WorldWideScience

Sample records for advanced high temperature

  1. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  2. Advanced high temperature heat flux sensors

    Science.gov (United States)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  3. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  4. High Temperature Wear of Advanced Ceramics

    Science.gov (United States)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  5. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  6. Advanced high temperature static strain sensor development

    Science.gov (United States)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-01-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  7. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  8. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  9. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  10. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  11. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-15

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  12. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  13. Advanced High Temperature Reactor Systems and Economic Analysis

    International Nuclear Information System (INIS)

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  14. Advancement of High Temperature Black Liquor Gasification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the

  15. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    50 hours of gasification on a petroleum coke from the Hunt Oil Refinery and an additional 73 hours of operation on a high-ash coal from India. Data from these tests indicate that while acceptable fuel gas heating value was achieved with these fuels, the transport gasifier performs better on the lower-rank feedstocks because of their higher char reactivity. Comparable carbon conversions have been achieved at similar oxygen/coal ratios for both air-blown and oxygen-blown operation for each fuel; however, carbon conversion was lower for the less reactive feedstocks. While separation of fines from the feed coals is not needed with this technology, some testing has suggested that feedstocks with higher levels of fines have resulted in reduced carbon conversion, presumably due to the inability of the finer carbon particles to be captured by the cyclones. These data show that these low-rank feedstocks provided similar fuel gas heating values; however, even among the high-reactivity low-rank coals, the carbon conversion did appear to be lower for the fuels (brown coal in particular) that contained a significant amount of fines. The fuel gas under oxygen-blown operation has been higher in hydrogen and carbon dioxide concentration since the higher steam injection rate promotes the water-gas shift reaction to produce more CO{sub 2} and H{sub 2} at the expense of the CO and water vapor. However, the high water and CO{sub 2} partial pressures have also significantly reduced the reaction of (Abstract truncated)

  16. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.;

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting of these...... energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode or...

  17. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  18. Performance of advanced high-temperature fuels for nuclear propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Stark, W.A.; Butt, D.P.; Storms, E.K.; Wallace, T.C. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Nuclear propulsion using hydrogen has been demonstrated to operate at nearly twice the performance level of today`s chemical rockets. However, higher temperatures lead to a variety of degradations that compromise safety and longevity. Foremost among these is the melting of the propulsion reactor fuel. The melting behaviour of the U-Zr-C and U-Nb-C systems have been evaluated.

  19. Summary - Advanced high-temperature reactor for hydrogen and electricity production

    International Nuclear Information System (INIS)

    Historically, the production of electricity has been assumed to be the primary application of nuclear energy. That may change. The production of hydrogen (H2) may become a significant application. The technology to produce H2 using nuclear energy imposes different requirements on the reactor, which, in turn, may require development of new types of reactors. Advanced High Temperature reactors can meet the high temperature requirements to achieve this goal. This alternative application of nuclear energy may necessitate changes in the regulatory structure

  20. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  1. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    International Nuclear Information System (INIS)

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel

  2. High Temperature Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  3. ECUT energy data reference series: high-temperature materials for advanced heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01

    Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

  4. Commercial scale performance predictions for high-temperature electrolysis plants coupled to three advanced reactor types

    International Nuclear Information System (INIS)

    This paper presents results of system analyses that have been developed to assess the hydrogen-production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor - power-cycle combinations: a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to-hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable hydrogen production rates with the high-temperature helium-cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor. (authors)

  5. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  6. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  7. Friction and wear of ceramic pairs under high temperature conditions representative of advanced engine components

    International Nuclear Information System (INIS)

    Ball-on-disc friction and wear tests were performed with PSZ zirconia, Si3N4, and SiC ceramics and TiC cemented-carbide pairs under oscillating and linear sliding tests at 6500C in air and load conditions representative of advanced power systems. These tests showed high friction and wear of ceramic pairs at 6500C; improved performance was achieved coupling ceramics to TiC, and with TiC pairs. A review of practical lubrication systems for tribological engine components of high temperature materials showed that these exist and include solid lubrication, powder in gaseous carriers, and gas film support

  8. Advanced pebble bed high temperature reactor with central graphite column for future applications

    International Nuclear Information System (INIS)

    Design evaluations of the advanced pebble bed high temperature reactor, AHTR, with central graphite column are given. This reactor, as a nuclear heat source, is suitable for coal refinement as well as for electricity generation with closed gas turbine primary helium circuit. With this design of the central graphite column, it is possible to limit the core temperatures under the required value of about 1600deg C in case of accident conditions, even with higher thermal power and higher core inlet and outlet temperatures. The designs of core internals are described. The after heat removal system is integrated in the prestressed concrete reactor pressure vessel, which is based on the principals of natural convection. Research work is being carried out, whereby the sphencal fuel elements are coated with a layer of silicon carbide, to improve the corrosion resistance as well as the effectiveness of the fission products barrier. (orig.)

  9. Strain Rate and Temperature Effects on the Formability and Damage of Advanced High-Strength Steels

    Science.gov (United States)

    Winkler, S.; Thompson, A.; Salisbury, C.; Worswick, M.; van Riemsdijk, I.; Mayer, R.

    2008-06-01

    In order to understand the crashworthiness and formability of advance high-strength steels, the effects of strain rate and temperature on the constitutive response of DP 600 and DP 780 steel tubes were investigated and compared with commercial drawing quality (DQ) and high strength low alloy (HSLA) 350 steel tubes. Uniaxial tensile tests were conducted at quasi-static (QS) (0.003 and 0.1 s-1), intermediate (30 and 100 s-1), and high (500, 1000, and 1500 s-1) strain rates using an Instron, instrumented falling weight impact tester and tensile split Hopkinson bar (TSHB) apparatus, respectively. Elevated temperature tests at 150 °C and 300 °C were also conducted at high strain rates. Following testing, metallography and microscopy techniques were used for material and damage characterization. The results obtained show that the steels studied exhibit a positive strain rate sensitivity. Compared to DQ and HSLA 350, the DP steels were found to have less formability at QS rates but enhanced formability at higher strain rates. A decrease in strength and ductility was measured with increasing temperature for the DP steels, indicating a reduction in energy adsorption due to adiabatic heating during a crash event.

  10. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    International Nuclear Information System (INIS)

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  11. Thermal-hydraulics numerical analyses of Pebble Bed Advanced High Temperature Reactor hot channel

    International Nuclear Information System (INIS)

    Background: The thermal hydraulics behavior of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) hot channel was studied. Purpose: We aim to analyze the thermal-hydraulics behavior of the PB-AHTR, such as pressure drop, temperature distribution of coolant and pebble bed as well as thermal removal capacity in the condition of loss of partial coolant. Methods: We used a modified FLUENT code which was coupled with a local non-equilibrium porous media model by introducing a User Defined Scalar (UDS) in the calculation domain of the reactor core and subjoining different resistance terms (Ergun and KTA) to calculate the temperature of coolant, solid phase of pebble bed and pebble center in the core. Results: Computational results showed that the resistance factor has great influence on pressure drop and velocity distribution, but less impact on the temperature of coolant, solid phase of pebble bed and pebble center. We also confirmed the heat removal capacity of the PB-AHTR in the condition of nominal and loss of partial coolant conditions. Conclusion: The numerical analyses results can provide a useful proposal to optimize the design of PB-AHTR. (authors)

  12. High-temperature thermal storage systems for advanced solar receivers materials selections

    Science.gov (United States)

    Wilson, D. F.; Devan, J. H.; Howell, M.

    1990-01-01

    Advanced space power systems that use solar energy and Brayton or Stirling heat engines require thermal energy storage (TES) systems to operate continuously through periods of shade. The receiver storage units, key elements in both Brayton and Stirling systems, are designed to use the latent heat of fusion of phase-change materials (PCMs). The power systems under current consideration for near-future National Aeronautics and Space Administration space missions require working fluid temperatures in the 1100 to 1400 K range. The PCMs under current investigation that gave liquid temperatures within this range are the fluoride family of salts. However, these salts have low thermal conductivity, which causes large temperature gradients in the storage systems. Improvements can be obtained, however, with the use of thermal conductivity enhancements or metallic PCMs. In fact, if suitable containment materials can be found, the use of metallic PCMs would virtually eliminate the orbit associated temperature variations in TES systems. The high thermal conductivity and generally low volume change on melting of germanium and alloys based on silicon make them attractive for storage of thermal energy in space power systems. An approach to solving the containment problem, involving both chemical and physical compatibility, preparation of NiSi/NiSi2, and initial results for containment of germanium and NiSi/NiSi2, are presented.

  13. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  14. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  15. Progress in the Development of the Modular Pebble-Bed Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    This review article summarizes recent progress by students and faculty at U.C. Berkeley working on the development of the Pebble-Bed Advanced High Temperature Reactor (PB-AHTR). The 410-MWe PBAHTR is a liquid salt cooled reactor that operates at near atmospheric pressure and high power density (20 to 30 MW/m3, compared to 4.8 MW/m3 for helium cooled reactors). Operating with a core inlet temperature of 600 deg. C and outlet temperature of 704 deg. C, the PB-AHTR uses well understood materials of construction including Alloy 800H with Hastelloy N cladding for the reactor vessel and primary loop components, and graphite for core and reflector structures. Recent work by the NE 170 senior design class has developed physical arrangements for the major reactor and power conversion components, along with the structural design for the reactor building and turbine hall featuring seismic base isolation, design for aircraft crash protection, shielding analysis, and design of a multiple-zone ventilation and containment system to provide effective control of radioactive and chemical contamination. The resulting total building volume is 260 m3/MWe, compared to 343 m3/MWe to 486 m3/MWe for current large (1150 to 1600 MWe) LWR designs. These results suggest the potential for significant reductions in construction time and cost. Neutronics studies have verified the capability to design the PB-AHTR with negative fuel and coolant temperature reactivity coefficients, for both LEU and deep-burn TRU fuels. Depletion analysis was also performed to identify optimal core designs to maximize fuel utilization. The additional moderation provided by the coolant simplifies design to achieve optimal moderation, and the spent fuel volume is approximately half that of helium cooled reactors. In collaboration with the Czech Nuclear Research Institute, initial zero-power critical tests were performed to validate PB-AHTR neutronics models. Liquid salts are unique among candidate reactor coolants due

  16. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  17. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  18. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  19. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    Science.gov (United States)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  20. Advanced reactor water cleanup system with high-temperature electrophoresis demineralization process as alternative to ion-exchange resin process

    International Nuclear Information System (INIS)

    The ion-exchange resin process has been widely applied to reactor water cleanup systems to remove impurities from the water used in boiling water reactors (BWRs). Toshiba has developed a high-temperature electrophoresis demineralization process as an alternative to the ion-exchange resin process for an advanced reactor water cleanup system. Since the new process uses only inorganic materials, high-temperature and high-pressure water can be fed directly to the system. The new system was confirmed to remove ions with high efficiency in a performance test using high-temperature and high-pressure water simulating BWR water. The advanced reactor water cleanup system will be greatly simplified because heat exchangers and resin-handling equipment are not required. It will also be economical due to reductions in heat loss and resin waste. (author)

  1. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  2. High-temperature strength characterization of advanced 9Cr-ODS ferritic steels

    International Nuclear Information System (INIS)

    Oxide dispersion strengthened (ODS) ferritic steels, which are the most promising candidate materials for advanced fast reactor fuel elements, have exceptional creep strength at 973 K. The superior creep property of 9Cr-ODS ferritic steels is ascribed to the formation of a nonequilibrium phase, designated as the residual ferrite. The yield strength of the residual ferrite itself has been determined to be as high as 1360 MPa at room temperature from nanoindentation measurements. The creep strength is also enhanced by minimizing the number of packet boundaries induced by the martensitic phase transformation. The creep strain occurs at a lower stress than that necessary for the deformation of the intragrain regions, which are strengthened by an interaction between nanosize oxide particles and dislocations; this occurs by sliding at weaker regions such as at the grain boundaries and packet boundaries. It is found that 9Cr-ODS ferritic steels behave as fiber composite materials comprising the harder residual ferrite and the softer tempered martensite.

  3. Coupling of RMC and CFX for analysis of Pebble Bed-Advanced High Temperature Reactor core

    International Nuclear Information System (INIS)

    Highlights: ► The CFD code CFX is used for whole pebble bed reactor core calculation. ► The Monte Carlo Code RMC and CFX are used for the coupling of neutronics and T-H. ► Coupled calculations for steady-state problem can reach stable results. ► Increasing the number of neutron histories is effective to improve accuracy. - Abstract: This paper introduces a steady-state coupled calculation method using the Monte Carlo Code RMC (Reactor Monte Carlo) and the Computational Fluid Dynamic (CFD) code CFX for the analysis of a Pebble Bed-Advanced High Temperature Reactor (PB-AHTR) core. The RMC code is used for neutronics calculation while CFX is used for Thermal-Hydraulics (T-H) calculation. The porous media model is used in CFX modeling to simulate the pebble bed structure in PB-AHTR. The CFX model has also been validated against the RELAP5-3D model developed in the previous research. The script language PERL is used as a development tool to manipulate and control the entire coupled calculation. This research gives the conclusion that the steady-state coupled calculation using RMC and CFX is feasible and can obtain stable results within a few iterations. However, due to the statistical errors of Monte Carlo method, the fluctuation of results still occurs. For the purpose of improving the accuracy, the paper applies and discusses two methods, of which increasing the number of neutron histories is an effective method.

  4. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  5. Developments in advanced high temperature disc and blade materials for aero-engine gas turbine applications

    OpenAIRE

    Everitt, S

    2012-01-01

    The research carried out as part of this EngD is aimed at understanding the high temperature materials used in modern gas turbine applications and providing QinetiQ with the information required to assess component performance in new propulsion systems. Performance gains are achieved through increased turbine gas temperatures which lead to hotter turbine disc rims and blades. The work has focussed on two key areas: (1) Disc Alloy Assessment of High Temperature Properties; and (2) Thermal Barr...

  6. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  7. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  8. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    OpenAIRE

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Vincent L. Sprenkle

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy d...

  9. Advanced error-prediction LDPC with temperature compensation for highly reliable SSDs

    Science.gov (United States)

    Tokutomi, Tsukasa; Tanakamaru, Shuhei; Iwasaki, Tomoko Ogura; Takeuchi, Ken

    2015-09-01

    To improve the reliability of NAND Flash memory based solid-state drives (SSDs), error-prediction LDPC (EP-LDPC) has been proposed for multi-level-cell (MLC) NAND Flash memory (Tanakamaru et al., 2012, 2013), which is effective for long retention times. However, EP-LDPC is not as effective for triple-level cell (TLC) NAND Flash memory, because TLC NAND Flash has higher error rates and is more sensitive to program-disturb error. Therefore, advanced error-prediction LDPC (AEP-LDPC) has been proposed for TLC NAND Flash memory (Tokutomi et al., 2014). AEP-LDPC can correct errors more accurately by precisely describing the error phenomena. In this paper, the effects of AEP-LDPC are investigated in a 2×nm TLC NAND Flash memory with temperature characterization. Compared with LDPC-with-BER-only, the SSD's data-retention time is increased by 3.4× and 9.5× at room-temperature (RT) and 85 °C, respectively. Similarly, the acceptable BER is increased by 1.8× and 2.3×, respectively. Moreover, AEP-LDPC can correct errors with pre-determined tables made at higher temperatures to shorten the measurement time before shipping. Furthermore, it is found that one table can cover behavior over a range of temperatures in AEP-LDPC. As a result, the total table size can be reduced to 777 kBytes, which makes this approach more practical.

  10. Steam oxidation of advanced high temperature resistant alloys for ultra-supercritical applications

    OpenAIRE

    Lukaszewicz, Mikolaj

    2012-01-01

    Steam oxidation of heat exchanger tubing is of growing interest as increasing the efficiencies of conventional pulverised fuel fired power plants requires higher steam temperatures and pressures. These new, more severe steam conditions result in faster steam oxidation reactions, which can significantly reduce the lifetime of boiler components. This thesis reports results from an investigation of the steam oxidation of the high temperature resistant alloys. It covers an analysis of the impact ...

  11. AMSAHTS 1990: Advances in Materials Science and Applications of High-Temperature Superconductors

    International Nuclear Information System (INIS)

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists

  12. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    Science.gov (United States)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  13. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  14. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    Science.gov (United States)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  15. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  16. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  17. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    Science.gov (United States)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  18. Advanced Intermediate Temperature Sodium-Nickel Chloride Batteries with Ultra-High Energy Density

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee-Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  19. Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating

    Energy Technology Data Exchange (ETDEWEB)

    List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feuerstein, Albert [Praxair Surface Technologies, Inc., (United States); Dehoff, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirka, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carver, Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-30

    The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheet material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture

  20. Qualification of metallic materials for application in advanced high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    As in conventional high temperature technology, the qualification of metallic materials for high temperature reactor (HTR) applications is based on creep behavior, fatigue properties, corrosion resistance, and thermal stability. Of specific interest are the effects of the primary coolant helium, which contains trace impurities of hydrogen, methane, carbon monoxide, and water vapor, on mechanical behavior. In addition, irradiation effects on the properties of absorber rod cladding and tritium permeation from the primary coolant into the process gas are important areas for investigation. The results show that, for test times of up to 20,000 h, the creep-rupture strength in air and in HTR helium lies in the same scatter band. The results of low cycle fatigue tests indicate a beneficial effect of HTR helium on the cycles of failure. Investigations of corrosion in HTR helium have shown that acceptable corrosion resistance can be achieved by strict control of the impurity content of the helium. Using the available creep-rupture data and the linear damage accumulation rule, the acceptable service lives of intermediate heat exchanger tubes were calculated for Inconel alloy 617 at 9500 C. The data that are being accumulated from the various test programs will form the basis of a design code for nuclear components operating at temperatures greater than or equal to 8000 C

  1. Metallurgical considerations in the design of creep exposed, high temperature components for advanced power plants

    International Nuclear Information System (INIS)

    Metallic components in advanced power generating plants are subjected to temperatures at which the material properties are significantly time-dependent, so that the creep properties become dominant for the design. In this investigation, methods by which such components are to be designed are given, taking into account metallurgical principles. Experimental structure mechanics testing of component related specimens carried out for representative loading conditions has confirmed the proposed methods. The determination of time-dependent design values is based on a scatterband evaluation of long-term testing data obtained for a number of different heats of a given alloy. The application of computer-based databank systems is recommendable. The description of the technically important secondary creep rate based on physical metallurgy principles can be obtained using the exponential relationship originally formulated by Norton, εmin = k.σn. The deformation of tubes observed under internal pressure with a superimposed static or cyclic tensile stress and a torsion loading can be adequately described with the derived, three-dimensional creep equation (Norton). This is also true for the description of creep ratcheting and creep buckling phenomena. By superimposing a cyclic stress, the average creep rate is increased in one of the principal deformation axes. This is also true for the creep crack growth rate. The Norton equation can be used to derive this type of deformation behaviour. (orig.)

