WorldWideScience

Sample records for advanced high-current particle

  1. Advanced metal alloy systems for massive high-current photocathodes

    Science.gov (United States)

    Tkachenko, V. G.; Kondrashev, A. I.; Maksimchuk, I. N.

    2010-03-01

    The physical principles of precise alloying are formulated with the aim of increasing the low quantum efficiency (QE) of suitable simple metals (Mg, Al, Cu) as well as of decreasing their electron work function ( e φ) in the UV spectral range. The new approach provides valuable information for elucidating the origin of photoemission enhancement in bulk metal-based alloy systems. Bulk in-situ nanoclustering promises to be the most effective way of producing a much higher QE and a lower e φ in simple metals. In this article we show that the quantum efficiency of the metal-based alloys Mg-Ba, Al-Li, and Cu-BaO is considerably higher than the simple metals Mg, Al, and Cu, respectively. The spectral characteristics of the Mg-Ba, Al-Li and Cu-BaO systems obey the well-known Fowler square law for a near-free-electron model. The advanced metal alloys systems are promising photocathode materials usable for generation of high brightness electron beams.

  2. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  3. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2014-01-01

    Testing was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by Space Systems Loral, LLC (SSL). The ATJ coupon was a small, 4-cell, two-string configuration of flight-type design that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge (ESD) testing at two string voltages (100 V, 150 V) and four string currents (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micro-seconds to 2.75 milli-seconds. All TSAs occurred at a string voltage of 150 V. Post-ESD functional testing showed that no degradation occurred due to the TSA events. These test results point to a robust design for application to a high-current, high-power mission.

  4. High Current ESD Test of Advanced Triple Junction Solar Array Coupon

    Science.gov (United States)

    Wright, Kenneth H., Jr.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie

    2015-01-01

    A test was conducted on an Advanced Triple Junction (ATJ) coupon that was part of a risk reduction effort in the development of a high-powered solar array design by SSL. The ATJ coupon was a small, 4-cell, two-string configuration that has served as the basic test coupon design used in previous SSL environmental aging campaigns. The coupon has many attributes of the flight design; e.g., substrate structure with graphite face sheets, integrated by-pass diodes, cell interconnects, RTV grout, wire routing, etc. The objective of the present test was to evaluate the performance of the coupon after being subjected to induced electrostatic discharge testing at two string voltages (100 V, 150 V) and four array current (1.65 A, 2.0 A, 2.475 A, and 3.3 A). An ESD test circuit, unique to SSL solar array design, was built that simulates the effect of missing cells and strings in a full solar panel with special primary arc flashover circuitry. A total of 73 primary arcs were obtained that included 7 temporary sustained arcs (TSA) events. The durations of the TSAs ranged from 50 micros to 2.9 ms. All TSAs occurred at a string voltage of 150 V. Post-test Large Area Pulsed Solar Simulator (LAPSS), Dark I-V, and By-Pass Diode tests showed that no degradation occurred due to the TSA events. In addition, the post-test insulation resistance measured was > 50 G-ohms between cells and substrate. These test results indicate a robust design for application to a high-current, high-power mission application.

  5. A particle-core-MD model for intrabeam scattering and halo formation in high current beams in a FODO channel

    CERN Document Server

    Uhlmann, N; Comunian, M; Pisent, A

    2002-01-01

    An essential problem for the successful operation of high current linear ion accelerators is the control of beam losses due to halo particles. As a possible mechanism for the formation of such a halo we concentrate on the interplay between intrabeam scattering (IBS) and the incidence of particles which are driven to high amplitudes by resonances with the nonlinear space charge fields of a mismatched beam. Since a fully microscopic numerical treatment including all the mutual Coulomb interactions between the beam ions requires much too high computational effort, we developed an approximative method. These particle-core-molecular-dynamics (PCMD) simulations suitably join the mean-field description of the time evolution of the beam in framework of the envelope equations and a microscopic calculation of the Coulomb interactions between pseudo-particles with a renormalized charge. With this method we studied matched and mismatched continuous KV-beams in a FODO channel. In first simulation runs we observed a signif...

  6. Particle-in-cell simulation of electron trajectories and irradiation uniformity in an annular cathode high current pulsed electron beam source

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Zhou, Guangxue; Wang, Xiaofeng

    2017-02-01

    In order to study electron trajectories in an annular cathode high current pulsed electron beam (HCPEB) source based on carbon fiber bunches, the transmission process of electrons emitted from the annular cathode was simulated using a particle-in-cell model with Monte Carlo collisions (PIC-MCC). The simulation results show that the intense flow of the electrons emitted from the annular cathode are expanded during the transmission process, and the uniformity of the electron distribution is improved in the transportation process. The irradiation current decreases with the irradiation distance and the pressure, and increases with the negative voltage. In addition, when the irradiation distance and the cathode voltage are larger than 40 mm and -15 kV, respectively, a uniform irradiation current distribution along the circumference of the anode can be obtained. The simulation results show that good irradiation uniformity of circular components can be achieved by this annular cathode HCPEB source.

  7. Advanced concepts in particle and field theory

    CERN Document Server

    Hübsch, Tristan

    2015-01-01

    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...

  8. Advanced analysis methods in particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  9. Advanced Analysis Methods in Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha C. [Fermilab

    1900-01-01

    Each generation of high energy physics experiments is grander in scale than the previous – more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  10. Development of 2D particle-in-cell code to simulate high current, low energy beam in a beam transport system

    Indian Academy of Sciences (India)

    S C L Srivastava; S V L S Rao; P Singh

    2007-10-01

    A code for 2D space-charge dominated beam dynamics study in beam transport lines is developed. The code is used for particle-in-cell (PIC) simulation of -uniform beam in a channel containing solenoids and drift space. It can also simulate a transport line where quadrupoles are used for focusing the beam. Numerical techniques as well as the results of beam dynamics studies are presented in the paper.

  11. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... and improving hydraulic conditions. Unlike most traditional theses which usually focus only on one particular subject of study, this thesis contains four relatively independent studies which cover the following topics: a newly proposed particle settling enhancement plate, the redesign of the inlet zone......, introduction and conclusions as well as the study results. All studies were carried out with a combination of numerical model and measurements. In the first part of the thesis a new concept of using a vortex to increase particle removal from liquid was proposed and the new particle settling enhancement plates...

  12. Workshop on advances in smooth particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wingate, C.A.; Miller, W.A.

    1993-12-31

    This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy.

  13. Advances in Time-Resolved Tomographic Particle Image Velocimetry

    NARCIS (Netherlands)

    Lynch, K.P.

    2015-01-01

    This thesis details advanced developments in 3-D particle image velocimetry (PIV) based on the tomographic PIV technique, with an emphasis on time-resolved experiments. Tomographic PIV is a technique introduced in 2006 to measure the flow velocity in a three-dimensional volume. When measurements are

  14. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    CERN Document Server

    Zharkova, Valentina V; Benz, Arnold O; Browning, Phillippa; Dauphin, Cyril; Emslie, A Gordon; Fletcher, Lyndsay; Kontar, Eduard P; Mann, Gottfried; Onofri, Marco; Petrosian, Vahe; Turkmani, Rim; Vilmer, Nicole; Vlahos, Loukas

    2011-01-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  15. Advanced visualization technology for terascale particle accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ma, K-L; Schussman, G.; Wilson, B.; Ko, K.; Qiang, J.; Ryne, R.

    2002-11-16

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements.

  16. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics.

    Science.gov (United States)

    Wang, Jing-Tao; Wang, Juan; Han, Jun-Jie

    2011-07-04

    Recent advances in the fabrication of complex particles and particle-based materials assisted by droplet-based microfluidics are reviewed. Monodisperse particles with expected internal structures, morphologies, and sizes in the range of nanometers to hundreds of micrometers have received a good deal of attention in recent years. Due to the capability of generating monodisperse emulsions and of executing precise control and operations on the suspended droplets inside the microchannels, droplet-based microfluidic devices have become powerful tools for fabricating complex particles with desired properties. Emulsions and multiple-emulsions generated in the microfluidic devices can be composed of a variety of materials including aqueous solutions, gels, polymers and solutions containing functional nanoparticles. They are ideal microreactors or fine templates for synthesizing advanced particles, such as polymer particles, microcapsules, nanocrystals, and photonic crystal clusters or beads by further chemical or physical operations. These particles are promising materials that may be applicable for many fields, such as photonic materials, drug delivery systems, and bio-analysis. From simple to complex, from spherical to nonspherical, from polymerization and reaction crystallization to self-assembly, this review aims to help readers be aware of the many aspects of this field.

  17. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  18. Charged-particle beam diagnostics for the advanced photon source

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1993-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e -, e +) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest X-ray sources in the 10-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV injector synchrotron (IS), 7-GeV storage ring (SR), and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  19. The "Puck" energetic charged particle detector: Design, heritage, and advancements

    Science.gov (United States)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  20. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  1. Recent advances in the simulation of particle-laden flows

    NARCIS (Netherlands)

    Harting, J.D.R.; Frijters, M.; Ramaioli, Marco; Wolf, D.E.; Luding, S.

    2014-01-01

    A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this repor

  2. Advanced Technology Cloud Particle Probe for UAS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II SPEC will design, fabricate and flight test a state-of-the-art combined cloud particle probe called the Hawkeye. Hawkeye is the culmination of two...

  3. High-current cyclotron to drive an electronuclear assembly

    CERN Document Server

    Alenitsky, Yu G

    2002-01-01

    The proposal on creation of a high-current cyclotron complex for driving an electronuclear assembly reported at the 17th Meeting on Accelerators of Charged Particles is discussed. Some changes in the basic design parameters of the accelerator are considered in view of new results obtained in the recent works. It is shown that the cyclotron complex is now the most real and cheapest accelerator for production of proton beams with a power of up to 10 MW. Projects on design of a high-current cyclotron complex for driving an electronuclear subcritical assembly are presented.

  4. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  5. Theoretical Advanced Study Institute in Elementary Particle Physics

    CERN Document Server

    2017-01-01

    The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2017. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.

  6. Innovative experimental particle physics through technological advances: Past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Harry W.K.; /Fermilab

    2005-01-01

    This mini-course gives an introduction to the techniques used in experimental particle physics with an emphasis on the impact of technological advances. The basic detector types and particle accelerator facilities will be briefly covered with examples of their use and with comparisons. The mini-course ends with what can be expected in the near future from current technology advances. The mini-course is intended for graduate students and post-docs and as an introduction to experimental techniques for theorists.

  7. The impact of advances in computer technology on particle transport Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W.R. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Nuclear Engineering; Rathkopf, J.A. [Lawrence Livermore National Lab., CA (United States); Brown, F.B. [Knolls Atomic Power Lab., Schenectady, NY (United States)

    1992-01-21

    Advances in computer technology, including hardware, architectural, and software advances, have led to dramatic gains in computer performance over the past decade. We summarize these performance trends and discuss the extent to which particle transport Monte Carlo codes have been able to take advantage of these performance gains. We consider MIMD, SIMD, and parallel distributed computer configurations for particle transport Monte Carlo applications. Some specific experience with vectorization and parallelization of production Monte Carlo codes is included. The topic of parallel random number generation is discussed in some detail. Finally, some software issues that hinder the implementation of Monte Carlo methods on parallel processors are addressed.

  8. A better understanding of biomass co-firing by developing an advanced non-spherical particle tracking model

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen;

    2004-01-01

    -area-to-volume ratio and thus experiences a totally different motion and reaction as a non-spherical particle. Therefore, an advanced non-spherical particle-tracking model is developed to calculate the motion and reaction of nonspherical biomass particles. The biomass particles are assumed as solid or hollow cylinders......-gradient force. Since the drag and lift forces are both shape factor- and orientation-dependent, coupled particle rotation equations are resolved to update particle orientation. In the reaction of biomass particles, the actual particle surface area available and the average oxygen mass flux at particle surface...

  9. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials.

    Science.gov (United States)

    Montaño, Manuel D; Olesik, John W; Barber, Angela G; Challis, Katie; Ranville, James F

    2016-07-01

    From its early beginnings in characterizing aerosol particles to its recent applications for investigating natural waters and waste streams, single particle inductively coupled plasma-mass spectrometry (spICP-MS) has proven to be a powerful technique for the detection and characterization of aqueous dispersions of metal-containing nanomaterials. Combining the high-throughput of an ensemble technique with the specificity of a single particle counting technique and the elemental specificity of ICP-MS, spICP-MS is capable of rapidly providing researchers with information pertaining to size, size distribution, particle number concentration, and major elemental composition with minimal sample perturbation. Recently, advances in data acquisition, signal processing, and the implementation of alternative mass analyzers (e.g., time-of-flight) has resulted in a wider breadth of particle analyses and made significant progress toward overcoming many of the challenges in the quantitative analysis of nanoparticles. This review provides an overview of spICP-MS development from a niche technique to application for routine analysis, a discussion of the key issues for quantitative analysis, and examples of its further advancement for analysis of increasingly complex environmental and biological samples. Graphical Abstract Single particle ICP-MS workflow for the analysis of suspended nanoparticles.

  10. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  11. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak

    Science.gov (United States)

    Zhang, J. Z.; Zhu, Y. B.; Zhao, J. L.; Wan, B. N.; Li, J. G.; Heidbrink, W. W.

    2016-11-01

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  12. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  13. High-current, high-frequency capacitors

    Science.gov (United States)

    Renz, D. D.

    1983-06-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  14. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    Science.gov (United States)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  15. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment.

    Science.gov (United States)

    Zheng, Lei; Deng, Yang

    2016-04-15

    Ferrate(VI) as an emerging water treatment agent has recently recaptured interests for advanced wastewater treatment. A large number of studies were published to report ferrate(VI)-driven oxidation for various water contaminants. In contrast, very few efforts were made to characterize ferrate(VI) resultant particles in water and wastewater. In this study, jar tests were performed to examine the settleability and characteristics of ferrate(VI)-induced iron oxide particles, particularly the non-settable fraction of these particles, after ferrate(VI) reduction in a biologically treated municipal wastewater. The particle settleability was evaluated through the measurement of turbidity and particulate iron concentration in the supernatant with the settling time. Results showed that a majority of ferrate(VI)-induced iron oxide aggregates remained suspended and caused an increased turbidity. For example, at a Fe(VI) dose of 5.0 mg/L and pH 7.50, 82% of the added iron remained in the supernatant and the turbidity was 8.97 NTU against the untreated sample turbidity (2.33 NTU) after 72-h settling. The poor settling property of these particles suggested that coagulation and flocculation did not perform well in the ferrate(VI) treatment. Particle size analysis and transmission electron microscopy (TEM) revealed that nano-scale particles were produced after ferrate(VI) decomposition, and gradually aggregated to form micro-scale larger particles in the secondary effluent. Zeta potentials of the non-settable ferrate(VI) resultant aggregates varied between -7.36 and -8.01 mV at pH 7.50 during the 72-h settling. The negative surface charges made the aggregates to be relatively stable in the wastewater matrix.

  16. High current regimes in RFX-mod

    Science.gov (United States)

    Valisa, M.; Bolzonella, T.; Buratti, P.; Carraro, L.; Cavazzana, R.; Dal Bello, S.; Martin, P.; Pasqualotto, R.; Sarff, J. S.; Spolaore, M.; Zanca, P.; Zanotto, L.; Agostini, M.; Alfier, A.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Cavinato, M.; Chitarin, G.; DeLorenzi, A.; DeMasi, G.; Escande, D. F.; Fassina, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guazzotto, L.; Guo, S. C.; Igochine, V.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; McCollam, K.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Peruzzo, S.; Piovan, R.; Piron, L.; Pizzimenti, A.; Piovesan, P.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rostagni, G.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Vianello, N.; Yadikin, D.; Zaccaria, P.; Zaniol, B.; Zilli, E.; Zuin, M.

    2008-12-01

    Optimization of machine operation, including plasma position control, density control and especially feedback control on multiple magnetohydrodynamic modes, has led RFX-mod to operate reliably at 1.5 MA, the highest current ever achieved on a reversed field pinch (RFP). At high current and low density the magnetic topology spontaneously self-organizes in an Ohmical helical symmetry, with the new magnetic axis helically twisting around the geometrical axis of the torus. The separatrix of the island disappears leaving a wide and symmetric thermal structure with large gradients in the electron temperature profile. The new topology still displays an intermittent nature but its overall presence has reached 85% of the current flat-top period. The large gradients in the electron temperature profile appear to be marginal for the destabilization of ion temperature gradient modes on the assumption that ions and electrons have the same gradients. There are indications that higher currents could provide the conditions under which to prove the existence of a true helical equilibrium as the standard RFP configuration.

  17. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  18. Achromatic beam transport of High Current Injector

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-02-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time.

  19. NATO Advanced Research Workshop on Ionization of Solids by Heavy Particles

    CERN Document Server

    1993-01-01

    This book collects the papers presented at the NATO Advanced Research Workshop on "Ionization of Solids by Heavy Particles", held in Giardini-Naxos (Taormina), Italy, on June 1 -5, 1992. The meeting was the first to gather scientists to discuss the physics of electron emission and other ionization effects occurring during the interaction of heavy particles with condensed matter. The central problem in the field is how to use observations of electron emission and final radiation damage to understand what happens inside the solid, like excitation mechanisms, the propagation of the electronic excitation along different pathways, and surface effects. The ARW began with a brief survey of the field, stressing the unknowns. It was pointed out that ionization theories can only address the very particular case of weak perturbations. For this problem, this meant high speed, low-charged projectiles (a perturbation treatment of interactions with slow, highly charged ions was later presented). Only semi-empirical ...

  20. Particles, waves and storms in geospace: Recent advances and persistent gaps in our comprehension

    Science.gov (United States)

    Daglis, Ioannis A.

    2016-07-01

    The terrestrial magnetosphere features plasma populations with a wide dynamic range of energies, spanning more than 8 orders of magnitude -- from ≃V in the plasmasphere to tens of MeV in the outer Van Allen belt and hundreds of MeV in the inner Van Allen belt. A wealth of in-situ measurements of particles and waves, and ground-based measurements of waves, has shaped a comprehensive understanding of the interactions of the various plasma populations with electromagnetic waves during geospace magnetic storms and magnetospheric substorms. We shall discuss recent advances and persistent gaps in our comprehension of inner magnetosphere dynamics.

  1. Lagrangian Particle Hydrodynamics for Fluid Structure Collision Analysis in Advanced Aerostructures

    Science.gov (United States)

    Bayandor, Javid

    2008-11-01

    One of the key aerostructure certification criteria pertaining to the design phase, particularly in advanced structural concepts, addresses fluid-structure crash scenarios such as aircraft ditching on the water surface and bird-strike. Destructive trials on full-scale aerospace prototypes to evaluate damage sustained during fluid-structure collisions are extremely costly. Therefore, efforts have been made to numerically model such events with sufficient accuracy to significantly reduce the minimum number of tests required for design approval procedures. This presentation identifies the simulation strategies adopted using the Lagrangian particle hydrodynamics methodology in pursuit of such an investigation.

  2. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory; Offermann, D T [Los Alamos National Laboratory; Cobble, J A [Los Alamos National Laboratory; Schmitt, M J [Los Alamos National Laboratory; Gautier, D C [Los Alamos National Laboratory; Kwan, T J T [Los Alamos National Laboratory; Montgomery, D S [Los Alamos National Laboratory; Kluge, Thomas [FZD-GERMANY; Bussmann, Micheal [FZD-GERMANY; Bartal, T [UCSD; Beg, F N [UCSD; Gall, B [UNIV OF MISSOURI; Geissel, M [SNL; Korgan, G [NANOLABZ; Kovaleski, S [UNIV OF MISSOURI; Lockard, T [UNIV OF NEVADA; Malekos, S [NANOLABZ; Schollmeier, M [SNL; Sentoku, Y [UNIV OF NEVADA; Cowan, T E [FZD-GERMANY

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  3. Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology

    Science.gov (United States)

    Flippo, K. A.; Gaillard, S. A.; Kluge, T.; Bussmann, M.; Offermann, D. T.; Cobble, J. A.; Schmitt, M. J.; Bartal, T.; Beg, F. N.; Cowan, T. E.; Gall, B.; Gautier, D. C.; Geissel, M.; Kwan, T. J.; Korgan, G.; Kovaleski, S.; Lockard, T.; Malekos, S.; Montgomery, D. S.; Schollmeier, M.; Sentoku, Y.

    2010-11-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, Special Nuclear Material (SNM) detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high-current and high-energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology. Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent efficiencies of >5% from flat foils, on Trident using only a 5th of the intensity [1] and energy of the Nova Petawatt laser [2]. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world [3]. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  4. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  5. Overview of charged-particle beam diagnostics for the advanced photon source (APS)

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Votaw, A.; Wang, X.; Chung, Y.

    1992-07-01

    Plans, prototypes, and initial test results for the charged-particle beam (e-,e+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  6. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    Science.gov (United States)

    Lumpkin, A. H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-08-01

    Plans, prototypes, and initial test results for the charged-particle beam (e-), e(+) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture.

  7. Modeling laser produced plasmas with smoothed particle hydrodynamics for next generation advanced light sources

    Science.gov (United States)

    Holladay, Robert; Griffith, Alec; Murillo, Michael S.

    2016-10-01

    A computational model has been developed to study the evolution of a plasma generated by next-generation advanced light sources such as SLAC's LCLS and LANL's proposed MaRIE. Smoothed Particle Hydrodynamics (SPH) is used to model the plasma evolution because of the ease with which it handles the open boundary conditions and large deformations associated with these experiments. Our work extends the basic SPH method by utilizing a two-fluid model of an electron-ion plasma that also incorporates time dependent ionization and recombination by allowing the SPH fluid particles to have an evolving mass based on the mean ionization state of the plasma. Additionally, inter-species heating, thermal conduction, and electric fields are also accounted for. The effects of various initial conditions and model parameters will be presented, with the goal of using this framework to develop a model that can be used in the design and interpretation of future experiments. This work was supported by the Los Alamos National Laboratory Computational Physics Workshop.

  8. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    Science.gov (United States)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  9. High-Current Energy-Recovering Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  10. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  11. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  12. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  13. The development of optical microscopy techniques for the advancement of single-particle studies

    Science.gov (United States)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  14. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  15. A Dynamic Model for the Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface

    Science.gov (United States)

    Catalina, A. V.; Mukherjee, S.; Stefanescu, D. M.

    2000-01-01

    Most models that describe the interaction of an insoluble particle with an advancing solid-liquid interface are based on the assumption of steady state. However, as demonstrated by experimental work, the process does not reach steady state until the particle is pushed for a while by the interface. In this work, a dynamic mathematical model was developed. The dynamic model demonstrates that this interaction is essentially non-steady state and that steady state eventually occurs only when solidification is conducted at sub-critical velocities. The model was tested for three systems: aluminum-zirconia particles, succinonitrilepolystyrene particles, and biphenyl-glass particles. The calculated values for critical velocity of the pushing/engulfment transition were in same range with the experimental ones.

  16. The sixth Conference on Advanced Topics in the Interdisciplinary Fields of Particle Physics, Nuclear Physics and Cosmology

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The sixth Conference on Advanced Topics in the Interdisciplinary Fields of Particle Paysics.Nuclear Paysic8and Cosmology was held on July 22-27,2007 in Lijiang,Yunan Province.Over 70 scientists who were activelv working in the fields attended the conference and 42 physicists gave talks.9 papers have been selected to be published in the proceedings.

  17. A Method for Consensus Reaching in Product Kansei Evaluation Using Advanced Particle Swarm Optimization

    Science.gov (United States)

    2017-01-01

    Consumers' opinions toward product design alternatives are often subjective and perceptual, which reflect their perception about a product and can be described using Kansei adjectives. Therefore, Kansei evaluation is often employed to determine consumers' preference. However, how to identify and improve the reliability of consumers' Kansei evaluation opinions toward design alternatives has an important role in adding additional insurance and reducing uncertainty to successful product design. To solve this problem, this study employs a consensus model to measure consistence among consumers' opinions, and an advanced particle swarm optimization (PSO) algorithm combined with Linearly Decreasing Inertia Weight (LDW) method is proposed for consensus reaching by minimizing adjustment of consumers' opinions. Furthermore, the process of the proposed method is presented and the details are illustrated using an example of electronic scooter design evaluation. The case study reveals that the proposed method is promising for reaching a consensus through searching optimal solutions by PSO and improving the reliability of consumers' evaluation opinions toward design alternatives according to Kansei indexes. PMID:28316619

  18. Study of wavelet transform type high-current transformer

    Institute of Scientific and Technical Information of China (English)

    卢文科; 朱长纯; 刘君华; 张建军

    2002-01-01

    The wavelet transformation is applied to the high-current transformer.The high-current transformer elaborated in the paper is mainly applied to the measurement of AC/DC high-current.The principle of the transformer is the Hall direct-measurement principle.The transformer has the following three characteristics:firstly, the effect of the remnant field of the iron core on the measurement is decreased;secondly,because the temperature compensation is adopted,the transformer has good temperature charactreristic;thirdly,be-cause the wavelet transfomation technology is adopted,the transformer has the capacity of good antijanming.

  19. Advanced multi-frequency radar: Design, preliminary measurements and particle size distribution retrieval

    Science.gov (United States)

    Majurec, Ninoslav

    In the spring of 2001 the Microwave Remote Sensing Laboratory (MIRSL) at the University of Massachusetts began the development of an advanced Multi-Frequency Radar (AMFR) system for studying clouds and precipitation. This mobile radar was designed to consist of three polarimetric Doppler subsystems operating at Ku-band (13.4 GHz), Ka-band (35.6 GHz) and W-band (94.92 GHz). This combination of frequency bands allows a measurement of a wide range of atmospheric targets ranging from weakly reflecting clouds to strong precipitation. The antenna beamwidths at each frequency were intentionally matched, ensuring consistent sampling volume. Multi-frequency radar remote sensing techniques are not widely used because few multi-frequency radars are available to the science community. One exception is the 33 GHz/95 GHz UMass Cloud Profiling Radar System (CPRS), which AMFR is intended to replace. AMFR's multi-parameter capabilities are designed for characterizing the complex microphysics of layer clouds and precipitation processes in winter storms. AMFR will also play an important role in developing algorithms and validating measurements for an upcoming generation of space-borne radars. The frequency bands selected for AMFR match those of several sensors that have been deployed or are under development. These include the Japanese Aerospace Exploration Agencies (JAXA's) Tropical Rainfall Measuring Mission (TRMM) satellite Ku-band (13 GHz) radar, the CloudSat W-band (95 GHz) radar, and the Global Precipitation Mission (GPM) satellite radars at Ku-band and Ka-band. This dissertation describes the AMFR hardware design and development. Compared to CPRS, the addition of one extra frequency band (Ku) will extend AMFR's measurement capabilities towards the larger particle sizes (precipitation). AMFR's design is based around high-power klystron amplifiers. This ensures complete coherency (CPRS uses magnetrons and coherent-on-receive technique). The partial loss in sensitivity due to

  20. Evaluation of Particle Counter Technology for Detection of Fuel Contamination Detection Utilizing Advanced Aviation Forward Area Refueling System

    Science.gov (United States)

    2014-01-24

    UNCLASSIFIED 6 UNCLASSIFIED Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18/16/13 14/10/7 Pamas... Alcohol to Jet (ATJ) fuel flight testing at Redstone Test Center, TARDEC was afforded the opportunity to evaluate light obscuration particle counters on...Advanced Aviation Forward Area Refueling System (AAFARS) setup for Alcohol to Jet (ATJ) fuel flight testing. Figure 2. AAFARS fuel sampling port

  1. On-sun testing of an advanced falling particle receiver system

    Science.gov (United States)

    Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Siegel, Nathan; Jeter, Sheldon; Golob, Matthew; Abdel-Khalik, Said I.; Nguyen, Clayton; Al-Ansary, Hany

    2016-05-01

    A 1 MWth high-temperature falling particle receiver was constructed and tested at the National Solar Thermal Test Facility at Sandia National Laboratories. The continuously recirculating system included a particle elevator, top and bottom hoppers, and a cavity receiver that comprised a staggered array of porous chevron-shaped mesh structures that slowed the particle flow through the concentrated solar flux. Initial tests were performed with a peak irradiance of ~300 kW/m2 and a particle mass flow rate of 3.3 kg/s. Peak particle temperatures reached over 700 °C near the center of the receiver, but the particle temperature increase near the sides was lower due to a non-uniform irradiance distribution. At a particle inlet temperature of ~440 °C, the particle temperature increase was 27 °C per meter of drop length, and the thermal efficiency was ~60% for an average irradiance of 110 kW/m2. At an average irradiance of 211 kW/m2, the particle temperature increase was 57.1 °C per meter of drop length, and the thermal efficiency was ~65%. Tests with higher irradiances are being performed and are expected to yield greater particle temperature increases and efficiencies.

  2. Use of advanced particle methods in modeling space propulsion and its supersonic expansions

    Science.gov (United States)

    Borner, Arnaud

    This research discusses the use of advanced kinetic particle methods such as Molecular Dynamics (MD) and direct simulation Monte Carlo (DSMC) to model space propulsion systems such as electrospray thrusters and their supersonic expansions. MD simulations are performed to model an electrospray thruster for the ionic liquid (IL) EMIM--BF4 using coarse-grained (CG) potentials. The model is initially featuring a constant electric field applied in the longitudinal direction. Two coarse-grained potentials are compared, and the effective-force CG (EFCG) potential is found to predict the formation of the Taylor cone, the cone-jet, and other extrusion modes for similar electric fields and mass flow rates observed in experiments of a IL fed capillary-tip-extractor system better than the simple CG potential. Later, one-dimensional and fully transient three-dimensional electric fields, the latter solving Poisson's equation to take into account the electric field due to space charge at each timestep, are computed by coupling the MD model to a Poisson solver. It is found that the inhomogeneous electric field as well as that of the IL space-charge improve agreement between modeling and experiment. The boundary conditions (BCs) are found to have a substantial impact on the potential and electric field, and the tip BC is introduced and compared to the two previous BCs, named plate and needle, showing good improvement by reducing unrealistically high radial electric fields generated in the vicinity of the capillary tip. The influence of the different boundary condition models on charged species currents as a function of the mass flow rate is studied, and it is found that a constant electric field model gives similar agreement to the more rigorous and computationally expensive tip boundary condition at lower flow rates. However, at higher mass flow rates the MD simulations with the constant electric field produces extruded particles with higher Coulomb energy per ion, consistent with

  3. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation.

  4. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    Science.gov (United States)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated

  5. Advances in Uncertainty Representation and Management for Particle Filtering Applied to Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Particle filters (PF) have been established as the de facto state of the art in failure prognosis. They combine advantages of the rigors of Bayesian estimation to...

  6. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  7. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  8. High-current ion beam from a moving plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.; Ponomarenko, A.G.

    1979-05-01

    High-current ion beams in the 10--20-keV range are extracted from a moving plasma. Current densities up to 2.5 A/cm/sup 2/ are obtained at the plasma boundary, which is almost an order of magnitude larger than the Bohm current. Total currents of over 100 A are obtained from the plasma. Simple geometric focusing gives current densities approx.200 A/cm/sup 2/ at the focus.

  9. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne;

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  10. Eddy Current, Magnetic Particle and Hardness Testing, Aviation Quality Control (Advanced): 9227.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This unit of instruction includes the principles of eddy current, magnetic particle and hardness testing; standards used for analyzing test results; techniques of operating equipment; interpretation of indications; advantages and limitations of these methods of testing; care and calibration of equipment; and safety and work precautions. Motion…

  11. Uncertainty quantification in particle image velocimetry and advances in time-resolved image and data analysis

    NARCIS (Netherlands)

    Sciacchitano, A.

    2014-01-01

    Particle Image Velocimetry (PIV) is a well-established technique for the measurement of the flow velocity in a two or three-dimensional domain. As in any other technique, PIV data is affected by measurement errors, defined as the difference between the measured velocity and its actual value, which i

  12. Reliability-based design optimization for flexible mechanism with particle swarm optimization and advanced extremum response surface method

    Institute of Scientific and Technical Information of China (English)

    张春宜; 宋鲁凯; 费成巍; 郝广平; 刘令君

    2016-01-01

    To improve the computational efficiency of the reliability-based design optimization (RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method (PSO-AERSM) was proposed by integrating particle swarm optimization (PSO) algorithm and advanced extremum response surface method (AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.

  13. Polarized light-scattering profile-advanced characterization of nonspherical particles with scanning flow cytometry.

    Science.gov (United States)

    Strokotov, Dmitry I; Moskalensky, Alexander E; Nekrasov, Vyacheslav M; Maltsev, Valeri P

    2011-07-01

    We instrumentally, theoretically, and experimentally demonstrate a new approach for characterization of nonspherical individual particles from light scattering. Unlike the original optical scheme of the scanning flow cytometer that measures an angle-resolved scattering corresponding in general to S₁₁ element of the light-scattering matrix, the modernized instrument allows us to measure the polarized light-scattering profile of individual particles simultaneously. Theoretically, the polarized profile is expressed by the combination of a few light-scattering matrix elements. This approach supports us with additional independent data to characterize a particle with a complex shape and an internal structure. Applicability of the new method was demonstrated from analysis of polymer bispheres. The bisphere characteristics, sizes, and refractive indices of each sphere composing the bisphere were successfully retrieved from the solution of the inverse light-scattering problem. The solution provides determination of the Eulerian angles, which describe the orientation of the bispheres relative to the direction of the incident laser beam and detecting polarizer of the optical system. Both the ordinary and polarized profiles show a perfect agreement with T-matrix simulation resulting to 50-nm precision for sizing of bispheres.

