WorldWideScience

Sample records for advanced high-current particle

  1. Particle-in-cell simulations of the high current experiment

    International Nuclear Information System (INIS)

    The particle-in-cell code WARP has been used to simulate beam dynamics for the intense ion beam of the High Current Experiment. First a study was done of the dynamic aperture of the alternating-gradient electrostatic quadrupole lattice of the experiment, including nonlinearity due to image forces and imperfections of the focusing lattice field. It was found that particle loss, rather than emittance growth, determined the usable aperture. Simulations of transport in the High Current Experiment were then performed, and the results compared to measured data. We present the results of both of these studies

  2. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 1014 W/m2 over six meters and up to 1.6 x 1015 W/m2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  3. A new method of rapid power measurement for MW-scale high-current particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yongjian, E-mail: yjxu@ipp.ac.cn; Hu, Chundong; Xie, Yuanlai; Liu, Zhimin; Xie, Yahong; Liu, Sheng; Liang, Lizheng; Jiang, Caichao; Sheng, Peng; Yu, Ling

    2015-09-21

    MW-scale high current particle beams are widely applied for plasma heating in the magnetic confinement fusion devices, in which beam power is an important indicator for efficient heating. Generally, power measurement of MW-scale high current particle beam adopts water flow calorimetry (WFC). Limited by the principles of WFC, the beam power given by WFC is an averaged value. In this article a new method of beam power for MW-scale high-current particle beams is introduced: (1) the temperature data of thermocouples embedded in the beam stopping elements were obtained using high data acquire system, (2) the surface heat flux of the beam stopping elements are calculated using heat transfer, (3) the relationships between positions and heat flux were acquired using numerical simulation, (4) the real-time power deposited on the beam stopping elements can be calculated using surface integral. The principle of measurement was described in detail and applied to the EAST neutral beam injector for demonstration. The result is compared with that measured by WFC. Comparison of the results shows good accuracy and applicability of this measuring method.

  4. A new method of rapid power measurement for MW-scale high-current particle beams

    Science.gov (United States)

    Xu, Yongjian; Hu, Chundong; Xie, Yuanlai; Liu, Zhimin; Xie, Yahong; Liu, Sheng; Liang, Lizheng; Jiang, Caichao; Sheng, Peng; Yu, Ling

    2015-09-01

    MW-scale high current particle beams are widely applied for plasma heating in the magnetic confinement fusion devices, in which beam power is an important indicator for efficient heating. Generally, power measurement of MW-scale high current particle beam adopts water flow calorimetry (WFC). Limited by the principles of WFC, the beam power given by WFC is an averaged value. In this article a new method of beam power for MW-scale high-current particle beams is introduced: (1) the temperature data of thermocouples embedded in the beam stopping elements were obtained using high data acquire system, (2) the surface heat flux of the beam stopping elements are calculated using heat transfer, (3) the relationships between positions and heat flux were acquired using numerical simulation, (4) the real-time power deposited on the beam stopping elements can be calculated using surface integral. The principle of measurement was described in detail and applied to the EAST neutral beam injector for demonstration. The result is compared with that measured by WFC. Comparison of the results shows good accuracy and applicability of this measuring method.

  5. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  6. Design Solutions for Compact High Current Pulse Transformers for Particle Accelerators’ Magnets Powering

    CERN Document Server

    AUTHOR|(CDS)2071060; Rebeschini, Renato; Iovieno, Salvatore; Russo, Carlo

    2015-01-01

    High current pulse transformers are widely used in particle accelerators for feeding pulsed magnets. Usually they need to be installed in very confined spaces, thus requiring compact design solutions. Several magnetic bias solutions are explored with the objective of reducing the core volume and total cost of the converter-transformer system. A concrete example is illustrated via the optimal design of two variants of the same pulse transformer, one with an air-gap and the other without air-gap but with an active magnetic reset. Results show that several solutions exist in order to optimize the volume of pulse transformers; however, this is always done at the expense of a more complex power converter topology or increased magnet volume.

  7. High current electron linacs (advanced test accelerator/experimental test accelerator)

    International Nuclear Information System (INIS)

    The high current induction accelerator development at the Lawrence Livermore National Laboratory is described. The ATA facility is designed for 10 kA peak currents, 50 nsec pulse lengths and 50 MeV energies. At this time, half of the design current has been accelerated through the entire machine to particle energies of about 45 MeV. Current problem areas and operational experience to date will be discussed. Several key technical areas required development for the ATA machine; this report will survey these developments. The control of transverse beam instabilities required an accelerating cavity design with very low Q. Electron sources capable of 10 kA operation at high rep rates were developed using a plasma sparkboard approach. The pulse power systems on ATA, using the same type of spark gap switches as ETA, have exhibited excellent operational reliability

  8. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  9. Advanced coated particle fuels

    International Nuclear Information System (INIS)

    The coated particle fuel (cpf) has been developed for use in high-temperature gas-cooled reactors, but it may find applications in other types of reactors. In JAERI, besides the development of cpf for High Temperature Engineering Test Reactor, conceptual studies of the cpf applications in actinide burner reactors and space reactors have been made. The conceptual design studies as well as the research and development of advanced coatings, ZrC and TiN, are reviewed. (author)

  10. A particle-core-MD model for intrabeam scattering and halo formation in high current beams in a FODO channel

    CERN Document Server

    Uhlmann, N; Comunian, M; Pisent, A

    2002-01-01

    An essential problem for the successful operation of high current linear ion accelerators is the control of beam losses due to halo particles. As a possible mechanism for the formation of such a halo we concentrate on the interplay between intrabeam scattering (IBS) and the incidence of particles which are driven to high amplitudes by resonances with the nonlinear space charge fields of a mismatched beam. Since a fully microscopic numerical treatment including all the mutual Coulomb interactions between the beam ions requires much too high computational effort, we developed an approximative method. These particle-core-molecular-dynamics (PCMD) simulations suitably join the mean-field description of the time evolution of the beam in framework of the envelope equations and a microscopic calculation of the Coulomb interactions between pseudo-particles with a renormalized charge. With this method we studied matched and mismatched continuous KV-beams in a FODO channel. In first simulation runs we observed a signif...

  11. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams

    International Nuclear Information System (INIS)

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  12. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    International Nuclear Information System (INIS)

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at Ip = 10 MA, BT = 8.5 T, q95 ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FAST could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values

  13. Experimental Study on Electrical Characteristics of Advanced Unipolar Power Electronics Devices for High Current Operation of AC/DC Converter

    International Nuclear Information System (INIS)

    Large capacity power supply is required for energizing the magnetic field coil system of nuclear fusion experimental machine in future, and high efficiency and low operational loss of such power supply are important issues. Especially, for high current operation of large capacity power supply, the switching power electronics device of AC/DC converter for power supply should be more efficient and have lower on-state resistance than conventional one. Recently, some advanced power electronics devices have been developed, which are unipolar power device based on crystallized SiC material or super junction type modified unipolar power device based on crystallized Si material. Concerning the efficiency improvement of AC/DC converter, the temperature dependence of electrical characteristics of switching device is the key issue on operational loss reduction. On-state resistance and allowable operational temperature of switching device are directly related to the operational loss of AC/DC converter. The former one is the main parameter of conductive loss, which is dominant one of the operational loss of high current AC/DC converter, and it is effective to reduce the conductive loss for efficiency improvement. The latter one is related to the cooling capability of cooling equipment, which is a main auxiliary component of large capacity AC/DC converter. The temperature dependence of on-state resistance of SiC-based or Si-based advanced unipolar power electronics device will be expected to reduce the conductive loss and to simplify the cooling equipment of AC/DC converter. The allowable operational temperature of SiC power device is higher than that of Si power device, therefore it is also expected to minimize the cooling capability. Such electrical characteristics of SiC-based or Si-based advanced unipolar power electronics device will contribute to reduce the operational loss and to improve the operational efficiency of AC/DC converter. With the experimental results of

  14. Ion beams and material science facilities using high current low energy 3.0 MV particle accelerator at NCAR, Bilaspur

    International Nuclear Information System (INIS)

    The national facility for interdisciplinary research using ion beams based on 3.0 MV Pelletron accelerator (9SDH, NEC) with high current TORVIS (for H, He ions) and SNICS (for heavy ions) sources, and two beam lines for ion beam analysis (IBA) and ion implantation/irradiation have been successfully commissioned at NCAR, Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur. The accelerator conditioning was done over a period of time to achieve desired level of terminal voltage and vacuum in the accelerator tank, 3.0 MV terminal voltage was achieved with chain currents 120 A and an applied charging voltage of 13 kV. The vacuum without beam acceleration was lower 10-8 torr on both sides of the Pelletron tank. Finally, the first beam demonstration was achieved when a proton beam accelerated with terminal potential of 0.965 MV was seen at the Au target in Ion Beam analysis (IBA) chamber, the energy at the Faraday cup (FC) just before the chamber was 0.5 eA. Details of the facilities tested and the results obtained so far will be discussed in the paper

  15. Innovative Experimental Particle Physics through Technological Advances

    OpenAIRE

    Cheung, Harry W. K.

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniq...

  16. Comparative Analysis of Modeling a High-Current Relativistic Charged-Particle Beam in a Diode with Magnetic Insulation Using the Finite-Difference Method and the Large-Particle Method

    Science.gov (United States)

    Bogdanovich, B. Yu.; Nesterovich, A. V.; Sukhanova, L. A.; Khlestkov, Yu. A.

    2014-08-01

    Results of modeling of a high-current relativistic beam by the finite-difference method are compared with results obtained for a beam with the same parameters using the well-known KARAT code, which is based on the large-particle method. These two methods give similar results, which justifies the use of the finite-difference method for the numerical solution of the equations of motion describing the motion of the beam in its own and an external electromagnetic field.

  17. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  18. Development of 2D particle-in-cell code to simulate high current, low energy beam in a beam transport system

    Indian Academy of Sciences (India)

    S C L Srivastava; S V L S Rao; P Singh

    2007-10-01

    A code for 2D space-charge dominated beam dynamics study in beam transport lines is developed. The code is used for particle-in-cell (PIC) simulation of -uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam. Numerical techniques as well as the results of beam dynamics studies are presented in the paper.

  19. Damped time advance methods for particles and EM fields

    International Nuclear Information System (INIS)

    Recent developments in the application of damped time advance methods to plasma simulations include the synthesis of implicit and explicit ''adjustably damped'' second order accurate methods for particle motion and electromagnetic field propagation. This paper discusses this method

  20. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... and improving hydraulic conditions. Unlike most traditional theses which usually focus only on one particular subject of study, this thesis contains four relatively independent studies which cover the following topics: a newly proposed particle settling enhancement plate, the redesign of the inlet zone...... of a high-flow rate clarifier, identify the hydraulic problems of an old partially functioned CSO facility and investigate possible ways to entirely eliminate untreated CSO by improving its hydraulic capacity and performance. In order to be easily understood, each part includes its own abstract...

  1. Advanced visualization technology for terascale particle accelerator simulations

    OpenAIRE

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-01-01

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of nextgeneration accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphic...

  2. High-current cyclotron injector

    International Nuclear Information System (INIS)

    Choosing the parameters of a high-current cyclotron intended for production of 1-10 mA intensity beam is considered. The cyclotron is assumed to be used as an injector for deuteron accelerating facility to 45 MeV/nucleon energy. 13 refs.; 4 figs.; 1 tab

  3. Advanced visualization technology for terascale particle accelerator simulations

    International Nuclear Information System (INIS)

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  4. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    CERN Document Server

    Zharkova, Valentina V; Benz, Arnold O; Browning, Phillippa; Dauphin, Cyril; Emslie, A Gordon; Fletcher, Lyndsay; Kontar, Eduard P; Mann, Gottfried; Onofri, Marco; Petrosian, Vahe; Turkmani, Rim; Vilmer, Nicole; Vlahos, Loukas

    2011-01-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  5. Advances in Time-Resolved Tomographic Particle Image Velocimetry

    OpenAIRE

    Lynch, K.P.

    2015-01-01

    This thesis details advanced developments in 3-D particle image velocimetry (PIV) based on the tomographic PIV technique, with an emphasis on time-resolved experiments. Tomographic PIV is a technique introduced in 2006 to measure the flow velocity in a three-dimensional volume. When measurements are performed at a rate high enough to sample the dynamical evolution of the flow, the measurement is considered time-resolved. The present work begins with a description of developments in tomographi...

  6. Electrical measurement techniques for pulsed high current electron beams

    International Nuclear Information System (INIS)

    The advent of high current (1 to 100 kA), moderate energy (>10 MeV), short pulse (1 to 100 ns) electron accelerators used for charged particle beam research has motivated a need to complement standard diagnostics with development of new diagnostic techniques to measure electron beam parameters. A brief survey is given of the diagnostics for measuring beam current, position, size, energy, and emittance. While a broad scope of diagnostics will be discussed, this survey will emphasize diagnostics used on the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA). Focus is placed on diagnostics measuring beam current, position and size. Among the diagnostics discussed are resistive wall current monitors, B/sub theta/ loops, Rogowski coils, Faraday cups, and x-ray wire diagnostics. Operation at higher current levels also increases radiation and electromagnetic pulse interference. These difficulties and methods for circumventing them are also discussed

  7. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  8. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    Science.gov (United States)

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  9. Theoretical Advanced Study Institute in Elementary Particle Physics

    CERN Document Server

    2006-01-01

    This book contains write-ups of lectures from a summer school for advanced graduate students in elementary particle physics. In the first lecture, Scott Willenbrock gives an overview of the standard model of particle physics. This is followed by reviews of specific areas of standard model physics: precision electroweak analysis by James Wells, quantum chromodynamics and jets by George Sterman, and heavy quark effective field by Matthias Neubert. Developments in neutrino physics are discussed by André de Gouvea and the theory behind the Higgs boson is addressed by Laura Reina. Collider phenomenology from both experimental and theoretical perspectives are highlighted by Heidi Schellman and Tao Han. A brief survey of dynamical electroweak symmetry breaking is provided by R Sekhar Chivukula and Elizabeth H Simmons. Martin Schmaltz covers the recent proposals for “little” Higgs theories. Markus Luty describes what is needed to make supersymmetric theories realistic by breaking supersymmetry. There is an entir...

  10. Laser diagnostic for high current H- beams

    International Nuclear Information System (INIS)

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H- beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4x10-17cm2 at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H- beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H- beam to allow diagnostics on the neutral beam without intercepting the high-current H- beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. copyright 1998 American Institute of Physics

  11. Performance of Advanced Light Source particle beam diagnostics

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), a third-generation synchrotron radiation facility, is complete. The particle beam diagnostics have been installed and tested. The beam injection systems have been running for two years. We have performance data on beam position monitors, beam intensity monitors, scintillators, beam collimators, a 50 Ω Faraday cup, and broad-band striplines and kickers used in the linac, transport lines, and the booster synchrotron. The single-turn monitoring capability of the booster beam position monitoring system has been particularly useful for studying beam dynamics. Beam diagnostics for the storage ring are being commissioned. In this paper we describe each instrument, show its performance, and outline how the instruments are controlled and their output data displayed

  12. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  13. High-current SRF cavity design

    Science.gov (United States)

    Meidlinger, D.; Grimm, T. L.; Hartung, W.

    2006-07-01

    For high current applications, it is desirable for the cavity shape to have a low longitudinal loss factor and to have a high beam-breakup threshold current. This paper briefly describes three different cavities designed for this purpose: a six-cell elliptical cavity for particles traveling at the speed of light, a two-cell elliptical cavity for subluminal particle speeds, and a single cell cavity which uses the TM012 mode for acceleration. SUPERFISH simulations predict the peak fields in both of the elliptical cavities will not exceed the TeSLA values by more than 10% but both will have 28.7% larger apertures. The elliptical designs assume the bunch frequency equals the accelerating mode frequency. The beam pipe radius is chosen so that the cutoff frequency is less than twice that of the accelerating mode. Hence all of the monopole and dipole higher-order modes (HOMs) that can be driven by the beam have low loaded Q values. This simplifies the problem of HOM damping. The TM012 cavity is predicted to have much higher peak fields than a π-mode elliptical cavity, but offers potential advantages from its simplified shape; it is essentially a circular waveguide with curved end plates. This basic shape results in easier fabrication and simplified tuning.

  14. High-current SRF cavity design

    International Nuclear Information System (INIS)

    For high current applications, it is desirable for the cavity shape to have a low longitudinal loss factor and to have a high beam-breakup threshold current. This paper briefly describes three different cavities designed for this purpose: a six-cell elliptical cavity for particles traveling at the speed of light, a two-cell elliptical cavity for subluminal particle speeds, and a single cell cavity which uses the TM012 mode for acceleration. SUPERFISH simulations predict the peak fields in both of the elliptical cavities will not exceed the TeSLA values by more than 10% but both will have 28.7% larger apertures. The elliptical designs assume the bunch frequency equals the accelerating mode frequency. The beam pipe radius is chosen so that the cutoff frequency is less than twice that of the accelerating mode. Hence all of the monopole and dipole higher-order modes (HOMs) that can be driven by the beam have low loaded Q values. This simplifies the problem of HOM damping. The TM012 cavity is predicted to have much higher peak fields than a π-mode elliptical cavity, but offers potential advantages from its simplified shape; it is essentially a circular waveguide with curved end plates. This basic shape results in easier fabrication and simplified tuning

  15. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  16. Advance in Vertical Buffered Electropolishing on Niobium for Particle Accelerators*

    Energy Technology Data Exchange (ETDEWEB)

    A.T. Wu, S. Jin, J.D. Mammosser, C.E. Reece, R.A. Rimmer,L. Lin, X.Y. Lu, K. Zhao

    2011-09-01

    Niobium (Nb) is the most popular material that has been employed for making superconducting radio frequency (SRF) cavities to be used in various particle accelerators over the last couple of decades. One of the most important steps in fabricating Nb SRF cavities is the final chemical removal of 150 {mu}m of Nb from the inner surfaces of the SRF cavities. This is usually done by either buffered chemical polishing (BCP) or electropolishing (EP). Recently a new Nb surface treatment technique called buffered electropolishing (BEP) has been developed at Jefferson Lab. It has been demonstrated that BEP can produce the smoothest surface finish on Nb ever reported in the literature while realizing a Nb removal rate as high as 10 {mu}m/min that is more than 25 and 5 times quicker than those of EP and BCP(112) respectively. In this contribution, recent advance in optimizing and understanding BEP treatment technique is reviewed. Latest results from RF measurements on BEP treated Nb single cell cavities by our unique vertical polishing system will be reported.

  17. Advances in magnetospheric physics, 1971--1974: energetic particles

    International Nuclear Information System (INIS)

    An account is given of energetic particle research in magnetospheric physics for the time period 1971--1974. Emphasis is on relating the various aspects of energetic particles to magnetospheric processes. 458 refs. (U.S.)

  18. Advanced Technology Cloud Particle Probe for UAS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II SPEC will design, fabricate and flight test a state-of-the-art combined cloud particle probe called the Hawkeye. Hawkeye is the culmination of two...

  19. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  20. Advances of dense plasma physics with particle accelerators

    International Nuclear Information System (INIS)

    High intensity particle beams from accelerators induce high energy density states in bulk matter. The SIS-18 heavy ion synchrotron at GSI (Darmstadt, Germany) now routinely delivers intense Uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Due to the specific nature of the ion-matter interaction a volume of matter is heated uniformly with low gradients of temperature and pressure in the initial phase, depending on the pulse structure of the beam with respect to space and time. The new accelerator complex FAIR (Facility for Antiproton and ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. One special piece of accelerator equipment a superconducting high field dipole magnet, developed for the LHC at CERN is now serving as a key instrument to diagnose the dense plasma of the sun interior plasma, thus providing an extremely interesting combination of accelerator physics, plasma physics and particle physics. (authors)

  1. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    International Nuclear Information System (INIS)

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation

  2. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    Science.gov (United States)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-03-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation.

  3. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H--sources each delivering a 70 mA H--beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  4. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gerald J. Keeler; Masako Morishita

    2006-12-31

    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  5. Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations

    International Nuclear Information System (INIS)

    Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m2 and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust

  6. Active control of divertor heat and particle fluxes in EAST towards advanced steady state operations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L., E-mail: lwang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dalian University of Technology, Dalian 116024 (China); Guo, H.Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); General Atomics, P. O. Box 85608, San Diego, CA 92186 (United States); Li, J.; Wan, B.N.; Gong, X.Z.; Zhang, X.D.; Hu, J.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Liang, Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association EURATOM-FZJ, D-52425 Jülich (Germany); Xu, G.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zou, X.L. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Loarte, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France); Maingi, R.; Menard, J.E. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Luo, G.N.; Gao, X.; Hu, L.Q.; Gan, K.F.; Liu, S.C.; Wang, H.Q.; Chen, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); and others

    2015-08-15

    Significant progress has been made in EAST towards advanced steady state operations by active control of divertor heat and particle fluxes. Many innovative techniques have been developed to mitigate transient ELM and stationary heat fluxes on the divertor target plates. It has been found that lower hybrid current drive (LHCD) can lead to edge plasma ergodization, striation of the stationary heat flux and lower ELM transient heat and particle fluxes. With multi-pulse supersonic molecular beam injection (SMBI) to quantitatively regulate the divertor particle flux, the divertor power footprint pattern can be actively modified. H-modes have been extended over 30 s in EAST with the divertor peak heat flux and the target temperature being controlled well below 2 MW/m{sup 2} and 250 °C, respectively, by integrating these new methods, coupled with advanced lithium wall conditioning and internal divertor pumping, along with an edge coherent mode to provide continuous particle and power exhaust.

  7. Innovative experimental particle physics through technological advances: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Harry W.K.; /Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  8. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    Science.gov (United States)

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  9. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  10. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    Directory of Open Access Journals (Sweden)

    Wu X

    2013-02-01

    Full Text Available Xiao Wu,1 Don Hayes Jr,2,3 Joseph B Zwischenberger,4 Robert J Kuhn,5 Heidi M Mansour1,61University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences-Drug Development Division, Lexington, KY, USA; 2The Ohio State University College of Medicine, Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, Nationwide Children's Hospital, Columbus, OH, USA; 3The Ohio State University College of Medicine, The Davis Heart and Lung Research Institute, Columbus, OH, USA; 4University of Kentucky College of Medicine, Departments of Pediatrics, Biomedical Engineering, Diagnostic Radiology, and Surgery, Lexington, KY, USA; 5University of Kentucky, College of Pharmacy, Division of Pharmacy Practice and Science, Lexington, KY, USA; 6University of Kentucky, Center of Membrane Sciences, Lexington, KY, USAAbstract: The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate

  11. A Robust High Current Density Electron Gun

    Science.gov (United States)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  12. A high-current racetrack induction accelerator

    International Nuclear Information System (INIS)

    In this paper, the energy and system scaling laws of the Racetrack Induction Accelerator are determined and its operating principles are discussed. This device is a cyclic accelerator that is capable of multi-kiloamp operation. Long pulse induction linac technology is used to obtain short acceleration times. The accelerator consists of a long-pulse linear induction module and a racetrack beam transport system. For detailed studies of the particle dynamics in a racetrack, a numerical model is required to integrate the fully-relativistic single-particle equations of motion in an externally applied magnetic field. The numerical model is a compromise between the need for a large rotational transform and the need for a reasonable volume within the separatrix

  13. Achromatic beam transport of High Current Injector

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  14. Survey of Digital Feedback Systems in High Current Storage Rings

    International Nuclear Information System (INIS)

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions

  15. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    International Nuclear Information System (INIS)

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed ∼10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 x 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  16. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.

    Science.gov (United States)

    Zheng, Lei; Deng, Yang

    2016-04-15

    Ferrate(VI) as an emerging water treatment agent has recently recaptured interests for advanced wastewater treatment. A large number of studies were published to report ferrate(VI)-driven oxidation for various water contaminants. In contrast, very few efforts were made to characterize ferrate(VI) resultant particles in water and wastewater. In this study, jar tests were performed to examine the settleability and characteristics of ferrate(VI)-induced iron oxide particles, particularly the non-settable fraction of these particles, after ferrate(VI) reduction in a biologically treated municipal wastewater. The particle settleability was evaluated through the measurement of turbidity and particulate iron concentration in the supernatant with the settling time. Results showed that a majority of ferrate(VI)-induced iron oxide aggregates remained suspended and caused an increased turbidity. For example, at a Fe(VI) dose of 5.0 mg/L and pH 7.50, 82% of the added iron remained in the supernatant and the turbidity was 8.97 NTU against the untreated sample turbidity (2.33 NTU) after 72-h settling. The poor settling property of these particles suggested that coagulation and flocculation did not perform well in the ferrate(VI) treatment. Particle size analysis and transmission electron microscopy (TEM) revealed that nano-scale particles were produced after ferrate(VI) decomposition, and gradually aggregated to form micro-scale larger particles in the secondary effluent. Zeta potentials of the non-settable ferrate(VI) resultant aggregates varied between -7.36 and -8.01 mV at pH 7.50 during the 72-h settling. The negative surface charges made the aggregates to be relatively stable in the wastewater matrix. PMID:26900976

  17. High Current Beam Transport to SIS18

    CERN Document Server

    Richter, S; Dahl, L; Glatz, J; Groening, L; Yaramishev, S

    2004-01-01

    The optimized transversal and longitudinal matching of space charged dominated ion beams to SIS18 is essential for a loss free injection. This paper focuses on the beam dynamics in the transfer line (TK) from the post-stripper accelerator to the SIS18. Transverse beam emittance measurements at different positions along the TK were done. Especially, the different foil stripping modes were investigated. A longitudinal emittance measurement set-up was commissioned at the entry to the TK. It is used extensively to tune all the rebunchers along the UNILAC. An addition, a test bench is in use for measurements of longitudinal bunch profiles, which enables to monitor for the final debunching to SIS18. Multi particle simulations by means of PARMILA allow a detailed analysis of experimental results for different ion currents.

  18. High-current performance evaluation of DCCTs

    CERN Document Server

    Bordry, Frederick; Halvarsson, Bjorn; Perréard, J C; Pett, John G

    1998-01-01

    The evaluation of high performance DCCT's to the ppm level has never been an easy task. With the LHC demanding currents up to 13 kA, a whole series of problems has arisen in the accurate measurement of these devices. In order to tackle these problems, new facilities have been designed for laboratory measurements under full power operating conditions. These include a high performance low voltage 20 kA power converter, quasi-coaxial bus-bar structures, Kusters Bridge range extenders and a novel bipolar 0 - 10 A current calibrator with resolution and linearity better than ± 0.5 ppm. This paper will present an overview of the complete facility and give more detail on the new current calibrator. Initial results will be presented, along with application areas which advance the state of the art in this field of measurements.

  19. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  20. NATO Advanced Research Workshop on Ionization of Solids by Heavy Particles

    CERN Document Server

    1993-01-01

    This book collects the papers presented at the NATO Advanced Research Workshop on "Ionization of Solids by Heavy Particles", held in Giardini-Naxos (Taormina), Italy, on June 1 -5, 1992. The meeting was the first to gather scientists to discuss the physics of electron emission and other ionization effects occurring during the interaction of heavy particles with condensed matter. The central problem in the field is how to use observations of electron emission and final radiation damage to understand what happens inside the solid, like excitation mechanisms, the propagation of the electronic excitation along different pathways, and surface effects. The ARW began with a brief survey of the field, stressing the unknowns. It was pointed out that ionization theories can only address the very particular case of weak perturbations. For this problem, this meant high speed, low-charged projectiles (a perturbation treatment of interactions with slow, highly charged ions was later presented). Only semi-empirical ...

  1. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  2. Particles, waves and storms in geospace: Recent advances and persistent gaps in our comprehension

    Science.gov (United States)

    Daglis, Ioannis A.

    2016-07-01

    The terrestrial magnetosphere features plasma populations with a wide dynamic range of energies, spanning more than 8 orders of magnitude -- from ≃V in the plasmasphere to tens of MeV in the outer Van Allen belt and hundreds of MeV in the inner Van Allen belt. A wealth of in-situ measurements of particles and waves, and ground-based measurements of waves, has shaped a comprehensive understanding of the interactions of the various plasma populations with electromagnetic waves during geospace magnetic storms and magnetospheric substorms. We shall discuss recent advances and persistent gaps in our comprehension of inner magnetosphere dynamics.

  3. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory; Offermann, D T [Los Alamos National Laboratory; Cobble, J A [Los Alamos National Laboratory; Schmitt, M J [Los Alamos National Laboratory; Gautier, D C [Los Alamos National Laboratory; Kwan, T J T [Los Alamos National Laboratory; Montgomery, D S [Los Alamos National Laboratory; Kluge, Thomas [FZD-GERMANY; Bussmann, Micheal [FZD-GERMANY; Bartal, T [UCSD; Beg, F N [UCSD; Gall, B [UNIV OF MISSOURI; Geissel, M [SNL; Korgan, G [NANOLABZ; Kovaleski, S [UNIV OF MISSOURI; Lockard, T [UNIV OF NEVADA; Malekos, S [NANOLABZ; Schollmeier, M [SNL; Sentoku, Y [UNIV OF NEVADA; Cowan, T E [FZD-GERMANY

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  4. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    International Nuclear Information System (INIS)

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  5. Simulation study of detached plasmas by using advanced particle model and fluid model

    International Nuclear Information System (INIS)

    Fluid simulations and particle simulations are performed to understand the physics of detached plasmas in the tokamak divertor. Two dimensional fluid simulations show that detached divertor plasmas are formed for the high density operation in the W-shaped divertor configuration of JT-60U tokamak. Charge-exchange and recombination processes play important roles to cause the detachment. The asymmetry of inner-and-outer divertor plasmas is studied based on a fluid model, and the bifurcated nature of the asymmetry caused by the SOL current is found. Advanced particle simulations demonstrate that the ExB drift by the radial electric field in a SOL plasma causes the asymmetry of flow pattern and density profile. A detached plasma is formed in the divertor region from which the drift flows out, when the ratio of the ExB drift speed to the sound speed exceeds a threshold. Effects of the radial gradient including diamagnetic drift flow on SOL and divertor plasmas are also studied with the two-dimensional particle simulation. (author)

  6. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  7. Modeling of high-current devices with explosive electron emission

    Science.gov (United States)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-01-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables the simulation of the charged particles’ dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform a time-frequency analysis of vircator radiation.

  8. Comparison of electron cloud simulation and experiments in the high-current experiment

    International Nuclear Information System (INIS)

    A set of experiments has been performed on the High-Current Experiment (HCX) facility at LBNL, in which the ion beam is allowed to collide with an end plate and thereby induce a copious supply of desorbed electrons. Through the use of combinations of biased and grounded electrodes positioned in between and downstream of the quadrupole magnets, the flow of electrons upstream into the magnets can be turned on or off. Properties of the resultant ion beam are measured under each condition. The experiment is modeled via a full three-dimensional, two species (electron and ion) particle simulation, as well as via reduced simulations (ions with appropriately chosen model electron cloud distributions, and a high-resolution simulation of the region adjacent to the end plate). The three-dimensional simulations are the first of their kind and the first to make use of a timestep-acceleration scheme that allows the electrons to be advanced with a timestep that is not small compared to the highest electron cyclotron period. The simulations reproduce qualitative aspects of the experiments, illustrate some unanticipated physical effects, and serve as an important demonstration of a developing simulation capability

  9. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  10. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  11. Enhancing the brightness of high current electron guns

    International Nuclear Information System (INIS)

    Concepts such as the two-beam accelerator offer the possibility of translating pulsed power technology into a form useful to the design of high luminosity accelerators for high-energy physics applications. Realization of the promise of these concepts will require the design of electron guns which are optimized with respect to beam brightness at current levels of approximately 1 kA. Because high luminosity implies accelerator operation at high repetition rates, the high-current beam source must be designed so that the beam does not intercept the electrodes. In our investigations of electron gun configurations, we have found that the brightness of a given source is set by practical design choices such as peak voltage, cathode type, gun electrode geometry, and focusing field topology. To investigate the sensitivity of beam brightness to these factors in a manner suitable for modelling transient phenomena at the beam head, we have developed a Darwin approximation particle code, DPC. The main component in our experimental program is a readily modified electron gun that allows us to test many candidate cathode materials, types, and electrode geometries at field stresses up to 1 MW/cm. We have also developed several diagnostics suitable for measuring the brightness of intense, low-emittance beams

  12. Design principles for high current beam injection lines

    International Nuclear Information System (INIS)

    We discuss the design principles for high current injection beam lines having a high degree of beam quality preservation. These principles are applied to designing a high current e-beam injection line delivering 10 MeV e-beams from the injector to an accelerator driving LTV FELs, as proposed at CEBAF

  13. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1,104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  14. Results of prototype particle-beam diagnostics tests for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation source (hard x-rays) based on 7-GeV positrons circulating in a 1104-m circumference storage ring. In the past year a number of the diagnostic prototypes for the measurement of the charged-particle beam parameters throughout the subsystems of the facility (ranging from 450-MeV to 7-GeV positrons and with different pulse formats) have been built and tested. Results are summarized for the beam position monitor (BPM), current monitor (CM), loss monitor (LM), and imaging systems (ISYS). The test facilities ranged from the 40-MeV APS linac test stand to the existing storage rings at SSRL and NSLS

  15. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    Energy Technology Data Exchange (ETDEWEB)

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  16. Advanced Sphere-pac Fuel Design: Improving the Particle Fuel Performance with an Internally Cooled Pin

    International Nuclear Information System (INIS)

    Sphere-pac is a particle fuel type facilitating the remote production and being therefore designed for high minor actinide contents. The production of conventional pellet fuel contains many fabrication steps involving powder handling and mechanical processing. If a fuel is part of a combined light water and fast reactor cycle, it will most probably contain minor actinides and fission products, increasing the radiation dose of its reactants to a level, where a processing in hot-cells is necessary. In this case the conventional production route becomes difficult, as powder handling with the connected contamination risk in hot cells represents a major concern. Furthermore the maintenance of mechanical devices in hot cells is difficult and expensive. The suggested wet route by internal gelation is almost powder-less and requires only a solution mixing, drop generation plus heating and washing procedures. After those thermal treatment procedures follows which completes the production of the fuel particles. The paper describes some advances in the production method, plus new Sphere-pac designs for performance increase. (author)

  17. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Plans, prototypes, and initial test results for the charged-particle beam (e-, e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  18. Overview of charged-particle beam diagnostics for the advanced photon source (APS)

    International Nuclear Information System (INIS)

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  19. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    Science.gov (United States)

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. PMID:21784144

  20. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  1. Study of wavelet transform type high-current transformer

    Institute of Scientific and Technical Information of China (English)

    卢文科; 朱长纯; 刘君华; 张建军

    2002-01-01

    The wavelet transformation is applied to the high-current transformer.The high-current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high-current.The principle of the transformer is the Hall direct-measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be-cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.

