directory of Open Access Journals (Sweden)

    Sudarmono Sudarmono

    2015-03-01

    Full Text Available The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR. Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generation system, which has high energy efficiency, and has high and clean inherent safety level. The geometry and structure of the HTGR200 core are designed to produce the output of helium gas coolant temperature as high as 950 °C to be used for hydrogen production and other industrial processes in co-generative way. The output of very high temperature helium gas will cause thermal stress on the fuel pebble that threats the integrity of fission product confinement. Therefore, it is necessary to perform thermal-flow evaluation to determine the temperature distribution in the graphite and fuel pebble in the HTGR core. The evaluation was carried out by Thermix-Konvek module code that has been already integrated into VSOP'94 code. The HTGR core geometry was done using BIRGIT module code for 2-D model (RZ model with 5 channels of pebble flow in active core in the radial direction. The evaluation results showed that the highest and lowest temperatures in the reactor core are 999.3 °C and 886.5 °C, while the highest temperature of TRISO UO2 is 1510.20 °C in the position (z= 335.51 cm; r=0 cm. The analysis done based on reactor condition of 120 kg/s of coolant mass flow rate, 7 MPa of pressure and 200 MWth of power. Compared to the temperature distribution resulted between VSOP’94 code and fuel temperature limitation as high as 1600 oC, there is enough safety margin from melting or disintegrating. Keywords: Thermal-Flow, VSOP’94, Thermix-Konvek, HTGR, temperature

  8. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  9. Progress report on the k{sub infinity} measurements of HTGR type lattices with the oscillation technique at zero reactivity; Rapport d'advancement sur les mesures de K {sub infinite} des reseaux du type HTGR avec la technique de l'oscillateur a'reactivite' nulle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1971-01-15

    The principles of measuring k {sub infinity} for a HTGR lattice using the oscillation technique with zero reactivity were already presented at the ''9th reactor physics meeting of countries participating in the Dragon project''. A brief summary of the essential characteristics of the experiment is followed by a status report on present work.

  10. The investigation of HTGR fuel regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, L N; Bertina, L E; Popik, V P; Isakov, V P; Alkhimov, N B; Pokhitonov, Yu A

    1985-07-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning.

  11. The investigation of HTGR fuel regeneration process

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Bertina, L.E.; Popik, V.P.; Isakov, V.P.; Alkhimov, N.B.; Pokhitonov, Yu.A.

    1985-01-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning

  12. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  13. Optimization of MOX fuel cycles in pebble bed HTGR

    International Nuclear Information System (INIS)

    Wei Jinfeng; Li Fu; Sun Yuliang

    2013-01-01

    Compared with light water reactor (LWR), the pebble bed high temperature gas-cooled reactor (HTGR) is able to operate in a full mixed oxide (MOX) fuelled core without significant change to core structure design. Based on a reference design of 250 MW pebble bed HTGR, four MOX fuel cycles were designed and evaluated by VSOP program package, including the mixed Pu-U fuel pebbles and mixed loading of separate Pu-pebbles and U-pebbles. Some important physics features were investigated and compared for these four cycles, such as the effective multiplication factor of initial core, the pebble residence time, discharge burnup, and temperature coefficients. Preliminary results show that the overall performance of one case is superior to other equivalent MOX fuel cycles on condition that uranium fuel elements and plutonium fuel elements are separated as the different fuel pebbles and that the uranium fuel elements are irradiated longer in the core than the plutonium fuel elements, and the average discharge burnup of this case is also higher than others. (authors)

  14. European research and development on HTGR process heat applications

    International Nuclear Information System (INIS)

    Verfondern, Karl; Lensa, Werner von

    2003-01-01

    The High-Temperature Gas-Cooled Reactor represents a suitable and safe concept of a future nuclear power plant with the potential to produce process heat to be utilized in many industrial processes such as reforming of natural gas, coal gasification and liquefaction, heavy oil recovery to serve for the production of the storable commodities hydrogen or energy alcohols as future transportation fuels. The paper will include a description of the broad range of applications for HTGR process heat and describe the results of the German long-term projects ''Prototype Nuclear Process Heat Reactor Project'' (PNP), in which the technical feasibility of an HTGR in combination with a chemical facility for coal gasification processes has been proven, and ''Nuclear Long-Distance Energy Transportation'' (NFE), which was the demonstration and verification of the closed-cycle, long-distance energy transmission system EVA/ADAM. Furthermore, new European research initiatives are shortly described. A particular concern is the safety of a combined nuclear/chemical facility requiring a concept against potential fire and explosion hazards. (author)

  15. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model.

    Science.gov (United States)

    Sasaki, Takashi; Mita, Moeko; Ikari, Naho; Kuboyama, Ayane; Hashimoto, Shuzo; Kaneko, Tatsuya; Ishiguro, Masaji; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2017-01-01

    TGR5, a member of the G protein-coupled receptor (GPCR) family, is activated by bile acids. Because TGR5 promotes energy expenditure and improves glucose homeostasis, it is recognized as a key target in treating metabolic diseases. We previously showed that nomilin, a citrus limonoid, activates TGR5 and confers anti-obesity and anti-hyperglycemic effects in mice. Information on the TGR5-nomilin interaction regarding molecular structure, however, has not been reported. In the present study, we found that human TGR5 (hTGR5) shows higher nomilin responsiveness than does mouse TGR5 (mTGR5). Using mouse-human chimeric TGR5, we also found that three amino acid residues (Q77ECL1, R80ECL1, and Y893.29) are important in the hTGR5-nomilin interaction. Based on these results, an hTGR5-nomilin binding model was constructed using in silico docking simulation, demonstrating that four hydrophilic hydrogen-bonding interactions occur between nomilin and hTGR5. The binding mode of hTGR5-nomilin is vastly different from those of other TGR5 agonists previously reported, suggesting that TGR5 forms various binding patterns depending on the type of agonist. Our study promotes a better understanding of the structure of TGR5, and it may be useful in developing and screening new TGR5 agonists.

  16. Reduction on high level radioactive waste volume and geological repository footprint with high burn-up and high thermal efficiency of HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Yuji, E-mail: fukaya.yuji@jaea.go.jp; Nishihara, Tetsuo

    2016-10-15

    Highlights: • We evaluate the number of canisters and its footprint for HTGR. • We proposed new waste loading method for direct disposal of HTGR. • HTGR can significantly reduce HLW volume compared with LWR. - Abstract: Reduction on volume of High Level radioactive Waste (HLW) and footprint in a geological repository due to high burn-up and high thermal efficiency of High Temperature Gas-cooled Reactor (HTGR) has been investigated. A helium-cooled and graphite-moderated commercial HTGR was designed as a Gas Turbine High Temperature Reactor (GTHTR300), and that has particular features such as significantly high burn-up of approximately 120 GWd/t, high thermal efficiency around 50%, and pin-in-block type fuel. The pin-in-block type fuel was employed to reduce processed graphite volume in reprocessing. By applying the feature, effective waste loading method for direct disposal is proposed in this study. By taking into account these feature, the number of HLW canister generations and its repository footprint are evaluated by burn-up fuel composition, thermal calculation and criticality calculation in repository. As a result, it is found that the number of canisters and its repository footprint per electricity generation can be reduced by 60% compared with Light Water Reactor (LWR) representative case for direct disposal because of the higher burn-up, higher thermal efficiency, less TRU generation, and effective waste loading proposed in this study for HTGR. But, the reduced ratios change to 20% and 50% if the long term durability of LWR canister is guaranteed. For disposal with reprocessing, the number of canisters and its repository footprint per electricity generation can be reduced by 30% compared with LWR because of the 30% higher thermal efficiency of HTGR.

  17. Beam processing of advanced materials

    International Nuclear Information System (INIS)

    Singh, J.; Copley, S.M.

    1993-01-01

    International Conference on Beam Processing of Advanced Materials was held at the Fall TMS/ASM Materials Week at Chicago, Illinois, November 2--5, 1992. The symposium was devoted to the recent advances in processing of materials by an energy source such as laser, electron, ion beams, etc. The symposium served as a forum on the science of beam-induced materials processing and implications of this science to practical implementation. An increased emphasis on obtaining an understanding of the fundamental mechanisms of beam-induced surface processes was a major trend observed at this years symposium. This has resulted in the increased use of advanced diagnostic techniques and modeling studies to determine the rate controlling steps in these processes. Individual papers have been processed separately for inclusion in the appropriate data bases

  18. Research program of the high temperature engineering test reactor for upgrading the HTGR technology

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Tachibana, Yukio; Takeda, Takeshi; Saikusa, Akio; Sawa, Kazuhiro

    1997-07-01

    The High Temperature Engineering Test Reactor (HTTR) is a graphite-moderated and helium-cooled reactor with an outlet power of 30 MW and outlet coolant temperature of 950degC, and its first criticality will be attained at the end of 1997. In the HTTR, researches establishing and upgrading the technology basis necessary for an HTGR and innovative basic researches for a high temperature engineering will be conducted. A research program of the HTTR for upgrading the technology basis for the HTGR was determined considering realization of future generation commercial HTGRs. This paper describes a research program of the HTTR. (author)

  19. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  1. STAT, GAPS, STRAIN, DRWDIM: a system of computer codes for analyzing HTGR fuel test element metrology data. User's manual

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.

    1977-08-01

    A system of computer codes has been developed to statistically reduce Peach Bottom fuel test element metrology data and to compare the material strains and fuel rod-fuel hole gaps computed from these data with HTGR design code predictions. The codes included in this system are STAT, STRAIN, GAPS, and DRWDIM. STAT statistically evaluates test element metrology data yielding fuel rod, fuel body, and sleeve irradiation-induced strains; fuel rod anisotropy; and additional data characterizing each analyzed fuel element. STRAIN compares test element fuel rod and fuel body irradiation-induced strains computed from metrology data with the corresponding design code predictions. GAPS compares test element fuel rod, fuel hole heat transfer gaps computed from metrology data with the corresponding design code predictions. DRWDIM plots the measured and predicted gaps and strains. Although specifically developed to expedite the analysis of Peach Bottom fuel test elements, this system can be applied, without extensive modification, to the analysis of Fort St. Vrain or other HTGR-type fuel test elements.

  2. Granular effect on the effective cross sections in the HTGR type reactors

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de.

    1975-01-01

    Effective cross section of bars for HTGR is studied from the point of view of heterogeneity. Microscopical heterogeneity due to grains is represented by a self-shielding factor, which is well determined [pt

  3. INVESTIGATION ON THERMAL-FLOW CHARACTERISTICS OF HTGR CORE USING THERMIX-KONVEK MODULE AND VSOP'94 CODE

    OpenAIRE

    Sudarmono Sudarmono

    2015-01-01

    The failure of heat removal system of water-cooled reactor such as PWR in Three Mile Islands and Fukushima Daiichi BWR makes nuclear society starting to consider the use of high temperature gas-cooled reactor (HTGR). Reactor Physics and Technology Division – Center for Nuclear Reactor Safety and Technology  (PTRKN) has tasks to perform research and development on the conceptual design of cogeneration gas cooled reactor with medium power level of 200 MWt. HTGR is one of nuclear energy generati...

  4. Quality control procedures for HTGR fuel element components

    International Nuclear Information System (INIS)

    Delle, W.W.; Koizlik, K.; Luhleich, H.; Nickel, H.

    1976-08-01

    The growing use of nuclear reactors for the production of electric power throughout the world, and the consequent increase in the number of nuclear fuel manufacturers, is giving enhanced importance to the consideration of quality assurance in the production of nuclear fuels. The fuel is the place, where the radioactive fission products are produced in the reactor and, therefore, the integrity of the fuel is of utmost importance. The first and most fundamental means of insuring that integrity is through the exercise of properly designed quality assurance programmes during the manufacture of the fuel and other fuel element components. The International Atomic Energy Agency therefore conducted an International Seminar on Nuclear Fuel Quality Assurance in Oslo, Norway from 24 till 28 May, 1976. This KFA report contains a paper which was distributed preliminary during the seminar and - in the second part - the text of the oral presentation. The paper gives a summary of the procedures available in the present state for the production control of HTGR core materials and of the meaning of the particular properties for reactor operation. (orig./UA) [de

  5. Conceptual design of small-sized HTGR system (3). Core thermal and hydraulic design

    International Nuclear Information System (INIS)

    Inaba, Yoshitomo; Sato, Hiroyuki; Goto, Minoru; Ohashi, Hirofumi; Tachibana, Yukio

    2012-06-01

    The Japan Atomic Energy Agency has started the conceptual designs of small-sized High Temperature Gas-cooled Reactor (HTGR) systems, aiming for the 2030s deployment into developing countries. The small-sized HTGR systems can provide power generation by steam turbine, high temperature steam for industry process and/or low temperature steam for district heating. As one of the conceptual designs in the first stage, the core thermal and hydraulic design of the power generation and steam supply small-sized HTGR system with a thermal power of 50 MW (HTR50S), which was a reference reactor system positioned as a first commercial or demonstration reactor system, was carried out. HTR50S in the first stage has the same coated particle fuel as HTTR. The purpose of the design is to make sure that the maximum fuel temperature in normal operation doesn't exceed the design target. Following the design, safety analysis assuming a depressurization accident was carried out. The fuel temperature in the normal operation and the fuel and reactor pressure vessel temperatures in the depressurization accident were evaluated. As a result, it was cleared that the thermal integrity of the fuel and the reactor coolant pressure boundary is not damaged. (author)

  6. A new small HTGR power plant concept with inherently safe features--An engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    This paper outlines a small nuclear plant concept which is not meant to replace the large nuclear power plants that will continue to be needed by the industrialized nations, but rather recognizes the needs of the smaller energy user, both for special applications in the US and for the developing nations. The small High-Temperature Gas-Cooled Reactor (HTGR), whose introduction will be very dependent on market forces, represents only one approach to meet these needs. The design of a small power plant that could be inherently safer and that might have costs less than those indicated by the traditional reverse-economy-of-scale effect is discussed. Topics considered include power plant economics, the small steam cycle HTGR thermodynamic cycle, the reactor nuclear heat source layout, the reactor heat removal system (main loop cooling, a vessel cooling system with reactor pressurized, vessel cooling system with reactor depressurized), safety considerations, investment risk protection, the technology base, and applications for the small HTGR plant concept

  7. Interim development report: engineering-scale HTGR fuel particle crusher

    International Nuclear Information System (INIS)

    Baer, J.W.; Strand, J.B.

    1978-09-01

    During the reprocessing of HTGR fuel, a double-roll crusher is used to fracture the silicon carbide coatings on the fuel particles. This report describes the development of the roll crusher used for crushing Fort-St.Vrain type fissile and fertile fuel particles, and large high-temperature gas-cooled reactor (LHTGR) fissile fuel particles. Recommendations are made for design improvements and further testing

  8. HTGR Metallic Reactor Internals Core Shell Cutting & Machining Antideformation Technique Study

    International Nuclear Information System (INIS)

    Xing Huiping; Xue Song

    2014-01-01

    The reactor shell assembly of HTGR nuclear power station demonstration project metallic reactor internals is key components of reactor, remains with high-precision large component with large-sized thin-walled straight cylinder-shaped structure, and is the first manufacture in China. As compared with other reactor shell, it has a larger ID (Φ5360mm), a longer length (19000mm), a smaller wall thickness (40mm) and a higher precision requirement. During the process of manufacture, the deformation due to cutting & machining will directly affect the final result of manufacture, the control of structural deformation and cutting deformation shall be throughout total manufacture process of such assembly. To realize the control of entire core shell assembly geometry, the key is to innovate and make breakthroughs on anti-deformation technique and then provide reliable technological foundations for the manufacture of HTGR metallic reactor internals. (author)

  9. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  10. Summary of ORNL work on NRC-sponsored HTGR safety research, July 1974-September 1980

    International Nuclear Information System (INIS)

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Delene, J.G.; Harrington, R.M.; Hatta, M.; Hedrick, R.A.; Johnson, L.G.; Sanders, J.P.

    1982-03-01

    A summary is presented of the major accomplishments of the Oak Ridge National Laboratory (ORNL) research program on High-Temperature Gas-Cooled Reactor (HTGR) safety. This report is intended to help the nuclear Regulatory Commission establish goals for future research by comparing the status of the work here (as well as at other laboratories) with the perceived safety needs of the large HTGR. The ORNL program includes extensive work on dynamics-related safety code development, use of codes for studying postulated accident sequences, and use of experimental data for code verification. Cooperative efforts with other programs are also described. Suggestions for near-term and long-term research are presented

  11. Scoping study of flowpath of simulated fission products during secondary burning of crushed HTGR fuel in a quartz fluidized-bed burner

    International Nuclear Information System (INIS)

    Rindfleisch, J.A.; Barnes, V.H.

    1976-04-01

    The results of four experimental runs in which isotopic tracers were used to simulate fission products during fluidized bed secondary burning of HTGR fuel were studied. The experimental tests provided insight relative to the flow path of fission products during fluidized-bed burning of HTGR fuel

  12. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  13. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  14. Concept of safe tank-type water cooled and moderated reactor with HTGR microparticle fuel compacts

    International Nuclear Information System (INIS)

    Gol'tsev, A.O.; Kukharkin, N.E.; Mosevitskij, I.S.; Ponomarev-Stepnoj, N.N.; Popov, S.V.; Udyanskij, Yu.N.; Tsibul'skij, V.F.