  14. Advanced 3D Poisson solvers and particle-in-cell methods for accelerator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, David B; McCorquodale, Peter; Colella, Phillip [Lawrence Berkeley National Lab, Applied Numerical Algorithms Group, SciDAC Applied Differential Equations Center (United States)

    2005-01-01

    We seek to improve on the conventional FFT-based algorithms for solving the Poisson equation with infinite-domain (open) boundary conditions for large problems in accelerator modeling and related areas. In particular, improvements in both accuracy and performance are possible by combining several technologies: the method of local corrections (MLC); the James algorithm; and adaptive mesh refinement (AMR). The MLC enables the parallelization (by domain decomposition) of problems with large domains and many grid points. This improves on the FFT-based Poisson solvers typically used as it doesn't require the all-to-all communication pattern that parallel 3d FFT algorithms require, which tends to be a performance bottleneck on current (and foreseeable) parallel computers. In initial tests, good scalability up to 1000 processors has been demonstrated for our new MLC solver. An essential component of our approach is a new version of the James algorithm for infinite-domain boundary conditions for the case of three dimensions. By using a simplified version of the fast multipole method in the boundary-to-boundary potential calculation, we improve on the performance of the Hockney algorithm typically used by reducing the number of grid points by a factor of 8, and the CPU costs by a factor of 3. This is particularly important for large problems where computer memory limits are a consideration. The MLC allows for the use of adaptive mesh refinement, which reduces the number of grid points and increases the accuracy in the Poisson solution. This improves on the uniform grid methods typically used in PIC codes, particularly in beam problems where the halo is large. Also, the number of particles per cell can be controlled more closely with adaptivity than with a uniform grid. To use AMR with particles is more complicated than using uniform grids. It affects depositing particles on the non-uniform grid, reassigning particles when the adaptive grid changes and maintaining the

  15. Development of RF linac for high-current applications

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.C.D.; Lawrence, G.P.; Schneider, J.D.

    1997-12-31

    High-current proton linacs are promising sources of neutrons for material processing and research applications. Recently, a linac design that makes use of a combination of normal-conducting (NC) and superconducting (SC) linac technologies has been proposed for the US Accelerator Production of Tritium Project. As a result, a multi-year engineering development and demonstration (ED and D) program is underway. In this paper, the authors will describe the design and merits of the NC/SC hybrid approach. The scope, technology issues, and present status of the ED and D Program, and the participation of industry will also be described.

  16. Plasma backflow phenomenon in high-current vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Jia Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang Ling [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Shi Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Dingge [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Gentils, Francois [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Jusselin, BenoIt [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2007-10-07

    Based on the two-temperature magnetohydrodynamic model, a high-current vacuum arc (HCVA) in vacuum interrupters is simulated and analysed. The phenomenon of plasma backflow in arc column is found, which is ultimately ascribed to the strong magnetic pinch effect of HCVA. Due to plasma backflow, the maximal value of ion density at the cathode side is not located at the centre of the cathode side, but at the paraxial region of the cathode side, that is to say, ion density appears to sag at the centre of the cathode side (arc column seems to be divided into two parts). The sag of light intensity is also found by experiments.

  17. High Current Systems for HyperV and PLX Plasma Railguns

    Science.gov (United States)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  18. Advances in the field of single-particle cryo-electron microscopy over the last decade.

    Science.gov (United States)

    Frank, Joachim

    2017-02-01

    In single-particle cryo-electron microscopy (cryo-EM), molecules suspended in a thin aqueous layer are rapidly frozen and imaged at cryogenic temperature in the transmission electron microscope. From the random projection views, a three-dimensional image is reconstructed, enabling the structure of the molecule to be obtained. In this article I discuss technological progress over the past decade, which has, in my own field of study, culminated in the determination of ribosome structure at 2.5-Å resolution. I also discuss likely future improvements in methodology.

  19. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem....... A pseudo code based algorithm is suggested to deal with the equality constraints of the problem for accelerating the optimization process. The simulation results show that the proposed PSO methods are capable of obtaining higher quality solutions efficiently in wind-thermal coordination problems....

  20. Advances in computational dynamics of particles, materials and structures a unified approach

    CERN Document Server

    Har, Jason

    2012-01-01

    Computational methods for the modeling and simulation of the dynamic response and behavior of particles, materials and structural systems have had a profound influence on science, engineering and technology. Complex science and engineering applications dealing with complicated structural geometries and materials that would be very difficult to treat using analytical methods have been successfully simulated using computational tools. With the incorporation of quantum, molecular and biological mechanics into new models, these methods are poised to play an even bigger role in the future. Ad

  1. Micro-fabricated Silicon Devices for Advanced Thermal Management and Integration of Particle Tracking Detectors

    CERN Document Server

    Romagnoli, Giulia; Gambaro, Carla

    Since their first studies targeting the cooling of high-power computing chips, micro-channel devices are proven to provide a very efficient cooling system. In the last years micro-channel cooling has been successfully applied to the cooling of particle detectors at CERN. Thanks to their high thermal efficiency, they can guarantee a good heat sink for the cooling of silicon trackers, fundamental for the reduction of the radiation damage caused by the beam interactions. The radiation damage on the silicon detector is increasing with temperature and furthermore the detectors are producing heat that should be dissipated in the supporting structure. Micro-channels guarantee a distributed and uniform thermal exchange, thanks to the high flexibility of the micro-fabrication process that allows a large variety of channel designs. The thin nature of the micro-channels etched inside silicon wafers, is fulfilling the physics requirement of minimization of the material crossed by the particle beam. Furthermore micro-chan...

  2. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    CERN Document Server

    Hohlmann, M

    2013-01-01

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to part...

  3. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  4. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  5. Recent advances in gyrokinetic full-f particle simulation of medium sized Tokamaks with ELMFIRE

    Energy Technology Data Exchange (ETDEWEB)

    Janhunen, S.J.; Kiviniemi, T.P.; Korpio, T.; Leerink, S.; Nora, M. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Heikkinen, J.A. [VTT, Euratom-Tekes Association, Espoo (Finland); Ogando, F. [Helsinki University of Technology, Euratom-Tekes Association, Espoo (Finland); Universidad Nacional de Educacion a Distancia, Madrid (Spain)

    2010-05-15

    Large-scale kinetic simulations of toroidal plasmas based on first principles are called for in studies of transition from low to high confinement mode and internal transport barrier formation in the core plasma. Such processes are best observed and diagnosed in detached plasma conditions in mid-sized tokamaks, so gyrokinetic simulations for these conditions are warranted. A first principles test-particle based kinetic model ELMFIRE[1] has been developed and used in interpretation[1,2] of FT-2 and DIII-D experiments. In this work we summarize progress in Cyclone (DIII-D core) and ASDEX Upgrade pedestal region simulations, and show that in simulations the choice of adiabatic electrons results in quenching of turbulence (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  7. Recent advances in the smoothed-particle hydrodynamics technique: Building the code SPHYNX

    CERN Document Server

    Cabezon, Ruben M; Figueira, Joana

    2016-01-01

    A novel computational hydrocode oriented to Astrophysical applications is described, discussed and validated in the following pages. The code, called SPHYNX, is of Newtonian type and grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. The distinctive features of the code are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume elements which provides a better partition of the unity. The ensuing hydrodynamic code conserves mass, linear and angular momentum, energy, entropy and preserves kernel normalization even in strong shocks. By a careful choice of the index of the sinc kernel and the number of neighbors in the SPH summations, there is a substantial improvement in the estimation of gradients. Additionally, the new volume elements reduce the so-called tensile instability. Both features help to suppress much of t...

  8. The Search for Fractional Charge Particles in an Advanced, Automated Variation of the Millikan Experiment

    Science.gov (United States)

    Lee, I. T.; Halyo, V.; Lee, E. R.; Loomba, D.; Perl, M. L.

    2001-04-01

    We will present a variation on the Millikan apparatus designed to look for fractionally charged particles in bulk materials, and results from the current run. Oil drops are produced from a drop-on-demand ejector, and imaged by a digital CCD camera and framegrabber combination. A networked Linux cluster is used to simultaneously collect and analyze data, and to monitor and control the apparatus. The experiment is fully automated, and utilizes laminar air flow to make possible the accurate measurements of charge on large (20 micron) fluid drops. The experiment has the capability to process a total of 10^7 to 10^8 drops (20-200 mg), and the ability to use large drops enables the search to be carried out in mineral suspensions.

  9. Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings

    CERN Document Server

    2015-01-01

    The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2015. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY and string theory would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.

  10. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  11. Interdigitated back contact solar cell with high-current collection

    Science.gov (United States)

    Garner, C. M.; Nasby, R. D.; Sexton, F. W.; Rodriguez, J. L.; Norwood, D. P.

    Internal current collection efficiencies greater than 90% and energy conversion efficiencies of 18 % at 30 suns were measured on a laboratory version of the interdigitated back contact (IBC) solar cell. A phosphorous gettering diffusion was performed on the front surface and then etched off to achieve these high current collection efficiencies. Thermal oxides were grown on the front and back of the cell to passivate the silicon surfaces. Although the internal collection efficiencies of the cell were high, series resistance caused the fill factor (FF) to decrease at concentrations above 30 suns. Dark current measurements on cells with a new grid spacing indicate that the series resistance is much lower than in the previous cell design. It is suggested that this should result in higher efficiencies at high concentration.

  12. Grad-B drift transport of high current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.R.; Backstrom, R.C.; Halbleib, J.A.; Wright, T.P.

    1983-01-01

    Grad-B transport, bunching and focusing of relativistic electron beams has been proposed as a method of increasing the power delivered to an ICF target by an order of magnitude. Recent experiments have demonstrated the efficient transport of high current electron beams over 1.0 m distances in the 1/r azimuthal magnetic field of a current-carrying wire. The electron drift velocity was measured as a function of wire current and found to be in good agreement with theory. Measurements of x-ray production in a tantalum target were used as a diagnostic tool to study transport efficiency. A theoretical model of the experiment was developed to calculate bremsstrahlung production in the target, assuming 100 percent transport efficiency. This model predicted radial x-ray dose profiles in the experimental converter assembly which were in good agreement with the measurements.

  13. Recent Progress on High-Current SRF Cavities at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand

    2010-05-01

    JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.

  14. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  15. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  16. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  17. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  18. Upgrading of the high-current accelerator 'Tonus'

    CERN Document Server

    Ryabchikov, A I; Karpov, V B; Usov, Y P

    2001-01-01

    In the paper presented,the new technical development of the high-current electron accelerator 'Tonus - NT' (Tomsk nanosecond accelerator - new technologies ) is described. It has been developed taking into account the experience of 30-years exploitation of the previous analogue - the accelerator 'Tonus'. The scheme of the accelerator includes the high-voltage transformer with resonant contours (Tesla transformer) charging the double forming line filled with the transformer oil and the high-voltage diode. The gas-filled trigatron spark gap with up to 10 atm operating pressure is used for the double forming line switching. The main accelerator parameters are as follows:accelerating voltage range 0.4-1.7 MeV, line impedance 36.6 OMEGA, pulse duration 60 ns, pulse repetition rate up to 10 pps.

  19. Time-resolved ion energy distribution measurements using an advanced neutral particle analyzer on the MST reversed-field pinch.

    Science.gov (United States)

    Eilerman, S; Anderson, J K; Reusch, J A; Liu, D; Fiksel, G; Polosatkin, S; Belykh, V

    2012-10-01

    An advanced neutral particle analyzer (ANPA) capable of simultaneously measuring hydrogen and deuterium ions of energies up to 45 keV has recently been developed for use on the Madison Symmetric Torus. The charge-to-mass separation allows for separate analysis of bulk deuterium ions and hydrogen ions injected with a 1 MW, 25 keV neutral beam. Orientation of the ANPA allows sampling of different regions of ion velocity space; a radial viewport favors collection of ions with high v(perpendicular)∕|v| while a recently installed tangential viewport favors ions with high v(||)∕|v|, such as those from the core-localized fast ion population created by the neutral beam. Signals are observed in the ANPA's highest energy channels during periodic magnetic reconnection events, which are drivers of anisotropic, non-Maxwellian ion energization in the reversed-field pinch. ANPA signal strength is dependent on the background neutral density, which also increases during magnetic reconnection events, so careful analysis must be performed to identify the true change in the ion distribution. A Monte Carlo neutral particle tracing code (NENE) is used to reconstruct neutral density profiles based on D(α) line emission, which is measured using a 16-chord filtered photodiode array.

  20. Vol.27 - MicroTCA based Platform for advanced particle accelerators diagnostics

    CERN Document Server

    Juszczyk, Bartłomiej

    2014-01-01

    All over the world there are many research centers that are conducting researches with use of particle accelerators. Thanks to various experiments we could better understand surrounding world. But, there are still a lot of unknowns to explore which science needs better instruments. One of these tools are measurement systems. Unfortunately currently used solutions do not provide sufficient performance to satisfy growing needs. This implies the search for new solutions. One of such solution is a modern uTCA architecture. In this document an open source project of a base card (AFC -AMC to FMC carrier board) based on this standard has been described. This card is equipped with two FMC connectors, which allow to connect wide variety of extension cards. In combination with a powerful FPGA device this card is an universal base circuit for variety of projects. Among the others it allows to implement algorithms which are collecting data from fast ADCs and to process these data. Moreover the applied uTCA architecture p...

  1. Characterization techniques for the high-brightness particle beams of the Advanced Photon Source (APS)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.

    1993-08-01

    The Advanced Photon Source (APS) will be a third-generation synchrotron radiation (SR) user facility in the hard x-ray regime (10--100 keV). The design objectives for the 7-GeV storage ring include a positron beam natural emittance of 8 {times} 10{sup {minus}9} m-rad at an average current of 100 mA. Proposed methods for measuring the transverse and longitudinal profiles will be described. Additionally, a research and development effort using an rf gun as a low-emittance source of electrons for injection into the 200- to 650-MeV linac subsystem is underway. This latter system is projected to produce electron beams with a normalized, rms emittance of {approximately}2 {pi} mm-mrad at peak currents of near one hundred amps. This interesting characterization problem will also be briefly discussed. The combination of both source types within one laboratory facility will stimulate the development of diagnostic techniques in these parameter spaces.

  2. Ultra Fast Shutter Driven by Pulsed High Current

    Institute of Scientific and Technical Information of China (English)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90kA to140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities.

  3. Improved Turn-on Characteristics of Fast High Current Thyristors

    CERN Document Server

    Ducimetière, L; Vossenberg, Eugène B

    1999-01-01

    The beam dumping system of CERN's Large Hadron Collider (LHC) is equipped with fast solid state closing switches, designed for a hold-off voltage of 30 kV and a quasi half sine wave current of 20 kA, with 3 ms rise time, a maximum di/dt of 12 kA/ms and 2 ms fall time. The design repetition rate is 20 s. The switch is composed of ten Fast High Current Thyristors (FHCT’s), which are modified symmetric 4.5 kV GTO thyristors of WESTCODE. Recent studies aiming at improving the turn-on delay, switching speed and at decreasing the switch losses, have led to test an asymmetric not fully optimised GTO thyristor of WESTCODE and an optimised device of GEC PLESSEY Semiconductor (GPS), GB. The GPS FHCT, which gave the best results, is a non irradiated device of 64 mm diameter with a hold-off voltage of 4.5 kV like the symmetric FHCT. Tests results of the GPS FHCT show a reduction in turn-on delay of 40 % and in switching losses of almost 50 % with respect to the symmetric FHCT of WESTCODE. The GPS device can sustain an i...

  4. X-Pinch in High-Current Diode

    Science.gov (United States)

    Bryunetkin, B. A.; Faenov, A. Ya.; Ivanenkov, G. V.; Khakhalin, S. Ya.; Mingaleev, A. R.; Pikuz, S. A.; Romanova, V. M.; Shelkovenko, T. A.; Skobelev, I. Yu.

    1994-03-01

    The review of X-pinch investigations in high current diode of BIN facility (250 kA, 100 ns) is presented. The main purposes were to investigate pinch forming processes and hot dense plasma properties. X-pinch is also considered as a source for multiple charged ions spectroscopy and for X-ray optics testing. The set of diagnostics applied in these experiments allowed us to investigate the pinch forming processes in different configurations of crossed wires loads. High spectral and space resolved measurements of plasma radiation in 1-200 Å range, absolute energy measurements and electron beam registration were provided. Plasma parameters were obtained from relative intensities and shapes of multiple charged ions spectral lines. Electron density of plasma with the temperature Te = 0.2-1 keV variated from 1023 cm-3 in hot spot to 1018 cm-3 during plasma expansion. In recombining plasma, an inversion of Al He-like ions levels population was registrated. Total radiation output of 0.5 mm pinch reached hundreds Joules in 2-100 Å range during 100 ns.

  5. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  6. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  7. Wideband digital phase comparator for high current shunts

    CERN Document Server

    Pogliano, Umberto; Serazio, Danilo

    2011-01-01

    A wideband phase comparator for precise measurements of phase difference of high current shunts has been developed at INRIM. The two-input digital phase detector is realized with a precision wideband digitizer connected through a pair of symmetric active guarded transformers to the outputs of the shunts under comparison. Data are first acquired asynchronously, and then transferred from on-board memory to host memory. Because of the large amount of data collected the filtering process and the analysis algorithms are performed outside the acquisition routine. Most of the systematic errors can be compensated by a proper inversion procedure. The system is suitable for comparing shunts in a wide range of currents, from several hundred of milliampere up to 100 A, and frequencies ranging between 500 Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency up to 100 kHz, is obtained in the measurement of the phase difference of a group of 10 A shunts, provided by some European NMIs, using a digit...

  8. High-current carbon-epoxy capillary cathode

    Science.gov (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  9. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  10. Interdigitated back contact solar cell with high-current collection

    Energy Technology Data Exchange (ETDEWEB)

    Garner, C. M.; Nasby, R. D.; Sexton, F. W.; Rodriguez, J. L.; Norwood, D. P.

    1981-01-01

    Internal current-collection efficiencies greater than 90 percent and energy-conversion efficiencies of 18 percent at 30 suns have been measured on a laboratory version of the interdigitated back contact (IBC) solar cell. The quantum efficiency at 600 nm was greater than 90 percent which implies a minority carrier lifetime of greater than 350 ..mu..sec and a front surface recombination velocity of less than 30 cm/sec on the better devices. To achieve these high-current collection efficiencies, a phosphorous gettering diffusion was performed on the front surface and then etched off. Also, thermal oxides were grown on the front and back of the cell to passivate the silicon surfaces. Although the internal collection efficiencies of the cell were high, series resistance caused the fill factor (FF) to decrease at concentrations above 30 suns. Dark current measurements on cells with a new grid spacing indicate that the series resistance is much lower than in the previous cell design. This should result in higher efficiencies at high concentration.

  11. Mevva development for the new GSI high-current injector

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, B.H.; Emig, H.; Spaedtke, P. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)

    1996-08-01

    To increase the intensity of the heavy ion synchrotron SIS for heavy elements by a factor of {approximately}50, a new prestripper accelerator is planned for Unilac and the heavy ion synchrotron SIS. It is designed to accept ions with mass/charge {le} 65 and an injection energy of 2.2 keV/u. A vacuum arc ion source with a strong axial magnetic field will deliver 15 mA of U{sup 4+} as heaviest element at a repetition rate of 1 Hz and a pulse length of 300 {mu}s. The investigation of the Mevva ion source with pulsed magnetic field of several kGauss have shown that ion currents of 8 mA U{sup 4+} can be measured at the authors test bench after 5m of transport and charge analysis (transmission at the test bench 25% only). The noise on the extracted ion beam was already {le}25%, a value similar to the Pig ion source in the sputter mode, but efficient high current beam transport probably requests further improvements.

  12. Using advanced dispersion models and mobile monitoring to characterize spatial patterns of ultrafine particles in an urban area

    Science.gov (United States)

    Zwack, Leonard M.; Hanna, Steven R.; Spengler, John D.; Levy, Jonathan I.

    2011-09-01

    In urban settings with elevated bridges, buildings, and other complex terrain, the relationship between traffic and air pollution can be highly variable and difficult to accurately characterize. Atmospheric dispersion models are often used in this context, but incorporating background concentrations and characterizing emissions at high spatiotemporal resolution is challenging, especially for ultrafine particles (UFPs). Ambient pollutant monitoring can characterize this relationship, especially when using continuous real-time monitoring. However, it is challenging to quantify local source contributions over background or to characterize spatial patterns across a neighborhood. The goal of this study is to evaluate contributions of traffic to neighborhood-scale air pollution using a combination of regression models derived from mobile UFP monitoring observations collected in Brooklyn, NY and outputs from the Quick Urban & Industrial Complex (QUIC) model. QUIC is a dispersion model that can explicitly take into account the three-dimensional shapes of buildings. The monitoring-based regression model characterized concentration gradients from a major elevated roadway, controlling for real-time traffic volume, meteorological variables, and other local sources. QUIC was applied to simulate dispersion from this same major roadway. The relative concentration decreases with distance from the roadway estimated by the monitoring-based regression model after removal of background and by QUIC were similar. Horizontal contour plots with both models demonstrated non-uniform patterns related to building configuration and source heights. We used the best-fit relationship between the monitoring-based regression model after removal of background and the QUIC outputs ( R2 = 0.80) to estimate a UFP emissions factor of 5.7 × 10 14 particles/vehicle-km, which was relatively consistent across key model assumptions. Our joint applications of novel techniques for analyzing mobile monitoring

  13. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  14. Large dynamic range diagnostics for high current electron LINACs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, Pavel [JLAB

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  15. Large dynamic range diagnostics for high current electron LINACs

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  16. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  17. A resonant series counterpulse technique for high current opening switches

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, E. van [Delft Univ. of Technology (Netherlands). Lab. for Power Electronics and Electrical Machines; Gelder, P. van [TNO PML-Pulse Physics Lab., Delft (Netherlands)

    1995-01-01

    A counterpulse technique for the controlled interruption of very high currents in inductive storage pulsed power systems is described and analyzed, and some simulation results of its performance are presented. The accompanying circuit comprises a pre-charged capacitor bank, connected in series with the inductive load, which has to be provided with a current pulse. Upon actuation, a resonant counterpulse current is created in the opening switch, connected in parallel with the current source and the load. In this way, the opening switch is opened at low current. A separate closing switch prevents closing of the opening switch at high voltage. Operation of the opening switch, often a mechanical switch, at low current and low voltage prevents arc erosion of the contacts. The advantage of this circuit compared to other counterpulse circuits is that the capacitor bank does not experience a voltage reversal. Electrolytic capacitors, which have a high energy density, are applied. The remaining energy of the capacitor bank after opening the opening switch, is transferred to the load. The required initial voltage of the capacitor bank is only a few hundred volts, whereas it may be above a kilovolt in other circuits. Another advantage of the method described here is that the load does not experience a pre-current, causing unwanted preheating of the load, before the resonant current is activated. At the moment, work is being performed at the Pulse Physics Laboratory to develop the resonant series counterpulse circuit for use with rail accelerators, which must be supplied with current pulses in the millisecond range up to the mega-ampere level.

  18. High current density stability of ohmic contacts to silicon carbide

    Science.gov (United States)

    Downey, Brian P.

    The materials properties of SiC, such as wide bandgap, high breakdown electric field, and good thermal conductivity, make it an appealing option for high temperature and high power applications. The replacement of Si devices with SiC components could lead to a reduction in device size, weight, complexity, and cooling requirements along with an increase in device efficiency. One area of concern under high temperature or high current operation is the stability of the ohmic contacts. Ohmic contact degradation can cause an increase in parasitic resistance, which can diminish device performance. While contact studies have primarily focused on the high temperature stability of ohmic contacts to SiC, different failure mechanisms may arise under high current density stressing due to the influence of electromigration. In addition, preferential degradation may occur at the anode or cathode due to the directionality of current flow, known as a polarity effect. The failure mechanisms of ohmic contacts to p-type SiC under high current density stressing are explored. Complementary materials characterization techniques were used to analyze contact degradation, particularly the use of cross-sections prepared by focused ion beam for imaging using field emission scanning electron microscopy and elemental analysis using Auger electron spectroscopy. Initially the degradation of commonly studied Ni and Al-based contacts was investigated under continuous DC current. The contact metallization included a bond pad consisting of a TiW diffusion barrier and thick Au overlayer. The Ni contacts were found to degrade due to the growth of voids within the ohmic contact layer, which were initially produced during the high temperature Ni/SiC ohmic contact anneal. The Al-based contacts degraded due to the movement of Al from the ohmic contact layer to the surface of the Au bond pad, and the movement of Au into the ohmic contact layer from the bond pad. The inequality of Al and Au fluxes generated

  19. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  20. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  1. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  2. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  3. Progress and upgrading of the Heidelberg high current injector

    Indian Academy of Sciences (India)

    Roland Repnow

    2002-11-01

    A specialized rf-accelerator system HSI consisting of two RFQ’s and 8 rf seven-gap cavities was built for injection of high intensities of singly charged heavy ions into the Heidelberg heavy ion storage ring TSR. With different ion sources, this system now is used to deliver positive or negative, atomic and molecular ion beams with energies between 150 keV/a.m.u. and 5.3 MeV/a.m.u. final energy. For a future replacement of the MP-tandem-postaccelerator-system the new HSI-accelerator is to be equipped with an ECR source for high intensities of highly charged ions. An advanced commercial ECR source with a 18 GHz rf klystron and an adjustable extraction system for adaption of a wide range of injection energies has been commissioned at the manufacturer and is delivered. Test bench operation presently is in preparation at Heidelberg. A stripper section with an achromatic charge state selector is under construction between injector and postaccelerator. Other ion sources, e.g., for ultra cold $H^{+}_{3}$ molecular ion beams are under development.

  4. Stretchable electronics for wearable and high-current applications

    Science.gov (United States)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  5. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  6. Experimental study of a high-current FEM with a broadband microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, G.G.; Bratman, V.L.; Ginzburg, N.S. [Institute of Applied Physics, Nizhny Novgorod (Russian Federation)] [and others

    1995-12-31

    One of the main features of FELs and FEMs is the possibility of fast and wideband tuning of the resonant frequency of active media, which can be provided by changing the particle energy. For a frequency adjustable FEM-oscillator, a broadband microwave system, which is simply combined with an electron-optical FEM system and consists of an oversized waveguide and reflectors based on the microwave beams multiplication effect has been proposed and studied successfully in {open_quotes}cold{close_quotes} measurements. Here, the operating ability of a cavity, that includes some key elements of the broadband microwave system, was tested in the presence of an electron beam. To provide large particle oscillation velocities in a moderate undulator field and the presence of a guide magnetic field, the FEM operating regime of double resonance was chosen. In this regime the cyclotron as well as undulator resonance conditions were satisfied. The FEM-oscillator was investigated experimentally on a high-current accelerator {open_quotes}Sinus-6{close_quotes} that forms an electron beam with particle energy 500keV and pulse duration 25ns. The aperture with a diameter 2.5mm at the center of the anode allows to pass through only the central fraction of the electron beam with a current about 100A and a small spread of longitudinal velocities of the particles. Operating transverse velocity was pumped into the electron beam in the pulse plane undulator of a 2.4cm period. The cavity with a frequency near 45GHz consists of a square waveguide and two reflectors. The broadband up-stream reflector based on the multiplication effect had the power reflectivity coefficient more than 90% in the frequency band 10% for the H{sup 10} wave of the square waveguide with the maximum about 100% at a frequency 45GHz. The down-stream narrow-band Bragg reflector had the power reflection coefficient approximately 80% in the frequency band of 4% near 45GHz for the operating mode.

  7. Model of convection mass transfer in titanium alloy at low energy high current electron beam action

    Science.gov (United States)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.

    2017-01-01

    The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.

  8. Comparison of Parmela and MAFIA Simulations of Beam Dynamics in High Current Photoinjector

    CERN Document Server

    Kurennoy, Sergey S

    2004-01-01

    A high-current RF photoinjector producing low-emittance electron beam is an important technology for high-power CW FEL. LANL-AES team designed a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector with magnetic emittance compensation. With the electric field gradients of 7, 7, and 5 MV/m in the three subsequent cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Beam dynamics in the photoinjector has been modeled in details. In addition to the usual approach, with fields calculated by Superfish-Poisson and beam simulations performed by Parmela, we also used MAFIA group of codes, both to calculate cavity fields and to model beam dynamics with its particle-in-cell module TS. The second way naturally includes wake-field effects into consideration. The simulation results and comparison between two approaches will be presented.

  9. Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2012-01-01

    Full Text Available Four techniques using high-current pulsed electron beam (HCPEB were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure.

  10. High Current Density, Long Life Cathodes for High Power RF Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  11. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  12. Advanced Characterization Techniques for SiC and PyC Coatings on High-Temperature Reactor Fuel Particles

    OpenAIRE

    Helary, D.; Dugne, O.; Bourrat, Xavier

    2008-01-01

    International audience; Enhancing the safety of high-temperature reactors (HTRs) is based on the quality of the fuel particles, requiring good knowledge of the microstructure of the four-layer particles designed to retain the fission products during irradiation and under accidental conditions. This paper focuses on the intensive research work performed to characterize the micro- and nanostructure of each unirradiated layer (silicon carbide and pyrocarbon coatings). The analytic expertise deve...

  13. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer.

    Science.gov (United States)

    Meenach, Samantha A; Anderson, Kimberly W; Zach Hilt, J; McGarry, Ronald C; Mansour, Heidi M

    2013-07-16

    Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray dried inhalable lung surfactant-mimic PEGylated lipopolymers as microparticulate/nanoparticulate dry powders containing paclitaxel were rationally designed via organic solution advanced spray drying (no water) in closed-mode from dilute concentration feed solution. Dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) with varying PEG chain length were mixed with varying amounts of paclitaxel in methanol to produce co-spray dried microparticles and nanoparticles. Scanning electron microscopy showed the spherical particle morphology of the inhalable particles. Thermal analysis and X-ray powder diffraction confirmed the retention of the phospholipid bilayer structure in the solid-state following spray drying, the degree of solid-state molecular order, and solid-state phase transition behavior. The residual water content of the particles was very low as quantified analytically Karl Fisher titration. The amount of paclitaxel loaded into the particles was quantified which indicated high encapsulation efficiencies (43-99%). Dry powder aerosol dispersion performance was measured in vitro using the Next Generation Impactor (NGI) coupled with the Handihaler dry powder inhaler device and showed mass median aerodynamic diameters in the range of 3.4-7 μm. These results demonstrate that this novel microparticulate/nanoparticulate chemotherapeutic PEGylated phospholipid dry powder inhalation aerosol platform has great potential in lung cancer drug delivery.

  14. Advances in LES of Two-phase Combustion (II) LES of Complex Gas-Particle Flows and Coal Combustion

    Institute of Scientific and Technical Information of China (English)

    周力行; 胡璨元

    2012-01-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second gen- eration of CFD methods used in engineering. Large-eddy simulation of two-phase flows and combustion is particu- larly important for engineering applications. Some investigators, including the present authors, give their review on LES of spray combustion in gas-turbine combustors and internal combustion engines. However, up to now only a few papers are related to the state-of-the-art on LES of gas-particle flows and combustion. In this paper a review of the advances in LES of complex gas-particle flows and coal combustion is presented. Different sub-grid scale (SGS) stress models and combustion models are described, some of the main results are summarized, and some research needs are discussed.

  15. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid

  16. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    Energy Technology Data Exchange (ETDEWEB)

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  17. Advances in nuclear particle dosimetry for radiation protection and medicine - Ninth Symposium on Neutron Dosimetry (Editorial Material, English)

    Energy Technology Data Exchange (ETDEWEB)

    Zoetelief, J; Bos, A J.; Schuhmacher, H; McDonald, Joseph C.; Schultz, F W.; Pihet, P

    2004-12-15

    The Ninth Symposium on Neutron Dosimetry has been expanded to cover not only neutron radiation but heavy charged particle dosimetry as well. The applications are found in such fields as radiation protection, aircrew dosimetry, medicine, nuclear power and accelerator health physics. Scientists from many countries from around the world presented their work, and described the latest developments in techniques and instrumentation.

  18. Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Adam, E-mail: a.l.varley@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Tyler, Andrew, E-mail: a.n.tyler@stir.ac.uk [Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA (United Kingdom); Smith, Leslie, E-mail: l.s.smith@cs.stir.ac.uk [Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA (United Kingdom); Dale, Paul, E-mail: paul.dale@sepa.org.uk [Scottish Environmental Protection Agency, Radioactive Substances, Strathallan House, Castle Business Park, Stirling FK9 4TZ (United Kingdom); Davies, Mike, E-mail: Mike.Davies@nuvia.co.uk [Nuvia Limited, The Library, Eight Street, Harwell Oxford, Didcot, Oxfordshire OX11 0RL (United Kingdom)

    2015-07-15

    The extensive use of radium during the 20th century for industrial, military and pharmaceutical purposes has led to a large number of contaminated legacy sites across Europe and North America. Sites that pose a high risk to the general public can present expensive and long-term remediation projects. Often the most pragmatic remediation approach is through routine monitoring operating gamma-ray detectors to identify, in real-time, the signal from the most hazardous heterogeneous contamination (hot particles); thus facilitating their removal and safe disposal. However, current detection systems do not fully utilise all spectral information resulting in low detection rates and ultimately an increased risk to the human health. The aim of this study was to establish an optimised detector-algorithm combination. To achieve this, field data was collected using two handheld detectors (sodium iodide and lanthanum bromide) and a number of Monte Carlo simulated hot particles were randomly injected into the field data. This allowed for the detection rate of conventional deterministic (gross counts) and machine learning (neural networks and support vector machines) algorithms to be assessed. The results demonstrated that a Neural Network operated on a sodium iodide detector provided the best detection capability. Compared to deterministic approaches, this optimised detection system could detect a hot particle on average 10 cm deeper into the soil column or with half of the activity at the same depth. It was also found that noise presented by internal contamination restricted lanthanum bromide for this application. - Highlights: • Land contaminated with radium is hazardous to human health. • Routine monitoring permits identification and removal of radioactive hot particles. • Current alarm algorithms do not provide reliable hot particle detection. • Spectral processing using Machine Learning significantly improves detection.

  19. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  20. PROSPECTS OF HIGH-CURRENT ELECTRON BEAMS APPLICATION TO RADIATION POLYETHYLENE CROSS-LINKING

    Directory of Open Access Journals (Sweden)

    A.G. Gurin

    2013-09-01

    Full Text Available A possibility of applying a pulse-periodic high-current induction electron accelerators to radiation polyethylene cross-linking is considered in the article. A comparative analysis with other devices used for irradiation is made.

  1. Advances in colloid and biocolloid transport in porous media: particle size-dependent dispersivity and gravity effects

    Science.gov (United States)

    Chrysikopoulos, Constantinos V.; Manariotis, Ioannis D.; Syngouna, Vasiliki I.