  2. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  3. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  4. Collective effects and self-consistent energetic particle dynamics in advanced tokamaks

    International Nuclear Information System (INIS)

    In the present paper, we address the issue of fast ion and fusion product transport in conditions that are typically relevant for burning plasmas operating in so called Advanced Tokamak regimes. Our results have direct implications, e.g., on the choice of current profiles for ITER steady state operations. We demonstrate that in a Tokamak equilibrium with hollow-q profile, in general, two types of EPM (Energetic Particle Modes gap modes may exist near the minimum-q surface (q = q0), characterized by opposite signature in frequency: one with upwards chirping frequency and the other with downward chirping frequency as q 0 drops. It is shown that EPM gap modes are described by the same dispersion relation of the usual resonant EPMs and that they can indeed be considered as the same mode with, however, different dominant damping mechanisms. This work also presents a discussion of EPM non-linear dynamics with respect to energetic ion transport in tokamaks with hollow q-profiles. Numerical simulations based on a Hybrid MHD-Gyrokinetic Code (HMGC), demonstrate that, above the EPM excitation threshold, fast radial redistribution of energetic ions takes place on a time scale that is proportional to the inverse EPM growth rate (typically ∼ 100τ R0/vA being the Alfven time). The rapid evolution of EPM mode structures and the associated fast ion transport is interpreted within the framework of the relay runner model for non-linear EPM dynamics. It is found that a sensitive parameter for tokamak equilibria with hollow-q profiles is q at the minimum-q surface, higher q corresponding to larger particle transport. This fact has clear implications on the choice of current profiles in a burning plasma. (author)

  5. The sixth Conference on Advanced Topics in the Interdisciplinary Fields of Particle Physics, Nuclear Physics and Cosmology

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The sixth Conference on Advanced Topics in the Interdisciplinary Fields of Particle Paysics.Nuclear Paysic8and Cosmology was held on July 22-27,2007 in Lijiang,Yunan Province.Over 70 scientists who were activelv working in the fields attended the conference and 42 physicists gave talks.9 papers have been selected to be published in the proceedings.

  6. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    Science.gov (United States)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  7. Energy dissipation of composite multifilamentary superconductors for high-current ramp-field magnet applications

    International Nuclear Information System (INIS)

    Energy dissipation, which is also called AC loss, of a composite multifilamentary superconducting wire is one of the most fundamental concerns in building a stable superconducting magnet. Characterization and reduction of AC losses are especially important in designing a superconducting magnet for generating transient magnetic fields. The goal of this thesis is to improve the understanding of AC-loss properties of superconducting wires developed for high-current ramp-field magnet applications. The major tasks include: (1) building an advanced AC-loss measurement system, (2) measuring AC losses of superconducting wires under simulated pulse magnet operations, (3) developing an analytical model for explaining the new AC-loss properties found in the experiment, and (4) developing a computational methodology for comparing AC losses of a superconducting wire with those of a cable for a superconducting pulse magnet. A new experimental system using an isothermal calorimetric method was designed and constructed to measure the absolute AC losses in a composite superconductor. This unique experimental setup is capable of measuring AC losses of a brittle Nb3Sn wire carrying high AC current in-phase with a large-amplitude pulse magnetic field. Improvements of the accuracy and the efficiency of this method are discussed. Three different types of composite wire have been measured: a Nb3Sn modified jelly-roll (MJR) internal-tin wire used in a prototype ohmic heating coil, a Nb3Sn internal-tin wire developed for a fusion reactor ohmic heating coil, and a NbTi wire developed for the magnets in a particle accelerator. The cross sectional constructions of these wires represent typical commercial wires manufactured for pulse magnet applications

  8. Fluidization of extremely large and widely sized coal particles as well as its application in an advanced chain grate boiler

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.H.; Xu, G.W.; Gao, S.Q. [Chinese Academy of Sciences, Beijing (China)

    2008-12-02

    A pyrolysis combustion technology (PCT) was developed for high-efficiency and environment-friendly chain grate boilers (CGBs). The realization of the PCT in a CGB requires that extremely large and widely sized coal particles should be first pyrolyzed in a semi-fluidized state before being transported into the combustion chamber of the boiler. This article was devoted first to investigating the fluidization of 0-40 mm coal particles in order to demonstrate the technical feasibility of the PCT. In succession, through mixing 0-10 mm and 10-20 mm coal particles in different proportions, multiple pseudo binary mixtures were prepared and then fluidized to clarify the effect of particle size distribution. With raw steam coal used as the feedstock, the superficial gas velocity of about 2.0 m/s may be suitable for stable operation of the fluidized-bed pyrolyzer in the CGB with the PCT. In the fluidization of widely sized coal particles, approximately half of the coal mass is segregated into the bottom section of the bed, though about 15% of 10-20 turn large particles are broken into 0-10 mm small particles because of particle attrition. The experimental results illustrate that an advanced CGB with the PCT has a high adaptability for various coals with different size distributions.

  9. Simple Laser-Driven, Metal Photocathodes as Cold, High Current Electron Sources

    OpenAIRE

    Saunders, Jimmy Dale

    1986-01-01

    Recent developments in excimer laser design have made near ultraviolet light intensities of several megawatts per square centimeter possible in unfocused beams. These advances and recent experiments indicate that high-current, simple-metal photoemissive electron guns are now feasible. Such guns should produce greater than 50 Amps per square centimeter of illuminated cathode surface. Additionally, these guns could operate at vacuums of 10"6 torr with no complicated system components inside ...

  10. Observation of high current effects in high energy linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, J.T.

    1991-12-01

    The acceleration and transport of electron beams with high currents and low emittances are subjects studied very carefully for many operating accelerators and most future accelerators. For a example, several Free Electron Lasers (FEL) and the Stanford Linear Collider (SLC) presently operate with high energy intense beams. The next generation of synchrotron light sources and future linear colliders require a much higher degree of component precision and beam control. In this note the basic concepts governing the effects of high currents in accelerators are explored, including observations of high currents in present accelerators. The effects of longitudinal wakefields on acceleration and energy spreads are studied first. Then, the transverse equations of motion are developed including the technique of BNS damping to control wakefield growth. These wakefield effects are investigated to characterize their influence on the control and observation of beam oscillations. Finally, the reduction of transverse wakefield effects is important for maintaining the emittance of intense beams. 49 refs., 48 figs.

  11. Observation of high current effects in high energy linear accelerators

    International Nuclear Information System (INIS)

    The acceleration and transport of electron beams with high currents and low emittances are subjects studied very carefully for many operating accelerators and most future accelerators. For a example, several Free Electron Lasers (FEL) and the Stanford Linear Collider (SLC) presently operate with high energy intense beams. The next generation of synchrotron light sources and future linear colliders require a much higher degree of component precision and beam control. In this note the basic concepts governing the effects of high currents in accelerators are explored, including observations of high currents in present accelerators. The effects of longitudinal wakefields on acceleration and energy spreads are studied first. Then, the transverse equations of motion are developed including the technique of BNS damping to control wakefield growth. These wakefield effects are investigated to characterize their influence on the control and observation of beam oscillations. Finally, the reduction of transverse wakefield effects is important for maintaining the emittance of intense beams. 49 refs., 48 figs

  12. Standardized high current solid targets for cyclotron production of radionuclides

    International Nuclear Information System (INIS)

    The Cyclotron and Radiopharmaceuticals Department (CRP) is an advanced and modern facility that encompasses two essential components: radioisotope research, and radiopharmaceuticals manufacturing. Radiopharmaceuticals manufacturing program is not only quite unique, but also an essential component of King Faisal Specialist Hospital and Research Center (KFSH and RC) in providing quality patient care for the population of the Kingdom. Accurate diagnosis and therapy with medical imaging equipment requires quality radiopharmaceuticals that are available readily and with reliability. The CRP Department provides that quality and reliability. Research activities of the CRP Department are focused on developing new radiotracers with potential usefulness in biomedical research and clinical applications. Research projects consist of: developing cyclotron targetry for radioisotope production; developing synthesis methods for radiolabeling biomolecules; and developing analytical methods for quality control. The CRP Department operates a semi-commercial radiopharmaceuticals manufacturing program that supplies the diagnostic radioactive products to several hospitals in the Kingdom and neighboring countries. These products for clinical applications are produced according to the international standards of Good Manufacturing Practices of quality and efficacy. At the heart of the radioisotope program is a medium energy cyclotron capable of accelerating a number of particles for transformation of non-radioactive atoms into radionuclides that are the primary sources for research and development activities, and for preparing radiopharmaceuticals. In addition to having the only cyclotron facility in the region, KFSH and RC also has the only Positron Emission Tomography Center (PET) in this part of the world. This combination of cyclotron and the ultra modern PET facility translates into advanced and specialized care for the patients at KFSH and RC

  13. Self protection of high current density superconducting magnets

    International Nuclear Information System (INIS)

    Light weight magnets are required for space borne application and for mobile systems such as tanks and ships. To reduce system weight high current density conductors have to be utilized. Two schemes are proposed for magnet protection. A self protection scheme for high current density conductors using metallic structure such as beryllium to act as a transformer secondary whereas the conductor winding acting as the primary. A dump resistor is proposed as the second protection scheme for comparison. It requires the use of lightweight high temperature dump resistor but the current density will be limited to 10 to 15 kA/cm/sup 2/

  14. Development of a high current short pulse electron gun

    International Nuclear Information System (INIS)

    Dielectric wall accelerator (DWA), towards high gradient acceleration field (30 MeV/m-100 MeV/m), is under development at Institute of Modern Physics. A prototype was designed and constructed to prove the principle. This needs a short pulse high current electron source to match the acceleration field generated by the Blumlein-type pulse forming lines (PFLs). In this paper, we report the design and test of a new type short pulse high current electron gun based on principle of vacuum arc discharge. Electron beams of 100 mA with pulse width of 10 ns were obtained. (authors)

  15. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  16. Pulsed High Current Experiments at IPP ASci CR Prague

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Frolov, Oleksandr; Štraus, Jaroslav; Boháček, Vladislav; Martínková, M.

    Oxford : Sandia Natl Labs, 2005 R&D Projects: GA ČR GA202/03/0711; GA MŠk(CZ) 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  17. High-current ion induction linac for heavy ion fusion: 2D3V numerical simulation

    International Nuclear Information System (INIS)

    The 2d3v particle-in-cell simulations of the transport and acceleration of a high-current tubular ion beam through six magnetoinsulated accelerating gaps are presented. The ion beam is neutralized by an accompanying electron beam. The accelerating electric fields in the first, third, and fifth cusps are chosen so that electron beam kinetic energy is slightly higher than the potential barrier of the accelerating field in each cusp. The second, fourth, and sixth cusps are used for injection of additional high current electron beams. The accelerating fields in the second, fourth, and sixth cusps are zero. The simulations involve solving a complete set of Maxwell's equations with charge-conserving schemes for calculating the current density on a mesh, and relativistic motion equations for charged particles. It is shown, that at chosen acceleration rates the quality of ion distribution function on the accelerator exit is not worsened drastically in comparison with the transportation mode. It is shown, that the optimized in space and time injection of additional high current electron beams in cusps results in increase of accelerated ion beam monochromaticity and to reduction it divergency on an accelerator exit

  18. Numerical simulation of high-current ion linear induction accelerator with additional electron beam injection

    International Nuclear Information System (INIS)

    The 2d3v particle-in-cell simulations of the transportation and acceleration of a high-current tubular ion beam through six magnetoinsulated accelerating gaps are presented. Charge and current compensations are carried out by an accompanying electron beam, and also by additionally injected electron beams. The accelerating electric field is enclosed to the first, third and fifth cusps. Its magnitudes are those, that initial kinetic energy of compensating electron beams is little bit higher than a potential barrier of an accelerating field in each cusp, that allows an electron beam to overcome accelerating potential in one cusp. The second, fourth and sixth cusps in which the accelerating field is absent, are used for injection of additional compensating electron beams which replace the electron beam which has 'worked-out' on the previous accelerating gap. The simulations involve solving a complete set of Maxwell's equations with charge-conserving scheme for calculating the current density on a mesh, and relativistic motion equations for charged particles. The possibility of transporting and acceleration of a high-current tubular ion beam in six cusps is shown. It is shown, that distribution function of a high-current ion beam on an output of the accelerator essentially improves due to optimization of parameters of additionally injected electron beams.

  19. A low ripple power supply for high-current magnet load

    International Nuclear Information System (INIS)

    The magnet power supplies provide precisely controlled current to the magnets in particle accelerators. As the research in high-energy physics progresses, the required precision of the magnet current is increasing rapidly. Currently used magnet power supplies for high-current applications cannot meet the present and future demands. This paper proposes a new magnet power supply for high-current magnets. The proposed system integrates a switch-mode ripple regulator with a phase-controlled rectifier. The results from this paper indicate that the proposed system can provide the magnet current with less than 10 ppm harmonic content and can be expected to have fast dynamic response. In this paper, the general description of the power circuit and system control configuration is presented. Fourier analysis is applied to investigate the harmonic content of the magnet current. The theoretical analysis is verified experimentally. A design example is given

  20. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  1. Carbon stripper foils for high current heavy ion operation

    International Nuclear Information System (INIS)

    For the proposed new heavy ion linac'at'GSI the installation of a carbon foil stripper section is under discussion. High duty factor as well as high current (but low duty factor) heavy ion beams were used for machine experiments. Long term tests were performed to check the carbon foil durability. Relevant beam parameters have been measured in three measurement campaigns. After beam testing stripper foils were analyzed with different offline methods. Additionally promising results of high current beam irradiation of rotating target wheels will be presented. In the transfer line to the SIS 18 the heavy ion beam is stripped to higher charge states in a thick carbon foil. The stripper foil is loaded with 3 % of the beam power. To avoid evaporation in a single beam pulse, the beam is rapidly swept over its width. Experiences collected during the last decade of foil stripper operation at GSI will be presented. (author)

  2. Beam centroid motion estimate for a high current LIA

    International Nuclear Information System (INIS)

    A high current linear induction accelerator now is being constructed in Institute of Fluid Physics. It consists of 18 blocks, totally 72 induction accelerating cells, and 18 connection cells with ports for beam diagnostic hardware and vacuum pump. The goal of the facility is to obtain high quality, high current pulse electron beams. In order to reduce corkscrew motion caused by energy spread and misalignment of a focusing system some measures to control the transverse motion of beam centroid must be taken. At first magnetic alignment is performed by using pulsed-wire technique very carefully, then the tilt errors is corrected by a pair of steering coils, which are located inside each cell, after that based on the alignment data a simple estimate of the beam centroid motion has been done by transfer matrix algorithm. In this paper, the calculated and analysis results are presented

  3. High current electric arcs; Les arcs electriques a fort courant

    Energy Technology Data Exchange (ETDEWEB)

    Delalondre, C.; Simonin, O. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d' Hydraulique; Mineau, L. [Electricite de France (EDF), 75 - Paris (France). Dept. Systemes Energetiques; Verite, J.C. [Electricite de France (EDF), 75 - Paris (France). Dept. Cables, Condensateurs, Materiel d' Automatisme et Materiaux

    1999-07-01

    The mechanisms called into play through the interaction between a high current electric arc and the surrounding environment have an essential role to play in the performance of arc furnaces and high voltage circuit breakers. Our knowledge of them remains poor, and because of the very high temperatures and speeds involved, experimental investigation is particularly difficult. What can numerical modelling teach us about these phenomena? (authors)

  4. High-current power supply for accelerator magnets

    International Nuclear Information System (INIS)

    A power supply for controlling the current to accelerator magnets produces a high current at a precisely controlled time rate of change by varying the resonant frequency of an RLC circuit that includes the magnet and applying the current to the magnet during a predetermined portion of the waveform of an oscillation. The current is kept from going negative despite the reverse-current characteristics of thyristors by a quenching circuit

  5. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  6. Pulse high-current discharge in helium at high pressure

    International Nuclear Information System (INIS)

    Practical interest to pulse arcs is associated with investigations into powerful light sources, development of fast-response current commutators and pulsed electric-arc heaters. The results of investigations into a high-current (100kA) pulse (100μs) arc discharge in helium under high initial gas pressure of 10-100 atm are presented. Volt-ampere characteristics and parameters of unsteady arc plasma are calculated. Comparison of the theory with the experiment is made

  7. High current density pulsed cathode experiments at SLAC

    International Nuclear Information System (INIS)

    A 1.9 microperveance beam diode has been constructed to test high current density cathodes for use in klystrons. Several standard and specially coated dispenser cathodes are being tested. Results of tests to date show average cathode current densities in excess of 25 amps/cm, and maximum electric field gradients of more than 450 kV/cm for pulses of the order of 1μsec. 3 refs., 11 figs

  8. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  9. Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; WANG Huan; ZHANG Hua; LIU Zhanjun; WU Junfeng; LI Baiwen

    2014-01-01

    A two-dimensional hybrid code is developed to model the transport of a high-current electron beam in a dense plasma target.The beam electrons are treated as particles and described by particle-in-cell simulation including collisions with the target plasma particles.The background target plasma is assumed to be a stationary fluid with temperature variations.The return current and the self-generated electric and magnetic fields are obtained by combining Ampère's law without the displacement current,the resistive Ohm's law and Faraday's law.The equations are solved in two-dimensional cylindrical geometry with rotational symmetry on a regular grid,with centered spatial differencing and first-order implicit time differencing.The algorithms implemented in the code are described,and a numerical experiment is performed for an electron beam with Maxwellian distribution ejected into a uniform deuterium-tritium plasma target.

  10. Recent advances in the analysis of biological particles by capillary electrophoresis

    OpenAIRE

    Kostal, Vratislav; Arriaga, Edgar A.

    2008-01-01

    This review covers research papers published in the years 2005–2007 that describe the application of capillary electrophoresis to the analysis of biological particles such as whole cells, subcellular organelles, viruses and microorganisms.

  11. Advances in Uncertainty Representation and Management for Particle Filtering Applied to Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Particle filters (PF) have been established as the de facto state of the art in failure prognosis. They combine advantages of the rigors of Bayesian estimation to...

  12. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    Science.gov (United States)

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  13. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  14. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    OpenAIRE

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Jac A Nickoloff

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilitie...

  15. State of the art in applied high-current superconductivity

    International Nuclear Information System (INIS)

    The report is aimed at describing the state of the works in the applied high-current superconductivity (AHS). The helium and nitrogen temperature levels are considered. The 2001 and 2003 comparative data on the belt superconductors on the Bi-2223/Ag basis are presented. The performance characteristics of the operating power transmission superconducting lines and the tested and designed HTSC transformers are also presented. The scheme and principles of operation of the SC current limiter with a saturated yoke is presented as well

  16. High-current negative-ion beam transport

    International Nuclear Information System (INIS)

    The requirements for transporting high-current, negative-ion beams are presented with particular emphasis on applications involving negative-hydrogen-ion beams. In addition to the usual matching and steering problems, particular attention must be paid to beam emittance growth in the transport system. Depending on the application, a number of approaches have been developed using both magnetic and electric lenses. I discuss the design considerations for transporting and matching these beams to radiofrequency quadrupole accelerators, and present a survey of the various types of beamlines now used for negative-ion beams

  17. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  18. Research on High Current Pulse Discharges at IPP ASci CR

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.

    Praha, 2006 - (Kulhánek, P.; Koller, J.; Píchal, J.). s. 109 ISBN 80-01-03506-9. [Symposium on Plasma Physics and Technology/22nd./. 26.6.2006-29.6.2006, Praha] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Research on High Current Pulse Discharges at IPP ASci CR

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 259-266. ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  20. Development of RF linac for high-current applications

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.C.D.; Lawrence, G.P.; Schneider, J.D.

    1997-12-31

    High-current proton linacs are promising sources of neutrons for material processing and research applications. Recently, a linac design that makes use of a combination of normal-conducting (NC) and superconducting (SC) linac technologies has been proposed for the US Accelerator Production of Tritium Project. As a result, a multi-year engineering development and demonstration (ED and D) program is underway. In this paper, the authors will describe the design and merits of the NC/SC hybrid approach. The scope, technology issues, and present status of the ED and D Program, and the participation of industry will also be described.

  1. Pulsed high-current discharges in helium at high pressures

    International Nuclear Information System (INIS)

    Pulsed arcs are of practical interest in connection with studies of high-power light sources and with the creation of fast-acting current switches and pulsed electric-arc heaters. The variety of applications has led to research on pulsed arcs over a wide range of parameters. Here, results are presented from a study of high-current (Jm ∼ 100 kA) arc discharges in helium with high initial gas pressures (p0 ∼ 10-100 atm). The current-voltage characteristics and plasma parameters of the nonstationary arc are calculated. Theory and experiment are compared

  2. High Current Systems for HyperV and PLX Plasma Railguns

    Science.gov (United States)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  3. Requirements for charged particle light isotopes reaction data for advanced fuel cycles including two step reaction mechanism

    International Nuclear Information System (INIS)

    Requirements for light charged isotopes nuclear reaction data for advanced fusion fuel cycles are identified. This is performed in the frame of the compilation of charged particle nuclear reaction data. Those reactions are considered which determine the nuclear energy production, burn kinetics, neutron- and radionuclide production among fuel and ash isotopes. Emphasis is put on the fuel p-11B for which a review of the status of existing data is given. Other exotic fuel candidates (e.g. p-6Li) and some exotic reactions occurring in D-3He based fuels are also considered, however in less detail. We conclude that there is a lack of experimental and evaluated data for several important reactions. It is recommended that evaluations be performed, existing ones reexamined, and that they are made easily accessible for the increasing number of researchers studying advanced fuels. (author). 52 refs, 10 figs, 6 tabs

  4. RF Input Power Couplers for High Current SRF Applications

    Energy Technology Data Exchange (ETDEWEB)

    Khan, V. F. [Helmholtz Zentrum Berlin, Germany; Anders, W. [Helmholtz Zentrum Berlin, Germany; Burrill, Andrew [Helmholtz Zentrum Berlin, Germany; Knobloch, Jens [Helmholtz Zentrum Berlin, Germany; Kugeler, Oliver [Helmholtz Zentrum Berlin, Germany; Neumann, Axel [Helmholtz Zentrum Berlin, Germany; Wang, Haipeng [JLAB

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  5. Modeling ion-induced electrons in the High Current Experiment

    International Nuclear Information System (INIS)

    A primary concern for high current ion accelerators is contaminant electrons. These electrons can interfere with the beam ions, causing emittance growth and beam loss. Numerical simulation is a main tool for understanding the interaction of the ion beam with the contaminant electrons, but these simulations then require accurate models of electron generation. These models include ion-induced electron emission from ions hitting the beam pipe walls or diagnostics. However, major codes for modeling ion beam transport are written in different programming languages and used on different computing platforms. For electron generation models to be maximally useful, researchers should be able to use them easily from many languages and platforms. A model of ion-induced electrons including the electron energy distribution is presented here, including a discussion of how to use the Babel software tool to make these models available in multiple languages and how to use the GNU Autotools to make them available on multiple platforms. An application to simulation of the end region of the High Current Experiment is shown. These simulations show formation of a virtual cathode with a potential energy well of amplitude 12.0 eV, approximately six times the most probable energy of the ion-induced electrons. Oscillations of the virtual cathode could lead to possible longitudinal and transverse modulation of the density of the electrons moving out of the virtual cathode

  6. Construction and power rating of HTS high current conductors

    International Nuclear Information System (INIS)

    Full text: Transmission of very large dc and ac currents over short distances is often required as part of the design of large-scale power devices such superconducting magnet coils and SMES devices or between the power supply and a large machine or distribution point in an industrial plant. Superconducting high-current conductors can be used to transmit large quantities of power with little or no power loss. The near zero voltage drop along such a conductor allows better match to the power supply and enhances the transmission efficiency. Bi-2223/Ag composite tape, produced by powder-in-tube processing, was used to construct and test several prototype high-current conductors including a bus bar and current leads. The bus bar was made by connecting in parallel several stacks of multifilament tape and using an aluminium former for mechanical support. The current leads were constructed by connecting parallel stacks of multifilament tape and then soldering these to copper end caps; structural support was provided by a polycarbonate housing. We report on the test results of the I-V characteristics and dc power loss as a function of transport current (up to 500 A) at 77 K, and compare the results with the ohmic losses of the equivalent conductors made from pure silver metal

  7. High current density magnets for INTOR and TIBER

    International Nuclear Information System (INIS)

    The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER

  8. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  9. Characterizing the distribution of particles in urban stormwater: advancements through improved sampling technology

    Science.gov (United States)

    Selbig, William R.

    2014-01-01

    A new sample collection system was developed to improve the representation of sediment in stormwater by integrating the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of particle size distribution from urban source areas. Collector streets had the lowest median particle diameter of 8 μm, followed by parking lots, arterial streets, feeder streets, and residential and mixed land use (32, 43, 50, 80 and 95 μm, respectively). Results from this study suggest there is no single distribution of particles that can be applied uniformly to runoff in urban environments; however, integrating more of the entire water column during the sample collection can address some of the shortcomings of a fixed-point sampler by reducing variability and bias caused by the stratification of solids in a water column.

  10. Neutral particle transport based on the advanced method of characteristics (MOCHA)

    International Nuclear Information System (INIS)

    The paper describes the development of MOCHA, the advanced method of characteristics, based on the CHAR and ANEMONA codes, and its applications in a number of assembly and cell calculations. The MOCHA presents an attempt to satisfy the need imposed by the advanced reactor designs by providing the computational ability to account for all heterogeneities within the fuel assembly, the capability of general multi-dimensional geometry simulation, the flexibility in energy-group structure, the capability of multi-assembly simulation, accurate burn-up calculation, and linearly anisotropic scattering approximation

  11. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  12. Anode layer in a high-current arc in atmospheric pressure nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian A [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2005-11-21

    An anode layer in a high-current atmospheric nitrogen arc was modelled. Calculations were made in a one-dimensional approximation at current densities in the range 500-3000 A cm{sup -2}. Two-temperature approximation was used. We calculated the distributions of both electron and heavy particle temperatures, the concentrations of charged and neutral particles and the electric field inside the anode layer. It was shown that for the conditions that exist in the anode layer of a high-current atmospheric pressure arc in nitrogen (a) the concentration of the molecular ions is negligible and (b) the concentration of atoms exceeds the concentration of molecules everywhere in the anode layer except in a narrow region close to the anode. Calculation showed that the electric field decreases towards the anode, and then close to the anode it rises again. Contrary to the situation in argon, the present calculations showed that in nitrogen the electric field in the anode layer is always accelerating. However, the average electric field in the anode layer is weaker than in the adjacent arc column (the so-called negative anode layer voltage). The voltage drop in the Langmuir sheath is also negative. It is shown that the main difference in anode layer voltages between an arc in nitrogen and an arc in argon is due to the high reactive thermal conductivity in nitrogen.

  13. Collective monitors for high-current pulse electron beam diagnostics

    International Nuclear Information System (INIS)

    A collector monitor for high-current pulsed electron beams at average power of 100 W and pulse current of 100 A has been developed. The monitor comprises a Faraday cup, profile monitor, sector diaphragm, energy detector. The collector was fixed on a brass radiator transformed into a rod. The rod ensures reliable and electric contact of the collector with the ''earth'' and small RC of this line. Such design permits to stabilize the heat mode of the collector without utilization of external cooling. The monitors have been tested in electron beams at head load up to 100 W during 40 hours. Wear at the expense of evaporation, microexplosions were not observed. Accuracy of current measuring made up 5-10% for absolute and 1-2% for relative measurements

  14. Upgrading of the high-current accelerator 'Tonus'

    CERN Document Server

    Ryabchikov, A I; Karpov, V B; Usov, Y P

    2001-01-01

    In the paper presented,the new technical development of the high-current electron accelerator 'Tonus - NT' (Tomsk nanosecond accelerator - new technologies ) is described. It has been developed taking into account the experience of 30-years exploitation of the previous analogue - the accelerator 'Tonus'. The scheme of the accelerator includes the high-voltage transformer with resonant contours (Tesla transformer) charging the double forming line filled with the transformer oil and the high-voltage diode. The gas-filled trigatron spark gap with up to 10 atm operating pressure is used for the double forming line switching. The main accelerator parameters are as follows:accelerating voltage range 0.4-1.7 MeV, line impedance 36.6 OMEGA, pulse duration 60 ns, pulse repetition rate up to 10 pps.

  15. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  16. The ''Ehlina-5'' high-current pulse electron accelerator

    International Nuclear Information System (INIS)

    Description and test results of the Ehlina-5 high-current pulse electron accelerator for studying primary active short-lived products produced under irradiation are presented. The accelerator consists of two metal tanks and removable control panel. A charging device is located in the lower tank, in the upper - pulse transforme r, X-ray-electron tube and four-stage high-voltage generator. Accelerator dimensions are: 2.3x0.7x0.9; weight - 600 kg; consumed power -0.5 kW; generation frequency - 2 pulse/min. Accelerator parameters are the following: beam total energy - 15J; electron radiation energy -350-400 keV; electron current pulse equals 2 kA at 30 ns duration, the number of electrons in the beam (1-3)x1014 electron/pulse. The cost is approximatly 10.000 rubles

  17. Parametric representation of a superconducting high-current generator

    International Nuclear Information System (INIS)

    A theoretical investigations for the equivalent circuit model of a superconducting high-current brushless generator, the rotating spot flux pump, is analyzed. The idealized version of the flux pump consists of a superconducting strip and a reciprocating magnet. This configuration has been used to make the mathematics manageable. Various design parameters describing the performance of the flux pump were derived. These derivations were used to determine the equivalent circuit model of the flux pump. The internal inductance of the pump associated with the switching loss was estimated from the surface current distribution on the superconducting sheet. The inductive transfer effects taking place in the pump were discussed and a numerical example was given to get a feel for the order of magnitude of the design parameters. The results of the calculations point to the advantages of the flux pump having a low internal inductance and of the current switching occurring as late as possible in the pumping cycle

  18. New HOM coupler design for high current SRF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Ben-Zvi, I.; Belomestnykh, S.; Hahn, H.; Johnson, E.

    2011-03-28

    Damping higher order modes (HOMs) significantly to avoid beam instability is a challenge for the high current Energy Recovery Linac-based eRHIC at BNL. To avoid the overheating effect and high tuning sensitivity, current, a new band-stop HOM coupler is being designed at BNL. The new HOM coupler has a bandwidth of tens of MHz to reject the fundamental mode, which will avoid overheating due to fundamental frequency shifting because of cooling down. In addition, the S21 parameter of the band-pass filter is nearly flat from first higher order mode to 5 times the fundamental frequency. The simulation results showed that the new couplers effectively damp HOMs for the eRHIC cavity with enlarged beam tube diameter and 2 120{sup o} HOM couplers at each side of cavity. This paper presents the design of HOM coupler, HOM damping capacity for eRHIC cavity and prototype test results.

  19. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  20. The Saclay high-current proton and deuteron ECR source

    International Nuclear Information System (INIS)

    High-current accelerators are studied for several years at CEA-Saclay for applications such as waste transmutation, tritium production or material irradiation. For these projects, the ion source is a key component because its performances determine the accelerator design. A CW Proton and Deuteron ECR Source has been constructed and is now under test. The aim is to reach a 100mA beam current at 95 keV with a rms normalized emittance better than 0.2 7t.mm.mrad and a very high reliability. In this paper, the source, the low energy beam transport and the beam diagnostics are described. First measurements of the source parameters and beam performances are presented. (author)

  1. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  2. Advanced methods in global gyrokinetic full f particle simulation of tokamak transport

    International Nuclear Information System (INIS)

    A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data

  3. Advances in silicon detectors for particle tracking in extreme radiation environments

    CERN Document Server

    Parker, Sherwood; Da Vià, C; Hasi, J; Jarron, Pierre; Kenney, C; Kok, A; Perozziello, E; Watts, S J

    2003-01-01

    The LHC (Large Hadron Collider) is currently under construction at CERN, the European Laboratory for Particle Physics based in Geneva. The experiments at this accelerator will use substantial numbers of silicon detectors. These are close to the interaction point and will be exposed to very high fluences ( up to 10**1**5 particles cm**-**2) during their operating life. Such detectors are crucial to the disentanglement of important decay events and it is vital to guarantee a homogeneous reliable performance during their operation. Parameters like the charge collection efficiency (CCE) and response time will be discussed. Limitations of present technologies will be analysed and future strategies explored. Results obtained using alternative detector designs, such as 3D geometry, material engineering by oxygen diffusion and unconventional operational conditions are surveyed.

  4. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    OpenAIRE

    Hohlmann, M.

    2013-01-01

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders ...