    1993-01-01

    Concept of safe tank-type water-cooled and moderated reactor on the basis of HTGR fuel microparticles which enable to avoid environment contamination with radioactive products under severe accidents, is proposed. Results of neutron-physical and thermal-physical studies of water cooled and moderated reactor with HTGR microparticle compacts are presented. Characteristics of two reactors with thermal power of 500 and 1500 MW are indicated within the concept frames. The reactor behaviour under severe accident connected with complete loss of water coolant is considered. It is shown that under such an accident the fission products release from fuel microparticles does not occur

  15. Thermal transport properties of helium, helium--air mixtures, water, and tubing steel used in the CACHE program to compute HTGR auxiliary heat exchanger performance

    International Nuclear Information System (INIS)

    Tallackson, J.R.

    1976-02-01

    A description is presented of the thermal transport properties of the materials involved in digital computer calculations of heat transfer rates by the core auxiliary heat exchangers in large HTGR nuclear steam supply systems. These materials are pure helium, mixtures of helium with common gases having molecular weights in the range of 28 to 32, alloy steel tubing, and water. For use in programmed computations the viscosity, thermal conductivity, and specific heat are represented primarily by equations augmented by curves and tabulations. Materials supporting the development and selection of the property equations are included

  16. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  17. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    International Nuclear Information System (INIS)

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; Reif, Tyler J.; Morris, Robert N.; Hunn, John D.

    2017-01-01

    Highlights: • The minimum required uranium carbide content for HTGR UCO fuel kernels is calculated. • More nuclear and chemical factors have been included for more useful predictions. • The effect of transmutation products, like Pu and Np, on the oxygen distribution is included for the first time. - Abstract: Three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from O release when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. In the HTGR kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium apart from UO 2 in the form of a carbide, UC x and this fuel form is designated UCO. Here general oxygen balance formulas were developed for calculating the minimum UC x content to ensure negligible CO formation for 15.5% enriched UCO taken to 16.1% actinide burnup. Required input data were obtained from CALPHAD (CALculation of PHAse Diagrams) chemical thermodynamic models and the Serpent 2 reactor physics and depletion analysis tool. The results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmuted Pu and Np oxides on the oxygen distribution as the fuel kernel composition evolves with burnup.

  18. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  19. Heat extraction from HTGR reactor

    International Nuclear Information System (INIS)

    Balajka, J.; Princova, H.

    1986-01-01

    The analysis of an HTGR reactor energy balance showed that steam reforming of natural gas or methane is the most suitable process of utilizing the high-temperature heat. Basic mathematical relations are derived allowing to perform a general energy balance of the link between steam reforming and reactor heat output. The results of the calculation show that the efficiency of the entire reactor system increases with increasing proportion of heat output for steam reforming as against heat output for the steam generator. This proportion, however, is limited with the output helium temperature from steam reforming. It is thus always necessary to use part of the reactor heat output for the steam cycle involving electric power generation or low-potential heat generation. (Z.M.)

  20. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    2010-03-01

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  1. Selection of JAERI'S HTGR-GT concept

    International Nuclear Information System (INIS)

    Muto, Y.; Ishiyama, S.; Shiozawa, S.

    2001-01-01

    In JAERI, a feasibility study of HTGR-GT has been conducted as an assigned work from STA in Japan since January 1996. So far, the conceptual or preliminary designs of 600, 400 and 300 MW(t) power plants have been completed. The block type core and pebble-bed core have been selected in 600 MW(t) and 400/300 MW(t), respectively. The gas-turbine system adopts a horizontal single shaft rotor and then the power conversion vessel is separated into a turbine vessel and a heat exchanger vessel. In this paper, the issues related to the selection of these concepts are technically discussed. (author)

  2. SONATINA-1: a computer program for seismic response analysis of column in HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1980-11-01

    An computer program SONATINA-1 for predicting the behavior of a prismatic high-temperature gas-cooled reactor (HTGR) core under seismic excitation has been developed. In this analytical method, blocks are treated as rigid bodies and are constrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions. Coulomb friction between blocks and between dowel holes and pins is also considered. A spring dashpot model is used for the collision process between adjacent blocks and between blocks and boundary walls. Analytical results are compared with experimental results and are found to be in good agreement. The computer program can be used to predict the behavior of the HTGR core under seismic excitation. (author)

  3. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  4. Safety and licensing analyses for the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Ball, S.J.; Conklin, J.C.; Harrington, R.M.; Cleveland, J.C.; Clapp, N.E. Jr.

    1982-01-01

    The Oak Ridge National Laboratory (ORNL) safety analysis program for the HTGR includes development and verification of system response simulation codes, and applications of these codes to specific Fort St. Vrain reactor licensing problems. Licensing studies addressed the oscillation problems and the concerns about large thermal stresses in the core support blocks during a postulated accident

  5. Design evaluation of the HTGR fuel element size reduction system

    International Nuclear Information System (INIS)

    Strand, J.B.

    1978-06-01

    A fuel element size reduction system for the ''cold'' pilot plant of the General Atomic HTGR Reference Recycle Facility has been designed and tested. This report is both an evaluation of the design based on results of initial tests and a description of those designs which require completion or modification for hot cell use. 11 figures

  6. Study on erbium loading method to improve reactivity coefficients for low radiotoxic spent fuel HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y., E-mail: fukaya.yuji@jaea.go.jp; Goto, M.; Nishihara, T.

    2015-11-15

    Highlights: • We attempted and optimized erbium loading methods to improve reactivity coefficients for LRSF-HTGR. • We elucidated the mechanism of the improvements for each erbium loading method by using the Bondarenko approach. • We concluded the erbium loading method by embedding into graphite shaft is preferable. - Abstract: Erbium loading methods are investigated to improve reactivity coefficients of Low Radiotoxic Spent Fuel High Temperature Gas-cooled Reactor (LRSF-HTGR). Highly enriched uranium is used for fuel to reduce the generation of toxicity from uranium-238. The power coefficients are positive without the use of any additive. Then, the erbium is loaded into the core to obtain negative reactivity coefficients owing to the large resonance the peak of neutron capture reaction of erbium-167. The loading methods are attempted to find the suitable method for LRSF-HTGR. The erbium is mixed in a CPF fuel kernel, loaded by binary packing with fuel particles and erbium particles, and embedded into the graphite shaft deployed in the center of the fuel compact. It is found that erbium loading causes negative reactivity as moderator temperature reactivity, and from the viewpoint of heat transfer, it should be loaded into fuel pin elements for pin-in-block type fuel. Moreover, the erbium should be incinerated slowly to obtain negative reactivity coefficients even at the End Of Cycle (EOC). A loading method that effectively causes self-shielding should be selected to avoid incineration with burn-up. The incineration mechanism is elucidated using the Bondarenko approach. As a result, it is concluded that erbium embedded into graphite shaft is preferable for LRSF-HTGR to ensure that the reactivity coefficients remain negative at EOC.

  7. Development of THYDE-HTGR: computer code for transient thermal-hydraulics of high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Hirano, Masashi; Hada, Kazuhiko

    1990-04-01

    The THYDE-HTGR code has been developed for transient thermal-hydraulic analyses of high-temperature gas-cooled reactors, based on the THYDE-W code. THYDE-W is a code developed at JAERI for the simulation of Light Water Reactor plant dynamics during various types of transients including loss-of-coolant accidents. THYDE-HTGR solves the conservation equations of mass, momentum and energy for compressible gas, or single-phase or two-phase flow. The major code modification from THYDE-W is to treat helium loops as well as water loops. In parallel to this, modification has been made for the neutron kinetics to be applicable to helium-cooled graphite-moderated reactors, for the heat transfer models to be applicable to various types of heat exchangers, and so forth. In order to assess the validity of the modifications, analyses of some of the experiments conducted at the High Temperature Test Loop of ERANS have been performed. In this report, the models applied in THYDE-HTGR are described focusing on the present modifications and the results from the assessment calculations are presented. (author)

  8. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  9. Creep and fatigue properties of Incoloy 800H in a high-temperature gas-cooled reactor (HTGR) helium environment

    International Nuclear Information System (INIS)

    Chow, J.G.Y.; Soo, P.; Epel, L.

    1978-01-01

    A mechanical test program to assess the effects of a simulated HTGR helium environment on the fatigue and creep properties of Incoloy 800H and other primary-circuit metals is described. The emphasis and the objectives of this work are directed toward obtaining information to assess the integrity and safety of an HTGR throughout its service life. The helium test environment selected for study contained 40 μ atm H 2 O, 200 μ atm H 2 , 40 μ atm CO, 10 μ atm CO 2 , and 20 μ atm CH 4 . It is believed that this ''wet'' environment simulates that which could exist in a steam-cycle HTGR containing some leaking steam-generator tubes. A recirculating helium loop operating at about 4 psi in which impurities can be maintained at a constant level, has been constructed to supply the desired environment for fatigue and creep testing

  10. Assessment of effects of Fort St. Vrain HTGR primary coolant on Alloy 800. Final report

    International Nuclear Information System (INIS)

    Trester, P.W.; Johnson, W.R.; Simnad, M.T.; Burnette, R.D.; Roberts, D.I.

    1982-08-01

    A comprehensive review was conducted of primary helium coolant chemistry data, based on current and past operating histories of helium-cooled, high-temperature reactors (HTGRs), including the Fort St. Vrain (FSV) HTGR. A reference observed FSV reactor coolant environment was identified. Further, a slightly drier expected FSV coolant chemistry was predicted for reactor operation at 100% of full power. The expected environment was compared with helium test environments used in the US, United Kingdom, Germany, France, and Japan. Based on a comprehensive review and analysis of mechanical property data reported for Alloy 800 tested in controlled-impurity helium environments (and in air when appropriate for comparison), an assessment was made of the effect of FSV expected helium chemistry on material properties of alloy 800, with emphasis on design properties of the Alloy 800 material utilized in the FSV steam generators

  11. R and D status and requirements for PIE in the fields of the HTGR fuel and the innovative basic research on High-Temperature Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Tobita, Tsutomu; Sumita, Junya [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Ishihara, Masahiro; Hayashi, Kimio; Hoshiya, Taiji; Sekino, Hajime; Ooeda, Etsurou

    1999-09-01

    The High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, achieved its first criticality in November 1998 at the Oarai Research Establishment of the Japan Atomic Energy Research Institute (JAERI). In the field of HTGR fuel development, JAERI will proceed research and development (R and D) works by the following steps: (STEP-1) confirmation of irradiation performance of the first-loading fuel of the HTTR, (STEP-2) study on irradiation performance of high burnup SiC-coated fuel particle and (STEP-3) development of ZrC-coated fuel particle. Requirements for post-irradiation examination (PIE) are different for each R and D step. In STEP-1, firstly, hot cells will be prepared in the HTTR reactor building to handle spent fuels. In parallel, general equipments such as those for deconsolidation of fuel compacts and for handling coated fuel particles will be installed in the Hot Laboratory at Oarai. In STEP-2, precise PIE techniques, for example, Raman spectroscopy for measurement of stress on irradiated SiC layer, will be investigated. In STEP-3, new PIE techniques should be developed to investigate irradiation behavior of ZrC-coated particle. In the field of the innovative basic research on high-temperature engineering, some preliminary tests have been made on the research areas of (1) new materials development, (2) fusion technology, (3) radiation chemistry and (4) high-temperature in-core instrumentation. Requirements for PIE are under investigation, in particular in the field of the new materials development. Besides more general apparatuses including transmission electron microscopy (TEM), some special apparatuses such as an electron spin resonance (ESR) spectrometer, a specific resistance/Hall coefficient measuring system and a differential scanning calorimeter (DSC) are planned to install in the Hot Laboratory at Oarai. Acquisition of advanced knowledge on the irradiation behavior is expected in

  12. Study of air ingress accident of an HTGR

    International Nuclear Information System (INIS)

    Hishida, Makoto

    1995-01-01

    Inherent properties of high temperature gas cooled reactors (HTGR) facilitate the design of HTGRs with high degree of passive safety performances. In this context, it is very important to establish a design criteria for a passive safe function for the air ingress accident. However, it is absolutely necessary to investigate the air ingress behavior during the accident before exploring the design criteria. The present paper briefly describes major activities and results of the air ingress research in our laboratory. (author)

  13. Basic principles on the safety evaluation of the HTGR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Nishihara, Tetsuo; Tazawa, Yujiro; Tachibana, Yukio; Kunitomi, Kazuhiko

    2009-03-01

    As HTGR hydrogen production systems, such as HTTR-IS system or GTHTR300C currently being developed by Japan Atomic Energy Agency, consists of nuclear reactor and chemical plant, which are without a precedent in the world, safety design philosophy and regulatory framework should be newly developed. In this report, phenomena to be considered and events to be postulated in the safety evaluation of the HTGR hydrogen production systems were investigated and basic principles to establish acceptance criteria for the explosion and toxic gas release accidents were provided. Especially for the explosion accident, quantitative criteria to the reactor building are proposed with relating sample calculation results. It is necessary to treat abnormal events occurred in the hydrogen production system as an 'external events to the nuclear plant' in order to classify the hydrogen production system as no-nuclear facility' and basic policy to meet such requirement was also provided. (author)

  14. A Benchmark Study of a Seismic Analysis Program for a Single Column of a HTGR Core

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A seismic analysis program, SAPCOR (Seismic Analysis of Prismatic HTGR Core), was developed in Korea Atomic Energy Research Institute. The program is used for the evaluation of deformed shapes and forces on the graphite blocks which using point-mass rigid bodies with Kelvin-Voigt impact models. In the previous studies, the program was verified using theoretical solutions and benchmark problems. To validate the program for more complicated problems, a free vibration analysis of a single column of a HTGR core was selected and the calculation results of the SAPCOR and a commercial FEM code, Abaqus, were compared in this study.

  15. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  16. Computer simulation of HTGR fuel microspheres using a Monte-Carlo statistical approach

    International Nuclear Information System (INIS)

    Hedrick, C.E.

    1976-01-01

    The concept and computational aspects of a Monte-Carlo statistical approach in relating structure of HTGR fuel microspheres to the uranium content of fuel samples have been verified. Results of the preliminary validation tests and the benefits to be derived from the program are summarized

  17. Plasma-wall interaction of advanced materials

    Directory of Open Access Journals (Sweden)

    J.W. Coenen

    2017-08-01

    Full Text Available DEMO is the name for the first stage prototype fusion reactor considered to be the next step after ITER. For the realization of fusion energy especially materials questions pose a significant challenge already today. Advanced materials solution are under discussion in order to allow operation under reactor conditions [1] and are already under development used in the next step devices. Apart from issues related to material properties such as strength, ductility, resistance against melting and cracking one of the major issues to be tackled is the interaction with the fusion plasma. Advanced tungsten (W materials as discussed below do not necessarily add additional lifetime issues, they will, however, add concerns related to erosion or surface morphology changes due to preferential sputtering. Retention of fuel and exhaust species are one of the main concerns. Retention of hydrogen will be one of the major issues to be solved in advanced materials as especially composites and alloys will introduce new hydrogen interactions mechanisms. Initial calculations show these mechanisms. Especially for Helium as the main impurity species material issues arise related to surfaces modification and embrittlement. Solutions are proposed to mitigate effects on material properties and introduce new release mechanisms.

  18. Irradiation experience with HTGR fuels in the Peach Bottom Reactor

    International Nuclear Information System (INIS)

    Scheffel, W.J.; Scott, C.B.

    1974-01-01

    Fuel performance in the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) is reviewed, including (1) the driver elements in the second core and (2) the test elements designed to test fuel for larger HTGR plants. Core 2 of this reactor, which is operated by the Philadelphia Electric Company, performed reliably with an average nuclear steam supply availability of 85 percent since its startup in July 1970. Core 2 had accumulated a total of 897.5 equivalent full power days (EFPD), almost exactly its design life-time of 900 EFPD, when the plant was shut down permanently on October 31, 1974. Gaseous fission product release and the activity of the main circulating loop remained significantly below the limits allowed by the technical specifications and the levels observed during operation of Core 1. The low circulating activity and postirradiation examination of driver fuel elements have demonstrated the improved irradiation stability of the coated fuel particles in Core 2. Irradiation data obtained from these tests substantiate the performance predictions based on accelerated tests and complement the fuel design effort by providing irradiation data in the low neutron fluence region

  19. 1170-MW(t) HTGR-PS/C plant application study report: tar sands oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to tar sands oil recovery and upgrading. The raw product recovered from the sands is a heavy, sour bitumen; upgrading, which involves coking and hydrodesulfurization, produces a synthetic crude (refinable by current technology) and petroleum coke. Steam and electric power are required for the recovery and upgrading process. Proposed and commercial plants would purchase electric power from local utilities and obtain from boilers fired with coal and with by-product fuels produced by the upgrading. This study shows that an HTGR-PS/C represents a more economical source of steam and electric power

  20. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  1. Advanced Industrial Materials Program

    Science.gov (United States)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  2. A proposal to develop a high temperature structural design guideline for HTGR components

    International Nuclear Information System (INIS)

    Hada, K.