    2014-05-01

    Accurate prediction of colloid and biocolloid transport in porous media relies heavily on usage of suitable dispersion coefficients. The widespread procedure for dispersion coefficient determination consists of conducting conservative tracer experiments and subsequently fitting the collected breakthrough data with a selected advection-dispersion transport model. The fitted dispersion coefficient is assumed to characterize the porous medium and is often used thereafter to analyze experimental results obtained from the same porous medium with other solutes, colloids, and biocolloids. The classical advection-dispersion equation implies that Fick's first law of diffusion adequately describes the dispersion process, or that the dispersive flux is proportional to the concentration gradient. Therefore, the above-described procedure inherently assumes that the dispersive flux of all solutes, colloids and biocolloids under the same flow field conditions is exactly the same. Furthermore, the available mathematical models for colloid and biocoloid transport in porous media do not adequately account for gravity effects. Here an extensive laboratory study was undertaken in order to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size, interstitial velocity and length scale. The breakthrough curves were successfully simulated with a mathematical model describing colloid and biocolloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity increases very slowly with increasing interstitial velocity, and increases with column length. Furthermore, contrary to earlier results, which were based either on just a few experimental observations or experimental conditions leading to low mass recoveries, dispersivity was positively correlated with colloid particle size. Also, transport experiments were performed with biocolloids (bacteriophages:

  2. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells

    DEFF Research Database (Denmark)

    Garcia-Bennett, Alfonso E; Kozhevnikova, Mariya; König, Niclas;

    2013-01-01

    Stem cell transplantation holds great hope for the replacement of damaged cells in the nervous system. However, poor long-term survival after transplantation and insufficiently robust differentiation of stem cells into specialized cell types in vivo remain major obstacles for clinical application...... neurotrophic factor and glial cell line-derived neurotrophic factor, respectively, with these particles enabled not only robust functional differentiation of motor neurons from transplanted embryonic stem cells but also their long-term survival in vivo. We propose that the delivery of growth factors...... by mesoporous nanoparticles is a potentially versatile and widely applicable strategy for efficient differentiation and functional integration of stem cell derivatives upon transplantation....

  3. Advanced algorithms for mobile robot motion planning and tracking in structured static environments using particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Ćosić Aleksandar

    2012-01-01

    Full Text Available An approach to intelligent robot motion planning and tracking in known and static environments is presented in this paper. This complex problem is divided into several simpler problems. The first is generation of a collision free path from starting to destination point, which is solved using a particle swarm optimization (PSO algorithm. The second is interpolation of the obtained collision-free path, which is solved using a radial basis function neural network (RBFNN, and trajectory generation, based on the interpolated path. The last is a trajectory tracking problem, which is solved using a proportional-integral (PI controller. Due to uncertainties, obstacle avoidance is still not ensured, so an additional fuzzy controller is introduced, which corrects the control action of the PI controller. The proposed solution can be used even in dynamic environments, where obstacles change their position in time. Simulation studies were realized to validate and illustrate this approach.

  4. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    Science.gov (United States)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2017-01-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  5. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy

    Science.gov (United States)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.

    2016-12-01

    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  6. Virtual particle therapy centre

    CERN Multimedia

    2015-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. This advanced technique requires a multi-disciplinary team working in a specialised centre. 3D animation: Nymus3D

  7. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1992-11-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high frequency behavior of longitudinal and transverse coupling impedances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

  8. Advances in the study of virus-like particles as vaccines%病毒样颗粒疫苗研究新进展

    Institute of Scientific and Technical Information of China (English)

    胡桂秋; 梁红茹; 冯昊; 王化磊; 杨松涛; 夏咸柱

    2013-01-01

    病毒样粒子由病毒衣壳蛋白或由衣壳蛋白和囊膜蛋白自我组装而成,在形态和结构上与天然病毒相似,但不含有遗传物质,因而具有较好的免疫原性和安全性,能够有效的刺激机体产生体液免疫和细胞免疫反应.病毒样粒子可成为预防病毒病的潜在候选疫苗.本文就几种病毒样颗粒疫苗国内外的研究进展进行综述,为颗粒疫苗的研发提供参考.%Virus-like particles (VLPs) arc self-assembled by virus capsid proteins or capsid proteins and envelope proteins. VI.Ps are similar to natural virus particles in structure and morphology but do not incorporate genetic material. VLPs are safe and immunogenic and can powerfully stimulate the body's humoral and cellular immune response. VLPs have the potential to be vaccines against viral infection. This review focuses on advances in VLPs as vaccines to provide more insight into production of VLP vaccines.

  9. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  10. Design study of a beta=0.09 high current superconducting half wave resonator

    CERN Document Server

    Zhong, Hu-Tan-Xiang; Fan, Pei-Liang; Quan, Sheng-Wen; Liu, Ke-Xin

    2016-01-01

    There's presently a growing demand for high current proton and deuteron linear accelerators based on superconducting technology to better support various fields of science. A \\b{eta}=0.09 162.5 MHz high current superconducting half wave resonator (HWR) has been designed at Peking University to accelerate 100 mA proton beam or 50 mA deuteron beam after the RFQ accelerating structure. The detailed electromagnetic design, multipacting simulation, mechanical analysis of the cavity will be given in this paper.

  11. Analysis of particle size and interface effects on the strength and ductility of advanced high strength steels

    Science.gov (United States)

    Ettehad, Mahmood

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the automotive industry due the unique properties such as high strength and ductility with low finished cost. Many experimental and numerical studies have been done to achieve the optimized behavior of DP steels by controlling their microstructure. Experiments are costly and time consuming so in recent years numerical tools are utilized to help the metallurgist before doing experiments. Most of the numerical studies are based on classical (local) constitutive models where no material length scale parameters are incorporated in the model. Although these models are proved to be very effective in modeling the material behavior in the large scales but they fail to address some critical phenomena which are important for our goals. First, they fail to address the size effect phenomena which materials show at microstructural scale. This means that materials show stronger behavior at small scales compared to large scales. Another issue with classical models is the mesh size dependency in modeling the softening behavior of materials. This means that in the finite element context (FEM) the results will be mesh size dependent and no converged solution exist upon mesh refinement. Thereby by applying the classical (local) models one my loose the accuracy on measuring the strength and ductility of DP steels. Among the non-classical (nonlocal) models, gradient-enhanced plasticity models which consider the effect of neighboring point on the behavior of one specific point are proved to be numerically effective and versatile tools to accomplish the two concerns mentioned above. So in this thesis a gradient-enhanced plasticity model which incorporates both the energetic and dissipative material length scales is derived based on the laws of thermodynamics. This model also has a consistent yield-like function for the

  12. Low energy high current pulsed electron beam treatment for improving surface microstructure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J; Allain-Bonasso, N; Zhang, X D; Hao, S Z; Grosdider, T; Dong, C [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Zou, J X, E-mail: jiang.wu@univ-metz.fr, E-mail: thierry.grosdidier@univ-metz.fr [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-06-15

    Low energy high current pulsed electron beam (LEHCPEB) is a fairly new technique for surface modifications authorizing improvement in wear and corrosion properties as well as texture changes and hardening. This contribution highlights some microstructure modifications encountered at the surface of HCPEB treated steels and bulk metallic glasses taking into account the effects of surface melting and the effects of the induced stress.

  13. High current electric arcs above the In-Ga-Sn eutectic alloy

    Science.gov (United States)

    Klementyeva, I. B.; Pinchuk, M. E.

    2016-11-01

    The results of investigations of high-current dc and ac arc discharges of atmospheric pressure emerging above the free surface of liquid metal (In-Ga-Sn eutectic alloy) are presented in the paper. The mechanism of the arc formation due to pinch-effect is discussed here.

  14. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode...

  15. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  16. Fluid-particle hybrid simulation on the transports of plasma, recycling neutrals, and carbon impurities in the Korea Superconducting Tokamak Advanced Research divertor region

    Science.gov (United States)

    Kim, Deok-Kyu; Hong, Sang Hee

    2005-06-01

    A two-dimensional simulation modeling that has been performed in a self-consistent way for analysis on the fully coupled transports of plasma, recycling neutrals, and intrinsic carbon impurities in the divertor domain of tokamaks is presented. The numerical model coupling the three major species transports in the tokamak edge is based on a fluid-particle hybrid approach where the plasma is described as a single magnetohydrodynamic fluid while the neutrals and impurities are treated as kinetic particles using the Monte Carlo technique. This simulation code is applied to the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak [G. S. Lee, J. Kim, S. M. Hwang et al., Nucl. Fusion 40, 575 (2000)] to calculate the peak heat flux on the divertor plate and to explore the divertor plasma behavior depending on the upstream conditions in its base line operation mode for various values of input heating power and separatrix plasma density. The numerical modeling for the KSTAR tokamak shows that its full-powered operation is subject to the peak heat loads on the divertor plate exceeding an engineering limit, and reveals that the recycling zone is formed in front of the divertor by increasing plasma density and by reducing power flow into the scrape-off layer. Compared with other researchers' work, the present hybrid simulation more rigorously reproduces severe electron pressure losses along field lines by the presence of recycling zone accounting for the transitions between the sheath limited and the detached divertor regimes. The substantial profile changes in carbon impurity population and ionic composition also represent the key features of this divertor regime transition.

  17. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  18. Parameter Identification with the Random Perturbation Particle Swarm Optimization Method and Sensitivity Analysis of an Advanced Pressurized Water Reactor Nuclear Power Plant Model for Power Systems

    Directory of Open Access Journals (Sweden)

    Li Wang

    2017-02-01

    Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.

  19. Flotation advances

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, D.

    1998-11-01

    This paper describes recent advances in flotation cell and mechanism design. OutoKumpu have designed larger cells, suitable for the flotation of smaller particles, with differing mechanisms for particles of different types. Froth handling is also closely controlled. Flotation cells from BQR are also described. Flotation columns are also increasingly being adopted, complementing the use of conventional flotation cells. Designs by Wemco, Multotec, VERTI-MIX, Jameson, Suedala, Quinn and Cytec are detailed, giving improvements in fine coal separation coarse particle separation, and other innovations. 8 figs., 2 tabs.

  20. R and D status of high-current accelerators at IFP

    Energy Technology Data Exchange (ETDEWEB)

    Deng, J. J.; Shi, J. S.; Xie, W. P. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan (China); and others

    2011-12-15

    High-current accelerators have many important applications in Z-pinches, high-power microwaves, and free electron lasers, imploding liners and radiography and so on. Research activities on Z-pinches, imploding liners, radiography at the Institute of Fluid Physics (IFP) are introduced. Several main high-current accelerators developed and being developed at IFP are described, such as the Linear Induction Accelerator X-Ray Facility Upgrade (LIAXFU, 12 MeV, 2.5 kA, 90 ns), the Dragon-I linear induction accelerator (20 MeV, 2.5 kA, 60 ns), and the Primary Test Stand for Z-pinch (PTS, 10 MA, 120 ns). The design of Dragon-II linear induction accelerator (20 MeV, 2.5 kA, 3 x 60 ns) to be built will be presented briefly.

  1. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  2. MIDOT: A novel probe for monitoring high-current flat transmission lines

    Science.gov (United States)

    Omar, K.; Novac, B. M.; Graneau, N.; Senior, P.; Smith, I. R.; Sinclair, M.

    2016-12-01

    A novel inductive probe, termed MIDOT, was developed for monitoring high-current flat transmission lines. While being inexpensive the probe does not require calibration, is resistant to both shock waves and temperature variations, and it is easy to manufacture and mount. It generates strong output signals that are relatively easy to interpret and has a detection region limited to a pre-defined part of the transmission line. The theoretical background related to the MIDOT probes, together with their practical implementation in both preliminary experimentation and high-current tests, is also presented in the paper. The novel probe can be used to benchmark existing 2D numerical codes used in calculating the current distribution inside the conductors of a transmission line but can also easily detect an early movement of a transmission line component. The probe can also find other applications, such as locating the position of a pulsed current flowing through a thin wire.

  3. Dosimetric response for crystalline and nanostructured aluminium oxide to a high-current pulse electron beam.

    Science.gov (United States)

    Nikiforov, S V; Kortov, V S

    2014-11-01

    The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams.

  4. Ion density and dielectric breakdown in the afterglow of a high-current arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Verhagen, F.C.M.; De Zeeuw, W.A.

    1984-01-01

    The ion density in the afterglow of a high-current atmospheric arc-discharge and electrical breakdown have been investigated in atomic (argon), molecular (nitrogen) and electronegative (carbon dioxide) media. From the decay with time of the ion density, effective recombination coefficients can be calculated. When the ion density is reduced to values below 2 x 10/sup 17/m/sup -3/, the afterglow plasma changes from a resistive into a dielectric medium. (J.C.R.)

  5. Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode

    CERN Document Server

    Anishchenko, Sergey

    2016-01-01

    The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.

  6. Influence of the Thomson effect on the pulse heating of high-current electrical contacts

    Science.gov (United States)

    Merkushev, A. G.; Pavleino, M. A.; Pavleino, O. M.; Pavlov, V. A.

    2014-09-01

    Pulse heating of high-current contacts is notable for the presence of considerable temperature gradients in the contact area, which cause the Thomson effect—the appearance of thermoelectric currents. The amount of this effect against conventional Joule heat release is quantitatively estimated. Pulse heating of electrical contacts is numerically simulated with the use of the Comsol program package. It is demonstrated that thermoelectric currents make a negligible contribution to heating in the case of copper contacts.

  7. A mechanical connector design for high-current, high-coulomb pulsed power systems

    Energy Technology Data Exchange (ETDEWEB)

    Susoeff, A.R.; Hawke, R.S.; Leighton, K.S.

    1992-02-25

    A technique to make reliable high-current, high-coulomb electrical contact was developed for transmitting power into railguns. The method uses spring loaded removable connectors that are installed independently from the launcher. The simple rod-type design and absence of fastener holes allow maximum utilization of material mechanical properties. Repeated experiments with 9.5-mm diameter connectors demonstrated reliable pulsed charge transfer of 200 coulombs at currents of over 400kA. 20 refs.

  8. Enhanced D-T supershot performance at high current using extensive lithium conditioning in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, D.K.; Strachan, J.D.; Bell, M.G.; Scott, S.D.; Budny, R.; Bell, R.E.; Bitter, M.; Darrow, D.S.; Fredrickson, E.; Grek, B. [and others

    1995-05-01

    A substantial improvement in supershot fusion plasma performance has been realized by combining the enhanced confinement due to tritium fueling with the enhanced confinement due to extensive Li conditioning of the TFTR limiter. This combination has resulted in not only significantly higher global energy confinement times than had previously been obtained in high current supershots, but also the highest ratio of central fusion output power to input power observed to date.

  9. The development of safe high current operation in JET-ILW

    Energy Technology Data Exchange (ETDEWEB)

    Rimini, Fernanda G., E-mail: fernanda.rimini@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, Diogo [Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa (Portugal); Arnoux, Gilles [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Baruzzo, Matteo [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX Padova (Italy); Belonohy, Eva [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Carvalho, Ivo [Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa (Portugal); Felton, Robert [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Joffrin, Emmanuel [IRFM-CEA, Centre de Cadarache, 13108 Sant-Paul-lez-Durance (France); Lomas, Peter; McCullen, Paul [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Neto, Andre [Fusion for Energy, 08019 Barcelona (Spain); Nunes, Isabel [Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa (Portugal); Reux, Cedric [IRFM-CEA, Centre de Cadarache, 13108 Sant-Paul-lez-Durance (France); Stephen, Adam; Valcarcel, Daniel [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wiesen, Sven [IEK-4, Forschungszentrum Jüulich GmbH, Partner in the Trilateral Euregio Cluster, Juelich (Germany)

    2015-10-15

    Highlights: • JET is unique in its capability to operate in DT and at high plasma current. • Studies of high current H-mode are integral part of JET ITER-like Wall programme. • Focus is on safety wrt transient & steady-state heat loads on ILW components. • Early real-time detection of off-normal events and disruption effects mitigation. • This work successfully delivered H-mode scenario up to 4 MA. - Abstract: The JET tokamak is unique amongst present fusion devices in its capability to operate at high plasma current, providing the closest plasma parameters to ITER. The physics benefits of high current operation have to be balanced against the risks to the integrity of the machine due to high force disruptions. The installation of the ITER-Like Wall (ILW) has added risks due to the thermal characteristics of the metal Plasma Facing Components. This paper describes the operational aspects of the scientific development of high current H-mode plasmas with the ILW, focusing on disruption prediction, avoidance and amelioration. The development yielded baseline H-mode plasmas up to 4 MA/3.74 T, comparable to the maximum current achieved in JET in Carbon-Wall (CFC) conditions with similar divertor geometry.

  10. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    Science.gov (United States)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  11. High Current Systems for HyperV and PLX Plasma Railguns

    Science.gov (United States)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Wu, Linchun; Elton, Raymond; Witherspoon, F. Douglas

    2010-11-01

    HyperV has been developing coaxial pulsed, plasma railgun accelerators for PLX and other high momentum plasma experiments. The full scale HyperV coaxial gun accelerates plasma armatures using a contoured electrode gap designed to mitigate the blow-by instability. Previous experiments with the full scale gun successfully formed and accelerated annular plasma armatures, but were limited to currents of up to only ˜400 kA. In order to increase full scale gun performance to the design goal of 200 μg at 200 km/s, the pulse forming networks required upgrading to support currents up to ˜1 MA. A high voltage, high current field-effect sparkgap switch and low inductance transmission line were designed and constructed to handle the increased current pulse. We will describe these systems and present initial test data from high current operation of the full-scale coax gun along with plans for future testing. Similar high current accelerator banks, switches, and TM lines will also be required to power PLX railguns which are planned to operate at 8000 μg at 50 km/s. The design of that experiment may require the capacitor banks to be located as much as 10 feet from the gun. We discuss the available options for low inductance connections for these systems.

  12. High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V. I., E-mail: V.I.Davydenko@inp.nsk.su; Ivanov, A. A., E-mail: A.A.Ivanov@inp.nsk.su; Shul’zhenko, G. I. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-11-15

    A high-current electron emitter on the basis of lanthanum hexaboride is developed for quasi-stationary arc plasma generators of ion sources. The emitter consists of a set of LaB{sub 6} washers interleaved with washers made of thermally extended graphite. The emitter is heated by the current flowing through the graphite washers. The thermal regime of emitter operation during plasma generation is considered. The emitter has been successfully used in the ion sources of the diagnostic injectors of fast hydrogen atomic beams.

  13. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    Science.gov (United States)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  14. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  15. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    Science.gov (United States)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  16. High Current Planar Magnetics for High Efficiency Bidirectional DC-DC Converters for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    Efficiency is one of the main concerns during the design phase of switch mode power supply. Planar magnetics based on PCB windings have the potential to reduce the magnetic manufacturing cost however, one of their main drawbacks comes from their low filling factor and high stray capacitance...... complexity and challenges. The analysis is focused on a high current inductor for a dc-dc converter for fuel cell applications and it is based on FEM simulations. Analysis and results are verified on a 6 kW dc-dc isolated full bridge boost converter prototype based on fully planar magnetics achieving a peak...

  17. High-current quasi-square-wave millisecond light source for high-speed photography

    Science.gov (United States)

    Lin, Wenzheng; Jiang, Aibao; Zhuo, Meizhen

    1993-01-01

    A novel powerful strobe for high-speed photography is described which can replace the high power cw light source, to save energy and synchroflash with the camera. In this strobe, three- phase transformerless direct rectifier, high current SCR switch and pre-ionization technique are used so that the energy consumption goes down greatly, and its total weight is less than 25 Kg. Its principal parameters are as follows: average power, 50 KW; light emitting pulse width, 1 - 100 ms; pulse rise time, less than 0.05 ms; pulse fall time, less than 0.1 ms.

  18. High current, low voltage carbon nanotube enabled vertical organic field effect transistors.

    Science.gov (United States)

    McCarthy, Mitchell A; Liu, Bo; Rinzler, Andrew G

    2010-09-08

    State-of-the-art performance is demonstrated from a carbon nanotube enabled vertical field effect transistor using an organic channel material. The device exhibits an on/off current ratio >10(5) for a gate voltage range of 4 V with a current density output exceeding 50 mA/cm(2). The architecture enables submicrometer channel lengths while avoiding high-resolution patterning. The ability to drive high currents and inexpensive fabrication may provide the solution for the so-called OLED backplane problem.

  19. Design and simulation of a beam position monitor for the high current proton linac

    Institute of Scientific and Technical Information of China (English)

    RUAN Yu-Fang; XU Tao-Guang; FU Shi-Nian

    2009-01-01

    In this paper, the 2-D electrostatic field software, POISSON, is used to calculate the characteristic impedance of a BPM (beam position monitor) for a high current proton linac. Furthermore, the time-domain 3-D module of MAFIA with a beam microbunch at a varying offset from the axis is used to compute the induced voltage on the electrodes as a function of time. Finally, the effect of low 13 beams on the induced voltage, the sensitivity and the signal dynamic range of the BPM are discussed.

  20. Coherent Effects of High Current Beam in Project-X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  1. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  2. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  3. Power lateral pnp transistor operating with high current density in irradiated voltage regulator

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir Đ.

    2013-01-01

    Full Text Available The operation of power lateral pnp transistors in gamma radiation field was examined by detection of the minimum dropout voltage on heavily loaded low-dropout voltage regulators LM2940CT5, clearly demonstrating their low radiation hardness, with unacceptably low values of output voltage and collector-emitter voltage volatility. In conjunction with previous results on base current and forward emitter current gain of serial transistors, it was possible to determine the positive influence of high load current on a slight improvement of voltage regulator LM2940CT5 radiation hardness. The high-current flow through the wide emitter aluminum contact of the serial transistor above the isolation oxide caused intensive annealing of the positive oxide-trapped charge, leading to decrease of the lateral pnp transistor's current gain, but also a more intensive recovery of the small-signal npn transistors in the control circuit. The high current density in the base area of the lateral pnp transistor immediately below the isolation oxide decreased the concentration of negative interface traps. Consequently, the positive influence of the reduced concentration of the oxide-trapped charge on the negative feedback reaction circuit, together with the favourable effect of reduced interface traps concentration, exceeded negative influence of the annealed oxide-trapped charge on the serial pnp transistor's forward emitter current gain.

  4. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  5. High-current-density gun with a LaB6 cathode

    Science.gov (United States)

    Ebihara, K.; Hiramatsu, S.

    1996-08-01

    To develop a high-current electron gun for an induction linac, a prototype of a Pierce-type electron gun using planar 12-mm-diam lanthanum hexaboride (LaB6) is studied as a thermionic emitter at high current densities. The cathode is heated up to temperatures of 1750 °C by electron bombardment and thermal radiation from a tungsten heater. The heater that has the highest temperature in the gun is thermally isolated from the outer vacuum chamber with heat shields. The bombardment voltage of ˜1 kV is typically applied to a gap between the cathode and the heater. The gun has been operated up to voltages of 55 kV, obtaining a maximum current density of 20 A/cm2 with a pulse width of 250 ns at a cathode temperature of 1600 °C. High-voltage pulsing results show that the gun, with applied voltages of over 40 kV, is operated in space-charge-limited region at temperatures of over 1600 °C; also it is operated in a temperature-limited region at temperatures of less than 1500 °C. An effective work function of 2.68 eV is obtained. The cathode, when heated up to 1600 °C, emits over 7 A of electrons with a ˜20% reduction after 850 h of continuous operation. These measurements were made between vacuum pressures of 10-6 and 10-7 Torr.

  6. RF properties of 700 MHz, = 0.42 elliptical cavity for high current proton acceleration

    Indian Academy of Sciences (India)

    Amitava Roy; J Mondal; K C Mittal

    2008-12-01

    BARC is developing a technology for the accelerator-driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and development of superconducting medium velocity cavity has been taken up as a part of the accelerator-driven subcritical system project. We have studied RF properties of 700 MHz, = 0.42 single cell elliptical cavity for possible use in high current proton acceleration. The cavity shape optimization studies have been done using SUPERFISH code. A calculation has been done to find out the velocity range over which this cavity can accelerate protons efficiently and to select the number of cells/cavity. The cavity's peak electric and magnetic fields, power dissipation c, quality factor and effective shunt impedance 2 were calculated for various cavity dimensions using these codes. Based on these analyses a list of design parameters for the inner cell of the cavity has been suggested for possible use in high current proton accelerator.

  7. Surface modification of Al-Pb alloy by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    LU You; LI Shi-long; AN Jian; LIU Yong-bing

    2006-01-01

    Al-Pb alloy was modified by high current pulsed electron beam and the microstructure, hardness and tribological characteristics were characterized by scanning electron microscopy, electronic microanalysis probe microanalysis, Knoop hardness indentation and pin-on-disc type wear testing machine. The results show that the microstructure and hardness can be greatly improved, and the modification layer consists of a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone and a transition zone followed by the substrate. The tribological properties of high current pulsed electron beam irradiated Al-Pb alloy are correspondingly improved largely. Optical observation and scanning electron microscopy analysis reveal that the low wear rate and lowest level in coefficient of friction at high load level for irradiated Al-Pb alloy are due to the formation of a lubricious tribolayer covering the worn surface, which is a mixture of Al2O3, Pb3O4 and silicate. The wear mode varies from oxidative wear at low load to film spalling at high load and, finally, adhesive wear.

  8. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  9. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Calle, Luz Marina; Alexander, Joshua B.; Cardenas, Henry E.; Kupwade-Patil, Kunal

    2008-01-01

    This work examines field performance of nanoscale pozzolan treatments delivered el ctrokinetically to suppress chloride induced corrosion of concrete reinforcement. The particles are 20 nm silica spheres coated with 2 nm alumina particles that carry a net positive charge. Earlier work demonstrated that the alumina particles were stripped from the silica carriers and formed a dense phase with an interparticle spacing that is small enough to inhibit the transport of solvated chlorides. A D.C. field was used to inject the particles into the pores of concrete specimens, directly toward the mild steel bars that were embedded within each 3 inch diameter by 6 inch length concrete specimen. The voltage was held constant at 25 v per inch of concrete cover for a period of 7 days. These voltages permitted current densities as high as 3 A/sq m. During the final 3 days, a 1 molar solution of calcium nitrate tetrahydrate was used to provide a source of calcium to facilitate stronger and more densified phase formation within the pores. In a departure from prior work the particle treatments were started concurrent with chloride extraction in order to determine if particle delivery would inhibit chloride transport. Following treatment the specimens were immersed in seawater for 4 weeks. After this posttreatment exposure, the specimens were tested for tensile strength and the steel reinforcement was examined for evidence of corrosion. Scanning electron microscopy was conducted to assess impact on microstructure.

  10. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  11. The Heidelberg High Current Injector A Versatile Injector for Storage Ring Experiments

    CERN Document Server

    Von Hahn, R; Repnow, R; Schwalm, D; Welsch, C P

    2004-01-01

    The High Current Injector (HCI) was designed and built as a dedicated injector for the Test Storage Ring in Heidelberg to deliver mainly singly charged Li- and Be-ions. After start for routine operation in 1999 the HCI delivered stable beams during the following years for about 50 % of the experiments with very high reliability. Due to the requirements from the experiment the HCI changed during that period from a machine for singly charged positive ions to an injector for a large variety of molecules as well as positively or negatively charged light ions. After successful commissioning of the custom built 18 GHz high power ECR-source at its present test location various modifications and additions were made in preparation of a possible conversion into an injector for highly charged heavy ions as a second phase. This paper gives an overview of the experience gained in the passed 5 years and presents the status of the upgrade of the HCI.

  12. Evidence for large-area superemission into a high-current glow discharge

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1988-10-01

    This letter presents evidence for large-area (≊1 cm2) cathode superemission (˜10 000 A/cm2) into a high-current glow discharge in a pseudospark or back lighted thyratron switch. Cathodes studied with a scannning electron microscope following operation at 6-8 kA, ≊1 μs pulse length, and 105 pulses in a low-pressure H2 discharge show evidence of melting of a thin surface layer within a radius of ˜4 mm, indicating that the discharge is a superdense glow with a cross-sectional area of the order of 1 cm2, rather than an arc. Further supporting evidence is provided by streak camera data. An ion beam present during the avalanche phase of the discharge is responsible for heating the cathode surface resulting in a significant field-enhanced thermionic emission.

  13. A diagnostic system for electrical faults in a high current discharge plasma setup

    Science.gov (United States)

    Nigam, S.; Aneesh, K.; Navathe, C. P.; Gupta, P. D.

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ˜4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements.

  14. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  15. Microstructure Analysis of HPb59-1 Brass Induced by High Current Pulsed Electron Beam

    Science.gov (United States)

    Lyu, Jike; Gao, Bo; Hu, Liang; Lu, Shuaidan; Tu, Ganfeng

    2016-08-01

    In this paper, the effects of high current pulsed electron beam (HCPEB) on the microstructure evolution of casting HPb59-1 (Cu 57.1 mass%, Pb 1.7 mass% and Zn balance) alloy were investigated. The results showed a "wavy" surface which was formed with Pb element existing in the forms of stacking block and microparticles on the top surface layer after treatment. Nanocrystalline structures including Pb grains and two phases (α and β) were formed on the top remelted layer and their sizes were all less than 100 nm. The disordered β phase was generated in the surface layer after HCPEB treatment, which is beneficial for the improvement of surface properties. Meanwhile, there was a large residual stress on the alloy surface, along with the appearance of microcracks, and the preferred orientations of grains also changed.

  16. Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior

    Science.gov (United States)

    Fattah-Alhosseini, Arash; Khan, Hamid Yazdani

    2017-02-01

    This work aims at studying the influence of high current densities on the anodization of carbon steel. Anodic protective coatings were prepared on carbon steel at current densities of 100, 125, and 150 A/dm2 followed by a final heat treatment. Coatings microstructures and morphologies were analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The corrosion resistance of the uncoated carbon steel substrate and the anodic coatings were evaluated in 3.5 wt pct NaCl solution through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the anodic oxide coatings which were prepared at higher current densities had thicker coatings as a result of a higher anodic forming voltage. Therefore, the anodized coatings showed better anti-corrosion properties compared to those obtained at lower current densities and the base metal.

  17. High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2.

    Science.gov (United States)

    Mleczko, Michal J; Xu, Runjie Lily; Okabe, Kye; Kuo, Hsueh-Hui; Fisher, Ian R; Wong, H-S Philip; Nishi, Yoshio; Pop, Eric

    2016-08-23

    Two-dimensional (2D) semimetals beyond graphene have been relatively unexplored in the atomically thin limit. Here, we introduce a facile growth mechanism for semimetallic WTe2 crystals and then fabricate few-layer test structures while carefully avoiding degradation from exposure to air. Low-field electrical measurements of 80 nm to 2 μm long devices allow us to separate intrinsic and contact resistance, revealing metallic response in the thinnest encapsulated and stable WTe2 devices studied to date (3-20 layers thick). High-field electrical measurements and electrothermal modeling demonstrate that ultrathin WTe2 can carry remarkably high current density (approaching 50 MA/cm(2), higher than most common interconnect metals) despite a very low thermal conductivity (of the order ∼3 Wm(-1) K(-1)). These results suggest several pathways for air-stable technological viability of this layered semimetal.

  18. Optimization of Superconducting Focusing Quadrupoles for the HighCurrent Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, GianLuca; Gourlay, Steve; Gung, Chen-yu; Hafalia, Ray; Lietzke, Alan; Martovetski, Nicolai; Mattafirri, Sara; Meinke, Rainer; Minervini, Joseph; Schultz, Joel; Seidl, Peter

    2005-09-16

    The Heavy Ion Fusion (HIF) program is progressing through a series of physics and technology demonstrations leading to an inertial fusion power plant. The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is exploring the physics of intense beams with high line-charge density. Superconducting focusing quadrupoles have been developed for the HCX magnetic transport studies. A baseline design was selected following several pre-series models. Optimization of the baseline design led to the development of a first prototype that achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, without training, with measured field errors at the 0.1% level. Based on these results, the magnet geometry and fabrication procedures were adjusted to improve the field quality. These modifications were implemented in a second prototype. In this paper, the optimized design is presented and comparisons between the design harmonics and magnetic measurements performed on the new prototype are discussed.

  19. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  20. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  1. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shen [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Engineering Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013 (China); Lv, Peng; Zhang, Conglin; Huang, Wei [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-01

    Highlights: • Zirconium-702 irradiated by high current pulsed electron beam was investigated. • Irradiated surface was melted and martensitic phase transformation occurred. • High density dislocations and deformation twins were formed in melted layer. • Micropores and ultrafine structures were also obtained on the irradiated surface. • Microhardness and corrosion resistance were improved after HCPEB irradiation. - Abstract: The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO{sub 3} solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  2. Particle Mechanics

    CERN Document Server

    Collinson, Chris

    1995-01-01

    * Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u

  3. Particle Accelerators in China

    Science.gov (United States)

    Zhang, Chuang; Fang, Shouxian

    As the special machines that can accelerate charged particle beams to high energy by using electromagnetic fields, particle accelerators have been widely applied in scientific research and various areas of society. The development of particle accelerators in China started in the early 1950s. After a brief review of the history of accelerators, this article describes in the following sections: particle colliders, heavy-ion accelerators, high-intensity proton accelerators, accelerator-based light sources, pulsed power accelerators, small scale accelerators, accelerators for applications, accelerator technology development and advanced accelerator concepts. The prospects of particle accelerators in China are also presented.

  4. Performance and scalability of isolated DC-DC converter topologies in low voltage, high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Vaisanen, V.

    2012-07-01

    Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding

  5. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  6. Integrating a Machine Protection System for High-Current Free Electron Lasers and Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Trent Allison; James Coleman; Richard Evans; Al Grippo; Kevin Jordan

    2002-09-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high-current accelerators. The MPS needs to monitor the status of all devices that could enter the beam path, the beam loss monitors (BLMs), magnet settings, beam dump status, etc. This information is then presented to the electron source controller, which must limit the beam power or shut down the beam completely. The MPS for the energy recovery linac (ERL) at the Jefferson Lab Free Electron Laser [1] generates eight different power limits, or beam modes, which are passed to the drive laser pulse controller (DLPC) (photocathode source controller). These range from no beam to nearly 2 megawatts of electron beam power. Automatic masking is used for the BLMs during low-power modes when one might be using beam viewers. The system also reviews the setup for the two different beamlines, the IR path or the UV path, and will allow or disallow operations based on magnet settings and valve positions. This paper will describe the approach taken for the JLab 10-kW FEL. Additional details can be found on our website http://laser.jlab.org [2].