  5. Collective Modes in High-Current-Carrying Confined Plasmas

    International Nuclear Information System (INIS)

    Confinement configurations allowing for high plasma current densities are potentially suitable to reach new regimes which, in terms of certain basic parameters (e.g. ratio of collision frequency to particle bounce frequency), are typical of thermonuclear plasmas. The influence of the plasma cross-section profile on the maximum current density which can be achieved in two-dimensional toroidal configurations is analysed. The MHD-stability and equilibrium are examined for a plasma column with a conducting shell close to it and with an elliptic and triangular deformation imposed over a circular cross-section profile. Since the configurations of interest also have a low aspect ratio and a large fraction of trapped particles, the stability of collisionless kinetic modes involving trapped particles is studied taking into account the effect of the electron current. Effects related to the simultaneous presence of different kinetic modes are considered and the possible stabilizing factors of interchange-trapped particle modes are pointed out. The relevance of collisional modes, due to finite thermal conductivity and electrical resistivity and driven by a radial gradient of the current density, is pointed out as a possible explanation of the lack of skin effect or of plasma confinement in significant regimes. The electrical resistivity and electron thermal conductivity are assessed, taking into account the effects of trapped particles, finite aspect ratio and of excited fluctuations. (author)

  6. High current and voltage effects in heterojunction bipolar transistor collectors

    International Nuclear Information System (INIS)

    The influence of temperature on speed and power applications is important in heterojunction bipolar transistors with the need for high current drive capability, high cutoff frequency and high voltage handling capability. At high current density, the onset of the Kirk effect is often the main power constraint in the bipolar transistor. An analytical model that accurately describes the physics behind the parasitic electron barrier formation in double heterojunction bipolar transistors in the Si/SiGe, GalnP/GaAs and InP/GaAsSb materials systems at the onset of the Kirk effect is presented. A new lateral current spreading effect due to the electron barrier dependence on collector current density is also discussed. The electron saturation velocity in Ga0.52In0.48P has also been measured as a function of temperature, utilising the Kirk effect in double heterojunction bipolar transistors. An AIGaAs base was used to eliminate the conduction band spike and measurements were carefully performed using pulse biasing to minimise device self-heating. Voltage drops across the base and collector series resistances were also taken into account. The measured room temperature saturation velocity of 5.0 x 106 cm/s decreased rapidly to 2.9 x 106 cm/s at 200 deg C. These results are particularly important for the prediction of frequency performance of Ga0.52In0.48P/(Al)GaAs/Ga0.52In0.48P DHBTs. Avalanche multiplication and hence impact ionisation coefficients for In0.53Ga0.47As have been determined from photomultiplication measurements over the temperature range of 20 - 400 K for a series of p-i-n/n-i-p diodes. Negative temperature dependence is observed in both the electron and hole multiplication of In0.53Ga0.47As at electric fields over 200 kV/cm, contrary to the temperature dependence of collector multiplication previously observed in InP/In0.53Ga0.47As heterojunction bipolar transistors. The results also showed that the breakdown voltage for In0.53Ga0.47As is comparable to GaAs at

  7. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem. A...... pseudo code based algorithm is suggested to deal with the equality constraints of the problem for accelerating the optimization process. The simulation results show that the proposed PSO methods are capable of obtaining higher quality solutions efficiently in wind-thermal coordination problems....

  8. Advances in computational dynamics of particles, materials and structures a unified approach

    CERN Document Server

    Har, Jason

    2012-01-01

    Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Ad

  9. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    CERN Document Server

    Hohlmann, M

    2013-01-01

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to part...

  10. Advances in nuclear data and all-particle transport for radiation oncology

    International Nuclear Information System (INIS)

    Fast neutrons have been used to treat over 15,000 cancer patients worldwide and proton therapy is rapidly emerging as a treatment of choice for tumors around critical anatomical structures. Neutron therapy requires evaluated data to ∼70 MeV while proton therapy requires data to ∼250 MeV. Collaboration between Lawrence Livermore National Laboratory (LLNL) and the medical physics community has revealed limitations in nuclear cross section evaluations and radiation transport capabilities that have prevented neutron and proton radiation therapy centers from using Monte Carlo calculations to accurately predict dose in patients. These evaluations require energy- and angle-dependent cross sections for secondary neutrons, charged-particles and recoil nuclei. We are expanding the LLNL nuclear databases to higher energies for biologically important elements and have developed a three-dimensional, all-particle Monte Carlo radiation transport code that uses computer-assisted-tomography (CT) images as the input mesh. This code, called PEREGRINE calculates dose distributions in the human body and can be used as a tool to determine the dependence of dose on details of the evaluated nuclear data. In this paper, we will review the status of the nuclear data required for neutron and proton therapy, describe the capabilities of the PEREGRINE package, and show the effects of tissue inhomogeneities on dose distribution

  11. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples. PMID:20370213

  12. A Superconducting transformer system for high current cable testing

    Energy Technology Data Exchange (ETDEWEB)

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  13. High-current carbon-epoxy capillary cathode

    Science.gov (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  14. Mevva development for the new GSI high-current injector

    International Nuclear Information System (INIS)

    To increase the intensity of the heavy ion synchrotron SIS for heavy elements by a factor of ∼50, a new prestripper accelerator is planned for Unilac and the heavy ion synchrotron SIS. It is designed to accept ions with mass/charge ≤ 65 and an injection energy of 2.2 keV/u. A vacuum arc ion source with a strong axial magnetic field will deliver 15 mA of U4+ as heaviest element at a repetition rate of 1 Hz and a pulse length of 300 μs. The investigation of the Mevva ion source with pulsed magnetic field of several kGauss have shown that ion currents of 8 mA U4+ can be measured at the authors test bench after 5m of transport and charge analysis (transmission at the test bench 25% only). The noise on the extracted ion beam was already ≤25%, a value similar to the Pig ion source in the sputter mode, but efficient high current beam transport probably requests further improvements

  15. A high-energy, high-current ion implantation system

    International Nuclear Information System (INIS)

    High current (Pre-Depsup(TM)) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-Dpsup(TM) Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. Datalocksup(TM), a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 x 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160. (orig.)

  16. A high-energy, high-current ion implantation system

    Science.gov (United States)

    Rose, Peter H.; Faretra, Ronald; Ryding, Geoffery

    1985-01-01

    High current (Pre-DepTM) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-DepTM Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. DatalockTM, a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 × 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  17. MHD Modeling of Conductors at Ultra-High Current Density

    Energy Technology Data Exchange (ETDEWEB)

    Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Rosenthal, S.E.; Spielman, R.B.; Stygar, W.A.

    1999-06-30

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed.

  18. Mass spectrometry improvement on an high current ion implanter

    International Nuclear Information System (INIS)

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x–y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  19. Dynamics of a high-current relativistic electron beam

    International Nuclear Information System (INIS)

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations

  20. Travelling wave chopper for the high current injector at IUAC

    International Nuclear Information System (INIS)

    IUAC is developing High Current Injector (HCI) accelerator as an alternative injector for the existing superconducting linear accelerator. The HCI project was envisaged to overcome the low current limitation of the Pelletron Accelerator and to provide varieties of ion species like nobel gases etc. which are not possible with existing Pelletron Accelerator. The LEBT (low energy beam transport) section of HCI consists of various beam dynamics components like GP Tubes, Diagnostic Box, Chopper and TWD, Multi Harmonic Buncher (MHB), Vacuum System, Magnetic Quadruple, and Fast Faraday Cup etc. A Chopper and Travelling Wave Deflector (TWD) is required to provide the chopped beam with various repetition rate to IUAC experimental facilities ego NAND, HYRA, HlRA, INGA etc. The proposed MHB in the LEBT section of HCI, is having 60 ns linear portion in its saw tooth wave form. The requirement of the repetition rate for the experimental facilities are 250ns, 500ns, 1μs, 2μs, 4μs and 8μs. It was decided that output of chopper must have 60 ns pulse length with maximum current and TWD must provide the various repetition rate as mentioned above. In this paper we will present the details of the design and fabrication of prototype

  1. The high current transport experiment for heavy ion inertial fusion

    International Nuclear Information System (INIS)

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high space-charge intensity (line charge density ∼ 0.2 (micro)C/m) over long pulse durations (>4 ms) in alternating gradient electrostatic and magnetic quadrupoles. This experiment is testing--at driver-relevant scale--transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, electron cloud effects, and longitudinal bunch control. We present the results for a coasting 1 MeV K+ ion beam transported through the first ten electrostatic transport quadrupoles, measured with beam-imaging and phase-space diagnostics. The latest additions to the experiment include measurements of the secondary ion, electron and atom coefficients due to halo ions scraping the wall, and four magnetic quadrupoles to explore similar issues in magnetic channels

  2. Magnetohydrodynamic transport equations for high current propagation in overdense plasmas

    Science.gov (United States)

    Zha, Xuejun; Wang, Yan; Han, Shensheng

    2008-10-01

    In this paper, it is presented that the full set of magnetohydrodynamic (MHD) equations which may be used to study the transport mechanism for the high current relativistic electron beams (current intensity 100˜1000 MA, electron energy ˜ MeV) by the laser in background overdense plasma (1022-1026cm). The transport of intense relativistic electron beams (REB) has two basic characteristics: the first is that the forward current is a giga-ampere and the forward current density is about 10 14 A/cm 2 which exceeds the Alfven current limit [M. Tabak et al., Phys. Plasmas 12, 057305 (2005)]; the second is the propagation of the intense forward current in the presence of a background overdense plasma which may have very strong MHD instability. The transport problem can be solved by MHD equations that describe the dynamic, self consistent collisional and electromagnetic interaction of REB with overdense hydrogenic plasmas or arbitrary atomic-number plasmas. The full set of equations consists of the REB transport equations which are coupled to Maxwell's equations through the electromagnetic-field terms and two-fluid plasma dynamical equations for the background overdense plasma through the collision term.

  3. Ion collective acceleration and high current beam transport

    International Nuclear Information System (INIS)

    Results of investigation of high-current beam (HCB) transport in vacuum channels with dielectric walls (VCDW) are presented. It is shown, that HCB transport can be realized not only in rectilinear dielectric channels, but also in curvili also in curvilitear oges. In particular, it proved to be possible to bend the beam with parameters 50 kA, 400 keV by 90 deg. A problem of negative ion intense beam production is considered. It is shown, that in magnetic insulation diodes hydrogen ion currents of about several kA are obtained at current densities 10 A/cm2. Results of collective ion acceleration in VCDW are given. Two regions with different physical mechanisms of ion acceleration should be distinguished. In the first region (''plasma''), corresponding to HCB motion in VCDW ion generation and their acceleration in quasipotential field of HCB up to the energy of the order of electrons or less takes place. In the second region (''beam''), corresponding to joint motion of ''extracted'' ions and HCB electrons, ion acceleration takes place in the fields of waves, which can be excited due to the mechanism of two-beam instability type. Considerable contribution can also be made by stochastic mechanism of ion acceleration

  4. Mevva development for the new GSI high-current injector

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, B.H.; Emig, H.; Spaedtke, P. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1996-08-01

    To increase the intensity of the heavy ion synchrotron SIS for heavy elements by a factor of {approximately}50, a new prestripper accelerator is planned for Unilac and the heavy ion synchrotron SIS. It is designed to accept ions with mass/charge {le} 65 and an injection energy of 2.2 keV/u. A vacuum arc ion source with a strong axial magnetic field will deliver 15 mA of U{sup 4+} as heaviest element at a repetition rate of 1 Hz and a pulse length of 300 {mu}s. The investigation of the Mevva ion source with pulsed magnetic field of several kGauss have shown that ion currents of 8 mA U{sup 4+} can be measured at the authors test bench after 5m of transport and charge analysis (transmission at the test bench 25% only). The noise on the extracted ion beam was already {le}25%, a value similar to the Pig ion source in the sputter mode, but efficient high current beam transport probably requests further improvements.

  5. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  6. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described.

  7. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    International Nuclear Information System (INIS)

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Janhunen, S.J.; Kiviniemi, T.P.; Korpio, T.; Leerink, S.; Nora, M. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Heikkinen, J.A. [VTT, Euratom-Tekes Association, Espoo (Finland); Ogando, F. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2010-05-15

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Joint inversion of TEM and DC in roadway advanced detection based on particle swarm optimization

    Science.gov (United States)

    Cheng, Jiulong; Li, Fei; Peng, Suping; Sun, Xiaoyun; Zheng, Jing; Jia, Jizhe

    2015-12-01

    Transient electromagnetic method (TEM)and direct current method (DC)are two key widely applied methods for practical roadway detection, but both have their limitations. To take the advantage of each method, a synchronous nonlinear joint inversion method is proposed based on TEM and DC by using particle swarm optimization (PSO)algorithm. Firstly, a model with double low resistance anomaly and interference is constructed to test the performance of the method. Then the independent inversion and joint inversion are calculated by using the model built above. It is demonstrated that the joint inversion helped in improving the interpretation of the data to get better results. It is because that the suppression of interference and separation of the resistivity anomalies ahead and the back of the roadway working face using the proposed method. Finally, the proposed method was successfully used in a coalmine in Huainan coalfield in east China to demonstrate its practical usefulness.

  10. Recent advances in the smoothed-particle hydrodynamics technique: Building the code SPHYNX

    CERN Document Server

    Cabezon, Ruben M; Figueira, Joana

    2016-01-01

    A novel computational hydrocode oriented to Astrophysical applications is described, discussed and validated in the following pages. The code, called SPHYNX, is of Newtonian type and grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. The distinctive features of the code are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume elements which provides a better partition of the unity. The ensuing hydrodynamic code conserves mass, linear and angular momentum, energy, entropy and preserves kernel normalization even in strong shocks. By a careful choice of the index of the sinc kernel and the number of neighbors in the SPH summations, there is a substantial improvement in the estimation of gradients. Additionally, the new volume elements reduce the so-called tensile instability. Both features help to suppress much of t...

  11. Recent advances in hybrid methods applied to neutral particle transport problems

    International Nuclear Information System (INIS)

    Full text: Particle transport methods are essential for accurate simulation of nuclear systems including nuclear reactors, medical devices, nondestructive interrogation devices, and radiation imaging devices. Commonly, the Monte Carlo and deterministic discrete ordinates (Sn) approaches are used to solve radiation transport problems. Both approaches when used for simulation of large 3-D real-world problems may become inefficient. So, various hybrid methodologies have been developed; these methodologies can be categorized into four groups: coupled deterministic and Monte Carlo methods; Monte Carlo variance reduction using the deterministic importance function; acceleration of the deterministic methods based on a lower-order deterministic formulation; and coupled deterministic methods This paper compares the Sn deterministic and Monte Carlo approaches, reviews different hybrid methodologies, and discusses recent methods we (the University of Florida Transport Theory Group (UFTTG)) have developed and applied to real-world problems. (author)

  12. Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings

    CERN Document Server

    2015-01-01

    The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2015. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY and string theory would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.

  13. Formation of silicon nanocrystal films at low temperature during capacitive radio frequency discharge transition to the high-current mode

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanmei [College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002 (China); College of Mathematics and Physics, North China Electric Power University, Hebei 071002 (China); Yu, Wei, E-mail: ssxym@sohu.com [College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002 (China); Jiang, Zhaoyi; Li, Yun; Li, Huimin; Feng, Huina [College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002 (China)

    2014-10-31

    In this paper, silicon nanocrystal (Si-nc) films were synthesized via capacitive radio frequency (rf) discharge plasma with silane diluted in helium and hydrogen. The plasma conditions were chosen to simultaneously deposit both Si-ncs and amorphous silicon matrix. The structure and photoluminescence of Si-nc films have been studied. By changing the power delivered to the reactor, the transition from amorphous to crystalline growth in the gas phase can be systematically varied. This transition has been confirmed by detecting the change of current and voltage characteristics of the discharge. The results are interpreted in terms of rf discharge transition to the high-current mode. At high-current mode, plasma density will have a sharp rise by hot electron injection. The high plasma density and hot electrons will increase coupling parameter and cause the transition from amorphous particles to crystal particles. - Highlights: • Silicon nanocrystals were synthesized at high-current mode. • Current and voltage characteristics of the discharge were measured. • The plasma characteristics at high-current mode were analyzed deeply.

  14. Formation of silicon nanocrystal films at low temperature during capacitive radio frequency discharge transition to the high-current mode

    International Nuclear Information System (INIS)

    In this paper, silicon nanocrystal (Si-nc) films were synthesized via capacitive radio frequency (rf) discharge plasma with silane diluted in helium and hydrogen. The plasma conditions were chosen to simultaneously deposit both Si-ncs and amorphous silicon matrix. The structure and photoluminescence of Si-nc films have been studied. By changing the power delivered to the reactor, the transition from amorphous to crystalline growth in the gas phase can be systematically varied. This transition has been confirmed by detecting the change of current and voltage characteristics of the discharge. The results are interpreted in terms of rf discharge transition to the high-current mode. At high-current mode, plasma density will have a sharp rise by hot electron injection. The high plasma density and hot electrons will increase coupling parameter and cause the transition from amorphous particles to crystal particles. - Highlights: • Silicon nanocrystals were synthesized at high-current mode. • Current and voltage characteristics of the discharge were measured. • The plasma characteristics at high-current mode were analyzed deeply

  15. High Current Beam Dynamics in an Ess SC Linac

    CERN Document Server

    Pabst, M; Letchford, A P

    2000-01-01

    Three alternative designs of the European Spallation Source (ESS) high energy linac are described. The most promising ones are either a normalconducting (nc) coupled cavity linac (CCL) up tofinal energy or a change at 407 MeV to only one group of 6 cell superconducting (sc) elliptical cavities. Fully 3d Monte Carlo simulations are presented for both options, optimized for reduced halo formation at the linac end. For the error free matched case, especially the halo formation in the longitudinal plane is more pronounced for the hybrid solution with its superconducting cavities, caused by the unavoidable phase slippage, but still quite well acceptable for loss free ring injection. Simulations however for a 30% mismatched dense core, surrounded in addition by 1.5% halo particles are showing few particles with very large amplitudes even in real space. This case represents halo formation in front to end simulations, caused by current fluctuations, filamented RFQ output distribution and enhanced by accumulated field...

  16. High-energy, high-current ion implantation system

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.H.; Faretra, R.; Ryding, G. (Eaton Corp., Beverly, MA (USA). Ion Beam Systems Div.)

    1985-01-01

    High current (Pre-Depsup(TM)) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-Dpsup(TM) Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (10/sup 11/ ions cm/sup -2/) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. Datalocksup(TM), a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 x 10/sup 15/ ions/cm/sup 2/. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  17. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  18. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  19. New progress of high current gasdynamic ion source (invited)

    International Nuclear Information System (INIS)

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10−4–10−3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments

  20. New progress of high current gasdynamic ion source (invited)

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  1. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  2. High current, low loss high temperature superconductor cables, concepts, properties and applications

    International Nuclear Information System (INIS)

    High Temperature Superconductors of the second generation (HTS-2G) became an industrial product during the recent years and are applied in several concepts of high current cables for a variety of applications. Low Losses, a thermal stabilization and mechanical strength are the requested features of the cables. We present an overview on the different cable concepts, their performance and the prospected DC and AC applications. Roebel cables and the CORC cable design are in particular suitable for AC operated high current devices as big generators, motors and large magnets. The performance of such cables was investigated under different conditions, as in pancake coils and layered windings. The behavior of the cables could meanwhile quite well be understood and described by FEM modeling. We also report on advanced cable versions which are equipped with a filamentary structure by means of laser assisted grooving of the superconducting layer. For some applications as large fusion magnets and accelerator magnets, even higher currents are requested. For such purpose Rutherford cables and more sophisticated concepts and cable designs are under investigation. We present the first results on such concepts and discuss the further research to be done. A final general outlook will indicate the prospects for the different applications. (author)

  3. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  4. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  5. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides

  6. Study of Second Phase Particles and Fe content in Zr Alloys Using the Advanced Photon Source at Argonne

    International Nuclear Information System (INIS)

    We have conducted a study of second phase particles and matrix alloying element concentrations in zirconium alloys using synchrotron radiation from the Advanced Photon Source (APS) at Argonne National Laboratory. The high flux of synchrotron radiation delivered at the 2BM beamline compared to conventional x-ray generators, enables the detection of very small precipitate volume fractions. We detected the standard C14 hcp Zr(Cr,Fe)2 precipitates, (the stable second phase in Zircaloy-4) in the bulk material at a cumulative annealing parameter as low as 10-20 h, and we followed the kinetics of precipitation and growth as a function of the cumulative annealing parameter (CAP) in the range 10-22 (quench) to 10-16 h. In addition, the unique combination of spatial resolution and elemental sensitivity of the 2ID-D/E microbeam line at the Advanced Photon Source at Argonne (APS) allows study of the alloying element concentrations at ppm levels in an area as small as 0.2 mm. We used x-ray fluorescence induced by this sub-micron x-ray beam to determine the concentration of these alloying elements in the matrix as a function of alloy type and thermal history. We discuss these results and the potential of synchrotron radiation-based techniques for studying zirconium alloys

  7. Advanced development of particle beam probe diagnostic systems. Technical progress report, June 1, 1982-October 31, 1983

    International Nuclear Information System (INIS)

    The primary objective of this program is the advanced development of sophisticated particle beam diagnostic techniques for making space and time resolved measurements on high temperature magnetically confined plasmas. The procedure is to develop and test new techniques on small-scale laboratory experiments and then transfer the technology to mainline confinement experiments. During the period covered by this progress report the major advances were: (1) demonstrated that beam probing can provide simultaneous measurements of n, phi and T/sub e/ on plasmas when T/sub e/ is less than approximately 500 eV; (2) demonstrated simultaneous measurements of n tilde and phi tilde on tokamak geometry for frequencies below 200 kHz; (3) developed the concept of multi-element energy analyzer to provide simultaneous measurements for more than one spatial location in the plasma; and (4) carried out preliminary analysis that showed that beam probes can be implemented on complex magnetic geometries such as ATF and that beam probe system could be extended into the MeV energy range

  8. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  9. Recent advances in particle-induced X-ray emission analysis applied to biological samples

    International Nuclear Information System (INIS)

    Papers reporting the application of particle induced X-ray emission (PIXE) analysis to biological samples continue to appear regularly in the literature. The majority of these papers deal with blood, hair, and other common body organs while a few deal with biological samples from the environnment. A variety of sample preparation methods have been demonstrated, a number of which are improvements, refinements and extensions of the thick- and thin-sample preparation methods reported in the early development of PIXE. While many papers describe the development of PIXE techniques some papers are now describing applications of the methods to serious biological problems. The following two factors may help to stimulate more consistant use of the PIXE method. First, each PIXE facility should be organized to give rapid sample processing and should have available several sample preparation and handling methods. Second, those with the skill to use PIXE methods need to become closely associated with researches knowledge able in medical and biological sciences and they also need to become more involved in project planning and sample handling. (orig.)

  10. Incorporating advanced language models into the P300 speller using particle filtering

    Science.gov (United States)

    Speier, W.; Arnold, C. W.; Deshpande, A.; Knall, J.; Pouratian, N.

    2015-08-01

    Objective. The P300 speller is a common brain-computer interface (BCI) application designed to communicate language by detecting event related potentials in a subject’s electroencephalogram signal. Information about the structure of natural language can be valuable for BCI communication, but attempts to use this information have thus far been limited to rudimentary n-gram models. While more sophisticated language models are prevalent in natural language processing literature, current BCI analysis methods based on dynamic programming cannot handle their complexity. Approach. Sampling methods can overcome this complexity by estimating the posterior distribution without searching the entire state space of the model. In this study, we implement sequential importance resampling, a commonly used particle filtering (PF) algorithm, to integrate a probabilistic automaton language model. Main result. This method was first evaluated offline on a dataset of 15 healthy subjects, which showed significant increases in speed and accuracy when compared to standard classification methods as well as a recently published approach using a hidden Markov model (HMM). An online pilot study verified these results as the average speed and accuracy achieved using the PF method was significantly higher than that using the HMM method. Significance. These findings strongly support the integration of domain-specific knowledge into BCI classification to improve system performance.

  11. Particle exhaust modeling for the collaborative DIII-D Advanced Divertor Program

    International Nuclear Information System (INIS)

    A principal objective of the collaborative DIII-D Divertor Program (ADP) is to achieve density control in H-mode discharges with edge biasing and with continuous particle exhaust at a rate determined by the external fueling sources (typically 20 Torr·L/s). The divertor baffle-bias ring system has been optimized for pumping speeds ∼50,000 L/s with the neutral transport code DEGAS. With an entrance slot conductance of 50,000 L/s, a pumping speed of the same order is required to remove half of the ∼40 Torr·L/s that enters the baffle chamber for typical H-mode discharges. Increasing the exhaust fraction with higher pumping speed is self-limiting, owing to the attendant reduction of the recycling flux. The effects of pumping on the plasma core, scrape-off layer (SOL), and divertor have been estimated with a model that self-consistently couples the transport in these regions. The required ∼50,000 L/s pumping speed can be achieved with either titanium getter pumps or cryopumps. Evaluation of both systems has led to the conclusion that cryopumps will be more compatible with the environment of the DIII-D divertor. 8 refs., 7 figs

  12. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    International Nuclear Information System (INIS)

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  13. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  14. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    Science.gov (United States)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. The prospects for combined high-frequency focusing usage in high-current heavy ion linacs

    International Nuclear Information System (INIS)

    The study is made into a channel for acceleration and focusing of heavy ions with mass-charge ratio A/q = 20 in a high-current linear accelerator. The channel is designed to form and accelerate charged particle beams from 100 keV/u up to 8.5 MeV/u. Functionally the channel comprises a pre-stripping section and a main part. Ion stable motion in pre-stripping and main sections is provided by combination of phase-alternating focusing with quadrupole high-frequency one. A way of implementation of this focusing type based on the IH structures is suggested. Numerical simulation of the beam dynamics has been carried out. The channel makes acceleration of ion beams with current up to 10 mA possible.

  16. High current ion beam generation by nonlinear ponderomotive force of high intensity UV laser

    International Nuclear Information System (INIS)

    Using the anomaly at plasma interaction of petawatt-picosecond laser pulses with very high contrast ratio to generate plane geometry highly directed plasma blocks for laser fusion, the details of the block generation were studied. The aim was to produce plasma blocks with dielectrically generated highest possible initial thicknesses. One of the goals in laser-plasma interaction studies is to convert as much laser energy as possible into energetic particles. Most laser ion accelerations have only been done using infrared lasers. In this work, dependency of the laser energy absorption to laser wave-Length for a given laser intensity is investigated numerically. High intensity UV laser absorption by Raleigh plasma density is examined. High current ion beams generated by nonlinear ponderomotive force of intense UV laser with Hydrodynamics computation based on a genuine two-fluid code are presented. (author)

  17. High current pulsed electron beam modification on fretting wear behavior of D2 die steel

    International Nuclear Information System (INIS)

    The author studied the effect of high current pulsed electron beam (HCPEB) treatment on fretting wear ability of D2 die steel. It is shown that the most pronounced structural changes occur in the near-surface region, where the energy deposition is at its maximum. The fretting tests under dry condition were carried out on both treated and untreated specimens. The HCPEB treatment increases the fretting wear resistance significantly, and the improvement is further enhanced by surface pre-alloying by TiN and Cr. SEM analysis of the wear scars showed that the fretting wear mechanism of Cr coating is adhesive and oxidation wear, that of the TiN coating and non-coating D2 die steel is particle detachment through the propagation and fracture of fatigue microcracks on surface, and slight adhesive and oxidation wear is found, its wear mechanism is more complex

  18. Heavy ion linac as a high current proton beam injector

    Science.gov (United States)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  19. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  20. Development of laser heated high current DC electron gun

    International Nuclear Information System (INIS)

    The paper deals with the development of a Laser heated cathode for Electron Accelerator. The electron gun is meant for Megawatt-class DC Accelerator for Electron Beam Flue Gas Treatment applications. Conventionally, LaB6 cathode is indirectly heated by tungsten filaments whereas in the newly proposed gun, Laser is utilized for heating. A Nd:YAG Laser is used to heat the LaB6 cathode to emission temperatures. The characterization of cathode heating at various Laser powers has been carried out. In initial trials, it has been observed that with 125 W of Laser power, the LaB6 pellet was heated to 1315 ° C. Based on these experimental results, an electron gun rated for 30 kV, 350 mA CW has been designed. The optimization of gun electrode geometry has been done using CST Particle Studio in order to tune the various electron gun parameters. The beam diameter obtained in simulation is 8 mm at 100 mm from the LaB6 cathode. The perveance obtained is 7.1 x 10-8 A/V3/2 . The Laser heated cathode has the advantages of eliminating the magnetic field effects of filament on the electron beam, electrical isolation needed for gun filament power supplies and better electron beam emittances. (author)

  1. Progress and upgrading of the Heidelberg high current injector

    Indian Academy of Sciences (India)

    Roland Repnow

    2002-11-01

    A specialized rf-accelerator system HSI consisting of two RFQ’s and 8 rf seven-gap cavities was built for injection of high intensities of singly charged heavy ions into the Heidelberg heavy ion storage ring TSR. With different ion sources, this system now is used to deliver positive or negative, atomic and molecular ion beams with energies between 150 keV/a.m.u. and 5.3 MeV/a.m.u. final energy. For a future replacement of the MP-tandem-postaccelerator-system the new HSI-accelerator is to be equipped with an ECR source for high intensities of highly charged ions. An advanced commercial ECR source with a 18 GHz rf klystron and an adjustable extraction system for adaption of a wide range of injection energies has been commissioned at the manufacturer and is delivered. Test bench operation presently is in preparation at Heidelberg. A stripper section with an achromatic charge state selector is under construction between injector and postaccelerator. Other ion sources, e.g., for ultra cold $H^{+}_{3}$ molecular ion beams are under development.

  2. The clinical analysis of 125I particles implantation by fibrobronchoscope and percutaneous in the treatment of tracheal stenosis of advanced lung cancer

    International Nuclear Information System (INIS)

    Objective: To evaluate the clinical efficacy of 125I particles implantation in the treatment of tracheal stenosis due to advanced lung cancer. Methods: Eighteen cases with end stage lung cancer were collected.125I particles were implanted by inserting the bronchoscope into the pathological bronchial tubes of distal puncture. The number of 125I particles implanted ranged from 4-15. The tumor sizes were compared before and 30 d, 60 d, 180 d after the 125I particles implantation according to the examination of CT, and the clinical symptoms were studied. Results: The symptoms of shortness of breath were relieved after 125I particles implantation. Thirty days follow-up after the therapy showed 15 cases of enlarged bronchial lumen, 13 cases of disappeared obstructive pneumonia symptoms, and no obvious complication occurred during the follow-up. Conclusion: The implantation of 125I radioactive particles has a good effect for the tracheal stenosis in the treatment of advanced lung cancer; the therapy is safe and worth to be spread. (authors)

  3. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ∼90 mA/cm2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm2) and low operating pressures (epsilon)n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  4. Studies in High Current Density Ion Sources for Heavy Ion FusionApplications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, E.

    2002-06-01

    This dissertation develops diverse research on small (diameter {approx} few mm), high current density (J {approx} several tens of mA/cm{sup 2}) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K{sup +} and Cs{sup +} contact ionization sources and potassium aluminum silicate sources. Maximum values for a K{sup +} beam of {approx}90 mA/cm{sup 2} were observed in 2.3 {micro}s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times ({approx} 1 {micro}s), high current densities ({approx} 100 mA/cm{sup 2}) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured ({var_epsilon}{sub n} {le} 0.006 {pi} mm {center_dot} mrad) although measured currents differed from the desired ones (I {approx} 5mA) by about a factor of 10.

  5. Effect of the electrostatic plasma lens on the emittance of a high-current heavy ion beam

    International Nuclear Information System (INIS)

    We describe measurements we have made of the emittance of a high-current, moderate-energy ion beam after transport through a permanent-magnet electrostatic plasma lens. The results indicate the absence of emittance growth due to the lens, when the lens is adjusted for optimal beam focusing. The measured emittance for a 16 keV Cu2+ ion beam formed by a vacuum arc ion source was about 0.4 π · mm · mrad at a beam current of 50 mA rising more-or-less linearly to 1.5 π · mm · mrad at 250 mA, and was conserved in beam transport through the lens. These results have significance for the application of high-current ion sources and the electrostatic plasma lens to particle accelerator injection

  6. Experimental study of a high-current FEM with a broadband microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  7. High Current H2+ Cyclotrons for Neutrino Physics: The IsoDAR and DAE \\delta ALUS Projects

    CERN Document Server

    Alonso, Jose R

    2012-01-01

    Using H2+ ions is expected to mitigate the two major impediments to accelerating very high currents in cyclotrons, due to lower space charge at injection, and stripping extraction. Planning for peak currents of 10 particle milliamps at 800 MeV/amu, these cyclotrons can generate adequate neutrino fluxes for Decay-At-Rest (DAR) studies of neutrino oscillation and CP violation. The Injector Cyclotron, at 60 MeV/amu can also provide adequate fluxes of electron antineutrinos from 8Li decay for sterile neutrino searches in existing liquid scintillator detectors at KamLAND or SNO+. This paper outlines programs for designing and building these machines.

  8. Halo Evolution of Hypereutectic Al-17.5Si Alloy Treated with High-Current Pulsed Electron Beam

    OpenAIRE

    Hu, L.; Gao, B.; Lv, J. K.; Sun, S. C.; Hao, Y.; Tu, G. F.

    2015-01-01

    Halo evolution of an Al-17.5Si alloy surface after treatment with increasing pulse numbers of a high-current pulsed electron beam (HCPEB) was investigated. A halo is a ring microstructure resembling a bull’s eye. SEM results indicate that the nanocrystallization of halo induced by HCPEB treatment leads to gradual diffusion of the Si phase. Multiple pulses numbers cause the Si phase to be significantly refined and uniformly distributed. In addition, nanosilicon particles with a grain size of 3...

  9. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  10. Comparison of Parmela and MAFIA Simulations of Beam Dynamics in High Current Photoinjector

    CERN Document Server

    Kurennoy, Sergey S

    2004-01-01

    A high-current RF photoinjector producing low-emittance electron beam is an important technology for high-power CW FEL. LANL-AES team designed a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector with magnetic emittance compensation. With the electric field gradients of 7, 7, and 5 MV/m in the three subsequent cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Beam dynamics in the photoinjector has been modeled in details. In addition to the usual approach, with fields calculated by Superfish-Poisson and beam simulations performed by Parmela, we also used MAFIA group of codes, both to calculate cavity fields and to model beam dynamics with its particle-in-cell module TS. The second way naturally includes wake-field effects into consideration. The simulation results and comparison between two approaches will be presented.