    1989-01-01

    This paper presents some proposals for developing a high-temperature structural design guideline for HTGR structural components. It is appropriate that a basis for developing high-temperature structural design rules is rested on well-established elevated-temperature design guidelines, if the same failure modes are expected for high-temperature components as considered in such design guidelines. As for the applicability of ASME B and PV Code Case N-47 to structural design rules for high-temperature components (service temperatures ≥ 900 deg. C), the following critical issues on material properties and service life evaluation rules have been pointed out. (i) no work-hardening of stress-strain curves at high temperatures due to dynamic recrystallization; (ii) issues relating to very significant creep; (iii) ductility loss after long-term ageing at high temperatures; (iv) validity of life-fraction rule (Robinson-Taira rule) as creep-fatigue damage evaluation rule. Furthermore, the validity of design margins of elevated-temperature structural design guidelines to high-temperature design rules should be clarified. Solutions and proposals to these issues are presented in this paper. Concerning no work-hardening due to dynamic recrystallization, it is shown that viscous effects cannot be neglected even at high extension rate for tensile tests, and that changes in viscous deformation rates by dynamic recrystallization should be taken into account. The extension rate for tensile tests is proposed to change at high temperatures. The solutions and proposals to the above-mentioned issues lead to the conclusion that the design methodologies of N-47 are basically applicable to the high-temperature structural design guideline for HTGR structural components in service at about 900 deg. C. (author). 9 refs, 5 figs

  3. HTGR-GT systems optimization studies

    International Nuclear Information System (INIS)

    Kammerzell, L.L.; Read, J.W.

    1980-06-01

    The compatibility of the inherent features of the high-temperature gas-cooled reactor (HTGR) and the closed-cycle gas turbine combined into a power conversion system results in a plant with characteristics consistent with projected utility needs and national energy goals. These characteristics are: (1) plant siting flexibility; (2) high resource utilization; (3) low safety risks; (4) proliferation resistance; and (5) low occupational exposure for operating and maintenance personnel. System design and evaluation studies on dry-cooled intercooled and nonintercooled commercial plants in the 800-MW(e) to 1200-MW(e) size range are described, with emphasis on the sensitivity of plant design objectives to variation of component and plant design parameters. The impact of these parameters on fuel cycle, fission product release, total plant economics, sensitivity to escalation rates, and plant capacity factors is examined

  4. Automatic particle-size analysis of HTGR recycle fuel

    International Nuclear Information System (INIS)

    Mack, J.E.; Pechin, W.H.

    1977-09-01

    An automatic particle-size analyzer was designed, fabricated, tested, and put into operation measuring and counting HTGR recycle fuel particles. The particle-size analyzer can be used for particles in all stages of fabrication, from the loaded, uncarbonized weak acid resin up to fully-coated Biso or Triso particles. The device handles microspheres in the range of 300 to 1000 μm at rates up to 2000 per minute, measuring the diameter of each particle to determine the size distribution of the sample, and simultaneously determining the total number of particles. 10 figures

  5. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  6. Computational analysis of modern HTGR fuel performance and fission product release during the HFR-EU1 irradiation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl, E-mail: k.verfondern@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Xhonneux, André, E-mail: xhonneux@lrst.rwth-aachen.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); Nabielek, Heinz, E-mail: heinznabielek@me.com [Research Center Jülich, Monschauerstrasse 61, 52355 Düren (Germany); Allelein, Hans-Josef, E-mail: h.j.allelein@fz-juelich.de [Research Center Jülich, Institute of Energy and Climate Research, 52425 Jülich (Germany); RWTH Aachen, Chair for Reactor Safety and Reactor Technology, 52072 Aachen (Germany)

    2014-07-01

    Highlights: • HFR-EU1 irradiation test demonstrates high quality of HTGR spherical fuel elements. • Irradiation performance is in good agreement with German fuel performance modeling. • International benchmark exercise expected first particle to fail at ∼13–17% FIMA. • EOL silver release is predicted to be in the percentage range. • EOL cesium and strontium are expected to remain at a low level. - Abstract: Various countries engaged in the development and fabrication of modern HTGR fuel have initiated activities of modeling the fuel and fission product release behavior with the aim of predicting the fuel performance under HTGR operating and accident conditions. Verification and validation studies are conducted by code-to-code benchmarking and code-to-experiment comparisons as part of international exercises. The methodology developed in Germany since the 1980s represents valuable and efficient tools to describe fission product release from spherical fuel elements and TRISO fuel performance, respectively, under given conditions. Continued application to new results of irradiation and accident simulation testing demonstrates the appropriateness of the models in terms of a conservative estimation of the source term as part of interactions with HTGR licensing authorities. Within the European irradiation testing program for HTGR fuel and as part of the former EU RAPHAEL project, the HFR-EU1 irradiation experiment explores the potential for high performance of the presently existing German and newly produced Chinese fuel spheres under defined conditions up to high burnups. The fuel irradiation was completed in 2010. Test samples are prepared for further postirradiation examinations (PIE) including heatup simulation testing in the KÜFA-II furnace at the JRC-ITU, Karlsruhe, to be conducted within the on-going ARCHER Project of the European Commission. The paper will describe the application of the German computer models to the HFR-EU1 irradiation test and

  7. Quantitative HTGR safety and forced outage goals

    International Nuclear Information System (INIS)

    Houghton, W.J.; Parme, L.L.; Silady, F.A.

    1985-05-01

    A key step in the successful implementation of the integrated approach is the definition of the overall plant-level goals. To be effective, the goals should provide clear statements of what is to be achieved by the plant. This can be contrasted to the current practice of providing design-prescriptive criteria which implicitly address some higher-level objective but restrict the designer's flexibility. Furthermore, the goals should be quantifiable in such a way that satisfaction of the goal can be measured. In the discussion presented, two such plant-level goals adopted for the HTGR and addressing the impact of unscheduled occurrences are described. 1 fig

  8. Computational model and performance optimization methodology of a compact design heat exchanger used as an IHX in HTGR; Modelo computacional y metodologia de optimizacion del funcionamiento de un intercambiador de calor de diseno compacto empleado como IHX en HTGR

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre V, R.; Francois L, J. L., E-mail: delatorrevaldes@gmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, Circuito Exterior s/n, 04510 Ciudad de Mexico (Mexico)

    2017-09-15

    The intermediate heat exchangers (IHX) present in high-temperature gas-cooled reactor (HTGR) present complex operating conditions, characterized by temperature values higher than 1073 K. Conventional designs of tubes and shell have shown disadvantages with respect to compact designs. In this work, computational models of a compact heat exchanger design, the printed circuit, were built under IHX conditions in a HTGR installation. In these models, a detailed geometry was considered in three dimensions, corresponding to a transfer unit of the heat exchanger. Computational fluid dynamics techniques and finite element methods were used to study the thermo-hydraulic and mechanical functioning of the equipment, respectively. The properties of the materials were defined as temperature functions. The thermo-hydraulic results obtained were established as operating conditions in the structural calculations. A methodology was developed based on the analysis of capital and operating costs, which takes into account the heat transfer, pressure drop and the mechanical behavior of the structure, in a single optimization variable. By analyzing the experimental results of other authors, a relationship was obtained between the operation time of the equipment and the maximum effort in the structure, which was used in the model. The results show that the model that allows a greater thermal efficiency differs from the one that has lower total cost per year. (Author)

  9. Station Blackout Analysis of HTGR-Type Experimental Power Reactor

    Science.gov (United States)

    Syarip; Zuhdi, Aliq; Falah, Sabilul

    2018-01-01

    The National Nuclear Energy Agency of Indonesia has decided to build an experimental power reactor of high-temperature gas-cooled reactor (HTGR) type located at Puspiptek Complex. The purpose of this project is to demonstrate a small modular nuclear power plant that can be operated safely. One of the reactor safety characteristics is the reliability of the reactor to the station blackout (SBO) event. The event was observed due to relatively high disturbance frequency of electricity network in Indonesia. The PCTRAN-HTR functional simulator code was used to observe fuel and coolant temperature, and coolant pressure during the SBO event. The reactor simulated at 10 MW for 7200 s then the SBO occurred for 1-3 minutes. The analysis result shows that the reactor power decreases automatically as the temperature increase during SBO accident without operator’s active action. The fuel temperature increased by 36.57 °C every minute during SBO and the power decreased by 0.069 MW every °C fuel temperature rise at the condition of anticipated transient without reactor scram. Whilst, the maximum coolant (helium) temperature and pressure are 1004 °C and 9.2 MPa respectively. The maximum fuel temperature is 1282 °C, this value still far below the fuel temperature limiting condition i.e. 1600 °C, its mean that the HTGR has a very good inherent safety system.

  10. Frontiers of advanced engineering materials (faem-06)

    International Nuclear Information System (INIS)

    Alam, S.; Mirza, J.A.

    2006-01-01

    The second international conference on Frontiers of Advanced Engineering Materials was held on 04-06 December 2006 in Lahore, Pakistan. At a time of the rapid expending enormous potential for the wide spread development and usage of Advanced Engineering Materials. About 121 papers were presented by engineers and scientists from 30 organizations, academic institutions and foreign experts from six countries. on the recommendation of a panel after review, only 72 papers were included in this conference proceedings. The main areas of interest which remained under focus during the conference were structure property relationship, surface Modifications, Nano Technology, Super and semi conductors, Magnetic Materials, Materials Proceeding, Glass and Ceramics, Composite Materials. This Conference open a way to help in strengthening the bounds between our foreign guests local and delegates. The participants showed their keen interest in the poster sessions. Fruitful conclusions of these presentations will be helpful to give rise to new topics of research in the fields of advanced engineering Materials. (A.B.)

  11. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  12. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  13. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd

    2010-01-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  14. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd [eds.

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  15. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    International Nuclear Information System (INIS)

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs

  16. Present status of HTGR research and development, 1995

    International Nuclear Information System (INIS)

    1996-02-01

    Based on the Long-term Program for Development and Utilization of Nuclear Energy which was revised in 1987, the Japan Atomic Energy Research Institute (JAERI) has carried out the Research and Development (R and D) on the High Temperature Gas-cooled Reactors (HTGRs) in Japan. The JAERI obtained the installation permit of the High Temperature Engineering Test Reactor (HTTR) from the Government in November 1990 and started the construction of the HTTR facility in the Oarai Research Establishment in March 1991. The HTTR is a test reactor with thermal output of 30MW and outlet coolant temperature of 850degC at the rated operation and 950degC at the high temperature test operation, using the pin-in-block type fuel, and has capability to demonstrate nuclear process heat utilization. The reactor pressure vessel and intermediate heat exchanger were installed in the reactor containment vessel in 1994, and reactor internals were also installed in the reactor pressure vessel in 1995. The first criticality will be attained in December 1997. This report describes the design outline and construction progress of the HTTR, R and D of fuel, materials and components for the HTGR and high temperature nuclear heat application, and innovative and basic researches for high temperature technologies at the HTTR. (J.P.N.)

  17. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  18. Analysis of fission product release from HTGR core during transient temperature excursion

    International Nuclear Information System (INIS)

    Saito, Takao; Yamatoya, Naotoshi; Onuma, Mamoru

    1978-01-01

    The computer program ''FRANC'' was developed to calculate the release activity of fission products from a high-temperature gas cooled reactor (HTGR) core during transient temperature excursions such as a hypothetical loss of forced circulation combined with design basis depressurization. The program utilizes a segmented cylindrical core spatial model with the associated values of the prior fuel irradiation history and temperature conditions. The fission product transport and decay chain behavior is expressed by a set of differential equations. This set of equations describes the entire core inventory of fission products by means of calculated parameters based on the detailed spatial core conditions. The program determines the time-dependent amounts of fission product nuclides escaping from the core into the coolant. Coded in Continuous System Simulation Language (CSSL) with double precision, FRANC showed appropriate results for both short- and long-lived fission product nuclides. The sample calculation conducted by applying the program to a large HTGR indicated that it would take about one hour for noble gases and volatile nuclides to be released to the coolant, and several hours for metalic nuclides. (auth.)

  19. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973

    International Nuclear Information System (INIS)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling

  20. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  1. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  2. Computational model and performance optimization methodology of a compact design heat exchanger used as an IHX in HTGR

    International Nuclear Information System (INIS)

    De la Torre V, R.; Francois L, J. L.

    2017-09-01

    The intermediate heat exchangers (IHX) present in high-temperature gas-cooled reactor (HTGR) present complex operating conditions, characterized by temperature values higher than 1073 K. Conventional designs of tubes and shell have shown disadvantages with respect to compact designs. In this work, computational models of a compact heat exchanger design, the printed circuit, were built under IHX conditions in a HTGR installation. In these models, a detailed geometry was considered in three dimensions, corresponding to a transfer unit of the heat exchanger. Computational fluid dynamics techniques and finite element methods were used to study the thermo-hydraulic and mechanical functioning of the equipment, respectively. The properties of the materials were defined as temperature functions. The thermo-hydraulic results obtained were established as operating conditions in the structural calculations. A methodology was developed based on the analysis of capital and operating costs, which takes into account the heat transfer, pressure drop and the mechanical behavior of the structure, in a single optimization variable. By analyzing the experimental results of other authors, a relationship was obtained between the operation time of the equipment and the maximum effort in the structure, which was used in the model. The results show that the model that allows a greater thermal efficiency differs from the one that has lower total cost per year. (Author)

  3. Control rod for HTGR type reactor

    International Nuclear Information System (INIS)

    Mogi, Haruyoshi; Saito, Yuji; Fukamichi, Kenjiro.

    1990-01-01

    Upon dropping control rod elements into the reactor core, impact shocks are applied to wire ropes or spines to possibly deteriorate the integrity of the control rods. In view of the above in the present invention, shock absorbers such as springs or bellows are disposed between a wire rope and a spine in a HTGR type reactor control rod comprising a plurality of control rod elements connected axially by means of a spine that penetrates the central portion thereof, and is suspended at the upper end thereof by a wire rope. Impact shocks of about 5 kg are applied to the wire rope and the spine and, since they can be reduced by the shock absorbers, the control rod integrity can be maintained and the reactor safety can be improved. (T.M.)

  4. Advanced-gas-cooled-nuclear-reactor materials evaluation and development program. Volume 1.Final report, September 23, 1976-September 30, 1982

    International Nuclear Information System (INIS)

    Kimball, O.F.

    1983-01-01

    Included in this report is a discussion of the materials selected for the screening phase and more intensive screening phase test programs and the systems and components for which they are candidate materials. Thirty-one (31) commercially available alloy and alloy/coating materials and ten (10) experimental alloys were evaluated in the program. The experimental test facilities developed as part of this program are discussed and experimental testing procedures are summarized. The results of the initial screening test programs are presented. This includes creep testing results and metallographic analyses of candidate materials exposed to simulated HTGR helium and air under stress at temperatures of 750 0 , 850 0 , 950 0 , or 1050 0 C (1382 0 , 1562 0 , 1742 0 , or 1922 0 F) for exposure times to 10,000 hours. Metallographic analyses, weight change and carbon analyses results, and post exposure room temperature tensile and Charpy V-notch impact test results are presented for candidate materials exposed unstressed under the conditions stated above

  5. Ways to increase efficiency of the HTGR coupled with the gas-turbine power conversion unit - HTR2008-58274

    International Nuclear Information System (INIS)

    Golovko, V. F.; Kodochigov, N. G.; Vasyaev, A. V.; Shenoy, A.; Baxi, C. B.

    2008-01-01

    reactor plants with highly recuperative steam cycle with supercritical heat parameters, the net efficiency of electricity generation reaches 50-55%. There are three methods of Brayton cycle carnotization: regeneration, helium cooldown during compression, and heat supply during expansion. These methods can be used both separately and in combination, which gives a total of seven complex heat flow diagrams. Besides, there are ways to increase helium temperature at the reactor inlet and outlet, to reduce hydraulic losses in the helium path, to increase the turbomachine (TM) rotation speed in order to improve the turbine and compressor efficiency, to reduce helium leaks in the circulation path, etc. The analysis of GT-MHR, PBMR and GTHTR-300 development experience allows identification of the main ways of increasing the efficiency by selecting optimal parameters and design solutions for the reactor and power conversion unit. The paper estimates the probability of reaching the maximum electricity generation efficiency in reactor plants with the HTGR and gas turbine cycle with account of the up-to-date development status of major reactor plant components (reactor, vessels, turbo-compressor (TC), generator, heat exchange equipment, and structural materials). (authors)

  6. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  7. Screening of synfuel processes for HTGR application

    International Nuclear Information System (INIS)

    1981-02-01

    The aim of this study is to select for further study, the several synfuel processes which are the most attractive for application of HTGR heat and energy. In pursuing this objective, the Working Group identified 34 candidate synfuel processes, cut the number of processes to 16 in an initial screening, established 11 prime criteria with weighting factors for use in screening the remaining processes, developed a screening methodology and assumptions, collected process energy requirement information, and performed a comparative rating of the processes. As a result of this, three oil shale retorting processes, two coal liquefaction processes and one coal gasification process were selected as those of most interest for further study at this time

  8. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept.