  2. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  3. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  4. Design of a high-temperature experiment for evaluating advanced structural materials

    Science.gov (United States)

    Mockler, Theodore T.; Castro-Cedeno, Mario; Gladden, Herbert J.; Kaufman, Albert

    1992-08-01

    This report describes the design of an experiment for evaluating monolithic and composite material specimens in a high-temperature environment and subject to big thermal gradients. The material specimens will be exposed to aerothermal loads that correspond to thermally similar engine operating conditions. Materials evaluated in this study were monolithic nickel alloys and silicon carbide. In addition, composites such as tungsten/copper were evaluated. A facility to provide the test environment has been assembled in the Engine Research Building at the Lewis Research Center. The test section of the facility will permit both regular and Schlieren photography, thermal imaging, and laser Doppler anemometry. The test environment will be products of hydrogen-air combustion at temperatures from about 1200 F to as high as 4000 F. The test chamber pressure will vary up to 60 psia, and the free-stream flow velocity can reach Mach 0.9. The data collected will be used to validate thermal and stress analysis models of the specimen. This process of modeling, testing, and validation is expected to yield enhancements to existing analysis tools and techniques.

  5. High temperature reactors

    International Nuclear Information System (INIS)

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements

  6. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR)...

  7. GHRSST Level 3P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 3 Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A...

  8. GHRSST Level 3C Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on MetOp-B (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  9. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA-19 (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR)...

  10. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on MetOp-B (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) derived from the Advanced Very High Resolution Radiometer...

  11. GHRSST Level 3C Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on MetOp-A (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 3 Collated (L3C) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR)...

  12. GHRSST Level 3C North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on MetOp-A (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) derived from the Advanced Very High Resolution Radiometer...

  13. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR)...

  14. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR)...

  15. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR)...

  16. Parametric Evaluation of Large-Scale High-Temperature Electrolysis Hydrogen Production Using Different Advanced Nuclear Reactor Heat Sources

    International Nuclear Information System (INIS)

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered

  17. Parametric evaluation of large-scale high-temperature electrolysis hydrogen production using different advanced nuclear reactor heat sources

    International Nuclear Information System (INIS)

    High-temperature electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800-950 oC, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an intermediate heat exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the sweep gas loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed with the objective of evaluating the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency of the integrated plant design for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycles producing the highest efficiencies varied depending on the temperature range considered.

  18. Advanced multi-physics simulation capability for very high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Tak, Nam Il; Jo Chang Keun; Noh, Jae Man; Cho, Bong Hyun; Cho, Jin Woung; Hong, Ser Gi

    2012-01-15

    The purpose of this research is to develop methodologies and computer code for high-fidelity multi-physics analysis of very high temperature gas-cooled reactors(VHTRs). The research project was performed through Korea-US I-NERI program. The main research topic was development of methodologies for high-fidelity 3-D whole core transport calculation, development of DeCART code for VHTR reactor physics analysis, generation of VHTR specific 190-group cross-section library for DeCART code, development of DeCART/CORONA coupled code system for neutronics/thermo-fluid multi-physics analysis, and benchmark analysis against various benchmark problems derived from PMR200 reactor. The methodologies and the code systems will be utilized a key technologies in the Nuclear Hydrogen Development and Demonstration program. Export of code system is expected in the near future and the code systems developed in this project are expected to contribute to development and export of nuclear hydrogen production system.

  19. Advanced multi-physics simulation capability for very high temperature reactors

    International Nuclear Information System (INIS)

    The purpose of this research is to develop methodologies and computer code for high-fidelity multi-physics analysis of very high temperature gas-cooled reactors(VHTRs). The research project was performed through Korea-US I-NERI program. The main research topic was development of methodologies for high-fidelity 3-D whole core transport calculation, development of DeCART code for VHTR reactor physics analysis, generation of VHTR specific 190-group cross-section library for DeCART code, development of DeCART/CORONA coupled code system for neutronics/thermo-fluid multi-physics analysis, and benchmark analysis against various benchmark problems derived from PMR200 reactor. The methodologies and the code systems will be utilized a key technologies in the Nuclear Hydrogen Development and Demonstration program. Export of code system is expected in the near future and the code systems developed in this project are expected to contribute to development and export of nuclear hydrogen production system

  20. High-temperature metal alloy radiant property measurements in conjunction with advanced surface spectroscopy

    International Nuclear Information System (INIS)

    The purpose of this work is to study the radiative and optical properties of pure liquid metal surfaces using both a state-of-the-art radiation property measurement system and the recently developed techniques of surface analysis. These techniques allow detailed analysis of the atomic composition of a metal surface. Research reported to date has not utilized these tools, so sample materials have been impure and of unknown surface composition. An apparatus was fabricated which will allow complete radiative property measurements and surface spectroscopy to be done in the same device. This system employs argon ion sputtering, Auger electron spectroscopy (AES), and ultra high vacuum techniques and makes radiative property measurements as a function of angle, wavelength, and temperature. After assembly and shakedown, the apparatus was used to make two sets of measurements. The data are being analyzed. Theoretical work to compare our data to predictions derived from the Fresnel equations and free electron theory has been initiated

  1. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  2. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  3. Irradiation behaviour of advanced fuel elements for the helium-cooled high temperature reactor (HTR)

    International Nuclear Information System (INIS)

    The design of modern HTRs is based on high quality fuel. A research and development programme has demonstrated the satisfactory performance in fuel manufacturing, irradiation testing and accident condition testing of irradiated fuel elements. This report describes the fuel particles with their low-enriched UO2 kernels and TRISO coating, i.e. a sequence of pyrocarbon, silicon carbide, and pyrocarbon coating layers, as well as the spherical fuel element. Testing was performed in a generic programme satisfying the requirements of both the HTR-MODUL and the HTR 500. With a coating failure fraction less than 2x10-5 at the 95% confidence level, the results of the irradiation experiments surpassed the design targets. Maximum accident temperatures in small, modular HTRs remain below 1600deg C, even in the case of unrestricted core heatup after depressurization. Here, it was demonstrated that modern TRISO fuels retain all safety-relevant fission products and that the fuel does not suffer irreversible changes. Isothermal heating tests have been extended to 1800deg C to show performance margins. Ramp tests to 2500deg C demonstrate the limits of present fuel materials. A long-term programm is planned to improve the statistical significance of presently available results and to narrow remaining uncertainty limits. (orig.)

  4. Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Waterman, A. W.; Huxford, R. L.; Nelson, W. G.

    1976-01-01

    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.

  5. Advances in Solid State Joining of Haynes 230 High Temperature Alloy

    Science.gov (United States)

    Ding, Jeff; Schneider, Judy; Walker, Bryant

    2010-01-01

    The J-2X engine is being designed for NASA s new class of crew and launch vehicles, the Ares I and Ares V. The J-2X is a LOX/Hydrogen upper stage engine with 294,000 lbs of thrust and a minimum Isp of 448 seconds. As part of the design criteria to meet the performance requirements a large film-cooled nozzle extension is being designed to further expand the hot gases and increases the specific impulse. The nozzle extension is designed using Haynes 230, a nickel-chromium-tungsten-molybdenum superalloy. The alloy was selected for its high strength at elevated temperatures and resistance to hydrogen embrittlement. The nozzle extension is manufactured from Haynes 230 plate spun-forged to form the contour and chemically-milled pockets for weight reduction. Currently fusion welding is being evaluated for joining the panels which are then mechanically etched and thinned to required dimensions for the nozzle extension blank. This blank is then spun formed into the parabolic geometry required for the nozzle. After forming the nozzle extension, weight reduction pockets are chemically milled into the nozzle. Fusion welding of Haynes results in columnar grains which are prone to hot cracking during forming processes. This restricts the ability to use spin forging to produce the nozzle contour. Solid state joining processes are being pursued as an alternative process to produce a structure more amenable to spin forming. Solid state processes have been shown to produce a refined grain structure within the joint regions as illustrated in Figure 1. Solid state joining processes include friction stir welding (FSW) and a patented modification termed thermal stir welding (TSW). The configuration of TSWing utilizes an induction coil to preheat the material minimizing the burden on the weld tool extending its life. This provides the ability to precisely select and control the temperature. The work presented in this presentation investigates the feasibility of joining the Haynes 230

  6. MOTHER MK II: An advanced direct cycle high temperature gas reactor

    International Nuclear Information System (INIS)

    The MOTHER (MOdular Thermal HElium Reactor) power plant concepts employ high temperature gas reactors utilizing TRISO fuel, graphite moderator, and helium coolant, in combination with a direct Brayton cycle for electricity generation. The helium coolant from the reactor vessel passes through a Power Conversion Unit (PCU), which includes a turbine-generator, recuperator, precooler, intercooler and turbine-compressors, before being returned to the reactor vessel. The PCU substitutes for the reactor coolant system pumps and steam generators and most of the Balance Of Plant (BOP), including the steam turbines and condensers, employed by conventional nuclear power plants utilizing water cooled reactors. This provides a compact, efficient, and relatively simple plant configuration. The MOTHER MK I conceptual design, completed in the 1987 - 1989 time frame, was developed to economically meet the energy demands for extracting and processing heavy oil from the tar sands of western Canada. However, considerable effort was made to maximize the market potential beyond this application. Consistent with the remote and very high labour rate environment in the tar sands region, simplification of maintenance procedures and facilitation of 'change-out' in lieu of in situ repair was a design focus. MOTHER MK I had a thermal output of 288 MW and produced 120 MW electrical when operated in the electricity only production mode. An annular Prismatic reactor core was utilized, largely to minimize day-to-day operations activities. Key features of the power conversion system included two Power Conversion Units (144 MWth each), the horizontal orientation of all rotating machinery and major heat exchangers axes, high speed rotating machinery (17,030 rpm for the turbine-compressors and 10,200 rpm for the power turbine-generator), gas (helium) bearings for all rotating machinery, and solid state frequency conversion from 170 cps (at full power) to the grid frequency. Recognizing that the on

  7. Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    G. RObert Odette; Takuya Yamamoto

    2009-08-14

    Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

  8. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  9. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Sacit M [ORNL

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  10. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, Gary [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States); Scott, Brian [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study of a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  11. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  12. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  13. On The Creep Behavior and Deformation Mechanisms Found in an Advanced Polycrystalline Nickel-Base Superalloy at High Temperatures

    Science.gov (United States)

    Deutchman, Hallee Zox

    Polycrystalline Ni-base superalloys are used as turbine disks in the hot section in jet engines, placing them in a high temperature and stress environment. As operating temperatures increase in search of better fuel efficiency, it becomes important to understand how these higher temperatures are affecting mechanical behavior and active deformation mechanisms in the substructure. Not only are operating temperatures increasing, but there is a drive to design next generation alloys in shorter time periods using predictive modeling capabilities. This dissertation focuses on mechanical behavior and active deformation mechanisms found in two different advanced polycrystalline alloy systems, information which will then be used to build advanced predictive models to design the next generation of alloys. The first part of this dissertation discusses the creep behavior and identifying active deformation mechanisms in an advanced polycrystalline Ni-based superalloy (ME3) that is currently in operation, but at higher temperatures and stresses than are experienced in current engines. Monotonic creep tests were run at 700°C and between 655-793MPa at 34MPa increments, on two microstructures (called M1 and M2) produced by different heat treatments. All tests were crept to 0.5% plastic strain. Transient temperature and transient stress tests were used determine activation energy and stress exponents of the M1 microstructure. Constant strain rate tests (at 10-4s-1) were performed on both microstructures as well. Following creep testing, both M1 and M2 microstructures were fully characterized using Scanning Electron Microscopy (SEM) for basic microstructure information, and Scanning Transmission Electron Microscopy (STEM) to determine active deformation mechanism. It was found that in the M1 microstructure, reorder mediated activity (such as discontinuous faulting and microtwinning) is dominant at low stresses (655-724 MPa). Dislocations in the gamma matrix, and overall planar

  14. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  15. Advanced In-Space Propulsion (AISP): High Temperature Boost Power Processing Unit (PPU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task is to investigate the technology path to develop a 10kW modular Silicon Carbide (SiC) based power processing unit (PPU). The PPU utilizes the high...

  16. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    Science.gov (United States)

    Soboyejo, W. O.; Rao, K. T. Venkateswara; Sastry, S. M. L.; Ritchie, R. O.

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48A1 + 20 vol pct TiNb and hot-isostatically pressed (“hipped”) MoSi2 + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48A1 and MoSi2 on the micromechanisms of fracture under monotonie and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonie loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  17. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    International Nuclear Information System (INIS)

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48Al + 20 vol pct TiNb and hot-isostatically pressed ('hipped') MoSi2 + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48Al and MoSi2 on the micromechanisms of fracture under monotonic and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonic loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions

  18. Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. (Ohio State Univ., Columbus (United States)); Venkateswara Rao, K.T.; Ritchie, R.O. (Univ. of California, Berkeley (United States)); Sastry, S.M.L. (Washington Univ., St. Louis, MO (United States))

    1993-03-01

    The results of recent studies on the fatigue and fracture behavior of extruded Ti-48Al + 20 vol pct TiNb and hot-isostatically pressed ('hipped') MoSi[sub 2] + 20 vol pct Nb are presented (compositions in atomic percent unless stated otherwise). The effects of ductile phase reinforcement of Ti-48Al and MoSi[sub 2] on the micromechanisms of fracture under monotonic and cyclic loading are elucidated. Micromechanics models are applied to the prediction of crack-tip shielding components, and the effects of temperature on tensile/compressive/flexure strengths are discussed. Ductile phase toughening under monotonic loading conditions is shown to be associated with lower fatigue crack growth resistance. The lower fatigue resistance is attributed to the absence of crack-tip shielding, higher crack opening displacements, and the effects of inelastic strains that are developed in ductile phase-reinforced composites under cyclic loading conditions.

  19. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  20. Advanced Materials and Processes for High Energy Resolution Room Temperature Gamma Ray Spectrometers

    International Nuclear Information System (INIS)

    A significant amount of progress has been achieved in the development of the novel vacuum distillation method described in the proposal. The process for the purification of Te was fully developed and characterized in a series of trials. The purification effect was confirmed with GDMS sample analysis and indicates the process yields very high purity Te metal. Results of this initial process study have been submitted for publication in the Proceedings of the SPIE and will be presented on August 28, 2007 at the SPIE Optics and Photonics 2007 conference in San Diego, CA. Concurrent to the development of the Te process, processes for the purification of Cd, Zn, and Mn have also progressed. The development of the processes for Cd and Zn are nearly complete, while the development of the process for Mn is still in its infancy. It is expected that a full characterization of the Cd process will be completed within the next quarter, followed by Zn. Parallel to those characterization studies, efforts will be made to further develop the Mn purification process. Zone melting work for Te and Cd has also been efforted as per the project work schedule. Initial trials have been completed and the processes developed. Characterization of the results will be completed within the first fiscal year. Finally, an apparatus for the zone refinement of Cd, Zn, and Mn has been constructed and initial trials are set to begin shortly

  1. Advances in the development and description of tritium permeation barriers in high-temperature alloys

    International Nuclear Information System (INIS)

    Recent experimental findings on tritium permeation barriers are described with special emphasis on the interpretation in terms of mechanical behavior. Kinetic measurements of the water vapor corrosion reaction with Incoloy-800 have been performed first by determining hydrogen production and permeation rates on line. Growth laws of the oxide scales have been determined indicating that a visually parabolic phase can be attributed to a scale of enhanced impeding effect against permeation. A certain amount of the hydrogen created by the corrosion reaction permeates spontaneously through the metal at a fraction varying between 1 and 10%. A new quality of oxide layer has been identified that can be characterized by enhanced activation energies for hydrogen permeation of about 150 kJ/mol as well as a modified pressure dependence proportional p1 in a limited range. Such scales show improved impeding factors >>100. Moreover, the effect of an additional layer on the opposite side of the tube specimen has been studied that shows a different impeding behavior dependent on the direction of the hydrogen/tritium flow. A model has been discussed describing the impeding effect of oxide scales in terms of surface controlled reaction steps rather than bulk diffusion, as has been the usual procedure hitherto. The model proposed offers a qualitative understanding of experimental findings characterizing high-quality layers

  2. High Temperature and Pressure Steam-H2 Interaction with Candidate Advanced LWR Fuel Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL

    2012-08-01

    This report summarizes the work completed to evaluate cladding materials that could serve as improvements to Zircaloy in terms of accident tolerance. This testing involved oxidation resistance to steam or H{sub 2}-50% steam environments at 800-1350 C at 1-20 bar for short times. A selection of conventional alloys, SiC-based ceramics and model alloys were used to explore a wide range of materials options and provide guidance for future materials development work. Typically, the SiC-based ceramic materials, alumina-forming alloys and Fe-Cr alloys with {ge}25% Cr showed the best potential for oxidation resistance at {ge}1200 C. At 1350 C, FeCrAl alloys and SiC remained oxidation resistant in steam. Conventional austenitic steels do not have sufficient oxidation resistance with only {approx}18Cr-10Ni. Higher alloyed type 310 stainless steel is protective but Ni is not a desirable alloy addition for this application and high Cr contents raise concern about {alpha}{prime} formation. Higher pressures (up to 20.7 bar) and H{sub 2} additions appeared to have a limited effect on the oxidation behavior of the most oxidation resistant alloys but higher pressures accelerated the maximum metal loss for less oxidation resistant steels and less metal loss was observed in a H{sub 2}-50%H{sub 2}O environment at 10.3 bar. As some of the results regarding low-alloyed FeCrAl and Fe-Cr alloys were unexpected, further work is needed to fundamentally understand the minimum Cr and Al alloy contents needed for protective behavior in these environments in order to assist in alloy selection and guide alloy development.