  7. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    Science.gov (United States)

    Wang, Haoran; Wang, Zhenxing; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan

    2016-08-01

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E-3, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  8. Electromigration in Sn–Ag solder thin films under high current density

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Kotadia, H. [Physics Department, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Xu, S. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kow-loon Tong, Hong Kong (China); Lu, H. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Mannan, S.H. [Physics Department, School of Natural and Mathematical Sciences, King' s College London, Strand, London WC2R 2LS (United Kingdom); Bailey, C. [School of Computing and Mathematical Sciences, University of Greenwich, 30 Park Row, London SE10 9LS (United Kingdom); Chan, Y.C. [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kow-loon Tong, Hong Kong (China)

    2014-08-28

    The electro-migration behavior of a Sn–Ag solder thin film stripe that is deposited on a glass substrate has been investigated under a high current density in the absence ofthermo-migration. The distribution of voids and hillocks at current densities of 4.4–6.0 × 10{sup 4} A/cm{sup 2} has been analyzed optically and using electron microscopy. The voids mainly formed at the cathode side of the stripe where maximum current density was predicted but voids also formed along a line that crosses the stripe. This was explained in terms of the initial voids forming at locations of maximum current density concentration, altering these locations, and then expanding into them. The movement of the maximum current density location is caused by redistribution of current as the voids form. An atomic migration model has been developed and used in this work. It was found that if thermal gradients were completely neglected, the model was unable to account for the divergence of atomic flux density which is necessary for void nucleation. However, the temperature dependence of the diffusivity of atoms is sufficient to account for void nucleation within the timescale of the experiments. - Highlights: • Experimental and computational study of electron migration in a SnAg film • The calculated atomic flux divergence has been used to predict void formation. • Voids caused by electromigration observed at current crowding sites and in other regions.

  9. A strong-focusing 800 MeV cyclotron for high-current applications

    Science.gov (United States)

    Pogue, N.; Assadi, S.; Badgley, K.; Comeaux, J.; Kellams, J.; McInturff, A.; McIntyre, P.; Sattarov, A.

    2013-04-01

    A superconducting strong-focusing cyclotron (SFC) is being developed for high-current applications. It incorporates four innovations. Superconducting quarter-wave cavities are used to provide >20 MV/turn acceleration. The orbit separation is thereby opened so that bunch-bunch interactions between successive orbits are eliminated. Quadrapole focusing channels are incorporated within the sectors so that alternating-gradient strong-focusing transport is maintained throughout. Dipole windings on the inner and outer orbits provide enhanced control for injection and extraction of bunches. Finally each sector magnet is configured as a flux-coupled stack of independent apertures, so that any desired number of independent cyclotrons can be integrated within a common footprint. Preliminary simulations indicate that each SFC should be capable of accelerating 10 mA CW to 800 MeV with very low loss and >50% energy efficiency. A primary motivation for SFC is as a proton driver for accelerator-driven subcritical fission in a molten salt core. The cores are fueled solely with the transuranics from spent nuclear fuel from a conventional nuclear power plant. The beams from one SFC stack would destroy all of the transuranics and long-lived fission products that are produced by a GWe reactor [1]. This capability offers the opportunity to close the nuclear fuel cycle and provide a path to green nuclear energy.

  10. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun

    Science.gov (United States)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.

    2004-10-01

    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  11. Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers

    Science.gov (United States)

    Song, Li; Toth, Geza; Wei, Jinquan; Liu, Zheng; Gao, Wei; Ci, Lijie; Vajtai, Robert; Endo, Morinobu; Ajayan, Pulickel M.

    2012-01-01

    We report on the current-carrying capability and the high-current-induced thermal burnout failure modes of 5-20 µm diameter double-walled carbon nanotube (DWNT) fibers made by an improved dry-spinning method. It is found that the electrical conductivity and maximum current-carrying capability for these DWNT fibers can reach up to 5.9 × 105 S m - 1 and over 1 × 105 A cm - 2 in air. In comparison, we observed that standard carbon fiber tended to be oxidized and burnt out into cheese-like morphology when the maximum current was reached, while DWNT fiber showed a much slower breakdown behavior due to the gradual burnout in individual nanotubes. The electron microscopy observations further confirmed that the failure process of DWNT fibers occurs at localized positions, and while the individual nanotubes burn they also get aligned due to local high temperature and electrostatic field. In addition a finite element model was constructed to gain better understanding of the failure behavior of DWNT fibers.

  12. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  13. Crystallization of Ti33Cu67 metallic glass under high-current density electrical pulses

    Directory of Open Access Journals (Sweden)

    Mali Vyacheslav

    2011-01-01

    Full Text Available Abstract We have studied the phase and structure evolution of the Ti33Cu67 amorphous alloy subjected to electrical pulses of high current density. By varying the pulse parameters, different stages of crystallization could be observed in the samples. Partial polymorphic nanocrystallization resulting in the formation of 5- to 8-nm crystallites of the TiCu2 intermetallic in the residual amorphous matrix occurred when the maximum current density reached 9.7·108 A m-2 and the pulse duration was 140 μs, though the calculated temperature increase due to Joule heating was not enough to reach the crystallization temperature of the alloy. Samples subjected to higher current densities and higher values of the evolved Joule heat per unit mass fully crystallized and contained the Ti2Cu3 and TiCu3 phases. A common feature of the crystallized ribbons was their non-uniform microstructure with regions that experienced local melting and rapid solidification. PACS: 81; 81.05.Bx; 81.05.Kf.

  14. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  15. High-current electron beam generation in a diode with a multicapillary dielectric cathode

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.; Krasik, Ya. E.

    2008-02-01

    Results of high-current electron beam generation in an ˜200kV, ˜250ns diode with a multicapillary dielectric cathode (MCDC) assisted by either velvet-type or ferroelectric plasma sources (FPSs) are presented. Multicapillary cathodes made of cordierite, glass, and quartz glass samples were studied. It was found that the source of electrons is the plasma ejected from capillaries. The plasma parameters inside capillary channels and in the vicinity of the cathode surface were determined during the accelerating pulse using visible range spectroscopy. It was shown that glass multicapillary cathodes are characterized by less surface erosion than the cordierite cathodes. Also, it was found that multicapillary cathodes assisted by a FPS showed longer lifetime and better vacuum compatibility than multicapillary cathodes assisted by a velvet-type igniter. Finally, it was found that quartz glass MCDC assisted by FPS is characterized by almost simultaneous formation of the plasma in a cross-sectional area of the dielectric sample with respect to the beginning of the accelerating pulse. The latter is explained by intense UV radiation which synchronized formation of parallel discharges due to induced secondary electron emission.

  16. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Science.gov (United States)

    Full, S.; Bartnik, A.; Bazarov, I. V.; Dobbins, J.; Dunham, B.; Hoffstaetter, G. H.

    2016-03-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  17. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  18. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  19. Switching processes in TGS crystals irradiated by high-current electron beam

    CERN Document Server

    Efimov, V V; Klevtsova, E A; Tyutyunnikov, S I

    2002-01-01

    The relaxation processes study of the dielectric permittivity epsilon during commutation of the external electric field in triglycine sulphate (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS) single crystal plates before and after irradiation by a high-current pulsed electron beam with different doses at various temperatures is presented. The parameters of the electron beam produced by the accelerator facility as a source were: energy E = 250 keV, current density I = 1000 A/cm sup 2 , fluence F = 15 J/cm sup 2 , pulse duration tau = 300 ns, beam density 5 centre dot sup 1 5 electrons/cm sup 2 per pulse. It was shown that the dependences of epsilon (t) are described by the Kohlrausch law: epsilon (t) approx exp (-t/tau) supalpha, where alpha is the average relaxation time of the all volume samples, 0 < alpha <1. Besides, it was found that switching processes in the irradiated crystals were much more intensive than those in the non-irradiated ones. The relaxation times decrease with rising...

  20. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei; Wang, Langping, E-mail: aplpwang@hit.edu.cn; Wang, Xiaofeng

    2016-08-01

    Highlights: • An annular cathode for HCPEB irradiation of circular components was designed. • The processing window for the annular cathode is obtained. • Irradiation thickness uniformity along the circumferential direction exceeds 90%. - Abstract: In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  1. The RF-System of the New Gsi High Current Linac Hsi

    CERN Document Server

    Hutter, G; Hartmann, W; Kube, G; Pilz, M; Vinzenz, W

    2000-01-01

    The RF part of the new high current injector-linac HSI consists of five cavities with the new operating frequency of 36 MHz instead of 27 MHz of the removed Wideroe type injector. The calculated power requirements of the cavities including beam load in three structures were between 110 kW for a rebuncher and 1.75 MW pulse-power for the two IH-cavities. The beam load is up to 150 kW for the RFQ and up to 750 kW for the two drift tube tanks. An additional 36 MHz debuncher in the transfer line to the Synchrotron (SIS) will need 120 kW pulse power. We decided to fulfil these demands with amplifiers of only two power classes, namely three amplifiers with 2 MW and six amplifiers with 200 kW pulse output power. The latter ones are also used as drivers for the 2 MW stages. The 200 kW amplifiers were specified in detail by GSI and ordered in the industry. The three 2 MW final amplifiers were designed, constructed and built by GSI. The paper gives an overview of the complete RF system and the operating performance of a...

  2. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  3. Electromagnetic and beam dynamics studies of a high current drift tube linac for LEHIPA

    Science.gov (United States)

    Roy, S.; Rao, S. V. L. S.; Pande, R.; Krishnagopal, S.; Singh, P.

    2014-06-01

    We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.

  4. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    Science.gov (United States)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  5. Surface Modification of Light Alloys by Low-Energy High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    X. D. Zhang

    2012-01-01

    Full Text Available This paper reviews results obtained by the research groups developing the low-energy high-current pulsed electron beam (LEHCPEB in Dalian (China and Metz (France on the surface treatment of light alloys. The pulsed electron irradiation induces an ultra-fast thermal cycle at the surface combined with the formation of thermal stress and shock waves. As illustrated for Mg alloys and Ti, this results in deep subsurface hardening (over several 100 μm which improves the wear resistance. The analysis of the top surface melted surface of light alloys also often witnesses evaporation and condensation of chemical species. This phenomenon can significantly modify the melt chemistry and was also suggested to lead to the development of specific solidification textures in the rapidly solidified layer. The potential use of the LEHCPEB technique for producing thermomechanical treatments under the so-called heating mode and, thus, modify the surface crystallographic texture, and enhance solid-state diffusion is also demonstrated in the case of the FeAl intermetallic compound.

  6. Microstructures and properties of zirconium-702 irradiated by high current pulsed electron beam

    Science.gov (United States)

    Yang, Shen; Cai, Jie; Lv, Peng; Zhang, Conglin; Huang, Wei; Guan, Qingfeng

    2015-09-01

    The microstructure, hardness and corrosion resistance of zirconium-702 before and after high-current pulsed electron beam (HCPEB) irradiation have been investigated. The microstructure evolution and surface morphologies of the samples were characterized by using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results indicate that the sample surface was melted after HCPEB irradiation, and martensitic phase transformation occurred. Besides, two kinds of craters as well as ultrafine structures were obtained in the melted layer. TEM observations suggest that high density dislocations and deformation twins were formed after HCPEB irradiation. With the increasing of pulses, microhardness of the irradiated samples was increased from the initial 178 Hv to 254 Hv. The corrosion resistance was tested by using electrode impedance spectroscopy (EIS) and potentiodynamic polarization curves. Electrochemical results show that, after HCPEB irradiation, all the samples had better corrosion resistance in 1 mol HNO3 solution compared to the initial one, among which the 5-pulsed sample owned the best corrosion resistance. Ultrafine structures, martensitic phase transformation, surface porosities, dislocations and deformation twins are believed to be the dominant reasons for the improvement of the hardness and corrosion resistance.

  7. Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current

    DEFF Research Database (Denmark)

    Chen, Ming; Liu, Yi-Lin; Bentzen, Janet Jonna;

    2013-01-01

    ). Detailed post-mortem characterizations were carried out to investigate microstructural changes after long-term galvanostatic tests, focusing on the Ni/YSZ electrode. Formation of ZrO2 nano-particles on Ni surfaces was observed in cells exposed to −1 or −1.5 A/cm2 at 800 or 850°C, but not in those tested...... of Ni-YSZ interfacial reactions, taking place under the conditions prevailing under strong polarization. A mechanism for the formation of ZrO2 nano-particles on the Ni surface under the electrolysis cell testing is proposed and the possibility of Ni-YSZ interfacial reactions under such conditions (T, p(O...

  8. Neutron Flux and Activation Calculations for a High Current Deuteron Accelerator

    CERN Document Server

    Coniglio, Angela; Sandri, Sandro

    2005-01-01

    Neutron analysis of the first Neutral Beam (NB) for the International Thermonuclear Experimental Reactor (ITER) was performed to provide the basis for the study of the following main aspects: personnel safety during normal operation and maintenance, radiation shielding design, transportability of the NB components in the European countries. The first ITER NB is a medium energy light particle accelerator. In the scenario considered for the calculation the accelerated particles are negative deuterium ions with maximum energy of 1 MeV. The average beam current is 13.3 A. To assess neutron transport in the ITER NB structure a mathematical model of the components geometry was implemented into MCNP computer code (MCNP version 4c2. "Monte Carlo N-Particle Transport Code System." RSICC Computer Code Collection. June 2001). The neutron source definition was outlined considering both D-D and D-T neutron production. FISPACT code (R.A. Forrest, FISPACT-2003. EURATOM/UKAEA Fusion, December 2002) was used to assess neutron...

  9. Development of a high-current hydrogen-negative ion source for LHD-NBI system

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Oka, Yoshihide; Kaneko, Osamu; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Masanobu

    1998-08-01

    We have developed a high-current hydrogen-negative ion source for a negative-ion-based NBI system in Large Helical Device (LHD). The ion source is a cesium-seeded volume-production source equipped with an external magnetic filter. An arc chamber is rectangular, the dimensions of which are 35 cm x 145 cm in cross section and 21 cm in depth. A three-grid single-stage accelerator is divided into five sections longitudinally, each of which has 154(14 x 11) apertures in an area of 25 cm x 25 cm. The ion source was tested in the negative-NBI teststand, and 25 A of the negative ion beam is incident on a beamdump 13 m downstream with an energy of 104 keV for 1 sec. Multibeamlets of 770 are focused on a focal point 13 m downstream with an averaged divergence angle of 10 mrad by the geometrical arrangement of five sections of grid and the aperture displacement technique of the grounded grid. A uniform beam in the vertical direction over 125 cm is obtained with uniform plasma production in the arc chamber by balancing individual arc currents flowing through each filament. Long-pulse beam production was performed, and 1.3 MW of the negative ion beam is incident on the beamdump for 10 sec, and the temperature rise of the cooling water is almost saturated for the extraction and the grounded grids. These results satisfy the first-step specification of the LHD-NBI system. (author)

  10. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  11. Characterization of a high current pulsed arc using optical emission spectroscopy

    Science.gov (United States)

    Sousa Martins, R.; Zaepffel, C.; Chemartin, L.; Lalande, Ph; Soufiani, A.

    2016-10-01

    In this paper, we present the investigation realized on an experimental setup that simulates an arc column subjected to the transient phase of a lightning current waveform in laboratory conditions. Optical emission spectroscopy is employed to assess space- and time-resolved properties of this high current pulsed arc. Different current peak levels are utilised in this work, ranging from 10 kA to 100 kA, with a peak time around 15 µs. Ionic lines of nitrogen and oxygen are used to determine the radial profiles of temperature and electron density of the arc channel over time from 2 µs to 36 µs. A combination of 192 N II and O II lines is considered in the calculation of the bound-bound contribution of the absorption coefficient of the plasma channel. Calculations of the optical thickness showed that self-absorption of these ionic lines in the arc column is important. To obtain temperature and electron density profiles in the arc, we solved the radiative transfer equation across the channel under an axisymmetric assumption and considering the channel formed by uniform concentric layers. For the 100 kA current peak level, the temperature reaches more than 38 000 K and the electron density reaches 5  ×  1018 cm-3. The pressure inside the channel is calculated using the air plasma composition at local thermodynamic equilibrium, and reaches 45 bar. The results are discussed and utilised to estimate the electrical conductivity of the arc channel.

  12. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  13. Smoothing of Discharge Inhomogeneities at High Currents in Gasless High Power Impulse Magnetron Sputtering

    CERN Document Server

    Andersson, Joakim; Anders, André

    2014-01-01

    The discharges in high power impulse magnetron sputtering (HiPIMS) have been reported to consist of azimuthally inhomogeneous plasma with locally increased light emission. The luminous zones seemingly travel around the racetrack and are implicated in generation of the high ion kinetic energies observed in HiPIMS. We show that the inhomogeneities smooth out at high discharge current to yield azimuthally homogeneous plasma. This may have implications for the spatial and kinetic energy distribution of sputtered particles, and therefore also on the thin films deposited by high power impulse magnetron sputtering.

  14. The effect of asphaltene particle size and distribution on the temporal advancement of the asphaltene deposition profile in the well column

    Science.gov (United States)

    Zeinali Hasanvand, Mahdi; Mosayebi Behbahani, Reza; Feyzi, Farzaneh; Ali Mousavi Dehghani, Seyed

    2016-05-01

    Asphaltene deposition in oil wells is an inconvenient production problem. Generating a precise deposition model for the well column is essential for optimal well design and prevention/reduction of deposition-associated difficulties. The goal of this study is to determine the effects of various parameters on the deposition process. These parameters include oil viscosity, temperature, flow velocity, well diameter and asphaltene particle size and particle size distribution. The first five parameters are analyzed using Escobedo and Mansoori (2010), Cleaver and Yates (1975) and Friedlander and Johnstone (1957) asphaltene deposition models. The last parameter (asphaltene particle size distribution) is not directly included in the asphaltene deposition models. Therefore, a dynamic well column model is generated by combining transport phenomena (mass, heat and momentum transfer) equations with thermodynamic models. The model is fine-tuned and verified based on field data from an Iranian producing oil well with frequent asphaltene deposition problem and subsequently used for predicting the time-dependent development of the asphaltene deposition profile in the well column for a series of asphaltene particle size distributions. The results show the effect of the said parameters depends on how the buffer layer and Brownian motion are defined. The Escobedo and Mansoori (2010) model is found to make better predictions of deposited asphaltene in the studied well.

  15. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming;

    High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural......, microstructure evolution of the Ni-yttria stabilized zirconia (YSZ) is followed as a function of galvanostatic steam electrolysis testing at current densities between -0.5 and -1.0 A cm-2 for periods of up to 750 hours at 800 °C. The volume fraction and size of the percolating Ni particles was statistically...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  16. High Current Density Effect on In-situ Atomic Migration Characteristics of a BiTe Thin Film System

    Science.gov (United States)

    Kim, Seunghyun; Park, Yong-Jin; Joo, Young-Chang; Park, Young-Bae

    2013-10-01

    Understanding fundamental atomic migration characteristics of multicomponent chalcogenide materials such as GeSbTe (GST) and BiTe are important in order to investigate the failure mechanism related to the electrical reliability of thermoelectric materials under high current density. In this work, high current density effect on the in-situ atomic migration characteristics of the BiTe thermoelectric thin films was conducted by real-time observation inside an scanning electron microscope chamber. Under the high current density conditions ranging from 0.83×106 to 1.0×106 A/cm2 at 100 °C, Te migrated toward the cathode, and Bi migrated toward the anode because the electrostatic force was dominant by very high Joule heating effect.

  17. Advances of Epoxy Resin Toughening by Inorganic Nano-particles%无机纳米粒子增韧环氧树脂研究进展

    Institute of Scientific and Technical Information of China (English)

    李媛媛; 戴红旗; 雷文

    2012-01-01

    Epoxy resin is a kind of thermosetting resin that is wildly applied in many fields.It is mainly used as strengthening agent or modifier in paper making industry.However,its further application is restricted because of its rigid property.Adding inorganic nano-particles to epoxy resin matrix is an important method to toughen epoxy resin.In this paper,dispersion methods of inorganic nano-particles in epoxy resin as well as effects of inorganic nano-particles on epoxy resin properties were assembled.In addition,effects of inorganic nano-particle size,content and shape on modified epoxy resin property were analysed,and toughening mechanisms were summarized.%环氧树脂是一类广泛应用的热固性树脂,在造纸工业中主要用作增强剂或者改性剂。然而其质脆,限制了它的进一步开发应用。在环氧树脂基体里添加无机纳米粒子是增韧环氧树脂的一种重要手段。本文综述了无机纳米粒子在环氧树脂基体内的分散方法、无机粒子增韧环氧树脂对环氧树脂的各种性能影响,分析了粒子粒径大小、含量及形态对增韧环氧树脂性能的影响并阐述了无机粒子增韧环氧树脂的机理。

  18. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in thr

  19. OLEDs under high current densities. Transient electroluminescence turn-on peaks and singlet-triplet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Kasemann, Daniel

    2012-02-27

    This work focuses on a better understanding of the behavior of organic light emitting devices (OLEDs) under intense electrical excitation. Attaining high exciton densities in organic semiconductors by electrical excitation is of special interest for the field of organic semiconductor lasers (OSLs). In these devices, the high singlet exciton density needed in the active layer to obtain population inversion is easily created by pulsed optical pumping, but direct electrical pumping has not been achieved yet. First, the steps necessary to achieve stable high current densities in organic semiconductors are discussed. After determining the optimal excitation scheme using single p-doped transport layers, the device complexity is increased up to full p-i-n OLEDs with their power dependent emission spectra. For this purpose, two exemplary emitter systems are chosen: the fluorescent laser dye 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) doped into Aluminum(III)bis (2-methyl-8-quinolinato)-4-phenylphenolate (Alq{sub 3}) and the efficient phosphorescent emitter system N,N'-di(naphthalen-1-yl)-N,N'-diphenyl-benzidine (alpha-NPD) doped by Iridium(III) bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate) (Ir(MDQ){sub 2}(acac)). For pulsed excitation using 50 ns pulses and a repetition rate of 1 kHz, single 100 nm thin p- and n-doped transport layers sustain current densities of over 6 kA/cm{sup 2}. While the maximum current density decreases with increasing device thickness, the full OLEDs still sustain current densities beyond 800 A/cm{sup 2} and exhibit a continuously increasing emission intensity with increasing input power. Next, the time-resolved emission behavior of the singlet and triplet emitter device at high excitation densities is analyzed on the nanosecond scale. Here, the peak emission intensity of the phosphorescent emitter system is found to be more than eight times lower than for the singlet emitter system at comparable current

  20. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    Science.gov (United States)

    McCarthy, Mitchell

    lifetime and the potential for an all transparent display. And because carbon nanotubes (CNTs) and organics are used, CN-VFET and CN-VOLET devices are compatible with flexible displays. This dissertation describes the first ever demonstration of CN-VFETs and CN-VOLETs and relates their performance to the specific properties of the CNTs and the new device architecture. In the work that followed, the CN-VFET was systematically optimized overcoming the problems revealed in the demonstration devices. The large undesired hysteresis was decreased by 96%, the on/off ratio was improved three orders of magnitude and the operating voltages were reduced to state of the art values. Additionally, the current output per device area of the CN-VFET was demonstrated to be greater than any other low resolution patterned organic transistor by a factor of 3.9. Moreover, it was demonstrated that the CNTs induce a reorientation of the high mobility plane in small molecule organics like pentacene to coincide with the vertical direction, giving additional explanation for the large currents observed in the CN-VFET. The ability to drive high currents and potentially inexpensive fabrication may provide the solution for the AMOLED backplane problem.

  1. High current and low q{sub 95} scenario studies for FAST in the view of ITER and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Calabrò, G., E-mail: giuseppe.calabro@enea.it [Associazione Euratom-ENEA sulla Fusione, C.P. 65-I-00044 Frascati, Rome (Italy); Crisanti, F.; Ramogida, G. [Associazione Euratom-ENEA sulla Fusione, C.P. 65-I-00044 Frascati, Rome (Italy); Mantica, P.; Baiocchi, B. [Istituto di Fisica del Plasma ‘P.Caldirola’, Associazione Euratom-ENEA-CNR, Milano (Italy); Cucchiaro, A.; Frosi, P.; Fusco, V. [Associazione Euratom-ENEA sulla Fusione, C.P. 65-I-00044 Frascati, Rome (Italy); Liu, Y. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Mastrostefano, S.; Villone, F. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale (Italy); Vlad, G. [Associazione Euratom-ENEA sulla Fusione, C.P. 65-I-00044 Frascati, Rome (Italy); Fresa, R. [Associazione Euratom-ENEA-CREATE, DIFA-Univ. della Basilicata, Via dell’Ateneo Lucano, 10 I-85100 Potenza (Italy)

    2013-10-15

    The Fusion Advanced Study Torus (FAST) has been proposed as a possible European satellite, in view of ITER and DEMO, in order to: (a) explore plasma wall interaction in reactor relevant conditions, (b) test tools and scenarios for safe and reliable tokamak operation up to the border of stability, and (c) address fusion plasmas with a significant population of fast particles. A new FAST scenario has been designed focusing on low-q operation, at plasma current I{sub P} = 10 MA, toroidal field B{sub T} = 8.5 T, with a q{sub 95} ≈ 2.3 that would correspond to I{sub P} ≈ 20 MA in ITER. The flat-top of the discharge can last a couple of seconds (i.e. half the diffusive resistive time and twice the energy confinement time), and is limited by the heating of the toroidal field coils. A preliminary evaluation of the end-of-pulse temperatures and of the electromagnetic forces acting on the central solenoid pack and poloidal field coils has been performed. Moreover, a VDE plasma disruption has been simulated and the maximum total vertical force applied on the vacuum vessel has been estimated.

  2. Segmented Beam Dump for Time Resolved Spectrometry on a High Current Electron Beam

    CERN Document Server

    Lefèvre, T; Bravin, E; Braun, H H

    2008-01-01

    In the CLIC Test Facility 3 (CTF3), the strong coupling between the beam and the accelerating cavities induces transient effects such that the head of the pulse is accelerated twice as much as the rest of the pulse. Three spectrometer lines are installed along the linac with the aim of measuring energy spread versus time with a 20ns resolution. A major difficulty is due to the high power carried by the beam which imposes extreme constraints of thermal and radiation resistances on the detector. This paper presents the design and the performances of a simple and easy-to-maintain device, called ‘segmented dump'. In this device, the particles are stopped inside metallic plates and the deposited charge is measured in the same way as in Faraday cups. Simulations were carried out with the Monte Carlo code ‘FLUKA' to evaluate the problems arising from the energy deposition and to find ways to prevent or reduce them. The detector resolution was optimized by an adequate choice of material and thickness of the...

  3. High current 66 kV tests on high stability PFN discharge capacitors for CERN LHC

    CERN Document Server

    Barnes, M J

    1999-01-01

    The European Laboratory for Particle Physics (CERN) is constructing a Large Hadron Collider (LHC) to be installed in an existing 27 km circumference tunnel. The LHC will be equipped with fast pulsed magnet systems for injecting two counter-rotating hadron beams. Two pulsed systems, of 4 magnets and 4 pulse forming networks (PFNs) each, are required for this purpose. TRIUMF will build and test 5 resonant charging power supplies (RCPS) and nine PFNs and the associated thyratron switch units as part of the Canadian contribution to CERN LHC. Failures in the PFN capacitors may lead to incorrect beam deflections that may in turn damage LHC components. For this reason the reliability of the capacitors must be exceptionally high. Hence sample PFN capacitors were purchased and tested. The test procedure included discharging the PFN capacitors from 66 kV, into a 10.1 Ohm resistance, for 500,000 cycles, at a frequency of approximately 1 Hz. Subsequently the PFN capacitors were discharged from 66 kV into a 2.7 Ohm resist...

  4. Optimization of solenoid based low energy beam transport line for high current H+ beams

    Science.gov (United States)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  5. Quench Analysis of High Current Density Nb3Sn Conductors in Racetrack Coil Configuration

    CERN Document Server

    Bajas, H; Bordini, B; Bottura, L; Izquierdo Bermudez, S; Feuvrier, J; Chiuchiolo, A; Perez, J C; Willering, G

    2015-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of new type of superconducting cables based on advanced Nb3Sn strands. In the framework of the FP7 European project EUCARD the cables foreseen for the HL-LHC project have been tested recently in a simplified racetrack coil configuration, the so-called Short Model Coil (SMC). In 2013 to 2014, two SMCs wound with 40-strand (RRP 108/127) cables, with different heat treatment processes, reached during training at 1.9 K a current and peak magnetic field of 15.9 kA, 13.9T,and 14.3 kA, 12.7 Trespectively. Using the measured signals from the voltage taps, the behavior of the quenches is analyzed in terms of transverse and longitudinal propagation velocity and hot spot temperature. These measurements are compared with both analytical and numerical calculations from adiabatic models.The coherence of the results from the presented independent methods helps in estimating the relevance of the material properties and the adiabatic assump...

  6. Characterization and Performance of a High-Power Solid-State Laser for a High-Current Photocathode Injector

    CERN Document Server

    Zhang, S; Neil, G; Shinn, M D

    2005-01-01

    We report the characterization and performance of a diode-pumped, high-power, picosecond laser system designed for high-current photo-cathode accelerator injector at repetition rates of both 75MHz and 750MHz. Our characterization includes measurement of the system's amplitude stability, beam quality, pulsewidth, and phase noise for both frequencies.

  7. High Current and High Power Fast Kicker System Conceptual Design and Technology Overview for DeeMe Experiment

    Science.gov (United States)

    2013-06-01

    HIGH CURRENT AND HIGH POWER FAST KICKER SYSTEM CONCEPTUAL DESIGN AND TECHNOLOGY OVERVIEW FOR DEEME EXPERIMENT∗ W. Zhangξ Collider -Accelerator... Collider -Accelerator Department, Brookhaven National Laboratory, , Upton, New York, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...challenging technical area in high power kicker design for high energy hadron accelerators. Almost all high power kickers are designed, developed, and

  8. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick;

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...

  9. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, July 1993--August 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1994-08-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report.

  10. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, August 1992--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1993-06-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: Charged Particle Beam Transport and the Computation of Electromagnetic Fields and Beam-Cavity Interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates.

  11. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Directory of Open Access Journals (Sweden)

    Yanping Fan

    Full Text Available In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs. The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+, divalent (Mg(2+ or trivalent (Co(NH(3(6 (3+ cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+, to partial aggregation with Mg(2+ and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+. The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  12. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    Science.gov (United States)

    Fan, Yanping; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2013-01-01

    In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs). The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar) plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+)), divalent (Mg(2+)) or trivalent (Co(NH(3))(6) (3+)) cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+), to partial aggregation with Mg(2+) and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+). The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  13. Magnetic particle characterization-magnetophoretic mobility and particle size.

    Science.gov (United States)

    Zhou, Chen; Boland, Eugene D; Todd, Paul W; Hanley, Thomas R

    2016-06-01

    Quantitative characterization of magnetic particles is useful for analysis and separation of labeled cells and magnetic particles. A particle velocimeter is used to directly measure the magnetophoretic mobility, size, and other parameters of magnetic particle suspensions. The instrument provides quantitative video analysis of particles and their motion. The trajectories of magnetic particles in an isodynamic magnetic field are recorded using a high-definition camera/microscope system for image collection. Image analysis software then converts the image data to the parameters of interest. The distribution of magnetophoretic mobility is determined by combining fast image analysis with velocimetry measurements. Particle size distributions have been characterized to provide a better understanding of sample quality. The results have been used in the development and operation of analyzer protocols for counting particle concentrations accurately and measuring magnetic susceptibility and size for simultaneous display for routine application to particle suspensions and magnetically labeled biological cells. © 2016 International Society for Advancement of Cytometry.

  14. A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications

    Science.gov (United States)

    Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.

    2016-09-01

    This work deliberates a method for manganese (Mn) recovery as manganese oxide obtained by leaching of waste batteries with 3M sulphuric acid. The Experimental test for the recovery of Mn present within the waste dry cell batteries were carried out by a reductive leachant. Elemental composition of leached sample was confirmed by Energy Dispersive X-ray analysis (EDAX), and Surface morphology of the recovered MnO2 was examined by using Scanning Electron microscopy (SEM). Phase composition was confirmed from X-ray Diffractro meter (XRD). The obtained leached solution was treated with 4M NaOH, yielded to Manganese Dioxide with high extraction degree, while it do not touches the Zn content within the solutions. The recovered samples were characterized using XRD, EDAX, SEM and Fourier transform infrared spectrometry (FTIR). The electrochemical properties of the as-recovered sample from leached solution was examined used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Remarkably, the 80 wt.% MnO2 displays reversibility, diffusion constant, smaller equivalent series resistance and charge transfer resistance in 0.5M NaOH showed superior results as compared to alternative electrolytes. The ideal capacitive behaviour of MnO2 electrode and nano particle was applied to photocatalytic degradation of dyes.

  15. Surface Nanocrystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    OpenAIRE

    2013-01-01

    The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB) technique. The structures of the nanocrystallized surface were characterized by X-ray diffraction and electron microscopy. Two nanostructures consisting of fine austenite grains (50–150 nm) and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that th...

  16. On the suitability of longitudinal profile measurements using Coherent Smith-Purcell radiation for high current proton beams

    CERN Document Server

    Barros, Joanna; Vieille-Grosjean, Mélissa; Kittelmann, Irena Dolenc; Thomas, Cyrille

    2014-01-01

    The use of Smith-Purcell radiation to measure electrons longitudinal profiles has been demonstrated at several facilities in the picosecond and sub-picosecond range. There is a strong interest for the development of non intercepting longitudinal profile diagnostics for high current proton beams. We present here results of simulations on the expected yield of longitudinal profile monitors using Smith-Purcell radiation for such proton beams.