  11. Commissioning of the 1.4 Mev/u High Current Heavy Ion Linac at Gsi

    CERN Document Server

    Barth, W

    2000-01-01

    The disassembly of the Unilac prestripper linac of the Wideroe type took place at the beginning of 1999. An increase of more than two orders of magnitude in particle number for the most heavy elements in the SIS had to be gained. Since that time the new High Current Injector (HSI) consisting of H-type RFQ and DTL-structures for dual beam operation was installed and successfully commissioned. The High Charge Injector (HLI) supplied the main linac during that time. Simultaneously conditioning and running in of the rf-transmitters and rf-structures were done. The HSI commissioning strategy included beam investigation after each transport and acceleration section, using a versatile diagnostic test stand. Results of the extensive commissioning measurements (e.g. transverse emittance, bunch width, beam transmission) behind LEBT, RFQ, Super Lens, IH tank I and II and stripping section will be discussed. An 40Ar1+ beam coming from a MUCIS ion source was used to fill the linac up to the theoretical space charge limit....

  12. Advanced modeling of potential air pollution dispersion around Krsko NPP using 3D wind field reconstruction and numerical lagrangean particle model

    International Nuclear Information System (INIS)

    In the paper a successful automatisation of advanced air pollution dispersion modelling is presented. Air pollution dispersion modelling is an important part of dose projection procedures. At Krsko NPP modelling consists of 3D wind and turbulence field reconstruction and numerical Lagrangean particle model air pollution dispersion simulation. Input data collection and modelling calculations are done every half hour totally automatically. Results are automatically available for dose calculation system. (author)

  13. Optical diagnostics of sputtering in magnetically enhanced high-current discharges

    Science.gov (United States)

    Smith, David; Aceto, Steven; Trotter, Jason; Sommerer, Timothy; Lawler, James

    2014-10-01

    We have investigated a gallium-based liquid cathode for use in a high-voltage, high-power gas switch for grid-scale electric power conversion. The cathode requirements include conduction of high current density (1--10 A cm-2) , preferably at low voltage, along with minimal loss by evaporation and/or sputtering. The approach to satisfy these criteria has been to operate with a modified commercial magnetron system at high pressure where the choice of working comprises the light elements, such as hydrogen or helium. A separate anode is used to form a plane-parallel geometry. We have demonstrated pulsed operation with current densities exceeding 2 A cm-2 and voltages below 200 V, over a pressure range of 50--800 mTorr. The sputtering rate on gallium and other cathode materials has been estimated for various plasma conditions using a line ratio emission spectroscopy diagnostic based on analysis of the radiation trapping. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  14. High Current Density, Long Life Cathodes for High Power RF Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  15. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    Science.gov (United States)

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-01

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. PMID:26524388

  16. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  17. Surface modification of Al-20Si alloy by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.cn [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang, 110004 (China); Hao, S.Z.; Dong, C. [Key Laboratory of the Ministry of Education of Materials Modification by Laser, Ion and Electron Beams Dalian University of Technology, Dailan 116024 (China)

    2011-02-15

    Hypereutectic Al-20Si (Si 20 wt.%, Al balance)alloy surface was treated with high current pulsed electron beam (HCPEB) under different pulse numbers. The results indicate that HCPEB irradiation induces the formation of metastable structures on the treated surface. The coarse primary Si particle melts, producing a 'halo' microstructure with primary Si as the center on the melted surface. A supersaturated solid solution of Al is formed in the melted layer caused by Si atoms dissolving into the Al matrix. Cross-section structure analysis shows that a 4 {mu}m remelted layer is formed underneath the top surface of the HCEPB-treated sample. Compared with the matrix, the Al and Si elements in the remelted layer are distributed uniformly. In addition, the grains of the Al-20Si alloy surface are refined after HCPEB treatment, as shown by TEM observation. Nano-silicon particles are dispersed on the surface of remelted layer. Polygonal subgrains, approximately 50-100 nm in size, are formed in the Al matrix. The hardness test results show that the microhardness of the {alpha}(Al) and eutectic structure is increased with increasing pulse number. The hardness of the 'halo' microstructure presents a gradient change after 15 pulse treatment due to the diffusion of Si atoms. Furthermore, hardness tests of the cross-section at different depths show that the microhardness of the remelted layer is higher than that of the matrix. Therefore, HCPEB technology is a good surface modification method for enhancing the surface hardness of hypereutectic Al-20Si alloy.

  18. A fluorescent micro capsule manufacture of magnetic particle testing for advanced inspection technique of heat exchanger tube

    International Nuclear Information System (INIS)

    Fine magnetic particles having UV fluorescence are commonly used in magnetic crack detection technique. Stress corrosion cracking sometimes happens in nuclear power plants. To apply this technique to maintain the heat exchanger tubes, it is desired that these particles has performance to be collected with ease. To collect these fine magnetic particles from millimeter size crack depth, a chemosynthesis technique to produce the micro capsules successfully produced hundreds micron sized capsules containing the fine magnetic particles. The synthesized micro capsules indicated the collective sensitivity for lines of magnetic force. (author)

  19. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid

  20. High Current Density Beamlets from an RF Argon Source for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm2. The normalized emittance of 0.02 π-mm-mrad corresponds to an equivalent ion temperature of 2.4 eV. These results showed that the RF argon plasma source is suitable for producing high current density beamlets that can be merged to form a high current high brightness beam for HIF application

  1. PREFACE: Advanced Science Research Symposium 2009 Positron, Muon and other exotic particle beams for materials and atomic/molecular sciences (ASR2009)

    Science.gov (United States)

    Higemoto, Wataru; Kawasuso, Atsuo

    2010-05-01

    It is our great pleasure to deliver the proceedings of ASR2009, the Advanced Science Research International Symposium 2009. ASR2009 is part of a series of symposia which is hosted by the Japan Atomic Energy Agency, Advanced Science Research Center (JAEA-ASRC), and held every year with different scientific topics. ASR2009 was held at Tokai in Japan from 10-12 November 2009. In total, 102 participants, including 29 overseas scientists, made 44 oral presentations and 64 poster presentations. In ASR2009 we have focused on material and atomic/molecular science research using positrons, muons and other exotic particle beams. The symposium covered all the fields of materials science which use such exotic particle beams. Positrons, muons and other beams have similar and different features. For example, although positrons and muons are both leptons having charge and spin, they give quite different information about materials. A muon mainly detects the local magnetic state of the solid, while a positron detects crystal imperfections and electron momenta in solids. Other exotic particle beams also provide useful information about materials which is not able to be obtained with muons or positrons. Therefore, the complementary use of particle beams, coupled with an understanding of their relative advantages, leads to greater excellence in materials research. This symposium crossed the fields of muon science, positron science, unstable-nuclei science, and other exotic particle-beam science. We therefore believe that ASR2009 became an especially important meeting for finding new science with exotic particle beams. Finally, we would like to extend our appreciation to all the participants, committee members, and support staff for their great efforts to make ASR2009 a fruitful symposium. ASR2009 Chairs Wataru Higemoto and Atsuo Kawasuso Advanced Science Research Center, Japan Atomic Energy Agency Organizing committee Y Hatano, JAEA (Director of ASRC) M Fujinami, Chiba Univ. R H

  2. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Dong, C. [Key Laboratory of the Ministry of Education of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Zhang, Z.G. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China)

    2011-07-01

    Highlights: > Firstly, Raman spectra are used to research the variation of Si structure before and after HCPEB treatment for the first time. > Secondly, a fine structure, namely the precipitation of nanocrystalline Si particles, is formed in the surface layer of the HCPEB-treated sample. > Thirdly, the relative wear resistance of an Al-15Si alloy surface is effectively enhanced by a factor of 9 after 15 pulse treatment. - Abstract: A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special 'halo' microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the 'halo' microstructure is distributed continuously from the center to the edge of the 'halo'. Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 {mu}m (5 pulses) to 5.6 {mu}m (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  3. Design of time control system of high current proton linear accelerator

    International Nuclear Information System (INIS)

    The high current proton linear accelerator with high duty ratio will be used in accelerator driven sub-critical system. Time control system of high current proton linear accelerator is introduced. During accelerator operation, the system provides necessary trigger and clock signal. Accuracy and stability of the system has important implications for operation of the linear accelerator. Design of serial communication hardware based on ALTERA company cyclone Ⅲ FPGA, programming of serial communication drivers and functional modules, and implement of human-computer interface based on LabVIEW are realized. The testing results show that the whole system meets requirements of time control system of the high current proton accelerator. (authors)

  4. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  5. Advanced Characterization Techniques for Silicon Carbide and Pyrocarbon Coatings on Fuel Particles for High Temperature Reactors (HTR)

    International Nuclear Information System (INIS)

    Cea and AREVA NP have engaged an extensive research and development program on HTR (high temperature reactor) fuel. The improving of safety of (very) high temperature reactors (V/HTR) is based on the quality of the fuel particles. This requires a good knowledge of the properties of the four-layers TRISO particles designed to retain the uranium and fission products during irradiation or accident conditions. The aim of this work is to characterize exhaustively the structure and the thermomechanical properties of each unirradiated layer (silicon carbide and pyrocarbon coatings) by electron microscopy (SEM, TEM), selected area electronic diffraction (SEAD), thermo reflectance microscopy and nano-indentation. The long term objective of this study is to define pertinent parameters for fuel performance codes used to better understand the thermomechanical behaviour of the coated particles. (authors)

  6. Investigation of flow behaviour of coat/ash particles in an advanced pressurised fluidized bed gasifier (APFBG) using radiotracer technique

    International Nuclear Information System (INIS)

    Knowledge of Residence Time Distribution (RTD), Mean Residence Time (MRT) and degree of backmixing of solid phase is important for efficient operation of the coal gasifier. Radiotracer technique was used for measure RTD of coal/ash particles in a pilot-scale gasifier and obtain the values of MRT and backmixing. Lanthanum 140 labeled coal (100 g) was used as a tracer. The tracer was instantaneously injected into the coal feed line and monitored at ash and gas outlets of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tank-in-series model. The simulation RTD data indicated good degree of mixing with minor bypassing/short-circulating of coal particles. The results of the investigation were found useful for scale-up of the gasification process. (author)

  7. Advances in the simulation and automated measurement of well-sorted granular material: 2. Direct measures of particle properties

    Science.gov (United States)

    Buscombe, Daniel D.; Rubin, David M.

    2012-01-01

    1. In this, the second of a pair of papers on the structure of well-sorted natural granular material (sediment), new methods are described for automated measurements from images of sediment, of: 1) particle-size standard deviation (arithmetic sorting) with and without apparent void fraction; and 2) mean particle size in material with void fraction. A variety of simulations of granular material are used for testing purposes, in addition to images of natural sediment. Simulations are also used to establish that the effects on automated particle sizing of grains visible through the interstices of the grains at the very surface of a granular material continue to a depth of approximately 4 grain diameters and that this is independent of mean particle size. Ensemble root-mean squared error between observed and estimated arithmetic sorting coefficients for 262 images of natural silts, sands and gravels (drawn from 8 populations) is 31%, which reduces to 27% if adjusted for bias (slope correction between observed and estimated values). These methods allow non-intrusive and fully automated measurements of surfaces of unconsolidated granular material. With no tunable parameters or empirically derived coefficients, they should be broadly universal in appropriate applications. However, empirical corrections may need to be applied for the most accurate results. Finally, analytical formulas are derived for the one-step pore-particle transition probability matrix, estimated from the image's autocorrelogram, from which void fraction of a section of granular material can be estimated directly. This model gives excellent predictions of bulk void fraction yet imperfect predictions of pore-particle transitions.

  8. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  9. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    International Nuclear Information System (INIS)

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection

  10. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Adam, E-mail: a.l.varley@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Tyler, Andrew, E-mail: a.n.tyler@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Smith, Leslie, E-mail: l.s.smith@cs.stir.ac.uk [Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA (United Kingdom); Dale, Paul, E-mail: paul.dale@sepa.org.uk [Scottish Environmental Protection Agency, Radioactive Substances, Strathallan House, Castle Business Park, Stirling FK9 4TZ (United Kingdom); Davies, Mike, E-mail: Mike.Davies@nuvia.co.uk [Nuvia Limited, The Library, Eight Street, Harwell Oxford, Didcot, Oxfordshire OX11 0RL (United Kingdom)

    2015-07-15

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection.

  11. Advanced algorithms for mobile robot motion planning and tracking in structured static environments using particle swarm optimization

    OpenAIRE

    Ćosić Aleksandar; Šušić Marko; Katić Duško

    2012-01-01

    An approach to intelligent robot motion planning and tracking in known and static environments is presented in this paper. This complex problem is divided into several simpler problems. The first is generation of a collision free path from starting to destination point, which is solved using a particle swarm optimization (PSO) algorithm. The second is interpolation of the obtained collision-free path, which is solved using a radial basis function neural network (RBFNN), and trajectory g...

  12. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    OpenAIRE

    Sy, Amy

    2013-01-01

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrate...

  13. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  14. Seasonal Variation of Frequency of High Current Lightning Discharges Observed by JLDN

    Science.gov (United States)

    Saito, Mikihisa; Ishii, Masaru; Fujii, Fumiyuki; Matsui, Michihiro

    Seasonal variations of number of high current lightning discharges exceeding 100kA observed by JLDN (Japanese Lightning Detection Network) were analyzed. The months with averaged altitudes of -10°C level higher than 5.7km are classified as ordinary summer from the viewpoint of lightning activity. Meanwhile, on the coast of the Sea of Japan, more than 90% of negative high current lightning discharges were -GC (Ground to Cloud) strokes in the months when monthly averaged altitudes of -10°C level are lower than 2.7km. These months are classified as the winter lightning season when upward lightning flashes frequently occur. Months other than winter or summer are classified as spring or autumn. In these seasons, the proportions of positive high current lightning discharges are higher than those of negative discharges like winter. Thus, the charge structure in the thunderclouds of spring and autumn may be similar to that in winter, and high current lightning strokes tend to occur. Since this variation of seasons is different in each area of Japan, relation of seasons, areas, and densities of high current lightning discharges were analyzed.

  15. Characterization of Charging Control of a Single Wafer High Current Spot Beam Implanter

    International Nuclear Information System (INIS)

    This paper focuses on the characterization of charging control of an Axcelis Optima HD single wafer high current spot beam implanter using MOS capacitors with attached antennas of different size and shape. Resist patterns are implemented on Infineon Technologies own charging control wafers to investigate the influence of photo resist on charging damage. Compared to batch high current implanters the design of the beamline and the beam shape are comparable to single wafer high current spot beam implanters, however due to the different scanning architecture the dose rate of the single wafer high current spot beam implanters is significantly higher compared to the batch tools. Therefore, the risk of charging damage will be higher. The charging damage was studied as a function of the energy, the beam current and the most important plasma flood gun parameters. The results have shown that for very high antenna ratios the charging damage for single wafer implanters, even spot or ribbon beam implanters, is higher than for high current batch implanters.

  16. Advances in colloid and biocolloid transport in porous media: particle size-dependent dispersivity and gravity effects

    Science.gov (United States)

    Chrysikopoulos, Constantinos V.; Manariotis, Ioannis D.; Syngouna, Vasiliki I.

    2014-05-01

    Accurate prediction of colloid and biocolloid transport in porous media relies heavily on usage of suitable dispersion coefficients. The widespread procedure for dispersion coefficient determination consists of conducting conservative tracer experiments and subsequently fitting the collected breakthrough data with a selected advection-dispersion transport model. The fitted dispersion coefficient is assumed to characterize the porous medium and is often used thereafter to analyze experimental results obtained from the same porous medium with other solutes, colloids, and biocolloids. The classical advection-dispersion equation implies that Fick's first law of diffusion adequately describes the dispersion process, or that the dispersive flux is proportional to the concentration gradient. Therefore, the above-described procedure inherently assumes that the dispersive flux of all solutes, colloids and biocolloids under the same flow field conditions is exactly the same. Furthermore, the available mathematical models for colloid and biocoloid transport in porous media do not adequately account for gravity effects. Here an extensive laboratory study was undertaken in order to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size, interstitial velocity and length scale. The breakthrough curves were successfully simulated with a mathematical model describing colloid and biocolloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity increases very slowly with increasing interstitial velocity, and increases with column length. Furthermore, contrary to earlier results, which were based either on just a few experimental observations or experimental conditions leading to low mass recoveries, dispersivity was positively correlated with colloid particle size. Also, transport experiments were performed with biocolloids (bacteriophages:

  17. Generation UWB Signal at Energization of a Helical Antenna High-Current REB

    International Nuclear Information System (INIS)

    In operation the possibility of generation of UWB signal was researched at excitement of a helical antenna by a high-current relativistic bundle of nanosecond duration. The experiments were conducted on a high-current relativistic accelerator REB 'TEMP-A' with parameters: Eb∼0,5...1,0 MeV, Ib∼5...10 kA, duration of a ∼15 nc, at the value of a leading edge ∼ 1...2 nc. The calculation data of a helical antenna and parameters of a generated UWB signal are reduced

  18. Radiation damage in single crystal CVD diamond material investigated with a high current Au beam

    International Nuclear Information System (INIS)

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high current heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2-3 x 106/s/mm2) of 1.25 A GeV Au ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  19. Development of RF-linac and storage ring system for high-current experiments at GSI

    International Nuclear Information System (INIS)

    The heavy ion facility under construction at GSI is suitable for the generation of high-current beams. It consists of a new high-current injector into the Unilac and a synchrotron and storage ring. We discuss the capability of this system to produce short pulses of heavy ions with a specific energy of the order of 0.1 MJ/g. Under these conditions the system allows to perform a first generation of heavy ion driven target experiments and to test most of the critical issues of a large scale heavy ion fusion driver facility. (orig.)

  20. Design study of a beta=0.09 high current superconducting half wave resonator

    CERN Document Server

    Zhong, Hu-Tan-Xiang; Fan, Pei-Liang; Quan, Sheng-Wen; Liu, Ke-Xin

    2016-01-01

    There's presently a growing demand for high current proton and deuteron linear accelerators based on superconducting technology to better support various fields of science. A \\b{eta}=0.09 162.5 MHz high current superconducting half wave resonator (HWR) has been designed at Peking University to accelerate 100 mA proton beam or 50 mA deuteron beam after the RFQ accelerating structure. The detailed electromagnetic design, multipacting simulation, mechanical analysis of the cavity will be given in this paper.

  1. Quality control of welded joints by high-current pulsed x-ray apparatus

    International Nuclear Information System (INIS)

    The article shows that quality control of welded joints is possible with the aid of high-current pulsed x-ray apparatus in the regime of single pulses. It presents the basic quantitative characteristics of radiographic control that make it possible to determine the focal length, the course of sensitivity, and the optical density of the image. It analyzes the features of the formation of an electroradiographic image in the regime of single pulses in the nanosecond range. The prospects of using high-current PXA in the regime of single pulses in industry are evaluated

  2. Study on focusing characteristic of acceleration tube in high current implanter

    International Nuclear Information System (INIS)

    The accelerating tube is one of the most important parts in high current implanter which provides the desired energy and focusing for ion beam. The factors affecting focus characteristic in high current implanter with three gap acceleration tube are discussed. Focusing degrees of different energy ion beam are computed, and the electric field required to prevent beam expansion due to space charge effect are analyzed. The beam envelope inside the three acceleration gap shows a decrease of the beam radius with the increase of the accelerating voltage ratio up to the optimal value. Beyond this optimal value the beam lines make a crossover with the axis of the accelerating tube

  3. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: Charged Particle Beam Transport and the Computation of Electromagnetic Fields and Beam-Cavity Interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates

  4. Advanced algorithms for mobile robot motion planning and tracking in structured static environments using particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Ćosić Aleksandar

    2012-01-01

    Full Text Available An approach to intelligent robot motion planning and tracking in known and static environments is presented in this paper. This complex problem is divided into several simpler problems. The first is generation of a collision free path from starting to destination point, which is solved using a particle swarm optimization (PSO algorithm. The second is interpolation of the obtained collision-free path, which is solved using a radial basis function neural network (RBFNN, and trajectory generation, based on the interpolated path. The last is a trajectory tracking problem, which is solved using a proportional-integral (PI controller. Due to uncertainties, obstacle avoidance is still not ensured, so an additional fuzzy controller is introduced, which corrects the control action of the PI controller. The proposed solution can be used even in dynamic environments, where obstacles change their position in time. Simulation studies were realized to validate and illustrate this approach.

  5. Optimising PICCANTE -- an open source particle-in-cell code for advanced simulations on Tier-0 systems

    CERN Document Server

    Sgattoni, Andrea; Sinigardi, Stefano; Marocchino, Alberto; Macchi, Andrea; Weinberg, Volker; Karmakar, Anupam

    2015-01-01

    We discuss a detailed strong and weak scaling analysis of PICCANTE, an open source, massively parallel, fully-relativistic Particle-In-Cell (PIC) code. PIC codes are widely used in plasma physics and astrophysics to study the cases where kinetic effects are relevant. PICCANTE is primarily developed to study laser-plasma interaction. Within a PRACE Preparatory Access Project, various revisions of different routines of the code have been analysed on the HPC systems JUQUEEN at J\\"ulich Supercomputing Centre (JSC), Germany, and FERMI at CINECA, Italy, to improve the parallel scalability and the I/O performance of the application. The diagnostic tool Scalasca is used to filter out suboptimal routines. Different output strategies are discussed. The detailed strong and weak scaling behaviour of the improved code is presented in comparison with the original version of the code.

  6. Nonlinear analysis of mm waves excitation by high-current REB in dielectric resonator

    International Nuclear Information System (INIS)

    A nonlinear self-consistent theory of excitation of millimeter wave lengths electromagnetic fields by high current relativistic azimuthally-modulated electron beam in cylindrical resonator with a dielectric rod is constructed. For generation of high frequency waves is used an electron beam. Nonlinear numerical analysis is carried out.

  7. Conceptual design of a high current ISOL target area at TRIUMF

    International Nuclear Information System (INIS)

    Two similar conceptual designs for the handling of highly activated components at the target area of a high current radioactive beam facility have been investigated. The proposed designs are sufficiently flexible that practical detailed designs could be realized. Personnel exposure to radiation during the handling procedures is expected to be minimal. (author) 3 refs., 4 figs

  8. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  9. Computer simulation of high current uranium beams for the injection beam line of the UNILAC

    International Nuclear Information System (INIS)

    In an attempt to generate an ion beam with high current and high brightness for the design ion, the computer code KOBRA3-INP has been used to evaluate the extraction system, the DC post-acceleration system as well as the quadrupole transport beam line, and to study the behavior of the ion beam in the combined system. (orig.)

  10. Developments in the area of high-current-superconductivity in the Kernforschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    In this report the development work is presented which has been done from 1971 to 1975 on High-Current-Superconducticity at the institute IEKP III. The report deals with the development, construction and operation of superconducting magnets, with material investigations and with the pursued applications of superconducting Magnettechnology in research and industry. (orig.)

  11. Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    The kinetic theory of charged particles in gases has come a long way in the last 60 years or so, but many of the advances have yet to find their way into contemporary studies of low-temperature plasmas. This review explores the way in which this gap might be bridged, and focuses in particular on the analytic framework and numerical techniques for the solution of Boltzmann's equation for both electrons and ions, as well as on the development of fluid models and semi-empirical formulae. Both hydrodynamic and non-hydrodynamic regimes are considered and transport properties are calculated in various configurations of dc and ac electric and magnetic fields. We discuss in particular the duality in transport coefficients arising from non-conservative collisions (attachment, ionization). (review article)

  12. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  13. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Science.gov (United States)

    Hirano, Y.; Kiyama, S.; Fujiwara, Y.; Koguchi, H.; Sakakita, H.

    2015-11-01

    A high current density (≈3 mA/cm2) hydrogen ion beam source operating in an extremely low-energy region (Eib ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when Eib is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  14. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    Science.gov (United States)

    Grishkov, A. A.; Pegel, I. V.

    2013-11-01

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  15. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, A. A., E-mail: grishkov@to.hcei.tsc.ru; Pegel, I. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2013-11-15

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  16. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    International Nuclear Information System (INIS)

    A high current density (≈3 mA/cm2) hydrogen ion beam source operating in an extremely low-energy region (Eib ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when Eib is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge

  17. Spectroscopy of particle-phonon coupled states in $^{133}$Sb by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li: an advanced test of nuclear interactions

    CERN Multimedia

    We propose to investigate, with MINIBALL coupled to T-REX, the one-valence-proton $^{133}$Sb nucleus by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li. The excited 133Sb will be populated by transfer of a triton into $^{132}$Sn, followed by the emission of an $\\alpha$-particle (detected in T-REX) and 2 neutrons. The aim of the experiment is to locate states arising from the coupling of the valence proton of $^{133}$Sb to the collective low-lying phonon excitations of $^{132}$Sn (in particular the 3$^−$). According to calculations in the weak-coupling approach, these states lie in the 4$\\, - \\,$5 MeV excitation energy region and in the spin interval 1/2$\\, - \\,$ 19/2, i.e., in the region populated by the cluster transfer reaction. The results will be used to perform advanced tests of different types of nuclear interactions, usually employed in the description of particle-phonon coupled excitations. States arising from couplings of the proton with simpler core excitations, involving few nucleons only...

  18. Virtual particle therapy centre

    CERN Multimedia

    2015-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. This advanced technique requires a multi-disciplinary team working in a specialised centre. 3D animation: Nymus3D

  19. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  20. Ceramics sintering process by millimeter-wave radiation and pulsed high current supply; Miri ha taidenjiha narabini pulse daidenryu inka ni yoru ceramics shoketsu process

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, S. [Osaka University, Osaka (Japan). Joining and Welding Research Institute

    1998-11-15

    Research on ceramics sintering by milimeter-wave range microwaves is briefly reviewed in conjunction with that by pulsed high current supply. Unique features of mm-wave sintering are demonstrated in comparison with sintering by electrical furnaces as well as by 2.45 GHz radiation. Studies on mm-wave sintering of Al{sub 2}O{sub 3}+ZrO{sub 2} composite and Si{sub 3}N{sub 4}, as well as of TiN + Cr{sub 2}N composite, which has been conducted at JWRI, Osaka University, are described. Sintering mechanism of mm-wave radiation and pulsed high current supply is discussed based on the electromagnetic phenomena within the powder particles and grain boundaries. (author)

  1. A High-Gradient CW R Photo-Cathode Electron Gun for High Current Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer

    2005-05-01

    The paper describes the analysis and preliminary design of a high-gradient photo-cathode RF gun optimized for high current CW operation. The gun cell shape is optimized to provide maximum acceleration for the newly emitted beam while minimizing wall losses in the structure. The design is intended for use in future high-current high-power CW FELs but the shape optimization for low wall losses may be advantageous for other applications such as XFELs or Linear Colliders using high peak power low duty factor guns where pulse heating is a limitation. The concept allows for DC bias on the photocathode in order to repel ions and improve cathode lifetime.

  2. A battery-powered high-current power supply for superconductors

    International Nuclear Information System (INIS)

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  3. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  4. Low-impedance plasma systems for generation of high-current low-energy electron beams

    Science.gov (United States)

    Agafonov, A. V.

    2006-12-01

    The results of experimental investigation and numerical modeling of the generation of low-energy (tens of keV) high-current (up to tens of kA) electron beams in a low-impedance system consisting of a plasma-filled diode with a long plasma anode, an auxiliary hot cathode, and an explosive emission cathode. The low-current low-voltage beam from the auxiliary cathode in an external longitudinal magnetic field is used to produce a long plasma anode, which is simultaneously the channel of beam transportation by residual gas ionization. The high-current electron beam is formed from the explosive emission cathode placed in the preliminarily formed plasma. Numerical modeling is performed using the KARAT PIC code.

  5. Test method for position of accelerate grid of megawatt level high current ion source

    International Nuclear Information System (INIS)

    Background: Accelerate grid for producing several tens of MW ion beams is a critical component of the megawatt level high current ion source for the high power neutral beam injection, Purpose: To measure and analyze the position of accelerate grid. Methods: Taking the exit grid module of EAST-NBI high current ion source as the measurement object, the observation point coordinates of accelerate grid rail's actual axis are obtained by using 3 quadrant points sampling method and the point coordinates are analyzed by using MATLAB optimal function. Results: The position error that tallies with minimum zone and the distribution regularities of accelerate grid rails are obtained. Conclusions: This method has simple and stable course of evaluating, can realize automatic measurement and provide the basis for improving and finalizing the grid module's processing technic. (authors)

  6. Induced pulse discharge formation along dielectric surface in high-current vacuum switches

    International Nuclear Information System (INIS)

    For low-inductive high-current switches of capacitive high-energy storages an effective method of fast pulsed discharge formation induced by triggering sparks in the form of a plasma layer along dielectric surface in technical vacuum of 10-2-10-1 Pa is developed and studied. Comparative results of experimental study of delay times of controlled switch triggering at voltages considerably lower than static breakdown; switching time at current variation in the control circuit and initial pressure in case of control by triggering spark at the cathode far from the dilectric wall and just near the wall are given. Development of high-current discharge induced near the dielectric surface is caused mainly by electron-avalanche processes in a layer of gas desorbed from this surface

  7. Progress on the high-current 704 MHz superconducting RF cavity at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Xu W.; Astefanous, C.; Belomestnykh, S.; Ben-Zvi, I.; et al

    2012-05-20

    The 704 MHz high current superconducting cavity has been designed with consideration of both performance of fundamental mode and damping of higher order modes. A copper prototype cavity was fabricated by AES and delivered to BNL. RF measurements were carried out on this prototype cavity, including fundamental pass-band and HOM spectrum measurements, HOM studies using bead-pull setup, prototyping of antenna-type HOM couplers. The measurements show that the cavity has very good damping for the higher-order modes, which was one of the main goals for the high current cavity design. 3D cavity models were simulated with Omega3P code developed by SLAC to compare with the measurements. The paper describes the cavity design, RF measurement setups and results for the copper prototype. The progress with the niobium cavity fabrication will also be described.

  8. RF properties of 1050 MHz, β = 0.49 Elliptical cavity for High Current Proton Acceleration

    Science.gov (United States)

    Roy, Amitava; Mondal, J.; Mittal, K. C.

    2008-04-01

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, β = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation Pc, quality factor Q and effective shunt impedante ZT2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  9. RF properties of 1050 MHz, β = 0.49 Elliptical cavity for High Current Proton Acceleration

    International Nuclear Information System (INIS)

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, β = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation Pc, quality factor Q and effective shunt impedante ZT2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator

  10. RF properties of 1050 MHz, {beta} = 0.49 Elliptical cavity for High Current Proton Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Amitava; Mondal, J; Mittal, K C [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai - 400 085 (India)], E-mail: aroy@barc.gov.in

    2008-04-15

    BARC is developing technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U{sup 233}. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator driven subcritical system project. We have studied RF properties of 1050 MHz, {beta} = 0.49 single cell Elliptical cavity for possible use in High Current Proton Accelerator. Cavity shape optimization studies have been done by means of 2D cavity tuning code SUPERFISH and 3D High Frequency Simulation code CST Microwave Studio. The cavity peak electric and magnetic fields, power dissipation P{sub c}, quality factor Q and effective shunt impedante ZT{sup 2} were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameter for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  11. Aluminum surface coating of copper using high-current electron beam

    International Nuclear Information System (INIS)

    High-current electron beam irradiation has been applied for surface coating of copper with aluminum in ablative mode at the TEMP-A accelerator with energy of 350 keV, pulse length of 5 μs, and fluence 10...200 J/cm2. The aluminum-rich surface layer with average thickness around 25 μm, microhardness of 6.7 GPa and elasticity modulus of 122 GPa was formed on the copper template.

  12. Simulation of electron and ion bipolar flow in high current diode with magnetic insulation

    International Nuclear Information System (INIS)

    Numerical simulation of the formation of the collector ion flow in a magnetically insulated ion diode (MID) with a hollow cylindrical and cone-shaped cathode was studied. Such cathodes are often used for the production of tubular high current microsecond electron beams. The ions, emitted by the collector and born as a result of ionization of the residual gas by the electron beam, are focused into the cathode plasma region. This effect can adversely influence the diode operation

  13. Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode

    CERN Document Server

    Anishchenko, Sergey

    2016-01-01

    The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.

  14. Real time data acquisition system for the High Current Test Facility proton accelerator

    International Nuclear Information System (INIS)

    A real time data acquisition system was developed to monitor and control the High Current Test Facility Proton Accelerator. It is a PDP-8/E computer system with virtual memory capability that is fully interrupt driven and operates under a real-time, multi-tasking executive. The application package includes mode selection to automatically modify programs and optimize operation under varying conditions. (U.S.)

  15. Data readout with fibre optics for high-current wire chamber

    International Nuclear Information System (INIS)

    Data readout with fibre optics in a chamber with asymmetrically located cathodes operating in a high-current mode is investigated. Optical fibres are disposed perpendicular to the anode wire. At gas amplification of 5.5x109 more than 60 photoelectrons are produced from one fibre at the FEU-85 photocathode. Application of the center of gravity method can improve coordinate resolution several times

  16. Spontaneous short-wave radiation of high-current electron beam

    International Nuclear Information System (INIS)

    Angular and spectral characteristics of spontaneous radiation of high-current electron beam in a proper magnetic field are theoretically investigated. The model of a cylindrically- symmetric non rotating stationary beam the space charge of which is completely compensated by a motionless ion background has been used. It is shown that the radiation considerably depends on the beam current, its directivity with current increase drops, total intensity grows, but the spectrum widens

  17. Stable propagation of a high-current electron beam: experimental observations and computational modeling

    International Nuclear Information System (INIS)

    Experimental studies of self-focused, high-current electron-beam propagation phenomena are compared with the results of computational modeling. The model includes the radial structure of the beam-plasma system, a full electromagnetic field description, primary and secondary gas ionization processes, and a linear theory of the hose-like distortions. Good agreement between the experimental results and the computations strengthens the premise that hose instability is the principal limitation to propagation at high pressure

  18. Enhanced D-T supershot performance at high current using extensive lithium conditioning in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, D.K.; Strachan, J.D.; Bell, M.G.; Scott, S.D.; Budny, R.; Bell, R.E.; Bitter, M.; Darrow, D.S.; Fredrickson, E.; Grek, B. [and others

    1995-05-01

    A substantial improvement in supershot fusion plasma performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive Li conditioning of the TFTR limiter. This combination has resulted in not only significantly higher global energy confinement times than had previously been obtained in high current supershots, but also the highest ratio of central fusion output power to input power observed to date.