  3. High temperature electronics

    Science.gov (United States)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  4. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    Science.gov (United States)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  5. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  6. Novel High Temperature Strain Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current...

  7. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  8. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  9. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    International Nuclear Information System (INIS)

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  10. Advanced Characterization Techniques for Silicon Carbide and Pyrocarbon Coatings on Fuel Particles for High Temperature Reactors (HTR)

    International Nuclear Information System (INIS)

    Cea and AREVA NP have engaged an extensive research and development program on HTR (high temperature reactor) fuel. The improving of safety of (very) high temperature reactors (V/HTR) is based on the quality of the fuel particles. This requires a good knowledge of the properties of the four-layers TRISO particles designed to retain the uranium and fission products during irradiation or accident conditions. The aim of this work is to characterize exhaustively the structure and the thermomechanical properties of each unirradiated layer (silicon carbide and pyrocarbon coatings) by electron microscopy (SEM, TEM), selected area electronic diffraction (SEAD), thermo reflectance microscopy and nano-indentation. The long term objective of this study is to define pertinent parameters for fuel performance codes used to better understand the thermomechanical behaviour of the coated particles. (authors)

  11. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    International Nuclear Information System (INIS)

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×107 cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature

  12. High-temperature resins

    Science.gov (United States)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  13. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  14. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  15. GHRSST Level 2P North Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NEODAAS (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Level 2P swath-based Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic area from the Advanced Very High Resolution...

  16. GHRSST Level 3P North Atlantic Regional Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for HIgh Resolution Sea Surface Temperature (GHRSST) dataset for the North Atlantic Region (NAR) from the Advanced Very High Resolution Radiometer (AVHRR)...

  17. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    International Nuclear Information System (INIS)

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  18. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  19. Advanced FeCrAl ODS steels for high-temperature structural applications in energy generation systems

    Directory of Open Access Journals (Sweden)

    Pimentel, G.

    2012-08-01

    Full Text Available Technologies and means for developing biomass plant with higher energy conversion efficiencies are essential in order to implement the commitment to renewable biomass energy generation. Advanced, indirect Combined Cycle Gas Turbine (CCGT systems offer overall biomass energy conversion efficiencies of 45 % and above, compared with the 35 % efficiency of conventional biomass steam plant. However to attain this efficiency in CCGT operation it will be necessary to develop a heat exchanger capable of gas operating temperatures and pressures of around 1100 °C and 15-30 bar, respectively, for entry heating the gas turbine working fluid. ODS ferritic steels is the kind of advance material to deal with this challenge, however work to optimize the coarse grain microstructure to improve creep hoop strength needs to be done. In this sense, this paper reports the recrystallisation behaviour of PM 2000 oxide dispersion strengthened ferritic alloy which was cold deformed after hot-rolling and extrusion. The results can be interpreted if it is assumed that anything which makes the microstructure heterogeneous, stimulates recrystallisation. In this sense, larger strain gradients lead to more refined and more isotropic grain structures. The combination of these results with finite element modeling are used to interpret the role of residual shear stresses on the development of recrystallized grain structure.

    Las tecnologías y medios para desarrollar plantas de biomasa con alta eficiencia en la conversión de energía son esenciales para asentar la biomasa como una fuente de energía renovable. Los sistemas de turbinas de gas de ciclo combinado (CCGT permiten elevar la eficiencia de las plantas de biomasa del 35 % actual al 45 %. Sin embargo, para conseguir estos niveles de eficiencia en la conversión de energía, el intercambiador de calor de la caldera debe trabajar en condiciones extremas de temperatura (por encima de 1100 °C y presión (en torno a 15

  20. Oxidation and the Effects of High Temperature Exposures on Notched Fatigue Life of an Advanced Powder Metallurgy Disk Superalloy

    Science.gov (United States)

    Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.

    2012-01-01

    Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a

  1. Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices

    International Nuclear Information System (INIS)

    This paper reviews some scientific considerations about the underlying material properties and the detailed functional principle of two important types of solid state gas sensors. This is used to predict the application potential of these sensor technologies. The classical methodology to use resistance readout of heated semiconducting metal oxides is a straightforward approach to get robust sensors that are simple in design. The usage of materials that are operated at higher temperatures opens up the way for improvements; due to a change in the mechanism of electrical conductivity, better reproducibility and stability of the electrical properties can be attained. The high operation temperatures also lead to changes in the surface reactions with the gases that allow for quicker equilibration times. The next step is taken when devices are used that are based on the readout of the work function of the sensing materials. Suspended gate FETs here serve as the transducer structures. Surface properties are directly used here, which facilitates the preparation of sensing materials. The sensors can be used with a wide range of sensing materials, allowing the development of receptor materials that optimally fit the target gases. Functional improvements include enhanced selectivity and detection of a wider range of gases. These devices may work at room temperature with little energy required for running them and additionally allow direct access to the structure of the analyte molecule without thermal decomposition. (topical review)

  2. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  3. Diamond for High Power / High Temperature Electronics

    OpenAIRE

    Kohn, E.; Kubovic, M.; Hernandez-Guillen, F.; Denisenko, A.

    2004-01-01

    Diamond is a wide bandgap semiconductor with extremely attractive properties but also many technological difficulties. Doping is restricted to deep impurities and substrate size is very limited. Nevertheless in proof of concept experiments, the potential for high power, high temperature and high frequency applications can already well be estimated. In addition, first passive MEMS elements for advanced circuit applications have also been demonstrated, however still on n...

  4. HIGH TEMPERATURE DISPLACEMENT SENSOR

    Institute of Scientific and Technical Information of China (English)

    Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard

    2005-01-01

    A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90~350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2~3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.

  5. Advanced Flip Chips in Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni

    2010-01-01

    The use of underfill materials is necessary with flip-chip interconnect technology to redistribute stresses due to mismatching coefficients of thermal expansion (CTEs) between dissimilar materials in the overall assembly. Underfills are formulated using organic polymers and possibly inorganic filler materials. There are a few ways to apply the underfills with flip-chip technology. Traditional capillary-flow underfill materials now possess high flow speed and reduced time to cure, but they still require additional processing steps beyond the typical surface-mount technology (SMT) assembly process. Studies were conducted using underfills in a temperature range of -190 to 85 C, which resulted in an increase of reliability by one to two orders of magnitude. Thermal shock of the flip-chip test articles was designed to induce failures at the interconnect sites (-40 to 100 C). The study on the reliability of flip chips using underfills in the extreme temperature region is of significant value for space applications. This technology is considered as an enabling technology for future space missions. Flip-chip interconnect technology is an advanced electrical interconnection approach where the silicon die or chip is electrically connected, face down, to the substrate by reflowing solder bumps on area-array metallized terminals on the die to matching footprints of solder-wettable pads on the chosen substrate. This advanced flip-chip interconnect technology will significantly improve the performance of high-speed systems, productivity enhancement over manual wire bonding, self-alignment during die joining, low lead inductances, and reduced need for attachment of precious metals. The use of commercially developed no-flow fluxing underfills provides a means of reducing the processing steps employed in the traditional capillary flow methods to enhance SMT compatibility. Reliability of flip chips may be significantly increased by matching/tailoring the CTEs of the substrate

  6. High temperature refrigerator

    Science.gov (United States)

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  7. Recent advances in the study of the UO2–PuO2 phase diagram at high temperatures

    International Nuclear Information System (INIS)

    Recently, novel container-less laser heating experimental data have been published on the melting behaviour of pure PuO2 and PuO2-rich compositions in the uranium dioxide–plutonium dioxide system. Such data showed that previous data obtained by more traditional furnace heating techniques were affected by extensive interaction between the sample and its containment. It is therefore paramount to check whether data so far used by nuclear engineers for the uranium-rich side of the pseudo-binary dioxide system can be confirmed or not. In the present work, new data are presented both in the UO2-rich part of the phase diagram, most interesting for the uranium–plutonium dioxide based nuclear fuel safety, and in the PuO2 side. The new results confirm earlier furnace heating data in the uranium-dioxide rich part of the phase diagram, and more recent laser-heating data in the plutonium-dioxide side of the system. As a consequence, it is also confirmed that a minimum melting point must exist in the UO2–PuO2 system, at a composition between x(PuO2) = 0.4 and x(PuO2) = 0.7 and 2900 K ⩽ T ⩽ 3000 K. Taking into account that, especially at high temperature, oxygen chemistry has an effect on the reported phase boundary uncertainties, the current results should be projected in the ternary U–Pu–O system. This aspect has been extensively studied here by X-ray diffraction and X-ray absorption spectroscopy. The current results suggest that uncertainty bands related to oxygen behaviour in the equilibria between condensed phases and gas should not significantly affect the qualitative trend of the current solid–liquid phase boundaries

  8. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  9. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described in the...

  10. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT- also represents a theoretical limitation. It was found not to be so

  11. High temperature superconductivity

    International Nuclear Information System (INIS)

    New superconducting oxides and physical basis of the high-temperature superconductivity developed from 1979 till 1986 are reviewed. The analysis is based upon the concept of exchange amplification of electron-phonon interaction put forward by the author in 1964. Using the high-temperature superconductivity theory an approach to increasing the critical temperature of high-temperature superconductors (HTSC) is proposed along with the means for synthesis of HTSC with higher critical fields. The feasibility of HTSC implementation in the modern physical experiment technology is also considered, e.g. for detecting the magnetic monopoles. 35 refs.; 2 figs

  12. High temperature superconductivity

    International Nuclear Information System (INIS)

    This book contains the proceedings of a conference on high temperature superconductivity. The papers presented include: Microstructural considerations in polycrystalline YBa2Cu3O7 and The role of the metallic orbital and of crest and trough superconduction in high temperature superconductors

  13. An investigation of the effects of ductile phase reinforcement on the mechanical behavior of advanced high temperature intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Soboyejo, W.O. (Dept. of Materials Science and Engineering, Ohio State Univ., Columbus, OH (United States)); Sastry, S.M.L. (Dept. of Mechanical Engineering, Washington Univ., St. Louis, MO (United States))

    1993-11-01

    The effects of ductile phase reinforcement on the mechanical behavior of Ti-48Al reinforced with 20 vol.% TiNb and MoSi[sub 2] reinforced with 20 vol.% Nb are reported. Ductile phase reinforcement is shown to promote improved fracture toughness and a reduction in fatigue crack growth resistance. The role of crack/tip shielding by bridging and deflection mechanisms is also modeled, and the effects of temperature on the bend and tensile strengths are assessed. (orig.)

  14. Scanning electron microscopy (SEM) study of advanced PMR-X Carbon fiber composites after high temperature exposure

    International Nuclear Information System (INIS)

    Degradation behavior of neat resin, epoxy sized and unsized carbon fibers in polyimide matrix were investigated. Degradation of neat resin and unidirectional laminates (08 and 06)were investigated at temperature between 470 digC-650 digBy using scanning electron microscopy technique, voids formation in neat resin, transverse cracking and microcracking at fiber-matrix interface were investigated. The results showed that PMR-X composites are more stable in an inert atmosphere (nitrogen atmosphere)than in air, degradation of PMR-X neat resin is accompanied by volatilization and microcrack formation at longitudinal and transverse direction of fiber-matrix interface with in composite panels. However, it was concluded that there is good adhesion between fiber and matrix in epoxy sized composites

  15. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  16. High Temperature Capacitor Development

    Energy Technology Data Exchange (ETDEWEB)

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  17. High-temperature electronics

    Science.gov (United States)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  18. Molten core concrete interaction and development of core catcher. (2) Thermal shock effects for advanced high temperature ceramics

    International Nuclear Information System (INIS)

    Four monolithic refractory ceramics (Al2O3, SiC, TiC and TiN) were exposed to severe thermal shock caused by thermite reaction. Such experiments were intended to simulate the exposure of a core catcher to hot debris of melted core in nuclear reactor. Moreover, the chemical interactions between tested materials and products of thermite reaction were investigated by holding samples in laboratory furnace for 5 hours at 1000degC in air. None of the materials entirely withstand such sudden temperature rise, of approximately 1000degC/s, especially the sample made of Al2O3 peeled into small pieces under thermite mixture. Both TiN and TiC cracked in the central part, perpendicularly to the reaction front and proceeding heat wave. The best performance was observed in SiC sample, which is caused by the lowest thermal expansion coefficient. Considering the application of SiC in the construction of core catcher, research on thermal shock resistance improvements have to be performed. (author)

  19. High temperature structural silicides

    International Nuclear Information System (INIS)

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi2-based materials, which are borderline ceramic-intermetallic compounds. MoSi2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi2-Si3N4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi2-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  20. High Temperature QCD

    CERN Document Server

    Lombardo, M P

    2012-01-01

    I review recent results on QCD at high temperature on a lattice. Steady progress with staggered fermions and Wilson type fermions allow a quantitative description of hot QCD whose accuracy in many cases parallels that of zero temperature studies. Simulations with chiral quarks are coming of age, and togheter with theoretical developments trigger interesting developments in the analysis of the critical region. Issues related with the universality class of the chiral transition and the fate of the axial symmetry are discussed in the light of new numerical and analytical results. Transport coefficients and analysis of bottomonium spectra compare well with results of heavy ion collisions at RHIC and LHC. Model field theories, lattice simulations and high temperature systematic expansions help building a coherent picture of the high temperature phase of QCD. The (strongly coupled) Quark Gluon Plasma is heavily investigated, and asserts its role as an inspiring theoretical laboratory.

  1. High temperature superconductivity

    International Nuclear Information System (INIS)

    More than 20 years have passed since Bednorz and Mueller discovered high-temperature superconductivity (HTS) below 35 K in the La-Ba-Cu-O system. Before that discovery theories based on a phonon-mediated pairing mechanism for electrons predicted maximum transition temperatures (Tc) for superconductors of the order of 30 K. Available low-temperature superconductors (LTS) used for high-current applications like magnets, motors, generators or transformers were NbTi (Tc∝9 K) and A15 compounds like Nb3Sn (Tc∝18K) and Nb3Al (Tc∝19 K), though cooling with expensive liquid helium was necessary. Since the discovery of high-temperature superconductivity in La-Ba-Cu-O many other cuprates with perovskite-type structure and even higher critical temperatures have been found. The highest transition temperatures up to 134 K at ambient pressure were reported for the Hg-Ba-Ca-Cu-O system. Under pressures up to 30 GPa the critical temperature of this material increased to 164 K, the highest confirmed value reported up to now. (orig.)

  2. Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic Rankine cycle for heating and power production

    International Nuclear Information System (INIS)

    Energy systems based on fuel cells technology can have a strategic role in the range of small-size power generation for the sustainable energy development. In order to enhance their performance, it is possible to recover the “waste heat” from the fuel cells, for producing or thermal power (cogeneration systems) or further electric power by means of a bottoming power cycle (combined systems). In this work an advanced system based on the integration between a HT-PEMFC (high temperature polymer electrolyte membrane fuel cell) power unit and an ORC (organic Rankine cycle) plant, has been proposed and analysed as suitable energy power plant for supplying electric and thermal energies to a stand-alone residential utility. The system can operate both as cogeneration system, in which the electric and thermal loads are satisfied by the HT-PEMFC power unit and as electric generation system, in which the low temperature heat recovered from the fuel cells is used as energy source in the ORC plant for increasing the electric power production. A numerical model, able to characterize the behavior and to predict the performance of the HT-PEMFC/ORC system under different working conditions, has been developed by using the AspenPlus™ code. - Highlights: • The advanced plant can operate both as CHP system and as electric generation system. • The performance prediction of the integrated system is carried out by numerical modeling. • ORC thermodynamic optimization is carried out by a sensitivity analysis. • Thermal coupling between the HT-PEMC system and the ORC plant is analyzed. • Results are very promising in the field of the distributed generation

  3. Advances in second generation high temperature superconducting wire manufacturing and R and D at American Superconductor Corporation

    International Nuclear Information System (INIS)

    The RABiTS(TM)/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa2Cu3O7-δ) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cmwidth-1 at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R and D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R and D improvements.

  4. High temperature superconductivity

    International Nuclear Information System (INIS)

    This book covers the proceedings of the 3rd National Meeting on High Temperature Superconductivity Topics includes: Crystal growth of superconductors; thermodynamic stability of superconducting materials; spectroscopy of High Tc Superconductors; synchrotron radiation investigation of superconductors; density state determination; measurements of current density; preparation and characterization of superconductors

  5. High temperature hydraulic seals

    Science.gov (United States)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  6. Formation of High-quality Advanced High-k Oxide Layers at Low Temperature by Excimer UV Lamp-assisted Photo-CVD and Sol-gel Processing

    Institute of Scientific and Technical Information of China (English)

    YU J. J.

    2004-01-01

    We have successfully demonstrated that high quality and high dielectric constant layers can be fabricated by low temperature photo-induced or -assisted processing. Ta2O5 and ZrO2 have been deposited at t<400 ℃by means of a UV photo-CVD technique and HfO2 by photo-assisted sol-gel processing with the aid of excimer lamps. The UV annealing of as-grown layers was found to significantly improve their electrical properties.Low leakage current densities on the order of 10-8 A/cm2 at 1 MV/cm for deposited ultrathin Ta2O5 films and ca. 10-6 A/cm2 for the photo-CVD ZrO2 layers and photo-irradiated sol-gel HfO2 layers have been readily achieved. The improvement in the leakage properties of these layers is attributed to the UV-generated active oxygen species O(1D) which strongly oxidize any suboxides to form more stoichiometric oxides on removing certain defects, oxygen vacancies and impurities present in the as-prepared layers. The photo-CVD Ta2O5films deposited across 10. 16-cm Si wafers exhibit a high thickness uniformity with a variation of less than ±2.0% being obtained for ultrathin ca. 10 nm thick films. The lamp technology can in principle be extended to larger area wafers, providing a promising low temperature route to the fabrication of a range of high quality thin films for future ULSI technology.