  17. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  18. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  19. Analysis of sub-1 keV implants in silicon using SIMS, SRP, MEISS and DLTS: The xRLEAP low energy, high current implanter evaluated

    Energy Technology Data Exchange (ETDEWEB)

    Foad, M.A.; England, J.G.; Moffatt, S. [Applied Materials Implant Division, West Sussex (United Kingdom); Armour, D.G. [Univ. of Salford (United Kingdom)

    1996-12-31

    Ultra shallow junctions can be formed, amongst other techniques, by very low energy ion implantation. The Implant Division of Applied Materials have recently developed a low energy, high current ion implanter, the xRLEAP (xR family, Low Energy Advance Process). This implanter is capable of delivering product worthy beam currents, in the milli-ampere regime down to energies of few hundred electron volts. A series of B and BF{sub 2} implants were carried out onto non-amorphised, 200mm Si wafers using beam energies in the range 0.2keV < E < 1keV. As-implanted and annealed samples were profiled using Secondary Ion Mass Spectrometry (SIMS). Surface damage due to implantation was evaluated using Medium Energy Ion Scattering Spectroscopy (MEISS). The carrier concentration profiles and junction depths of the annealed samples were investigated using Spreading Resistance Probe (SRP). Samples with ultra shallow junctions, < 0.07{mu}m, were examined using Deep Level Transient Spectroscopy (DLTS) for the first time.

  20. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  1. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yuri, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 2/3 Akademicheskiy Ave. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050 (Russian Federation); Tolkachev, Oleg, E-mail: ole.ts@mail.ru; Petyukevich, Maria, E-mail: petukevich@tpu.ru; Polisadova, Valentina, E-mail: polis@tpu.ru [National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050 (Russian Federation); Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 2/3 Akademicheskiy Ave. Tomsk, 634055 (Russian Federation); National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050 (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  2. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Science.gov (United States)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  3. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  4. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2007-01-01

    Particle Accelerator Physics is an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. Part I gathers the basic tools, recalling the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part II is an extensive primer in beam dynamics, followed in Part III by the introduction and description of the main beam parameters. Part IV is devoted to the treatment of perturbations in beam dynamics. Part V discusses the details of charged particle accleration. Part VI and Part VII introduce the more advanced topics of coupled beam dynamics and the description of very intense beams. Part VIII is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. Part IX collects the appendices gathering useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are give...

  5. Advanced Particle Filter for Non-cooperative Target Tracking in LTE%基于非合作定位模型的改进型粒子滤波跟踪算法

    Institute of Scientific and Technical Information of China (English)

    滕飞; 钟子发

    2015-01-01

    针对卡尔曼滤波对3GPP 长期演进(LTE,long term evolution)终端非合作跟踪定位精度较差的问题,提出了基于非合作定位模型的改进型粒子滤波算法。该算法以侦测站从空口截获的含有噪声的波达时延差(TDOA)和波达时延和(TSOA)信息为基础,建立目标跟踪定位模型,通过改进型粒子滤波(PF,particle filter)算法实现对目标终端的位置和速度的跟踪获取。仿真实验表明,该算法可以有效实现对目标的跟踪,较无迹卡尔曼滤波(UKF,unscented kal-man filter)算法有更好的准确性。%In order to solve the poor accuracy problem of non-cooperative target tracking by the algorithm of Kalman filter in LTE,this paper offered the model of non-cooperative target tracking.This algorithm built a target tracking model which based on the TDOA and TSOA information.These information were intercepted by monitoring station from the spatial interface.the target tracking by a advanced particle filter was realized.Numerical simulations showed that the algo-rithm could realize the target tracking and had a better veracity than UKF.

  6. Device Architecture and Materials for Organic Light-Emitting Devices Targeting High Current Densities and Control of the Triplet Concentration

    CERN Document Server

    Schols, Sarah

    2011-01-01

    Device Architecture and Materials for Organic Light-Emitting Devices focuses on the design of new device and material concepts for organic light-emitting devices, thereby targeting high current densities and an improved control of the triplet concentration. A new light-emitting device architecture, the OLED with field-effect electron transport, is demonstrated. This device is a hybrid between a diode and a field-effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light-emitting zone, reducing optical absorption losses. The electrons injected by the cathode accumulate at an organic heterojunction and are transported to the light-emission zone by field-effect. High mobilities for charge carriers are achieved in this way, enabling a high current density and a reduced number of charge carriers in the device. Pulsed excitation experiments show that pulses down to 1 µs can be applied to this structure without affecting the light intensity, sug...

  7. Particle and nuclear physics

    CERN Document Server

    Faessler, Amand

    1971-01-01

    Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussio

  8. Durability of the Solid Oxide Cells for Co-Electrolysis of Steam and Carbon Dioxide under High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun

    Production of hydrogen and syngas (CO + H2) using solid oxide electrolysis cells (SOECs) has become increasingly attractive due to high oil price, the capability for conversion and storage of intermittent energy from renewable sources and the general interest in hydrogen energy and carbon......-neutral energy sources. Long-term stability of SOECs for high fuel productivity is crucial for the application of this technology. In this work, a series of galvanostatic durability tests were performed at high current densities (|i| = 1.5 or 2.0 A/cm2), 850 oC for up to about 700 hours for co-electrolysis...... occurred during co-electrolysis of steam and CO2 at |i| ≥ 2.0 A/cm2. Gas diffusion limitations contribute to the dramatic increase of cell voltage and a very reducing atmosphere at the interface....

  9. Surface Nanocrystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2013-01-01

    Full Text Available The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB technique. The structures of the nanocrystallized surface were characterized by X-ray diffraction and electron microscopy. Two nanostructures consisting of fine austenite grains (50–150 nm and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  10. Analysis of the wake field effects in the PEP-II storage rings with extremely high currents

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A., E-mail: novo@slac.stanford.edu; Seeman, J.; Sullivan, M.

    2014-01-21

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  11. Analysis of the wake field effects in the PEP-II storage rings with extremely high currents

    Science.gov (United States)

    Novokhatski, A.; Seeman, J.; Sullivan, M.

    2014-01-01

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  12. Cathode performance during two beam operation of the high current high polarization electron gun for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, O. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Degen, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lambiase, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sheehy, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pietz, J. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Ackeret, M. [Transfer Engineering and Manufacturing, Inc., Fremont, CA (United States); Yeckel, C. [Stangenes Industries, Palo Alto, CA (United States); Miller, R. [Stangenes Industries, Palo Alto, CA (United States); Dobrin, E. [Stangenes Industries, Palo Alto, CA (United States); Thompson, K. [Stangenes Industries, Palo Alto, CA (United States)

    2015-05-03

    Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment.

  13. Improvement of Wear Resistance of Magnesium Alloy AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; ZOU Jian-xin; JIANG Li-min; ZHOU Ji-yang; DONG Chuang

    2004-01-01

    Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase Mg17Al12 is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface.The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250μm.Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.

  14. Numerical simulation of thermal-mechanical process of Al-Si-Pb alloy treated by high current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    L(U) Xiao-xia; LI Rong-guang; AN Jian

    2006-01-01

    The modified microstructure of Al-Si-Pb alloys irradiated by high current electron beam (HCPEB) reveals three distinct regions: a molten zone, an overlapped zone of heat-affected and quasistatic thermal stress-affected zone, and a transition zone followed by the substrate. The hardness and wear properties of the alloys were significantly improved. To better understand these changes in microstructure and properties, the physical model for the simulation of temperature and quasistatic stress fields was established. Based on experimental investigation and physical models, the temperature field and stress field were simulated for Al-Si-Pb alloy. The starting melting position, largest crater depth, melting layer thickness, and quasistatic stress distribution were obtained. These results reveal the mechanism of crater formation on the surface and improvement of hardness and wear resistance.

  15. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    Science.gov (United States)

    Stern, J. A.; Leduc, Henry G.; Judas, A. J.

    1992-01-01

    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.

  16. The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    CERN Document Server

    Shilon, I.; Langeslag, S.A.E.; Martins, L.P.; ten Kate, H.H.J.

    2015-01-01

    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zon...

  17. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  18. Ultrafine particles

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta;

    2013-01-01

    Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when...... the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN...... concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3...

  19. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  20. [Heavy particle radiation therapy].

    Science.gov (United States)

    Lozares, S; Mañeru, F; Pellejero, S

    2009-01-01

    The characteristics of radiation formed by heavy particles make it a highly useful tool for therapeutic use. Protons, helium nuclei or carbon ions are being successfully employed in radiotherapy installations throughout the world. This article sets out the physical and technological foundations that make these radiation particles suitable for attacking white volume, as well as the different ways of administering treatment. Next, the main clinical applications are described, which show the therapeutic advantages in some of the pathologies most widely employed in proton and hadron therapy centres at present. Under continuous study, the clinical use of heavy particles appears to be an enormously promising path of advance in comparison with classical technologies, both in tumour coverage and in reducing dosages in surrounding tissue.

  1. Streak-Camera Measurements with High Currents in PEP-II and Variable Optics in SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Weixeng; Fisher, Alan, a Corbett, Jeff; /SLAC

    2008-06-05

    A dual-axis, synchroscan streak camera was used to measure longitudinal bunch profiles in three storage rings at SLAC: the PEP-II low- and high-energy rings, and SPEAR3. At high currents, both PEP rings exhibit a transient synchronous-phase shift along the bunch train due to RF-cavity beam loading. Bunch length and profile asymmetry were measured along the train for a range of beam currents. To avoid the noise inherent in a dual-axis sweep, we accumulated single-axis synchroscan images while applying a 50-ns gate to the microchannel plate. To improve the extinction ratio, an upstream mirror pivoting at 1 kHz was synchronized with the 2kHz MCP gate to deflect light from other bunches off the photocathode. Bunch length was also measured on the HER as a function of beam energy. For SPEAR3 we measured bunch length as a function of single-bunch current for several lattices: achromatic, low-emittance and low momentum compaction. In the first two cases, resistive and reactive impedance components can be extracted from the longitudinal bunch profiles. In the low-alpha configurations, we observed natural bunch lengths approaching the camera resolution, requiring special care to remove instrumental effects, and saw evidence of periodic bursting.

  2. Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers

    Science.gov (United States)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-01-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.

  3. A HIgh Current Density Low Cost Niobium 3 Tin Titanium Doped Conductor Utilizing A Novel Internal Tin Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruce A Zeitlin

    2005-02-23

    An internal tin conductor has been developed using a Mono Element Internal Tin (MEIT) with an integral Nb barrier surrounding the Nb filaments. High current densities of 3000 A/mm2+ at 12 T and 1800 A/mm2 at 15 T have been achieved in conductors as small as 0.152 mm with the use of Nb7.5Ta filaments and Ti in the Sn core. In contrast, conductors with pure Nb and Ti in the Sn achieved 2700 A/mm2 at 12 T. Two internal fins, developed and patented on the project, were introduced into the filament array and reduced the effective filament diameter (Deff) by 38%. Additional fins will further reduce Deff The conductor was produced from 152.4 mm diameter billets to produce wire as small as 0.152 mm. The process promises be scaleable to 304 mm diameter billets yielding wire of 0.304 mm diameter. The MEIT process wire was easy to draw with relatively few breaks. The cost of this conductor in large production quantities based on the cost model presented could meet the 1.5 $/kilo amp meter(KAM) target of the HEP community

  4. Proceedings of the DOE workshop on the role of a high-current accelerator in the future of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Moody, D.C.; Peterson, E.J. (comps.)

    1989-05-01

    The meeting was prompted by recent problems with isotope availability from DOE accelerator facilities; these difficulties have resulted from conflicting priorities between physics experiments and isotope production activities. The workshop was a forum in which the nuclear medicine community, isotope producers, industry, and other interested groups could discuss issues associated with isotope availability (including continuous supply options), the role of DOE and industry in isotope production, and the importance of research isotopes to the future of nuclear medicine. The workshop participants endorsed DOE's presence in supplying radioisotopes for research purposes and recommended that DOE should immediately provide additional support for radionuclide production in the form of personnel and supplies, DOE should establish a policy that would allow income from sales of future ''routine'' radionuclide production to be used to support technicians, DOE should obtain a 70-MeV, 500-/mu/A variable-energy proton accelerator as soon as possible, and DOE should also immediately solicit proposals to evaluate the usefulness of a new or upgraded high-energy, high-current machine for production of research radionuclides. This proceedings volume is a summary of workshop sessions that explored the future radionuclide needs of the nuclear medicine community and discussed the DOE production capabilities that would be required to meet these needs.

  5. Measurements of fusion-protons anisotropy around the pinch axis within high-current PF-1000 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M.J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland)] [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland); Malinowska, A.; Malinowski, K.; Czaus, K.; Kwiatkowski, R.; Skladnik-Sadowska, E.; Zebrowski, J. [The Andrzej Soltan Institute for Nuclear Studies - IPJ, 05-400 Otwock-Swierk (Poland); Karpinski, L.; Paduch, M.; Scholz, M.; Stepniewski, W. [Institute of Plasma Physics and Laser Microfusion - IPPLM, 01-497 Warsaw (Poland)

    2011-07-01

    The paper describes measurements of fast protons produced by D-D fusion reactions during high-current discharges within the PF-1000 facility operated with the deuterium filling at 27 kV, 480 kJ. The measurements were performed by means of a set of pinhole-cameras equipped with PM-355 track detectors shielded by 80-{mu}m-thick Al-filters, which eliminated fast primary deuterons and protons of lower energy (< 3 MeV). Those cameras were placed at different angles around the pinch axis. The obtained proton images showed a distinct angular anisotropy, which was explained by an influence of local magnetic fields connected with a filamentary structure of the plasma column during the fast proton (and neutron) emission. The paper shows that in addition to measurements of a fusion neutron anisotropy it is reasonable to study also an anisotropy of fusion protons (originated from the second branch of the D-D reactions), as well as other charged fusion products. This document is composed of a paper followed by a poster

  6. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, T., E-mail: Thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Bolle, B. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), ENIM, Ile du Saulcy, 57045 Metz (France); Hao, S.Z.; Dong, C. [Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    High current pulsed electron beam is a recently developed technique for surface modification. The pulsed electron irradiation introduces concentrated energy depositions in the thin surface layer of the treated materials, giving rise to an extremely fast heating and subsequent rapid cooling of the surface together with the formation of dynamic stress waves. Improved surface properties (hardness, corrosion resistance) can be obtained under the 'melting' mode when the top surface is melted and rapidly solidified (10{sup 7} K/s). In steels, this is essentially the result of nanostructures formed from the highly undercooled melt, melt surface purification, strain hardening induced by the thermal stress waves as well as metastable phase selections in the rapidly solidified melted layers. The use of the 'heating' mode is less conventional, combining effects of the heavy deformation and recrystallization/recovery mechanisms. A detailed analysis of a FeAl alloy demonstrates grain size refinement, hardening, solid-state enhanced diffusion and texture modification without modification of the surface geometry.

  7. Improvement of wear resistance of AZ31 and AZ91HP by high current pulsed electron beam treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; DONG Chuang; TU Gan-feng

    2005-01-01

    The surface modification of magnesium alloys (AZ31 and AZ91HP) was studied by a high current pulsed electron beam(HCPEB). The results show that the cross-sectional microhardness of treated samples increases not only in the heat affected zone(HAZ), but also beyond HAZ, reaching over 250 μm. This is due to the action of quasi-static thermal stress and the shock thermal stress wave with materials, which result in its fast deformation on the surface layer and so increases microhardness. For the AZ91HP alloy, a nearly complete dissolution of the intermetallic phase Mg17Al12 is observed, and a super-saturated solid solution forms on the re-melted surface, which is due to the solute trapping effect during the fast solidification process. Measurements on sliding wear show that wear resistance is improved by approximately 5.6 and 2.4 times for the AZ31 and AZ91HP respectively, as compared with as-received samples.

  8. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    CERN Document Server

    Giskes, Ella; Segerink, Frans B; Venner, Cornelis H

    2016-01-01

    In the research of supersonic flows, flow visualization continues to be an important tool, and even today it is difficult to create high quality images. In this study we present a low-cost and easy-to use Schlieren setup. The setup makes use of LEDs, pulsed with high currents to increase the optical output to sufficient levels, exploiting the advantages of LED light over conventional light sources. As a test-case we study the interaction of a Mach 1.7 cross flow and a transverse underexpanded jet, which is commonly studied considering the mixing and combustion in scramjet engines. Using 130 nanosecond LED light pulses, we captured the flow structures sharply and in great detail. We observed a large-gradient wave, which was seen in numerical studies but hitherto not reported in experiments. Furthermore, we demonstrate that time-correlated images can be obtained with this Schlieren setup, so that also flow unsteadiness can be studied, such as the movement of shock waves and vortices.

  9. Fabrication of single cylindrical Au-coated nanopores with non-homogeneous fixed charge distribution exhibiting high current rectifications.

    Science.gov (United States)

    Nasir, Saima; Ali, Mubarak; Ramirez, Patricio; Gómez, Vicente; Oschmann, Bernd; Muench, Falk; Tahir, Muhammad Nawaz; Zentel, Rudolf; Mafe, Salvador; Ensinger, Wolfgang

    2014-08-13

    We designed and characterized a cylindrical nanopore that exhibits high electrochemical current rectification ratios at low and intermediate electrolyte concentrations. For this purpose, the track-etched single cylindrical nanopore in polymer membrane was coated with a gold (Au) layer via electroless plating technique. Then, a non-homogeneous fixed charge distribution inside the Au-coated nanopore was obtained by incorporating thiol-terminated uncharged poly(N-isopropylacrylamide) chains in series to poly(4-vinylpyridine) chains, which were positively charged at acidic pH values. The functionalization reaction was checked by measuring the current-voltage curves prior to and after the chemisorption of polymer chains. The experimental nanopore characterization included the effects of temperature, adsorption of chloride ions, electrolyte concentration, and pH of the external solutions. The results obtained are further explained in terms of a theoretical continuous model. The combination of well-established chemical procedures (thiol and self-assembled monolayer formation chemistry, electroless plating, ion track etching) and physical models (two-region pore and Nernst-Planck equations) permits the obtainment of a new nanopore with high current rectification ratios. The single pore could be scaled up to multipore membranes of potential interest for pH sensing and chemical actuators.

  10. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    Science.gov (United States)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6-2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5-2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1-1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150-170 eV, while for neon discharges with the deuterium puffing it reached 330-880 eV (with accuracy of  ±20%).

  11. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    Science.gov (United States)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  12. Immunity clone algorithm with particle swarm evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Li-jue; CAI Zi-xing; CHEN Hong

    2006-01-01

    Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects.Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.

  13. The Advanced Helical Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  14. Summary of the particle physics and technology working group

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Lammel et al.

    2002-12-10

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  15. Long Term Stability Investigation of Solid Oxide Electrolysis Cell with Infiltrated Porous YSZ Air Electrode Under High Current

    DEFF Research Database (Denmark)

    Veltzé, Sune; Ovtar, Simona; Simonsen, Søren Bredmose

    2015-01-01

    activity, due to high surface area of catalyst nano particles. Advantage of infiltration is also separate production of electrolyte backbone structure with good ionic connectivity and mechanical properties. With this study we present the results of a solid oxide cell with infiltrated porous yttria...... and the backbone, and perovskite catalyst material. Cobalt doped lanthanum nickelate was used as the perovskite catalyst due to its excellent performance. The cell was tested in steam electrolysis for at least 2000h. This initial test indicate that a stable air electrode was formed, and that the cell performance...

  16. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.

    Science.gov (United States)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  17. Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices

    Science.gov (United States)

    Huo, Pengyun; Rey-Stolle, Ignacio

    2016-06-01

    The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm-3 to 1.6 × 1019 cm-3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm-3 had Schottky-like I- V characteristics and only samples doped 1.6 × 1019 cm-3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance ( ρ c,Ti/Pd/Ag ~ 5 × 10-4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C ( ρ M,Ti/Pd/Ag ~ 2.3 × 10-6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.

  18. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments

    Science.gov (United States)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  19. A palette of particles

    CERN Document Server

    Bernstein, Jeremy

    2013-01-01

    From molecules to stars, much of the cosmic canvas can be painted in brushstrokes of primary color: the protons, neutrons, and electrons we know so well. But for meticulous detail, we have to dip into exotic hues - leptons, mesons, hadrons, quarks. Bringing particle physics to life as few authors can, Jeremy Bernstein here unveils nature in all its subatomic splendor. In this graceful account, Bernstein guides us through high-energy physics from the early twentieth century to the present, including such highlights as the newly discovered Higgs boson. Beginning with Ernest Rutherford's 1911 explanation of the nucleus, a model of atomic structure emerged that sufficed until the 1930s, when new particles began to be theorized and experimentally confirmed. In the postwar period, the subatomic world exploded in a blaze of unexpected findings leading to the theory of the quark, in all its strange and charmed variations. An eyewitness to developments at Harvard University and the Institute for Advanced Study in Prin...

  20. Lectures in particle physics

    CERN Document Server

    Green, Dan

    1994-01-01

    The aim of this book on particle physics is to present the theory in a simple way. The style and organization of the material is unique in that intuition is employed, not formal theory or the Monte Carlo method. This volume attempts to be more physical and less abstract than other texts without degenerating into a presentation of data without interpretation.This book is based on four courses of lectures conducted at Fermilab. It should prove very useful to advanced undergraduates and graduate students.

  1. Axial and transverse stress-strain characterization of the EU dipole high current density Nb{sub 3}Sn strand

    Energy Technology Data Exchange (ETDEWEB)

    Nijhuis, A; Ilyin, Y; Abbas, W [Faculty of Science and Technology, Low Temperature Division, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)], E-mail: a.nijhuis@tnw.utwente.nl

    2008-06-15

    We have measured the critical current (I{sub c}) of a high current density Nb{sub 3}Sn strand subjected to spatial periodic bending, periodic contact stress and uniaxial strain. The strand is destined for the cable-in-conduit conductors (CICC) of the European dipole (EDIPO) 12.5 T superconducting magnet test facility. The spatial periodic bending was applied on the strand, using the bending wavelengths from 5 to 10 mm with a peak bending strain of 1.5%, a periodic contact stress with a periodicity of 4.7 mm and a stress level exceeding 250 MPa. For the uniaxial strain characterization, the voltage-current characteristics were measured with an applied axial strain from -0.9% to +0.3%, with a magnetic field from 6 to 14 T, temperature from 4.2 to 10 K and currents up to almost 900 A. In addition the axial stiffness was determined by a tensile axial stress-strain test. The characterization of the strand is essential for understanding the behaviour of the strand under mainly axial thermal stress variation during cool down and transverse electromagnetic forces during charging, which is essential for the design of the CICC for the dipole magnet. The strand appears to be fully reversible in the compressive regime during the axial strain testing, while in the tensile regime, the behaviour is already irreversibly degraded when reaching the maximum in the critical current versus strain characteristic. The degradation is accentuated by an immediate decrease of the n value by a factor of 2. The parameters for the improved deviatoric strain description are derived from the I{sub c} data, giving the accuracy of the scaling with a standard deviation of 4 A, which is by far within the expected deviation for the large scale strand production of such a high J{sub c} strand. The I{sub c} versus the applied bending strain follows the low resistivity limit, indicative of full interfilament current transfer, while a strong decrease is observed at a peak bending strain of {approx}0

  2. Accelerating research into the Higgs boson particle

    CERN Multimedia

    Nikolaidou, Rosy

    "The only Standard Model particle yet to be observed, the search for the Higgs Boson - the so-called 'God Particle' - demands advanced facilities and physics expertise. At the Cern laboratory in Switzerland, the ARTEMIS project is well-placed to pursue research in this area" (2 pages)

  3. Advance care directives

    Science.gov (United States)

    ... advance directive; Do-not-resuscitate - advance directive; Durable power of attorney - advance care directive; POA - advance care directive; Health care agent - advance care directive; Health care proxy - ...

  4. Particle physics

    CERN Document Server

    Kennedy, Eugene

    2012-01-01

    Stimulated by the Large Hadron Collider and the search for the elusive Higgs Boson, interest in particle physics continues at a high level among scientists and the general public. This book includes theoretical aspects, with chapters outlining the generation model and a charged Higgs boson model as alternative scenarios to the Standard Model. An introduction is provided to postulated axion photon interactions and associated photon dispersion in magnetized media. The complexity of particle physics research requiring the synergistic combination of theory, hardware and computation is described in terms of the e-science paradigm. The book concludes with a chapter tackling potential radiation hazards associated with extremely weakly interacting neutrinos if produced in copious amounts with future high-energy muon-collider facilities.

  5. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  6. Particle astrophysics

    CERN Document Server

    Krauss, Lawrence M

    1997-01-01

    Astrophysics and cosmology provide fundamental testing grounds for many ideas in elementary particle physics, and include potential probes which are well beyond the range of current or even planned accelerators. In this series of 3 lectures, I will give and overview of existing constraints, and a discussion of the potential for the future. I will attempt whenever possible to demonstrate the connection between accelerator-based physics and astrophysicas/cosmology. The format of the kectures will be to examine observables from astrophysics, and explore how these can be used to constrain particle physics. Tentatively, lecture 1 will focus on the age and mass density of the universe and galaxy. Lecture 2 will focus on stars, stellar evolution, and the abundance of light elements. Lecture 3 will focus on various cosmic diffuse backgrounds, including possibly matter, photons, neutrinos and gravitational waves.

  7. Beryllium plasma pumped by radiation from a high-current discharge as an active medium at a wavelength of 117. 0 nm

    Energy Technology Data Exchange (ETDEWEB)

    Burtsev, A.V.; Derzhiev, V.I.; Ermolaev, IU.L.; Zhidkov, A.G.; Kalinin, N.V. (Institut Obshchei Fiziki, Moscow (USSR))

    1990-06-01

    The possible formation of a laser active medium at 4-3 transitions in Be IV by continuous radiation from a high-current discharge is investigated. Numerical-simulation results confirm the real (if not immediate) possibility of lasing under such conditions. 19 refs.

  8. Particle encapsulation

    OpenAIRE

    Sun, Xiaobin

    2000-01-01

    Several engineering processes are powder based, ranging from food processing to engineering ceramic and composite production. In most of these processes, powders of different composition are mixed together in order to produce the final product, and this combining of powders of different density, shape, and surface properties is often very difficult. Mixtures may be quite inhomogeneous. This research focuses on a method of avoiding such problems, by coating individual particles of one material...

  9. Interplay of particle shape and suspension properties: a study of cube-like particles.

    Science.gov (United States)

    Audus, Debra J; Hassan, Ahmed M; Garboczi, Edward J; Douglas, Jack F

    2015-05-01

    With advances in anisotropic particle synthesis, particle shape is now a feasible parameter for tuning suspension properties. However, there is a need to determine how these newly synthesized particles affect suspension properties and a need to solve the inverse problem of inferring the particle shape from property measurements. Either way, accurate suspension property predictions are required. Towards this end, we calculated a set of dilute suspension properties for a family of cube-like particles that smoothly interpolate between spheres and cubes. Using three conceptually different methods, we numerically computed the electrical properties of particle suspensions, including the intrinsic conductivity of perfect conductors and insulators. We also considered hydrodynamic properties relevant to particle solutions including the hydrodynamic radius, the intrinsic viscosity and the intrinsic solvent diffusivity. Additionally, we determined the second osmotic virial coefficient using analytic expressions along with numerical integration. As the particles became more cube-like, we found that all of the properties investigated become more sensitive to particle shape.

  10. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  11. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  12. Frontiers of particle beam physics

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1989-11-01

    First, a review is given of various highly-developed techniques for particle handling which are, nevertheless, being vigorously advanced at the present time. These include soft superconductor radio frequency cavities, hard superconductor magnets, cooling rings for ions and anti-protons, and damping rings for electrons. Second, attention is focused upon novel devices for particle generation, acceleration, and focusing. These include relativistic klystrons and free electron laser power sources, binary power multipliers, photocathodes, switched-power linacs, plasma beat-wave accelerators, plasma wake-field accelerators, plasma lenses, plasma adiabatic focusers and plasma compensators. 12 refs.

  13. PNEUMATIC CONVEYING OF BIOMASS PARTICLES: A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Heping; Cui

    2006-01-01

    Processes involving biomass are of growing interest, but handling and conveying biomass particles are challenging due to the unusual physical properties of biomass particles. This paper reviews recent work on pneumatic conveying of biomass particles, especially agricultural particles and pulp fibres. Experimental work has been mainly carried out to determine a range of parameters, such as pressure drop, particle velocity, flow regime and electrostatic charging for both horizontal and vertical conveying. Models ranging from empirical to CFD models are also being developed. Difficulties in representing turbulence and interactions among biomass particles and between the particles and fluid have so far limited the success of advanced modeling. Further work is needed to improve understanding of multiphase biomass pneumatic conveying and to assist in the development of biomass energy and conversion processes.

  14. Particle Physics

    Science.gov (United States)

    Cooper, Necia Grant; West, Geoffrey B.

    1988-06-01

    Preface; Introduction; Part I. Theoretical Framework: 1. Scale and dimension - From animals to quarks Geoffrey B. West; 2. Particle physics and the standard model Stuart Raby, Richard C. Slansky and Geoffrey B. West; QCD on a Cray: the masses of elementary particles Gerald Guralnik, Tony Warnock and Charles Zemach; Lecture Notes - From simple field theories to the standard model; 3. Toward a unified theory: an essay on the role of supergravity in the search for unification Richard C. Slansky; 4. Supersymmetry at 100 GeV Stuart Raby; 5. The family problem T. Goldman and Michael Martin Nieto; Part II. Experimental Developments: 6. Experiments to test unification schemes Gary H. Sanders; 7. The march toward higher energies S. Peter Rosen; LAMPF II and the High-Intensity Frontier Henry A. Thiessen; The SSC - An engineering challenge Mahlon T. Wilson; 8. Science underground - the search for rare events L. M. Simmons, Jr; Part III. Personal Perspectives: 9. Quarks and quirks among friends Peter A. Carruthers, Stuart Raby, Richard C. Slansky, Geoffrey B. West and George Zweig; Index.

  15. Advances in Study of Solar Energetic Particle Precipitations Impact on Polar Ozone%极区太阳能量粒子沉降对高纬臭氧含量影响研究进展

    Institute of Scientific and Technical Information of China (English)

    黄聪; 张效信; 曹冬杰; 王维和; 黄富祥; 肖子牛; 林冠宇; 刘丹丹

    2014-01-01

    How solar energetic particles impact on polar ozone content is a highlight of space science study. This article introduces the mechanism that solar energetic particle precipitations induce the depletion of ozone when these particles go into the atmosphere along the magnetic lines, the observations on typical ozone depletions caused by particle precipitations and the modeling results. We also discuss the applications of atmospheric chemistry coupling models on how ozone depletions caused by particle precipitations impact on climate change and the model simulations of extreme space weather events.%在极区,太阳能量粒子沉降对于臭氧的影响一直是国际空间科学界研究的热点。介绍了太阳能量粒子沿地球磁场磁力线进入极区后造成高纬地区臭氧含量损耗的机制,典型太阳能量粒子沉降事件造成臭氧损耗的观测研究以及国际上对于沉降粒子与臭氧损耗的模式模拟。讨论了目前应用大气化学耦合模式在分析太阳能量粒子沉降造成的臭氧损耗为气候变化带来的影响方面的工作,及一些极端空间天气事件的模拟结果。

  16. Observations and Modeling of Geospace Energetic Particles

    Science.gov (United States)

    Li, Xinlin

    2016-07-01

    Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.

  17. Advance payments

    CERN Multimedia

    Human Resources Division

    2003-01-01

    Administrative Circular N 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  18. ADVANCE PAYMENTS

    CERN Multimedia

    Human Resources Division

    2002-01-01

    Administrative Circular Nº 8 makes provision for the granting of advance payments, repayable in several monthly instalments, by the Organization to the members of its personnel. Members of the personnel are reminded that these advances are only authorized in exceptional circumstances and at the discretion of the Director-General. In view of the current financial situation of the Organization, and in particular the loans it will have to incur, the Directorate has decided to restrict the granting of such advances to exceptional or unforeseen circumstances entailing heavy expenditure and more specifically those pertaining to social issues. Human Resources Division Tel. 73962

  19. On the concentration properties of Interacting particle processes

    CERN Document Server

    Del Moral, Pierre; Wu, Liming

    2011-01-01

    These lecture notes present some new concentration inequalities for Feynman-Kac particle processes. We analyze different types of stochastic particle models, including particle profile occupation measures, genealogical tree based evolution models, particle free energies, as well as backward Markov chain particle models. We illustrate these results with a series of topics related to computational physics and biology, stochastic optimization, signal processing and bayesian statistics, and many other probabilistic machine learning algorithms. Special emphasis is given to the stochastic modeling and the quantitative performance analysis of a series of advanced Monte Carlo methods, including particle filters, genetic type island models, Markov bridge models, interacting particle Markov chain Monte Carlo methodologies.

  20. New method of a "point-like" neutron source creation based on sharp focusing of high-current deuteron beam onto deuterium-saturated target for neutron tomography

    Science.gov (United States)

    Golubev, S.; Skalyga, V.; Izotov, I.; Sidorov, A.

    2017-02-01

    A possibility of a compact powerful point-like neutron source creation is discussed. Neutron yield of the source based on deuterium-deuterium (D-D) reaction is estimated at the level of 1011 s‑1 (1013 s‑1 for deuterium-tritium reaction). The fusion takes place due to bombardment of deuterium- (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ion beam is formed by means of high-current quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance (ECR) discharge in an open magnetic trap sustained by powerful microwave radiation. The prospects of proposed generator for neutron tomography are discussed. Suggested method is compared to the point-like neutron sources based on a spark produced by powerful femtosecond laser pulses.

  1. Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaolong, E-mail: luxl@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Junrun [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Qian, Xiangping; Xu, Dapeng; Lan, Changlin [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Yao, Zeen, E-mail: zeyao@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2016-03-01

    An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft–Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.

  2. Crystallography of decahedral and icosahedral particles. II - High symmetry orientations

    Science.gov (United States)

    Yang, C. Y.; Yacaman, M. J.; Heinemann, K.

    1979-01-01

    Based on the exact crystal structure of decahedral and icosahedral particles, high energy electron diffraction patterns and image profiles have been derived for various high symmetry orientations of the particles with respect to the incident beam. These results form a basis for the identification of small metal particle structures with advanced methods of transmission electron microscopy.