  9. Safety concerns and suggested design approaches to the HTGR Reformer process concept

    International Nuclear Information System (INIS)

    Green, R.C.

    1981-09-01

    This report is a safety review of the High Temperature Gas-Cooled Reactor Reformer Application Study prepared by Gas-Cooled Reactor Associates (GCRA) of La Jolla, California. The objective of this review was to identify safety concerns and suggests design approaches to minimize risk in the High Temperature Gas-Cooled Reactor Reformer (HTGR-R) process concept

  10. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated

  11. Developmental assessment of the Fort St. Vrain version of the Composite HTGR Analysis Program (CHAP-2)

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1980-01-01

    The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain (FSV) version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are being used to partially verify the component modeling and dynamic smulation techniques used to predict plant response to postulated accident sequences

  12. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  13. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L

    1990-07-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  14. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    International Nuclear Information System (INIS)

    Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.

    1990-01-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  15. Effects of graphite surface roughness on bypass flow computations for an HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a

  16. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    International Nuclear Information System (INIS)

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316 0 C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed

  17. Status and aspects of fuel element development for advanced high-temperature reactors in the FRG

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.

    1975-01-01

    In the FRG three basic fuel element designs for application in high temperature gas cooled reactors are being persued: the spherical element, the graphite block element, and the moulded block element (monolith). This report gives the state of development reached with the three types of elements but also views their specific merits and performance margin and presents aspects of their future development potential for operation in advanced HTGR plants. The development of coated feed and breed particles for application in all HTGR fuel elements is treated in more detail. Summarizing it can be said that all the fuel elements as well as their components have proved their aptitude for the dual cycle systems in numerous fuel element and particle performance tests. To adapt these fuel elements and coated particles for advanced reactor concepts and to develop them up to full technical maturity further testing is still necessary, however. Ways of overcoming problems arising from the more stringent requirements are shown. (orig.) [de

  18. A 1500-MW(e) HTGR nuclear generating station

    International Nuclear Information System (INIS)

    Stinson, R.C.; Hornbuckle, J.D.; Wilson, W.H.

    1976-01-01

    A conceptual design of a 1500-MW(e) HTGR nuclear generating station is described. The design concept was developed under a three-party arrangement among General Atomic Company as nuclear steam supply system (NSSS) supplier, Bechtel Power Corporation as engineer-constructors of the balance of plant (BOP), and Southern California Edison Company as a potential utility user. A typical site in the lower Mojave Desert in southeastern California was assumed for the purpose of establishing the basic site criteria. Various alternative steam cycles, prestressed concrete reactor vessel (PCRV) and component arrangements, fuel-handling concepts, and BOP layouts were developed and investigated in a programme designed to lead to an economic plant design. The paper describes the NSSS and BOP designs, the general plant arrangement and a description of the site and its unique characteristics. The elements of the design are: the use of four steam generators that are twice the capacity of GA's steam generators for its 770-MW(e) and 1100-MW(e) units; the rearrangement of steam and feedwater piping and support within the PCRV; the elimination of the PCRV star foundation to reduce the overall height of the containment building as well as of the PCRV; a revised fuel-handling concept which permits the use of a simplified, grade-level fuel storage pool; a plant arrangement that permits a substantial reduction in the penetration structure around the containment while still minimizing the lengths of cable and piping runs; and the use of two tandem-compound turbine generators. Plant design bases are discussed, and events leading to the changes in concept from the reference 8-loop PCRV 1500-MW(e) HTGR unit are described. (author)

  19. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  20. Analysis of Advanced Fuel Kernel Technology

    International Nuclear Information System (INIS)

    Oh, Seung Chul; Jeong, Kyung Chai; Kim, Yeon Ku; Kim, Young Min; Kim, Woong Ki; Lee, Young Woo; Cho, Moon Sung

    2010-03-01

    The reference fuel for prismatic reactor concepts is based on use of an LEU UCO TRISO fissile particle. This fuel form was selected in the early 1980s for large high-temperature gas-cooled reactor (HTGR) concepts using LEU, and the selection was reconfirmed for modular designs in the mid-1980s. Limited existing irradiation data on LEU UCO TRISO fuel indicate the need for a substantial improvement in performance with regard to in-pile gaseous fission product release. Existing accident testing data on LEU UCO TRISO fuel are extremely limited, but it is generally expected that performance would be similar to that of LEU UO 2 TRISO fuel if performance under irradiation were successfully improved. Initial HTGR fuel technology was based on carbide fuel forms. In the early 1980s, as HTGR technology was transitioning from high-enriched uranium (HEU) fuel to LEU fuel. An initial effort focused on LEU prismatic design for large HTGRs resulted in the selection of UCO kernels for the fissile particles and thorium oxide (ThO 2 ) for the fertile particles. The primary reason for selection of the UCO kernel over UO 2 was reduced CO pressure, allowing higher burnup for equivalent coating thicknesses and reduced potential for kernel migration, an important failure mechanism in earlier fuels. A subsequent assessment in the mid-1980s considering modular HTGR concepts again reached agreement on UCO for the fissile particle for a prismatic design. In the early 1990s, plant cost-reduction studies led to a decision to change the fertile material from thorium to natural uranium, primarily because of a lower long-term decay heat level for the natural uranium fissile particles. Ongoing economic optimization in combination with anticipated capabilities of the UCO particles resulted in peak fissile particle burnup projection of 26% FIMA in steam cycle and gas turbine concepts

  1. Calorimetric assay of HTGR fuel samples

    International Nuclear Information System (INIS)

    Allen, E.J.; McNeany, S.R.; Jenkins, J.D.

    1979-04-01

    A calorimeter using a neutron source was designed and fabricated by Mound Laboratory, according to ORNL specifications. A calibration curve of the device for HTGR standard fuel rods was experimentally determined. The precision of a single measurement at the 95% confidence level was estimated to be +-0.8 μW. For a fuel sample containing 0.3 g 235 U and a neutron source containing 691 μg 252 Cf, this represents a relative standard deviation of 0.5%. Measurement time was approximately 5.5 h per sample. Use of the calorimeter is limited by its relatively poor precision, long measurement time, manual sample changing, sensitivity to room environment, and possibility of accumulated dust blocking water flow through the calorimeter. The calorimeter could be redesigned to resolve most of these difficulties, but not without significant development work

  2. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  3. On transient irradiation behavior of HTGR fuel particles

    International Nuclear Information System (INIS)

    Mortenson, S.C.; Okrent, D.

    1977-01-01

    An examination of HTGR TRISO coated fuel particles was made in which the particles' stress-strain histories were determined during both steady-state and transient operating conditions. The basis for the examination was a modified version of a computer code written by Kaae which assumed spherical symmetry, isotropic thermal expansion, isotropic elastic constants, time-temperature-irradiation invariant materials properties, and steady state operation during particle exposure. Additionally, the Kaae code modelled potential separation of layers at the SiC-inner PyC interface and considered that several entrapped fission products could exist in either the gaseous or solid state, dependent upon particle operating conditions. Using the modified code which modelled transient behavior in a quasi-static fashion, a series of both steady-state and transient operating condition computer simulations was made. For the former set of runs, a candidate set of particle dimensions and a nominal set of materials' properties was assumed. Layer thicknesses were assumed to be normally distributed about the nominal thickenesses and a probability distribution of SiC tensile stresses was generated; sensitivity of the stress distribution to assumed standard deviation of the layer thicknesses was acute. Further, this series of steady-state runs demonstrated that for certain combinations of the assumed PyC-SiC bond interface strength and irradiation-induced creep constant, anomalous predicted stresses may be obtained in the PyC layers. The steady-state runs also suggest that transient behavior would most likely not be significant at fast neutron exposures below about 10 21 NVT due to both low fission gas pressure and likely beneficial interface separation

  4. Study on the Efficient Disintegration of HTGR Fuel Elements by Electrochemical Method

    International Nuclear Information System (INIS)

    Piao Nan; Chen Ji; Xiao Cuiping; We Mingfen; Che Jing

    2014-01-01

    The spent fuel elements in High- temperature gas-cooled reactor (HTGR) have a special structure, so the head-end process of the spent fuel reprocessing is different from the process of water reactor spent fuel. The first step of head-end process of the HTGR spent fuel reprocessing process is disintegration of the graphite matrix and separation of the coated fuel particles. Electrochemical method with nitrate solution as an electrolyte for fuel element disintegration has been conducted by the Institute of Nuclear and New Energy Technology in Tsinghua University. This method allows a total disintegration of graphite matrix, while still preserving the integrity of TRISO particles. The influences of the pretreatment methods such as heating oxidation of graphite, hydrothermal and oxidants oxidation were investigated in the present work. The experimental results showed that there were no significant effects on increasing the disintegration rate when pretreatment methods were used ahead of electrochemical disintegration. This phenomenon indicated that the fuel elements which were calcined at 1073 K and pressed under 300 MPa are too compact to be broken by these pretreatment methods. And the electrochemical disintegration is an effective but slow method in breaking the graphite matrix. (author)

  5. Fuel behavior and fission product release under HTGR accident conditions

    International Nuclear Information System (INIS)

    Fukuda, K.; Hayashi, K.; Shiba, K.

    1990-01-01

    In early 1989 a final decision was made over construction of a 30 MWth HTGR called the High Temperature Engineering Test Reactor, HTTR, in Japan in order to utilize it for high temperature gas engineering tests and various nuclear material tests. The HTTR fuel is a pin-in-block type fuel element which is composed of a hexagonal graphite block with dimension of 580 mm in length and 360 mm in face-to-face distance and about 30 of the fuel rods inserted into the coolant channels drilled in the block. The TRISO coated fuel particles for HTTR are incorporated with graphite powder and phenol resin into the fuel compacts, 19 of which are encased into a graphite sleeve as a fuel rod. It is necessary for the HTTR licensing to prove the fuel stability under predicted accidents related to the high temperature events. Therefore, the release of the fission products and the fuel failure have been investigated in the irradiation---and the heating experiments simulating these conditions at JAERI. This report describes the HTTR fuel behavior at extreme temperature, made clear in these experiments

  6. Introduction of thermal-hydraulic analysis code and system analysis code for HTGR

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1984-01-01

    Kawasaki Heavy Industries Ltd. has advanced the development and systematization of analysis codes, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In order to make the model of flow when shock waves propagate to heating tubes, SALE-3D which can analyze a complex system was developed, therefore, it is reported in this paper. Concerning the analysis code for control characteristics, the method of sensitivity analysis in a topological space including an example of application is reported. The flow analysis code SALE-3D is that for analyzing the flow of compressible viscous fluid in a three-dimensional system over the velocity range from incompressibility limit to supersonic velocity. The fundamental equations and fundamental algorithm of the SALE-3D, the calculation of cell volume, the plotting of perspective drawings and the analysis of the three-dimensional behavior of shock waves propagating in heating tubes after their rupture accident are described. The method of sensitivity analysis was added to the analysis code for control characteristics in a topological space, and blow-down phenomena was analyzed by its application. (Kako, I.)

  7. Creep rupture behavior of candidate materials for nuclear process heat applications

    International Nuclear Information System (INIS)

    Schubert, F.; te Heesen, E.; Bruch, U.; Cook, R.; Diehl, H.; Ennis, P.J.; Jakobeit, W.; Penkalla, H.J.; Ullrich, G.

    1984-01-01

    Creep and stress rupture properties are determined for the candidate materials to be used in hightemperature gas-cooled reactor (HTGR) components. The materials and test methods are briefly described based on experimental results of test durations of about20000 h. The medium creep strengths of the alloys Inconel-617, Hastelloy-X, Nimonic-86, Hastelloy-S, Manaurite-36X, IN-519, and Incoloy-800H are compared showing that Inconel-617 has the best creep rupture properties in the temperature range above 800 0 C. The rupture time of welded joints is in the lower range of the scatterband of the parent metal. The properties determined in different simulated HTGR atmospheres are within the scatterband of the properties obtained in air. Extrapolation methods are discussed and a modified minimum commitment method is favored

  8. Advanced superconducting materials

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1983-11-01

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo 6 S 8 are compared to those of the most advanced practical conductors based on alloyed by Nb 3 Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.) [de

  9. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  10. Advanced materials processing

    International Nuclear Information System (INIS)

    Giamei, A.F.

    1993-01-01

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni 3 Al and MoSi 2 . Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  11. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    International Nuclear Information System (INIS)

    Allen, Todd R.; Busby, J. T.; Klueh, R. L.; Maloy, Stuart A.; Toloczko, Mychailo B.

    2008-01-01

    This is a review article that provides an overview of the reactor core structural materials and clad and duct needs for the GNEP advanced burner reactor design. A short history of previous research on structural materials for irradiation environments is provided. There is also a section describing some advanced materials that may be candidate materials for various reactor core structures

  12. Survey on the activities in Switzerland in the field of HTGR-development

    International Nuclear Information System (INIS)

    Sarlos, G.; Brogli, R.; Mathews, D.; Bucher, K.H.; Helbling, W.

    1991-01-01

    The activities of the Swiss industry and of the ''Paul Scherrer Institute'' in the development and production of components and systems for the nuclear industry are reviewed. For the HTGR, major programs include the German HTR-500 project, the gas-cooled district heating reactor (GHR), and the PROTEUS critical experiments. The experiments are being performed in the framework of an IAEA coordinated research program. (author)

  13. Evaluation, Comparison and Optimization of the Compact Recuperator for the High Temperature Gas-Cooled Reactor (HTGR) Helium Turbine System

    International Nuclear Information System (INIS)

    Hao Haoran; Yang Xiaoyong; Wang Jie; Ye Ping; Yu Xiaoli; Zhao Gang

    2014-01-01

    Helium turbine system is a promising method to covert the nuclear power generated by the High Temperature Gas Cooled Reactor (HTGR) into electricity with inherent safety, compact configuration and relative high efficiency. And the recuperator is one of the key components for the HTGR helium turbine system. It is used to recover the exhaust heat out of turbine and pass it to the helium from high pressure compressor, and hence increase the cycle’s efficiency dramatically. On the other hand, the pressure drop within the recuperator will reduce the cycle efficiency, especially on low pressure side of recuperator. It is necessary to optimize the design of recuperator to achieve better performance of HTGR helium turbine system. However, this optimization has to be performed with the restriction of the size of the pressure vessel which contains the power conversion unit. This paper firstly presents an analysis to investigate the effects of flow channel geometry, recuperator’s power and size on heat transfer and pressure drop. Then the relationship between the recuperator design and system performance is established with an analytical model, followed by the evaluations of the current recuperator designs of GT-MHR, GTHTR300 and PBMR, in which several effective technical measures to optimize the recuperator are compared. Finally it is found that the most important factors for optimizing recuperator design, i.e. the cross section dimensions and tortuosity of flow channel, which can also be extended to compact intermediate heat exchangers. It turns out that a proper optimization can increase the cycle’s efficiency by 1~2 percentage, which could also raise the economy and competitiveness of future commercial HTGR plants. (author)

  14. Progress of independent feasibility study for modular HTGR demonstration plant to be built in China

    International Nuclear Information System (INIS)

    He Jiachen

    1989-01-01

    Many regions in China are suffering from shortage of energy as a result of the rapid growth of the national economy, for example, the growth rate of national production in 1988 reached 11.2%. A great number of coal fired plants have been built in many industrial areas. However, the difficulties relating to the transportation of coal and environmental pollution have become more and more serious. The construction of hydropower plants is limited due to uneven geographic conditions and seasons. For these reasons China needs to develop nuclear power plants. Nowadays, it has been decided, that PWR will be the main reactor type in our country, but in some districts or under some conditions modular HTGR may have distinct advantages and become an attractive option. The possible plant site description and preliminary result of economic analysis of modular HTGR type reactor are briefly discussed in this presentation

  15. Methods and data for HTGR fuel performance and radionuclide release modeling during normal operation and accidents for safety analysis

    International Nuclear Information System (INIS)

    Verfondern, K.; Martin, R.C.; Moormann, R.

    1993-01-01

    The previous status report released in 1987 on reference data and calculation models for fission product transport in High-Temperature, Gas-Cooled Reactor (HTGR) safety analyses has been updated to reflect the current state of knowledge in the German HTGR program. The content of the status report has been expanded to include information from other national programs in HTGRs to provide comparative information on methods of analysis and the underlying database for fuel performance and fission product transport. The release and transport of fission products during normal operating conditions and during the accident scenarios of core heatup, water and air ingress, and depressurization are discussed. (orig.) [de

  16. FRESCO-II: A computer program for analysis of fission product release from spherical HTGR-fuel elements in irradiation and annealing experiments

    International Nuclear Information System (INIS)

    Krohn, H.; Finken, R.