  7. High-temperature superconductivity

    International Nuclear Information System (INIS)

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  8. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  9. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    International Nuclear Information System (INIS)

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts' characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and

  10. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    With the discovery of Tc ceramic compounds, superconductivity has evolved into a rich and highly competitive field of research of not just condensed matter physics and chemistry but also of diverse engineering disciplines like ceramics, metallurgy and microelectronics. Clearly, significant advances in research and applications of HTSCs are expected only through consolidated efforts requiring among other, the best possible awareness on the part of researchers in these widely differing disciplines. Studies of High Temperature Superconductors looks at the frontal problems and challenges through detailed reviews and extended articles covering fundamental properties, characterization and applications of the new high Tc superconductors. The series is aimed at the professional scantiest and engineer, as well as at graduate students in physics, chemistry, materials science, solid state electronics and engineering. We are back with the sixth volume of Studies which provides in-depth coverage of frontal topics such as growth of HTSC single crystals, thin films, high Tc prospects in other systems, advanced technique for characterizing HTSCs, theoretical models of high Tc and the recent advancements in the high technology of devices

  11. GHRSST Level 2P Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  12. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  13. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  14. GHRSST Level 2P Global Subskin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  15. GHRSST Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  16. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset based on multi-channel sea surface temperature (SST) retrievals from the...

  17. GHRSST Level 2P Global Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite produced by NAVO (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  18. Advanced Temperature Model for HPHT Conditions

    OpenAIRE

    Løbergsli, Knut Vegard

    2015-01-01

    Temperature changes of wells are analyzed in this Thesis. Wells need to be designed for all planned operations in order to maintain well integrity for the well life. Well barriers need to be numerically assessed for worst-case scenarios to ensure well integrity. However, when moving into harsh environment with high pressure and high temperature, the conventional methods for estimating the temperature in the well may be conservative. There are softwares on the market today that account for...

  19. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...

  20. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  1. High-temperature superconductors

    International Nuclear Information System (INIS)

    A number of proposed applications of superconductivity for the electric utility sector are described, the current status of their development is summarized, and the potential impact of successful development of high-temperature superconductors (HTSCs) is discussed in this paper. Performance goals for development of HTSCs are presented and compared with their current status (as of April 1990). Applications discussed include large-scale generators, motors, transmission lines, magnetic storage, transformers, power electronics, and fault-current limiters

  2. HIGH TEMPERATURE MODERATOR PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Hikido, T.

    1957-06-12

    The purpose of this memorandum is to outline the high temperature hydride moderator program proposed for the.Metallurgy Division. The objectives of this program are (1) to provide physical and mechanical property data required by the reactor designers, (2) to develop methods for fabricating moderator assemblies, and (3) to devise.and conduct tests to evaluate these· assemblies. The requirements in each of these areas and the work proposed to meet them are outlined.

  3. High temperature materials

    International Nuclear Information System (INIS)

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  4. Advanced high frequency partial discharge measuring system

    Science.gov (United States)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  5. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  6. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  7. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-17 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  8. GHRSST Level 2P Atlantic Regional Bulk Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-16 satellite (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Level 2P Group for High Resolution Sea Surface Temperature (GHRSST) dataset for the Atlantic Ocean and nearby regions based on multi-channel sea surface...

  9. Temperature in High Temperature SHPB Experiments

    Institute of Scientific and Technical Information of China (English)

    DENG Zhifang; XIE Ruoze; YAN Yixia; LI Sizhong; HUANG Xicheng

    2008-01-01

    As an experimental technique,it's desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments.However,the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars,which induces the nonuniform temperature distribution in specimen,and may result in inaccuracy of experimental results.In this paper,the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone.Firstly,the temperature history of specimen was measured at different initial temperatures by experiments,then simulation was carried out.Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars.By this way,the thermal contact coefficient and simulation results were validated,and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed.Finally,the results were compared with those in references.

  10. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  11. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  12. Lake surface water temperatures of European Alpine lakes (1989–2013 based on the Advanced Very High Resolution Radiometer (AVHRR 1 km data set

    Directory of Open Access Journals (Sweden)

    M. Riffler

    2014-05-01

    Full Text Available Lake water temperature (LWT is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Thus, the Global Climate Observing System (GCOS lists LWT as an Essential Climate Variable (ECV. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years finally offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT data set for European (pre-alpine water bodies based on the extensive AVHRR 1 km data record (1989–2013 of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14 and AVHRR/3 (NOAA-16, -17, -18, -19 and Metop-A data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. Especially data from NOAA-16 and prior satellites were prone to noise, e.g., due to transmission errors or fluctuations in the instrument's thermal state. This has resulted in partly corrupted thermal calibration data and may cause errors of up to several Kelvin in the final resulting LSWT. Thus, a multi-stage correction scheme has been applied to the data to minimize these artefacts. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV Version 10 together with operational analysis and reanalysis data from the European Centre for Medium Range Weather Forecasts. The resulting LSWTs

  13. MEMS temperature scanner: principles, advances, and applications

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  14. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  15. High temperature gas reactor

    International Nuclear Information System (INIS)

    The present invention provides a reflector block structure of a high temperature gas reactor in which graphite blocks are not failed even a containing cylinder loaded to a fuel exchanger collides against to secured reflectors upon loading and withdrawing fuel constitutional elements. Namely, a protection plate made of a metal material such as stainless steel is covered on the secured reflector blocks disposed to the upper most step among secured graphite reflector blocks constituting the reactor core. In addition, positioning guide grooves are formed on the protection plate for guiding the containing cylinder loaded to the fuel exchanger to the column of the reactor core constitutional elements. With such a constitution, even if the containing cylinder of fuel exchanger is hoisted down and collided against the inner circumferential edge of the secured reflector blocks due to deviation of the position and the direction upon exchange of fuels, the reflector blocks are not failed since the above-mentioned portion is covered with the metal protection plate. In addition, the positioning guide grooves lead the fuel exchanger to a predetermined column correctly. (I.S.)

  16. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  17. High-Temperature Piezoelectric Sensing

    OpenAIRE

    Xiaoning Jiang; Kyungrim Kim; Shujun Zhang; Joseph Johnson; Giovanni Salazar

    2013-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discu...

  18. Basic studies on high-temperature engineering

    International Nuclear Information System (INIS)

    In response to increasing interest in high-temperature, gas-cooled reactors (HTGRs) and the need for improved knowledge of materials for nuclear applications that resist high temperatures, the NEA organised a first information exchange meeting on basic studies in the field of high-temperature engineering.The meeting was held in Paris on 27-29 september 1999 with 50 participants from 12 countries and four international organisations. Thirty two papers were submitted. The proceedings of the meeting cover studies on irradiation effects on advanced materials, safety-related behaviour of HTGRs and in-pile reactor instrumentation development. They also include recommendations for further promotion of international collaboration

  19. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  20. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  1. Optical Measurement Technologies for High Temperature, Radiation Exposure, and Corrosive Environments—Significant Activities and Findings: In-vessel Optical Measurements for Advanced SMRs

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy); Suter, Jonathan D.

    2012-09-01

    Development of advanced Small Modular Reactors (aSMRs) is key to providing the United States with a sustainable, economically viable, and carbon-neutral energy source. The aSMR designs have attractive economic factors that should compensate for the economies of scale that have driven development of large commercial nuclear power plants to date. For example, aSMRs can be manufactured at reduced capital costs in a factory and potentially shorter lead times and then be shipped to a site to provide power away from large grid systems. The integral, self-contained nature of aSMR designs is fundamentally different than conventional reactor designs. Future aSMR deployment will require new instrumentation and control (I&C) architectures to accommodate the integral design and withstand the extreme in-vessel environmental conditions. Operators will depend on sophisticated sensing and machine vision technologies that provide efficient human-machine interface for in-vessel telepresence, telerobotic control, and remote process operations. The future viability of aSMRs is dependent on understanding and overcoming the significant technical challenges involving in-vessel reactor sensing and monitoring under extreme temperatures, pressures, corrosive environments, and radiation fluxes

  2. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  3. High-Temperature Superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2012-01-01

    This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was  significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.

  4. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten;

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  5. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  6. High temperature interface superconductivity

    Science.gov (United States)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  7. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  8. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  9. High temperature superconductors

    International Nuclear Information System (INIS)

    In the years following the discovery of superconductivity in doped lanthanum copper oxide in late 1986 there has been a large, multinational effort in the study of what are now called high Tc superconductors. As a result of this work at least ten discrete phases of superconducting oxides have been identified. The authors felt it would be useful to have a symposium whose focus was to identify and discuss the common structural features of these oxide superconductors. These proceedings hopefully represent a state of the art view of the correlations between crystal chemistry and superconductivity in metal oxide systems

  10. Advances in applied low-temperature plasma technology

    International Nuclear Information System (INIS)

    The generation of low-temperature plasma and its principle are described, and recent advances of applied low-temperature plasma technology in the emerging field of macromolecular plasma chemistry are reviewed. These applications involve plasma polymerization, synthesis, grafting, nanoparticle/powder cover, plasma-enhanced deposition of biocompatible layers, and low temperature plasma sterilization. (authors)

  11. Development of high strength, high temperature ceramics

    Science.gov (United States)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  12. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan;

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  13. SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

    2006-08-31

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  14. High Temperature Bell Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a...

  15. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  16. Applications of high temperature superconductors

    International Nuclear Information System (INIS)

    On some applications of high temperature superconductivity, recent outlines were described. Bi-series wire materials and fusion bulk materials are commercialized, and various developmental projects on appliances for electric powers and industries are promoted in the world. Such movement is thought to be based on a scope and an expectation that the high temperature superconductive technology will play a large part to overcome future problems on energy and environment. In order to use the high temperature superconductors for a wide range of industrial field in future, the present material is still insufficient at various features. From such meaning, it seems to be necessary to effort furthermore to material development. Here was introduced on some recent states of application development on the high temperature superconductors. (G.K.)

  17. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  18. High temperature ultrasonic transducers: review

    OpenAIRE

    Kažys, R.; Voleišis, A.; Voleišienė, B.

    2008-01-01

    The problems of development of high-temperature ultrasonic transducers for modern science and technology applications are analysed. More than 10 piezoelectric materials suitable for operation at high temperatures are overviewed. It is shown that bismuth titanate based piezoelectric elements are most promisable. Bonding methods of piezoelectric elements to a protector and backing are discussed. Thermosonic gold-to-gold bonding is most modern and possesses unique features. Our achievements in t...

  19. High-temperature Titanium Alloys

    OpenAIRE

    A.K. Gogia

    2005-01-01

    The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase eq...

  20. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy of the...

  1. Definition study for temperature control in advanced protein crystal growth

    Science.gov (United States)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  2. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  3. Advances in materials for room temperature hydrogen sensors.

    Science.gov (United States)

    Arya, Sunil K; Krishnan, Subramanian; Silva, Hayde; Jean, Sheila; Bhansali, Shekhar

    2012-06-21

    Hydrogen (H(2)), as a source of energy, continues to be a compelling choice in applications ranging from fuel cells and propulsion systems to feedstock for chemical, metallurgical and other industrial processes. H(2), being a clean, reliable, and affordable source, is finding ever increasing use in distributed electric power generation and H(2) fuelled cars. Although still under 0.1%, the distributed use of H(2) is the fastest growing area. In distributed H(2) storage, distribution, and consumption, safety continues to be a critical aspect. Affordable safety systems for distributed H(2) applications are critical for the H(2) economy to take hold. Advances in H(2) sensors are driven by specificity, reliability, repeatability, stability, cost, size, response time, recovery time, operating temperature, humidity range, and power consumption. Ambient temperature sensors for H(2) detection are increasingly being explored as they offer specificity, stability and robustness of high temperature sensors with lower operational costs and significantly longer operational lifetimes. This review summarizes and highlights recent developments in room temperature H(2) sensors. PMID:22582176

  4. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  5. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  6. Solute strengthening at high temperatures

    Science.gov (United States)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  7. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  8. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan; Gang, Xiao; Gao, Ji-An; Bjerrum, Niels

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  9. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  10. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    Energy Technology Data Exchange (ETDEWEB)

    Abbatiello, L.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Haselkorn, M. [Caterpillar, Inc., Peoria, IL (United States)

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  11. High-temperature metallography setup

    International Nuclear Information System (INIS)

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  12. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan

    2016-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  13. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  14. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  15. High-Temperature Electrostatic Levitator

    Science.gov (United States)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  16. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  17. High-Temperature Solar Cell Development

    Science.gov (United States)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  18. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  19. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  20. The Indian high temperature reactor programme

    International Nuclear Information System (INIS)

    Bhabha Atomic Research Centre (BARC), in India, is currently developing concepts of high temperature nuclear reactors capable of supplying process heat at a temperature around 873-1273K. These nuclear reactors are being developed with the objective of providing energy to facilitate combined production of hydrogen, electricity, and drinking water. Under the programme, currently India is developing a Compact High Temperature Reactor (CHTR) as a technology demonstrator for associated technologies. CHTR is mainly 233U-thorium fuelled, lead-bismuth cooled and beryllium oxide moderated reactor. This reactor, initially being developed to generate about 100 kW(th) power, will have a core life of around 15 years and will have several advanced passive safety features to enable its operation as compact power pack in remote areas not connected to the electrical grid. The reactor is being designed to operate at 1273K, to facilitate demonstration of technologies for high temperature process heat applications such as hydrogen production by splitting water through high efficiency thermo-chemical process. Molten lead based coolant has been selected for the reactor so as to achieve a higher level of safety. For this reactor, developmental work in the areas of fuel, structural materials, coolant technologies, and passive systems are being done in BARC. Experimental facilities are being set up to demonstrate associated technologies. In parallel, design work has been initiated for the development of a 600 MW(th) High Temperature Reactor for commercial hydrogen production by high temperature thermo-chemical water splitting processes. Technologies being developed for CHTR would be utilized for the development of this reactor. Various analytical studies have been carried out in order to compare different options as regards fuel configuration and coolants. Initial studies carried out indicate selection of pebble bed reactor configuration with either lead or molten salt-based cooling by

  1. MOCVD for high temperature supraconductors. Precursors for high temperature supraconductors

    International Nuclear Information System (INIS)

    The target of the research project was to develop a synthesis of barium-, yttrium, calcium- and strontium compounds which are stabilised in terms of their rate of evaporation and are used as precursors for CVD-separation of high temperature supraconductors. Special attention was given to the synthesis of β-di-ketonate barium-bis(2,2,6,6,-tetramethyl-3,5-heptanedionate) [Ba (TMHD)2]. This product is characterised by: 1. constant rate of evaporation, 2. high longterm stability and 3. water content < 0.3%. (MM)

  2. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  3. High Temperature Transfer Molding Resins

    Science.gov (United States)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  4. High temperature corrosion in a biomass-fired power boiler : Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data

    OpenAIRE

    Alipour, Yousef

    2013-01-01

    The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel. A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are...

  5. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  6. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  7. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  8. Dynamic high-temperature-phosphor thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.; Capps, G.J.; Muhs, J.D.; Smith, D.B.; Cates, M.R.

    1990-08-01

    Dynamic surface phosphor thermometry is being investigated as part of a continuing effort by the Applied Technology Division (ATD) at Oak Ridge National Laboratory (ORNL) to develop and apply thermographic phosphor technology to an ever expanding thermometry field. The purpose of this program is to develop dynamic surface phosphor thermometry to a stage where funding proposals can be strengthened by establishing a strong information base and demonstrating a sound capability. As a new technology development in an area well established by ATD/ORNL, dynamic thermometry is extremely important for high-temperature materials, superconducting materials, advanced turbomachinery, space vehicles, industrial process equipment, and other development areas. This laboratory project illustrated the technique of continuously monitoring dynamic temperature excursions using phosphor thermography. Temperature-increase rates on the order of 100 or more degrees centigrade per millisecond were measured, which illustrated a temporal response of >0.001 s. This exceeded by a factor of ten the goal or the project and gave strong encouragement for further development of the technology. Important to the project, too, was the establishment of a clear analytical base for fluorescent-ratio data. Using the results of this study, specific solutions to dynamic-temperature-measurement problems in many application areas can be developed. In addition, the dynamic-thermographic technology can be coupled with strain measurement, two-dimensional analysis, and thermometry at very high temperatures to add interrelating remote measurement tools for systems that currently cannot be effectively studied. 13 refs., 11 figs.

  9. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  10. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  11. High temperature superconductivity from Russia

    CERN Document Server

    Larkin, AI

    1989-01-01

    This volume covers up-to-date ideas associated with the studies of high Tc superconductivity. Diverse theoretical points of view on the nature of this phenomenon are presented in the book. Experimental works discuss the results obtained in the studies of Bi and Tl superconductivity compounds as well as the thorough investigation of the different properties of 123 (YBaCu) compounds. Several articles are devoted to SQUIDs functioning at nitrogen temperatures and their application in research work.

  12. High-Temperature Polyimide Resin

    Science.gov (United States)

    Vanucci, Raymond D.; Malarik, Diane C.

    1990-01-01

    Improved polyimide resin used at continuous temperatures up to 700 degrees F (371 degrees C). PMR-II-50, serves as matrix for fiber-reinforced composites. Material combines thermo-oxidative stability with autoclave processability. Used in such turbine engine components as air-bypass ducts, vanes, bearings, and nozzle flaps. Other potential applications include wing and fuselage skins on high-mach-number aircraft and automotive engine blocks and pistons.

  13. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W

    2004-08-01

    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  14. Very High Temperature Sound Absorption Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  15. Graphite high temperature creep rigs

    International Nuclear Information System (INIS)

    A description is given of two high temperature tensile creep rigs, for irradiating pyrocarbon and graphite specimens. PIRITHOOS is a creep rig operating at 1100 deg C and utilizing three in line pyrocarbon specimens. These have different cross sections giving three stress values. Unstressed specimens are placed close to the tensile ones. Dimensional measurements: length, thickness, width are made in hot cells, after each reactor shut down. FLACH is a graphite creep rig allowing continuous length measurement, to be made in comparison with the length of two reference specimens. These rigs consists of two main parts: the creep capsule including: specimens, loading bellow, microwave measuring apparatus, which is introduced into a standard gas gap furnace regulating the temperature by gas mixture and electrical heating

  16. Trends in Surface Temperature at High Latitudes

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  17. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  18. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  19. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  20. Advanced High Temperature Structural Honeycomb TPS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase I SBIR program, MATECH proposes to leverage successfully developed laboratory and pilot scale manufacturing technologies to produce low cost...