  19. Enhanced D-T supershot performance at high current using extensive lithium conditioning in TFTR

    International Nuclear Information System (INIS)

    A substantial improvement in supershot fusion plasma performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive Li conditioning of the TFTR limiter. This combination has resulted in not only significantly higher global energy confinement times than had previously been obtained in high current supershots, but also the highest ratio of central fusion output power to input power observed to date

  20. Inductive Pulse Forming Network For High-Current, High-Power Applications

    OpenAIRE

    Maier, William Bryan II

    2011-01-01

    An inductive pulse forming network stores electrical energy delivered from an outside prime power supply in the electric field of a low-voltage, high-energy density network capacitor. Through timed actuation of a series of one or more switches, the energy stored in the electric field of the network capacitor is subsequently converted to electrical energy stored in the magnetic field of a network inductor. The energy stored in the network inductor supplies high-current, hi...

  1. Realisation and instrumentation of high current power station for superconducting cables testing

    International Nuclear Information System (INIS)

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%

  2. The Heidelberg High Current Injector: A Versatile Injector for Storage Ring Experiments

    OpenAIRE

    von Hahn, R.; Grieser, M.; Repnow, R.; Schwalm, D.; Welsch, C.

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated single turn injector for the Test Storage Ring in Heidelberg to deliver mainly very high intensities of singly charged Li- and Be-ions for laser cooling experiments. After start of routine operation in 1999 the HCI delivered high quality beams for about 25% of the experiments with very high reliability. Due to the experimental requirements the HCI mutated from a specialized injector to a versatile multipurpose instrumen...

  3. High power pulse generators of the transformer type (the Tomsk High-Current Electronics Institute)

    International Nuclear Information System (INIS)

    Consideration is given to the problems of creation and operation of high-power generators of the transformer type, developed in the Tomsk High-Current Electronics Institute. The power of the largest generators is equal to 2.5 x 1012 W (pulse). Small dimensions, external location of main units, which require routine repair, absence of large volumes of transformer oil make pulse transformers competitive with PVGs. 10 refs., 5 figs

  4. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    OpenAIRE

    Bo Gao; Yi Hao; Ganfeng Tu; Wenyuan Wu

    2012-01-01

    Four techniques using high-current pulsed electron beam (HCPEB) were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the ma...

  5. Focusing of heavy ion beams by a high-current plasma lens

    International Nuclear Information System (INIS)

    The results of studies on focusing the wide-aperture heavy ion beams by a high-current electrostatic plasma lens within the range of low (100-400 eV) and medium (5-25 keV) energies are presented. It si established, that due to significant electron leakages the effective focusing of such beams is possible only under the condition of rigid fixation of the external potentials on the plasma lens electrodes. The peculiarities of the lens static and dynamic characteristics under such conditions are studied. The role of spherical and moment aberrations by focusing the wide-aperture weakly-diverging ion beams is identified. It is shown, that the role of the moment aberrations decreases with the energy growth, and focusing of the heavy elements high-current beams by the plasma lens becomes considerably more efficient as compared, to the focusing of the hydrogen light ion beams. This opens the possibility for application of electrostatic plasma lenses for controlling the ion beams in the high-dose ion implanters and in the high-current heavy-ion accelerators

  6. High Current Systems for HyperV and PLX Plasma Railguns

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Wu, Linchun; Elton, Raymond; Witherspoon, F. Douglas

    2010-11-01

    HyperV has been developing coaxial pulsed, plasma railgun accelerators for PLX and other high momentum plasma experiments. The full scale HyperV coaxial gun accelerates plasma armatures using a contoured electrode gap designed to mitigate the blow-by instability. Previous experiments with the full scale gun successfully formed and accelerated annular plasma armatures, but were limited to currents of up to only ˜400 kA. In order to increase full scale gun performance to the design goal of 200 μg at 200 km/s, the pulse forming networks required upgrading to support currents up to ˜1 MA. A high voltage, high current field-effect sparkgap switch and low inductance transmission line were designed and constructed to handle the increased current pulse. We will describe these systems and present initial test data from high current operation of the full-scale coax gun along with plans for future testing. Similar high current accelerator banks, switches, and TM lines will also be required to power PLX railguns which are planned to operate at 8000 μg at 50 km/s. The design of that experiment may require the capacitor banks to be located as much as 10 feet from the gun. We discuss the available options for low inductance connections for these systems.

  7. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, RUSSIA); Wakeland, Peter Eric (Ktech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-04-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  8. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

  9. Focusing of heavy ion beams by a high-current plasma lens

    International Nuclear Information System (INIS)

    Results are presented from studies of the focusing of wide-aperture low-energy (100-400 eV) and moderate-energy (5-25 keV) beams of heavy-metal ions by a high-current electrostatic plasma lens. It is found experimentally that, because of the significant electron losses, the efficient focusing of such beams can be achieved only if the external potentials at the plasma-lens electrodes are maintained constant. Static and dynamic characteristics of the lens are studied under these conditions. It is shown that, as the beam current and the electrode voltage increase, the maximum electrostatic field in the lens tends to a certain limiting value because of the increase in the spatial potential near the lens axis. The role of spherical and moment aberrations in the focusing of wide-aperture low-divergence ion beams is revealed. It is shown that, even when spherical aberrations are minimized, unremovable moment aberrations decrease the maximum compression ratio of a low-energy heavy-ion beam because of the charge separation of multiply charged ions in the focal region. At the same time, as the ion energy increases, the role of the moment aberrations decreases and the focusing of high-current heavy-ion beams by a plasma lens becomes more efficient than the focusing of light-ion (hydrogen) beams. This opens up the possibility of using electrostatic plasma lenses to control ion beams in high-dose ion implanters and high-current accelerators of heavy ions

  10. Improving corrosion and wear resistance of FV520B steel by high current pulsed electron beam surface treatment

    International Nuclear Information System (INIS)

    Highlights: • HCPEB surface treatment was conducted on FV520B steel. • Surface layer ∼10 μm was refined with elements homogenization. • Remelted layer exhibited 〈2 0 0〉 preferential orientation. • Corrosion potential increased and corrosion rate decreased one order of magnitude. • Wear resistance increased by 3 times. - Abstract: High current pulsed electron beam (HCPEB) surface treatment was conducted on FV520B steel with accelerating voltage 27 kV, pulse duration 2.5 μs, energy density 5 J/cm2 and 1–25 pulses. The surface microstructure and element distribution were examined by using scanning electron microscope (SEM), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD) methods. After HCPEB treatments, the surface microstructure became refined and uniform with an average grain size less than 2 μm and a preferential solidification orientation in 〈2 0 0〉 direction. The thickness of surface remelted layer was ∼4 μm. The initial precipitated particles in surface layer of depth ∼10 μm were dissolved into the base matrix and gave a homogenous element distribution. The HCPEB modified surface exhibited an effective improvement in corrosion and wear resistance. The corrosion potential shifted towards positive and the corrosion rate decreased nearly one order of magnitude, while the wear resistance after 25 pulses of HCPEB treatment increased by 3 times as compared with the initial FV520B steel

  11. Halo Evolution of Hypereutectic Al-17.5Si Alloy Treated with High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    L. Hu

    2015-01-01

    Full Text Available Halo evolution of an Al-17.5Si alloy surface after treatment with increasing pulse numbers of a high-current pulsed electron beam (HCPEB was investigated. A halo is a ring microstructure resembling a bull’s eye. SEM results indicate that the nanocrystallization of halo induced by HCPEB treatment leads to gradual diffusion of the Si phase. Multiple pulses numbers cause the Si phase to be significantly refined and uniformly distributed. In addition, nanosilicon particles with a grain size of 30~100 nm were formed after HCPEB treatment, as shown by TEM observation. XRD results indicate that Si diffraction peaks broadened after HCPEB treatment. The microhardness tests demonstrate that the microhardness at the midpoint from the halo edge to center decreased sharply from 9770.7 MPa at 5 pulses to 2664.14 MPa at 25 pulses. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 6.5, exhibiting optimal wear resistance.

  12. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  13. THE CURRENT EFFICIENCY FOR ALUMINIUM DEPOSITION FROM CRYOLITEALUMINAMELTS AT HIGH CURRENT DENSITY

    OpenAIRE

    Armoo, Joseph Prince

    2010-01-01

    A laboratory study was performed to investigate first and foremost the effects of cathodic current density on the current efficiency with respect to aluminium electrolysis in cryolite-aluminamelts. Effects of NaF/AlF3 ratio and impurity concentration on CE were also investigated at a high current density of 1.5A/cm2.The laboratory cell used in the present study has been designed specifically to ensure evenly distributed current density on the aluminium cathode surface and to ensure good and r...

  14. Beamline considerations for a compact, high current, high power linear RF electron accelerator

    International Nuclear Information System (INIS)

    A design for a compact, high current, high power linear electron accelerator using an rf power source is investigated. It consists of adjacent cavities into which rf power is injected and through which electron pulses pass. The source is assumed to be capable of delivering sufficient rf power to the desired location at the proper phase. Beamline issues such as cavity loading, energy extraction, longitudinal and transverse pulse focusing, and beam breakup are considered. A device which, given the required source, can deliver beam parameters comparable to existing induction accelerators but which is more than an order of magnitude smaller appears feasible

  15. Excitation of mm waves by high-current REB in dielectric resonator

    International Nuclear Information System (INIS)

    A possibility of a generation of the microwave radiation high-current azimuthally-modulated REB in a high-Q quasi-optical dielectric resonator is experimentally shown. Dielectric resonator is a cylindrical Teflon disk (O = 80 mm, l = 3 and 9 mm), with ends bounded by conducting walls. The frequencies of the azimuthally nonsymmetrical waves (m = 36), which can be excited by azimuthally modulated beam, are calculated. The calculations are performed for two cavity lengths, and we discuss possible mechanisms for the generation of microwave radiation in both cases. Implemented the radiation output of a dielectric resonator and crystal set 8-mm band recorded this radiation.

  16. High-current picosecond electron source with a high-impedance vacuum diode

    International Nuclear Information System (INIS)

    The picosecond (∼ 190 ps) high-current channel of direct-action electron accelerator with the beam energy of approximately 1.2 MeV by the current of about 0.4 kA is described. Three-stage line and vacuum diode, the impedance whereof is essentially higher than the line wave resistance, are used for formation of high accelerating voltage. The method for calculating the accelerating voltage, beam current, vacuum diode impedance and other parameters by measured incident and reflection pulses, extending in the line, is considered

  17. Volumetric strengthening of polycrystals of steel 110G13 with high-current electron beam

    International Nuclear Information System (INIS)

    Structural and phase states as well as mechanical properties are studied in manganese steel 110G13 irradiated by a low-energy (30-40 keV) high-current electron beam. The quantity of pulses with 2.5 μs duration and 10 s intervals constitutes from 1 to 10 s. Using metallographic, X-ray diffraction and electron microscopical methods it is shown that the irradiation results in bulk quasi-periodical hardening of specimens. Hardening effect increases with pulse amount. The zones of increased microhardness are characterized by high dislocation density and by occurrence of γ-ε transformation products

  18. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    International Nuclear Information System (INIS)

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed

  19. High Current Proton and Deuteron Beams for Accelerators and Neutron Generators

    OpenAIRE

    Skalyga, V.; Izotov, I.; Razin, S.; Sidorov, A.; Golubev, S.; Maslennikova, A.; Volovecky, A.; Koivisto, Hannu; Tarvainen, Olli; Kalvas, Taneli

    2014-01-01

    This paper presents the latest results of high current proton and deuteron beam production at SMIS 37 facility at the Institute of Applied Physics (IAP RAS). In this experimental setup the plasma is created and the electrons are heated by 37.5 GHz gyrotron radiation with power up to 100 kW in a simple mirror trap fulfilling the ECR condition. High microwave power and frequency allow sustaining higher density hydrogen plasma (ne up to 2·1013 cm-3) in comparison to conve...

  20. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  1. Coherent radiation from high-current electron beams of linear accelerators and its applications

    Science.gov (United States)

    Okuda, Shuichi; Takanaka, Makoto; Nakamura, Mitsumi; Kato, Ryukou; Takahashi, Toshiharu; Nam, Soon-Kwon; Taniguchi, Ryouichi; Kojima, Takao

    2006-08-01

    The characteristics of the far-infrared light source using the coherent radiation emitted from a high-energy short electron bunch have been investigated. The coherent radiation has a continuous spectrum in a submillimeter to millimeter wavelength range and the brightness is relatively high. The spectrum of the radiation is determined by the longitudinal form factor of the electron bunch. The operational conditions of a high-current linear accelerator have been optimized using an electron bunch shape monitor. The coherent transition radiation light source has been applied to absorption spectroscopy for liquid water and to an imaging experiment for a leaf of rose.

  2. Electrodeposition from cationic cuprous organic complexes: Ionic liquids for high current density electroplating

    OpenAIRE

    Schaltin, Stijn; Brooks, Neil; Binnemans, Koen; Fransaer, Jan

    2011-01-01

    The electrochemical behavior of the low-melting copper salts [Cu(MeCN)(x)][Tf2N] and [Cu(PhCN)(x)][Tf2N] (x = 2-4), where MeCN is acetonitrile and PhCN is benzonitrile, is presented. In these compounds, the copper(I) ion is a main component of the ionic liquid cation. Consequently, the copper concentration is the highest achievable for an ionic liquid and this permits to obtain a good mass transport and high current densities for electrodeposition. The cathodic limit of the ionic liquid is th...

  3. A carbon nanotube field emission cathode with high current density and long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Colon, Xiomara; Zhou, Otto [Curriculum in Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Geng Huaizhi; Gao Bo [Xintek, Incorporated, 7020 Kit Creek Road, Research Triangle Park, NC (United States); An Lei; Cao Guohua [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2009-08-12

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  4. Regimes of magnetic insulation in a high-current diodes and transmission lines of conical configuration

    International Nuclear Information System (INIS)

    A self-consistent kinematic model of a steady-state electron flow between two electrodes of a high-current diode has been considered with a tapered configuration. All the electrons have presumably been released from the cathode with a zero velocity and some portion of the total current flows along the cathode surface as the conduction current. A set of volt-ampere characteristics has been obtained for the tapered diode with a flat anode. At a preset cathode current the thickness and current of the electron layer increase as the voltage goes up. The considered kinematic model substantiates and specifies a model of the Brillouin parapotential flow

  5. The application of heavily damped superconducting cavities to the acceleration of high current electron beams

    International Nuclear Information System (INIS)

    In order to achieve the high luminosities required for a B-factory, the average currents required in the two rings are 1 ampere for the high energy ring and 2 amperes for the low energy ring. With such high currents the impedances of the rings must be very low. The reasons will be given for choosing superconducting RF cavities for this purpose and the methods used to obtain the required damping of the higher order modes will also be described. Prototype 1/3 scale and full scale superconducting cavities have been built and tested and the results of these tests are given. (Author) 5 figs., 12 refs

  6. High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V. I., E-mail: V.I.Davydenko@inp.nsk.su; Ivanov, A. A., E-mail: A.A.Ivanov@inp.nsk.su; Shul’zhenko, G. I. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-11-15

    A high-current electron emitter on the basis of lanthanum hexaboride is developed for quasi-stationary arc plasma generators of ion sources. The emitter consists of a set of LaB{sub 6} washers interleaved with washers made of thermally extended graphite. The emitter is heated by the current flowing through the graphite washers. The thermal regime of emitter operation during plasma generation is considered. The emitter has been successfully used in the ion sources of the diagnostic injectors of fast hydrogen atomic beams.

  7. Emittance measurements of high current heavy ion beams using a single shot pepperpot system

    International Nuclear Information System (INIS)

    The new 1.4 MeV/u high current injector for the Unilac successfully commissioned in 1999 is now accelerating heavy ions close to the calculated intensities. For example an 40Ar1+ beam with 8 emA allows to fill the GSI synchrotron to its inherent intensity limit. For emittance measurements of such intense beams a single shot pepperpot system has been developed. An overview of the hard- and software including mathematical algorithms is given. Results of emittance measurements at different intensities and energies are presented. The influence of stripping and related space charge effects on the emittance could be investigated

  8. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.;

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper...... presents design, analysis and experimental verification of a two winding technique, which significantly reduces ac winding losses without compromising dc losses. The technique uses an inner auxiliary winding, which is connected in parallel with an outer main winding. The auxiliary winding is optimally...

  9. Energy efficiency of electric pulse installation based on a high-current plasma accelerator

    Directory of Open Access Journals (Sweden)

    Shanenkov I.I.

    2014-01-01

    Full Text Available The energy efficiency of electric pulse installation based on a high-current plasma accelerator was investigated. A series of experiments with different central electrodes was carried out. The system based on carbon electrodes has a greater value of the charge energy conversion into the energy of arc discharge and the less discharge current level in comparison with other electrode systems. The power consumption value for producing 1 gram of powdered product was estimated and it was found this value is comparable to the work of the LED light bulb for 1 hour.

  10. High current Cu3P liquid metal ion source using a novel extractor configuration

    Science.gov (United States)

    Higuchi-Rusli, R. H.; Corelli, J. C.

    1987-12-01

    It has been found that by utilizing a sharp needle for the extractor electrode in close proximity to the source tip wetted with Cu3P liquid alloy, a large increase (factor ˜300) in ion current is observed in comparison to standard liquid metal ion sources (LMIS's). In standard previously used LMIS's the extractor electrode was a flat plane with a circular hole centered on the source needle tip. This new high current source has important applications in focused and broad ion beam deposition systems.

  11. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Energy Technology Data Exchange (ETDEWEB)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.; Mina, M. [Department of Electrical and Computer engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  12. Production of a high-current microsecond electron beam with a large cross section

    International Nuclear Information System (INIS)

    Obtaining high-current wide-aperture electron beams is an important problem in the development of laser technology for controlled nuclear fusion and for solving ecological and technological problems. The main scheme for producing such beams involves the use of generators with intermediate energy storage devices and burst-emission vacuum diodes. Beam pinching is prevented by using an external magnetic field or sectioning the diode into magnetically insulated diodes with currents lower than the limiting current. The length of the electron-current pulse varies from tens to hundreds of nano-seconds and is limited by the parameters of the intermediate storage device. Here the authors study the formation of a high-current electron beam with a square cross section and a current of the order of the limiting current of the diode in the absence of an external magnetic field as well as a 'fast' storage device in the power supply circuit. These conditions as a whole correspond to a simpler electron-source circuit, but the beam forming becomes more complicated. The reason for this is that there is no external magnetic field and that the role of plasma processes in the diode is enhanced by the greater length of the electron-current pulses

  13. Surface modification of Al-Pb alloy by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    LU You; LI Shi-long; AN Jian; LIU Yong-bing

    2006-01-01

    Al-Pb alloy was modified by high current pulsed electron beam and the microstructure, hardness and tribological characteristics were characterized by scanning electron microscopy, electronic microanalysis probe microanalysis, Knoop hardness indentation and pin-on-disc type wear testing machine. The results show that the microstructure and hardness can be greatly improved, and the modification layer consists of a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone and a transition zone followed by the substrate. The tribological properties of high current pulsed electron beam irradiated Al-Pb alloy are correspondingly improved largely. Optical observation and scanning electron microscopy analysis reveal that the low wear rate and lowest level in coefficient of friction at high load level for irradiated Al-Pb alloy are due to the formation of a lubricious tribolayer covering the worn surface, which is a mixture of Al2O3, Pb3O4 and silicate. The wear mode varies from oxidative wear at low load to film spalling at high load and, finally, adhesive wear.

  14. RF properties of 700 MHz, = 0.42 elliptical cavity for high current proton acceleration

    Indian Academy of Sciences (India)

    Amitava Roy; J Mondal; K C Mittal

    2008-12-01

    BARC is developing a technology for the accelerator-driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator-driven subcritical system project. We have studied RF properties of 700 MHz, = 0.42 single cell elliptical cavity for possible use in high current proton acceleration. The cavity shape optimization studies have been done using SUPERFISH code. A calculation has been done to find out the velocity range over which this cavity can accelerate protons efficiently and to select the number of cells/cavity. The cavity's peak electric and magnetic fields, power dissipation c, quality factor and effective shunt impedance 2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameters for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  15. High-current negative-ion sources for pulsed spallation neutron sources: LBNL workshop, October 1994

    International Nuclear Information System (INIS)

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H- source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The I to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. The Workshop reported on here, held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H- source technologies, and identified necessary R ampersand D efforts to bridge the gap

  16. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  17. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  18. Beam instability during high-current heavy-ion beam transport

    International Nuclear Information System (INIS)

    In driver system for heavy ion inertial fusion, beam dynamics is investigated by particle-in-cell simulations during final beam bunching. The particle simulations predict that the beam is transported with the localized transverse charge distribution induced by the strong space charge effect. The calculation results also show that the emittance growth during the longitudinal bunch compression for various particle distributions at the initial conditions and with two types of transverse focusing model, which are a continuous focusing and an alternating gradient focusing lattice configurations. (author)

  19. High-current pulse sources of broad beams of gas and metal ions for surface treatment

    International Nuclear Information System (INIS)

    This paper reviews the experimental study, development, and improvement of various types of processing ion sources undertaken in association with the joint program performed in recent years by the Institute of Electrophysics and the Institute of High-Current Electronics of the Russian Academy of Sciences. The beam parameters (type and energy of ions, current density, cross-sectional area of the beam, permissible content of impurities, etc.) should meet the requirements of particular ion beam treatment conditions, while the ion source itself should be simple and reliable in operation. Technical and service characteristics of the developed ion sources permit their use for ion-beam modification of materials, preparation of surfaces and ion-assisted deposition of thin films, and in some other applications. The sources under consideration employ high-current glow discharges with a hollow cathode or in crossed electric and magnetic fields, and low-pressure arc discharges and vacuum arc. Cold cathodes enhance reliability of the ion sources when they work at a high residual gas pressure or in the reactive gas media. The repetitive pulse mode of the plasma and beam generation provides optimum conditions for stable operation of the discharge, control of the average beam current over a wide range, and formation of homogeneous large-cross-section beams. The paper describes techniques used to realize high-current discharges at a reduced pressure, methods for producing a stable, dense and homogeneous plasma in a large volume, techniques of formation of large-cross-section homogeneous beams, and also findings on the mass-charge composition of the plasma and beams produced. Some design versions of the sources are given. At voltages from 10 to 100 kV, the pulse duration of 10 to 1000 μs, and the pulse repetition rate of 1 to 500 Hz these sources provide the current density of ∼1-10 mA/cm2 in beams having the cross-sectional area of a few hundreds of square centimeters. The

  20. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    Directory of Open Access Journals (Sweden)

    Wu X

    2013-03-01

    Full Text Available Xiao Wu,1 Weifen Zhang,1,2 Don Hayes Jr,3–5 Heidi M Mansour1,61Department of Pharmaceutical Sciences – Drug Development Division, University of Kentucky, Lexington, KY, USA; 2College of Pharmacy and Biological Science, Weifang Medical University, Weifang, People's Republic of China; 3Department of Pediatrics, 4Department of Internal Medicine, The Ohio State University College of Medicine, Nationwide Children's Hospital Lung and Heart-Lung Transplant Program, 5Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 6Center of Membrane Sciences, University of Kentucky, Lexington, KY, USAAbstract: In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactant-mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-(phosphor-rac-1-glycerol. These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X

  1. Study of the plasma parameters in a high-current pulsed magnetron sputtering system

    International Nuclear Information System (INIS)

    Results are presented from experimental studies of the current-voltage characteristics and spatial and temporal parameters of the plasma in a high-current pulsed magnetron sputtering system with a 10-cm-diameter plane disk cathode. It is shown that the plasma density in such a system is three orders of magnitude higher than that in conventional dc magnetron discharges and reaches 1013 cm−3 at a distance of 250 mm from the cathode at a peak discharge current of 500 A. The plasma propagates from the cathode region at a velocity of 1 cm/μs in the axial direction and 0.25 cm/μs in the radial direction. Optical emission spectroscopy shows that the degree of plasma ionization increases severalfold with increasing discharge current, mainly at the expense of the sputtered material.

  2. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    International Nuclear Information System (INIS)

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented

  3. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok [Seoul National University, Seoul (Korea, Republic of)

    2006-07-01

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented.

  4. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    process and the reaction process at the Ni-YSZ triple-phase boundaries. The performance degradation is mainly ascribed to the microstructural changes in the Ni-YSZ electrode close to the YSZ electrolyte, including percolation loss of Ni and the contact loss of Ni and YSZ electrolyte. The type of the......In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode. A...... oxygen electrode showed an influence to the ohmic degradation: the better performing oxygen electrode corresponded to a lower Rs increase. However, the oxygen electrode itself was found to be relative stable both with respect to the electrochemical performance and microstructure....

  5. Initiation of furazanotetrazinedioxide and mixes on its basis by high-current electron beam

    International Nuclear Information System (INIS)

    The results of study of physicochemical processes developing in the samples of furazanotetrazinedioxide (FTDO) and its mixes with dinitrodiazapentane (DNP) upon irradiation by the high-current electron beam with the energy density varied in the range of 0.05-60 J/cm2 are presented. Pre-explosion processes taking place in materials under examination at below threshold modes of excitation are studied. Electron beam threshold energy densities leading to explosive decomposition of FTDO and FTDO/DNP mixes are determined. Noticeable effect of the electron beam energy density on kinetic characteristics of explosive decomposition process of FTDO is discovered. Spectra of the products of FTDO explosive decomposition are measured at explosion initiation in the atmosphere

  6. Surface modification of mold steel SKD11 by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Mechanism of surface modification technique by high current pulsed electron beam (HCPEB) was studied with SKD11 steel samples. It was found that crater-like defects would formed on the irradiated surface, the area density of craters and surface roughness decreased with the increasing number of HCPEB pulses. According to the XRD patterns, carbides in the modified surface layers dissolved after several HCPEB pulses and a high-percentage austenite microstructure is formed, but excessive energy deposition resulted in decomposition of the austenite. Treating the samples at 19.8 kV, the wear resistance of modified SKD11 steel improved and the greatest enhancement occurred at 8 pulses. Discussions were given on changes in contents of carbide and austenite in the surface layers. (authors)

  7. Design of rod-type high current proton radio frequency quadrupole accelerator for ANURIB project @ VECC

    International Nuclear Information System (INIS)

    A high current rod type RFQ accelerating protons to 1 MeV has been envisaged as the injector to 50 MeV proton driver for the ANURIB facility. This would be used to produce p-rich radioactive nuclei complementing the n-rich nuclei production via the photo fission route. Rod type structure has been chosen owing to ease of machining and well separated dangerous dipole modes appearing in vane type structures, This paper will describe the beam dynamics design of 5 mA proton beam through the RFQ, starting from efficient physical parameter optimization followed by corroborative studies using tracking codes. Preliminary RF structure of 80 MHz RFQ would also be presented. (author)

  8. High current transmission and switching system for a prototype 20 tesla toroidal magnet

    International Nuclear Information System (INIS)

    The Ignition Technology Demonstration (ITD) is a 0.06 scale prototype toroidal field magnet of the proposed full-scale IGNITEX (Ignition Experiment) tokamak. The goal of ITD is to achieve an on-axis magnetic confinement field of 20 T while demonstrating the magnet's ability to withstand high magnetic and thermal stresses. To accomplish this task, a peak current of 9 Ma must be transferred from six balanced homopolar generator (HPG)/busbar circuits to the liquid nitrogen (LN2) cooled magnet. HPGs are well suited for operation of single-turn coils because they are inherently high current, low voltage machines which can inertially store the energy required for a pulsed discharge. To date the system has delivered pulses of up to 8.14 MA to the toroidal magnet, producing an on-axis field of 18.1 T. Description of the ITD busbar/switching system, design improvements, and operational experience are presented in this paper

  9. Structure-phase transformations in surface layer of high speed steel during high current boron implantation

    International Nuclear Information System (INIS)

    High current ion ion implantation (HCII) of boron with energy of 20 keV, current density of 0.53 m A/cm2, dose of 2·1018 B/cm2 at temperature of 500 0C into AISI M2 high speed steel was carried out. The dominant process determining structure-phase state of steel during boron HCII was found to be radiation induced segregation. It leads to clusterization of boron in near-surface region (up to 0.6 μm), inhibition of borides formation processes (borides concentration doesn't exceed 14 %), preferable synthesis of Fe B boride being more rich with boron comparing to Fe2B

  10. Comparison of 2 Cathode Geometries for High Current (2 kA) Diodes

    CERN Document Server

    Pichoff, N

    2004-01-01

    AIRIX (FRANCE) and DARHT axis-1 (USA) are two high current accelerators designed for flash X-ray radiography. The electron beam produced (2 kA, 3.5 to 3.8 MV, 60 ns) is extracted from a velvet cold cathode. Specific calculations have demonstrated the influence of the cathode geometry on the emitted beam profile [1]. To check this assumption we have made two different experiments (DARHT March 2003 – AIRIX March 2004). We have compared the beam characteristics with two different geometries both theoretically and experimentally. The beam simulations have been done with 3 codes: a home-made code (M2V) and 2 commercial codes (PBGUNS and MAGIC). The extracted beam current and transverse profiles, for the first experiment, have been measured and compared to simulations results. In the second one, we have compared the beam’s extracted current and the energy spread.

  11. Transport and Measurements of High-Current Electron Beams from X pinches

    Science.gov (United States)

    Agafonov, Alexey V.; Mingaleev, Albert R.; Romanova, Vera M.; Tarakanov, Vladimir P.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Blesener, Isaac C.; Kusse, Bruce R.; Hammer, David A.

    2009-01-01

    Generation of electron beams is an unavoidable property of X-pinches and other pulsed-power-driven pinches of different geometry. Some issues concerning high-current electron beam transport from the X pinch to the diagnostic system and measurements of the beam current by Faraday cups with different geometry's are discussed. Of particular interest is the partially neutralized nature of the beam propagating from the X-pinch to a diagnostic system. Two scenarios of electron beam propagation from X-pinch to Faraday cup are analyzed by means of computer simulation using the PIC-code KARAT. The first is longitudinal neutralization by ions extracted from plasma at an output window of the X-pinch diode; the second is the beam transport through a plasma background between the diode and a diagnostic system.

  12. Transport and Measurements of High-Current Electron Beams from X pinches

    International Nuclear Information System (INIS)

    Generation of electron beams is an unavoidable property of X-pinches and other pulsed-power-driven pinches of different geometry. Some issues concerning high-current electron beam transport from the X pinch to the diagnostic system and measurements of the beam current by Faraday cups with different geometry's are discussed. Of particular interest is the partially neutralized nature of the beam propagating from the X-pinch to a diagnostic system. Two scenarios of electron beam propagation from X-pinch to Faraday cup are analyzed by means of computer simulation using the PIC-code KARAT. The first is longitudinal neutralization by ions extracted from plasma at an output window of the X-pinch diode; the second is the beam transport through a plasma background between the diode and a diagnostic system.

  13. High current density and low turn-on field from aligned Cd(OH)2 nanosheets

    Science.gov (United States)

    Bagal, Vivekanand S.; Patil, Girish P.; Deore, Amol B.; Baviskar, Prashant K.; Suryawanshi, Sachin R.; More, Mahendra A.; Chavan, Padmakar G.

    2016-04-01

    High current density of 9.8 mA/cm2 was drawn at an applied field of 4.1 V/μm from aligned Cd(OH)2 nanosheets and low turn-on field of 1.4 V/μm was found for the emission current density of 10 μA/cm2. The aligned Cd(OH)2 nanosheets were synthesized by CBD technique on Cadmium foil. To the best of our knowledge this is the first report on the field emission studies of Cd(OH)2 nanosheets. Simple synthesis route coupled with superior field emission properties indicate the possible use of Cd(OH)2 nanosheets for micro/nanoelectronic devices.

  14. High-current electrostatic accelerator-tandem for the neutron therapy facility

    International Nuclear Information System (INIS)

    Original 2.5 MeV, 50 mA proton tandem accelerator for the neutron therapy facility is described. The main idea of tandem usage is providing high rate acceleration of high current hydrogen negative ions by special geometry of potential electrodes with vacuum insulation and one strongly focusing lens. Pulse 1 MeV vacuum insulation tandem accelerator experimental results are presented. Steady-state 100 kW 1.25 MV sectioned rectifier is a high voltage source. The rectifier is a part of the industrial ELV-8 electron accelerator developed at BINP and widely used. Accelerating voltage is stabilized with accuracy of 0.1 %. Various charge-exchange targets are considered. Namely, targets are gas target with outward pumping, gas target with pumping inside of high-voltage electrode, and liquid lithium stream target. Problems of development of steady-state 50 - 100 mA source of hydrogen negative ions are discussed. (author)

  15. The Heidelberg High Current Injector A Versatile Injector for Storage Ring Experiments

    CERN Document Server

    Von Hahn, R; Repnow, R; Schwalm, D; Welsch, C P

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated injector for the Test Storage Ring in Heidelberg to deliver mainly singly charged Li- and Be-ions. After start for routine operation in 1999 the HCI delivered stable beams during the following years for about 50 % of the experiments with very high reliability. Due to the requirements from the experiment the HCI changed during that period from a machine for singly charged positive ions to an injector for a large variety of molecules as well as positively or negatively charged light ions. After successful commissioning of the custom built 18 GHz high power ECR-source at its present test location various modifications and additions were made in preparation of a possible conversion into an injector for highly charged heavy ions as a second phase. This paper gives an overview of the experience gained in the passed 5 years and presents the status of the upgrade of the HCI.