  3. Advanced nanoelectronics

    CERN Document Server

    Ismail, Razali

    2012-01-01

    While theories based on classical physics have been very successful in helping experimentalists design microelectronic devices, new approaches based on quantum mechanics are required to accurately model nanoscale transistors and to predict their characteristics even before they are fabricated. Advanced Nanoelectronics provides research information on advanced nanoelectronics concepts, with a focus on modeling and simulation. Featuring contributions by researchers actively engaged in nanoelectronics research, it develops and applies analytical formulations to investigate nanoscale devices. The

  4. Realisation and instrumentation of high current power station for superconducting cables testing; Realisation et instrumentation d'une station fort courant pour le test de cables supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Regnaud, S

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%.

  5. Aging characteristics of blue InGaN micro-light emitting diodes at an extremely high current density of 3.5 kA cm-2

    Science.gov (United States)

    Tian, Pengfei; Althumali, Ahmad; Gu, Erdan; Watson, Ian M.; Dawson, Martin D.; Liu, Ran

    2016-04-01

    The aging characteristics of blue InGaN micro-light emitting diodes (micro-LEDs) with different sizes have been studied at an extremely high current density 3.5 kA cm-2 for emerging micro-LED applications including visible light communication (VLC), micro-LED pumped organic lasers and optogenetics. The light output power of micro-LEDs first increases and then decreases due to the competition of Mg activation in p-GaN layer and defect generation in the active region. The smaller micro-LEDs show less light output power degradation compared with larger micro-LEDs, which is attributed to the lower junction temperature of smaller micro-LEDs. It is found that the high current density without additional junction temperature cannot induce significant micro-LED degradation at room temperature but the combination of the high current density and high junction temperature leads to strong degradation. Furthermore, the cluster LEDs, composed of a micro-LED array, have been developed with both high light output power and less light output degradation for micro-LED applications in solid state lighting and VLC.

  6. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  7. Advances in imaging and electron physics

    CERN Document Server

    Hawkes, Peter W

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Continuation order customers for either of the original Advances will receiveVolume 90, the first combined volume.

  8. Theory of intense beams of charged particles optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and pr

  9. The Accurate Particle Tracer Code

    CERN Document Server

    Wang, Yulei; Qin, Hong; Yu, Zhi

    2016-01-01

    The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusion energy research, computational mathematics, software engineering, and high-performance computation. The APT code consists of seven main modules, including the I/O module, the initialization module, the particle pusher module, the parallelization module, the field configuration module, the external force-field module, and the extendible module. The I/O module, supported by Lua and Hdf5 projects, provides a user-friendly interface for both numerical simulation and data analysis. A series of new geometric numerical methods...

  10. Particle kickers

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    These devices are designed to provide a current pulse of 5000 Amps which will in turn generate a fast magnetic pulse that steers the incoming beam into the LHC. Today, the comprehensive upgrade of the LHC injection kicker system is entering its final stages. The upgraded system will ensure the LHC can be refilled without needing to wait for the kicker magnets to cool, thus enhancing the performance of the whole accelerator.   An upgraded kicker magnet in its vacuum tank, with an upgraded beam screen. The LHC is equipped with two kicker systems installed at the injection points (near points 2 and 8, see schematic diagram) where the particle beams coming from the SPS are injected into the accelerator’s orbit. Each system comprises four magnets and four pulse generators in which the field rises to 0.12 Tesla in less than 900 nanoseconds and for a duration of approximately 8 microseconds. Although the injection kickers only pulse 12 times to fill the LHC up with beam, the LHC beam circ...

  11. Progress in the Analysis of Complex Atmospheric Particles

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; Wang, Bingbing; China, Swarup

    2016-06-16

    This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecular and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.

  12. Progress in the Analysis of Complex Atmospheric Particles

    Science.gov (United States)

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; Wang, Bingbing; China, Swarup

    2016-06-01

    This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

  13. Advanced calculus

    CERN Document Server

    Nickerson, HK; Steenrod, NE

    2011-01-01

    ""This book is a radical departure from all previous concepts of advanced calculus,"" declared the Bulletin of the American Mathematics Society, ""and the nature of this departure merits serious study of the book by everyone interested in undergraduate education in mathematics."" Classroom-tested in a Princeton University honors course, it offers students a unified introduction to advanced calculus. Starting with an abstract treatment of vector spaces and linear transforms, the authors introduce a single basic derivative in an invariant form. All other derivatives - gradient, divergent, curl,

  14. Qiyu particles in advanced non small cell lung cancer treatmentefficacy evaluation in%芪蓣颗粒在晚期非小细胞肺癌治疗中的疗效评价

    Institute of Scientific and Technical Information of China (English)

    王洪艳; 贾文魁

    2013-01-01

    Objective to observe the curative effect of Qiyu granule in the treatment of advanced non small cell lung cancer. Methods according to the inclusion criteria, a total of 75 cases were collected, which were divided into three groups, chinese medicinegroup were given Qiyu pellet orally, chemotherapy group with GPchemotherapy, chemotherapy combined with chinese traditional medicine group with the combination of the above scheme.Conclusion the traditional chinese medicine group Qiyu granule could relieve the clinical symptoms of advanced lung cancer,improve the quality of life;can delay tumor development, improve the survival of patients with advanced lung cancer;chemotherapy,can improve the o bjective response rate of chemotherapy, reduce the toxicity of chemotherapy, which play a synergistic effect attenuated.%目的:观察芪蓣颗粒治疗晚期非小细胞肺癌的疗效。方法按照纳入标准,收集病例75例,将病例分成三组,中药组给予芪蓣颗粒口服,化疗组采用GP方案化疗,中药加化疗组结合以上方案。结果中药组结论:芪蓣颗粒能够缓解晚期肺癌临床症状,改善生存质量;能够延缓肿瘤发展,提高晚期肺癌病人生存期;配合化疗,能够提高化疗的客观缓解率,减轻化疗毒副反应,即起到减毒增效作用。

  15. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  16. Advanced ferroelectricity

    CERN Document Server

    Blinc, R

    2011-01-01

    Advances in the field of ferroelectricity have implications both for basic physics and for technological applications such as memory devices, spintronic applications and electro-optic devices, as well as in acoustics, robotics, telecommunications and medicine. This book provides an account of recent developments in the field.

  17. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. [Dept. of Physics, Univ. of Maryland, College Park Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J.; Gluckstern, R.L.

    1993-06-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: Charged Particle Beam Transport and the Computation of Electromagnetic Fields and Beam-Cavity Interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates.

  18. Shock Interaction with Random Spherical Particle Beds

    Science.gov (United States)

    Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  19. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); DasGupta, K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Beam Technology Development Group, BARC, Mumbai 400085 (India)

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  20. An analysis of the anomalous high-current cathode emission in pseudospark and back-of-the-cathode lighted thyratron switches

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1989-06-01

    An analysis of the anomalously large cathode emission recently observed in the superdense glow of pseudospark and back-lighted thyratrons is presented. These switches are low-pressure (27 PaH2) glow-discharge pulsed-power devices. After operating at peak discharge currents of 6 to 8 kA and pulse durations of 0.5 to 1 microsec., the surface surrounding the cathode hole was found to have been homogeneously melted within a radius of approx. 4 mm indicating that the discharge is a superdense glow discharge, not an arc, with a cross-sectional area on the order of 1 sq cm. This conclusion is also supported by streak camera measurements. The current density at the cathode surface under these conditions is 5 to 10 kA/sq cm, several orders of magnitude larger than that of thermionic cathodes in common thyratrons. This high-current density is explained by intense cathode heating from a high-current density ion beam produced in the cathode fall during the initial stage of current buildup. The surface heating resulting from this beam yields a significant field-enhanced thermionic emission of electrons.

  1. Degradation of solid oxide cells during co-electrolysis of H2O and CO2: Carbon deposition under high current densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2012-01-01

    During co-electrolysis of H2O and CO2 using solid oxide cells (SOCs) the risk of carbon deposition in the Ni-YSZ electrode under high current densities (∼ 2.0 A/cm2) was studied in this work. Five galvanostatic tests were performed at current density between 1.5 and 2.25 A/cm2 and the average...... conversions of the reactants were no more than 66.8 %. Ni-YSZ electrode delamination and carbon nano-fibers could be observed after test at the Ni-YSZ | YSZ electrolyte interface for two of the cells. Thermodynamic calculation shows that the reactant conversion needed for carbon formation is above 99 %, far...... above the experimental conversions. The observed carbon formation may be caused by the gas diffusion limitations at high current densities. Carbon nano-fibers were only observed close to the YSZ electrolyte indicating a large overpotential gradient at the TPBs close to the electrolyte...

  2. Particle In-Flight Velocity and Dispersion Measurements at Increasing Particle Feed Rates in Cold Spray

    Science.gov (United States)

    Meyer, M.; Yin, S.; Lupoi, R.

    2017-01-01

    Cold spray (CS) is attracting interest of research and industry due to its rapid, solid-state particle deposition process and respective advantages over conventional deposition technologies. The acceleration of the particles is critical to the efficiency of CS, and previous investigations rarely consider the particle feed rate. However, because higher particle loadings are typically used in the process, the effect of this cannot be assumed negligible. This study therefore investigates the particle velocities in the supersonic jet of an advanced CS system at low- and high pressure levels and varying particle feed rates using particle image velocimetry. The particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that the average particle velocity noticeably decreases with increasing particulate loading in all cases. The velocity distribution and particle dispersion were also observed to be influenced by the feed rate. Effects are driven by both mass loading and volume fraction, depending on the feedstock's particle velocity parameter. Increased particle feed rates hence affect the magnitude and distribution of impact velocity and consequently the efficiency of CS. In particular, numerical models neglecting this interconnection are required to be further improved, based on these experimental studies.

  3. Advancing Leadership

    Directory of Open Access Journals (Sweden)

    Penny L. Tenuto

    2014-04-01

    Full Text Available Preparing students to become active citizens and contributors to a democratic society is premised on teaching democratic principles and modeling standards of democratic practice at all levels of education. The purpose of this integrative literature review is to establish a conceptual framework grounded in literature and a model for cultivating democratic professional practice in education (DPPE to advance leadership for school improvement. This work is presented in three parts: (a a review of historical references, reports, and legislation that culminated in increased accountability and standards in P-12 public education; (b a discussion of social patterns in education generally associated with bureaucracy versus democracy; and (c a new contribution to the literature, a model for cultivating DPPE is conceptualized to encourage leading and teaching professionals to reflect on beliefs and evaluate practices in advancing leadership for school improvement. Recommendations are included for further research.

  4. Advanced Virgo

    CERN Multimedia

    Virgo, a first-generation interferometric gravitational wave (GW) detector, located in the European Gravitational Observatory, EGO, Cascina (Pisa-Italy) and constructed by the collaboration of French and Italian institutes (CNRS and INFN) has successfully completed its long-duration data taking runs. It is now undergoing a fundamental upgrade that exploits available cutting edges technology to open an exciting new window on the universe, with the first detection of a gravitational wave signal. Advanced Virgo (AdV) is the project to upgrade the Virgo detector to a second-generation instrument. AdV will be able to scan a volume of the Universe 1000 times larger than initial Virgo. AdV will be hosted in the same infrastructures as Virgo. The Advanced VIRGO project is funded and at present carried on by a larger collaboration of institutes belonging to CNRS- France , RMKI - Hungary, INFN- Italy, Nikhef - The Netherlands Polish Academy of Science - Poland.

  5. Advanced LIGO

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M; Ackley, K.; Adams, C.; Adams, T.; Addesso, P; Adhikari, R.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O.; Ain, A.

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry–Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recyc...

  6. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  7. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  8. ADVANCES IN THE TENSILE INSTABILITY OF SMOOTHED PARTICLE HYDRODYNAMICS APPLIED TO SOLID DYNAMICS%固体介质中SPH方法的拉伸不稳定性问题研究进展

    Institute of Scientific and Technical Information of China (English)

    傅学金; 强洪夫; 杨月诚

    2007-01-01

    光滑粒子流体动力学法(smoothed particle hydrodynamics,SPH)是一种基于核估计的无网格Lagrange 数值方法.它用粒子方程离散流体动力学的连续方程,既可以处理有限元难于处理的大变形和严重扭曲问题,又可以处理有限差分法不易处理的自由边界和材料界面的问题,在固体力学中的冲击、爆炸和裂纹模拟中具有广阔的发展前最.但是,该算法的拉伸不稳定性(tensile instability)问题是它在固体力学领域中应用的最大障碍.对SPH稳定性分析表明,算法不稳定性的条件仅与应力状态和核函数的2阶导数有关.目前,应力点法(stress points)、Lagrange核函数法、人工应力法(artificial stress)、修正光滑粒子法(corrective smoothed particle method,CSPM)和守恒光滑法(conservative smoothing)以及其他一些方法成功地改善了SPH的拉伸不稳定性,但是每一种方法都不能彻底解决SPH的拉伸不稳定性问题.本文介绍了SPH法的方程和Von Neumann稳定性分析的思想,以及国内外在这几个方面的研究成果及其最新进展,同时指出目前研究中存在的问题和研究的方向.

  9. Classical dynamics of particles and systems

    CERN Document Server

    Marion, Jerry B

    1965-01-01

    Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handl

  10. Monte Carlo methods for particle transport

    CERN Document Server

    Haghighat, Alireza

    2015-01-01

    The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...

  11. Particle Filtering on the Audio Localization Manifold

    CERN Document Server

    Ettinger, Evan

    2010-01-01

    We present a novel particle filtering algorithm for tracking a moving sound source using a microphone array. If there are N microphones in the array, we track all $N \\choose 2$ delays with a single particle filter over time. Since it is known that tracking in high dimensions is rife with difficulties, we instead integrate into our particle filter a model of the low dimensional manifold that these delays lie on. Our manifold model is based off of work on modeling low dimensional manifolds via random projection trees [1]. In addition, we also introduce a new weighting scheme to our particle filtering algorithm based on recent advancements in online learning. We show that our novel TDOA tracking algorithm that integrates a manifold model can greatly outperform standard particle filters on this audio tracking task.

  12. Advanced trigonometry

    CERN Document Server

    Durell, C V

    2003-01-01

    This volume will provide a welcome resource for teachers seeking an undergraduate text on advanced trigonometry, when few are readily available. Ideal for self-study, this text offers a clear, logical presentation of topics and an extensive selection of problems with answers. Contents include the properties of the triangle and the quadrilateral; equations, sub-multiple angles, and inverse functions; hyperbolic, logarithmic, and exponential functions; and expansions in power-series. Further topics encompass the special hyperbolic functions; projection and finite series; complex numbers; de Moiv

  13. Advanced calculus

    CERN Document Server

    Friedman, Avner

    2007-01-01

    This rigorous two-part treatment advances from functions of one variable to those of several variables. Intended for students who have already completed a one-year course in elementary calculus, it defers the introduction of functions of several variables for as long as possible, and adds clarity and simplicity by avoiding a mixture of heuristic and rigorous arguments.The first part explores functions of one variable, including numbers and sequences, continuous functions, differentiable functions, integration, and sequences and series of functions. The second part examines functions of several

  14. Advanced calculus

    CERN Document Server

    Widder, David V

    2012-01-01

    This classic text by a distinguished mathematician and former Professor of Mathematics at Harvard University, leads students familiar with elementary calculus into confronting and solving more theoretical problems of advanced calculus. In his preface to the first edition, Professor Widder also recommends various ways the book may be used as a text in both applied mathematics and engineering.Believing that clarity of exposition depends largely on precision of statement, the author has taken pains to state exactly what is to be proved in every case. Each section consists of definitions, theorem

  15. Measurements of the Total Charge-Changing Cross Sections for Collisions of Fast Ions with Target Gas Using High Current Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Covo, Michel Kireeff; Molvik, Arthur W.; Kaganovich, Igor D.; Shnidman, Ariel; Vujic, Jasmina L.

    2009-04-13

    The sum of ionization and charge-exchange cross sections of several gas targets (H2, N2, He, Ne, Kr, Xe, Ar, and water vapor) impacted by 1MeV K+ beam are measured. In a high current ion beam, the self-electric field of the beam is high enough that ions produced from the gas ionization or charge exchange by the ion beam are quickly swept to the sides of accelerator. The flux of the expelled ions is measured by a retarding field analyzer. This allows accurate measuring of the total charge-changing cross sections (ionization plus charge exchange) of the beam interaction with gas. Cross sections for H2, He, and N2 are simulated using classical trajectory Monte Carlo (CTMC) method and compared with the experimental results, showing good agreement.

  16. Self-focusing of a high current density ion beam extracted with concave electrodes in a low energy region around 150 eV

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Sakakita, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki (Japan)

    2014-02-15

    Spontaneous self-focusing of ion beam with high current density (J{sub c} ∼ 2 mA/cm{sup 2}, I{sub b} ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135–150 eV, and the J{sub c} jumps up from 0.7 to 2 mA/cm{sup 2}. Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.

  17. Measurement of ion species in high current ECR H{sup +}/D{sup +} ion source for IFMIF (International Fusion Materials Irradiation Facility)

    Energy Technology Data Exchange (ETDEWEB)

    Shinto, K., E-mail: shinto.katsuhiro@jaea.go.jp; Ichimiya, R.; Ihara, A.; Ikeda, Y.; Kasugai, A.; Kitano, T.; Kondo, K.; Takahashi, H. [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Senée, F.; Bolzon, B.; Chauvin, N.; Gobin, R.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Ayala, J.-M.; Marqueta, A.; Okumura, Y. [IFMIF/EVEDA Project Team, Rokkasho, Aomori 039-3212 (Japan)

    2016-02-15

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H{sup +}) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D{sup +}) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H{sup +} ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H{sup +}/D{sup +} ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  18. Switching performance and efficiency investigation of GaN based DC-DC Buck converter for low voltage and high current applications

    Science.gov (United States)

    Alatawi, Khaled; Almasoudi, Fahad; Matin, Mohammad

    2016-09-01

    The Wide band-gap (WBG) materials "such as Silicon Carbide (SiC) and Gallium nitride (GaN)" based power switching devices provide higher performance capabilities compared to Si-based power switching devices. The wide band-gap materials based power switching devices outperform Si-based devices in many performance characteristics such as: low witching loss, low conduction loss, high switching frequencies, and high operation temperature. GaN based switching devices benefit a lot of applications such as: future electric vehicles and solar power inverters. In this paper, a DC-DC Buck converter based on GaN FET for low voltage and high current applications is designed and investigated. The converter is designed for stepping down a voltage of 48V to 12V with high switching frequency. The capability of the GaN FET based buck converter is studied and compared to equivalent SiC MOSFET and Si-based MOSFET buck converters. The analysis of switching losses and efficiency was performed to compare the performance capabilities of GaN FET, SiC MOSFET and Si-based MOSFET. The results showed that the overall switching losses of GaN FET are lower than that of SiC and Si-based power switching devices. Also, the performance capability of GaN devices with higher frequencies is studied. GaN devices with high frequencies will reduce the total size and the cost of the power converter. In Addition, the overall efficiency of the DC-DC Buck converter is higher with the GaN FET switching devices, which make it more suitable for low voltage and high current applications.

  19. Advanced LIGO

    CERN Document Server

    ,

    2014-01-01

    The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, ...

  20. Advanced LIGO

    Science.gov (United States)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  1. Britain honours its particle physicists

    CERN Multimedia

    2004-01-01

    Theoretical and experimental particle physicists figure among the winners for 2004 of Britain's most prestigious prizes for physics, awarded by the Institute of Physics (IOP). The IOP's own Paul Dirac medal and prize, goes to this year to CERN's John Ellis for "his highly influential work on particle-physics phenomenology; in particular on the properties of gluons, the Higgs boson and the top quark". One of the institute's premier wards, it is made for outstanding contributions to theoretical (including mathematical and computational) physics. The Duddell medal and prize, in memory of William du Bois Duddell, the inventor of the electromagnetic oscillograph, is awarded for outstanding contributions to the advancement of knowledge through the application of physics, including the invention or design of scientific instruments or the discovery of materials used in their construction. It is shared this year by Geoff Hall, of Imperial College London, Alessandro Marchioro from CERN and Peter Sharp of the Rutherfor...

  2. DNA-Grafted Janus Particles

    Science.gov (United States)

    Hsueh, Ching; Lin, Keng-Hui; Juan, Wen-Tau

    2008-03-01

    Recently there have been advances in generating Janus microspheres whose two hemispheres have different chemical compositions [1-4]. The new types of particles open up possibilities for assembly of complex structures. Here we attach DNA molecules onto one side of Janus microspheres. The new type of colloidal particles resembles surfactant molecules and may give us interesting new structures.Reference: [1] Y. Lu, H. Xiong, X. Jiang, Y.Xia, M. Prentiss and G. M.Whitesides, J. Am. Chem. Soc. 125, 12724 (2003) [2] O.Cayre, V. N.Paunov and O. D. Velev, J. Mater. Chem. 13, 2445 (2003) [3] R. F. Shepherd, J. C. Conrad, S. K. Rhodes, D. R. Link, M. Marquez, D. A. Weitz and J. A. Lewis, Langmuir 22, 8618 (2006) [4] L. Hong, S. Jiang and S. Granick, Langmuir 22, 9495 (2006)

  3. Manifestations of advanced civilizations

    Science.gov (United States)

    Bracewell, R. N.

    A list of possible modes of detecting advanced civilizations elsewhere in the universe is provided, including EM Alfven, and gravity waves, matter transfer, and exotica such as tachyons, black hole tunneling, and telepathy. Further study is indicated for low frequency radio wave propagation, which may travel along magnetic fields to reach the earth while laser beams are not favored because of the power needed for transmitting quanta instead of waves. IR, X ray, and UV astronomy are noted to be suitable for detecting signals in those ranges, while Alfven wave communication will be best observed by probes outside the orbit of Jupiter, where local anomalies have less effect. Particle propagation communication is viewed as unlikely, except as a trace of an extinct civilization, but panspermia, which involves interstellar spreading of seeds and/or spores, receives serious attention, as does laser probe or pellet propulsion.

  4. Advanced Visual Quantum Mechanics

    CERN Document Server

    Thaller, Bernd

    2005-01-01

    Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.

  5. Calculation of Deposited Energy of Backstream Electrons for EAST NBI High Current Ion Source%EAST NBI 强流离子源反向电子流沉积计算

    Institute of Scientific and Technical Information of China (English)

    陈俞钱; 谢亚红; 胡纯栋

    2015-01-01

    中性束注入是大型托卡马克聚变装置成功和有效的辅助加热方法。中性束核心部件长脉冲弧放电离子源发展的关键在于引出系统和弧室背板(反向电子吸收板)的冷却。将反向电子吸收板永久磁体磁场简化成喇叭形磁场,即可将反向电子向反向电子吸收板的运动简化为带电粒子在喇叭形磁场的会聚螺旋运动。通过简化模型对轰击反向电子吸收板的电子流在反向电子吸收板上的沉积进行相关模拟计算,为长脉冲束引出系统做出优化借鉴。%The neutral beam injection (NBI) is a very successful and effective heating method in large Tokamak nuclear fusion device .The cooling of extraction system and back panel of arc chamber limits the development of the high current ion source w hich is the key part of NBI system .In this paper ,the magnetic field of the backstream electron dump plate permanent magnets was simplified as flaring magnetic field .So the move‐ment of backstream electrons can be simplified as helical movement of charged particle . The simulation of heat load of dump plate caused by backstream electrons was done by means of the simplified model ,w hich makes a good reference for optimizing the long pulse extraction system .

  6. Dynamics of Carroll particles

    NARCIS (Netherlands)

    Bergshoeff, Eric; Gomis, Joaquim; Longhi, Giorgio

    2014-01-01

    We investigate particles whose dynamics are invariant under the Carroll group. Although a single, free such Carroll particle has no non-trivial dynamics (the Carroll particle does not move), we show that non-trivial dynamics exists for a set of interacting Carroll particles. Furthermore, we gauge th

  7. 淡水体系中透明胞外聚合颗粒物(TEP)的研究进展%Advances in Ttransparent Exopolymer Particles(TEP) in Freshwaters

    Institute of Scientific and Technical Information of China (English)

    刘丽贞; 秦伯强; 黄琪

    2014-01-01

    透明胞外聚合颗粒物(Transparent Exopolymer Particles,TEP)是水体中一类特殊的自由形态胞外聚合物(Extracellular Polymeric Substances,EPS),同时具有固相胶体相两相特点以及低密度、高碳氮比、高黏性等特点,因而对水体生态系统中的地球化学循环产生重要的作用.通过对国内外文献的查阅及太湖的调查研究,概述了国内外对于TEP研究的现状与动态.对其来源及形成,包括丰度分布、数量及生态意义进行综述.需要指出的是,尽管目前已经有许多关于海洋中TEP特性的研究,但是,对于淡水湖泊中TEP的研究仍然非常稀少.说明TEP在营养元素的地球化学循环过程中的作用及其重要性并没有得到充分的认识.未来的研究方向应该侧重淡水生态体系中TEP的来源及其形成机制方面,特别是与EPS库的其他形态之间的相互转化关系及与微生物、浮游植物(包括与水华暴发蓝藻)新陈代谢之间的关联机制,和TEP的降解、归趋及循环,以及对水体生态系统的影响等方面.此外,饮用水或污水处理中TEP对处理工艺的影响需得到重视.

  8. Scattering behaviour of Janus particles

    CERN Document Server

    Kaya, H

    2002-01-01

    Recent advances in polymer synthesis has produced so-called Janus micelles: tailor-made copolymer structures in which the blocks constitute separate moieties. We present expressions for the form factors, P(Q), and the radii of gyration, R sub g , of Janus particles with spherical and cylindrical morphology and check their validity by comparison to simulated scattering data, calculated from Monte Carlo generations of the pair-distance distribution function, p(r). The effect of block incompatibilities on the scattering is briefly discussed. (orig.)

  9. Particle adhesion and removal

    CERN Document Server

    Mittal, K L

    2015-01-01

    The book provides a comprehensive and easily accessible reference source covering all important aspects of particle adhesion and removal.  The core objective is to cover both fundamental and applied aspects of particle adhesion and removal with emphasis on recent developments.  Among the topics to be covered include: 1. Fundamentals of surface forces in particle adhesion and removal.2. Mechanisms of particle adhesion and removal.3. Experimental methods (e.g. AFM, SFA,SFM,IFM, etc.) to understand  particle-particle and particle-substrate interactions.4. Mechanics of adhesion of micro- and  n

  10. Physical mechanism of beam halo-chaos formation for high-current proton beam in a periodic-focusing channels and a nonlinear control strategy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The physical mechanism of the halo-chaos formation for a high intensity proton beam in a periodic-fo cusing channel is analyzed using the transfer mahix theory and a qualiative analysis method.Particles-in-cell simula tims are further used to explore the mechanism of the beam halo-chaos fomation, which concerns not only with thc non linear effect of the beam space charge but also with the lransverse energy exchange belween the particles and the particle core. as well as the chaos generated by the nonlinear resonance ovcrlap. A nonlinear control method is proposed for con trolling tie haho-chaos. Simulation results show lhal the melhod is efhclivc. Somc potemlial applications of the halo chaos conlrol in experimenls are discussed.

  11. Prosthetic advances.

    Science.gov (United States)

    Harvey, Zach T; Potter, Benjamin K; Vandersea, James; Wolf, Erik

    2012-01-01

    Much of the current prosthetic technology is based on developments that have taken place during or directly following times of war. These developments have evolved and improved over the years, and now there are many more available options to provide a comfortable, cosmetic, and highly functional prosthesis. Even so, problems with fit and function persist. Recent developments have addressed some of the limitations faced by some military amputees. On-board microprocessor-controlled joints are making prosthetic arms and legs more responsive to environmental barriers and easier to control by the user. Advances in surgical techniques will allow more intuitive control and secure attachment to the prosthesis. As surgical techniques progress and permeate into standard practice, more sophisticated powered prosthetic devices will become commonplace, helping to restore neuromuscular loss of function. Prognoses following amputation will certainly rise, factoring into the surgeon's decision to attempt to save a limb versus perform an amputation.

  12. 管流中颗粒“惯性聚集”现象的研究进展及其在微流动中的应用%ADVANCES IN THE RESEARCH ON "INERTIAL FOCUS OF PARTICLES" AND ITS APPLICATION IN MICROFLUIDICS

    Institute of Scientific and Technical Information of China (English)

    王企鲲; 孙仁

    2012-01-01

    When a flow with randomly dispersed small particles enters a straight pipe at low Reynolds numbers, the particles may migrate to an annulus centered at the axis of the pipe after a migration distance. This migration is called as 'Inertial Focus of Particles, which indicates that in the creeping flow there are transverse forces exerted on the immersed particles apart from viscous drags. It is the transverse force that results in the phenomenon, and it is usually regarded as an effect of the inertial force of the flow field on the particles. Recently, the phenomenon is attracting the attention of more and more researchers. Further research on it will not only reveal the interesting dynamic behaviors of both particles and colloids in a micro-channel and organisms in a blood vessel, but also assist us in the exploitation of such separation technology with high efficiency and low energy consumption. This paper summarizes recent advances in this area and presents some suggestions for future research.%当随机散布细颗粒的流体以低Re数层流流入直管时,经过一段距离的流动后,这些颗粒会被稳定地聚集在一个离管道中心固定距离的同心圆环位置上运动.这种运动特征被称为颗粒“惯性聚集”现象.该现象表明:在相应的Re数管流中,颗粒除受到流体沿主流方向的驱动力同时,还受到垂直于主流的横向力的作用.这种横向力是使颗粒产生聚集运动现象的主要原因,被认为是由于流场的惯性力对颗粒的作用.随着微流体控制技术的发展,颗粒…喷性聚集”现象又重新被关注.对它的研究不仅有望揭示微通道内颗粒、胶体或血管中生物体特殊的运动特性,而且还有助于研发各种低能耗、高效率的分离与净化装置.本文就近年来颗粒“惯性聚集”现象的研究进展作个总结,并提出作者的一些看法与研究思路.

  13. Long-term cycle stability at a high current for nanocrystalline LiFePO4 coated with a conductive polymer

    Science.gov (United States)

    Dinh, Hung-Cuong; Lim, Hanjo; Park, Ki Dong; Yeo, In-Hyeong; Kang, Yongku; Mho, Sun-il

    2013-03-01

    Highly uniform hierarchical-microstructured LiFePO4 particles with dumbbell- and donut-shape and individual LiFePO4 nanocrystals were prepared by a hydrothermal method utilizing citric acid or a triblock copolymer (Pluronic P123) as a surfactant. The cathode composed of the individual nanocrystalline LiFePO4 particles exhibited higher specific capacity than the cathodes composed of the hierarchically assembled microparticles. Coating a conductive polymer, poly-3,4-ethylenedioxythiophene (PEDOT), on the surface of LiFePO4 particles improved the battery performances such as large specific capacities, high rate capability and an improved cycle stability. The nanocrystalline LiFePO4 particles coated with PEDOT (20 wt%) exhibited the highest discharge capacities of 175 and 136 mAh g-1 for the first battery cycle and 163 and 128 mAh g-1 after 500 battery cycles, with a degradation rate of 6-7%, at the rates of 1 and 10 C, respectively.

  14. PARTICLE PROPERTIES--PROMISE AND NEGLECT

    Institute of Scientific and Technical Information of China (English)

    Wolfgang Peukert

    2003-01-01

    We see two major trends in Particle Technology. First, the focus is shifted from unit operations towards functional products, i.e. towards product engineering. Second, modeling will become more and more important. Processes cannot yet be designed from basic molecular understanding. Nanotechnology, however, begins to bridge this gap between molecules and particles and may thus open new ways not only for the production and handling of particulate matter but also for the engineered design of advanced material properties. Starting from the concept of product engineering we investigate the basic preconditions for tailoring nanoparticulate properties, i.e. the control of the particle interactions. Nanotechnology can only be transferred to industrial production if the interactions are effectively controlled.Material and particle properties are essential for predictive models. Although strong tools like MD, DEM or population balance models are available, these models are only predictive if realistic material and particle properties are available which is often not the case. We show for selected examples how particle properties can be obtained by studying the physically relevant elementary processes. The impact breakage behavior of many different materials is described by a master curve. Particle adhesion can be modeled if the roughness of particle and substrate and the Hamaker constant are known. The latter is obtained from adsorption studies.

  15. Crystallography of decahedral and icosahedral particles. I - Geometry of twinning

    Science.gov (United States)

    Yang, C. Y.

    1979-01-01

    The crystal structure of the tetrahedral twins in multiply-twinned particles with decahedral and icosahedral point group symmetries has been examined and correlated with the face-centered cubic structure. Details on the crystal structure as well as the geometrical relationships among twins in each particle are presented. These crystallographic facts serve as a basis for the interpretation of small particle images obtained with advanced methods of transmission electron microscopy.

  16. Particle processing technology

    Science.gov (United States)

    Yoshio, Sakka

    2014-02-01

    In recent years, there has been strong demand for the development of novel devices and equipment that support advanced industries including IT/semiconductors, the environment, energy and aerospace along with the achievement of higher efficiency and reduced environmental impact. Many studies have been conducted on the fabrication of innovative inorganic materials with novel individual properties and/or multifunctional properties including electrical, dielectric, thermal, optical, chemical and mechanical properties through the development of particle processing. The fundamental technologies that are key to realizing such materials are (i) the synthesis of nanoparticles with uniform composition and controlled crystallite size, (ii) the arrangement/assembly and controlled dispersion of nanoparticles with controlled particle size, (iii) the precise structural control at all levels from micrometer to nanometer order and (iv) the nanostructural design based on theoretical/experimental studies of the correlation between the local structure and the functions of interest. In particular, it is now understood that the application of an external stimulus, such as magnetic energy, electrical energy and/or stress, to a reaction field is effective in realizing advanced particle processing [1-3]. This special issue comprises 12 papers including three review papers. Among them, seven papers are concerned with phosphor particles, such as silicon, metals, Si3N4-related nitrides, rare-earth oxides, garnet oxides, rare-earth sulfur oxides and rare-earth hydroxides. In these papers, the effects of particle size, morphology, dispersion, surface states, dopant concentration and other factors on the optical properties of phosphor particles and their applications are discussed. These nanoparticles are classified as zero-dimensional materials. Carbon nanotubes (CNT) and graphene are well-known one-dimensional (1D) and two-dimensional (2D) materials, respectively. This special issue also

  17. Shock Particle Interaction - Fully Resolved Simulations and Modeling

    Science.gov (United States)

    Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  18. [High current microsecond pulsed hollow cathode lamp excited ionic fluorescence spectrometry of alkaline earth elements in inductively coupled plasma with a Fassel-torch].