  1. GHRSST Level 2P Regional 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A regional Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  2. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-18 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  3. GHRSST Level 2P Global Skin Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by EUMETSAT (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global 1 km Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated...

  4. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-A satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  5. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-19 satellite produced by NAVO (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  6. GHRSST Level 2P Global 1m Sea Surface Temperature from the Advanced Very High Resolution Radiometer (AVHRR) on the MetOp-B satellite produced by NAVO (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A global Group for High Resolution Sea Surface Temperature (GHRSST) Level 2P dataset based on multi-channel sea surface temperature (SST) retrievals generated in...

  7. High modulus high temperature glass fibers

    Science.gov (United States)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  8. High-temperature oxide superconductors

    International Nuclear Information System (INIS)

    This paper reports that in the high-temperature oxide superconductors of the type Y(Ln)Ba2Cu3O7-δ, structure and oxygen stoichiometry play a crucial role. Thus, this family of high temperature oxide superconductors generally possesses the orthorhombic structure with two- as well as one-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La2-xBa2+xCu6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity is also found in La2-x(Sr, Ba)xCuO4 superconductors of the K2NiF4 structure. Orthorhombicity is necessary for the formation of twins in Y(Ln)Ba2Cu3O7. Copper in these cuprates is only in 1+ and 2+ states, thereby making it necessary for oxygen holes to be present. The oxygen holes are responsible for superconductivity of the cuprates. High Tc superconductivity is also found in oxides of the Bi-(ca, SR)-Cu-O and Tl(Ca,Ba)-Cu-O systems of the general formula A2(M', M double-prime)n+1CunO2n+4 (A = Bi,Tl; M' = Ca; M double-prime = Sr,Ba) with Tc's in the range 80-125K depending on the number of Cu-O Layers

  9. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  10. High-temperature testing of glass/ceramic matrix composites

    Science.gov (United States)

    Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.

    1989-01-01

    Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.

  11. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  12. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  13. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  14. Perspectives on high-temperature superconducting electronics

    International Nuclear Information System (INIS)

    The major challenges in making high temperature superconducting (HTSC) electronics viable are predominantly materials problems. Unlike their predecessors, the metal oxide-based superconductors are integratable with other advanced technologies such as opto-electronics and micro-electronics. The materials problems to be addressed relate to the epitaxial growth of high quality films, highly oriented films on non-lattice matched substrates, heterostructures with atomically sharp interfaces of junctions and other novel devices, and the processing of these films with negligible deterioration of the superconducting properties. These issues are illustrated with results based on films prepared in-situ by a pulsed laser deposition process. Films with zero-transition temperatures of 90 K and critical current densities of 5 x 10(exp 6) A/sq cm at 77 K have been prepared by this technique. Ultra-thin films, less than 100 A show T(sub c) is greater than 80 K, supporting the idea of two-dimensional transport in these materials. By the use of appropriate buffer layers, films with T(sub c) of 87 K and J(sub c) of 6 x 10(exp 4) A/sq cm were fabricated on silicon substrates. Submicron structures with J(sub c) is greater than 2 x 10(exp 7) at 10 K were fabricated. Results on nonlinear switching elements, IR detectors, and microwave studies will be briefly summarized

  15. A Brief Introduction of High Temperature and High Pressure Experimental Geosciences:Methods and Advances%浅谈高温高压实验地球科学:方法和应用

    Institute of Scientific and Technical Information of China (English)

    杨晓志

    2015-01-01

    在过去的二十多年间,高温高压实验地球科学研究得到了蓬勃发展,凭借其高度的灵活性和易于与其他分支学科相结合的优点,在很多不同的研究领域中都取得了令人瞩目的成果,并已发展成为国际地球科学的前沿领域和重要方向之一,同时也是固体地球科学最强有力研究手段之一。相比之下,国内的高温高压实验地球科学研究还显得相对比较薄弱,相关系统性的认识还有待增强。本文对高温高压实验研究的发展历程、方法原理、仪器设备以及在地球科学研究中的一些应用进行简单的介绍,旨在让更多的国内学者对这一领域有更深入的了解。%In the past two decades,high temperature and high pressure experimental geosciences have experienced great developments and have achieved remarkable approaches,as a result of the high flexibility and the easy combination of ex-perimental work with other branch disciplines of Earth Sciences,experimental studies have become one of the research frontiers and leading directions and one of the most powerful tools in Earth Sciences,especially in solid Earth sciences;however,high temperature and high pressure experimental geosciences are still in their beginning stage in China,and many scholars have only limited knowledge about this field.In this review,early history,principles and methods,common instruments of experimental studies and some of their applications to problems of Earth sciences and relevant approaches are introduced.

  16. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  17. Improved controlled atmosphere high temperature scanning probe microscope

    OpenAIRE

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben; Mogensen, Mogens Bjerg; Kuhn, Luise Theil

    2013-01-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a ...

  18. High-Temperature Resistance Strain Gauges

    Science.gov (United States)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  19. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  20. Advanced high strength steels for automotive industry

    International Nuclear Information System (INIS)

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  1. Proceedings, phenomenology and applications of high temperature superconductors

    International Nuclear Information System (INIS)

    Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely related to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions

  2. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  3. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. High temperature suppression of dioxins.

    Science.gov (United States)

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. PMID:26716881

  5. Nano copper based high temperature solder alternative

    Science.gov (United States)

    Sharma, Akshay

    Nano Cu an alternative to high temperature solder is developed by the Advance Technological Center at the Lockheed Martin Corporation. A printable paste of Cu nano particles is developed with an ability to fuse at 200°C in reflow oven. After reflow the deposited material has nano crystalline and nano porous structure which affects its properties. Accelerated test are performed on nano Cu deposition having nano porous and nano crystalline structure for assessment and prediction of reliability. Nano Cu assemblies with different bond layer thickness are sheared to calculate the strength of the material and are correlated with the porous and crystalline structure of nano Cu. Thermal and isothermal fatigue test are performed on nano Cu to see the dependency of life on stress and further surface of failed assemblies were observed to determine the type of failure. Creep test at RT are performed to find the type of creep mechanism and how they are affected when subjected to high temperature. TEM, SEM, X-ray, C-SAM and optical microscopy is done on the nano Cu sample for structure and surface analysis.

  6. High temperature power electronics for space

    Science.gov (United States)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  7. Geothermal: surface geothermal, low temperature geothermal, high temperature geothermal, stimulation-based high temperature geothermal

    International Nuclear Information System (INIS)

    For the different geothermal energy technologies (as a whole, surface, low temperature, high temperature, and stimulated high temperature), this document proposes: brief definitions and descriptions of principle and operation, challenges and stakes regarding energy production, major actors in the World in terms of installed power and in France in terms of committed organisations, measurement units and key figures, typical locations, past and present exploitation, and future perspectives. Thus technologies like heat pumps or Canadian well among others, their strengths and weaknesses, and their use in electricity production are evoked

  8. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  9. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  10. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  11. A distributed stream temperature model using high resolution temperature observations

    OpenAIRE

    M. C. Westhoff; Savenije, H. H. G.; W. M. J. Luxemburg; Stelling, G. S.; Van de Giesen, N.C.; Selker, J. S.; L. Pfister; Uhlenbrook, S.

    2007-01-01

    Highly distributed temperature data are used as input and as calibration data for a temperature model of a first order stream in Luxembourg. A DTS (Distributed Temperature Sensing) fiber optic cable with a length of 1500 m is used to measure stream water temperature with a spatial resolution of 0.5 m and a temporal resolution of 2 min. With the observations four groundwater inflows are found and quantified (both temperature and relative discharge). They are used as input for the distributed t...

  12. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  13. Challenges in the development of high temperature reactors

    International Nuclear Information System (INIS)

    Highlights: • Challenges for advance reactor concepts (such as VHTR and AHTR) are discussed. • Both the VHTR and AHTR design offer promising performance characteristics and potential for process heat industrial applications. • Licensing issues needs to be addressed by increasing the technical maturity level by building and operating prototype. - Abstract: Advanced reactor designs offer potentially significant improvements over currently operating light water reactors including improved fuel utilization, increased efficiency, higher temperature operation (enabling a new suite of non-electric industrial process heat applications), and increased safety. As with most technologies, these potential performance improvements come with a variety of challenges to bringing advanced designs to the marketplace. There are technical challenges in material selection and thermal hydraulic and power conversion design that arise particularly for higher temperature, long life operation (possibly >60 years). The process of licensing a new reactor design is also daunting, requiring significant data collection for model verification and validation to provide confidence in safety margins associated with operating a new reactor design under normal and off-normal conditions. This paper focuses on the key technical challenges associated with two proposed advanced reactor concepts: the helium gas cooled Very High Temperature Reactor (VHTR) and the molten salt cooled Advanced High Temperature Reactor (AHTR)

  14. Research of Instrumentation Technologies for Material Irradiation at High Temperature

    International Nuclear Information System (INIS)

    As the reactors planned in the Gen-IV program will be operated at high temperature and under a high neutron flux, the requirements for irradiation of materials at high temperature are gradually increasing. Up to the present, the irradiation tests of the materials in HANARO have usually been performed at temperatures below 300 .deg. C, the temperature at which the RPV materials of commercial reactors are operated. To overcome the restrictions for the high-temperature use of Al thermal media of the existing standard capsule, a new capsule with double thermal media composed of two kinds of materials such as Al-Ti and Al-graphite was designed and fabricated as a more advanced capsule than a single thermal media capsule

  15. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  16. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  17. High temperature ceramic interface study

    Science.gov (United States)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  18. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  19. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    International Nuclear Information System (INIS)

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  20. High temperature tensile testing of ceramic composites

    Science.gov (United States)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  1. High Temperature reactors status 1977

    International Nuclear Information System (INIS)

    The objective of this report is to summarize the current state-of-the-art of HTR technology as part of follow-up studies of the development of advanced fission reactor systems. These studies have been performed at AB Atomenergi since fiscal year 1975/76 and are financed by governmental funds for energy R and D. In this report emphasis is given to the following main aspects of the HTR development: - a survey of the major HTR - R and D programmes; - the description of HTR technology including remaining development problems and uncertainties; - the analysis of the safety and environmental characteristics of the HTR systems; - the analysis of the incentives for the introduction of various HTR types. The report contains also information kindly provided directly by experts from several organisations developing the HTR-systems

  2. High temperature braided rope seals for static sealing applications

    Science.gov (United States)

    Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.

    1996-01-01

    Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.

  3. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...

  4. A distributed stream temperature model using high resolution temperature observations

    Directory of Open Access Journals (Sweden)

    M. C. Westhoff

    2007-01-01

    Full Text Available Highly distributed temperature data are used as input and as calibration data for a temperature model of a first order stream in Luxembourg. A DTS (Distributed Temperature Sensing fiber optic cable with a length of 1500 m is used to measure stream water temperature with a spatial resolution of 0.5 m and a temporal resolution of 2 min. With the observations four groundwater inflows are found and quantified (both temperature and relative discharge. They are used as input for the distributed temperature model presented here. The model calculates the total energy balance including solar radiation (with shading effects, longwave radiation, latent heat, sensible heat and river bed conduction. The simulated temperature along the whole stream is compared with the measured temperature at all points along the stream. It shows that proper knowledge of the lateral inflow is crucial to simulate the temperature distribution along the stream, and, the other way around stream temperature can be used successfully to identify runoff components. The DTS fiber optic is an excellent tool to provide this knowledge.

  5. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  6. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  7. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  8. Elevated temperature crack growth in advanced powder metallurgy aluminum alloys

    Science.gov (United States)

    Porr, William C., Jr.; Gangloff, Richard P.

    1990-01-01

    Rapidly solidified Al-Fe-V-Si powder metallurgy alloy FVS0812 is among the most promising of the elevated temperature aluminum alloys developed in recent years. The ultra fine grain size and high volume fraction of thermally stable dispersoids enable the alloy to maintain tensile properties at elevated temperatures. In contrast, this alloy displays complex and potentially deleterious damage tolerant and time dependent fracture behavior that varies with temperature. J-Integral fracture mechanics were used to determine fracture toughness (K sub IC) and crack growth resistance (tearing modulus, T) of extruded FVS0812 as a function of temperature. The alloy exhibits high fracture properties at room temperature when tested in the LT orientation, due to extensive delamination of prior ribbon particle boundaries perpendicular to the crack front. Delamination results in a loss of through thickness constraint along the crack front, raising the critical stress intensity necessary for precrack initiation. The fracture toughness and tensile ductility of this alloy decrease with increasing temperature, with minima observed at 200 C. This behavior results from minima in the intrinsic toughness of the material, due to dynamic strain aging, and in the extent of prior particle boundary delaminations. At 200 C FVS0812 fails at K levels that are insufficient to cause through thickness delamination. As temperature increases beyond the minimum, strain aging is reduced and delamination returns. For the TL orientation, K (sub IC) decreased and T increased slightly with increasing temperature from 25 to 316 C. Fracture in the TL orientation is governed by prior particle boundary toughness; increased strain localization at these boundaries may result in lower toughness with increasing temperature. Preliminary results demonstrate a complex effect of loading rate on K (sub IC) and T at 175 C, and indicate that the combined effects of time dependent deformation, environment, and strain aging

  9. Development of high strength high toughness third generation advanced high strength steels

    Science.gov (United States)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  10. Advanced materials and design for low temperature SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo

    2016-05-17

    Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.

  11. Containerless processing at high temperatures using acoustic levitation

    Science.gov (United States)

    Rey, C. A.; Merkley, D. R.; Hampton, S.; Devos, J.; Mapes-Riordan, D.; Zatarski, M.

    1991-01-01

    Advanced techniques are presented which facilitate the development of inert or reducing atmospheres in excess of 2000 K in order to improve processing of containerless capabilities at higher temperatures and to provide more contamination-free environments. Recent testing, in the laboratory and aboard the NASA KC-135 aircraft, of a high-temperature acoustic positioner demonstrated the effectiveness of a specimen motion damping system and of specimen spin control. It is found that stable positioning can be achieved under ambient and heated conditions, including the transient states of heat-up and cool-down. An incorporated high-temperature levitator was found capable of processing specimens of up to 6-mm diameter in a high-purity environment without the contaminating effects of a container at high temperatures and with relative quiescence.

  12. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO3)2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO4)2 and KMo3P5.8Si2O25, and the gel converted ceramic, 0.10Li2O-0.25P2O5-0.65SiO2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  13. Temperature controlled material irradiation in the advanced test reactor

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) is located at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, USA and is owned and regulated by the U.S. Department of Energy (US DOE). The ATR is operated for the US DOE by Lockheed Martin Idaho Technologies. In recent years, prime irradiation space in the ATR has been made available for use by customers having irradiation service needs in addition to the reactor's principal user, the U.S. Naval Nuclear Propulsion Program. To enhance the reactor's capabilities, the US DOE has initiated the development of an Irradiation Test Vehicle (ITV) capable of providing neutron spectral tailoring and temperature control for up to 28 experiments. The ATR-ITV will have the flexibility to simultaneously support a variety of experiments requiring fast, thermal or mixed spectrum neutron environments. Temperature control is accomplished by varying the thermal conductivity across a gas gap established between the experiment specimen capsule wall and the experiment 'in-pile tube (IPT)' inside diameter. Thermal conductivity is adjusted by alternating the control gas mixture ratio of two gases with different thermal conductivities

  14. Nuclear fuels for very high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  15. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  16. Nuclear fuels for very high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  17. Advanced High-Definition Video Cameras

    Science.gov (United States)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  18. HIGH TEMPERATURE CORROSION RESISTANCE OF METALLIC MATERIALS IN HARSH CONDITIONS

    OpenAIRE

    Novello, Frederic; Dedry, Olivier; De Noose, Vincent; Lecomte-Beckers, Jacqueline

    2014-01-01

    Highly efficient energy recovery from renewable sources and from waste incineration causes new problems of corrosion at high temperature. A similar situation exists for new recycling processes and new energy storage units. These corrosions are generally considered to be caused by ashes or molten salts, the composition of which differs considerably from one plant to another. Therefore, for the assessment of corrosion-resistance of advanced materials, it is essential to precisely evaluate the c...

  19. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y3Fe5O12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  20. Spin Hall magnetoresistance at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Ken-ichi, E-mail: kuchida@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Qiu, Zhiyong [Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kikkawa, Takashi; Iguchi, Ryo [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Saitoh, Eiji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan)

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  1. High-Temperature Passive Power Electronics

    Science.gov (United States)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  2. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, D.

    1996-05-09

    Currently one of the most widely used high {Tc} superconductors is the Bi-based compounds Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub z} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub z} (known as BSCCO 2212 and 2223 compounds) with {Tc} values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  3. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  4. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  5. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  6. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  7. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  8. High temperature nonplanar laminates. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.D.

    1977-03-01

    Development of high temperature substrates was initiated to fabricate nonplanar laminates. Forming of readily available polyimide and fluorocarbon films was established, and the evaluation of thermal stability up to 500/sup 0/F (260/sup 0/C) initiated. The development of auxiliary materials suitable for high temperature system applications and specific adhesive evaluation is included.

  9. High temperature solar selective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  10. Design of Protection System for High Temperature and High Pressure Test Loop

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Ming-kui; XU; Qi-guo; JIA; Yu-wen

    2012-01-01

    <正>High temperature and high pressure test loop is a research platform of China Advanced Research Reactor (CARR). Dedicated protection system is designed for safety of test loop and the reactor. Postulated initiating event related to test loop operation is analyzed, thereafter, protection variables are determined. 3 independent redundant measure channels are designed for each protection variable

  11. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  12. Handbook of high-temperature superconductivity theory and experiment

    CERN Document Server

    Brooks, James S

    2007-01-01

    Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.

  13. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben;

    2013-01-01

    To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide...... fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy......) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface...

  14. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  15. Advanced modeling of high intensity accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, R.D.; Habib, S.; Wangler, T.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.