  16. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    Science.gov (United States)

    Loschialpo, P.; Kapetanakos, C. A.

    1988-04-01

    Large diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1-5-microsec electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, approximately 300,000 A/sq cm sq rad has been consistently measured. To obtain this high-current density, the LaB6 cathodes have been heated to temperatures between about 1600 and 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure 10 to the -6th to -10 to the -5th Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser-type cathodes.

  17. Construction of high current density SC magnets and their thermal stability

    International Nuclear Information System (INIS)

    Pancake type solenoid magnets are constructed which have a similar cooling characteristics to a pulsed dipole magnet for a synchrotron. A metal inpregnated braided cable is used to test a long sample of the cable. The detailed performances of the magnets and cable are examined with respect to achieved fields, training effect and ac losses. The stability theories which have been proposed so far are not adequate to these high current density magnets, so that a new method is developed to estimate the magnet stability. The minimum energy of thermal disturbances (MQE) which causes a quenching is measured by experiment and is compared with the calculation. The calculated values of MQE are in good agreement with the experimental results. The performance of the pancake magnet is discussed on the basis of MQE. (author)

  18. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    International Nuclear Information System (INIS)

    Large (∼5 cm) diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1--5-μs electron pulses with current density between 10 and 20 A/cm2. Normalized beam brightness, B/sub n/ = I/(πβγε)2, approximately 3 x 105 A/cm2 rad2 has been consistently measured. To obtain this high-current density, the LaB6 cathodes have been heated to temperatures between ∼1600 and 1800 0C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure 10-6--10-5 Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser-type cathodes

  19. High current density electron gun with a LaB6 thermionic cathode

    International Nuclear Information System (INIS)

    To develop a high current electron gun for the induction linac, a small prototype of a Pierce-type electron gun using a planar 12 mm-diameter lanthanum hexaboride as an electron emitter has been made. The basic properties of the gun are under investigation and preliminary results are presented. The gun has been operated up to 21kV, obtaining current of 5.5A with 250 nsec width at 1,650degC in the space-charge-limited region. The cathode is heated by electron bombardment and radiation from a tungsten heater. The maximum temperature of the cathode reaches 1,690degC when the total heating power comes up to 590W. (author)

  20. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  1. Drift distance survey in direct plasma injection scheme for high current beam production

    International Nuclear Information System (INIS)

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  2. Surface cracking of soda lime glass under pulsed high-current electron radiation

    International Nuclear Information System (INIS)

    Electron beam radiation has been widely used to modify the surface properties of materials such as metals, ceramics, and glasses. However, a few investigations of surface topology of glasses after electron irradiation can be found. In contrast to the surface cracking by bending, indentation, and thermally induced stress in soda lime glasses a 2 μs pulsed high-current electron beam was used to modify the surfaces of soda lime glass. Surface topology of irradiated samples was studied by using traditional optical microscopy and atomic force microscopy. Parallel to and perpendicular to surface cracks were observed. The depth of crack can be obtained by electron penetration, Newton's ring and AFM. The stress to produce the crack by electron radiation was calculated using three obtained depths. The observed surface crack is explained in terms of radiation-induced thermal stress and high local electric field-induced by deposited charges from pulsed electrons

  3. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  4. Shaping of shock wave in aerogel irradiated by high-current pulsed electron beam

    International Nuclear Information System (INIS)

    Spread of pressure jumps excited by high-current pulsed electron beam in 0.025-0.25 g/cm3 density SiO2 aerogel was studied using laser differential interferometers and optical techniques. At the aerogel target rear side one recorded splittings-off and measured the rate of splitting fragment scattering. The rate of aerogel scattering towards the electron beam was determined. The parameters of the shock adiabat within aerogel porosity wide range were determined. The depth of the electron beam energy release zone depending on the aerogel density within 0.015-0.25 g/cm3 density range was determined experimentally. A model to describe high-porous materials was developed on the basis of the experimental data

  5. Power supply and control system of the gun for an electron pulse high-current accelerator

    International Nuclear Information System (INIS)

    The control and supply system is described intended for a gun of the EhLIT-L high-current pulsed electron accelerator. The accelerator parameters are as follows: electron energy of 500 KeV, current of 600 A, accelerating voltage semiwave duration of 15 μs, current pulse duration of 0.5 μs, pulse frequency of 5 Hz, max. The required parameters of the master pulse are: voltage of 0 to 60 kV; current up to 200 A; pulse duration of 500 ns; edge duration below 70 ns; amplitude instability +-5%; pulse frequency of 10 Hz, max.; the filament power drain of the gun is 1500 W

  6. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  7. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shen [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Engineering Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013 (China); Lv, Peng; Zhang, Conglin; Huang, Wei [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-01

    Highlights: • Zirconium-702 irradiated by high current pulsed electron beam was investigated. • Irradiated surface was melted and martensitic phase transformation occurred. • High density dislocations and deformation twins were formed in melted layer. • Micropores and ultrafine structures were also obtained on the irradiated surface. • Microhardness and corrosion resistance were improved after HCPEB irradiation. - Abstract: The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO{sub 3} solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  8. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, P., E-mail: pradipr@barc.gov.in; Mishra, L.; Kewlani, H.; Mittal, K. C. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Patil, D. S. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  9. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    International Nuclear Information System (INIS)

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10−3 mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source

  10. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  11. Evaluating of scale-up methodologies of gas-solid spouted beds for coating TRISO nuclear fuel particles using advanced measurement techniques

    Science.gov (United States)

    Ali, Neven Y.

    The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.

  12. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    Science.gov (United States)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-02-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  13. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  14. Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Bentzen, Janet Jonna;

    2013-01-01

    current densities below −0.75 A/cm2. The formation of ZrO2 nano-particles deteriorates Ni percolation and presumably decreases the number of active triple phase boundaries (TPBs) and is therefore considered a degradation phenomenon. It is hypothesized that the degradation of the Ni surface is a result of...

  15. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  16. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    International Nuclear Information System (INIS)

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism

  17. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Science.gov (United States)

    Full, S.; Bartnik, A.; Bazarov, I. V.; Dobbins, J.; Dunham, B.; Hoffstaetter, G. H.

    2016-03-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  18. Detection and clearing of trapped ions in the high current Cornell photoinjector

    CERN Document Server

    Full, Steven; Bazarov, Ivan; Dobbins, John; Dunham, Bruce; Hoffstaetter, Georg

    2015-01-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high CW beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and CW beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates...

  19. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Science.gov (United States)

    Yang, Shen; Cai, Jie; Lv, Peng; Zhang, Conglin; Huang, Wei; Guan, Qingfeng

    2015-09-01

    The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO3 solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  20. Setting up a 30 MeV high current cyclotron facility in Kolkata

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Malay Kanti; Bhandari, Rakesh Kumar [Variable Energy Cyclotron Centre, Kolkata (India)

    2009-11-15

    A 30 MeV proton cyclotron facility is being set up by this centre in Kolkata. This high current cyclotron will be used to produce PET (Positron Emission Tomography and SPECT (Single Photon Emission Computed Tomography)) isotopes for medical diagnostics purposes. Two beams will be simultaneously extractable from the cyclotron, which is the Cyclone-30 model of IBA, Belgium. The beams can be of different energy and intensity. There will be several beam lines for utilization of the beam. Two beam lines are being dedicated for SPECT and one for PET isotope production. In addition, there will be one dedicated beam line for material science and chemistry research. A fifth beam line, which will bend the beam vertically down into a basement cave, will be utilized for dedicated experiments for R and D on windows for high power beams. Several hot cells are being provided for SPECT and PET isotope radiochemistry works. In addition, hot cells are being provided for research experiments also. This facility, when is operation around the middle of 2010, will offer unique opportunities for R and D in the area of radiochemistry, material science, isotope production and their applications etc. In this presentation details of the facility and its utilization will be presented. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Epitaxial growth of zinc on ferritic steel under high current density electroplating conditions

    International Nuclear Information System (INIS)

    Highlights: •EBSD of electroplated Zn on Fe or steel was performed. •Zn grows epitaxially on electropolished ferritic steel following Burger's orientation relation. •Surface deformation of steel leads to multiple electroplated zinc grains with random orientation. •Zn grows epitaxially even on industrial surfaces with little surface deformation. •Multiple zinc grains on one steel grain can show identical orientation relations. -- Abstract: The dependence of the crystal orientation of electrodeposited zinc of the grain orientation on ferritic steel substrate at high current density deposition (400 mA cm−2) during a pulse-plating process was investigated by means of EBSD (electron backscatter diffraction) measurements. EBSD-mappings of surface and cross-sections were performed on samples with different surface preparations. Furthermore an industrial sample was investigated to compare lab-coated samples with the industrial process. The epitaxial growth of zinc is mainly dependent on the condition of the steel grains. Deformation of steel grains leads to random orientation while zinc grows epitaxially on non-deformed steel grains even on industrial surfaces

  2. Stability of high current diode under 100-nanosecond-pulse voltage

    International Nuclear Information System (INIS)

    Stability of high current diode under pulse voltage with 80 ns and 34 ns rise time was studied on the flash Ⅱ accelerator. Influence of rise time of diode voltage on startup time and cathode emission uniformity and repeatability of diode impedance was analyzed by comparing the experimental results with numerically simulated results, and the influence mechanism was discussed. The startup time of diode increases with the increasing of rise time of voltage, and the repeatability of diode impedance decreases. Discal plane cathode is prone to emit rays intensely in the center area, the time that plasma covers the surface of the cathode increases and the shielding effect has more impact on cathode emission according to the increase of rise time. Local intense emission on the cathode increases expansion speed of plasma and reduces the effective emission area. The stability of characteristic impedance of diode under a pulse voltage with slow rise time is decreased by the combined action of expansion speed of plasma and the effective emission area. (authors)

  3. Gamma-resonance Contraband Detection using a high current tandem accelerator

    International Nuclear Information System (INIS)

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by 14N of gammas produced using 13C(p,γ)14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results

  4. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells

    Science.gov (United States)

    Murata, Shigeaki; Imanishi, Masahiro; Hasegawa, Shigeki; Namba, Ryoichi

    2014-05-01

    We successfully developed cathode electrodes for polymer electrolyte membrane fuel cells (PEMFC) that enable operation at high current densities by incorporating vertically aligned carbon nanotubes (CNTs) as the catalyst support; additionally, we prepared 236 cm2 membrane electrodes assemblies (MEAs) for vehicular use. The electrode structure improved the mass transport of reactants, i.e. oxygen, proton, electron and water, in systems performing at a 2.6 A cm-2 current density and 0.6 V with extremely low platinum (Pt) loading at the cathode (0.1 mg cm-2). The improved mass transport caused the 70 mV dec-1 Tafel slope to continue up to 1.0 A cm-2. The mass transport was improved because the pores were continuous, the catalyst support materials did not agglomerate and the catalyst layer made good electrical contact with the microporous layer. Utilizing wavy coil-shaped CNTs was also crucial. These CNTs displayed anti-agglomerative characteristics during the wet manufacturing process and maintained a continuous pore structure framing the layered catalyst structure. Because the CNTs had elastic characteristics, they might fill the space between catalyst and microporous layers to prevent flooding. However, the compressed CNTs in the cells were no longer vertically aligned. Therefore, vertically aligning the nanotubes was important during the MEA manufacturing process but was irrelevant for cell performance.

  5. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  6. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  7. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm2 are demonstrated. Neutron yield from D2O and TiD2 targets was measured in case of its bombardment by pulsed 300 mA D+ beam with 45 keV energy. Neutron yield density at target surface of 109 s−1 cm−2 was detected with a system of two 3He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD2 target bombarded by D+ beam demonstrated in present work accelerated to 100 keV could reach 6 × 1010 s−1 cm−2. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography

  8. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  9. Surface Modification of Light Alloys by Low-Energy High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    X. D. Zhang

    2012-01-01

    Full Text Available This paper reviews results obtained by the research groups developing the low-energy high-current pulsed electron beam (LEHCPEB in Dalian (China and Metz (France on the surface treatment of light alloys. The pulsed electron irradiation induces an ultra-fast thermal cycle at the surface combined with the formation of thermal stress and shock waves. As illustrated for Mg alloys and Ti, this results in deep subsurface hardening (over several 100 μm which improves the wear resistance. The analysis of the top surface melted surface of light alloys also often witnesses evaporation and condensation of chemical species. This phenomenon can significantly modify the melt chemistry and was also suggested to lead to the development of specific solidification textures in the rapidly solidified layer. The potential use of the LEHCPEB technique for producing thermomechanical treatments under the so-called heating mode and, thus, modify the surface crystallographic texture, and enhance solid-state diffusion is also demonstrated in the case of the FeAl intermetallic compound.

  10. R & D on Very-High-Current Superconducting Proton Linac, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan

    2013-03-31

    The aim of this R&D project was to develop a superconducting cavity for a very-­‐ high-­‐current proton accelerator. The particular application motivating the proposal was a LHC upgrade called the Superconducting Proton Linac, or SPL. Under the grant awarded to Stony Brook University the cavity was designed, a prototype copper cavity, followed by the niobium cavity, were built. A new set of HOM dampers was developed. The cavity has outstanding RF performance parameters – low surface fields, low power loss and all HOMs are fully damped. In fact, it is a “universal cavity” in the sense that it is suited for the acceleration of high-­‐current protons and well as high current electrons. Its damping of HOM modes is so good that it can see service in a multi-­‐pass linac or an Energy Recovery Linac in addition to the easier service in a single-­‐pass linac. Extensive measurements were made on the cavities and couplers, with the exception of the cold test of the niobium cavity. At the time of this report the cavity has been chemically processed and is ready for vertical testing which will be carried out shortly.

  11. High current SRF cavity design for SPL and eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Ben-Zvi, I.; Belomenstnykh, S.; Calaga, R.; Hahn, H.; Johnson, E.; Kewisch, J.

    2011-03-28

    A high current five-cell Nb superconducting cavity, called BNL3 cavity, was optimized and designed for the SPL and eRHIC. For the fundamental mode, the optimization process aimed at maximizing the R/Q of the fundamental mode and the geometry factor G under an acceptable RF field ratio level of B{sub peak}/E{sub acc} and E{sub peak}/E{sub acc}. For higher order modes, the optimization is to lower (R/Q)Q{sub ext} for dipole and quadrupole modes to suppress the beam-break-up (BBU). To extract the HOM power out of the cavity, the BNL3 cavity employs a larger beam pipe, allowing the propagation of HOMs, but not the fundamental mode. Six HOM couplers (three at each end) are used to extract large HOM power. To avoid the cross-talk between cavities, tapers are employed between the cavities. This paper presents the design of the BNL3 cavity, end groups and BBU simulation results.

  12. Phenomenology of a high-current negative point-to-plane corona in nitrogen

    International Nuclear Information System (INIS)

    Results are presented from experimental studies of a steady-state negative point-to-plane corona in atmospheric-pressure nitrogen at anomalously high (milliampere) currents. The evolution of the corona glow with increasing discharge current is traced up to the corona conversion into a spark. It was found that the structure and current-voltage characteristic of the corona change significantly when the working gas is slowly blown trough the discharge cell. It is shown that, starting from a current of I ≥ 0.5 mA, a negative corona in a nitrogen flow acts as a streamer corona, whereas there are no streamers in the absence of gas blowing. In contrast to the quadratic dependence of the current versus voltage in a low-current corona, the current-voltage characteristic of a high-current corona is linear. The time evolution of the radial profile of the current density at the anode is studied under different experimental conditions

  13. Overview of the scientific objectives of the high current experiment of heavy-ion fusion

    International Nuclear Information System (INIS)

    The High Current Experiment (HCX) is being built to explore heavy-ion beam transport at a scale appropriate to the low-energy end of a driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy-ion beams at high space-charge intensity (line-charge density ∼ 0.2 (micro)C/m) over long pulse durations (3-10 (micro)sec). A single beam transport channel will be used to evaluate scientific and technological issues resulting from the transport of an intense beam subject to applied field nonlinearities, envelope mismatch, misalignment-induced centroid excursions, imperfect vacuum, halo, background gas and electron effects resulting from lost beam ions. Emphasis will be on the influence of these effects on beam control and limiting degradations in beam quality (emittance growth). Electrostatic (Phase I) and magnetic (Phase II) quadrupole focusing lattices have been designed and future phases of the experiment may involve acceleration and/or pulse compression. The Phase I lattice is presently under construction [1] and simulations to better predict machine performance are being carried out [2]. Here we overview: the scientific objectives of the overall project, processes that will be explored, and transport lattices developed

  14. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    Science.gov (United States)

    Wang, Haoran; Wang, Zhenxing; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan

    2016-08-01

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E-3, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  15. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    International Nuclear Information System (INIS)

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5–20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m−1 and over 1 × 105 A cm−2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  16. Ion beam annealing during high current density implants of phosphorus into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Cannavo, S.; La Ferla, A.; Rimini, E.; Ferla, G.; Gandolfi, L.

    1986-06-15

    The damage left by high current densityapprox.10 ..mu..A/cm/sup 2/ implants of 120-keV P/sup +/ into 4-in. (500-..mu..m-thick) and 5-in. (600-..mu..m-thick) Si wafers of <100> orientation has been measured by 2.0-MeV He backscattering in combination with the channeling effect technique. The fluences ranged between 1 and 7.5 x 10/sup 15//cm/sup 2/. The amount of disorder is highest at 1 x 10/sup 15//cm/sup 2/ and then decreases with fluence. The annealing of the amorphous layer takes place by the movement of two and one amorphous--single crystal interfaces for the 500- and 600-..mu..m-thick wafers, respectively. The experimental data are compared with a beam annealing model based on the temperature-rise profile, the amount of point defects generated by the ion in the collision cascade volume, and the assumption of a regrowth process governed by an activation energy of 0.25 eV.

  17. Self annealing during high current density implants of phosphorus and arsenic into silicon

    International Nuclear Information System (INIS)

    The damage produced by high current density ∼ 10μA/cm2 implants of 120 keV P+ and As+ into silicon wafers of 500μm thickness has been investigated in the fluence range 1x1015/cm2 - 7.5x1015/cm2. For P+ 1x1015/cm2 the disorder results in an amorphous layer with a thin and not uniform surface crystalline layer, for As+ 1x1015/cm2 the amorphous layer reaches the surface. As the fluence increases, the thickness of the amorphous layer decreases for both implants. Two interfaces govern the regrowth for the P+ case and one for the As+ case. The data are compared with the results of a dynamic annealing model based on temperature-rise profile, on the amount of point defects created by the ions and on an activated regrown process governed by an activation energy of 0.24 eV. Non-linear effects associated to the dense collision cascades are also included in the calculations

  18. Damage created by high-current-density implants of phosphorus into and silicon wafers

    Science.gov (United States)

    Servidori, M.; Cannavó, S.; Ferla, G.; La Ferla, A.; Rimini, E.

    1987-11-01

    The damage left by high-current-density, ˜9 μA/cm2, implants of 120 keV phosphorus into and silicon oriented substrates was investigated as a function of the fluence in the range 4×1015 1.5×1016/cm2. The samples were analyzed by 2 MeV He+ channeling and transmission electron microscopy. Initially a buried amorphous layer forms at low fluences until the wafer temperature saturates at ˜450 °C at a fluence of ˜4.5×1015/cm2. As the fluence is further increased ion-assisted regrowth of this initial buried amorphous layer takes place and is 2 to 2.5 times faster (with respect to ion fluence) for substrates than for substrates. At higher fluences, most of the residual damage is located at a depth equal to the sum of the projected range and of the straggling. In the regrown layers twins are found in both orientations, and in some cases a hexagonal silicon phase is present at high fluences. The results are compared with the ion assisted regrowth of amorphous layers at well defined temperatures in the 250° 400 °C range.

  19. Ion beam annealing during high current density implants of phosphorus into silicon

    International Nuclear Information System (INIS)

    The damage left by high current densityapprox.10 μA/cm2 implants of 120-keV P+ into 4-in. (500-μm-thick) and 5-in. (600-μm-thick) Si wafers of orientation has been measured by 2.0-MeV He backscattering in combination with the channeling effect technique. The fluences ranged between 1 and 7.5 x 1015/cm2. The amount of disorder is highest at 1 x 1015/cm2 and then decreases with fluence. The annealing of the amorphous layer takes place by the movement of two and one amorphous--single crystal interfaces for the 500- and 600-μm-thick wafers, respectively. The experimental data are compared with a beam annealing model based on the temperature-rise profile, the amount of point defects generated by the ion in the collision cascade volume, and the assumption of a regrowth process governed by an activation energy of 0.25 eV

  20. Ion beam annealing during high current density implants of phosphorus into silicon

    Science.gov (United States)

    Cannavó, S.; La Ferla, A.; Rimini, E.; Ferla, G.; Gandolfi, L.

    1986-06-01

    The damage left by high current density˜10 μA/cm2 implants of 120-keV P+ into 4-in. (500-μm-thick) and 5-in. (600-μm-thick) Si wafers of orientation has been measured by 2.0-MeV He backscattering in combination with the channeling effect technique. The fluences ranged between 1 and 7.5×1015/cm2. The amount of disorder is highest at 1×1015/cm2 and then decreases with fluence. The annealing of the amorphous layer takes place by the movement of two and one amorphous-single crystal interfaces for the 500- and 600-μm-thick wafers, respectively. The experimental data are compared with a beam annealing model based on the temperature-rise profile, the amount of point defects generated by the ion in the collision cascade volume, and the assumption of a regrowth process governed by an activation energy of 0.25 eV.

  1. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    International Nuclear Information System (INIS)

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of JxB propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90 eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4x1021-6x1021 m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2x106 cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation

  2. A high-current four-beam xenon ion source for heavy-ion fusion

    International Nuclear Information System (INIS)

    The growing interest in inertial confinement fusion using heavy ions has elicited from the Los Alamos Scientific Laboratory a proposal to use a multi-channel radiofrequency quadrupole (RFQ) structure for the initial stage of the heavy-ion accelerator. The RFQ would have 4 channels in each module and each channel would accelerate 25 mA of Xe+1. Based on experiments with xenon beam production with a high current duoPlGatron source at Chalk River Nuclear Laboratories, a 245 keV 4-beam xenon injector has been designed for this 4-channel RFQ. The injector is of modular design with 4 small independent plasma sources mounted in a 10 cm square array on a common combined extraction and acceleration column. The electrodes have 4 separate sets of apertures and each channel produces a 29 mA beam for injection into its corresponding RFQ channel. This paper presents a conceptual design for the injector, code calculations for the column electrode design and results of a preliminary test carried out to verify the feasibility of the concept. (author)

  3. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  4. Energetic high current density electron/ion beam generation in plasma opening switches

    International Nuclear Information System (INIS)

    Experimental results on the generation of high energy ion/electron beams during operation of microsecond/nanosecond Plasma Opening Switch (POS) are presented. For the nanosecond POS, a coaxial configuration with negatively charged central electrode was used. For the microsecond POS, a strip-line geometry was investigated. Different arrays of magnetically insulated Collimated Faraday Cups (CFC) were used to observe energetic electron/ion flows towards the anode/cathode POS electrodes and towards the load. It was shown that in both nanosecond and microsecond cases, high-energy high current density axial ion flows are generated downstream towards the load at the load side edge of the plasma. The main axial ion acceleration occurs in the first few cm downstream with respect to the load side edge of the plasma at the beginning of the POS opening. Data observed by the anode CFC array show fast axial propagation of a radial electron flow along the anode electrode towards the load which is accompanied by an ion flow that first appears at the generator side of the plasma. (author). 10 figs., 10 refs

  5. A High Current Tandem Accelerator for Gamma-Resonance Contraband Detection

    Science.gov (United States)

    Milton, Bruce

    1997-05-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by ^14N of gammas produced using ^13C(p,γ)^14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non -resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H^- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  6. Gamma-resonance Contraband Detection using a high current tandem accelerator

    Science.gov (United States)

    Milton, B. F.; Beis, J.; Dale, D.; Debiak, T.; Kamykowski, E.; Melnychuk, S.; Rathke, J.; Rogers, J.; Ruegg, R.; Sredniawski, J.

    1999-04-01

    TRIUMF and Northrop Grumman have developed a new system for the detection of concealed explosives and drugs. This Contraband Detection System (CDS) is based on the resonant absorption by 14N of gammas produced using 13C(p,γ)14N. The chosen reaction uses protons at 1.75 MeV and the gammas have an energy of 9.17 MeV. By measuring both the resonant and the non-resonant absorption using detectors with good spatial resolution, and applying standard tomographic techniques, we are able to produce 3D images of both the nitrogen partial density and the total density. The images together may be utilized with considerable confidence to determine if small amounts of nitrogen based explosives, heroin or cocaine are present in the interrogated containers. Practical Gamma Resonant Absorption (GRA) scanning requires an intense source of protons. However this proton source must also be very stable, have low energy spread, and have good spatial definition. These demands suggested a tandem as the accelerator of choice. We have therefore constructed a 2 MeV H- tandem optimized for high current (10 mA) operation, while minimizing the overall size of the accelerator. This has required several special innovations which will be presented in the paper. We will also present initial commissioning results.

  7. Synthesis and characterization of silver-carbon nanoparticles produced by high-current pulsed arc

    Energy Technology Data Exchange (ETDEWEB)

    Maya, F., E-mail: fermr@correo.unam.m [Departamento de Microscopia Electronica, Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP 3110 (Mexico); Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Muhl, S.; Pena, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 (Mexico); Miki-Yoshida, M. [Departamento de Microscopia Electronica, Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua, Chih., CP 3110 (Mexico)

    2009-12-31

    In this paper, we report the formation of silver-carbon encapsulated metal nanoparticles (EMN's) using a high-current pulsed arc system in an argon atmosphere. The deposits were studied by Optical Extinction Spectroscopy (OES), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM); the chemical analysis of the deposits was performed using Energy Dispersion X-ray spectroscopy (EDX). Using the total nanoparticle diameter, the bulk crystalline density of silver and an estimate amorphous carbon (a-C) density we have calculated the size of the silver nucleus and the thickness of the a-C coating as a function of the argon gas pressure. The OES spectra of the EMN's exhibited two peaks characteristic of the Surface Plasmon Resonance (SPR) of elongated/very close silver nanoparticles; a subsequent thermal annealing strongly increased the SPR peaks. The double peak SPR spectra were modeled using calculations based on the existence of silver nanoparticles in the form of prolate spheroids. The main advantage of our preparation method is that the metal nanoparticles are encapsulated in a-C from the beginning and this layer acts as an efficient chemical barrier.

  8. Synthesis and characterization of silver-carbon nanoparticles produced by high-current pulsed arc

    International Nuclear Information System (INIS)

    In this paper, we report the formation of silver-carbon encapsulated metal nanoparticles (EMN's) using a high-current pulsed arc system in an argon atmosphere. The deposits were studied by Optical Extinction Spectroscopy (OES), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM); the chemical analysis of the deposits was performed using Energy Dispersion X-ray spectroscopy (EDX). Using the total nanoparticle diameter, the bulk crystalline density of silver and an estimate amorphous carbon (a-C) density we have calculated the size of the silver nucleus and the thickness of the a-C coating as a function of the argon gas pressure. The OES spectra of the EMN's exhibited two peaks characteristic of the Surface Plasmon Resonance (SPR) of elongated/very close silver nanoparticles; a subsequent thermal annealing strongly increased the SPR peaks. The double peak SPR spectra were modeled using calculations based on the existence of silver nanoparticles in the form of prolate spheroids. The main advantage of our preparation method is that the metal nanoparticles are encapsulated in a-C from the beginning and this layer acts as an efficient chemical barrier.

  9. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    Science.gov (United States)

    Hao, Y.; Gao, B.; Tu, G. F.; Li, S. W.; Dong, C.; Zhang, Z. G.

    2011-07-01

    A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special "halo" microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the "halo" microstructure is distributed continuously from the center to the edge of the "halo". Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 μm (5 pulses) to 5.6 μm (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  10. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  11. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  12. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  13. A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge

    Science.gov (United States)

    Palomares, J. M.; Kohut, A.; Galbács, G.; Engeln, R.; Geretovszky, Zs.

    2015-12-01

    We present a time-resolved imaging and electrical study of an atmospheric pressure spark discharge. The conditions of the present study are those used for nanoparticle generation in spark discharge generator setups. The oscillatory bipolar spark discharge was generated between two identical Cu electrodes in different configurations (cylindrical flat-end or tipped-end geometries, electrode gap from 0.5 to 4 mm), in a controlled co-axial N2 flow, and was supplied by a high voltage capacitor. Imaging data with nanosecond time resolution were collected using an intensified CCD camera. This data were used to study the time evolution of plasma morphology, total light emission intensity, and the rate of plasma expansion. High voltage and high current probes were employed to collect electrical data about the discharge. The electrical data recorded allowed, among others, the calculation of the equivalent resistance and inductance of the circuit, estimations for the energy dissipated in the spark gap. By combining imaging and electrical data, observations could be made about the correlation of the evolution of total emitted light and the dissipated power. It was also observed that the distribution of light emission of the plasma in the spark gap is uneven, as it exhibits a "hot spot" with an oscillating position in the axial direction, in correlation with the high voltage waveform. The initial expansion rate of the cylindrical plasma front was found to be supersonic; thus, the discharge releases a strong shockwave. Finally, the results on equivalent resistance and channel expansion are comparable to those of unipolar arcs. This shows the spark discharge has a similar behavior to the arc regime during the conductive phase and until the current oscillations stop.

  14. High-current pulsed sources of non-relativistic electrons for surface thermal treatment of materials

    International Nuclear Information System (INIS)

    The principal results of works devoted to the generation of broad-area low-energy high-current pulsed e-beams for material surface heating are reported and analyzed. It is shown that the required properties of electron beams (j = 102 and 103 A/cm2, eU = 1O and 30 keV, t/sub p/ = 10-7 and 10-6 s) can be obtained in devices with explosively emitting cathodes. However, a number of problems concerning the generation of such broad-area beams with a uniform cross-section distribution of current and a high stability have been studied poorly till now. A description is given of some explosive-emission-based sources of non-relativistic electron beams together with the results of investigation of the effect of electric and magnetic fields on the beam homogeneity in the region of the irradiated sample. The sample was usually placed behind the grid anode, the anode-sample distance being controlled. It has been shown that an applied longitudinal magnetic field gives rise to multiplication of the emission sites available on the cathode and to improvement of the beam current stability. A time behaviour of the electron beam current passage in the drift space has been studied. It is shown that the required properties of an electron beam on the irradiated sample can be obtained due to neutralization of its space charge by anode plasma ions. The electron sources developed are used in investigations on pulsed electron annealing of ion-doped layer of semiconductors. (author)

  15. The design philosophy for a 200 kV industrial high current ion implanter

    International Nuclear Information System (INIS)

    A third generation high current ion implanter, Series III, has been produced for the uniform implantation of milliampere-beams with total acceleration voltages up to 200 kV. Magnetic analysis of the beam with the initial acceleration voltages variable up to 40 kV is carried out in the accelerator terminal followed by post acceleration across a single gap up to a maximum total acceleration voltage of 200 kV into a grounded processor chamber. The ion source is a Freeman type capable of delivering milliampere beams of most elements. The source feed materials for the three main ion species required by the semiconductor industry, i.e. B,P and As, can all be pumped by surfaces with temperatures down to liquid nitrogen temperature. Consequently large liquid nitrogen cryopump/traps are used as the primary pumping system with diffusion having a secondary role for non-cryopumpable gases. Three stages of differential pumping are provided in the accelerator together with a 12'' pumping system for the processor, The large processor takes a maximum load of 108 2'' silicon wafers or 54 3'' silicon wafers. Mechanical scanning is used because of the need to maintain space charge neutralization in the beam which rules out electrostatic scanning and also because of the need to distribute the heat dissipation over a large number of wafers in order to prevent an excess temperature rise in the wafers during high dose implants (>1015 ions/cm2). The carousel which carries the wafers is shaped so that the wafers pass throught the beam in a straight line and at a constant speed. A stepper motor driven vane unit in the terminal controls the ion beam current. (Auth.)