    1983-06-01

    The modular computer code FRESCO has been developed to describe the mechanism of fission product release from a HTGR-Core under accident conditions. By changing some program modules it has been extended to take into account the transport phenomena (i.e. recoil) too, which only occur under reactor operating conditions and during the irradiation experiments. For this report, the release of cesium and strontium from three HTGR-fuel elements has been evaluated and compared with the experimental data. The results show that the measured release can be described by the considered models. (orig.) [de

  17. SONATINA-2V: a computer program for seismic analysis of the two-dimensional vertical slice HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1982-07-01

    A computer program SONATINA-2V has been developed for predicting the behavior of a two-dimensional vertical slice HTGR core under seismic excitation. SONATINA-2V is a general two-dimensional computer program capable of analyzing the vertical slice HTGR core with the permanent side reflector blocks and its restraint structures. In the analytical model, each block is treated as rigid body and is restrained by dowel pins which restrict relative horizontal movement but allow vertical and rocking motions between upper and lower blocks. Coulomb friction is taken into account between blocks and between dowel pin and hole. A spring dashpot model is used for the collision process between adjacent blocks. The core support structure is represented by a single block. The computer program SONATINA-2V is capable of analyzing the core behavior for an excitation input applied simultaneously to both vertical and horizontal directions. Analytical results obtained from SONATINA-2V are compared with experimental results and are found to be in good agreement. The computer program can thus be used to predict with a good accuracy the behavior of the HTGR core under seismic excitation. In the present report are given, the theoretical formulation of the analytical model, a user's manual to describe the input and output format, and sample problems. (author)

  18. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  19. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  20. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  1. Role of the HTGR in the U.S. industrial energy market

    International Nuclear Information System (INIS)

    Leeth, G.G.

    1981-01-01

    The HTGR is considered for a variety of applications to the U.S. industrial energy markets. These include a number of synfuel processes, shale oil conversion, methanol production, ammonia production, and both open and closed-loop pipeline systems. Potential market size appears to be approximately 300-400 GW (t) in the 2000 to 2020 time period. In addition to potential cost advantages, the closed-loop nuclear system has several significant advantages over alternative fossil systems. 5 refs

  2. Utilization of titanium sponge in H. T. G. R

    Energy Technology Data Exchange (ETDEWEB)

    Tone, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki. Oarai Research Establishment

    1977-10-01

    The high temperature, gas-cooled reactor (H.T.G.R.) uses helium as a coolant and graphite as both the moderator and the fuel tube material. At first sight, there should not be any problem concerning the compatibility of these materials in the H.T.G.R. core region where temperature exceeds 700/sup 0/C, however, it is possible that the graphite core and other structural materials are oxidized by traces of impurities in the coolant. In large-power H.T.G.R., water inleakage from both heat exchangers and coolant circulation pumps will probably be the major source of impurity which will react with the graphite-producing H/sub 2/, CO and CO/sub 2/. In the near future, the nuclear heat of H.T.G.R. will be used as a major heat source for steel production and the chemical industry. For these purposes, it will be necessary to construct a reactor using a helium coolant of greater than 1000/sup 0/C. Therefore, not only the development of refractory metals as structural materials but also an effective helium coolant purification system are the keys for H.T.G.R. construction. Recently, in the helium coolant purification system of H.T.G. Reactors, which have been developed in the several nations advanced in atomic reactors, titanium sponge is used very frequently to remove hydrogen gas as an impurity in helium coolant. Titanium sponge can absorb very large quantities of hydrogen and its absorption-capacity can be very easily controlled by controlling the temperature of the titanium sponge-since titanium hydride is formed by endothermic reaction. The titanium sponge trap is used also in OGL-1 (Oarai Gas Loop-1), helium coolant purification system for large scale irradiation apparatus which is used for nuclear fuels of H.T.G.R. This apparatus has been installed in the Japan Material Testing Reactor. In this report, the coolant purification system of H.T.G.R., OGL-1 and the experimental results of the titanium sponge trap are explained briefly.

  3. Advanced Material Rendering in Blender

    Czech Academy of Sciences Publication Activity Database

    Hatka, Martin; Haindl, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 15-23 ISSN 1081-1451 R&D Projects: GA ČR GAP103/11/0335; GA ČR GA102/08/0593 Grant - others:CESNET(CZ) 387/2010; CESNET(CZ) 409/2011 Institutional support: RVO:67985556 Keywords : realistic material rendering * bidirectional texture function * Blender Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/haindl-advanced material rendering in blender.pdf

  4. Materials performance in advanced fossil technologies

    International Nuclear Information System (INIS)

    Natesan, K.

    1991-01-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented

  5. A reactivity accidents simulation of the Fort Saint Vrain HTGR

    International Nuclear Information System (INIS)

    Fainer, Gerson

    1980-01-01

    A reactivity accidents analysis of the Fort Saint Vrain HTGR was made. The following accidents were analysed 1) A rod pair withdrawal accident during normal operation, 2) A rod pair ejection accident, 3) A rod pair withdrawal accident during startup operations at source levels and 4) Multiple rod pair withdrawal accident. All the simulations were performed by using the BLOOST-6 nuclear code The steady state reactor operation results obtained with the code were consistent with the design reactor data. The numerical analysis showed that all accidents - except the first one - cause particle failure. (author)

  6. In-pile tests of HTGR fuel particles and fuel elements

    International Nuclear Information System (INIS)

    Chernikov, A.S.; Kolesov, V.S.; Deryugin, A.I.

    1985-01-01

    Main types of in-pile tests for specimen tightness control at the initial step, research of fuel particle radiation stability and also study of fission product release from fuel elements during irradiation are described in this paper. Schemes and main characteristics of devices used for these tests are also given. Principal results of fission gas product release measurements satisfying HTGR demands are illustrated on the example of fuel elements, manufactured by powder metallurgy methods and having TRISO fuel particles on high temperature pyrocarbon and silicon carbide base. (author)

  7. New small HTGR power plant concept with inherently safe features - an engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    Studies are in a very early design stage to establish a modular concept High-Temperature Gas-Cooled Reactor (HTGR) plant of about 100-MW(e) size to meet the special needs of small energy users in the industrialized and developing nations. The basic approach is to design a small system in which, even under the extreme conditions of loss of reactor pressure and loss of forced core cooling, the temperature would remain low enough so that the fuel would retain essentially all the fission products and the owner's investment would not be jeopardized. To realize economic goals, the designer faces the challenge of providing a standardized nuclear heat source, relying on a high percentage of factory fabrication to reduce site construction time, and keeping the system simple. While the proposed nuclear plant concept embodies new features, there is a large technology base to draw upon for the design of a small HTGR

  8. Nondestructive evaluation of the oxidation and strength of the Fort Saint Vrain HTGR support block

    International Nuclear Information System (INIS)

    Tingey, G.L.; Posakony, G.J.; Morgan, W.C.; Prince, J.M.; Hill, R.W.; Lessor, D.L.

    1982-04-01

    Non-destructive detection of changes in the strength of graphite support structures in a HTGR appears to be feasible using sonic velocity measurements where access for through transmission is possible. Therefore, future HTGR designs should consider providing such access. Where access is not available, strength changes can be correlated with oxidation profiles in the support member. These oxidation profiles can be determined non-destructively by a combination of eddy current measurements to detect near surface oxidation and sonic backscattering measurements designed to determine oxidation in depth. The Fort Saint Vrain reactor provides an operating reactor to test the applicability of the eddy current and sonic backscattering techniques for determination of oxidation in a support block. Furthermore, such tests in Fort Saint Vrain will supply base line data which will be useful in assuring an adequate strength of the support structure for the lifetime of the reactor. Equipment is, therefore, being developed for tests to be conducted during the next major refueling of the reactor

  9. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  10. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  11. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  12. Assessment of modelling needs for safety analysis of current HTGR concepts

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Van Tuyle, G.J.

    1985-12-01

    In view of the recent shift in emphasis of the DOE/Industry HTGR development efforts to smaller modular designs it became necessary to review the modelling needs and the codes available to assess the safety performance of these new designs. This report provides a final assessment of the most urgent modelling needs, comparing these to the tools available, and outlining the most significant areas where further modelling is required. Plans to implement the required work are presented. 47 refs., 20 figs

  13. The acoustic environment in large HTGR's

    International Nuclear Information System (INIS)

    Burton, T.E.

    1979-01-01

    Well-known techniques for estimating acoustic vibration of structures have been applied to a General Atomic high-temperature gas-cooled reactor (HTGR) design. It is shown that one must evaluate internal loss factors for both fluid and structure modes, as well as radiation loss factors, to avoid large errors in estimated structural response. At any frequency above 1350 rad/s there are generally at least 20 acoustic modes contributing to acoustic pressure, so statistical energy analysis may be employed. But because the gas circuit consists mainly of high-aspect-ratio cavities, reverberant fields are nowhere isotropic below 7500 rad/s, and in some regions are not isotropic below 60 000 rad/s. In comparison with isotropic reverberant fields, these anistropic fields enhance the radiation efficiencies of some structural modes at low frequencies, but have surprisingly little effect at most frequencies. The efficiency of a dipole sound source depends upon its orientation. (Auth.)

  14. Three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged inlayers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analystical study is directed towards an invesstigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathemtical model which represents a vertical arrangement of layers of blocks. This comprises a block module of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core

  15. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  16. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  17. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  18. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  19. The Laboratory for Advanced Materials Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory for Advanced Materials Processing - LAMP - is a clean-room research facility run and operated by Pr. Gary Rubloff's group. Research activities focus...

  20. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    1991-01-01

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  1. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poore, III, Willis P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Moe, Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-based description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.

  2. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  3. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  4. Irradiation performance of HTGR recycle fissile fuel

    International Nuclear Information System (INIS)

    Homan, F.J.; Long, E.L. Jr.

    1976-08-01

    The irradiation performance of candidate HTGR recycle fissile fuel under accelerated testing conditions is reviewed. Failure modes for coated-particle fuels are described, and the performance of candidate recycle fissile fuels is discussed in terms of these failure modes. The bases on which UO 2 and (Th,U)O 2 were rejected as candidate recycle fissile fuels are outlined, along with the bases on which the weak-acid resin (WAR)-derived fissile fuel was selected as the reference recycle kernel. Comparisons are made relative to the irradiation behavior of WAR-derived fuels of varying stoichiometry and conclusions are drawn about the optimum stoichiometry and the range of acceptable values. Plans for future testing in support of specification development, confirmation of the results of accelerated testing by real-time experiments, and improvement in fuel performance and reliability are described

  5. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  6. Economic benefits of advanced materials in nuclear power systems

    International Nuclear Information System (INIS)

    Busby, J.T.

    2009-01-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  7. Concept of an inherently-safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Ogawa, Masuro

    2012-01-01

    As the challenge to ensure no harmful release of radioactive materials at the accidents by deterministic approach instead to satisfy acceptance criteria or safety goal for risk by probabilistic approach, new concept of advanced reactor, an inherently-safe high temperature gas-cooled reactor, is proposed based on the experience of the operation of the actual High Temperature Gas-cooled Reactor (HTGR) in Japan, High Temperature Engineering Test Reactor (HTTR), and the design of the commercial plant (GTHTR300), utilizing the inherent safety features of the HTGR (i.e., safety features based on physical phenomena). The safety design philosophy of the inherently-safe HTGR for the safety analysis of the radiological consequences is determined as the confinement of radioactive materials is assured by only inherent safety features without engineered safety features, AC power or prompt actions by plant personnel if the design extension conditions occur. Inherent safety features to prevent the loss or degradation of the confinement function are identified. It is proposed not to apply the probabilistic approach for the evaluation of the radiological consequences of the accidents in the safety analysis because no inherent safety features fail for the mitigation of the consequences of the accidents. Consequently, there are no event sequences to harmful release of radioactive materials if the design extension conditions occur in the inherently-safe HTGR concept. The concept and future R and D items for the inherently-safe HTGR are described in this paper.

  8. Application of modern control theory to HTGR-plant

    International Nuclear Information System (INIS)

    Izaki, Makoto; Kubo, Hiroaki; Yamazaki, Eiji; Suzuki, Katsuo.

    1988-01-01

    The classical control theory approach to the multivariate control problem is to decouple the system intentionally and to treat each loop independently. As a result, final control system design is limited in complexity by the available mathematical techniques limitation and it's control performance is insufficient in many cases. The modern control theory approach based on the state variables to the problem provides far more powerful methods and more design flexibility than the classical control theory approach by the new mathematical formulation about the problem. The state variable feedback in formulating as an optimal regulator is the most effective way to obtain the desired control performance. In this report, some results of optimal regulator application to High Temperature Gas Cooled Reactor (HTGR) are shown. (author)

  9. Evaluation of a blender for HTGR fuel particles

    International Nuclear Information System (INIS)

    Johnson, D.R.

    1977-03-01

    An experimental blender for mixing HTGR fuel particles prior to molding the particles into fuel rods was evaluated. The blender consists of a conical chamber with an air inlet in the bottom. A pneumatically operated valve provides for discharge of the particles out of the bottom of the cone. The particles are mixed by periodically levitating with pulses of air. The blender has provision for regulating the air flow rate and the number and duration of the air flow pulses. The performance of the blender was governed by the particle blend being mixed, the air flow rate, and the pulse time. Adequately blended fuel rods can be made, if the air flow rate and pulse time are carefully controlled for each fuel rod composition

  10. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  11. Treatment of operator actions in the HTGR risk assessment study

    International Nuclear Information System (INIS)

    Fleming, K.N.; Silady, F.A.; Hannaman, G.W.

    1979-12-01

    Methods are presented for the treatment of operator actions, developed in the AIPA risk assessment study. Some examples are given of how these methods were applied to the analysis of potential HTGR accidents. Realistic predictions of accident risks required a balanced treatment of both beneficial and detrimental actions and responses of human operators and maintenance crews. Th essential elements of the human factors methodology used in the AIPA study include event tree and fault tree analysis, time-dependent operator response and repair models, a method for quantifying common cause failure probabilities, and synthesis of relevant experience data for use in these models

  12. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  13. HTGR Gas Turbine Program. Semiannual progress report for the period ending September 30, 1979

    International Nuclear Information System (INIS)

    1980-05-01

    Information on the HTGR-GT program is presented concerning systems design methods; systems dynamics methods; alternate design; miscellaneous controls and auxiliary systems; structural mechanics; shielding analysis; licensing; safety; availability; reactor turbine system integration with plant; PCRV liners, penetrations, and closures; PCRV structures; thermal barrier; reactor internals; turbomachinery; turbomachine remote maintenance; control valve; heat exchangers; plant protection system; and plant control system

  14. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  15. Quantification of TRISO fuel heterogeneity effects in HTGR lattice physics calculations

    International Nuclear Information System (INIS)

    Perfetti, C. M.; Anghaie, S.; Dugan, E.; Marcille, T.

    2010-01-01

    A large number of LEU-MHR fuel compact models were generated with randomly distributed TRISO particle fuel and were simulated using MCNP5, and it was determined how several neutronic parameters, including k-infinite, the thermal and fast diffusion coefficients, and the four factors, varied across the randomly-generated cases. A sensitivity study was also performed to determine how the four factors depend on the definition of the thermal energy group. Values of k-infinite for the cases had a sample standard deviation of 248 pcm and were found to follow an approximately normal distribution about the mean value of k-infinite. Although all of the four factors were found to have similar sample standard deviations, the resonance escape probability was found to be the most variable parameter with a sample relative standard deviation between 0.07% and 0.08%. HTGR fuel compact homogenization methods typically examine only one reference fuel compact that contains a uniform distribution of TRISO particles, but in reality the TRISO particles are randomly distributed throughout the fuel compact. Thus, the neutronic parameters for actual fuel compacts differ randomly from those in the reference model. To license next-generation High-Temperature Gas Reactors engineers must quantify all uncertainties of the design and this random variation in neutron parameters is a previously unmeasured quantity; this study measures this uncertainty by examining the variation in k-infinite for HTGR fuel compact models with randomly distributed TRISO fuel. (authors)

  16. Advanced Electrical Materials and Components Development: An Update

    Science.gov (United States)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  17. Advanced broadband baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.

    1991-01-01

    In this paper broadband performance characteristics of robust, light-weight, diffuse-absorptive baffle surfaces fabricated from sputter-deposited beryllium on cross-rolled Be ingot sheet material and on Be foam, plasma sprayed beryllium, plasma sprayed boron-on-beryllium, and chemical vapor deposited boron carbide on graphite are described and compared to Martin Black. An overview of the Optics Manufacturing Operations Development and Integration Laboratory (MODIL) Advanced Optical Baffle Program will be discussed

  18. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  19. Advanced Nano hybrid Materials: Surface Modification and Applications

    International Nuclear Information System (INIS)

    Liu, L.H.; Metivier, R.; Wang, Sh.; Wang, Sh.; Hui Wang

    2012-01-01

    The field of functional nano scale hybrid materials is one of the most promising and rapidly emerging research areas in materials chemistry. Nano scale hybrid materials can be broadly defined as synthetic materials with organic and inorganic components that are linked together by noncovalent bonds (Class I, linked by hydrogen bond, electrostatic force, or van der Waals force) or covalent bonds (Class II) at nanometer scale. The unlimited possible combinations of the distinct properties of inorganic, organic, or even bioactive components in a single material, either in molecular or nano scale dimensions, have attracted considerable attention. This approach provides an opportunity to create a vast number of novel advanced materials with well-controlled structures and multiple functions. The unique properties of advanced hybrid nano materials can be advantageous to many fields, such as optical and electronic materials, biomaterials, catalysis, sensing, coating, and energy storage. In this special issue, the breadth of papers shows that the hybrid materials is attracting attention, because of both growing fundamental interest, and a route to new materials. Two review articles and seven research papers that report new results of hybrid materials should gather widespread interest.