  16. The Flavoured BFSS Model at High Temperature

    CERN Document Server

    Asano, Yuhma; Kováčik, Samuel; O'Connor, Denjoe

    2016-01-01

    We study the high temperature series expansion of the Berkooz-Douglas matrix model which describes the D0/D4--brane system. At high temperature the model is weakly coupled and we develop the series to second order. We check our results against the high temperature regime of the bosonic model (without fermions) and find excellent agreement. We track the temperature dependence of the bosonic model and find backreaction of the fundamental fields lifts the zero temperature adjoint mass degeneracy. In the low temperature phase the system is well described by a gaussian model with three masses $m^t_A=1.964 \\pm 0.003$, $m^l_A=2.001 \\pm 0.003$ and $m_f=1.463 \\pm 0.001$, the adjoint longitudional and transverse masses and the mass of the fundamental fields respectively.

  17. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer

    2014-09-29

    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  18. A batteryless temperature sensor based on high temperature sensitive material

    Science.gov (United States)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  20. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  1. Advanced surveillance of Resistance Temperature Detectors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Highlights: • A two time constant transfer function is proposed to describe the Resistance Temperature Detector dynamics. • One constant is only related to the inner dynamics whereas the other one is related to the process and to the inner dynamics. • The two time constants have been found in several RTDs from a Nuclear Power Plant. • A Monte Carlo simulation is used to properly adjust the sampling time to find both constants. - Abstract: The dynamic response of several RTDs located at the cold leg of a PWR has been studied. A theoretical model for the heat transfer between the RTDs and the surrounding fluid is derived. It proposes a two real poles transfer function. By means of noise analysis techniques in the time domain (autoregressive models) and the Dynamic Data System methodology, the two time constants of the system can be found. A Monte Carlo simulation is performed in order to choose the proper sampling time to obtain both constants. The two poles are found and they permit an advance in situ surveillance of the sensor response time and the sensor dynamics performance. One of the poles is related to the inner dynamics whereas the other one is linked to the process and the inner dynamics. So surveillance on the process and on the inner dynamics can be distinguished

  2. Sandia_HighTemperatureComponentEvaluation_2015.

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  3. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  4. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    Sanjay Upadhyay; Hem Chandra; Meenakashi Joshi; Deepika P Joshi

    2011-01-01

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended the Kumar’s formulation by taking into the account the concept of anharmonicity in minerals above the Debye temperature (D). In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as temperature-independent and then by treating T as temperature-dependent parameter. The results obtained when T is temperature-dependent are in close agreement with experimental data.

  5. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  6. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  7. Recent Developments in High-Temperature Shape Memory Thin Films

    Science.gov (United States)

    Motemani, Y.; Buenconsejo, P. J. S.; Ludwig, A.

    2015-11-01

    High-temperature shape memory alloy (HTSMA) thin films are candidates for development of microactuators with operating temperatures exceeding 100 °C. This article reviews recent advances and developments in the field of HTSMA thin films during the past decade, with focus on the systems Ti-Ni-X (X = Hf, Zr, Pd, Pt and Au), Ti-Ta, and Au-Cu-Al. These actuator films offer a wide range of transformation temperatures, thermal hysteresis, and recoverable strains suitable for high-temperature applications. Promising alloy compositions in the systems Ti-Ni-Hf, Ti-Ni-Pd, Ti-Ni-Au, and Au-Cu-Al are highlighted for further upscaling and development. The remaining challenges as well as prospects for development of HTSMA thin films are also discussed.

  8. Advanced tensile testing methods for bulk superconductors at cryogenic temperatures

    International Nuclear Information System (INIS)

    Tensile tests of bulk high Tc superconductors at room temperature have been generally performed by gluing the bulk specimens to Al-alloy rods. Because of the difference in the coefficient of thermal expansion, thermal stresses were induced at cryogenic temperatures especially near the interface between the specimen and the rods. In this study, tensile testing methods with minimized effect of the thermal stress were tried by using specimens cut from Dy-Ba-Cu-O superconductors. These were: (1) The rod material of Al-alloy was replaced with Ti-alloy, which has the coefficient close to the bulk. (2) The interlayer made of the identical bulk superconductor was inserted between the specimen and the Ti-alloy rod. The nominal tensile strength at the liquid nitrogen temperature (LNT) of the specimen glued to the Ti-alloy rods was significantly higher than that glued to the Al-alloy rods. The application of the interlayers increased the strength significantly. The FEM analysis showed that the thermal tensile stress component in the direction of loading axis within the specimen at LNT is markedly reduced by the method (1) and substantially eliminated in the method (2)

  9. Broadband, High-Temperature Ultrasonic Transducer

    Science.gov (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  10. Integrating advanced facades into high performance buildings

    International Nuclear Information System (INIS)

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  11. Specimen for high-temperature tensile tests

    Science.gov (United States)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  12. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet...

  13. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    radiation raises the necessity to store the produced energy. Hydrogen production by water electrolysis is one of the most promising ways to do so. Alkaline electrolyzers have proven to operate reliable for decades on a large scale (up to 160 MW), but in order to become commercially attractive and compete...... and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to...... 200 bar as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup...

  14. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  15. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  16. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  17. PLA recycling by hydrolysis at high temperature

    Science.gov (United States)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  18. Structural topography-mediated high temperature wetting symmetry breaking

    CERN Document Server

    Li, Jing; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K; Yao, Shuhuai

    2015-01-01

    Directed motion of liquid droplets is of considerable importance in various industrial processes. Despite extensive advances in this field of research, our understanding and the ability to control droplet dynamics at high temperature remain limited, in part due to the emergence of complex wetting states intertwined by the phase change process at the triple-phase interfaces. Here we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet above its boiling point rectified by the presence of asymmetric textures. The breaking of the wetting symmetry at high temperature subsequently leads to the preferential motion towards the region with higher heat transfer coefficient. We demonstrate experimentally and analytically that the droplet vectoring is intricately dependent on the interplay between the structural topography and its imposed thermal state. Our fundamental understanding and the ability to control the droplet dynamics at high temperature represent an ...

  19. Acoustic levitation for high temperature containerless processing in space

    Science.gov (United States)

    Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.

  20. High temperature constitutive models for MA957

    International Nuclear Information System (INIS)

    Full text of publication follows: MA957 has outstanding low-temperature tensile and high-temperature creep strength and potential for managing radiation damage, including high helium levels in fusion environment. The excellent properties of nano-structured ferritic alloys (NFAs), such as MA957, derive from a high density of nm-sized Y-Ti-O precipitate cluster and/or complex oxides (NF), such as Y2Ti2O7 and Y2TiO5, which form during hot consolidation following mechanical alloying. The low temperature strengthening contributions have been evaluated in previous studies. However, the strengthening contributions of NF at high temperatures are not well understood. In this study we develop high temperature constitutive models for MA957, primarily from interrupted compression tests in the temperature (Tt) range from about 600 to 900 deg. C, over a range of strain rates down to less than 10-6/s. In probing the high stress regime for power law creep, our objective is to characterize the NF dislocation pinning dynamics. This information will then be used to build physical creep models, such as those based on threshold stress concepts, which can be extrapolated to lower stress regimes. Comparing this data to actual lower stress creep data we generate, as well as that taken from the literature, will help to discriminate the contributions of the NF to overall creep strength. The models will be used to construct Ashby type creep maps and to guide future experimental studies. (authors)

  1. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  2. Study of hydrogen production at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raoui, M.; Belhamel [Centre de Developpement des Energies Renouvelables, BP 62 route de l observatoire Village celleste, Bouzareah Alger, (Algeria); Miri [Universite des sciences et de la technologie houari boumediene, Alger, (Algeria); Benyoucef [Universite de Tlemcen, Tlemcen, (Algeria)

    2006-07-01

    In this study, we evaluate the hydrogen production per electrolysis at high temperature. The increase in the pressure and the temperature of water are done by a solar power station, the electrolysis of water is done at high temperature 900 C 30 bars. We carry out the design of a generating station of hydrogen treating a flow rate of 1 kg/s of water vapour, then we simulate the production of this installation in various towns of Algeria. The results show the great potential energy of the cities of the Algerian south. (authors)

  3. High Temperature Endurable Fiber Optic Accelerometer

    Directory of Open Access Journals (Sweden)

    Yeon-Gwan Lee

    2014-01-01

    Full Text Available This paper presents a low frequency fiber optic accelerometer for application in high temperature environments of civil engineering structures. The reflection-based extrinsic fiber optic accelerometer developed in this study consists of a transmissive grating panel, reflective mirror, and two optical fiber collimators as the transceiver whose function can be maintained up to 130°C. The dynamic characteristics of the sensor probe were investigated and the correlation between the natural frequency of the sensor probe and temperature variation was described and discussed. Furthermore, high temperature simulation equipment was designed for the verification test setup of the developed accelerometer for high temperature. This study was limited to consideration of 130°C applied temperature to the proposed fiber optic accelerometer due to an operational temperature limitation of commercial optical fiber collimator. The sinusoidal low frequency accelerations measured from the developed fiber optic accelerometer at 130°C demonstrated good agreement with that of an MEMS accelerometer measured at room temperature. The developed fiber optic accelerometer can be used in frequency ranges below 5.1 Hz up to 130°C with a margin of error that is less than 10% and a high sensitivity of 0.18 (m/s2/rad.

  4. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  5. NSRR high-temperature high-pressure capsule

    International Nuclear Information System (INIS)

    This report describes a high temperature, high pressure capsule (HT-HP capsule) developed for NSRR (Nuclear Safety Research Reactor) in JAERI. To perform reactivity accident tests under power reactor operating conditions, the capsule is designed to simulate a high temperature, high pressure atmosphere of BWR or PWR. Out-pile and in-pile performance tests of the capsule made by December 1978 showed its design specifications had been met. (author)

  6. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  7. High Temperature Electro-Mechanical Devices For Nuclear Applications

    International Nuclear Information System (INIS)

    Nuclear power plants require a number of electro-mechanical devices, for example, Control Rod Drive Mechanisms (CRDM's) to control the raising and lowering of control rods and Reactor Coolant Pumps (RCP's) to circulate the primary coolant. There are potential benefits in locating electro-mechanical components in areas of the plant with high ambient temperatures. One such benefit is the reduced need to make penetrations in pressure vessels leading to simplified plant design and improved inherent safety. The feature that limits the ambient temperature at which most electrical machines may operate is the material used for the electrical insulation of the machine windings. Conventional electrical machines generally use polymer-based insulation that limits the ambient temperature they can operate in to below 200 degrees Celsius. This means that when a conventional electrical machine is required to operate in a hot area it must be actively cooled necessitating additional systems. This paper presents data gathered during investigations undertaken by Rolls-Royce into the design of high temperature electrical machines. The research was undertaken at Rolls-Royce's University Technology Centre in Advanced Electrical Machines and Drives at Sheffield University. Rolls- Royce has also been investigating high temperature wire and encapsulants and latterly techniques to provide high temperature insulation to terminations. Rolls-Royce used the experience gained from these tests to produce a high temperature electrical linear actuator at sizes representative of those used in reactor systems. This machine was tested successfully at temperatures equivalent to those found inside the reactor vessel of a pressurised water reactor through a full series of operations that replicated in service duty. The paper will conclude by discussing the impact of the findings and potential electro-mechanical designs that may utilise such high temperature technologies. (authors)

  8. High-entropy alloys as high-temperature thermoelectric materials

    International Nuclear Information System (INIS)

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials

  9. Understanding response of thorium under high temperatures and high pressures using ab-initio calculations

    International Nuclear Information System (INIS)

    The knowledge of high-temperature and high-pressure properties of thorium are important for designing advanced nuclear power systems for utilization of thorium. Employing the first principles method, we have determined the thermal expansivity, thermal vibrations and room pressure melting of thorium, and also determined its response to the high strain rate shock compression and various elastic moduli in the compressed states. (author)

  10. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 18000C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 14000C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 106 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  11. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities Jc in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high Jc at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  12. High-temperature testing of high performance fiber reinforced concrete

    Science.gov (United States)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  13. Advances in physiological mechanisms of spikelet fertility in rice at flowering stage under high temperature stress%水稻花期高温胁迫影响颖花育性生理机理研究进展

    Institute of Scientific and Technical Information of China (English)

    陈仁天; 唐茂艳; 王强; 陈雷; 李炜; 陈畅; Farooq Shah; 梁天锋

    2012-01-01

    The local short and extremely high temperature resulted due to rise in global warming is expected to have a tremendous impact on growth and physiological metabolisms of rice, and periodic episodes of heat stress are predicted to occur more frequently in the near future. Flowering stage is the most sensitive stage to high temperature, and very easily led to develop sterility of spikelet. Significant difference in response to temperature stress exists among rice genotypes. When rice flowers at cooler time of day, it has higher pollen activity, larger anther, longer dehiscence length and pores of anther basal, which are important phenotypic indices for high temperature tolerance. The expression of heat shock protein, enhancing antioxidant activity of anther, keeping stability of structural proteins, enzymes and membranes are important physiological mechanisms for strengthening thermo tolerance of stigma and its pollens. At present, many researchers have studied the fertilization and seed setting characteristics of rice spikelet which was affected by high temperature stress, and the morphological characteristics and physiological mechanism of rice tolerance to high temperature, while the strategies and methods to mitigate heat stress in rice are still very poor, therefore, these should be further explored and studied on the basis of previous researches.%全球气候变暖产生的局部短期极端高温,会对水稻形成高温胁迫,影响水稻的各种生理代谢过程,其出现频率有增加趋势.高温胁迫对水稻的影响主要是在开花期,极易导致严重的颖花不育.水稻耐高温胁迫能力存在基因型间的差异.在当天温度较低的时段开花,花粉活性高,花药长,花药基部开裂长度较长、开裂孔较大,是水稻耐高温胁迫的重要表型指标.热激蛋白的表达,提高花药的抗氧化能力,以及维持结构蛋白、酶和细胞膜的稳定性是增强柱头及柱头上花粉粒耐高温胁迫的重要生理

  14. High temperature gas-cooled reactor technology

    International Nuclear Information System (INIS)

    The high temperature gas-cooled reactor (HTGR) with a direct cycle helium system has drawn attention as the next generation nuclear power plant that is closest to commercialization. Fuji Electric participated in the design, manufacture and construction of JAPCO's Tokai-1 plant, a 'Colder Hall' type reactor, which was the first commercial nuclear power plant in Japan, and JAERI's high temperature engineering test reactor (HTTR), which was the first high temperature gas-cooled reactor in Japan. Fuji Electric, a pioneer of gas-cooled reactors, worked on the design, construction and development of these reactors. This paper provides brief descriptions of the air-cooled spent fuel storage system of the HTTR, material test facilities for the HTTR, and the development of an inherently safe and highly efficient commercial HTGR power plant as examples of Fuji Electric's recent activities in the HTGR field. (author)

  15. Development of high temperature ultrasonic transducers

    International Nuclear Information System (INIS)

    Structural health monitoring (SHM) techniques are needed to maintain the reliability of power plants for long term operation. The high temperature transducers are necessary to realize SHM (monitor wall thickness of the pipings, crack growth in the materials and material evaluation) under the working condition of power plants. We have evaluated lithium niobate (LiNbO3) single crystal which is well known as a high Curie temperature piezoelectric material to develop high temperature ultrasonic transducers. The LiNbO3 was bonded onto a stainless steel substrate. The experimental transducer was heated in an electric furnace while measuring the bottom echoes from the substrate. We confirmed that the experimental high temperature transducer could work up to 1000degC. Thermal and chemical stability of LiNbO3 were confirmed using TG measurement up to 1260degC (melting point). Additionally, we have developed single and array transducers for high temperature ultrasonic measurement based on those experimental data. (author)

  16. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  17. Advanced Functionalities for Highly Reliable Optical Networks

    DEFF Research Database (Denmark)

    An, Yi

    This thesis covers two research topics concerning optical solutions for networks e.g. avionic systems. One is to identify the applications for silicon photonic devices for cost-effective solutions in short-range optical networks. The other one is to realise advanced functionalities in order to...

  18. Joining of ultra-high temperature ceramics

    OpenAIRE

    Silvestroni, Laura; Sciti, Diletta; Esposito, Laura; Glaeser, Andreas

    2012-01-01

    In the last decade, ultra-high temperature ceramics raised renewed interest after the first studies in the 60's. Thanks to their high melting point, superior to any group of materials, and to their set of interesting physical and engineering properties, they find application in aerospace industry, propulsion field, as cladding materials in generation IV nuclear reactors and solar absorbers in novel HT CSP systems. Recent efforts were devoted to the achievement of high strength and toughness m...

  19. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    Alkaline electrolyzers have proven to operate reliable for decades on a large scale, but in order to become commercially attractive and compete against conventional technologies for hydrogen production, the production and investment costs have to be reduced. This may occur by increasing the...... operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... SrTiO3 was used for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen...

  20. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  1. High-temperature behaviour of ceramic materials

    International Nuclear Information System (INIS)

    This volume contains 7 papers presented at the DFG Colloquium in Munich on 16 September 1991. The subjects of the individual papers are: 1) High-Temperature Failure of Gas-Phase Containing Aluminum Oxide; 2) High-Temperature Behavior of Aluminum Oxides of Different Compositions; 3) Effect of Processing Parameters on Mechanical Properties of Platelet-Reinforced Mullite Composites; 4) Tensile Creep Investigations On Silicon Nitride Materials Using a Newly Developed Tensile Creep Facility; 5) Influence of Material and Process Technological Parameters On the High-Temperature Characteristics of Gas-Pressure Sintered Silicon Nitride; 6) The Influence of Age Hardening On the Mechanical Behavior and Microstructure of Y-doped Si3N4; 7) Application of a Crack Growth Model to Silicon Nitride. (orig./MM)

  2. The changes of ADI structure during high temperature annealing

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2010-01-01

    Full Text Available The results of structure investigations of ADI during it was annealing at elevated temperature are presented. Ductile iron austempered at temperature 325oC was then isothermally annealed 360 minutes at temperature 400, 450, 500 and 550oC. The structure investigations showed that annealing at these temperatures caused substantial structure changes and thus essential hardness decrease, which is most useful property of ADI from point of view its practical application. Degradation advance of the structure depends mainly on annealing temperature, less on the time of the heat treatment. It was concluded that high temperature annealing caused precipitation of Fe3C type carbides, which morphology and distribution depend on temperature. In case of 400oC annealing the carbides precipitates inside bainitic ferrite lath in specific crystallographic planes and partly at the grain boundaries. The annealing at the temperature 550oC caused disappearing of characteristic for ADI needle or lath – like morphology, which is replaced with equiaxed grains. In this case Fe3C carbides take the form very fine precipitates with spheroidal geometry.