  16. Beam space charge effects in high-current cyclotron injector CI-5

    International Nuclear Information System (INIS)

    Separated sector cyclotron-injector CI-5 has been studied in the framework of the external injection into phasotron project. The calculations of beam dynamics characteristics of Cyclotron CI-5 for H- beam of 5 MeV energy are presented. Space charge limits (both transverse and longitudinal) have been investigated. Analytical estimations and numerical simulations of particle motion taking into account space charge effects confirm that it is possible to achieve 10 mA in a 5 MeV separated sector H- Cyclotron

  17. Structure and properties of combined protective coatings with use high-current electron beam irradiation

    International Nuclear Information System (INIS)

    Full text: Improvement of superficial materials and products is the important task. The high-efficiency vacuum - arc sources created recently open more ample opportunities for change of properties of a surface of metal materials. Now there is a number of known technologies on drawing coverings for updating a surface of working parts of metals. Today the protecting coatings, which were deposited on tools applied in electrochemical and chemical devices, acquired a great interest. It is known that some kinds of treatment, such as, for example, ion implantation, ion-assisted deposition of thin films, electron beam irradiation, CVD, PVD, etc. cannot result directly in desired effect. Therefore to resolve some application problems, one has to use combined methods of treatment, which allow one to resolve complicated serious problems of material science and industrial fields, for example, in space, automobile, aviation, ship building, etc. So, the goal of this work was to study the structure, element composition and properties of hybrid coatings on TiNi/Cr/Al2O3 and TiN/Al2O3 base, which were deposited on AISI 321 stainless steel before and after electron beam irradiation. A special attention was paid to studies of diffusion and mass-transfer processes. We applied XRD, RBS, AES, SEM with micro-analysis as well as corrosion in sulfur acid, adhesion and hardness tests. It had been demonstrated that these coatings were able to perform different functions as protecting coatings. Tests of TiN/Al2O3 and TiN/Cr/Al2O3 coatings, which were deposited on AISI 321 steel, after high-current electron beam irradiation demonstrated significant increase in corrosion resistance in H2SO4 solution under 4000C temperature. Hardness and adhesion of these coatings to substrate increased, and significant decrease in friction wear of coating surfaces was found. In such a way, in this report it was demonstrated that hybrid coatings on TiN/Cr/Al2O3 and TiN/Al2O3 base after HCEB irradiation under

  18. Development and testing of a multi-harmonic buncher for the high current injector at IUAC

    International Nuclear Information System (INIS)

    The Superconducting Linac at IUAC has been used as a heavy ion booster accelerator for the energetic heavy ion beams of the 15UD Pelletron accelerator. In order to inject heavy ion beams with higher charge states and higher currents to the Superconducting Linac, an alternate injection system called the High Current Injector (HCI) is being developed. This injector will extract beams from a superconducting ECR ion source (PKDELIS) and further accelerate them through Radio Frequency Quadrupoles (RFQ) and Drift Tube Linac (DTL) before injecting into the Superconducting Linac. In order to run the RFQ and other RF accelerating systems efficiently it is necessary to pre-bunch the beam before injection into the RFQ. SO a single gap Multi-Harmonic Buncher (MHB) is planned and is being developed to be installed before the RFQ. Ion beams of energy 3 keV/u produced by the ECR source, analysed in terms of mass to charge ratio of 6 using a large acceptance analysing magnet, transported by an electrostatic quadrupole triplet and energised to 8 keV/u by accelerating tubes will be focussed at the centre of the MHB. A saw-tooth voltage generated across a single gap formed by a closely spaced pair of Molybdenum grids, at the centre of the MHB chamber, will be used for bunching the dc beam. This saw-tooth voltage is produced by adding a sinewave (12.125 MHz) with its higher harmonics in proper phase and amplitude. The MHB vacuum chamber with grids mounted on copper cones and other accessories are ready for installation in the beam line. The tank circuits for the different harmonics to be used for powering the grids have been fabricated and tested. A controller has been developed to produce the different harmonics with proper phase and amplitude control and locking arrangements. The controller has been tested thoroughly in the Laboratory and using the bunching system of the Pelletron beam. The fabrication details of the MHB chamber, tank circuits and electronics to generate and to lock

  19. Particle physics

    International Nuclear Information System (INIS)

    The two main themes of this volume are the standard model of the fundamental interactions (and beyond) and astrophysics. The remarkable advances in the theoretical understanding and experimental confirmation of the standard model were reviewed in several lectures where the reader will find a thorough analysis of recent experiments as well as a detailed comparison of the standard model with experiment. On a more theoretical side, supersymmetry, supergravity and strings were discussed as well. The second theme concerns astrophysics where the school was quite successful in bridging the gap between this fascinating subject and more conventional particle physics

  20. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    Science.gov (United States)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  1. Report of the 3rd RCM on Improved High Current Liquid and Gas Targets for Cyclotron Produced Radioisotopes

    International Nuclear Information System (INIS)

    The overall objective of this CRP was the development of new accelerator targetry technology including several target systems but focusing on the reliable production of carbon-11 and fluorine-18 in various chemical forms with a view to increasing production yields, specific activity, improving the economics of production and the availability of the radiotracers. Significant advances have been made under this CRP in the development and standardization of high power gas and liquid targets. This CRP has resulted in the development of methods which can be used in high power targets to increase Carbon-11, Fluorine-18, Nitrogen-13, Iodine-123 and Krypton-81m, specific activities (a least a two fold increase), chemical purities as well as ensuring reliability of the production of the radiopharmaceuticals derived from these radionuclides. More importantly, these advances have minimized the unnecessarily operator exposure to radiation. In addition, knowledge of recovery and characterization of enriched H2 18O was also gained. Through this research the production capabilities with regard to [18F]F-, [11C]CO2 and [11C]CH4 have increased 3 to 6 fold. A high current niobium target system has been designed, tested and put in service which could increase production capability of 18FDG by a factor of 2.5. A survey of target maintenance procedures has been carried out and the results of this survey are reported in this CRP. It was determined that the tritium introduced by the inevitable nuclear reactions does not pose any health physics problems either during the tracer manufacturer or during potential water reclamation. It was further determined that radionuclides produced in the metal foil during irradiation are found in the target water at very low concentrations. These impurities can be essentially eliminated by using noble metal plated foils. The radionuclides can also be reduced by the separation technology typically used for fluorine extraction from the O-18 water. In no

  2. Results of Beam Tests on a High Current EBIS Test Stand

    International Nuclear Information System (INIS)

    At Brookhaven National Laboratory there is an R and D program to design an Electron Beam Ion Source (EBIS) for use in a compact ion injector to be developed for the relativistic heavy ion collider (RHIC). The BNL effort is directed at developing an EBIS with intensities of 3 x 109 particles/pulse of ions such as Au35+ and U45+, and requires an electron beam on the order of 10A. The construction of a test stand (EBTS) with the full electron beam power and 1/3 the length of the EBIS for RHIC is nearing completion. Initial commissioning of the EBTS was made with pulsed electron beams of duration < 1 ms and current up to 13 A. Details of the EBTS construction, results of the pulse tests, and preparations for DC electron beam tests are presented

  3. Transition from Beam-Target to Thermonuclear Fusion in High-Current Deuterium Z -Pinch Simulations

    Science.gov (United States)

    Offermann, Dustin T.; Welch, Dale R.; Rose, Dave V.; Thoma, Carsten; Clark, Robert E.; Mostrom, Chris B.; Schmidt, Andrea E. W.; Link, Anthony J.

    2016-05-01

    Fusion yields from dense, Z -pinch plasmas are known to scale with the drive current, which is favorable for many potential applications. Decades of experimental studies, however, show an unexplained drop in yield for currents above a few mega-ampere (MA). In this work, simulations of DD Z -Pinch plasmas have been performed in 1D and 2D for a constant pinch time and initial radius using the code Lsp, and observations of a shift in scaling are presented. The results show that yields below 3 MA are enhanced relative to pure thermonuclear scaling by beamlike particles accelerated in the Rayleigh-Taylor induced electric fields, while yields above 3 MA are reduced because of energy lost by the instability and the inability of the beamlike ions to enter the pinch region.

  4. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    lifetime and the potential for an all transparent display. And because carbon nanotubes (CNTs) and organics are used, CN-VFET and CN-VOLET devices are compatible with flexible displays. This dissertation describes the first ever demonstration of CN-VFETs and CN-VOLETs and relates their performance to the specific properties of the CNTs and the new device architecture. In the work that followed, the CN-VFET was systematically optimized overcoming the problems revealed in the demonstration devices. The large undesired hysteresis was decreased by 96%, the on/off ratio was improved three orders of magnitude and the operating voltages were reduced to state of the art values. Additionally, the current output per device area of the CN-VFET was demonstrated to be greater than any other low resolution patterned organic transistor by a factor of 3.9. Moreover, it was demonstrated that the CNTs induce a reorientation of the high mobility plane in small molecule organics like pentacene to coincide with the vertical direction, giving additional explanation for the large currents observed in the CN-VFET. The ability to drive high currents and potentially inexpensive fabrication may provide the solution for the AMOLED backplane problem.

  5. Particles formation and particle design using supercritical fluids

    OpenAIRE

    Knez, Željko; Weidner, Eckhard

    2012-01-01

    Major recent advances. Particle formation and design of solid particles and powdery composites with unique properties is at the moment a major developmentof supercritical fluids (synonymsČ dense gasses, dense fluids, highpressure) applications. This review will focus on recent advances and on fundamentals of these processes and their applications.

  6. 肺吸入用微粒的粉体工程学技术研究进展%Advances in particle engineering techniques for pulmonary drug delivery

    Institute of Scientific and Technical Information of China (English)

    谌茜

    2016-01-01

    近年来,药物的肺部递送作为一种非侵入性的给药途径引起了广泛关注,肺部给药的市场需求也不断增加。各种粉体工程学技术被用于开发具有合适物理性质的用于肺部递送的药物颗粒,这些经过设计的药物颗粒为高效的肺部递送和最优的治疗效果提供了可能。本文重点阐释了肺部颗粒的沉积机制以及各种粉体工程技术在肺部给药领域中的应用,其中PulmoSphereTM和TechnoSphereTM两种新技术已用于上市产品的生产。%In recent years,pulmonary drug delivery as an attractive non-invasive administration way has been gaining inten⁃sive attention. The market for inhalable therapy has constantly grown over past years. Various particle engineering techniques have been employed to exploit the drug particles or drug-loaded particles used for pulmonary delivery with suitable physical properties. Those tailor-made inhalable particles offer the possibility of efficient delivering to lungs and the most optimal therapeutic outcomes. This review highlights the deposition mechanism of particles in lungs and several particle engineering techniques for pulmonary drug delivery,in particular two novel techniques PulmoSphereTM and TechnoSphereTM,which have been used in the marketed products.

  7. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Grinner, F. J.; Schroeder, C. B.; Maier, A. R.; Becker, S.; Mikhailova, J. M.

    2009-02-11

    Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron-laser (FEL). Significant reduction in size of the FEL is facilitated by the expected ultra-high peak beam currents (10-100 kA) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultra-compact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution), which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  8. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  9. The new GSI prestripper linac for high current heavy ion beams

    International Nuclear Information System (INIS)

    The original UNILAC injector uses PENNING type ion sources and charge states up to 10+ for uranium beams. The beam intensities for very heavy ion species out of that injector are too low by almost a factor 300 to fill the Heavy Ion Synchrotron SIS up to its space charge limit. At present only ion sources like CHORDIS (1+ and 2+ charged ions) or MEVVA, which generates charge states up to 4+ above mass 180 can provide the requested beam intensities during a pulse duration of 100 μs. The IH-DTL with its high acceleration efficiency offers the possibility to replace the 34 MV prestripper linac by a new 91 MV linac while keeping the positions of the pre-injectors and of the gas stripper untouched. The actual prestripper frequency of 27 MHz will be replaced by 36 MHz, being one third of the poststripper linac frequency. The beam dynamics of 'Combined Zero Degree Synchronous Particle Sections' is applied on the two IH cavities.They generate averaged effective voltage gains of 4.3 MV/m. The paper describes the new linac, especially focusing on the rf structures and on the beam dynamics along the IH-DTL. (author)

  10. High current 66 kV tests on high stability PFN discharge capacitors for CERN LHC

    CERN Document Server

    Barnes, M J

    1999-01-01

    The European Laboratory for Particle Physics (CERN) is constructing a Large Hadron Collider (LHC) to be installed in an existing 27 km circumference tunnel. The LHC will be equipped with fast pulsed magnet systems for injecting two counter-rotating hadron beams. Two pulsed systems, of 4 magnets and 4 pulse forming networks (PFNs) each, are required for this purpose. TRIUMF will build and test 5 resonant charging power supplies (RCPS) and nine PFNs and the associated thyratron switch units as part of the Canadian contribution to CERN LHC. Failures in the PFN capacitors may lead to incorrect beam deflections that may in turn damage LHC components. For this reason the reliability of the capacitors must be exceptionally high. Hence sample PFN capacitors were purchased and tested. The test procedure included discharging the PFN capacitors from 66 kV, into a 10.1 Ohm resistance, for 500,000 cycles, at a frequency of approximately 1 Hz. Subsequently the PFN capacitors were discharged from 66 kV into a 2.7 Ohm resist...

  11. Low-voltage operating mode of a high-current magnetized cold-cathode plasma

    Science.gov (United States)

    Sommerer, Timothy; Aceto, Steven; Smith, David; Hitchon, Nicholas; Lawler, James

    2015-09-01

    A series of approximations and simple models is used to estimate the properties of a cold-cathode plasma in a high-voltage, high-power gas switch for use in grid-scale electric power conversion. The active plasma volume is a plane-parallel gap ~1 cm filled with helium at a pressure on order 0.1 torr. A magnetic field in the region adjacent to the cathode is used to increase the current density to practical levels >1 A/cm2. The plasma can operate in a ``low voltage mode'' (~80 V) that has the appearance of a constricted attachment at the cathode surface and a more diffuse region toward the anode. Cathode material is absent from the plasma emission spectrum. Various attempts to model the spot indicate that the plasma in the constriction is near full ionization, and that there is a dynamic balance of neutral gas atoms between the constriction, the cathode surface, and the neighboring diffuse plasma. The electron emission mechanism is assumed to be conventional, by ion impact, but field emission may contribute. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.

  12. Quench Analysis of High Current Density Nb3Sn Conductors in Racetrack Coil Configuration

    CERN Document Server

    Bajas, H; Bordini, B; Bottura, L; Izquierdo Bermudez, S; Feuvrier, J; Chiuchiolo, A; Perez, J C; Willering, G

    2015-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of new type of superconducting cables based on advanced Nb3Sn strands. In the framework of the FP7 European project EUCARD the cables foreseen for the HL-LHC project have been tested recently in a simplified racetrack coil configuration, the so-called Short Model Coil (SMC). In 2013 to 2014, two SMCs wound with 40-strand (RRP 108/127) cables, with different heat treatment processes, reached during training at 1.9 K a current and peak magnetic field of 15.9 kA, 13.9T,and 14.3 kA, 12.7 Trespectively. Using the measured signals from the voltage taps, the behavior of the quenches is analyzed in terms of transverse and longitudinal propagation velocity and hot spot temperature. These measurements are compared with both analytical and numerical calculations from adiabatic models.The coherence of the results from the presented independent methods helps in estimating the relevance of the material properties and the adiabatic assump...

  13. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due to...... the local stereological estimation procedure and the variance due to the variability of particle sizes in the population. Methods for judging the difference between the distribution of estimated particle sizes and the distribution of true particle sizes are also provided....

  14. Application of intense relativistic electron beams to the switching of high currents in high power electrical networks

    International Nuclear Information System (INIS)

    A new concept of switching of high currents using intense relativistic electron beams propagating in vacuum drift tubes is presented. Some possible applications of this concept for the design of current switches are discussed. Supporting analytical one-dimensional theory of an electron beam switch is given. Electron beam hysteresis phenomenon associated with the switching mechanism is briefly discussed

  15. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose; Thydén, Karl Tor Sune; Kiebach, Wolff-Ragnar; Küngas, Rainer

    stabilised zirconia (YSZ) backbone air electrode and Ni/YSZ cermet fuel electrode. The SOC was tested at electrolysis conditions under high current (up to -1 A/cm2). The porous YSZ electrodes was infiltrated with gadolinium-doped ceria oxide (CGO), to act as a barrier layer between the catalyst and the...

  16. Resolving the wave–particle–plasma interaction: advances in the diagnosis, interpretation and self-consistent modelling of waves, particles and the plasma configuration

    International Nuclear Information System (INIS)

    The purpose of this review is to present the state-of-the-art in diagnosis, interpretation and modelling of waves, particles and the magnetic configuration in fusion plasmas. Knowledge of the magnetic configuration underpins all confinement, stability and transport physics, as well as being an essential prerequisite for the inference of plasma parameters from many diagnostics. As the effect of fast particles become important enough to modify the macroscopic variables of the plasma, the macroscopic fluid equations for equilibrium need to be modified to encapsulate the effects of pressure anisotropy, particle and heat flow. We present a review of such modifications in tokamak geometry, and review probabilistic validation techniques of different equilibrium models. In the last decade new spectral tools have also emerged to characterize the linear behaviour of waves and wave-modes, such as SVD, Fourier-SVD, data-mining and the bispectrum. An emerging trend is the use of statistics to characterize the nonlinear wave population of the plasma from wave field data. Finally, progress is reported on developments in understanding the physics of wave–particle resonant interactions, and the emerging science of the wave–particle–plasma interaction. (topical review)

  17. The effect of asphaltene particle size and distribution on the temporal advancement of the asphaltene deposition profile in the well column

    Science.gov (United States)

    Zeinali Hasanvand, Mahdi; Mosayebi Behbahani, Reza; Feyzi, Farzaneh; Ali Mousavi Dehghani, Seyed

    2016-05-01

    Asphaltene deposition in oil wells is an inconvenient production problem. Generating a precise deposition model for the well column is essential for optimal well design and prevention/reduction of deposition-associated difficulties. The goal of this study is to determine the effects of various parameters on the deposition process. These parameters include oil viscosity, temperature, flow velocity, well diameter and asphaltene particle size and particle size distribution. The first five parameters are analyzed using Escobedo and Mansoori (2010), Cleaver and Yates (1975) and Friedlander and Johnstone (1957) asphaltene deposition models. The last parameter (asphaltene particle size distribution) is not directly included in the asphaltene deposition models. Therefore, a dynamic well column model is generated by combining transport phenomena (mass, heat and momentum transfer) equations with thermodynamic models. The model is fine-tuned and verified based on field data from an Iranian producing oil well with frequent asphaltene deposition problem and subsequently used for predicting the time-dependent development of the asphaltene deposition profile in the well column for a series of asphaltene particle size distributions. The results show the effect of the said parameters depends on how the buffer layer and Brownian motion are defined. The Escobedo and Mansoori (2010) model is found to make better predictions of deposited asphaltene in the studied well.

  18. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    Science.gov (United States)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  19. Principle of shielding design for the target cave of a high current medical cyclotron

    International Nuclear Information System (INIS)

    the shielding calculations of High Energy Particle Accelerators (Thomas, R. H., Rad Prot Austr, 13: 108-111, 1995)

  20. Inclusive Focus Particles in English and Korean

    Science.gov (United States)

    Kang, Sang-gu

    2011-01-01

    When discussing focus particles, it has been common practice to rely on the dichotomy of inclusive vs. exclusive particles, "a la" Konig (1991). Inclusive focus particles are often further divided into scalar particles, such as "also", "too", and "either", and non-scalar particles, such as "even". In this thesis, I advance a comparative analysis…

  1. CT-guided aspiration cytology of advanced silicosis and confirmation of the deposited zeolite nano particles through X ray diffraction: A novel approach.

    Science.gov (United States)

    Bandyopadhyay, Arghya; Majumdar, Kaushik; Chakraborty, Abhijit; Mitra, Partha; Nag, Subhomoy

    2016-03-01

    Silicosis is a common occupational lung disease, resulting in fibrotic nodular lesions in the upper lobes of the lung parenchyma. Most of the pneumoconioses are diagnosed on the basis of relevant history and clinico-radiological correlation. Image-guided aspiration cytology appears to be poorly yielding and is not usually considered as a diagnostic modality. However, silicosis may sometimes offer a diagnostic challenge because of its radiological resemblance and clinical overlap with pulmonary tuberculosis and neoplastic lesions. We present a unique situation where image-guided fine needle aspiration cytology (FNAC) has been advised on the basis of nodular upper lobe opacities. The cytology smears revealed hypocellular granular material, while phase contrast and polarized light microscopy highlighted crystalline particles. History of silica dust exposure long back was available after the cytological evaluation, suggesting the diagnosis of pulmonary silicosis. X ray diffraction (XRD) crystallography was also possible on cytology smears, confirming zeolite nano particles of size as small as 40 - 50 nm as the concerned agent for the first time. Cytological evaluation by phase contrast and polarized light microscopy may be useful for the confirmation of silicosis, supplemented by clinical history and radiological evaluation. XRD on smears may help in determination of chemical nature and particle size. Diagn. Cytopathol. 2016;44:246-249. © 2015 Wiley Periodicals, Inc. PMID:26748653

  2. Transport studies in polymer electrolyte fuel cell with porous metallic flow field at ultra high current density

    Science.gov (United States)

    Srouji, Abdul-Kader

    Achieving cost reduction for polymer electrolyte fuel cells (PEFC) requires a simultaneous effort in increasing power density while reducing precious metal loading. In PEFCs, the cathode performance is often limiting due to both the slow oxygen reduction reaction (ORR), and mass transport limitation caused by limited oxygen diffusion and liquid water flooding at high current density. This study is motivated by the achievement of ultra-high current density through the elimination of the channel/land (C/L) paradigm in PEFC flow field design. An open metallic element (OME) flow field capable of operating at unprecedented ultra-high current density (3 A/cm2) introduces new advantages and limitations for PEFC operation. The first part of this study compares the OME with a conventional C/L flow field, through performance and electrochemical diagnostic tools such as electrochemical impedance spectroscopy (EIS). The results indicate the uniqueness of the OME's mass transport improvement. No sign of operation limitation due to flooding is noted. The second part specifically examines water management at high current density using the OME flow field. A unique experimental setup is developed to measure steady-state and transient net water drag across the membrane, in order to characterize the fundamental aspects of water transport at high current density with the OME. Instead of flooding, the new limitation is identified to be anode side dry-out of the membrane, caused by electroosmotic drag. The OME improves water removal from the cathode, which immediately improves oxygen transport and performance. However, the low water content in the cathode reduces back diffusion of water to the membrane, and electroosmotic drag dominates at high current density, leading to dry-out. The third part employs the OME flow field as a tool that avoids C/L effects endemic to a typical flow field, in order to study oxygen transport resistance at the catalyst layer of a PEFC. In open literature, a

  3. High power test results of the first SRRC/ANL high current L-band RF gun.

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C. H.

    1998-09-11

    A joint program is underway between the SRRC (Synchrotrons Radiation Research Center, Taiwan) and ANL (Argonne National Laboratory, USA) for developing a high current L-band photocathode rf guns. We have constructed an L-Band (1.3 Ghz), single cell rf photocathode gun and conducted low power tests at SRRC. High power rf conditioning of the cavity has been completed at ANL. In this paper we report on the construction and high power test results. So far we have been able to achieve > 120 MV/m axial electric field with minimal dark current. This gun will be used to replace the AWA (Argonne Wakefield Accelerator)[l] high current gun.

  4. Numerical Modeling of Annular High-Current Relativistic Beam Forming in a Toroidal Chamber with a Magnet

    Science.gov (United States)

    Bogdanovich, B. Yu.; L'vov, E. I.; Nesterovich, A. V.; Sukhanova, L. A.; Khlestkov, Yu. A.

    2016-04-01

    A scheme of forming an annular high-current relativistic beam (HCRB) from a directly propagating HCRB in a diode with magnetic insulation and toroidal chamber with a constant magnet is described. The code KARAT is used to analyze numerically the HCRB dynamics. It is demonstrated that for a proper relationship of the system parameters the directly propagating HCRB is rolled up into a torus.

  5. The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    OpenAIRE

    Shilon, I.; A. Dudarev; Langeslag, S. A. E.; L.P. Martins; Kate, H.H.J. ten

    2014-01-01

    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the condu...

  6. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  7. High Current Responsivity and Wide Modulation Bandwidth Terahertz Detector Using High-Electron-Mobility Transistor for Wireless Communication

    Science.gov (United States)

    Suzuki, S.; Nukariya, T.; Ueda, Y.; Otsuka, T.; Asada, M.

    2016-07-01

    A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (˜5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was -2 dB in the heterodyne mixing by using the HEMT detector.

  8. Computer simulation of low-energy high-current electron beam dynamics in a long plasma-filled diode

    International Nuclear Information System (INIS)

    Results of computer simulation of low-energy high-current electron beam dynamics in a low-impedance system consisting of a diode with a long plasma anode, just siding with an explosive emission cathode and an auxiliary thermionic cathode are presented. Plasma anode plays simultaneously a role of the transport channel providing charge neutralization of high-current beam and is created by means of the residual gas ionisation by low-current, low-voltage electron beam emitted from the auxiliary cathode in an external longitudinal magnetic field. The main peculiarities of the beam-plasma system are discussed: 1) the formation of the beam of currents exceeding the limiting Alven's ones; 2) the formation of paramagnetic states of the beam under condition of beam charge density close to the plasma density. These peculiarities complicate beam-plasma interaction significantly due to sharp nonuniform distribution of the beam current density, significant transverse motion of the beam electrons and redistribution of ion plasma density under the influence of high-current electron beam fields. Computer simulation was performed using electromagnetic PIC code KARAT

  9. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Kevin S. (Ketech Corporation, Albuquerque, NM); Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Wakeland, Peter Eric (Ketech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Savage, Mark Edward; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

    2010-09-01

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  10. The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia Laboratories and HCEI

    International Nuclear Information System (INIS)

    Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory. An extensive evaluation of the LTD technology is being performed at SNL and the High Current Electronic Institute (HCEI) in Tomsk Russia. Two types of High Current LTD cavities (LTD I-II, and 1-MA LTD) were constructed and tested individually and in a voltage adder configuration (1-MA cavity only). All cavities performed remarkably well and the experimental results are in full agreement with analytical and numerical calculation predictions. A two-cavity voltage adder is been assembled and currently undergoes evaluation. This is the first step towards the completion of the 10-cavity, 1-TW module. This MYKONOS voltage adder will be the first ever IVA built with a transmission line insulated with deionized water. The LTD II cavity renamed LTD III will serve as a test bed for evaluating a number of different types of switches, resistors, alternative capacitor configurations, cores

  11. Advanced action in classical electrodynamics

    OpenAIRE

    Boozer, A. D.

    2008-01-01

    The time evolution of a charged point particle is governed by a second-order integro-differential equation that exhibits advanced effects, in which the particle responds to an external force before the force is applied. In this paper we give a simple physical argument that clarifies the origin and physical meaning of these advanced effects, and we compare ordinary electrodynamics with a toy model of electrodynamics in which advanced effects do not occur.

  12. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, July 1993--August 1994

    International Nuclear Information System (INIS)

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report

  13. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs. The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+, divalent (Mg(2+ or trivalent (Co(NH(3(6 (3+ cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+, to partial aggregation with Mg(2+ and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+. The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  14. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Science.gov (United States)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  15. Comparisons of Monte Carlo calculations with absorbed dose determinations in flat materials using high-current, energetic electron beams

    International Nuclear Information System (INIS)

    International standards and guidelines for calibrating high-dose dosimetry systems to be used in industrial radiation processing recommend that dose-rate effects on dosimeters be evaluated under conditions of use. This is important when the irradiation relies on high-current electron accelerators, which usually provide very high dose-rates. However, most dosimeter calibration facilities use low-intensity gamma radiation or low-current electron accelerators, which deliver comparatively low dose-rates. Because of issues of thermal conductivity and response, portable calorimeters cannot be practically used with high-current accelerators, where product conveyor speeds under an electron beam can exceed several meters per second and the calorimeter is not suitable for use with product handling systems. As an alternative, Monte Carlo calculations can give theoretical estimates of the absorbed dose in materials with flat or complex configurations such that the results are independent of dose-rate. Monte Carlo results can then be compared to experimental dose determinations to see whether dose-rate effects in the dosimeters are significant. A Monte Carlo code has been used in this study to calculate the absorbed doses in alanine film dosimeters supported by flat sheets of plywood irradiated with electrons using incident energies extending from 1.0 MeV to 10 MeV with beam currents up to 30 mA. The same process conditions have been used for dose determinations with high-current electron beams using low dose-rate gamma calibrated alanine film dosimeters. The close agreement between these calculations and the dosimeter determinations indicates that the response of this type of dosimeter system is independent of the dose-rate, and provides assurance that Monte Carlo calculations can yield results with sufficient accuracy for many industrial applications

  16. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    International Nuclear Information System (INIS)

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance

  17. On the performance of the HVE high-current light-ion 3 MV Tandetron Trade-Mark-Sign accelerator system

    Energy Technology Data Exchange (ETDEWEB)

    Podaru, Nicolae C., E-mail: npodaru@highvolteng.com [High Voltage Engineering Europa B.V., P.O. Box 99, 3800 AB, Amersfoort (Netherlands); Gottdang, A.; Mous, D.J.W. [High Voltage Engineering Europa B.V., P.O. Box 99, 3800 AB, Amersfoort (Netherlands)

    2012-02-15

    High Voltage Engineering has successfully completed the factory tests of a 3 MV Tandetron Trade-Mark-Sign based accelerator system, fulfilling the rigorous requirements of the Facility for Research in Experimental Nuclear Astrophysics, part of the Saha Institute of Nuclear Physics, Kolkata, India. To satisfy requirements, High Voltage Engineering has developed a unique high-current light-ion injector. The injector includes two multicusp ion sources, one for H{sup -} and one for He{sup +}, and a Na charge exchange canal. Extensive measurements yield routine production of about 70 {mu}A analyzed He{sup -} and 1 mA H{sup -}. The Tandetron Trade-Mark-Sign designed and tested at 3 kW of beam power features low ripple (27 V{sub RMS} at 3 MV), a particle transmission of at least 60% over the entire terminal voltage range, 200 kV up to 3 MV. In addition, the dual slit stabilization system ensures long term terminal voltage stability, {+-}30 V per hour at 3 MV.

  18. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  19. Effect of high current density on the admittance response of interface states in ultrathin MIS tunnel junctions.

    OpenAIRE

    Godet, Christian; Fadjie-Djomkam, Alain-Bruno; Ababou-Girard, Soraya

    2013-01-01

    The effect of a high current density on the measured admittance of ultrathin Metal-Insulator-Semiconductor (MIS) tunnel junctions is investigated to obtain a reliable energy distribution of the density, D-S(E), of defects localized at the semiconductor interface. The behavior of admittance Y(V, T, omega) and current density J(V, T) characteristics is illustrated by rectifying Hg//C12H25-Si junctions incorporating n-alkyl molecular layers (1.45 nm thick) covalently bonded to n-type Si(111). Mo...

  20. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    International Nuclear Information System (INIS)

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (≤ 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters

  1. Radiation damage in single crystal CVD diamond material investigated with a high current relativistic 197Au beam

    International Nuclear Information System (INIS)

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high intensity heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2–3×106/s/mm2) of 1.25A GeV 197Au69+ ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such a beam are reported

  2. A test facility for high-current superconducting cables up to 25 kA at 7 tesla

    International Nuclear Information System (INIS)

    The need for adequate test equipment for the determination of relevant properties of superconducting cables at medium magnetic fields and high-currents was the main motivation to construct a new facility. In this facility superconducting cables of which one or several turns are wound with a diameter of 20 cm, can be investigated experimentally in a magnetic field of 7 tesla and a test current between 25 and 50 kA. This paper deals with the magnet system, the cryogenic power supply and describes the testing features of the system

  3. Stability and radiative performance of structured Z-pinch loads imploded on high-current pulsed power generators

    International Nuclear Information System (INIS)

    The stability and radiative performance of structured Z-pinch plasma loads heated by high-current (>20 MA) pulsed power generators are investigated. A limited mapping of parameter space is made for the regions of stability for loads configured as thin shells, uniform fills, and multiple shells. Although large diameter thin shell loads are shown to be the most efficient radiators of K-shell x rays, they are susceptible to disruption by the Rayleigh--Taylor instability. Large diameter uniform fill loads are shown to be more stable and very good radiators. copyright 1995 American Institute of Physics

  4. Low-energy High-current Electron Beam Generation in Plasma System and Beam-Plasma Interaction

    International Nuclear Information System (INIS)

    The review of results of experimental investigations and computer simulations of low-energy high-current electron beam generation in a low-impedance system and dynamics of beam-plasma system are given. The system includes a long plasma-filled diode, an auxiliary thermionic cathode and an explosive emission cathode. The auxiliary cathode is used to generate the a low-current, low-voltage electron beam to form long plasma anode by means of a residual gas ionisation in an external longitudinal magnetic field. The high-current low-energy electron beam is generated from the explosive emission cathode embedded in preliminary prepared plasma. Peculiarities of the system are due to: 1) the generation of electron beams with currents exceeding Alfven's limit; 2) the charge density of the beam close to the plasma density. These peculiarities complicate beam-plasma interaction significantly due to sharp non-uniform distribution of the beam current density, dominant transverse motion of the beam electrons and redistribution of ion-plasma density under the influence of fields. Computer simulation was performed using electromagnetic PIC code KARAT for different geometry's of the system

  5. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Schwarz, S.; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-01

    The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm2 has been reached when the EBIT magnet was operated at 4 T.

  6. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  7. The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    CERN Document Server

    Shilon, I; Langeslag, S A E; Martins, L P; ten Kate, H H J

    2015-01-01

    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zon...

  8. Numerical simulation of thermal-mechanical process of Al-Si-Pb alloy treated by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-xia; LI Rong-guang; AN Jian

    2006-01-01

    The modified microstructure of Al-Si-Pb alloys irradiated by high current electron beam (HCPEB) reveals three distinct regions: a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone, and a transition zone followed by the substrate. The hardness and wear properties of the alloys were significantly improved. To better understand these changes in microstructure and properties, the physical model for the simulation of temperature and quasistatic stress fields was established. Based on experimental investigation and physical models, the temperature field and stress field were simulated for Al-Si-Pb alloy. The starting melting position, largest crater depth, melting layer thickness, and quasistatic stress distribution were obtained. These results reveal the mechanism of crater formation on the surface and improvement of hardness and wear resistance.