  20. HTGR fuel reprocessing pilot plant: results of the sequential equipment operation

    International Nuclear Information System (INIS)

    Strand, J.B.; Fields, D.E.; Kergis, C.A.

    1979-05-01

    The second sequential operation of the HTGR fuel reprocessing cold-dry head-end pilot plant equipment has been successfully completed. Twenty standard LHGTR fuel elements were crushed to a size suitable for combustion in a fluid bed burner. The graphite was combusted leaving a product of fissile and fertile fuel particles. These particles were separated in a pneumatic classifier. The fissile particles were fractured and reburned in a fluid bed to remove the inner carbon coatings. The remaining products are ready for dissolution and solvent extraction fuel recovery

  1. A three-dimensional computer code for the nonlinear dynamic response of an HTGR core

    International Nuclear Information System (INIS)

    Subudhi, M.; Lasker, L.; Koplik, B.; Curreri, J.; Goradia, H.

    1979-01-01

    A three-dimensional dynamic code has been developed to determine the nonlinear response of an HTGR core. The HTGR core consists of several thousands of hexagonal core blocks. These are arranged in layers stacked together. Each layer contains many core blocks surrounded on their outer periphery by reflector blocks. The entire assembly is contained within a prestressed concrete reactor vessel. Gaps exist between adjacent blocks in any horizontal plane. Each core block in a given layer is connected to the blocks directly above and below it via three dowell pins. The present analytical study is directed towards an investigation of the nonlinear response of the reactor core blocks in the event of a seismic occurrence. The computer code is developed for a specific mathematical model which represents a vertical arrangement of layers of blocks. This comprises a 'block module' of core elements which would be obtained by cutting a cylindrical portion consisting of seven fuel blocks per layer. It is anticipated that a number of such modules properly arranged could represent the entire core. Hence, the predicted response of this module would exhibit the response characteristics of the core. (orig.)

  2. Status of the research and development at JAERI on the C/C composite control rod for HTGR

    International Nuclear Information System (INIS)

    Eto, M.; Ishiyama, S.; Ugachi, H.

    1996-01-01

    Control rod elements made of carbon-carbon composites were prepared and fracture-tested, aiming at the development of the more heat-resistant control rod which may impose the less restriction on the operation and shutdown of the HTGR. The control rod elements included pellet holder, lace truck and pin of PAN- or pitch-based composite material. On the basis of the results of fracture tests on the unirradiated elements, those made of PAN-based material were selected for an irradiation experiment. The irradiation was carried out in JRR-3 at 900 ± 50 deg. C to a maximum neutron fluence of 1 x 10 25 n/m 2 (E>29fJ). Fracture tests of the elements indicated that both fracture load and fracture displacement enough to assure the integrity of a control rod were maintained even after the irradiation. It was also found that both fracture strength and strain increased when applied load was parallel to the fiber felt plane, whereas the strength increase and strain decrease were observed for the load applied against the plane. (author). 11 refs, 16 figs

  3. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  4. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Jinke Chang

    2018-01-01

    Full Text Available Additive manufacturing (AM has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  5. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  6. Irradiation performance of HTGR fuel rods in HFIR experiments HRB-11 and -12

    International Nuclear Information System (INIS)

    Homan, F.J.; Tiegs, T.N.; Kania, M.J.; Long, E.L. Jr.; Thoms, K.R.; Robbins, J.M.; Wagner, P.

    1980-06-01

    Capsules HRB-11 and -12 were irradiated in support of development of weak-acid-resin-derived recycle fuel for the high-enriched uranium (HEU) fuel cycle for the HTGR. Fissil fuel particles with initial oxygen-to-metal ratios between 1.0 and 1.7 performed acceptably to full burnup for HEU fuel. Particles with ratios below 1.0 showed excessive chemical interaction between rare earth fission products and the SiC layer

  7. HTGR high temperature process heat design and cost status report. Volume II. Appendices

    International Nuclear Information System (INIS)

    1981-12-01

    Information is presented concerning the 850 0 C IDC reactor vessel; primary cooling system; secondary helium system; steam generator; heat cycle evaluations for the 850 0 C IDC plant; 950 0 C DC reactor vessel; 950 0 C DC steam generator; direct and indirect cycle reformers; methanation plant; thermochemical pipeline; methodology for screening candidate synfuel processes; ECCG process; project technical requirements; process gas explosion assessment; HTGR program economic guidelines; and vendor respones

  8. Integrated and visual performance evaluation model for thermal systems and its application to an HTGR cogeneration system

    International Nuclear Information System (INIS)

    Qi, Zhang; Yoshikawa, Hidekazu; Ishii, Hirotake; Shimoda, Hiroshi

    2010-01-01

    An integrated and visual model EXCEM-MFM (EXergy, Cost, Energy and Mass - Multilevel Flow Model) has been proposed in this study to comprehensively analyze and evaluate the performances of thermal systems by coupling two models: EXCEM model and MFM. In the EXCEM-MFM model, MFM is used to provide analysis frameworks for exergy, cost, energy and mass four parameters, and EXCEM is used to calculate the flow values of these four parameters for MFM based on the provided framework. In this study, we used the tools and technologies of computer science and software engineering to materialize the model. Moreover, the feasibility and application potential of this proposed EXCEM-MFM model has been demonstrated by the example application of a comprehensive performance study of a typical High Temperature Gas Reactor (HTGR) cogeneration system by taking into account the thermodynamic and economic perspectives. (author)

  9. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux

  10. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  11. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  12. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  13. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  14. SONATINA-2H: a computer program for seismic analysis of the two-dimensional horizontal slice HTGR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi

    1990-02-01

    A Computer program SONATINA-2H has been developed for predicting the behavior of a two-dimensional horizontal HTGR core under seismic excitation. SONATINA-2H is a general two-dimensional computer program capable of analyzing the horizontal slice HTGR core with the fixed side reflector blocks and its restraint structures and the core support structure. In the analytical model, each block is treated as a rigid body and represent one column of the reactor core and is connected to the core support structure by means of column springs and viscous dampers. A single dashpot model is used for the collision process between adjacent blocks. The core support structure is represented by a single block. The computer program SONATINA-2H is capable of analyzing the core behavior for an excitation input applied simultaneously in two mutually perpendicular horizontal directions. In the present report are given, the theoretical formulation of the analytical model, an user's manual to describe the input and output format and sample problems. (author)

  15. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Micro gravity - an important tool for development of advanced materials

    International Nuclear Information System (INIS)

    Sadiq, S.

    1995-01-01

    Microgravity provides the researchers the opportunity to investigate and improve the methods of creating advanced materials on earth. This can in turn assist in the advanced of economically significant technologies and technology infusement into the private sector. In some unique cases, involving inherently expensive materials that must have high purity, such as composites, high grade alloys etc. small amounts be made in space commercially and viably. A number of developed countries have gained sufficient expertise in material processing and other experiments under microgravity conditions, and their progress has been quite tremendous in this vital area of space research. The four important modes of platform, i.e., space shuttle/satellite, rocket flights, aircraft and drop tower tests have been employed for this purpose. Processing of materials in all such cases differs from the point of view of its cost effectiveness, time required to perform the expertise, instrumentation set up etc. In region of Far East and South East Asia, only one or two countries have made some advances in material processing experiments under microgravity conditions both in the upper atmosphere as well as using Drop Tower Test, but limited experimental means have made these countries to strive in this research area compared to work done in author advanced countries. The paper describes a brief history of microgravity experiments, their types and mode of transport employed for processing of novel materials under extreme low gravity or zero gravity conditions. This will definitely be useful and beneficial to developing nations of this region have entered an era of sophisticated and advanced materials processing and its utilization for industries such as aerospace, nuclear power plants, strategic materials, electronics, biological communication etc. (author)

  17. Study on reprocessing of uranium-thorium fuel with solvent extraction for HTGR

    International Nuclear Information System (INIS)

    Jiao Rongzhou; He Peijun; Liu Bingren; Zhu Yongjun

    1992-08-01

    A single cycle process by solvent extraction with acid feed solution is suggested. The purpose is to reprocess uranium-thorium fuel elements which are of high burn-up and rich of 232 U from HTGR (high temperature gas cooled reactor). The extraction cascade tests have been completed. The recovery of uranium and thorium is greater than 99.6%. By this method, the requirement, under remote control to re-fabricate fuel elements, of decontamination factors for Cs, Sr, Zr-Nb and Ru has been reached

  18. Proceedings of the second international conference on advances in nuclear materials: abstract booklet and souvenir

    International Nuclear Information System (INIS)

    2011-01-01

    Nuclear materials form special class of materials which either act as fuel for the nuclear reactors or form the structure of the reactors and the allied systems. The topics covered in this conference are: materials challenges for thermal and fast reactors, technological advances in nuclear fuels and components, materials for future reactors, fuel cycles and materials challenges, materials degradation and life management, advanced materials development, modelling and simulation, advanced materials- II, advanced materials for future reactors, development of advanced fuel and structural materials, zirconium alloy developments, irradiation effects and PIE, advanced nuclear fuels, corrosion and materials characterization. Papers relevant to INIS are indexed separately

  19. HTGR high temperature process heat design and cost status report. Volume II. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    Information is presented concerning the 850/sup 0/C IDC reactor vessel; primary cooling system; secondary helium system; steam generator; heat cycle evaluations for the 850/sup 0/C IDC plant; 950/sup 0/C DC reactor vessel; 950/sup 0/C DC steam generator; direct and indirect cycle reformers; methanation plant; thermochemical pipeline; methodology for screening candidate synfuel processes; ECCG process; project technical requirements; process gas explosion assessment; HTGR program economic guidelines; and vendor respones.

  20. Developmental assessment of the Fort St. Vrain version of the composite HTGR analysis program (CHAP-2)

    International Nuclear Information System (INIS)

    Stroh, K.R.

    1981-01-01

    The Composite HTGR Analysis Program (CHAP) consists of a model-independent systems analysis mainframe named LASAN and model-dependent linked code modules, each representing a component, subsystem, or phenomenon of an HTGR plant. The Fort St. Vrain version (CHAP-2) includes 21 coded modules that model the neutron kinetics and thermal response of the core; the thermal-hydraulics of the reactor primary coolant system, secondary steam supply system, and balance-of-plant; the actions of the control system and plant protection system; the response of the reactor building; and the relative hazard resulting from fuel particle failure. FSV steady-state and transient plant data are being used to partially verify the component modeling and dynamic simulation techniques used to predict plant response to postulated accident sequences. Results of these preliminary validation efforts are presented showing good agreement between code output and plant data for the portions of the code that have been tested. Plans for further development and assessment as well as application of the validated code are discussed. (author)

  1. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  2. Design and thermal dynamic analyses on the intermediate heat exchanger for HTGR

    International Nuclear Information System (INIS)

    Mori, M.; Mizuno, M.; Ito, M.; Urabe, S.

    1986-01-01

    The intermediate heat exchanger (IHX), one of the most important components in the high temperature gas cooled reactor (HTGR), is a high performance helium/helium (He/He) heat exchanger operated at a very high temperature above 900 0 C to transmit the nuclear heat from the reactor core to the nuclear heat utilization systems such as the chemical plant. Having to meet, in addition, the requirement of the pressure boundary as the Class-1 it demands the accurate estimation of thermal performance and analytical prediction of thermal behaviors to secure its integrity throughout the service life. In the present works, the newly-developed analytical codes carry out designing thermal performance and analyzing dynamic thermal behaviors of the IHX. These codes have been developed on a great deal of data and studies related to the research and development on the 1.5 MWt- and the 25 MWt-IHXs. This paper shows the design on the IHX, the results of the dynamic analyses on the 1.5 MWt-IHX with the comparison to the experimental data and the analytical predictions of the dynamic thermal behaviors on the 25 MWt-IHX. The results calculated are in fairly good agreement with the experimental data on the 1.5 MWt-IHX, the fact that has verified the analytical codes to be reasonable and much useful for the thermal design of the IHX. These presented results and data are available for the design of the IHX of HTGR

  3. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  4. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    International Nuclear Information System (INIS)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang

    2006-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  5. Measurement of Weight of Kernels in a Simulated Cylindrical Fuel Compact for HTGR

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Lee, Young Woo; Kim, Young Min; Kim, Yeon Ku; Eom, Sung Ho; Jeong, Kyung Chai; Cho, Moon Sung; Cho, Hyo Jin; Kim, Joo Hee

    2011-01-01

    The TRISO-coated fuel particle for the high temperature gas-cooled reactor (HTGR) is composed of a nuclear fuel kernel and outer coating layers. The coated particles are mixed with graphite matrix to make HTGR fuel element. The weight of fuel kernels in an element is generally measured by the chemical analysis or a gamma-ray spectrometer. Although it is accurate to measure the weight of kernels by the chemical analysis, the samples used in the analysis cannot be put again in the fabrication process. Furthermore, radioactive wastes are generated during the inspection procedure. The gamma-ray spectrometer requires an elaborate reference sample to reduce measurement errors induced from the different geometric shape of test sample from that of reference sample. X-ray computed tomography (CT) is an alternative to measure the weight of kernels in a compact nondestructively. In this study, X-ray CT is applied to measure the weight of kernels in a cylindrical compact containing simulated TRISO-coated particles with ZrO 2 kernels. The volume of kernels as well as the number of kernels in the simulated compact is measured from the 3-D density information. The weight of kernels was calculated from the volume of kernels or the number of kernels. Also, the weight of kernels was measured by extracting the kernels from a compact to review the result of the X-ray CT application

  6. Proceedings of the second international conference on advanced functional materials

    International Nuclear Information System (INIS)

    2014-01-01

    This conference deals with the functional materials which have been an essential enabling ingredient in the aerospace industry. Advanced functional materials coupled with he enormous possibilities of nanotechnology have the potential to revolutionize applications across several domains like infrastructure, aerospace, energy storage, advanced electronics and biomedical technology. Papers relevant to INIS are indexed separately

  7. Proceedings of the national conference on multifunctional advanced materials: abstracts of invited speakers

    International Nuclear Information System (INIS)

    2013-01-01

    National Conference on Multifunctional Advanced Materials was a platform for scientists, physicists and chemists from diverse fields to discuss on interdisciplinary research on materials. The conference provided a forum for exchange of information and ideas in virtually all areas of advanced materials research, to encourage interdisciplinary research bridging the gap between magnetic materials, nanotechnology, composite materials, shockwave induced materials, physics, bio-materials, chemistry, electronics, among others. Thus, the main motive of the conference was to promote applied research in advanced materials. Papers relevant to INIS are indexed separately

  8. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  9. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  10. HTGR fuel development: investigations of breakages of uranium-loaded weak acid resin microspheres

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.

    1977-11-01

    During the HTGR fuel development program, a high percentage of uranium-loaded weak acid resin microspheres broke during pneumatic transfer, carbonization, and conversion. One batch had been loaded by the UO 3 method; the other by the ammonia neutralization method. To determine the causes of failure, samples of the two failed batches were investigated by optical microscopy, scanning electron microscopy, electron beam microprobe, and other techniques. Causes of failure are postulated and methods are suggested to prevent recurrence of this kind of failure

  11. ROCAM: The 5-th International Edition of Romanian Conference on Advanced Materials. Abstracts

    International Nuclear Information System (INIS)

    Stanculescu, Florin

    2006-01-01

    The proceedings of the 5-th International Edition of Romanian Conference on Advanced Materials and Crystal Growth with special topics on nano and multifunctional materials held on September 11-14, 2006 in Bucharest- Magurele, Romania, contains contributions presented as plenary lectures, invited papers and regular contributions in eight sections, namely: 1. Growth and characterization of inorganic crystals; 2. Growth and characterization of organic and biological crystals; 3. Nano and microstructured materials and thin films; 4. Polymers/fuel cells and hydrogen storage; 5. Plasma deposition and applications; 6. Advanced processing and characterization / noncrystalline solids; 7. Advanced nuclear materials; 8. Advanced materials: general aspects

  12. 131I release from a HTGR during the LOFC accident

    International Nuclear Information System (INIS)

    Foley, J.E.

    1975-03-01

    The time-dependent release of 131 I from both the core and the containment building of a high temperature gas-cooled (HTGR) reactor during the loss of forced coolant (LOFC) accident is studied. A simplified core release model is combined with a containment building release model so that the total amount of the isotope released to the environment can be calculated. The time-dependent release of 131 I from the core during the LOFC accident is primarily a function of the time-dependent core temperatures and the failed fuel release constants. The most important factor in calculating the amount of the isotope released to the environment is the total amount released into the containment building. (U.S.)

  13. Derivation of criteria for primary circuit activity in an HTGR

    International Nuclear Information System (INIS)

    Su, S.D.; Barsell, A.W.