  3. Gas turbine high temperature reactor, GTHTR-300

    International Nuclear Information System (INIS)

    The high temperature gas reactor (HTGR) has some characters without previously set reactors such as capability of taking out heat with high temperature, high specific safety, and so on. The gas turbine high temperature reactor (GTHTR) activating such characters has some advantages such as high power generation efficiency, feasibility on simplification of safety apparatus, and so on, and that has excellent economical efficiency. Recently, this GTHTR system is positively promoted on its investigation in South Africa, U.S.A., Russia, Holland, China, France, and so on. In JAERI, on a base of the feasibility study on GTHTR carried out fiscal year 1996 to 2000 as an entrusted research by the Science and Technology Agency, a design investigation on an actual use GTHTR (GTHTR-300) with excellent safety economical efficiency and operation feature and about 300 MW in electric output by using Japanese own technology has been progressed. The GTHTR-300 is an excellent system adopted Japanese initiative also for GTHTR as well as activated some reactor related technologies accumulated on HTGR R and D in Japan at a center of HTTR (high temperature engineering test reactor). Here were described on developing target, design concept, and a route to actual use of GTHTR. (G.K.)

  4. IMPULSE---an advanced, high performance nuclear thermal propulsion system

    International Nuclear Information System (INIS)

    IMPULSE is an advanced nuclear propulsion engine for future space missions based on a novel conical fuel. Fuel assemblies are formed by stacking a series of truncated (U, Zr)C cones with non-fueled lips. Hydrogen flows radially inward between the cones to a central plenum connected to a high performance bell nozzle. The reference IMPULSE engine rated at 75,000 lb thrust and 1800 MWt weighs 1360 kg and is 3.65 meters in height and 81 cm in diameter. Specific impulse is estimated to be 1000 for a 15 minute life at full power. If longer life times are required, the operating temperature can be reduced with a concomitant decrease in specific impulse. Advantages of this concept include: well defined coolant paths without outlet flow restrictions; redundant orificing; very low thermal gradients and hence, thermal stresses, across the fuel elements; and reduced thermal stresses because of the truncated conical shape of the fuel elements

  5. Advances toward high spectral resolution quantum X-ray calorimetry

    Science.gov (United States)

    Moseley, S. H.; Kelley, R. L.; Schoelkopf, R. J.; Szymkowiak, A. E.; Mccammon, D.

    1988-01-01

    Thermal detectors for X-ray spectroscopy combining high spectral resolution and quantum efficiency have been developed. These microcalorimeters measure the energy released in the absorption of a single photon by sensing the rise in temperature of a small absorbing structure. The ultimate energy resolution of such a device is limited by the thermodynamic power fluctuations in the thermal link between the calorimeter and isothermal bath and can in principle be made as low as 1 eV. The performance of a real device is degraded due to noise contributions such as excess 1/f noise in the thermistor and incomplete conversion of energy into phonons. The authors report some recent advances in thermometry, X-ray absorption and thermalization, fabrication techniques, and detector optimization in the presence of noise. These improvements have resulted in a device with a spectral resolution of 17 eV FWHM, measured at 6 keV.

  6. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  7. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  8. High temperature regime of corium concrete interactions

    International Nuclear Information System (INIS)

    The high temperature regime of corium concrete interaction is examined from the point of view of its sensitivity to the completeness of reaction of the gaseous concrete decomposition products with the metallic components of the melt. A program based on the DECOMP modeling approach has been utilized for this purpose. For a corium/concrete heat transfer that is consistent with the erosion rates observed in the BETA experiments the primary effect of the extent of reaction completeness is on the duration of the high temperature regime. This implies a potentially important effect on the aerosols stripped out during this portion of the interaction

  9. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  10. High temperature decontamination of stainless steel surfaces

    International Nuclear Information System (INIS)

    Dilute Chemical Decontamination process that is carried out at low temperatures (<90 °C) is effective in obtaining good decontamination factors (DFs) on carbon steel (CS) system surfaces of PHWRs as the formulation is efficient in dissolving magnetite present on CS surfaces. However, this low temperature dilute chemical decontamination process is not effective in achieving appreciable DFs on stainless steel (SS) surfaces of nuclear power reactors as it is not efficient in dissolving Cr and Ni substituted oxides present on these surfaces. Hence, a high temperature process was evaluated for the effective decontamination of SS surfaces. Among the various formulations evaluated, formulation consisting of 5 mM NTA and 10 mM N2H4 at 160 °C was found to be appropriate for high temperature decontamination application. Dissolution of various oxides like, magnetite (Fe3O4), mixed ferrites (NiFe2O4, ZnFe2O4, MgFe2O4 etc), Cr oxide (Cr2O3), bonaccordite (Ni2FeBO5) etc. was carried out in NTA at 160 °C. Significant increase in dissolution rate was observed for these oxides at 160 °C. On increasing the temperature from 80 to 180 °C, the dissolution rate of Fe3O4 increased about 6 fold. The optimised formulation (5 mM NTA with 10 mM N2H4) was employed for removing the oxide formed on SS-304, SS-316, SS-403 and SS-410 under simulated reactor water chemistry conditions. Oxide deposits from all the above surfaces could be completely removed by this high temperature process. This paper gives the summary of the results from the laboratory experiments and a simulated high temperature decontamination process. (author)

  11. Thorium fueled high temperature gas cooled reactors. An assessment

    International Nuclear Information System (INIS)

    The use of thorium as a fertile fuel for the High Temperature Gas Cooled Reactor (HTR) instead of uranium has been reviewed. It has been concluded that the use of thorium might be beneficial to reduce the actinide waste production. To achieve a real advancement, the uranium of the spent fuel has to be recycled and the requested make-up fissile material for the fresh fuel has to be used in the form of highly-enriched uranium. A self-sustaining fuel cycle may be possible in the HTR of large core size, but this could reduce the inherent safety features of the design. (orig.)

  12. GaN Electronics For High Power, High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  13. Fiber Bragg Grating Filter High Temperature Sensors

    Science.gov (United States)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  14. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  15. High Temperature Mechanisms for Venus Exploration

    Science.gov (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  16. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  17. Ionic Diffusion in High Temperature Uranium Dioxide

    International Nuclear Information System (INIS)

    Uranium dioxide nuclear fuels are being subjected to increasingly higher central temperatures and larger thermal gradients which contribute significantly to changes in the physical properties, to the distribution of fission products, to the oxide composition and specifically to the mechanism of material transport. The purpose of this paper is to discuss recent high temperature property measurements of UO2, made both in- and out-of-reactor, that pertain to atomic movement and to suggest further areas for high temperature thermodynamic research. High temperature measurements of electrical conductivity, thermo-electric EMF, solid state fission-fragment migration and studies of phase equilibria in the oxygen-uranium system suggest that ionic diffusion in an electrical potential gradient contributes significantly to the movement of fission products and oxygen. The electrical property measurements of uranium dioxide show evidence of a high Seebeck coefficient, a p-type to n-type conductivity change and an ionic character in high temperatures. These data are being confirmed by in-reactor electrical property measurements. The distribution of solid fission fragments observed in irradiated UO2 fuel elements cannot be explained solely in terms of diffusion in a thermal or concentration gradient. Solid fission fragments were shown to diffuse in an electric potential gradient at high temperatures in the absence of any thermal gradient.. The thermal EMF produced by the thermal gradient in a fuel element during irradiation is thought to contribute to the migration of fission fragments by ionic diffusion. In-reactor tests of this hypothesis are under way. The measurements and interpretation of high temperature property data are complicated by changes in stoichiometry. Phase equilibria and melting point studies in the temperaturè range 1600 -3000°C show a wide range of single phase UO2-x existing above 1600°C. The melting point of UO2-x reaches a maximum at approximately UO1

  18. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  19. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  20. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    Science.gov (United States)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  1. Surface modification technology on zirconium alloy for high temperature application

    International Nuclear Information System (INIS)

    After the Fukushima accident, it was recognized that a hydrogen related explosion is one of the major concerns of reactor safety during high temperature corrosion of zirconium alloys. It was reported that hydrogen is generated by a corrosion reaction of zirconium alloys, such as the fuel S36;, spacer grid, and channel box at a high temperature steam environment. Thus, the decrease of the high-temperature corrosion rate of zirconium alloys is an attractive solution to a nuclear power plant accident. Recently, the development concept of zirconium alloys has focused on a decrease of the corrosion rate under normal operation conditions to increase the operation economy and safety margin. However, it is unclear whether the corrosion resistance of zirconium alloys at normal operation in a 300 .deg. C water environment can be maintained at up to a high temperature steam condition of a 1200 .deg. C steam environment. In general, the corrosion rate of zirconium alloys is considerably increased with an increase in the environment temperature regardless of the alloy compositions. Thus, the improvement of the corrosion rate of zirconium based alloys at high temperature is a difficult problem using the commercial materials. To solve this problem, it is necessary to develop an advanced technology such as the coating of in corrodible materials on a zirconium surface. The coating technology is widely applied at the other industrial materials to reduce the corrosion damage, as the corrosion resistance can be easily obtained by a coating technology without a base material change. However, the optimized coating technology containing the materials and methods must be developed, since the chemical and mechanical failures of the coating layer are a serious concern in coating technology. Thus, this work studied the coating techniques to reduce the corrosion rate of a zirconium based alloy in a high-temperature steam environment

  2. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  3. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    K Bhanu Sankara Rao

    2003-06-01

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of property advantages they possess including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance, and their amenability for significant improvment in creep and fatigue resistance through alloying. Reliability of intermetallics when used as engineering materials has not yet been fully established. Ductility and fracture toughness at room and intermediate temperatures continue to be lower than the desired values for production implementation. In this paper, progress made towards improving strain-controlled fatigue resistance of nickel and titanium aluminides is outlined. The effects of manufacturing processes and micro alloying on low cycle fatigue behaviour of NiAl are addressed. The effects of microstructure, temperature of testing, section thickness, brittle to ductile transition temperature, mean stress and environment on fatigue behaviour of same -TiAl alloys are discussed.

  4. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  5. High-Temperature Adhesive Strain Gage Developed

    Science.gov (United States)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  6. Characteristics of high power LEDs at high and low temperature*

    Institute of Scientific and Technical Information of China (English)

    Guo Weling; Jia Xuejiao; Yin Fei; Cui Bifeng; Gao Wei; Liu Ying; Yan Weiwei

    2011-01-01

    The high power light emitting diodes (LEDs) based on InGaN and AlGaInP individually are tested on line at temperatures from -30 to 100 ℃. The data are fitted to measure the relationship between temperature and the properties of forward voltage, relative light intensity, wavelength, and spectral bandwidth of two different kinds of LEDs. Why these properties changed and how these changes reflected on applicatons are also analyzed and compared with each other. The results show that temperature has a great influence on the performance and application of power LEDs. For applications at low temperature, the forward voltage rising and the peak wavelength blue-shifting must be considered; and at high temperature, the relative light intensity decreasing and the peak wavelength red-shifting must be considered

  7. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  8. Recent developments in high temperature superconductivity. Proceedings

    International Nuclear Information System (INIS)

    The following topics were dealt with: high-temperature superconductivity: synthesis, structural features, doping and pressure effects, electronic transitions, recent magnetic studies, electron-doped superconductors, spin fluctuations and d wave pairing, properties of layers and multilayers, transport properties, vortices in superconductors, coexistence of magnetism and superconductivity. All 22 papers are separately analyzed for the database

  9. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  10. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  11. Solar-driven high temperature radiant cooling

    Institute of Scientific and Technical Information of China (English)

    SONG ZhaoPei; WANG RuZhu; ZHAI XiaoQiang

    2009-01-01

    Solar energy is widely used as one of the most important renewable energy. In addition to the growing applications of solar PV and solar water heater, solar cooling is also considered very valuable and the related researches are developing fast because of the synchronism between solar irradiance and building cooling load. Current studies mainly focus on the high temperature solar collector technique and heat-driven cooling technique, while little concern has been paid to the transport process of cooling power. In this paper, the high temperature radiant cooling is studied as an alternative way for transporting cooling power, and the performance of the combination of radiant ceiling and solar cooling is also studied. From simulation and theoretical analysis results, high temperature radiant cooling terminal shows better cooling power transportation ability against conventional air-conditioning terminal, and its thermal comfort is improved. Experiment results indicate that radiant cooling can enhance the chiller's COP (Coefficient of Performance) by 17% and cooling power regeneration by 50%.According to analysis in this paper, high temperature radiant cooling is proved to be suitable for solar cooling system, and out work can serve as a reference for later system design and promotion.

  12. High temperature pressure coupled ultrasonic waveguide

    International Nuclear Information System (INIS)

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil

  13. Infrared spectra of high temperature superconductors

    International Nuclear Information System (INIS)

    By the advent of high temperature superconductors in 1986, great hope arose in far infrared spectroscopy. Because the energy scale that characterizes superconducting condition extended to the typical far infrared region. However, it has been well known that noteworthy result rarely exists. The physical and technical circumstances as its causes are explained. Recently, the spectra in c-axis direction has become continuously measurable, and the prospect has become better for the electronic structure in normal conduction state and the features of superconduction state. The role of infrared spectroscopy in normal conduction state study is important, and optical conductivity, doping effect and interface (c-axis) spectra are discussed. Whether the superconduction gap of high temperature superconductors is observable with light or not is an important problem, but the gap has not been observable by the experiments, in which high temperature superconductors were changed from the clean limit to the dirty limit. As for superconduction state, c-axis superconduction spectra and Josephson plasma are described. Infrared spectroscopy is the only experimental method that can systematically pursue the change of electronic condition in high temperature superconductors by doping. (K.I.)

  14. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  15. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  16. Helium-cooled high temperature reactors

    International Nuclear Information System (INIS)

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg

  17. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...

  18. High Temperature Electronics for Intelligent Harsh Environment Sensors

    Science.gov (United States)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  19. Design and development of high temperature heat pipes and thermosiphons for passive heat removal from compact high temperature reactor

    International Nuclear Information System (INIS)

    Compact High Temperature Reactor (CHTR) is 100 kWth, lead-bismuth eutectic (LBE) cooled reactor having several advanced passive safety features to enable its operation as compact power pack. It will also facilitate demonstration of technologies for high temperature process heat applications. In CHTR heat is transferred from primary to secondary side by means of high temperature heat pipes. Heat pipes are also employed to remove heat under postulated accident scenarios. Thus, reliable operation of heat pipes is essential for the safe working of the reactor. In this respect, computer codes have been developed for design and simulation of high temperature heat pipes. This includes design codes using empirical correlations as well as simplified FEM models for system level analysis. To verify the operation of these heat pipes under various steady state and transient conditions full CFD analysis is essential. This has been done by using a commercial CFD code by incorporating user defined functions (UDFs) which address the saturated nature of the vapour phase and the vapour wick interface conditions. A three dimensional transient numerical model has been developed to predict the vapor core, wall temperatures, vapor pressure, and vapor velocity in the screen mesh wick of sodium heat pipe. This thesis will give an outline of all the developed models and compared the predicted results against the experimental data. (author)

  20. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  1. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  2. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr3C2-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr3C2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr3C2-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  3. A packaged pyrometer for high temperature gases

    International Nuclear Information System (INIS)

    A packaged, automated instrument for temperature measurement in high temperature gases has been developed. The instrument is based on the well established method of spectroscopic emission-absorption pyrometry or line reversal. The instrument is intended for use with gases seeded with alkali metals in the temperature range 2000-3000K. Provision has been made for simultaneous measurements at multiple wavelengths, which extends its use to the case of flows containing scattering particulates. The basic measurement is made by transilluminating the gas with radiation from a calibrated tungsten lamp of known brightness temperature. The signal from the lamp plus gas emission together with that from the gas alone and that from the reference lamp are brought sequentially to a spectrally selective detector. The gas temperature is then calculated, using the second radiation constant and the measurement wavelength which is chosen on or close to an absorption line, such that the optical depth is less than or equal to 1. An analysis has been made to extend this method to compensate for the presence of scattering particulates, and also to measure the particle temperature

  4. Urania vapor composition at very high temperatures

    International Nuclear Information System (INIS)

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO2, UO3, and UO2+) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  5. Flexible high-temperature dielectric materials from polymer nanocomposites

    Science.gov (United States)

    Li, Qi; Chen, Lei; Gadinski, Matthew R.; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing

    2015-07-01

    Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.

  6. High temperature fatigue experiments on welded stainless steel tubular elements

    International Nuclear Information System (INIS)

    One of the most important problems concerning the design of advanced type reactors regards the high temperature low-cycle fatigue behaviour of structural elements. Design Guides and Codes report reference data, mainly based on strain range versus failure cycles results, which have been determined by various researchers. The data have been obtained through different test techniques applied to different types of specimens. As a consequence such data are not easily correlated; moreover at present an exhaustive series of results about high temperature low-cycle fatigue behaviour of structures is not available. A test rig has been designed to perform high temperature fatigue experiments on AISI 304 stainless steel tubular elements of 500 mm length, 60.3 mm outer diameter and 2 mm thickness, they are composed of two butt welded tubular elements with welded end flanges. During the experiments it is possible to control the axial strain range, the strain rate and the hold time; the specimen temperature is obtained by an inner heating device, controlled by a series of measuring thermocouples; until now the imposed temperature is 6500C. The first results show a marked reduction of the number of cycles at failure, if compared with existing data about small size specimens; the measurement of residual plastic strains shows clearly non-uniform distribution of the plastic zones. (Auth.)