  9. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    International Nuclear Information System (INIS)

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  10. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lambiase, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sheehy, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pietz, J. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Ackeret, M. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Yeckel, C. [Stangenes Industries, Palo Alto, CA (United States); Miller, R. [Stangenes Industries, Palo Alto, CA (United States); Dobrin, E. [Stangenes Industries, Palo Alto, CA (United States); Thompson, K. [Stangenes Industries, Palo Alto, CA (United States)

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  11. Refractoriness of high-current and low acceleration voltage arsenic-ion implanted polycrystalline silicon against fluorine chemistry

    International Nuclear Information System (INIS)

    The author observed that both high current ion beam and low-acceleration voltage arsenic implanted polycrystalline silicon film surfaces are resistant to radical-fluorine gas etching. If they accept the simple assumption that a depth profile of concentration distribution of the implanted high dose As atoms in polycrystalline Si film can be expressed with a standardized distribution function in the previous report of S.Furukawa, H.Matsumura, and H.Ishiwara, they can take the premise that the chemical bonding reaction itself between radical fluorine atoms and silicon atoms is prevented rather than that the covering of an arsenic metal thin layer like amorphous state prevents the chemical bonding reaction. They present a model of the prevention Si-F bond formation by high dose arsenic implantation at low acceleration voltage. The model seems to be related to potential barrier increase and lattice vibration suppression for electromagnetic force-phonon interaction

  12. Measurement of ion species in high current ECR H+/D+ ion source for IFMIF (International Fusion Materials Irradiation Facility)

    International Nuclear Information System (INIS)

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H+) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D+) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H+ ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H+/D+ ratio estimated by the emittance monitor was more than 90% at those extraction currents

  13. Design considerations for high current regulated DC power supplies with reference to 600 kW variable DC power supply

    International Nuclear Information System (INIS)

    High current regulated dc power supplies find increasing applications in industry and research. The power rating of these supplies vary from few killowatts to megawatts. The general requirements of these supplies for various applications and the techniques used to achieve the desired performance are presented. The design and selection of various circuit blocks namely the rectifier transformer, multiphase rectifier arrangement, SCR paralleling and current sensing techniques, are discussed in detail for a 600 killowatt current controlled supply developed in the Bhabha Atomic Research Centre, Bombay, and used for the thermal studies of reactor components. The power supply incorporates paralleled phase controlled thyristors with a closed loop feedback circuitary to achieve a current stability of 0.1% and smooth output variation from 10 to 100%. (auth.)

  14. Improvement of Wear Resistance of Magnesium Alloy AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; ZOU Jian-xin; JIANG Li-min; ZHOU Ji-yang; DONG Chuang

    2004-01-01

    Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase Mg17Al12 is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface.The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250μm.Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.

  15. Improved Corrosion Resistance of Magnesium Alloys AZ31 and AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    HAO Sheng- zhi; GAO Bo; ZHOU Ji-yang; DONG Chuang

    2004-01-01

    Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB)was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl solution,showing remarkably improvement as manifested by polarization curves. According to EPMA analysis, the intermetallic Mg17Al12 in the surface layer of AZ91HP sample almost disappeared after the treatment of HCPEB, leaving the surface layer in a state of supersaturated solid solution. Both the augmentation of aluminum content and the formation of supersaturated structure in the surface layer are believed to contribute to the improved corrosion resistance of AZ31 and AZ91HP.

  16. Improved Corrosion Resistance of Magnesium Alloys AZ31 and AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    HAOSheng-zhi; GAOBo; ZHOUJi-yang; DONGChuang

    2004-01-01

    Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB) was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl solution, showing remarkably improvement as manifested by polarization curves. According to EPMA analysis, the intermetallic Mg17Al12 in the surface layer of AZ91HP sample almost disappeared after the treatment of HCPEB, leaving the surface layer in a state of supersaturated solid solution. Both the augmentation of aluminum content and the formation of supersaturated structure in the surface layer are believed to contribute to the improved corrosion resistance of AZ31 and AZ91HP.

  17. Study of a plasma formed during explosion of multi-wire loads in the diode of high-current accelerator

    International Nuclear Information System (INIS)

    The experimental results on explosion of several parallel or crossed wires in the diode of the ''Don'' high-current accelerator are discussed. The simple evaluations of the X-pinch plasma parameters based on the radiation compression model are given. The experiments have shown the effectiveness of multi-wire loads exploded in the installations with discharge power of ∼ 10 GW having multicharged ions as hot plasma sources. The spectra of Ne-like nickel, palladium and molybdenum ions, Ni-like tungsten and gold ions are observed. In some discharges the micropinch region reaches < or approx. 10 μm. As a whole, X pinch has turned out to be a snitable subject of inquiry in the field of individual sausage-type instability dynamics. The calculations based on the radiation collapse model are in good agreement with the experimental data

  18. A high-current, high-voltage power supply with special output current waveform for APS injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    This paper describes a high-voltage, high-current power supply for the injector synchrotron dipole magnets at APS. In order to reset the dipole magnets in each cycle two different current waveforms are suggested. The first current waveform consists of three sections, namely: dc-reset, linear ramp, and recovery sections where injection is done ''on the fly''. The second current waveform consists of six different sections, dc-reset, transition to injection level, injection flat level, parabolic, linear ramp and recovery sections. The effect of such waveforms on the beam is discussed and the power supply limitations to follow such waveforms are given. The power supply limitations are due to the power components and control loops. The reference for the current loop is generated by a DAC which is discussed

  19. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    International Nuclear Information System (INIS)

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  20. WC-Co composites produced by sintering tungsten, graphite and cobalt powders using high-current electric pulses

    International Nuclear Information System (INIS)

    The paper presents the results of examination of tungsten carbide sinters produced of a mixture of tungsten, carbon and cobalt powders using the PPS method (Pulse Plasma Sintering), developed at the Faculty of Materials Engineering, Warsaw University of Technology. With the use of powder mixture, the WC-Co composites were produced during a single technological process. The structure of the sinters was examined microscopically and their phase compositions, hardness and densities were determined. The WC-Co composite was produced by subjecting the elemental powders to sintering with high-current electric pulses for the time as short as 480 s, whereas with conventional methods the fabrication time of this composite amounts to several hours. The hardness of composites was 1515HV30 and the density - 15.1 g/cm3. (author)

  1. Optimization of a low-pressure hollow-anode electrical discharge for generation of high-current electron beams

    International Nuclear Information System (INIS)

    We report results on the optimization of the design of a high-current hollow-anode (HA) electrical discharge electron beam source that is triggered by a ferroelectric surface discharge. For the ferroelectric sample, we used a BaTi solid solution with a large dielectric constant (ε ∼ 1600). Three different electric schemes for ignition and sustainment of the HA discharge were investigated. The studied HA designs allow reliable ignition and sustainment of the discharge with current amplitude of up to 1.2 kA and pulse duration of up to 2x10-5 s, with and without gas flooding. It was found that the rise time of the discharge current monotonically decreases from ∼10-7.5 μs with the increase of the background pressure from 4x10-5 to 7x10-5 Torr. Generation of high-current electron beams was demonstrated under an accelerating voltage of up to 300 kV and ∼400 ns pulse duration. It was shown that the use of an optimal resistor which supplies an auto-bias potential to the HA output grid eliminates almost entirely the plasma pre-filling of the accelerating gap prior to the application of the accelerating pulse. In addition, it was found that within a certain range of time delays (12.5-15.5 μs) of the application of the accelerating pulse with respect to the beginning of the HA discharge, the amplitude of the diode current remains practically unchanged in spite of a considerable decrease in the amplitude of the discharge current

  2. Optimization of a low-pressure hollow anode electrical discharge for generation of high-current electron beams

    International Nuclear Information System (INIS)

    Full Text:We report results on the optimization of the design of a high-current hollow anode electrical discharge electron beam source triggered by a ferroelectric surface discharge. For the ferroelectric sample we used a BaTi solid solution with a large dielectric constant epsilon =: 1600. Three different electric schemes for ignition and sustaining of the hollow anode discharge were investigated. The studied hollow anode designs allow reliable ignition and sustaining of the discharge with current amplitude of up to 1.2 kA and pulse duration of up to 20 Vs, with and without gas flooding. It was found that the rise time of the discharge current monotonically decreases from N 10 vs to N 7.5 vs with the increase of the background pressure from 4 Pa to 7 Pa. Generation of high-current electron beams was demonstrated under an accelerating voltage of up to 300 kV and N 400 ns pulse duration. It was shown that the use of an optimal resistor which supplies an auto-bias potential to the hollow-anode output grid eliminates almost entirely the plasma pre-filling of the accelerating gap prior to the application of the accelerating pulse. In addition, it was found that within a certain range of time delays (12.5 vμs - 15.5 vμs) of the application of the accelerating pulse with respect to the beginning of the hollow anode discharge, the amplitude of the diode current remains practically unchanged in spite of a considerable decrease in the amplitude of the discharge current

  3. Dynamics of a relativistic electron beam in a high-current diode with a knife-edge cathode

    International Nuclear Information System (INIS)

    For a number of practical applications, e.g., producing discharges in large volumes in order to pump gas lasers and for short x-ray pulses, it is necessary to generate electron beams in megamp range with electron energies from hundreds of kilovolts to several megavolts. It has been possible to obtain high currents (I ± 1 MA) by using diodes with knife-edge cathodes. Knife-edge diodes have an important advantage over the parapotential type because the ion current in them comprises a relatively small fraction of the total current. This is because the electron path in the accelerating gap of knife-edge diodes is quite short in comparison with that in high-current parapotential diodes. From the point of view of applying ribbon-shaped or narrow electron beams, the important problems are in measuring the current-voltage characteristics of the diodes and determining the dynamics of the energy spectrum and the angular spread of the electrons. The generation of an electron beam with a current ∼130 kA and pulse length ∼60 ns is studied. The current-voltage characteristics of knife-edge diodes with various geometries, the dynamics of the angular spread, and the beam structure are studied. As a result of the study of the REB dynamics it is found that the operation of the diode with these experiments can be approximated by a proposed formula which includes the finite thickness of the knife-edge cathode and the motion of the plasma and ions in the discharge gap. Breaking up of the beam into individual current-carrying channels is observed with the characteristic scale ∼1-2 mm. It is noted that for the diode geometry with a knife-edge cathode, when the magnetic field changes sign and passes through zero, an instability can exist which is analogous to the dissipative tearing instability

  4. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  5. A Vlasov solver for collective effects in particle accerators

    International Nuclear Information System (INIS)

    Integration techniques based on Lie algebraic methods have been successfully used in beam transport codes for particle accelerators. Generally these methods have been applied to problems of single-particle beam dynamics. Here we present an application of Lie algebraic techniques to the development of a Vlasov solver suitable for problems of beam transport in the presence of non-negligible particle self-fields. The solver we discuss is suitable for modelling a variety of collective effects that may arise at high current. In particular, we consider the case of coherent synchrotron radiation effects in magnetic bunch compressors which can cause instabilities limiting performance of high current accelerators.

  6. Advanced Particle Filter for Non-cooperative Target Tracking in LTE%基于非合作定位模型的改进型粒子滤波跟踪算法

    Institute of Scientific and Technical Information of China (English)

    滕飞; 钟子发

    2015-01-01

    针对卡尔曼滤波对3GPP 长期演进(LTE,long term evolution)终端非合作跟踪定位精度较差的问题,提出了基于非合作定位模型的改进型粒子滤波算法。该算法以侦测站从空口截获的含有噪声的波达时延差(TDOA)和波达时延和(TSOA)信息为基础,建立目标跟踪定位模型,通过改进型粒子滤波(PF,particle filter)算法实现对目标终端的位置和速度的跟踪获取。仿真实验表明,该算法可以有效实现对目标的跟踪,较无迹卡尔曼滤波(UKF,unscented kal-man filter)算法有更好的准确性。%In order to solve the poor accuracy problem of non-cooperative target tracking by the algorithm of Kalman filter in LTE,this paper offered the model of non-cooperative target tracking.This algorithm built a target tracking model which based on the TDOA and TSOA information.These information were intercepted by monitoring station from the spatial interface.the target tracking by a advanced particle filter was realized.Numerical simulations showed that the algo-rithm could realize the target tracking and had a better veracity than UKF.

  7. Particle-Particle-String Vertex

    OpenAIRE

    Ishibashi, Nobuyuki

    1996-01-01

    We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.

  8. Acceleration of 1 MeV H- Ion Beams at ITER NB-relevant High Current Density

    International Nuclear Information System (INIS)

    brought substantial improvement in voltage holding during beam acceleration at around 1 MV. By the improved voltage holding even under beam acceleration, H- ion beams of 185 A/m2 (430 mA in total) have been successfully accelerated up to 0.98 MeV. This is a world first demonstration of negative ion beams at high current, high current density and high energy close to the ITER requirements. (author)

  9. Design study for a high-current, steady-state autoresonant accelerator. Final report, July 14-November 14, 1979

    International Nuclear Information System (INIS)

    During the past year and a half, both theoretical and engineering investigations have been carried forward in a research program to assess the feasibility, and provide conceptual designs and engineering design studies for high current, steady state Auto-Resonant Accelerators. The behavior of each of the various components of an Auto-Resonant Accelerator has been carefully examined for the case of moderately relativistic electron energy and high electron current which will be appropriate for steady state operation. In general, a very considerable amount of progress has been achieved on the front-end components of the accelerator, with design options narrowed significantly and preliminary design parameters even determined for the power supplies, the electron beam source, the radiation shielding, the convergent Pierce gun diode, and the electron cyclotron wave exciter. For the downstream accelerator components consisting of the gas cell and electrode structures which are used to generate and load the ions into the cyclotron wave and to eliminate secondary electrons, conceptual designs have been realized; however, some further work remains to be done before an optimized engineering design of these components can be constructed for a first experimental test of a steady state Auto-Resonant Accelerator

  10. Characterization of Downstream Ion Energy Distributions From a High Current Hollow Cathode in a Ring Cusp Discharge Chamber

    Science.gov (United States)

    Foster, John E.; Patterson, Michael J.

    2003-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 10 Angstroms) has been documented in the literature. As part of an ongoing effort to uncover the underlying physics of the formation of these ions, ion efflux from a high current hollow cathode operating in an ion thruster discharge chamber was investigated. Using a spherical sector electrostatic energy analyzer located downstream of the discharge cathode, the ion energy distribution over a 0 to 60 eV energy range was measured. The sensitivity of the ion energy distribution function to zenith angle was also assessed at 3 different positions: 0, 15, and 25 degrees. The measurements suggest that the majority of the ion current at the measuring point falls into the analyzer with an energy approximately equal to the discharge voltage. The ion distribution, however, was found to be quite broad. The high energy tail of the distribution function tended to grow with increasing discharge current. Sensitivity of the profiles to flow rate at fixed discharge current was also investigated. A simple model is presented that provides a potential mechanism for the production of ions with energies above the discharge voltage.

  11. Homoleptic and heteroleptic N-alkylimidazole zinc(ii)-containing ionic liquids for high current density electrodeposition.

    Science.gov (United States)

    Steichen, Marc; Brooks, Neil R; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen

    2014-08-28

    New homoleptic and heteroleptic zinc(ii)-containing liquid metal salts with N-alkylimidazole (AlkIm) ligands and bis(trifluoromethylsulfonyl)imide (Tf2N(-)) anions are described. The general formulae of the complexes are [Zn(AlkIm)6][Tf2N]2 and [Zn(AlkIm)6-x(AlkIm')x][Tf2N]2. Single-crystal X-ray diffraction revealed that, in the solid state, the cations consist of octahedral zinc(ii) centres. The heteroleptic complexes contain two different N-alkylimidazole ligands. The melting points of the liquid metal salts are below or slightly above room temperature. The dependence of the melting points, viscosity and crystal structure on the alkyl chain length of the N-alkylimidazole ligand for the homoleptic complexes and on the ratio of the two N-alkylimidazole ligands AlkIm and AlkIm' for the heteroleptic compounds is discussed. The possibility of incongruent melting and the presence of a mixture of the four-coordinate zinc(ii) centre and neutral ligands is discussed. The new zinc(ii)-containing liquid metal salts have been used as non-aqueous electrolytes for electrodeposition of zinc. A highly reversible deposition-stripping behaviour was found. Zinc electroplating was possible at very high current densities of more than -200 mA cm(-2) in unstirred solutions. Compact and highly crystalline zinc deposits were obtained. PMID:24988506

  12. Proceedings of the DOE workshop on the role of a high-current accelerator in the future of nuclear medicine

    International Nuclear Information System (INIS)

    The meeting was prompted by recent problems with isotope availability from DOE accelerator facilities; these difficulties have resulted from conflicting priorities between physics experiments and isotope production activities. The workshop was a forum in which the nuclear medicine community, isotope producers, industry, and other interested groups could discuss issues associated with isotope availability (including continuous supply options), the role of DOE and industry in isotope production, and the importance of research isotopes to the future of nuclear medicine. The workshop participants endorsed DOE's presence in supplying radioisotopes for research purposes and recommended that DOE should immediately provide additional support for radionuclide production in the form of personnel and supplies, DOE should establish a policy that would allow income from sales of future ''routine'' radionuclide production to be used to support technicians, DOE should obtain a 70-MeV, 500-/mu/A variable-energy proton accelerator as soon as possible, and DOE should also immediately solicit proposals to evaluate the usefulness of a new or upgraded high-energy, high-current machine for production of research radionuclides. This proceedings volume is a summary of workshop sessions that explored the future radionuclide needs of the nuclear medicine community and discussed the DOE production capabilities that would be required to meet these needs

  13. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    CERN Document Server

    Giskes, Ella; Segerink, Frans B; Venner, Cornelis H

    2016-01-01

    In the research of supersonic flows, flow visualization continues to be an important tool, and even today it is difficult to create high quality images. In this study we present a low-cost and easy-to use Schlieren setup. The setup makes use of LEDs, pulsed with high currents to increase the optical output to sufficient levels, exploiting the advantages of LED light over conventional light sources. As a test-case we study the interaction of a Mach 1.7 cross flow and a transverse underexpanded jet, which is commonly studied considering the mixing and combustion in scramjet engines. Using 130 nanosecond LED light pulses, we captured the flow structures sharply and in great detail. We observed a large-gradient wave, which was seen in numerical studies but hitherto not reported in experiments. Furthermore, we demonstrate that time-correlated images can be obtained with this Schlieren setup, so that also flow unsteadiness can be studied, such as the movement of shock waves and vortices.

  14. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    International Nuclear Information System (INIS)

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1−x, Co3W9C4, Co3W3C phases and graphite precipitate domains ∼50 nm. The friction coefficient of modified surface decreased to ∼0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10−5 mm3/min to 6.3 × 10−6 mm3/min, showing a significant self-lubricating effect.

  15. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, S.Z., E-mail: ebeam@dlut.edu.cn [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Y. [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 (China); Xu, Y. [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000 (China); Gey, N.; Grosdidier, T. [Université de Lorraine, Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Ile du Saulcy, 57045 Metz (France); Université de Lorraine, Laboratoire d’Excellence on Design of Alloy Metals for Low-Mass Structure (DAMAS), Ile du Saulcy, 57045 Metz (France); Dong, C. [Key Laboratory of Materials Modification and School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024 (China); Université de Lorraine, Laboratoire d’Excellence on Design of Alloy Metals for Low-Mass Structure (DAMAS), Ile du Saulcy, 57045 Metz (France)

    2013-11-15

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC{sub 1−x}, Co{sub 3}W{sub 9}C{sub 4}, Co{sub 3}W{sub 3}C phases and graphite precipitate domains ∼50 nm. The friction coefficient of modified surface decreased to ∼0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10{sup −5} mm{sup 3}/min to 6.3 × 10{sup −6} mm{sup 3}/min, showing a significant self-lubricating effect.

  16. Effect of electrical stimulation of nucleus accumbens with low, median and high currents intensities on conditioned place preference induced by morphine in rats

    Directory of Open Access Journals (Sweden)

    Maryam Radahmadi

    2014-01-01

    Conclusion: It is possible that high current intensity (100 μA had an accompanied effect by a reversal of the increased tissue contents of dopamine and its metabolites in the NAc of morphine-induced CPP rats. Furthermore, high current intensity in combination with ineffective dose of morphine (0.5 mg/kg increased morphine-induced CPP probability via the prove reward system.

  17. General defocusing particle tracking.

    Science.gov (United States)

    Barnkob, Rune; Kähler, Christian J; Rossi, Massimiliano

    2015-09-01

    A General Defocusing Particle Tracking (GDPT) method is proposed for tracking the three-dimensional motion of particles in Lab-on-a-chip systems based on a set of calibration images and the normalized cross-correlation function. In comparison with other single-camera defocusing particle-tracking techniques, GDPT possesses a series of key advantages: it is applicable to particle images of arbitrary shapes, it is intuitive and easy to use, it can be used without advanced knowledge of optics and velocimetry theory, it is robust against outliers and overlapping particle images, and it requires only equipment which is standard in microfluidic laboratories. We demonstrate the method by tracking the three-dimensional motion of 2 μm spherical particles in a microfluidic channel using three different optical arrangements. The position of the particles was measured with an estimated uncertainty of 0.1 μm in the in-plane direction and 2 μm in the depth direction for a measurement volume of 1510 × 1270 × 160 μm(3). A ready-to-use GUI implementation of the method can be acquired on . PMID:26201498

  18. Particle and nuclear physics

    CERN Document Server

    Faessler, Amand

    2013-01-01

    Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussio

  19. Particle energization

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, G.

    1990-01-01

    A first-principles approach to the physics of particle energization is presented. The general physics of particle acceleration is then applied to a number of the classical astrophysical mechanisms for accelerating particles, with references to recent literature where these are used in specific circumstances. The solar flare is recommended as a microcosm for studying particle acceleration because many different processes seem to be occurring in close proximity, and there is abundant high time resolution data for diagnosing those processes. Finally, a list of possible sites and mechanisms for particle acceleration in spiral galaxies is presented. 66 refs., 6 figs., 3 tabs.

  20. Design and development of direct off line switch mode magnet power supply for high current proton ion source

    International Nuclear Information System (INIS)

    High current power supply having rating 10 V/200 A is used for the confinement of the plasma. This plasma is used for the generation of high intensity proton beam that is used for the study of various beam dynamics. In this paper we will present the detail design feature of this magnet power supply including the dynamics of control system. The power supply is redesigned in the lab in order to provide better closed loop regulation and system robustness. PI/PID converter is designed optimally to provide better time response with adequate robustness. The topology of power supply is based on the isolated DC-DC converter (direct off line and full- bridge isolated buck converter topology with soft switching technique) which is generally used to avoid the interference of low power control board with the high power side. In order to obtain the regulated DC output voltage initially 230V AC is first rectified then filtered to obtain unregulated 350V DC. After that this 350V is switched at 20 KHz by full wave bridge inverter circuit using IGBT as a switch to give high frequency AC output. This AC Voltage is fed to primary terminals of ferrite core center tape step down transformers, which gives 10V AC. This AC voltage is finally rectified and filtered with low pass LC filter to obtain 10VDC. The current regulation is achieved using feedback control loop by comparing the output current (through DCCT) with stable reference voltage. After comparison an error signal is fed to built-in error amplifier of PWM IC (SG2524), which in turns varies the duty cycle depending upon the error signals which drive IGBT through Opto isolator (TLP 250). Soft switching also used to mitigate switching loss and possibly reduce the generation of EMI in Semiconductor devices. The experimental result is presented for the verification of mathematical analysis. (author)

  1. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    Science.gov (United States)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6–2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5–2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1–1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150–170 eV, while for neon discharges with the deuterium puffing it reached 330–880 eV (with accuracy of  ±20%).

  2. Diagnostics and electron-optics of a high current electron beam in the TANDEM free electron laser - status report

    International Nuclear Information System (INIS)

    In the construction of the Israeli TANDEM FEL the major task is to develop a high quality electron optic system. The goal is to focus the e-beam to a minimal radius (1 mm) in the interaction region (the wiggler). Furthermore, good focusing throughout the accelerator is essential in order to achieve high transport efficiency avoiding discharge and voltage drop of the high voltage terminal. We have completed the electron optical design and component procurement, including 8 quadrupole lenses 4 steering coils and an electrostatic control system. All are being assembled into the high voltage terminal and controlled by a fiber optic link. Diagnostic means based on fluorescent screens and compact CCD camera cards placed at the HV terminal and at the end of the e-gun injector have been developed. We report first measurements of the beam emittance at the entrance to the Tandem accelerator tube using the open-quote pepper pot close-quote technique. The experiment consists of passing the 0.5 Amp beam through a thin plate which is perforated with an army of 0.5 mm holes. The spots produced on a fluorescent screen placed 90 cm from the pepper pot were recorded with a CCD camera and a frame grabber. The measured normalized emittance is lower than 10π mm mR which is quite close to the technical limit of dispenser cathode e-guns of the kind we have. Recent results of the measured transport efficiency and the diagnostics of the high current (1A, 1.5MV) electron-optical system will be reported

  3. Prospects of pulsed high-current discharge in nitrogen-filled-capillary for lasing at 13.4 nm

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav; Frolov, Oleksandr

    Xi´an, Shaanxi Province : Institute of Fluid Physics, 2008 - (Deng, J.). s. 10-11 ISBN N. [International Conference on High-Power Particle Beams, BEAMS´08/17th./. 06.07.2008-11.07.2008, Xi´an, Shaanxi Province] R&D Projects: GA ČR GA202/06/1324; GA MŠk LA08024; GA AV ČR KAN300100702; GA AV ČR KJB100430702 Institutional research plan: CEZ:AV0Z20430508 Keywords : discharge-based soft X-ray laser * recombination pumping * N-filled capillary discharge Subject RIV: BL - Plasma and Gas Discharge Physics

  4. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments

    Science.gov (United States)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  5. Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices

    Science.gov (United States)

    Huo, Pengyun; Rey-Stolle, Ignacio

    2016-06-01

    The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm-3 to 1.6 × 1019 cm-3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm-3 had Schottky-like I- V characteristics and only samples doped 1.6 × 1019 cm-3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance ( ρ c,Ti/Pd/Ag ~ 5 × 10-4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C ( ρ M,Ti/Pd/Ag ~ 2.3 × 10-6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.

  6. Localisation of 'hot particles'

    International Nuclear Information System (INIS)

    This report intends to advance procedures for decision whether environmental samples are contaminated with hot particles and to quantify the resulting measurement uncertainty. For that purpose the knowledge about various aspects of hot particles is summarised and made available in a classified bibliography. Two important areas of technical measuring problems are examined in detail by stochastic simulation and experiments. First, the methods of sample splitting and repeated mixing are tested for their suitability to proof the presence of hot particles in environmental samples. For both methods procedures are given according to which it is possible to quantify the probability that hot particles are included in the sample. Finally, the measuring uncertainty is determined for several measuring geometries which occur when hot particles are included in a sample. E.g., the potential error in radiocesium concentration range from 3.5 times overestimation to 3 times underestimation if the soil measured in the 1 liter Marinelli-beaker is contaminated by a single hot particle instead of a homogeneous activity. (orig.)

  7. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  8. Particle therapy

    International Nuclear Information System (INIS)

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  9. Particle physics

    International Nuclear Information System (INIS)

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  10. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  11. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime.

    Science.gov (United States)

    Yan, X Q; Lin, C; Sheng, Z M; Guo, Z Y; Liu, B C; Lu, Y R; Fang, J X; Chen, J E

    2008-04-01

    A new ion acceleration method, namely, phase-stable acceleration, using circularly-polarized laser pulses is proposed. When the initial target density n(0) and thickness D satisfy a(L) approximately (n(0)/n(c))D/lambda(L) and D>l(s) with a(L), lambda(L), l(s), and n(c) the normalized laser amplitude, the laser wavelength in vacuum, the plasma skin depth, and the critical density of the incident laser pulse, respectively, a quasiequilibrium for the electrons is established by the light pressure and the space charge electrostatic field at the interacting front of the laser pulse. The ions within the skin depth of the laser pulse are synchronously accelerated and bunched by the electrostatic field, and thereby a high-intensity monoenergetic proton beam can be generated. The proton dynamics is investigated analytically and the results are verified by one- and two-dimensional particle-in-cell simulations. PMID:18517963

  12. Parametric study of a high current-density EBIS Charge Breeder regarding Two Stream plasma Instability (TSI)

    Science.gov (United States)

    Shornikov, Andrey; Mertzig, Robert; Breitenfeldt, Martin; Lombardi, Alessandra; Wenander, Fredrik; Pikin, Alexander

    2016-06-01

    In this paper we report on our results from the design study of an advanced Electron Beam Ion Source (EBIS) based Charge Breeder (ECB). The ECB should fulfill the requirements of the HIE-ISOLDE upgrade, and if possible be adapted for ion injection into TSR@ISOLDE, as well as serve as an early prototype of a future EURISOL ECB. Fulfilling the HIE-ISOLDE/TSR@ISOLDE specifications requires simultaneous increase in electron beam energy, current and current density in order to provide the requested beams with proper charge state, high intensity and with a specified pulse repetition rate. We have carried out a study on the technical requirements of the ECB. The obtained parameters were optimized to comply with technical limitations arising from the electron beam technology and plasma physics in an ECB.

  13. On the charged particle shock acceleration

    International Nuclear Information System (INIS)

    The shock acceleration method employs injection of beam particles into the linear accelerator unexcited structure. Upon injecting a wave of accelerating electromagnetic field is excited in the structure it catches up with the particles and accelerates them. Dynamics of particle acceleration using the abovesaid method is under consideration. A d gree of particle beam compression in the process of beam acceleration is found out. New technique is suggested of shock acceleration with particle outlet to the potential barrier plateau that enables to attain compression not only of relativistic beams but also of non relativistic ones. It is shown that the method in question enables to get compression of electron and ion beams while increasing essentially their current and reducing the density modulation period. Shock acceleration in high current accelerators enables to obtain high-energy current beams (above 104A), which ght be used in studies on ionic thermonuclear fusion in powerful free electron lasers

  14. High current density electrodeposition of silver from silver-containing liquid metal salts with pyridine-N-oxide ligands.

    Science.gov (United States)

    Sniekers, Jeroen; Brooks, Neil R; Schaltin, Stijn; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen

    2014-01-28

    New cationic silver-containing ionic liquids were synthesized and used as non-aqueous electrolytes for the electrodeposition of silver layers. In the liquid state of these ionic liquids, a silver (i) cation is coordinated by pyridine-N-oxide (py-O) ligands in a 1 : 3 metal-to-ligand ratio, although in some cases a different stoichiometry of the silver center crystallized out. As anions, bis(trifluoromethanesulfonyl)imide (Tf2N), trifluoromethanesulfonate (OTf), methanesulfonate (OMs) and nitrate were used, yielding compounds with the formulae [Ag(py-O)3][Tf2N], [Ag(py-O)3][OTf], [Ag(py-O)3][OMs] and [Ag(py-O)3][NO3], respectively. The compounds were characterized by CHN analysis, FTIR, NMR, DSC, TGA and the electrodeposition of silver was investigated by cyclic voltammetry, linear potential scans, scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX). With the exception of [Ag(py-O)3][Tf2N], which melts at 108 °C, all the silver(i) compounds have a melting point below 80 °C and were tested as electrolytes for silver electrodeposition. Interestingly, very high current densities were observed at a potential of -0.5 V vs. Ag/Ag(+) for the compounds with fluorine-free anions, i.e. [Ag(py-O)3][NO3] (current density of -10 A dm(-2)) and [Ag(py-O)3][OMs] (-6.5 A dm(-2)). The maximum current density of the compound with the fluorinated anion trifluoromethanesulfonate, [Ag(py-O)3][OTf], was much lower: -2.5 A dm(-2) at -0.5 V vs. Ag/Ag(+). Addition of an excess of ligand to [Ag(py-O)3][OTf] resulted in the formation of the room-temperature ionic liquid [Ag(py-O)6][OTf]. A current density of -5 A dm(-2) was observed at -0.5 V vs. Ag/Ag(+) for this low viscous silver salt. The crystal structures of several silver complexes could be determined by X-ray diffraction, and it was found that several of them had a stoichiometry different from the 1 : 3 metal-to-ligand ratio used in their synthesis. This indicates that the compounds form crystals

  15. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma

    International Nuclear Information System (INIS)

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 oC according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 1012-101'3 cm-3. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind of plasma. Diborane dissociation

  16. Particle physics

    CERN Document Server

    Carlsmith, Duncan

    2012-01-01

    Particle Physics is the first book to connect theory and experiment in particle physics. Duncan Carlsmith provides the first accessible exposition of the standard model with sufficient mathematical depth to demystify the language of gauge theory and Feynman diagrams used by researchers in the field. Carlsmith also connects theories to past, present, and future experiments.

  17. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how our description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  18. Particle accelerators and scientific culture

    International Nuclear Information System (INIS)

    A historical review of fifty years of physics around particle accelerators, from the first nuclear reactions produced by beams of artificially accelerated particles to the large multinational projects now under discussion. The aim is to show how the description of natural phenomena has been shaped by advances in theoretical understanding, the development of new techniques, and the characters of men. Large use has been made of quotations from many of the scientists involved. (Auth.)

  19. Analysis and design of a high-current-high-voltage accurate power supply for the APS storage ring

    International Nuclear Information System (INIS)

    There are 81 dipole magnets contained in the storage ring at the Advanced Photon Source (APS). These magnets are connected in series and are energized by only one 12-phase power supply. The eighty-first magnet is located in a temperature-controlled room with a NMR probe to monitor the magnetic field in the magnet and provide a reference signal for correction of the field drift due to aging of the components. The current in the magnets will be held at 497 A. The required current stability of the power supply is ±30 ppm, the current reproducibility is ±50 ppm, and the current ripple is ±400 ppm. The voltage required to maintain such a current in the magnets is about 1700 V. Different schemes for regulating current in the magnets are studied. Pspice software is used to simulate the behavior and the design of such a power supply under different conditions. The pros and cons of each scheme will be given and the proper power and regulating scheme will be selected

  20. Analysis and design of a high-current, high-voltage accurate power supply for the APS storage ring

    International Nuclear Information System (INIS)

    There are 81 dipole magnets contained in the storage ring at the Advanced Photon Source (APS). These magnets are connected in series and are energized by only one 12-phase power supply. The eighty-first magnet is located in a temperature-controlled room with an NMR probe to monitor the magnetic field in the magnet and provide a reference signal for correction of the field drift due to aging of the components. The current in the magnets will be held at 497 A. The required current stability of the power supply is ±30 ppM, the current reproducibility is ±50 ppM, and the current ripple is ±400 ppM. The voltage required to maintain such a current in the magnets is about 1700 V. Different schemes for regulating current in the magnets are studied. Pspice software is used to simulate the behavior and the design of such a power supply under different conditions. The pros and cons of each scheme will be given and the proper power and regulating scheme will be selected