    1980-11-01

    This paper derives specific criteria for the circulating and plateout activity in the primary circuit for a 2170-MW(t) high temperature gas-cooled reactor-gas turbine (HTGR-GT) plant. Results show that for a design basis, (1) the circulating activity should be limited to 14,000 Ci Kr-88 (a principal nuclide) to meet both offsite dose and containment access constraint during normal operation and depressurization accidents, and (2) the plateout inventories for those important nuclides affecting shutdown maintenance should not exceed 10,000 Ci Ag-110m, 45,000 Ci Cs-134 and 130,000 Ci Cs-137. This paper presents bases and methodology for deriving such criteria and compares them with light water reactors. 5 tables

  14. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  15. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  16. Selected advances in materials research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1979-01-01

    Several findings emanating from materials research that should have a beneficial impact on technological advancement in the future are described. The report deals with the GRAPHNOL, a new class of high-temperature brazing alloy for joining refractory components, gel-sphere-pac process for manufacture of nuclear fuel, and noble-metal fuel cladding for service in radioisotope thermoelectric generators designed to provide auxiliary power aboard spacecraft for planetary exploration

  17. The coupled code system TORT-TD/ATTICA3D for 3-D transient analysis of pebble-bed HTGR

    International Nuclear Information System (INIS)

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Laurien, E.; Bader, J.; EnBW Kernkraft GmbH, Philippsburg

    2012-01-01

    This paper describes the time-dependent 3-D discrete-ordinates based coupled code system TORT-TD/ATTICA3D and its application to HTGR of pebble bed type. TORT-TD/ATTICA3D is represented by a single executable and adapts the so-called internal coupling approach. Three-dimensional distributions of temperatures from ATTICA3D and power density from TORT-TD are efficiently exchanged by direct memory access of array elements via interface routines. Applications of TORT-TD/ATTICA3D to three transients based on the PBMR-400 benchmark (total and partial control rod withdrawal and cold helium ingress) and the full power steady state of the HTR-10 are presented. For the partial control rod withdrawal, 3-D effects of local neutron flux redistributions are clearly identified. The results are very promising and demonstrate that the coupled code system TORT-TD/ATTICA3D may represent a key component in a future comprehensive 3-D code system for HTGR of pebble bed type. (orig.)

  18. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-13

    The supercritical carbon-dioxide (referred to as SC-CO2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO2 direct cycle gas fast reactor has also been recently proposed. The SC-CO2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO2 densities, and allows for smaller components size, fewer components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO2 environment is the possibility

  19. Life time test of a partial model of HTGR helium-helium heat exchanger

    International Nuclear Information System (INIS)

    Kitagawa, Masaki; Hattori, Hiroshi; Ohtomo, Akira; Teramae, Tetsuo; Hamanaka, Junichi; Itoh, Mitsuyoshi; Urabe, Shigemi

    1984-01-01

    Authors had proposed a design guide for the HTGR components and applied it to the design and construction of the 1.5 Mwt helium heat exchanger test loop for the nuclear steel making under the financial support of the Japanese Ministry of International Trade and Industry. In order to assure that the design method covers all the conceivable failure mode and has enough safety margin, a series of life time tests of partial model may be needed. For this project, three types of model tests were performed. A life time test of a partial model of the center manifold pipe and eight heat exchanger tubes were described in this report. A damage criterion with a set of material constants and a simplified method for stress-strain analysis for stub tube under three dimensional load were newly developed and used to predict the lives of each tube. The predicted lives were compared with the experimental lives and good agreement was found between the two. The life time test model was evaluated according to the proposed design guide and it was found that the guide has a safety factor of approximately 200 in life for this particular model. (author)

  20. HTGRs, GEMINI, the PRIME Concept and the U.S. Advanced Reactor Effort

    International Nuclear Information System (INIS)

    Hoffman, Donald R.

    2017-01-01

    NGNP Industry Alliance Created in 2010 to Promote HTGR Commercialization • Alliance promotes the development and commercialization of the HTGR • Created in response to Energy Policy Act of 2005 authorization of NGNP Project. Why the HTGR? • High outlet temperatures – Process heat / steam for industry – Greatly increased electric power efficiency • Safety case second to none – Locate next to industrial sites • Licensability • Low water consumption • Deployable now

  1. HTGR programme in the United States of America

    International Nuclear Information System (INIS)

    Fox, J.E.

    1991-01-01

    The HTGR is being developed by the US Department of Energy within the Division of HTGRs is reported. Fuel design, development and demonstration activities are being conducted by General Atomics and Oak Ridge National Laboratory. During FY-1990 the US continued work in cooperative projects with the KFA-Forschungszentrum Juelich and the Japan Atomic Energy Research Institute on post irradiation examination of fuel capsules and continued the Fission Product Transport Test Program with the French Commissariat a l'Energie Atomique in the COMEDIE in-pile loop at the SILOE reactor at Grenoble. Other activities included installation of the high temperature core-conduction-cooldown test furnace at ORNL which will be used for testing of irradiated fuel compacts under accident conditions. Finally, the US fuel performance experts participated in the MHTGR Cost Reduction Study which is a major effort within the US commercial MHTGR program. 1 tab

  2. Materials for advanced reactor facilities: development and application. Materials of School-Conference for young scientists and specialists

    International Nuclear Information System (INIS)

    2012-01-01

    In the collection of works there are the texts, summaries and presentations of lectures delivered by the leading specialists of the branch as well as the abstracts of the students of school-conference for young scientists and specialists Materials for advanced reactor facilities: development and application, which took place on October, 29 - November, 2, 2012 in Zvenigorod. In the materials presented different aspects of development and application of materials of reactor cores and vessels of advanced reactors, computerized simulation of properties of radiation-resistant materials and simulation investigations of material radiation hardness are considered [ru

  3. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    John Alexis, S.; Jayakumar, S.

    2012-01-01

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  4. Status of a reformer design for a modular HTGR in an in-line configuration

    International Nuclear Information System (INIS)

    Gluck, R.; Whitling, W.H.; Lipps, A.J.

    1984-01-01

    For the past several years the General Electric Company has had the technical lead on advanced concept studies for the Modular High Temperature Gas Cooled Reactor (HTGR) programs sponsored by the United States Department of Energy. The focus of the Modular Reactor System (MRS) effort is the development of a generic nuclear heat source capable of supplying heat to either a steam generator/electric cycle or a high temperature steam /methane reforming cycle. Some early ground rules for this study were that the reactor be designed for 950 deg. C direct cycle reforming and that the core be of the prismatic type. Since the prismatic core required control rods near the center of the core, the vertical in-line concept was selected to promote natural circulation cooling of the core for all potential transients except the depressurized core heatup transient. Although the requirement for a prismatic core has been eliminated for recent cost reduction studies, the vertical in-line configuration has been retained for its potential as the lowest cost configuration. This paper presents the results of recent design and analytical studies conducted to evaluate the feasibility of using a steam/methane reformer in a Vertical In-Line (VIL) arrangement with the generic nuclear heat source

  5. Status Report on Structural Materials for Advanced Nuclear Systems

    International Nuclear Information System (INIS)

    Allen, T.R.; Balbaud-Celerier, F.; Asayama, T.; Pouchon, M.; Busby, J.T.; Maloy, S.; Park, J.Y.; Fazio, C.; Dai, Y.; Agostini, P.; Chevalier, J.P.; Marrow, J.

    2013-01-01

    Materials performance is critical to the safe and economic operation of any nuclear system. As the international community pursues the development of Generation IV reactor concepts and accelerator-driven transmutation systems, it will be increasingly necessary to develop advanced materials capable of tolerating the more challenging environments of these new systems. The international community supports numerous materials research programmes, with each country determining its individual focus on a case-by-case basis. In many instances, similar alloys of materials systems are being studied in several countries, providing the opportunity for collaborative and cross-cutting research that benefits different systems. This report is a snapshot of the current materials programmes supporting the development of advanced concepts. The descriptions of the research are grouped by concept, and national programmes are described within each concept. The report provides an overall sense of the importance of materials research worldwide and the opportunities for synergy among the countries represented in this overview. (authors)

  6. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  7. Advances in Functionalized Materials Research 2016

    International Nuclear Information System (INIS)

    Predoi, D.; Motelica-Heino, M.; Guegan, R.; Coustumer, L.Ph.

    2016-01-01

    In the last years, due to the rapid progress of technology, new materials at nano metric scale with special properties have become a flourishing field of research in materials science. The unique physicochemical properties of materials induced by various parameters such as mean size, shape, purity, crystallographic structure, and surface can generate effective solutions to challenging environmental and biomedical problems. As a result of this approach a large number of techniques were developed that enable obtaining novel materials at nano metric scale with specific and reproducible properties and parameters. Below will be highlighted studies on promising properties on the applicability of new materials that could lead to innovative applications in the medical field. Therefore, this special issue is focused on expected advances in the area of functionalized materials at nano metric scale. Due to multidisciplinarity of this topic, this special issue is comprised of a wide range of original research articles as well as review papers on the design and synthesis of functionalized nano materials, their structural, morphological, and biological characterization, and their potential uses in medical and environmental applications

  8. HTGR plant availability and reliability evaluations. Volume I. Summary of evaluations

    International Nuclear Information System (INIS)

    Cadwallader, G.J.; Hannaman, G.W.; Jacobsen, F.K.; Stokely, R.J.

    1976-12-01

    The report (1) describes a reliability assessment methodology for systematically locating and correcting areas which may contribute to unavailability of new and uniquely designed components and systems, (2) illustrates the methodology by applying it to such components in a high-temperature gas-cooled reactor [Public Service Company of Colorado's Fort St. Vrain 330-MW(e) HTGR], and (3) compares the results of the assessment with actual experience. The methodology can be applied to any component or system; however, it is particularly valuable for assessments of components or systems which provide essential functions, or the failure or mishandling of which could result in relatively large economic losses

  9. HTGR plant availability and reliability evaluations. Volume I. Summary of evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, G.J.; Hannaman, G.W.; Jacobsen, F.K.; Stokely, R.J.

    1976-12-01

    The report (1) describes a reliability assessment methodology for systematically locating and correcting areas which may contribute to unavailability of new and uniquely designed components and systems, (2) illustrates the methodology by applying it to such components in a high-temperature gas-cooled reactor (Public Service Company of Colorado's Fort St. Vrain 330-MW(e) HTGR), and (3) compares the results of the assessment with actual experience. The methodology can be applied to any component or system; however, it is particularly valuable for assessments of components or systems which provide essential functions, or the failure or mishandling of which could result in relatively large economic losses.

  10. Thermodynamic assessment of the HTGR fuel system Th-U-C-O

    International Nuclear Information System (INIS)

    Ugajin, M.; Shiba, K.

    1978-01-01

    Carbon monoxide pressures and uranium segregation at 2000 K have been calculated for the three-phase equilibria [(ThU)O 2 + (ThU)C 2 + C] in the Th-U-C-O system. This study is concerned with the thermochemical behavior of (Th, U)O 2 particle fuel for the high-temperature gas-cooled reactor (HTGR). The following two points are considered: (1) Reduction of the in-particle CO pressure of (Th, U)O 2 kernels by doping (Th, U)C 2 to make it an oxygen getter. (2) Prediction of U segregation between (Th, U)O 2 and (Th, U)C 2 , doped in the kernel. (Auth.)

  11. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  12. Experimental determination of the Koo fuel temperature coefficient for an HTGR lattice

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, P.; Benedetti, F.; Brighenti, G.; Chiodi, P. L.; Dell' Oro, P.; Giuliani, C.; Tassan, S.

    1974-10-15

    This paper describes temperature-dependent k-infinity measurements conducted using an assembly of loose HTGR coated particles in the BR-2 reactor by means of null reactivity oscillating method comparing the effect of poisoned and unpoisoned lattices like tests performed in the Physical Constants Test Reactor (PCTR) at Hanford. The RB-2 reactor was the property of the Italian firm AGIP NUCLEARE and operated at the Montecuccolino Center in Bologna.

  13. Analytical methods for fissionable materials in the nuclear fuel cycle. Covering June 1974--June 1975

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1975-10-01

    Research progress is reported on method development for the dissolution of difficult-to-dissolve materials, the automated analysis of plutonium and uranium, the preparation of plutonium materials for the Safeguard Analytical Laboratory Evaluation (SALE) Program, and the analysis of HTGR fuel and SALE uranium materials. The previously developed Teflon-container, metal-shell apparatus was applied to the dissolution of various nuclear materials. Gas--solid reactions, mainly using chlorine at elevated temperatures, are promising for separating uranium from refractory compounds. An automated spectrophotometer designed for determining plutonium and uranium was tested successfully. Procedures were developed for this instrument to analyze uranium--plutonium mixtures and the effects of diverse ions upon the analysis of plutonium and uranium were further established. A versatile apparatus was assembled to develop electrotitrimetric methods that will serve as the basis for precise automated determinations of plutonium. Plutonium materials prepared for the Safeguard Analytical Laboratory Evaluation (SALE) Program were plutonium oxide, uranium--plutonium mixed oxide, and plutonium metal. Improvements were made in the methods used for determining uranium in HTGR fuel materials and SALE uranium materials. Plutonium metal samples were prepared, characterized, and distributed, and half-life measurements were in progress as part of an inter-ERDA-laboratory program to measure accurately the half-lives of long-lived plutonium isotopes

  14. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  15. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  16. The diffusion bonding of advanced material

    International Nuclear Information System (INIS)

    Khan, T.I.

    2001-01-01

    As a joining process diffusion bonding has been used since early periods, and artifacts have been found which date back to 3000 years. However, over the last 20 years this joining process has been rediscovered and research has been carried out to understand the mechanisms of the process, and the application of the technique to advanced materials. This paper will review some of the reasons to why diffusion bonding may be preferred over other more conventional welding processes to join advanced alloy systems. It also describes in brief the different types of bonding processes, namely, solid-state and liquid phase bonding techniques. The paper demonstrates the application of diffusion bonding processes to join a range of dissimilar materials for instance: oxide dispersion strengthened superalloys, titanium to duplex stainless steels and engineering ceramics such as Si/sub 3/N/sub 4/ to metal alloys. The research work highlights the success and limitations of the diffusion bonding process and is based on the experience of the author and his colleagues. (author)

  17. Advanced Materials for Space Applications

    Science.gov (United States)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  18. Feasibility of monitoring the strength of HTGR core support graphite. Part II

    International Nuclear Information System (INIS)

    Morgan, W.C.; Becker, F.L.

    1979-08-01

    The results reported establish the technical feasibility of a method for monitoring the strength of HTGR core support structures in situ. Correlations have been established between the velocity of an ultrasonic pulse and the compressive strength of four different grades of graphite. For some grades of graphite, one or more of the correlations are practically independent of oxidation profile in samples having cylindrical geometry (as in the core support posts). For other grades of graphite, and for other sample geometries, the oxidation-depth profile must be known in order to reliably predict the effect of oxidation on compressive strength

  19. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  20. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  1. Utilization of plutonium in HTGR and its actinide production

    International Nuclear Information System (INIS)

    Karin, S.; Brogli, R.; Lefler, W.; Nordheim, L.

    1976-01-01

    The HTGR is a potential plutonium consumer. In this function it would burn plutonium, produce electricity and the valuable fissile isotope U-233. The advantages of this concept are discussed but particular attention is given to the production and the destruction of the higher actinides due to the high burnup achievable in such a system. The presence of the strong resonances in the plutonium isotopes demanded an extension of the methods for evaluation of self-shielding factors, a different structure for broad groups, and the adaptation of the reactor codes to these changes. Specifications for coated plutonium particles were developed. Also procedures were determined to evaluate the alpha ray and neutron emission rates of the actinide nuclides. First cycle calculations were carried out to establish in detail the characteristics of the plutonium reactors and their results are given

  2. Precious-metal-base advanced materials

    International Nuclear Information System (INIS)

    Nowicki, T.; Carbonnaux, C.

    1993-01-01

    Precious metals constitute also the base of several advanced materials used in the industry in hundreds of metric tons. Platinum alloys have been used as structural materials for equipments in the glass industry. The essential reason for this is the excellent resistance of platinum alloys to oxidation and electrolytical corrosion in molten glasses at temperatures as high as 1200-1500 C. The major drawback is a weak creep resistance. The unique way for significant improvement of platinum base materials creep resistance is a strengthening by an oxide dispersion (ODS). In the case of CLAL's patented ''Plativer'' materials, 0.05 wt% of Y 2 O 3 is incorporated within the alloy matrix by the flame spraying process. Further improvement of platinum base materials is related, in the authors opinion, to the development of precious metals base intermetallics. Another interesting applications of precious metals are silver base electrical contacts. They are in fact silver matrix composites containing varying amounts of well-dispersed particles of constituents such as CdO, SnO 2 , Ni, WC or C. In the case of such materials, particular properties are required and tested : resistance to arc erosion, resistance to welding and contact resistance. Many other technically fascinating precious metals base materials exist: brazing alloys for assembling metals, superconductors and ceramics; dental materials including magnetic biocompatible alloys; silver composites for superconductor wire jackets. The observation of current evolution indicates very clearly that precious metals cannot be replaced by common metals because of their unique characteristics due to their atomic level properties

  3. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  4. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    Science.gov (United States)

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  6. Design and evaluation of an on-line fuel rod assay device for an HTGR fuel refabrication plant

    International Nuclear Information System (INIS)

    Rushton, J.E.; Allen, E.J.; Chiles, M.M.; Jenkins, J.D.