    Science.gov (United States)

    Zhang, Shao-Yu; Gong, Zhen-Bin; Huang, Ben-Li

    2006-02-01

    High current microsecond pulsed hollow cathode lamp (HCMP-HCL) excited ionic fluorescence spectrometry (IFS) of alkaline earth elements in inductively coupled plasma (ICP) with a Fassel-torch has been investigated. In wide condition ranges only IFS was observed, whilst atomic fluorescence spectrometry (AFS) was not detectable. More intense ionic fluorescence signal was observed at lower observation heights and at lower incident RF powers. Without introduction of any reduction organic gases into the ICP, the limit of detection (LOD, 3sigma) of Ba was improved by 50-fold over that of a conventional pulsed (CP) HCL with the Baird sleeve-extended torch. For Ca and Sr, the LODs by HCMP-HCL-ICP-IFS and CP-HCL-ICP-AFS show no significant difference. Relative standard deviations were 0.6%-1.4% (0.1-0.2 microg x mL(-1), n = 10) for 5 ionic fluorescence lines. Preliminary studies showed that the intensity of ionic fluorescence could be depressed in the presence of K, Al and P.

  19. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    Science.gov (United States)

    Malik, Bilal A.; Malik, Manzoor A.; Asokan, K.

    2016-04-01

    We report the superconducting state properties of YBa2Cu3O7 (YBCO) on introduction of BaZrO3 (BZO) as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt%) composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  20. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    Directory of Open Access Journals (Sweden)

    Bilal A. Malik

    2016-04-01

    Full Text Available We report the superconducting state properties of YBa2Cu3O7 (YBCO on introduction of BaZrO3 (BZO as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt% composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  1. Formation of microcraters and hierarchically-organized surface structures in TiNi shape memory alloy irradiated with a low-energy, high-current electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: myp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Markov, A. B., E-mail: a.markov@hq.tsc.ru; Ozur, G. E., E-mail: vrotshtein@yahoo.com; Yakovlev, E. V., E-mail: msn@ispms.tsc.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Rotshtein, V. P., E-mail: yakovev@lve.hcei.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State Pedagogical University, Tomsk, 634050 (Russian Federation); Gudimova, E. Yu., E-mail: ozur@lve.hcei.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density E{sub s} was varied from 1 to 5 J/cm{sup 2}, pulse duration was 2.5–3.0 μs, the number of pulses n = 1–128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.

  2. Experimental Investigation on the Influence of Axial Magnetic Field Distribution on Resisting the Constriction of a High-Current Vacuum Arc

    Institute of Scientific and Technical Information of China (English)

    SHI Zongqian; LIU Zhigang; JIA Shenli; SONG Xiaochuan; WANG Lijun

    2009-01-01

    Effect of the axial magnetic field (AMF) on resisting the constriction of a high-current vacuum arc is studied in this paper. Two typical AMF distributions were investigated, i.e., the traditional bell-shaped AMF, and the saddle-shaped AMF. Experiments were conducted in a detachable vacuum chamber with a rms arc current in the range of 10 kA to 25 kA. The arc column was photographed by a high-speed digital camera with an exposure time of 2 microseconds. The constriction of the vacuum arc was compared by processing the images of the arc column under the two different field configurations and numerically determining the dimensions of the arc column near the electrodes. It was also confirmed that the AMF distribution had a signifcant influence on its effectiveness in resisting arc constriction, Furthermore, the AMF strength near the periphery of the arc is more influential than that at the centre of the electrodes in resisting arc constriction.

  3. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    Science.gov (United States)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  4. Mechanisms of hardening, wear and corrosion improvement of 316 L stainless steel by low energy high current pulsed electron beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 7078), Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz (France); Shanghai Engineering Research Center of Mg Materials and Applications and School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of Materials Modification by Laser, Electron and Ion beams, Dalian University of Technology, Dalian 116024 (China); Zhang, K.M. [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Hao, S.Z.; Dong, C. [Key Laboratory of Materials Modification by Laser, Electron and Ion beams, Dalian University of Technology, Dalian 116024 (China); Grosdidier, T., E-mail: thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 7078), Universite Paul Verlaine - Metz, Ile du Saulcy, 57045 Metz (France); Key Laboratory of Materials Modification by Laser, Electron and Ion beams, Dalian University of Technology, Dalian 116024 (China)

    2010-12-01

    The mechanisms of corrosion and wear improvements by low energy high current pulsed electron beam (LEHCPEB) have been investigated for an AISI 316 L steel. Selective purification followed by epitaxial growth occurred in the top surface melted layer (2-3 {mu}m thick) that was softened by tensile stresses and, to a much lower extent, by lower efficiency of MnS precipitation hardening. Electrochemical impedance spectroscopy and potentiodynamic polarization analyses used to model the corrosion behavior revealed that, while craters initiated at MnS inclusions initially served as pitting sites, the resistance was increased by 3 orders of magnitude after sufficient number of pulses by the formation of a homogeneous covering layer. The wear resistance was effectively improved by sub-surface (over 100 {mu}m) work hardening associated with the combine effect of the quasi-static thermal stress and the thermal stress waves. The overall results demonstrate the potential of the LEHCPEB technique for improving concomitantly the corrosion and wear performances of metallic materials.

  5. Study on the nanostructure formation mechanism of hypereutectic Al–17.5Si alloy induced by high current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Bo, E-mail: gaob@smm.neu.edu.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Hu, Liang [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Li, Shi-wei [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Hao, Yi [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Yu-dong [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France); Tu, Gan-feng [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Grosdidier, Thierry [Laboratoire d’Etude des Textures et Applications aux Matériaux (LETAM, UMR-CNRS 7078), Université Paul Verlaine de Metz, Ile du Saulcy, Metz 57012 (France)

    2015-08-15

    This work investigates the nanostructure forming mechanism of hypereutectic Al–17.5Si alloy associated with the high current pulsed electron beam (HCPEB) treatment with increasing number of pulses by electron backscatter diffraction (EBSD) and SEM. The surface layers were melted and resolidified rapidly. The treated surfaces show different structural characteristics in different compositions and distribution zones. The top melted-layer zone can be divided into three zones: Si-rich, Ai-rich, and intermediate zone. The Al-rich zone has a nano-cellular microstructure with a diameter of ∼100 nm. The microstructure in the Si-rich zone consists of fine, dispersive, and spherical nano-sized Si crystals surrounded by α(Al) cells. Some superfine eutectic structures form in the boundary of the two zones. With the increase of number of pulses, the proportion of Si-rich zone to the whole top surface increases, and more cellular substructures are transformed to fine equiaxed grain. In other words, with increasing number of pulses, more Si elements diffuse to the Al-rich zone and provide heterogeneous nucleation sites, and Al grains are refined dramatically. Moreover, the relationship between the substrate Si phase and crystalline phase is determined by EBSD; that is, (1 1 1){sub Al}//(0 0 1){sub Si} with a value of disregistry δ at approximately 5%. The HCPEB technique is a versatile technique for refining the surface microstructure of hypereutectic Al–Si alloys.

  6. 晶闸管强触发电路设计%Design of High Current Gate Circuit of Thyristor Based on MOSFET

    Institute of Scientific and Technical Information of China (English)

    郭帆; 王海洋; 何小平; 周竞之

    2012-01-01

    In order to study the characteristics of thyristor, basing on MOSFET with fast switching and high pulsed current, high current gate circuit of thyristor has been designed. Peak gate current is varied from 0.35 -39.6 A, leading edge from 35 ~540 ns and di/dt from 3.4 ~83. 3 A/us. Results indicate that the circuit is stable and reliable for triggering thyristor and the jitter of pulsed current is less than 4 ns.%为了研究晶闸管在强触发下的导通特性,利用功率MOSFET的快开通特性和通流能力,设计了光纤控制晶闸管强触发电路.该电路中晶闸管门极触发电流峰值范围为0.35~39.6 A,前沿范围为35~540ns,电流上升率范围为3.4~83.3 A/μs.实验结果表明,该电路参数调节范围宽,触发电流抖动小(小于4ns),具有较高的稳定性和可靠性.

  7. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    Science.gov (United States)

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al2O3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  8. High current density GaAs/Si rectifying heterojunction by defect free Epitaxial Lateral overgrowth on Tunnel Oxide from nano-seed

    Science.gov (United States)

    Renard, Charles; Molière, Timothée; Cherkashin, Nikolay; Alvarez, José; Vincent, Laetitia; Jaffré, Alexandre; Hallais, Géraldine; Connolly, James Patrick; Mencaraglia, Denis; Bouchier, Daniel

    2016-05-01

    Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm‑2 for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III–V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

  9. A two-component model for the electron distribution function in a high-current pseudospark or back-lighted thyratron

    Science.gov (United States)

    Bauer, Hannes R.; Kirkman, George; Gundersen, Martin A.

    1990-04-01

    Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or backlighted thyratron switch plasma with a peak electron density of 1-3 x 10 to the 15th/cu cm and peak current density of about 10 kA/sq cm. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies of about 100 eV and density (1-10) x 10 to the 13th/cu cm into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2 = 10 to the 16th/cu cm and electron temperature of 0.8-1 eV, the estimated beam density is about (1-10) x 10 to the 13th/cu cm.

  10. Facet stability of crystals I. Factors determining the polyhedral (in)-stability of silver single crystals during electrocrystallization at high current densities

    Science.gov (United States)

    Nanev, Chr. N.; Rashkov, R. St.

    1992-06-01

    Loss of the polyhedral stability as a result of emerging depressions on crystal faces has been observed during both vapour and solution growth under diffusion control, as well as by electrocrystallization at high current densities. A difference was found only when a quantitative comparison of the stability of the crystal shapes with the existing theoretical predictions was attempted. With the growth of zinc and cadmium single crystals from the vapour phase this phenomenon appears earlier, i.e. at smaller sizes than the expected figures, while the silver single crystals are more steady — they withstand one order of magnitude higher of current densities than the calculated values before the appearance of the depressions, in spite of the fact that the presence of an (inhomogeneous) electrical field in the second case has to decrease the polyhedral stability. One possible explanation of this fact is that the electrocrystallization of silver proceeds in highly concentrated solutions, for which Seeger's equation, laying in the base of the quantitative elucidations in this case, does not hold true. Correspondingly, here (part I of the paper) we are trying a more general approach, while part II represents a new, alternative way for explaining the higher stability of the faceted forms of the silver single crystals.

  11. 基于霍尔元件的大电流测定仪的设计%Design of High Current Tester Based on Hall Element

    Institute of Scientific and Technical Information of China (English)

    金雪尘; 黄亮; 张杰

    2014-01-01

    In this paper,a high current instrument is designed to measure AC/DC with Hall element, whose basic principle of the measurement is:showing the size of the measured current by measuring the size of magnetic field caused by measured current. The size of magnetic field is converted into the Hall voltage through the Hall sensor,and displayed on the LCD screen after a SCM processing. The current measurement ranges from 0. 1A to 500A and measurement accuracy is up to effective 3-digit figures. The instrument pro-vides the measurement of high DC with a better way.%利用霍尔元件设计一种能测量交、直流大电流的仪器,其基本测量原理是:通过测量被测电流的磁场大小来显示被测电流的大小,磁场大小通过霍尔传感器转换成霍尔电压,再经过单片机处理后在液晶屏上显示。电流测量范围为0.1~500 A,测量精度达3位有效数字。

  12. Structural, Optical, and Dielectric Investigations of the Relaxor PLZT 9,75/65/35 Ceramics Irradiated by High-Current Pulsed Electron Beam

    CERN Document Server

    Efimov, V V; Kalmikov, A V; Klevtsova, E A; Minashkin, V F; Novikova, N N; Sikolenko, V V; Skripnik, A V; Sternberg, A; Tiutiunnikov, S I; Yakovlev, V A

    2002-01-01

    First time comprehensive study of high-current pulsed electron irradiation effects on the structural, optical and dielectric properties of relaxor (Pb_{(1-x)}La^{x}(Zr_{0.65}Ti_{0.35})_{1-x/4}O_{3} ceramics with x=9.75% has been provided. The electron beam had the following parameters: energy E_{e}=250 keV, current density J_{e}=1000 A/cm^{2}, pulse duration tau = 300 ns, density 10^{15} electrons/cm^{2} per pulse. Infrared reflectivity spectra in the region of 100-2000 cm^{-1} were obtained in virgin, irradiated by 1500 pulses and annealed up to t=500^{circ}C ceramics. The reconstruction of perovskite ABO_{3} structure in irradiated samples has been studied by complex use of X-ray and neutron scattering and IR spectroscopy techniques revealing the changes in transverse and longitudinal phonon modes, oscillators strength and damping of modes. Radiation effects on temperature behaviour of dielectric permittivity in the region of phase transition were studied. The possible mechanisms of pulsed electron irradiat...

  13. Advanced capacitors

    Science.gov (United States)

    Ennis, J. B.; Buritz, R. S.

    1984-10-01

    This report describes an experimental program to develop and test advanced dielectric materials for capacitors for airborne power systems. Five classes of capacitors were considered: high rep rate and low rep rate pulse capacitors for use in pulse-forming networks, high voltage filter capacitors, high frequency AC capacitors for series resonant inverters, and AC filter capacitors. To meet these requirements, existing dielectric materials were modified, and new materials were developed. The initial goal was to develop an improved polysulfone film with fewer imperfections that could operate at significantly higher electrical stresses. It was shown that contaminants enter the film via the resin and solvent, and that they can be partially removed. As far as developed, however, these treatments did not significantly improved the breakdown characteristics. The technique of casting films on a roughened drum was demonstrated, and found useful in preparing textured films -- the first step toward a replacement for Kraft paper. A new material, Ultem, was proposed for use in high energy density capacitors. This new polyetherimide resin has properties similar to polysulfone and polyimide, with improvement in breakdown characteristics and temperature capability. This material was selected for further study in model capacitor designs.

  14. Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

  15. Basics of particle therapy I: physics.

    Science.gov (United States)

    Park, Seo Hyun; Kang, Jin Oh

    2011-09-01

    With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

  16. Particle physics: Axions exposed

    Science.gov (United States)

    Lombardo, Maria Paola

    2016-11-01

    Physicists are hunting for a particle called the axion that could solve two major puzzles in fundamental physics. An ambitious study calculates the expected mass of this particle, which might reshape the experimental searches. See Letter p.69

  17. Beyond the God particle

    CERN Document Server

    Lederman, Leon M

    2013-01-01

    On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.

  18. Fundamentals of Cosmological Particle Physics

    CERN Document Server

    Khlopov, Maxim Yu

    2012-01-01

    This current updated and expanded (this is an up-dated English translation of Prof. Khlopov's book "Osnovy kosmomikrofiziki", URSS, 2004) text reflects the large number of scientific advances, both theoretical and experimental, within the discipline of cosmic particle physics in the last 10 years. Some of the topics that have been added or updated include but are not limited to: HND or CMD+HND scenarios being implemented into sterile neutrino scenarios, the ramifications of extending the forms of dark matter with respect to our view of neutrinos, the origin of baryon matter and the need for nonbaryonic matter in current theories, problems the existence of dark matter raises with respect to cosmic particle physics and the relationship with (meta) stable (super) weakly interacting particles predicted by the extension of the standard model, restrictions on baryon and lepton photons, as well as problems associated with expansion, just to name a few. These and many other topics are readdressed in light of recent b...

  19. Massless interacting particles

    Energy Technology Data Exchange (ETDEWEB)

    Kosyakov, B P [Russian Federal Nuclear Center, Sarov, 607190 Nizhnii Novgorod Region (Russian Federation)], E-mail: kosyakov@vniief.ru

    2008-11-21

    We show that classical electrodynamics of massless charged particles and the Yang-Mills theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a conformally invariant version of the direct interparticle action theory for these systems.

  20. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  1. When is a Particle?

    Science.gov (United States)

    Drell, Sidney D.

    1978-01-01

    Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…

  2. Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain

    Energy Technology Data Exchange (ETDEWEB)

    Bablich, A., E-mail: andreas.bablich@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Merfort, C., E-mail: merfort@imt.e-technik.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Eliasz, J., E-mail: jacek.eliasz@student.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Schäfer-Eberwein, H., E-mail: heiko.schaefer@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Haring-Bolivar, P., E-mail: peter.haring@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Boehm, M., E-mail: markus.boehm@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany)

    2014-05-02

    , the device presented in this paper obtains no optical gain with an incident light power of 0.31 μW and 578 nm wavelength. The PS-BJT exhibits promising characteristics with a maximum current density greater than 65 μA μm{sup −1} and a tunable high current gain β. Possible applications exist in fields of control and drive circuits, in display and image devices, in photo interrupters, in photo sensitive matrices or in optoelectronic switches. - Highlights: • Current controllable a-Si:H phototransistor • Controllable high current gain • Current and phototunable transistor.

  3. Beam Matching Study of High Current Proton Accelerator%强流质子加速器束流匹配研究

    Institute of Scientific and Technical Information of China (English)

    刘晓英; 李宏昭; 马晓燕; 傅世年

    2009-01-01

    A high current proton accelerator requires very low beam losses in order to minimize the induced radioactivity to an acceptable level. Beam matching between the different accelerator sections is one of the key points to reduce the beam losses and emittance growth. A matching design study has been performed for the beam lines between the different types of normalconducting accelerating structures. In this paper, we will present the beamline design by TRACE3D code and multiparticle simulations of the beam behavior in different matching conditions. The results show that the beam halo and emittance growth have been well controlled with the matched design of the beam lines in both transversal and longitudinal directions.%为了使感生放射性降低到可以接受的水平,强流质子加速器必须减少束流损失.不同加速段间的束流匹配是减少束流损失和发射度增长的关键之一.研究了一台常温加速结构不同段间的束流传输线的匹配设计问题.采用TRACE3-D软件以及其他多粒子模拟软件,研究了在不同匹配状态下的束流特性.结果表明,设计所采用的横向和纵向匹配手段,能够有效地控制束晕产生和束流发射度的增长.

  4. 基于微处理器的大电流模拟继电器的设计%Design of High Current Analogue Relay Based on SCM

    Institute of Scientific and Technical Information of China (English)

    林森; 崔转玲

    2014-01-01

    Due to the limitation of the traditional switch devices, high current switching power supply has small power, low ef-ficiency .After analyzing the PWM soft switching technology , the adjustable frequency and duty ratio of PWM pulse outputs by using AT89C52 microcontroller interrupt, switch or off the large power GT40T101 are controlled, then the control of on-off of the circuit is realized by simulating a relay.By building the circuit,the superiority of PWM in the control of high power soft switching power supply is verified, which has a certain reference value for the practical application of electrical engineering .%由于受到传统开关器件的限制,大电流开关电源存在功率小、效率低等问题,在对PWM软开关技术进行分析后,利用AT89 C52单片机的中断方式输出频率和占空比可调的PWM脉冲,控制大功率开关管GT40 T101的通断,从而实现以模拟继电器的方式控制电路的通断。通过搭建电路验证了PWM软开关在控制大功率电源方面的优越性,对于实际的电气工程应用具有一定的参考价值。

  5. Isothermal oxidation behaviour of thermal barrier coatings with CoCrAlY bond coat irradiated by high-current pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jie [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Guan, Qingfeng, E-mail: guanqf@mail.ujs.edu.cn [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Hou, Xiuli [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Zhiping; Su, Jingxin; Han, Zhiyong [College of Science, Civil Aviation University of China, Tianjin 300300 (China)

    2014-10-30

    Highlights: • The original coarse surface was re-melted by pulsed electron beam irradiation. • Very fine grains were homogeneously dispersed on the irradiated coat surface. • A compact Al{sub 2}O{sub 3} scale was formed in irradiated TBCs at the onset of oxidation. • The selective oxidation of Al element avoided the formation of other oxides. • The irradiated coating has a much higher oxidation resistance. - Abstract: Thermal sprayed CoCrAlY bond coat irradiated by high-current pulsed electron beam (HCPEB) and thermal barrier coatings (TBCs) prepared with the irradiated bond coat and the ceramic top coat were investigated. The high temperature oxidation resistance of these specimens was tested at 1050 °C in air. Microstructure observations revealed that the original coarse surface of the as-sprayed bond coat was significantly changed as the interconnected bulged nodules with a compact appearance after HCPEB irradiation. Abundant Y-rich alumina particulates and very fine grains were dispersed on the irradiated surface. After high temperature oxidation test, the thermally grown oxide (TGO) in the initial TBCs grew rapidly and was comprised of two distinct layers: a large percentage of mixed oxides in the outer layer and a relatively small portion of Al{sub 2}O{sub 3} in the inner layer. Severe local internal oxidation and extensive cracks in the TGO layer were discovered as well. Comparatively, the irradiated TBCs exhibited thinner TGO layer, slower TGO growth rate, and homogeneous TGO composition (primarily consisting of Al{sub 2}O{sub 3}). The results indicate that TBCs with the irradiated bond coat have a much higher oxidation resistance.

  6. The Particle Enigma

    CERN Document Server

    Marsh, Gerald E

    2016-01-01

    The idea that particles are the basic constituents of all matter dates back to ancient times and formed the basis of physical thought well into modern times. The debate about whether light was a wave or a stream of particles also lasted until relatively recently. It was the advent of de Broglie's work and its implications that revolutionized the concept of an elementary particle -- but unfortunately did not banish the idea of a point particle despite its difficulties in both classical and quantum physics. Some of these problems are discussed in this essay, which covers chiral oscillations, Penrose's "zigzag" picture of particles satisfying the Dirac equation, and some ideas derived from string theory.

  7. Particle Size Effect on Wetting Kinetics of a Nanosuspension Drop: MD Simulations

    Science.gov (United States)

    Shi, Baiou; Webb, Edmund

    The behavior of nano-fluids, or fluid suspensions containing nanoparticles, has garnered tremendous attention recently for applications in advanced manufacturing. In our previous results from MD simulations, for a wetting system with different advancing contact angles, cases where self-pinning was observed were compared to cases where it was not and relevant forces on particles at the contact line were computed. To advance this work, the roles of particle size and particle loading are examined. Results presented illustrate how particle size affects spreading kinetics and how this connects to dynamic droplet morphology and relevant forces that exist nearby the contact line region. Furthermore, increased particle size in simulations permits a more detailed investigation of particle/substrate interfacial contributions to behavior observed at the advancing contact line. Based on changes in spreading kinetics with particle size, forces between the particle and liquid front are predicted and compared to those computed from simulations. At high loading, particle/particle interactions become relevant and forces computed between particles entrained to an advancing contact line will be presented.

  8. Theoretical mechanics of particles and continua

    CERN Document Server

    Fetter, Alexander L

    2003-01-01

    This two-part text fills what has often been a void in the first-year graduate physics curriculum. Through its examination of particles and continua, it supplies a lucid and self-contained account of classical mechanics - which in turn provides a natural framework for introducing many of the advanced mathematical concepts in physics.The text opens with Newton's laws of motion and systematically develops the dynamics of classical particles, with chapters on basic principles, rotating coordinate systems, lagrangian formalism, small oscillations, dynamics of rigid bodies, and hamiltonian formalis

  9. The concept of particle in Quantum Field theory

    CERN Document Server

    Pessa, Eliano

    2009-01-01

    Despite its name, Quantum Field Theory (QFT) has been built to describe interactions between localizable particles. For this reason the actual formalism of QFT is partly based on a suitable generalization of the one already used for systems of point particles. This circumstance gives rise to a number of conceptual problems, stemming essentially from the fact that the existence within QFT of non-equivalent representations implies the existence of field theories allowing, within the same theory, different, inequivalent, descriptions of particles. This led some authors to claim that in QFT the concept itself of particle should be abandoned. In this paper we will shortly discuss the validity of this claim, as well as the possibilities, so far existing, of building alternative versions of QFT, not designed in advance to allow some kind of particle representation. We will also spend some words about the generalizations of the concept itself of particle which could grant for a better cohabitation of particles and fi...

  10. Particle separator scroll vanes

    Energy Technology Data Exchange (ETDEWEB)

    Lastrina, F. A.; Mayer, J. C.; Pommer, L. M.

    1985-07-09

    An inlet particle separator for a gas turbine engine is provided with unique vanes distributed around an entrance to a particle collection chamber. The vanes are uniquely constructed to direct extraneous particles that enter the engine into the collection chamber and prevent the particles from rebounding back into the engine's air flow stream. The vanes are provided with several features to accomplish this function, including upstream faces that are sharply angled towards air flow stream direction to cause particles to bounce towards the collection chamber. In addition, throat regions between the vanes cause a localized air flow acceleration and a focusing of the particles that aid in directing the particles in a proper direction.

  11. Adhesive particle shielding

    Science.gov (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  12. Speeding Up Simulations By Slowing Down Particles: Speed-Limited Particle-In-Cell Simulation

    CERN Document Server

    Werner, Gregory R

    2015-01-01

    Particle-in-cell (PIC) simulation is often impractical for the same reason that it is powerful: it includes too much physics. Sometimes the mere ability to simulate physics on small length or time scales requires those scales to be resolved (by the cell size and timestep) to avoid instability, even when the effects at those scales contribute negligibly to the phenomenon motivating the simulation. For example, a timestep larger than the inverse plasma frequency will often result in unphysical growth of plasma oscillations, even in simulations where plasma oscillations should not arise at all. Larger timesteps are possible in simulations based on reduced physics models, such as MHD or gyrokinetics, or in simulations with implicit time-advances. A new method, speed-limited PIC (SLPIC) simulation, allows larger timesteps without reduced physics and with an explicit time-advance. The SLPIC method slows down fast particles while still accurately representing the particle distribution. SLPIC is valid when fields and...

  13. A theory of two-beam acceleration of charged particles in a plasma waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, A.O. [Kharkov Inst. of Physics and Technology (Ukraine)

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

  14. Advanced Technology Cloud Particle Probe for UAS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has initiated a program to explore the upper troposphere/lower stratosphere (UT/LS) using the Global Hawk Unmanned Aerial System (UAS), which has a payload of...

  15. Advanced Scavenge Systems for an Integrated Engine Inlet Particle Separator

    Science.gov (United States)

    1977-09-01

    Fully machined centerbody and outer casing. Four strut (. 093 nch constant thickless. were silver - soldered to form the assembly. AIR SPLITTER ASSEMBLY...pieces of ice, nominally 1/2-inch cubes, weee introduced a.s well. In order that some degree of randomness be present, the objects were directed, unde...section (. 125-inch orifice/ •415-in. duct) followed by a high-pressure manifold to which the nozzle is silver brazed. In the secondary duct, an inlet

  16. Recent advances in neutrino astrophysics

    CERN Document Server

    Volpe, Cristina

    2014-01-01

    Neutrinos are produced by a variety of sources that comprise our Sun, explosive environments such as core-collapse supernovae, the Earth and the Early Universe. The precise origin of the recently discovered ultra-high energy neutrinos is to be determined yet. These weakly interacting particles give us information on their sources, although the neutrino fluxes can be modified when neutrinos traverse an astrophysical environment. Here we highlight recent advances in neutrino astrophysics and emphasise the important progress in our understanding of neutrino flavour conversion in media.

  17. 强流ECR离子源引出系统研究%Study on Extraction System for High Current ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    王云; 张文慧; 张子民; 张雪珍; 刘占稳; 陈志; 赵红卫; 赵阳阳; 孙良亭; 杨尧; 钱程; 武启; 马鸿义

    2013-01-01

      为了提高强流ECR离子源的引出束流品质,分别设计了1#和2#引出系统,利用束流引出模拟软件PBGUNS对1#和2#引出系统进行了质子束流引出与传输的模拟计算,结合实际测得的发射度数据分析引出系统,发现2#引出系统比1#引出系统引出束流品质高。对ECR离子源引出系统的电势等位线分布等参数引起的球差进行了简单数学推导及MATLAB绘图,并结合1#和2#引出系统束流相图模拟结果证明了球差会使引出束流品质有效发射度增长,通过适当加大电极孔径可改善束流聚焦情况,得到了束流光学聚焦较好的束流引出系统设计。%  To improve the quality of extracted ion beam from a high current ECR ion source, 1# and 2# extraction systems were designed and tested. The PBGUNS code was used to simulate the 1# and 2# extraction systems of proton ion beam. The emittance measurement results with the two different extraction systems were compared and analyzed with the simulation, the conclusion that more high quality beam extracted from 2# system than 1# system was got. The formula derivation of ECR ion source extraction system spherical aberration and MATLAB drawing was done by the analyzing on the distribution of extraction field equipotentials, effective emittance increasing caused by spherical aberration was proved by 1# and 2# extraction systems beam phase space simulation result, beam focusing would be improved if electrode hole size increasing appropriately and a general concept on good optics focusing of ion beam extraction system was proposed finally.

  18. Fuzzy Logic Particle Tracking

    Science.gov (United States)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  19. Guest Editorial Particle Sizing And Spray Analysis

    Science.gov (United States)

    Chigier, Norman; Stewart, Gerald

    1984-10-01

    The measurement of particle size and velocity in particle laden flows is a subject of interest in a variety of industrial applications. In combustion systems for electricity generation, industrial processes and heating, and transportation, where liquid and solid fuels are injected into air streams for burning in furnaces, boilers, and gas turbine and diesel engines, the initial size and velocity distributions of particles are determining factors in the overall combustion efficiency and the emission of pollutants and particulates. In the design of injectors and burners for the atomization of liquid fuels, a great deal of attention is being focused on developing instrumentation for the accurate measurement of size and velocity distributions in sprays as a function of space and time. Most recent advances in optical engineering techniques using lasers for particle measurement have focused on detailed spray characterization, where there is a major concern with spherical liquid droplets within the size range of 1 to 500 μm in diameter, with droplet velocities within the range of 1 to 100 m/s, and the requirement for making in situ measurements of moving particles by nonintrusive optical probes. The instruments being developed for spray analysis have much wider applications. These include measurement in particle laden flows encountered in a variety of industrial processes with solid particles in gas and liquid streams and liquid particles in gas streams. Sprays used in agriculture, drying, food processing, coating of materials, chemical processing, clean rooms, pharmaceuticals, plasma spraying, and icing wind tunnels are examples of systems for which information is being sought on particle and fluid dynamic interactions in which there is heat, mass, and momentum transfer in turbulent reacting flows.

  20. Particle pair diffusion of inertial particles such as dust in the atmosphere

    Science.gov (United States)

    Malik, Nadeem; Tereda, Yoseph; Usama, Syed

    2016-04-01

    The transport of particles in turbulent flows is ubiquitous in industrial applications and also in nature such as in dust storms and pollens. The mathematical equations that describe the motion of individual inertial particles (i.e. particles with weight and friction) is not fully developed yet, although simplified descriptions in specific contexts have been proposed, such as by Maxey and Riley [1]. The relative motion of groups of particles is equally important to understand, and this can usually be related to the relative motion of two particles, or pair diffusion. In 1926 Richardson [2] proposed a pioneering theory of pair diffusion of fluid particles based upon the idea of a separation dependent pair diffusivity, K(l), where l is the distance between two particles. Richardson advanced the theory based on a locality hypothesis in which only energy in the turbulent scales similar to the pair separation l is effective in further increasing the pair separation, leading to the famous 4/3-scaling, K˜ l4/3. Recent studies in turbulent particle pair diffusion [3] has suggested that both local and non-local effects govern the pair diffusion process inside the inertial subrange in high Reynolds number turbulence containing generalised power-law energy spectra, E(k)˜ k-p with 1

  1. ENVISION, developing SPECT imaging for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Single Photon Emission Computed Tomography (SPECT) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  2. LHCb unveils new particles

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The LHCb collaboration announces the observation of four “exotic” particles from its analysis of the LHC data.   The LHCb experimental cavern. On 28 June, the LHCb collaboration reported the observation of three new "exotic" particles and confirmation of the existence of a fourth one in data from the LHC. These particles each appear to be formed by four quarks (the fundamental constituents of the matter inside all the atoms of the universe): two quarks and two antiquarks (that is, a tetraquark). Due to their non-standard quark content, the newly observed particles have been included in the broad category of so-called exotic particles, although their exact theoretical interpretation is still under study.            The quark model, proposed by Murray Gell-Mann and George Zweig in 1964, is considered to be the most valid scheme for the classification of hadrons (all the composite particles) that has been fou...

  3. Methods for forming particles

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin

    2016-06-21

    Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.

  4. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  5. Particle-Laden Viscous Gravity Currents

    Science.gov (United States)

    Saha, Sandeep; Talon, Laurent; Salin, Dominique; Porous Media Team

    2011-11-01

    The extension of a gravity current in lock-exchange problems, proceeds as square root of time in the viscous regime. In the presence of particles, however, this scenario is drastically altered due to sedimentation in a manner similar to the well- known Boycott effect. The spreading of particle-laden gravity currents is investigated with numerical simulations based on a Lattice-Boltzmann method. The settling of particles is modelled using a flux function for capturing sudden discontinuities in particle concentration travelling as kinematic shock waves. Contrary to conventional gravity currents, sedimentation leads to the formation of two additional fronts: a horizontal front descending vertically and a sediment layer that ascends as the particles accumulate. Two regimes emerge in the spreading process: the latter corresponding to the lateral advance of the sediment deposit and the former characterised by the vertical motion of the two fronts. An increase in the initial concentration hastens the time at which the regime change occurs and impedes the overall spreading process. The sedimentation velocity of the particles either slows down or speeds up the edges of the gravity current. A model based on lubrication theory is derived to explain the results and identify scaling laws.

  6. Massless interacting particles

    CERN Document Server

    Kosyakov, B P

    2007-01-01

    We show that classical electrodynamics of massless charged particles and the Yang--Mills--Wong theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a version of the direct interparticle action theory for such systems, which offers promise as a useful tool in studying the physics of quark-gluon plasma.

  7. Music of elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Sternheimer, J.

    1983-12-12

    This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.

  8. Bioactivation of particles

    Energy Technology Data Exchange (ETDEWEB)

    Pinaud, Fabien (Berkeley, CA); King, David (San Francisco, CA); Weiss, Shimon (Los Angeles, CA)

    2011-08-16

    Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.