    1979-11-01

    Refabricated HTGR fuel rods will contain from approx. 0.15 to 0.5 g 233 U and/or 235 U. The fuel rods are approx. 16 mm in diameter and 62 mm long. A typical commercial fuel refabrication facility will have six fuel rod production lines, each producing approximately one fuel rod every 4 seconds at design capacity. One on-line assay device will be present for each two production lines. The relative standard deviation in an individual fuel rod fissile material measurement must be less than 3% to satisfy process and quality control requirements. Systematic errors must be kept less than approx. 0.3% for fissile material measured in fuel rods produced over two months to satisfy material accountability requirements. Several nondestructive assay (NDA) methods were investigated. Because the gamma-ray activity of the refabricated fuel is relatively high due to the presence of 232 U in the fuel and because the gamma-ray activity is not directly related to total or fissile uranium content, NDA methods employing gamma-ray detection did not appear practicable. A method using thermal neutron irradiation and fast-fission neutron detection was selected. An experimental assay device was fabricated based on this NDA method. Experiments were performed to determine the precision and accuracy of the measurements and to investigate potential interferences and systematic errors. Operating procedures were evaluated, and analysis procedures were identified

  7. Significance and prospects of the energo-technological usage of HTGR for nuclear power development in the beginning of the XXI century

    International Nuclear Information System (INIS)

    Breger, A.Kh.; Putilov, A.V.; Bogoyavlensky, R.G.; Glebov, V.P.

    1993-01-01

    This report describes the economic efficiency of atomic stations (HTGR plants). The realization of the complex (energy radiation-technological) using of nuclear fuel leads to the economically effective mastering of nuclear energy sources instead of organic ones for supplying inductry and municipal economy. It is necessary to include in the power engineering development programme, under the circumstances of fulfillment of requirements of safety and reliability, research and development by the end of the century of the pattern of complex unit on the base of the HTGR with spherical fuel elements and (by 2010-15), mastering the energy-technological plants in high-energy branches of industry and municipal economy. Solving the mentioned problems will make a perceptible contribution into scientific progress, will allow to fulfill the conversion of war industry, attract highly qualified specialists to solving the tasks of national economy

  8. Advanced reflector materials for solar concentrators

    Science.gov (United States)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  9. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  10. Subharmonic excitation in an HTGR core

    International Nuclear Information System (INIS)

    Bezler, P.; Curreri, J.R.

    1977-01-01

    The occurrence of subharmonic resonance in a series of blocks with clearance between blocks and with springs on the outer most ends is the subject of this paper. This represents an HTGR core response to an earthquake input. An analytical model of the cross section of this type of core is a series of blocks arranged horizontally between outer walls. Each block represents many graphite hexagonal core elements acting in unison as a single mass. The blocks are of unequal size to model the true mass distribution through the core. Core element elasticity and damping characteristics are modeled with linear spring and viscous damping units affixed to each block. The walls and base represent the core barell or core element containment structure. For forced response calculations, these boundaries are given prescribed motions. The clearance between each block could be the same or different with the total clearance duplicating that of the entire core. Spring packs installed between the first and last block and the boundaries model the boundary elasticity. The system non-linearity is due to the severe discontinuity in the interblock elastic forces when adjacent blocks collide. A computer program using a numerical integration scheme was developed to solve for the response of the system to arbitrary inputs

  11. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  12. Advanced composite structural concepts and material technologies for primary aircraft structures

    Science.gov (United States)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  13. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  14. Advances in thermoelectric materials research: Looking back and moving forward.

    Science.gov (United States)

    He, Jian; Tritt, Terry M

    2017-09-29

    High-performance thermoelectric materials lie at the heart of thermoelectrics, the simplest technology applicable to direct thermal-to-electrical energy conversion. In its recent 60-year history, the field of thermoelectric materials research has stalled several times, but each time it was rejuvenated by new paradigms. This article reviews several potentially paradigm-changing mechanisms enabled by defects, size effects, critical phenomena, anharmonicity, and the spin degree of freedom. These mechanisms decouple the otherwise adversely interdependent physical quantities toward higher material performance. We also briefly discuss a number of promising materials, advanced material synthesis and preparation techniques, and new opportunities. The renewable energy landscape will be reshaped if the current trend in thermoelectric materials research is sustained into the foreseeable future. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  16. Multiregional coupled conduction--convection model for heat transfer in an HTGR core

    International Nuclear Information System (INIS)

    Giles, G.E. Jr.; Childs, K.W.; Sanders, J.P.

    1978-01-01

    HEXEREI is a three-dimensional, coupled conduction-convection heat transfer and multichannel fluid dynamic analysis computer code with both steady-state and transient capabilities. The program was developed to provide thermal-fluid dynamic analysis of a core following the general design for high-temperature gas-cooled reactors (HTGRs); its purpose was to provide licensing evaluations for the U.S. Nuclear Regulatory Commission. In order to efficiently model the HTGR core, the nodal geometry of HEXEREI was chosen as a regular hexagonal array perpendicular to the axis of and bounded by a right circular cylinder. The cylindrical nodal geometry surrounds the hexagonal center portion of the mesh; these two different types of nodal geometries must be connected by interface nodes to complete the accurate modeling of the HTGR core. HEXEREI will automatically generate a nodal geometry that will accurately model a complex assembly of hexagonal and irregular prisms. The accuracy of the model was proven by a comparison of computed values with analytical results for steady-state and transient heat transfer problems. HEXEREI incorporates convective heat transfer to the coolant in many parallel axial flow channels. Forced and natural convection (which permits different flow directions in parallel channels) is included in the heat transfer and fluid dynamic models. HEXEREI incorporates a variety of steady-state and transient solution techniques that can be matched with a particular problem to minimize the computational time. HEXEREI was compared with a code of similar capabilities that was based on a Cartesian mesh. This code modeled only one specific core design, and the mesh spacing was closer than that generated by HEXEREI. Good agreement was obtained with the detail provided by the representations

  17. Approach to the HTGR core outlet temperature measurements in the United States

    International Nuclear Information System (INIS)

    Franklin, R.; Rodriguez, C.

    1982-06-01

    The High Temperature Gas-Cooled Reactor (HTGR) constructed at Fort St. Vrain Colorado (330 MWe) used Geminol thermocouples to measure the primary coolant temperature at the core outlet. The primary coolant (helium) is heated by the graphite core to temperatures in the range of 700 deg. to 750 deg. C. The combination of the high temperature, high flow rate and radiation at the core outlet area makes it difficult to obtain accurate temperature measurements. The Geminol thermocouples installed in the Fort St. Vrain reactor have provided accurate data for several years of power operation without any failures. The indicated temperature of the core outlet thermocouples agrees with a ''traversing'' thermocouple measurement to within +-2 deg. C. The Geminol thermocouple wire was provided by the Driver-Harris Company and is similar to the chromel versus alumel thermocouple. Geminol wire is no longer distributed and on future designs, chromel versus alumel wire will be used. The next large HTGR design, which is being performed with funding support from the United States Department of Energy, will incorporate replaceable thermocouples. The thermocouples used in the Fort St. Vrain reactor were permanently installed and large in diameter (6.35 mm) to insure good reliability. The replaceable thermocouples to be used in the next large reactor will be smaller in diameter (3.18 mm). These replaceable thermocouples will be inserted into the core outlet area through long curved guide tubes that are permanently installed. These guide tubes are as long as 18 meters and must be curved to reach the core outlet regions. Tests were conducted to prove that the thermocouples could be inserted and removed through the long curved guide tubes. (author)

  18. International workshop on advanced materials for high precision detectors. Proceedings

    International Nuclear Information System (INIS)

    Nicquevert, B.; Hauviller, C.

    1994-01-01

    These proceedings gather together the contributions to the Workshop on Advanced Materials for High Precision Detectors, which was held from 28-30 September 1994 in Archamps, Haute-Savoie, France. This meeting brought together international experts (researchers, physicists and engineers) in the field of advanced materials and their use in high energy physics detectors or spacecraft applications. Its purpose was to discuss the status of the different materials currently in use in the structures of detectors and spacecraft, together with their actual performances, technological implications and future prospects. Environmental effects, such as those of moisture and radiation, were discussed, as were design and manufacturing technologies. Some case studies were presented. (orig.)

  19. Fatigue studies of superalloys in Japan

    International Nuclear Information System (INIS)

    Kitagawa, Masaki

    1985-01-01

    In the past 15 years, several national projects were advanced to develop high temperature machinery, such as high temperature gas-cooled reactors, gas turbines and fusion reactors. Before, the studies on the strength of superalloys were rarely carried out, however, by the above research works, superalloys are in rapid progress. Because these machinery are subjected to temperature cycles and vibration stress, the fatigue failure is the main concern in the safety analysis of the components. The purpose of this paper is to summarize the present status of the fatigue research on the alloys for high temperature use in Japan. The superalloys used for gas turbine and HTGR components are listed, and the materials tested were mostly the alloys of nickel base, cobalt base or iron base. In the above national projects, the main purpose was to clarify the high temperature properties including fatigue properties, to develop the method of forecasting the life span and to develop better materials. As the topics about the fatigue research on superalloys, the development of the method for forecasting the life span, the effect of directional solidification, coating and HIP process on the fatigue strength of gas turbine materials, the effect of helium and aging on the fatigue strength of HTGR materials, the fatigue strength of weldment of HTGR materials and others are reported. (Kako, I.)

  20. The chemical stability of TRISO-coated HTGR fuel. Pt. 1. Status report

    International Nuclear Information System (INIS)

    Groot, P.; Cordfunke, E.H.P.; Konings, R.J.M.

    1994-12-01

    The US fuel seemed to be more difficult to produce than the German fuel. Also the chemical stability of this fuel must be investigated. The conditions are more severe in the US concept than in the German concept. Oxidation of the graphite seems to be no problem, according to US HTGR concept. A ZrC coating seems to have a number of advantages with regard to the SiC coating: (1) Better retention, (2) no reaction with Pd, (3) no thermal dissociation. Only the oxidation resistance is worse than SiC. Also the maximum stress must be determined that the ZrC coating can have. (orig./HP)

  1. Fission product behavior in HTGR fuel particles made from weak-acid resins

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Henson, T.J.

    1979-04-01

    Fission product retention and behavior are of utmost importance in HTGR fuel particles. The present study concentrates on particles made from weak-acid resins, which can vary in composition from 100% UO 2 plus excess carbon to 100% UC 2 plus excess carbon. Five compositions were tested: UC 4 58 O 2 04 , UC 3 68 O 0 01 , UC 4 39 O 1 72 , UC 4 63 O 0 97 , and UC 4 14 O 1 53 . Metallographically sectioned particles were examined with a shielded electron microprobe. The distributions of the fission products were determined by monitoring characteristic x-ray lines while scanning the electron beam over the particle surface

  2. Specialists' meeting on high temperature metallic materials for application in gas-cooled reactors

    International Nuclear Information System (INIS)

    At the meeting overviews of current programmes for the development of high temperature materials in Japan, F.R. Germany and the United States of America were presented. Some papers were presented dealing with various aspects of microstructural studies, surface reactions and the changes of microstructure and dimensions due mainly to the associated interfacial material transports, protective surface coatings for HTGR and AGR applications. Other topics presented were mechanical properties of materials and also the influence of materials' properties data on design at temperatures in the creep region where time dependent behaviour must be considered

  3. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  4. Mishap risk control for advanced aerospace/composite materials

    Science.gov (United States)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  5. Design and operation of equipment used to develop remote coating capability for HTGR fuel particles

    International Nuclear Information System (INIS)

    Suchomel, R.R.; Stinton, D.P.; Preston, M.K.; Heck, J.L.; Bolfing, B.J.; Lackey, W.J.

    1978-12-01

    Refabrication of HTGR fuels is a manufacturing process that consists of preparation of fuel kernels, application of multiple layers of pyrolytic carbon and silicon carbide, preparation of fuel rods, and assembly of fuel rods into fuel elements. All the equipment for refabrication of 233 U-containing fuel must be designed for completely remote operation and maintenance in hot-cell facilities. Equipment to remotely coated HTGR fuel particles has been designed and operated. Although not all of the equipment development needed for a fully remote coating system has been completed, significant progress has been made. The most important component of the coating furnace is the gas distributor, which must be simple, reliable, and easily maintainable. Techniques for loading and unloading the coater and handling microspheres have been developed. An engineering-scale system, currently in operation, is being used to verify the workability of these concepts. Coating crucible handling components are used to remove the crucible from the furnace, remove coated particles, and exchange the crucible, if necessary. After the batch of particles has been unloaded, it is transferred, weighed, and sampled. The components used in these processes have been tested to ensure that no particle breakage or holdup occurs. Tests of the particle handling system have been very encouraging because no major problems have been encountered. Instrumentation that controls the equipment performed very smoothly and reliably and can be operated remotely

  6. Advancing Sustainable Materials Management: Facts and Figures Report

    Science.gov (United States)

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  7. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  8. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  9. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  10. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  11. Challenges for INAA in studies of materials from advanced material research including rare earth concentrates and carbon based ceramics

    International Nuclear Information System (INIS)

    Bode, P.; Van Meerten, Th.G.

    2000-01-01

    Rare-earth elements are increasingly applied in advanced materials to be used, e.g., in electronic industry, automobile catalysts, or lamps and optical devices. Trace element analysis of these materials might be an interesting niche for NAA because of the intrinsic high accuracy of this technique, and the shortage of matrix matching reference materials with other methods for elemental analysis. The carbon composite materials form another category of advanced materials, where sometimes a very high degree of purity is required. Also for these materials, NAA has favorable analytical characteristics. Examples are given of the use of NAA in the analysis of both categories of materials. (author)

  12. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  13. Factors affecting defective fraction of biso-coated HTGR fuel particles during in-block carbonization

    International Nuclear Information System (INIS)

    Caputo, A.J.; Johnson, D.R.; Bayne, C.K.

    1977-01-01

    The performance of Biso-coated thoria fuel particles during the in-block processing step of HTGR fuel element refabrication was evaluated. The effect of various process variables (heating rate, particle crushing strength, horizontal and/or vertical position in the fuel element blocks, and fuel hole permeability) on pitch coke yield, defective fraction of fuel particles, matrix structure, and matrix porosity was evaluated. Of the variables tested, only heating rate had a significant effect on pitch coke yield while both heating rate and particle crushing strength had a significant effect on defective fraction of fuel particles

  14. Advanced Materials and Devices for Bioresorbable Electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of

  15. Recent advances in the development of aerospace materials

    Science.gov (United States)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  16. Conceptual study on HTGR-IS hydrogen supply system using organic hydrides

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Inagaki, Yoshiyuki

    2012-02-01

    We have proposed a hydrogen supply-chain system, which is a storage/supply system of large amount of hydrogen produced by HTGR-IS hydrogen production system. The organic chemical hydride method is one of the candidate techniques in the system for hydrogen storage and transportation. In this study, properties of organic hydrides and conventional hydrogen storage/supply system were surveyed to make use of the conceptual design of the hydrogen supply system using an organic hydrides method with VHTR-IS hydrogen production process (hydrogen production: 85,400 Nm 3 /h). Conceptual specifications of the main equipments were designed for the hydrogen supply system consisting of hydrogenation and dehydrogenation process. It was also clarified the problems of hydrogen supply system, such as energy efficiency and system optimization. (author)

  17. Status of HTTR development in Japan

    International Nuclear Information System (INIS)

    Sanokawa, K.

    1988-01-01

    The Japanese Atomic Energy Commission decided to construct a high-temperature engineering test reactor in order to promote innovative basic research on high-temperature engineering as well as advanced HTGR technology. The reactor design and the related R and D works carried out in reactor physics, fuel and materials are briefly presented in this report

  18. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  19. Overview of HTGR utilization system developments at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Inagaki, Y.

    1997-01-01

    JAERI has been constructing a 30-MWt HTGR, named HTTR, to develop technology and to demonstrate effectiveness of high-temperature nuclear heat utilization. A hydrogen production system by natural gas steam reforming is to be the first heat utilization system of the HTTR since its technology matured in fossil-fired plant enables to couple with HTTR in the early 2000's and technical solutions demonstrated by the coupling will contribute to all other hydrogen production systems. The HTTR steam reforming system is designed to utilize the nuclear heat effectively and to achieve hydrogen productivity competitive to that of a fossil-fired plant with operability, controllability and safety acceptable enough to commercialization, and an arrangement of key components was already decided. Prior to coupling of the steam reforming system with the HTTR, an out-of-pile test is planned to confirm safety, controllability and performance of the steam reforming system under simulated operational conditions. The out-of-pile system is an approximately 1/20-1/30 scale system of the HTTR steam reforming system and simulates key components downstream from an IHX

  20. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.