  9. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  10. Southern California Particle Center

    Data.gov (United States)

    Federal Laboratory Consortium — At the Southern California Particle Center, center researchers will investigate the underlying mechanisms that produce the health effects associated with exposure to...

  11. Improved Commutation for Low-Voltage High-Current Vehicle Generators%低压大电流车载发电机改善换向研究

    Institute of Scientific and Technical Information of China (English)

    安跃军; 周利民; 李文瑞; 安辉; 孙丹

    2012-01-01

    为了解决低压大电流车载发电机换向困难和火花等级高的问题,采用非均布和非对称磁极结构、加装非均匀换向极、嵌下具有均压作用的单波绕组和倾斜电刷等措施,以降低换向区磁场和换向电势.应用电磁场有限元方法对车载发电机进行空载和负载内部磁场分析与计算,研究电机内磁力线的分布和气隙磁场波形,结果表明:尽管主磁极极靴和主磁极在空间是不等距分布的,但是主磁极所建立的气隙磁场仍然是对称和均布的,可确保提供适合机电能量转换的媒介空间;通过对比有换向极作用和没有换向极作用时电机内磁场分布和气隙磁场波形,换向极起到了降低换向区磁感应强度的作用,特别是对换向区磁场的细化分析和展示,发现有换向极作用时,换向电势平均降低了42.3%,即有明显改善换向的效果,火花实验也说明换向得到了改善.设计方案可以改善发电机换向条件,降低火花等级,抑制电磁干扰,有利于提高车载电气系统运行稳定性、可靠性和安全性;研究结果为低压大电流车载发电机研制提供技术支持.%To find a way to improve commutation and decrease the level of spark for low-voltage high-current vehicle generators, non-uniformly distributed and asymmetrically constructed magnetic poles, non-uniform commutating magnetic poles, single wave windings with voltage averaged and oblique brush, are adopted. The distribution of the flux line, the wave of the air gap magnetic field, and analysis inner magnetic field under loaded and unloaded conditions are analyzed respectively with finite element method. The results reveal that the magnetic field induced by the main poles is still symmetric and uniform in spite of the asymmetric structure! so it ensures the provision of suitable medium space for mechanical and electrical energy conversion. The commutating poles are able to decrease the magnetic flux

  12. Electron Production and Collective Field Generation in Intense Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  13. Giant Stress-Impedance Effect in Amorphous and High-Current-Density Electropulsing Annealed Fe73.5Cu1Nb3Si13.5B9 Ribbons

    Institute of Scientific and Technical Information of China (English)

    李德仁; 卢志超; 周少雄; 张俊峰; 刘辉; 韩伟

    2002-01-01

    The stress-impedance (SI) effect has been observed in as-cast and high-current-density electropulsing annealedFe73.5Cu1- Nb3Si13.5B9 ribbons. Large SI ratios of -35% and 25% have been obtained in high-current-densityelectropulsing annealed samples but not in as-cast samples. The SI effect changes drastically with the den-sity of the annealing current and the longitudinally applied stress during the annealing process. The effectivepermeability has been shown to be responsible for the SI effect.

  14. Foundations of nuclear and particle physics

    CERN Document Server

    Donnelly, T William; Holstein, Barry R; Milner, Richard G; Surrow, Bernd

    2017-01-01

    This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.

  15. Test particles in a magnetized conformastatic spacetime

    CERN Document Server

    Gutiérrez-Piñeres, Antonio C; Quevedo, Hernando

    2016-01-01

    A class of exact conformastatic solutions of the Einstein-Maxwell field equations is presented in which the gravitational and electromagnetic potentials are completely determined by a harmonic function. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. As an example, we focus on the analysis of a particular harmonic function which generates a singularity-free and asymptotically flat spacetime and, therefore, describes the gravitational field of a punctual mass endowed with a magnetic field. In this particular case, we investigate the main physical properties of equatorial circular orbits. We show that due to the electromagnetic interaction, it is possible to have charged test particles which stay at rest with respect to a static observer located at infinity. Additionally, we obtain an analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibra...

  16. Particle Swarm Optimisation with Spatial Particle Extension

    DEFF Research Database (Denmark)

    Krink, Thiemo; Vesterstrøm, Jakob Svaneborg; Riget, Jacques

    2002-01-01

    In this paper, we introduce spatial extension to particles in the PSO model in order to overcome premature convergence in iterative optimisation. The standard PSO and the new model (SEPSO) are compared w.r.t. performance on well-studied benchmark problems. We show that the SEPSO indeed managed...

  17. Characterization of artificial spherical particles for DEM validation studies

    Institute of Scientific and Technical Information of China (English)

    Ignazio Cavarretta; Catherine O'Sullivan; Erdin Ibraim; Martin Lings; Simon Hamlin; David Muir Wood

    2012-01-01

    This paper describes a study in which advanced particle-scale characterization was carried out on spherical particles that can be used in experimental tests to validate discrete element method (DEM) simulations,Two types of particle,alkaline and borosilicate glass heads,made from two different materials,were considered.The particle shape,stiffness,contact friction properties and surface roughness were measured.The influences of hardness and roughness on the mechanical response of the particles were carefully considered.Compared to the alkaline beads,the borosilicate beads were more spherical and more uniform in size,and they exhibited mechanical characteristics closer to natural quartz sand.While only two material types were studied,the work has the broader implication as a methodology for selecting particles suitable for use in DEM studies and the key parameters that should be considered in the selection process are highlighted.

  18. Turbulence Modulation by Non-Spherical Particles

    DEFF Research Database (Denmark)

    Mandø, Matthias

    . This study encompass an outlook on existing work, an experimental study, development of a numerical model and a case study advancing the modeling techniques for pulverized coal combustion to deal with larger non-spherical biomass particles. Firstly, existing knowledge concerning the motion of non...... of non-spherical particles. Secondly, an extensive parametric study concerning the measurement of turbulence intensity in a particle-laden jet compared to that of a clear jet has been undertaken. The effect of three different sizes of spherical particles as well as two distinct non-spherical shapes...... from the interaction with particles. Validation, using existing measurements as well as those obtained for the particle-laden jet, demonstrate that the new model is able to predict the experimentally observed tendencies and thus represent an improvement compared to existing models. The additional...

  19. Particle dynamics in a relativistic invariant stochastic medium

    CERN Document Server

    Cabo-Bizet, A; Cabo-Bizet, Alejandro; Oca, Alejandro Cabo Montes de

    2005-01-01

    The dynamics of particles moving in a medium defined by its relativistically invariant stochastic properties is investigated. For this aim, the force exerted on the particles by the medium is defined by a stationary random variable as a function of the proper time of the particles. The equations of motion for a single one-dimensional particle are obtained and numerically solved. A conservation law for the drift momentum of the particle during its random motion is shown. Moreover, the conservation of the mean value of the total linear momentum for two particles repelling each other according with the Coulomb interaction is also following. Therefore, the results indicate the realization of a kind of stochastic Noether theorem in the system under study. Possible applications to the stochastic representation of Quantum Mechanics are advanced.

  20. Teaching particle physics

    CERN Document Server

    Hanley, P

    2000-01-01

    Particle physics attracts many students who hear of news from CERN or elsewhere in the media. This article examines which current A-level syllabuses include which bits of particle physics and surveys the many different types of resource available to teachers and students. (0 refs).

  1. RESEARCH IN PARTICLE PHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, Edward [Boston Universiy

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  2. Microchip Coulter particle counter

    DEFF Research Database (Denmark)

    Larsen, Ulrik Darling; Blankenstein, Gert; Branebjerg, J.

    1997-01-01

    This paper presents a micro device employing the Coulter principle for counting and sizing of living cells and particles in liquid suspension. The microchip Coulter particle counter (μCPC) has been employed in a planar silicon structure covered with glass, which enables detailed observation during...

  3. Teaching German Modal Particles.

    Science.gov (United States)

    Rosler, Dietmar

    1982-01-01

    Believes modern linguistics has done little to explore German modal particles because by focusing on sentences as the basic category for linguistic thinking these words did not seem to matter. Describes model which gives students experience with these particles in meaningful communication. (Author/BK)

  4. Solar Energetic Particles

    Science.gov (United States)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  5. Particle Physics Instrumentation

    OpenAIRE

    Riegler, Werner

    2014-01-01

    This report summarizes a series of three lectures aimed at giving an overview of basic particle detection principles, the interaction of particles with matter, the application of these principles in modern detector systems, as well techniques to read out detector signals in high-rate experiments.

  6. HIGH ENERGY PARTICLE ACCELERATOR

    Science.gov (United States)

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  7. DEM Particle Fracture Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Boning [Univ. of Colorado, Boulder, CO (United States); Herbold, Eric B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Homel, Michael A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Regueiro, Richard A. [Univ. of Colorado, Boulder, CO (United States)

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  8. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates.

  9. Measurement system of high voltage and high current measurements at INMETRO - Brazilian Institute for Metrology, Standardization and Industrial Quality; Sistema de medicao de alta tensao e alta corrente do INMETRO - Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Vitorio, Patricia Cals de O.; Franca, Ademir Martins de; Soares, Marco Aurelio; Pereira, Luiz Napoleao; Costa, Danielli Guimaraes; Moreira, Giselle Cobica; Nascimento, Paulo Roberto Mesquita [Instituto Nacional de Metrologia, Normalizacao e Qualidade Industrial (DIMCI/INMETRO), Duque de Caxias, RJ (Brazil). Diretoria de Metrologia Cientifica e Industrial], E-mail: latra@inmetro.gov.br

    2009-07-01

    This work presents the basic characteristics and uncertainties of the calibration equipment in high voltage and high current available at the INMETRO: system of measurement in alternating high voltage up to 200 kV, system of measurement in alternating current up to 2 k A, and system of measurement in continuous high voltage up to 150 kV.

  10. 2nd European Advanced Accelerator Concepts Workshop

    CERN Document Server

    Assmann, Ralph; Grebenyuk, Julia

    2016-01-01

    The European Advanced Accelerator Concepts Workshop has the mission to discuss and foster methods of beam acceleration with gradients beyond state of the art in operational facilities. The most cost effective and compact methods for generating high energy particle beams shall be reviewed and assessed. This includes diagnostics methods, timing technology, special need for injectors, beam matching, beam dynamics with advanced accelerators and development of adequate simulations. This workshop is organized in the context of the EU-funded European Network for Novel Accelerators (EuroNNAc2), that includes 52 Research Institutes and universities.

  11. Neural Networks for Modeling and Control of Particle Accelerators

    CERN Document Server

    Edelen, A.L.; Chase, B.E.; Edstrom, D.; Milton, S.V.; Stabile, P.

    2016-01-01

    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  12. Major minority: energetic particles in fusion plasmas

    Science.gov (United States)

    Breizman, B. N.; Sharapov, S. E.

    2011-05-01

    This paper describes advances made in the field of energetic-particle physics since the topical review of Alfvén eigenmode observations in toroidal plasmas (Wong 1999 Plasma Phys. Control. Fusion 41 R1-R56). The development of plasma confinement scenarios with reversed magnetic shear and significant population of energetic particles, and the development of novel energetic-particle diagnostics were the main milestones in the past decade, and these are the main experimental subjects of this review. The theory of Alfvén cascade eigenmodes in reversed-shear tokamaks and its use in magnetohydrodynamic spectroscopy are presented. Based on experimental observations and nonlinear theory of energetic-particle instabilities in the near-threshold regime, the frequency-sweeping events for spontaneously formed phase-space holes and clumps and the evolution of the fishbone oscillations are described. The multi-mode scenarios of enhanced particle transport are discussed and a brief summary is given of several engaging research topics that are beyond the authors' direct involvement.

  13. Apparatus for measuring particle properties

    Science.gov (United States)

    Rader, D.J.; Castaneda, J.N.; Grasser, T.W.; Brockmann, J.E.

    1998-08-11

    An apparatus is described for determining particle properties from detected light scattered by the particles. The apparatus uses a light beam with novel intensity characteristics to discriminate between particles that pass through the beam and those that pass through an edge of the beam. The apparatus can also discriminate between light scattered by one particle and light scattered by multiple particles. The particle`s size can be determined from the intensity of the light scattered. The particle`s velocity can be determined from the elapsed time between various intensities of the light scattered. 11 figs.

  14. Particle physics builds potential

    CERN Document Server

    Camporesi, Tiziano

    2004-01-01

    Surveys of the career prospects of particle physicists in Europe, such as that one carried out in 2000 at DELPHI, reveal that particle phycisists are much in demand. The findings are fairly independent of a student's nationality, despite the big differences in the education systems of different countries across the continent. According to the DELPHI survey, half of all physics students remain in an academic environment after graduation. For those particle physicists who leave academia, the DELPHI survey showed that about half find jobs in hi- tech industry. The bottom line is that a degree in physics offers very good job prospects and career opportunities. (Edited abstract).

  15. Universe of Particles

    CERN Multimedia

    CERN Video Productions

    2010-01-01

    The entire Universe is made up of particles. But where do they come from? What is the origin of the laws of nature? The permanent exhibition "Universe of Particles", installed on the ground floor of the Globe of Science and Innovation, invites you to discover CERN by taking you on a journey all the way back to the Big Bang. It will help you answer questions such as: What's the purpose of this research? How do you accelerate particles? How do you detect them? What are today's theories on matter and the Universe? How does this affect our daily life?

  16. Data analysis techniques for nuclear and particle physicists

    CERN Document Server

    Pruneau, Claude

    2017-01-01

    This is an advanced data analysis textbook for scientists specializing in the areas of particle physics, nuclear physics, and related subfields. As a practical guide for robust, comprehensive data analysis, it focuses on realistic techniques to explain instrumental effects. The topics are relevant for engineers, scientists, and astroscientists working in the fields of geophysics, chemistry, and the physical sciences. The book serves as a reference for more senior scientists while being eminently accessible to advanced undergraduate and graduate students.

  17. Advanced Photon Source research: Volume 1, Number 1, April 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The following articles are included in this publication: (1) The Advanced Photon Source: A Brief Overview; (2) MAD Analysis of FHIT at the Structural Biology Center; (3) Advances in High-Energy-Resolution X-ray Scattering at Beamline 3-ID; (4) X-ray Imaging and Microspectroscopy of the Mycorrhyizal Fungus-Plant Symbiosis; (5) Measurement and Control of Particle-beam Trajectories in the Advanced Photon Storage Ring; (6) Beam Acceleration and Storage at the Advanced Photon Source; and (7) Experimental Facilities Operations and Current Status.

  18. Search for Hidden Particles

    CERN Multimedia

    The SHiP Experiment is a new general-purpose fixed target facility at the SPS to search for hidden particles as predicted by a very large number of recently elaborated models of Hidden Sectors which are capable of accommodating dark matter, neutrino oscillations, and the origin of the full baryon asymmetry in the Universe. Specifically, the experiment is aimed at searching for very weakly interacting long lived particles including Heavy Neutral Leptons - right-handed partners of the active neutrinos; light supersymmetric particles - sgoldstinos, etc.; scalar, axion and vector portals to the hidden sector. The high intensity of the SPS and in particular the large production of charm mesons with the 400 GeV beam allow accessing a wide variety of light long-lived exotic particles of such models and of SUSY. Moreover, the facility is ideally suited to study the interactions of tau neutrinos.

  19. Blog: the God particle

    CERN Multimedia

    2007-01-01

    "Dateline video journalist Aaron Lewis this week reprots on the search to find the elusive "God particle", which, if found, could explain to scientists how everything in the world got its mass."(1/2 page)

  20. Modern particle physics

    CERN Document Server

    AUTHOR|(CDS)2079874

    2013-01-01

    Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at www.cambridge.org/MPP feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book.

  1. Elementary particle physics

    Science.gov (United States)

    Perkins, D. H.

    1986-01-01

    Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.

  2. Elementary particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references. (WHK)

  3. Momentum particle swarm optimizer

    Institute of Scientific and Technical Information of China (English)

    Liu Yu; Qin Zheng; Wang Xianghua; He Xingshi

    2005-01-01

    The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.

  4. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  5. Big Bang Day: 5 Particles - 5. The Next Particle

    CERN Multimedia

    Franck Close

    2008-01-01

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 5. The Next Particle The "sparticle" - a super symmetric partner to all the known particles could be the answer to uniting all the known particles and their interactions under one grand theoretical pattern of activity. But how do researchers know where to look for such phenomena and how do they know if they find them? Simon Singh reviews the next particle that physicists would like to find if the current particle theories are to ring true.

  6. ELEMENTARY PARTICLE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN

    2013-07-30

    The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.

  7. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  8. The Least Particle Theory

    Science.gov (United States)

    Hartsock, Robert

    2011-10-01

    The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.

  9. Masses of Fundamental Particles

    CERN Document Server

    Terazawa, Hidezumi

    2011-01-01

    Not only the masses of fundamental particles including the weak bosons, Higgs scalar, quarks, and leptons, but also the mixing angles of quarks and those of neutrinos are all explained and/or predicted in the unified composite model of quarks and leptons successfully. In addition, both of the two anomalies recently found by the CDF Collaboration are suggested to be taken as evidences for the substructure of the fundamental particles.

  10. Motion of Confined Particles

    CERN Document Server

    Miller, David E

    2016-01-01

    We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.

  11. Advances in forefoot trauma.

    Science.gov (United States)

    Clements, J Randolph; Schopf, Robert

    2013-07-01

    Forefoot traumas, particularly involving the metatarsals, are commonly occurring injuries. There have been several advances in management of these injuries. These advances include updates in operative technique, internal fixation options, plating constructs, and external fixation. In addition, the advances of soft tissue management have improved outcomes. This article outlines these injuries and provides an update on techniques, principles, and understanding of managing forefoot trauma.

  12. Materials as additives for advanced lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Pol, Vilas G.; Thackeray, Michael M.; Mistry, Kuldeep; Erdemir, Ali

    2016-09-13

    This invention relates to carbon-based materials as anti-friction and anti-wear additives for advanced lubrication purposes. The materials comprise carbon nanotubes suspended in a liquid hydrocarbon carrier. Optionally, the compositions further comprise a surfactant (e.g., to aid in dispersion of the carbon particles). Specifically, the novel lubricants have the ability to significantly lower friction and wear, which translates into improved fuel economies and longer durability of mechanical devices and engines.

  13. Shake-The-Box: Lagrangian particle tracking at high particle image densities

    Science.gov (United States)

    Schanz, Daniel; Gesemann, Sebastian; Schröder, Andreas

    2016-05-01

    particles. Processing an experimental data set on a transitional jet in water demonstrates the benefits of advanced Lagrangian evaluation in describing flow details—both on small scales (by the individual tracks) and on larger structures (using an interpolation onto an Eulerian grid). Comparisons to standard TOMO-PIV processing for synthetic and experimental evaluations show distinct benefits in local accuracy, completeness of the solution, ghost particle occurrence, spatial resolution, temporal coherence and computational effort.

  14. Ultra low frequency waves impact on radiation belt energetic particles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere.Ultra low frequency(ULF)wave in the magnetosphere and its impact on energetic particles,such as the wave-particle resonance,modulation,and particle acceleration,are extremely important topics in the Earth’s radiation belt dynamics and solar wind― magnetospheric coupling.In this review,we briefly introduce the recent advances on ULF waves study. Further,we will explore the density structures and ion compositions around the plasmaspheric boundary layer(PBL)and discuss its possible relation to the ULF waves.

  15. Ultra low frequency waves impact on radiation belt energetic particles

    Institute of Scientific and Technical Information of China (English)

    ZONG QiuGang; HAO YongQiang; WANG YongFu

    2009-01-01

    One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere.Ultra low frequency(ULF)wave in the magnetosphere and its impact on energetic particles,such as the wave-particle resonance,modulation,and particle acceleration,are extremely important topics in the Earth's radiation belt dynamics and solar windmagnetospheric coupling.In this review,we briefly introduce the recent advances on ULF waves study.Further,we will explore the density structures and ion compositions around the plasmaspheric boundary layer(PBL)and discuss its possible relation to the ULF waves.

  16. Planetary Magnetosphere Probed by Charged Dust Particles

    Science.gov (United States)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  17. Tortuosity of porous particles.

    Science.gov (United States)

    Barrande, M; Bouchet, R; Denoyel, R

    2007-12-01

    Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained

  18. Particle segregation during explosive dispersal of binary particle mixtures

    Science.gov (United States)

    Frost, David L.; Loiseau, Jason; Marr, Bradley J.; Goroshin, Samuel

    2017-01-01

    The explosive dispersal of a layer of solid particles surrounding a spherical high explosive charge generates a turbulent, multiphase flow. The shock-compacted particle layer typically fractures into discrete fragments which move radially outwards on ballistic trajectories. The fragments shed particles in their wakes forming jet-like structures. The tendency to form jets depends on the mass-ratio of the particles to explosive and the type of particles. Brittle or soft, ductile particles are more susceptible to forming jets during compaction and dispersal, whereas particles that are comprised of material with moderate hardness, high compressive strength and high toughness are much less prone to forming jets. Experiments have been carried out to determine the degree of particle segregation that occurs during the explosive dispersal of a uniform, binary mixture containing both "jetting" (silicon carbide) and "non-jetting" (steel) particles with various mass fractions of each particle type. During the dispersal of mixtures that contain predominantly non-jetting (steel) particles, the steel particles form a stable layer whereas the jetting (silicon carbide) particles rapidly segregate and form jets which are confined within the shell of steel particles. As the fraction of silicon carbide particles increases, the jet structures dominate the particle motion and the steel particles are entrained into the jet structures.

  19. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series presents contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study o

  20. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2012-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Ch

  1. ACR-700 advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Tapping, R.L.; Turner, C.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Yu, S.K.W. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Olmstead, R.; Speranzini, R.A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2004-12-01

    A successful advanced reactor plant will have optimized economics including reduced operating and maintenance costs, improved performance, and enhanced safety. Incorporating improvements based on advanced technologies ensures cost, safety and operational competitiveness of the ACR-700. These advanced technologies include modern configuration management; construction technologies; operational technology for the control centre and information systems for plant monitoring and analysis. This paper summarizes the advanced technologies used to achieve construction and operational improvements to enhance plant economic competitiveness, advances in the operational technology used for reactor control, and presents the development of the Smart CANDU suite of tools and its application to existing operating reactors and to the ACR-700. (author)

  2. Advances in chemical Physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  3. Advances in chemical physics

    CERN Document Server

    Rice, Stuart A

    2011-01-01

    The Advances in Chemical Physics series-the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics and physical chemistry fields with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series offers contributions from internationally renowned chemists and serves as the perfect supplement to any advanced graduate class devoted to the study of che

  4. A comparative study of the ignition and burning characteristics of after burning aluminum and magnesium particles

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ji Hwan; Lee, Sang Hyup; Yoon, Woong Sup [Yonsei University, Seoul (Korea, Republic of)

    2014-10-15

    Ignition and the burning of air-born single aluminum and magnesium particles are experimentally investigated. Particles of 30 to 106 μm-diameters were electrodynamically levitated, ignited, and burnt in atmospheric air. The particle combustion evolution was recorded by high-speed cinematography. Instant temperature and thermal radiation intensity were measured using two-wavelength pyrometry and photomultiplier tube methods. Ignition of the magnesium particle is prompt and substantially advances the aluminum particle by 10 ms. Burning time of the aluminum particles is extended 3 to 5 times longer than the magnesium particles. Exponents of a power-law fit of the burning rates are 1.55 and 1.24 for aluminum and magnesium particles, respectively. Flame temperature is slightly lower than the oxide melting temperature. For the aluminum, dimensionless flame diameter is inert to the initial particle size, but for the magnesium inversely proportional to the initial diameter.

  5. Proton: the particle.

    Science.gov (United States)

    Suit, Herman

    2013-11-01

    The purpose of this article is to review briefly the nature of protons: creation at the Big Bang, abundance, physical characteristics, internal components, and life span. Several particle discoveries by proton as the experimental tool are considered. Protons play important roles in science, medicine, and industry. This article was prompted by my experience in the curative treatment of cancer patients by protons and my interest in the nature of protons as particles. The latter has been stimulated by many discussions with particle physicists and reading related books and journals. Protons in our universe number ≈10(80). Protons were created at 10(-6) -1 second after the Big Bang at ≈1.37 × 10(10) years beforethe present. Proton life span has been experimentally determined to be ≥10(34) years; that is, the age of the universe is 10(-24)th of the minimum life span of a proton. The abundance of the elements is hydrogen, ≈74%; helium, ≈24%; and heavier atoms, ≈2%. Accordingly, protons are the dominant baryonic subatomic particle in the universe because ≈87% are protons. They are in each atom in our universe and thus involved in virtually every activity of matter in the visible universe, including life on our planet. Protons were discovered in 1919. In 1968, they were determined to be composed of even smaller particles, principally quarks and gluons. Protons have been the experimental tool in the discoveries of quarks (charm, bottom, and top), bosons (W(+), W(-), Z(0), and Higgs), antiprotons, and antineutrons. Industrial applications of protons are numerous and important. Additionally, protons are well appreciated in medicine for their role in radiation oncology and in magnetic resonance imaging. Protons are the dominant baryonic subatomic particle in the visible universe, comprising ≈87% of the particle mass. They are present in each atom of our universe and thus a participant in every activity involving matter.

  6. PRODUCTION AND APPLICATIONS OF NEUTRONS USING PARTICLE ACCELERATORS

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  7. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  8. Numerical Simulation of Particle Concentration in a Gas Cyclone Separator

    Institute of Scientific and Technical Information of China (English)

    Xue Xiaohu; Sun Guogang; Wan Gujun; Shi Mingxian

    2007-01-01

    The particle concentration inside a cyclone separator at different operation parameters was simulated with the FLUENT software. The Advanced Reynolds Stress Model (ARSM) was used in gas phase turbulence modeling.Stochastic Particle Tracking Model (SPTM) and the Particle-Source-In-Cell (PSIC) method were adopted for particles computing. The interaction between particles and the gas phase was also taken into account. The numerical simulation results were in agreement with the experimental data. The simulation revealed that an unsteady spiral dust strand appeared near the cyclone wall and a non-axi-symmetrical dust ring appeared in the annular space and under the cover plate of the cyclone. There were two regions in the radial particle concentration distribution, in which particle concentration was low in the inner region (r/R≤0.75) and increased greatly in the outer region (r/R>0.75). Large particles generally had higher concentration in the near-wall region and small particles had higher concentration in the inner swirling flow region. The axial distribution of particle concentration in the inner swirling flow (r/R≤0.3) region showed that there existed serious fine particle entrainment within the height of 0.5D above the dust discharge port and a short-cut flow at a distance of about 0.25D below the entrance of the vortex finder. The dimensionless concentration in the high-concentration region increased obviously in the upper part of the cyclone separation space when inlet particle loading was large. With increasing gas temperature, the particle separation ability of the cyclone was obviously weakened.

  9. 高电流密度电解清洗带钢技术的分析研究%Discussion on the high current density electrolysis clean technology for strip

    Institute of Scientific and Technical Information of China (English)

    吴建生

    2001-01-01

    为了建设国内第1条高速高效的带钢电解清洗机组,对电解清洗机理、高电流密度电解清洗技术进行了研究探讨;分析了各种类型高密度电解清洗装置的优缺点及实例,为国内新建或同类机组改造选型提供了参考。%In order to construction the first domestic high speed and efficiency strip electrolysis clean unit, the paper researched the mechanism of electrolysis clean and high current density electrolysis clean technology, and analyzed the merits and shortcomings of all kinds of high current density electrolysis clean units and their practice effects.

  10. Analysis of Planar E+I and ER+I Transformers for Low-Voltage High-Current DC/DC Converters with Focus on Winding Losses and Leakage Inductance

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Ouyang, Ziwei

    2012-01-01

    In this paper an analysis of two planar transformers designed for high-current switching applications is presented. Typical converter application is represented by fuel and electrolyser cell converters. The transformer designs are based on E+I and ER+I planar cores while the analysis focuses...... on winding resistance and leakage inductances which represent the main concerns related to low-voltage high-current applications. The PCB winding design has a one to one turn ratio with no interleaving between primary and secondary windings. The main goal was to determine if ER planar core could provide...... a significant advantage in terms of winding losses compared to planar E cores. Results from finite element analysis highlight that low frequency winding resistance is lower for the ER core since it is dominated by the lower mean turn length however, as the AC-resistance becomes dominating the winding eddy...

  11. 高电流密度银电解新工艺的研究与应用%Study on and Application of Novel Process of High Current Density Electrolysis of Silver

    Institute of Scientific and Technical Information of China (English)

    梁勇; 王日; 黄绍勇; 廖春发

    2011-01-01

    Based on the existing silver electrolysis process with reference to the plant practice of high current density electrolysis of copper in Guixi Smelter, a novel high current density(700 A/m2) electrolysis of silver is investigated. The optimum electrolyte components, electrolytic temperature control pattern, electrolyte self-purification process, electrolyte loop control mode, stirring and other key technologies are determined. Furthermore, a novel silver electrolysis cell suitable for the production of high current density is designed. The novel high current density electrolysis of silver with proprietary intellectual property rights is developed. Current density in the novel process is increased from 350 A/m2 to 700 A/m2.%在现有银电解工艺的基础上,借鉴贵溪冶炼厂高电流密度铜电解生产经验,通过试验研究,确定了高电流密度(700 A/m2)电解条件下电解液最佳组分、净化工艺、循环控制模式、搅拌方式等关键技术,自行设计出适合高电流密度生产的银电解槽,开发出具有自主知识产权的高电流密度银电解新工艺,电流密度由原来的350 A/m2提高至700 A/m2.

  12. Review of Particle Physics

    Science.gov (United States)

    Patrignani, C.; Particle Data Group; et al.

    2016-10-01

    The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,062 new measurements from 721 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 117 reviews are many that are new or heavily revised, including those on Pentaquarks and Inflation. The complete Review is published online in a journal and on the website of the Particle Data Group (http://pdg.lbl.gov). The printed PDG Book contains the Summary Tables and all review articles but no longer includes the detailed tables from the Particle Listings. A Booklet with the Summary Tables and abbreviated versions of some of the review articles is also available. Contents Abstract, Contributors, Highlights and Table of ContentsAcrobat PDF (150 KB) IntroductionAcrobat PDF (456 KB) Particle Physics Summary Tables Gauge and Higgs bosonsAcrobat PDF (155 KB) LeptonsAcrobat PDF (134 KB) QuarksAcrobat PDF (84 KB) MesonsAcrobat PDF (871 KB) BaryonsAcrobat PDF (300 KB) Searches (Supersymmetry, Compositeness, etc.)Acrobat PDF (91 KB) Tests of conservation lawsAcrobat PDF (330 KB) Reviews, Tables, and Plots Detailed contents for this sectionAcrobat PDF (37 KB) Constants, Units, Atomic and Nuclear PropertiesAcrobat PDF (278 KB) Standard Model and Related TopicsAcrobat PDF (7.3 MB) Astrophysics and CosmologyAcrobat PDF (2.7 MB) Experimental Methods and CollidersAcrobat PDF (3.8 MB) Mathematical Tools or Statistics, Monte Carlo, Group

  13. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.

  14. A relationship between maximum packing of particles and particle size

    Science.gov (United States)

    Fedors, R. F.

    1979-01-01

    Experimental data indicate that the volume fraction of particles in a packed bed (i.e. maximum packing) depends on particle size. One explanation for this is based on the idea that particle adhesion is the primary factor. In this paper, however, it is shown that entrainment and immobilization of liquid by the particles can also account for the facts.

  15. Large Particle Titanate Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    This research project was aimed at developing a synthesis technique for producing large particle size monosodium titanate (MST) to benefit high level waste (HLW) processing at the Savannah River Site (SRS). Two applications were targeted, first increasing the size of the powdered MST used in batch contact processing to improve the filtration performance of the material, and second preparing a form of MST suitable for deployment in a column configuration. Increasing the particle size should lead to improvements in filtration flux, and decreased frequency of filter cleaning leading to improved throughput. Deployment of MST in a column configuration would allow for movement from a batch process to a more continuous process. Modifications to the typical MST synthesis led to an increase in the average particle size. Filtration testing on dead-end filters showed improved filtration rates with the larger particle material; however, no improvement in filtration rate was realized on a crossflow filter. In order to produce materials suitable for column deployment several approaches were examined. First, attempts were made to coat zirconium oxide microspheres (196 µm) with a layer of MST. This proved largely unsuccessful. An alternate approach was then taken synthesizing a porous monolith of MST which could be used as a column. Several parameters were tested, and conditions were found that were able to produce a continuous structure versus an agglomeration of particles. This monolith material showed Sr uptake comparable to that of previously evaluated samples of engineered MST in batch contact testing.

  16. Particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  17. Eulerian-Lagrangian Simulation of an Explosive Dispersal of Particles

    Science.gov (United States)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Annamalai, Subramanian

    2016-11-01

    Explosive dispersal of solid particles can be observed in a wide variety of contexts, notably in natural phenomenon such as volcanic eruptions or in engineering applications such as detonation of multiphase explosives. As the initial blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially outward at high speed. During the dispersion phase, complex multiphase interactions occurs between particles and detonation products of the explosive. Using a Eulerian-Lagrangian approach, namely point particle simulations, we study the case of a bed of particles of cylindrical shape surrounding an explosive chord. Our interest lies in predicting the behavior of particles after detonation. In particular, capturing and describing the mechanisms responsible for late-time formation of stable particle jets is sought. Therefore, detonation of the explosive material is not simulated. Instead an equivalent energy source is used to initiate the simulation. We present a detailed description of our approach to solving this problem, and our most recent progress in the analysis of particles explosive dispersal. This work was supported by the U.S. DoE, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  18. Bacterial superglue enables easy development of efficient virus-like particle based vaccines

    DEFF Research Database (Denmark)

    Thrane, Susan; Janitzek, Christoph M; Matondo, Sungwa;

    2016-01-01

    BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches...

  19. Particle contamination formation and detection in magnetron sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Selwyn, G.S. [Los Alamos National Lab., NM (United States); Weiss, C.A. [Materials Research Corp., Congers, NY (United States). Sputtering Systems Div.; Sequeda, F.; Huang, C. [Seagate Peripherals Disk Div., Milpitas, CA (United States)

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  20. Plasmonics From Basics to Advanced Topics

    CERN Document Server

    Bonod, Nicolas

    2012-01-01

    This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling.  The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applicati...