  7. Flexible high-temperature dielectric materials from polymer nanocomposites.

    Science.gov (United States)

    Li, Qi; Chen, Lei; Gadinski, Matthew R; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing

    2015-07-30

    Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices. PMID:26223625

  8. 3-D space time kinetics of compact high temperature reactor with fuel temperature feedback

    International Nuclear Information System (INIS)

    The Compact High Temperature Reactor (CHTR) is being developed as technology demonstrator for Indian High Temperature Reactor programme. Physics design of conceptual core of (Th-233U) fuelled CHTR is in advance stage and various core configurations have been proposed. Reactor core operation at high temperature necessitates sophisticated safety and anticipated transients analyses including postulated LORA, LOCA, and power set-back transients in CHTR. Recently, efficient IQS module in ARCH with adiabatic fuel temperature feedback capability has been developed. For accounting fuel and coolant temperature feedbacks in the simulation of 3D space time transients in CHTR, module for 1D (radial) heat conduction based module for heat transfer from fuel to coolant has been incorporated in 3D space-time analysis code ARCH. The AER benchmarking results of ARCH-IQS code with Doppler feedback and results of anticipated transient without scram (ATWS) of (Th-233U) fuelled CHTR with the present capability in ARCH-IQS code have been presented in this paper. (author)

  9. Three Flavor QCD at High Temperatures

    International Nuclear Information System (INIS)

    We have continued our study of the phase diagram of high temperature QCD with three flavors of improved staggered quarks. We are performing simulations with three degenerate quarks with masses less than or equal to the strange quark mass m s and with denegerate up and down quarks with masses m u,d decreases, rather than a bona fide phase transition. We present new results for the crossover temperature extrapolated to the physical value of m u,d and for quark number susceptibilities

  10. Fiber specklegram sensors sensitivities at high temperatures

    Science.gov (United States)

    Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J. M.

    2015-09-01

    In this work, the sensitivity of Fiber Specklegram Sensors to high temperatures (up to 800ºC) have been studied. Two multimode silica fibers have been introduced into a tubular furnace while a HeNe laser source was launched into a fiber edge, projecting speckle patterns to a commercial webcam. A computer generated different heating and cooling sweeps while the specklegram evolution was recorded. The achieved results exhibit a remarkably linearity in FSS's sensitivity for temperatures under 800ºC, following the thermal expansion of fused silica.

  11. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  12. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  13. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  14. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  15. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  16. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær; Sahlin, Simon Lennart

    fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components in such......Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... systems allow the development of both simple linear and also advanced fuzzy logic and neural network controllers able to adapt system performance to the ever changing conditions which the systems operate in over their entire lifetime....

  17. Low-Cost Manufacturing of High- Temperature Polymer Composites

    Science.gov (United States)

    Sutter, James K.

    1998-01-01

    Major goals of NASA and the Integrated High Performance Turbine Engine Technology (IHPTET) initiative include improvements in the affordability of propulsion systems, significant increases in the thrust/weight ratio, and increases in the temperature capability of components of gas turbine engines. Members of NASA Lewis Research Center's HITEMP project worked cooperatively with Allison Advanced Development Corporation to develop a manufacturing method to produce low-cost components for gas turbine engines. Affordability for these polymer composites is defined by the savings in acquisition and life-cycle costs associated with engine weight reduction. To lower engine component costs, the Lewis/Allison team focused on chopped graphite fiber/polyimide resin composites. The high-temperature polyimide resin chosen, PMR-II-50, was developed at NASA Lewis.

  18. Development of high temperature adsorbent in PWR primary system

    International Nuclear Information System (INIS)

    Radiation exposure reduction in PWR is one of the most important problems to be solved. We have developed a high temperature Co adsorbent (HTA), which could be directly applied under primary reactor coolant conditions. This adsorbent was Fe-Ti-O system ceramics, and was fabricated to a suitable form for using in a packed column. Through those experiments of adsorption tests, compatibility tests, leaching tests and hot loop tests, it was found that HTA had superior adsorption capability to not only Co and Ni-ion but also many other transition metal ions. And it was also found that HTA was compatible with high temperature water, as well as advantageous for its waste solidification. Based on the experimental results, dose reduction effect was evaluated by a computer code. From this evaluation, it was found that more than 50 % dose reduction could be expected, when an advanced reactor coolant clean-up (RCC) system with HTA would be realized. (author)

  19. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  20. Toroidal microinstability studies of high temperature tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.

  1. Radiation and high temperature effects in MOSFET

    International Nuclear Information System (INIS)

    A number of studies have been conducted in the past to model the behavior of MOSFET under both high temperature and irradiation conditions. The investigations were carried out to explore the possibility of salvaging irradiation-damaged n-channel and p-channel MOSFETs by proper annealing after irradiation. The MOSFETs were obtained from the Sandia National Laboratories. The first phase of the experiments consisted of obtaining device characteristics at elevated temperature (up to 200 C). In the second phase of experiments the devices were irradiated to a maximum dose of 10 Mrad (Si) using a Co-60 source. The devices were subsequently annealed at a temperature of 125 C for 48 hours to study annealing of the damage caused by irradiation. The results are reported

  2. Improved high-temperature resistant matrix resins

    Science.gov (United States)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  3. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  4. High-Density Superconducting Cables for Advanced ACTPol

    Science.gov (United States)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  5. A method for temperature estimation in high-temperature geothermal reservoirs by using synthetic fluid inclusions

    Science.gov (United States)

    Ruggieri, Giovanni; Orlando, Andrea; Chiarantini, Laura; Borrini, Daniele; Weisenberger, Tobias B.

    2016-04-01

    Super-hot geothermal systems in magmatic areas are a possible target for the future geothermal exploration either for the direct exploitation of fluids or as a potential reservoirs of Enhanced Geothermal Systems. Reservoir temperature measurements are crucial for the assessment of the geothermal resources, however temperature determination in the high-temperature (>380°C) zone of super-hot geothermal systems is difficult or impossible by using either mechanical temperature and pressure gauges (Kuster device) and electronic devices. In the framework of Integrated Methods for Advanced Geothermal Exploration (IMAGE) project, we developed a method to measure high reservoir temperature by the production of synthetic fluid inclusions within an apparatus that will be placed in the high-temperature zone of geothermal wells. First experiments were carried out by placing a gold capsule containing pre-fractured quartz and an aqueous solution (10 wt.% NaCl + 0.4 wt.% NaOH) in an externally heated pressure vessel. Experimental pressure-temperature conditions (i.e. 80-300 bars and 280-400°C) were set close to the liquid/vapour curve of pure H2O or along the H2O critical isochore. The experiments showed that synthetic fluid inclusions form within a relatively short time (even in 48 hours) and that temperatures calculated from homogenization temperatures and isochores of newly formed inclusions are close to experimental temperatures. A second set of laboratory experiments were carried out by using a stainless steel micro-rector in which a gold capsule (containing the pre-fractured quartz and the aqueous solution) was inserted together with an amount of distilled water corresponding to the critical density of water. These experiments were conducted by leaving the new micro-reactor within a furnace at 400°C and were aimed to reproduce the temperature existing in super-hot geothermal wells. Synthetic fluid inclusions formed during the experiments had trapping temperature

  6. Plasma synthesis of high temperature ceramic films

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Monteiro, O.R.

    1998-11-01

    Thin films of alumina, chromia, mullite, yttria and zirconia have been synthesized using a plasma-based method called metal plasma immersion ion implantation and deposition (Mepiiid)--a highly versatile plasma deposition technique with ion energy control. Monolithic films (a single ceramic component) and multilayer films (individual layers of different ceramic materials) were formed. The films were characterized for their composition and structure in a number of different ways, and the high temperature performance of the films was explored, particularly for their ability to maintain their integrity and adhesion when subjected to repetitive high temperature thermal cycling up 1100 C. We found that the films retain their adhesion and quality without any apparent degradation with time, even after a large number of cycles; (the tests were extended out to a total of 40 cycles each of 24 hours duration). After repetitive high temperature thermal cycling, the film-substrate adhesion was greater than {approx}70 Mpa, the instrumental limit of measurement, and the interface toughness was approximately 0.8 MPa m{sup 1/2}.

  7. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  8. Thermal hydraulic studies of high temperature reactors

    International Nuclear Information System (INIS)

    The development of High Temperature Nuclear Reactors capable of supplying process heat at a temperature around 1273 K, is in Progress at BARC. These nuclear reactors are being developed with the objective of providing energy to facilitate combined production of hydrogen, electricity, and drinking water. The reject and waste heat in the overall energy scheme are utilised for electricity generation and desalination, respectively. Presently, technology development for a small power (100 kWth) Compact High Temperature Reactor (CHTR) capable of supplying high temperature process heat at 1273 K is being carried out. In addition conceptual details of a 10 MWth reactor supplying heat at 1273 K for commercial hydrogen production, are also being worked out. 3D CFD analysis of the CHTR reactor core has been carried out to estimate the core heat removal capability by natural circulation during normal operating conditions. PHOENICS, a generalized CFD code is used for the analysis. The full-scale core, including fuel tube, coolant channel, plenums, down comer, heat sink, moderator and reflector has been modeled and analysed in PHOENICS. Steady state analysis is carried out to find flow distribution in the coolant circuit and temperature distribution in the whole core. Analyses have also been carried out to simulate various operational transients and accidental conditions of the reactor. This paper deals with the detailed CFD analysis. The details on the selection of the appropriate turbulence model, turbulent Prandtl number and mesh distribution for the CFD analysis are described in the paper. The results of the steady state and transient analyses are also presented in the paper. Paper shows one of the results of 3D CFD analysis for CHTR core. This paper also deals with the core thermal hydraulic analysis of the conceptual design of the 10MWth High Temperature Pebble Bed Reactor. Preliminary thermal hydraulic analysis is carried out with FLiBe as the primary coolants. The

  9. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  10. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  11. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  12. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  13. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  14. Nontrivial center dominance in high temperature QCD

    Science.gov (United States)

    Ishikawa, K.-I.; Iwasaki, Y.; Nakayama, Yu; Yoshie, T.

    2016-07-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature Tc, using the renormalization group (RG) improved gauge action and the Wilson quark action with two degenerate quarks mainly on a 323 × 16 lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively Z(3) center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a nontrivial Z(3) center. This is in agreement with our lattice simulation of high temperature quantum chromodynamics (QCD). We further observe that the temporal propagator of massless quarks at extremely high temperature β = 100.0(T ≃ 1058T c) remarkably agrees with the temporal propagator of free quarks with the Z(3) twisted boundary condition for t/Lt ≥ 0.2, but differs from that with the Z(3) trivial boundary condition. As we increase the mass of quarks mq, we find that the thermal ensemble continues to be dominated by the Z(3) twisted gauge field configurations as long as mq ≤ 3.0T and above that the Z(3) trivial configurations come in. The transition is similar to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks.

  15. Noise temperature in graphene at high frequencies

    Science.gov (United States)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  16. High temperature vapor pressure of pure plutonium

    International Nuclear Information System (INIS)

    High temperature vapor pressure measurements have been made on pure plutonium metal by the Knudsen effusion technique. The reported experimental results extend into the transition region between molecular and viscous or hydrodynamic flow. Under the conditions used, linearity was observed up to temperatures in excess of 2200 K where pressures approaching 100 Pa were measured. The results over the temperature range 1724--2219 K yield log10P/sub Pu/(Pa) = (9.735 +- 0.105) -17066 +- 208/T and the enthalpy and entropy of vaporization and the standard deviations therein are ΔH0/sub v/(Pu,1975 K) =326.78 +- 3.97 kJ mol-1, ΔS0/sub v/(Pu,1975 K) =90.54 +- 2.01 J K-1 mol-1. Based on the most recently available free energy functions for plutonium liquid and gas, the values of the standard enthalpy of vaporization calculated via second- and third-law methods are ΔH0/sub v/(II, Pu,298 K) =344.14 +- 3.97 kJ mol-1, ΔH0/sub v/(III, Pu,298 K) =341.67 +- 1.26 kJ mol-1. Single crystal tungsten containers were used to hold the charge of plutonium and proved to be very satisfactory in alleviating problems of liquid metal creep and liquid/cell interactions normally encountered with actinides held at high temperatures for long periods

  17. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  18. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    Energy Technology Data Exchange (ETDEWEB)

    J.E. O' Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  19. Insulation system for high temperature superconductor cables

    Science.gov (United States)

    Michael, P. C.; Haight, A. E.; Bromberg, L.; Kano, K.

    2015-12-01

    Large-scale superconductor applications, like fusion magnets, require high-current capacity conductors to limit system inductance and peak operating voltage. Several cabling methods using high temperature superconductor (HTS) tapes are presently under development so that the unique high-field, high-current-density, high operating temperature characteristics of 2nd generation REBCO coated conductors can be utilized in next generation fusion devices. Large-scale magnets are generally epoxy impregnated to support and distribute electromagnetic stresses through the magnet volume. However, the present generation of REBCO coated conductors are prone to delamination when tensile stresses are applied to the broad surface of REBCO tapes; this can occur during epoxy cure, cooldown, or magnet energization. We present the development of an insulation system which effectively insulates HTS cabled conductors at high withstand voltage while simultaneously preventing the intrusion of the epoxy impregnant into the cable, eliminating degradation due to conductor delamination. We also describe a small-scale coil test program to demonstrate the cable insulation scheme and present preliminary test results.

  20. High temperature furnace modeling and performance verifications

    Science.gov (United States)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  1. Transport properties of high critical temperature superconductors

    International Nuclear Information System (INIS)

    In this paper an overview of transport properties of the new high temperature oxide superconducting materials is presented. In particular the transport critical current in single crystals and sintered material is examined. The intrinsic properties of the new superconductors can be explained in terms of a low pinning energy and of the usual mechanisms of thermally activated flux motion. In sintered samples the superconducting behavior is dominated by the poor intergrain coupling that lead to the formation of Josephson weak links between grains

  2. High temperature superconducting thin film microwave filters

    International Nuclear Information System (INIS)

    Low loss thin films of high temperature superconductors (HTSC) on MgO as well as LaAlO3 substrates has been successfully developed. This effort aims at the development of application oriented innovations, such as HTSC based passive microwave devices. As an initial attempt in developing microwave devices, we have designed, fabricated and tested HTSC microstrip resonators at X-band using YBCO thin films on LaAlO3 substrates

  3. Sapphire fiber based high temperature extensometer

    OpenAIRE

    Fang, Xiaojun

    1994-01-01

    New sapphire fiber based sensor structures for high temperature strain measurement are proposed and studied in this report. The self-mixing interferometry has been studied and tested. The advantage of this technique is the source coherence insensitivity and direction distinguishment capability. Fringes of the self-mixing interferometer built with standard multimode fiber and sapphire fiber were observed. The application of this technique to static strain rneasurement seems diff...

  4. The Casimir force at high temperature

    OpenAIRE

    Buenzli, P. R.; Martin, Ph. A.

    2005-01-01

    The standard expression of the high-temperature Casimir force between perfect conductors is obtained by imposing macroscopic boundary conditions on the electromagnetic field at metallic interfaces. This force is twice larger than that computed in microscopic classical models allowing for charge fluctuations inside the conductors. We present a direct computation of the force between two quantum plasma slabs in the framework of non relativistic quantum electrodynamics including quantum and ther...

  5. High Temperature Endurable Fiber Optic Accelerometer

    OpenAIRE

    Yeon-Gwan Lee; Jin-Hyuk Kim; Chun-Gon Kim

    2014-01-01

    This paper presents a low frequency fiber optic accelerometer for application in high temperature environments of civil engineering structures. The reflection-based extrinsic fiber optic accelerometer developed in this study consists of a transmissive grating panel, reflective mirror, and two optical fiber collimators as the transceiver whose function can be maintained up to 130°C. The dynamic characteristics of the sensor probe were investigated and the correlation between the natural freque...

  6. High temperature neutron irradiation of carbon materials

    International Nuclear Information System (INIS)

    The radiation change in dimensions and certain properties of carbon structural materials, irradiated at 2100-2300 K by fluence up to 3x1020 neutr/cm2 (E >= 0.18 MeV) is considered. It is established that crystal structure of composite materials and carbon fibers improves as the result of high-temperature irradiation. The crystal lattice parameter decreases, whereas the dimensions of crystals and texture index grow

  7. Scratch type repassivation technique at high temperature

    International Nuclear Information System (INIS)

    KAERI(Korea Atomic Energy Research Institute) developed a repassivation rate test system which can be operated at 300 .deg. C. It consists of an autoclave, three electrodes for an electrochemical test and a scratch tip. Good repassivation curves of alloy 600 at 300 .deg. C were obtained. The system would be a good tool to evaluate a SCC susceptibility of alloy 600 at high temperature

  8. Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized

    Science.gov (United States)

    1996-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality

  9. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  10. New fluid for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M.; Flohr, F. [Solvay Fluor GmbH, Hannover (Germany); Froeba, A.P. [Lehrstuhl fuer Technische Thermodynamik (LTT), Univ. Erlangen (Germany)

    2006-12-15

    As a result of the worldwide increased consumption of energy, energy saving measures come more and more in the focus of commercial acting. Besides the efficiency enhancement of energy consuming systems the utilization of waste heat is an additional possibility of saving energy. Areas where this might be feasible are geothermal power plants, local combined heat and power plants, solar-thermal-systems and high temperature heat pumps (HTHP). All these applications need a transfer fluid which secures the transport of the energy from it's source to the place where it is needed at high temperatures. The paper will start with a description or overview of promising energy sources and their utilization. The thermophysical properties of an azeotropic binary mixture of HFC-365mfc and a per-fluoro-poly-ether (PFPE) which fulfils the requirements on a high temperature working fluid are introduced in the second part of the paper. First results and practical experiences in an ORC process are shown in this context followed by an estimation regarding the saved energy or the improved efficiency respectively for other applications The paper will end with a brief outlook on possible new applications e.g. autarkic systems or immersion cooling of electrical parts. (orig.)

  11. High Temperature VARTM of Phenylethynyl Terminated Imides

    Science.gov (United States)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    Depending on the part type and quantity, fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) can be more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at temperature up to 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. This finding was unexpected as high quality composite laminates have been fabricated under higher pressures using these resin systems. The amount of weight loss experienced during the thermal cycle was only about 1% by weight, but this leads to a significant amount of volatiles in a closed system. By modifying the thermal cycle used in laminate fabrication, the void content was significantly reduced (typically 3% or less). The results of this work are presented herein.

  12. Advanced LED package with temperature sensors and microfluidic cooling

    NARCIS (Netherlands)

    Ye, H.; Zeijl, H. van; Sokolovskij, R.; Gielen, A.W.J.; Zhang, G.Q.

    2013-01-01

    Light-emitting diodes (LEDs) are revolutionizing the illumination with energy savings and enhanced functionality. However, around 80% of the input power will be still transferred to heat. As the elevated temperature negatively affects the maximum light output, efficiency, quality, reliability and th

  13. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  14. Advanced High Efficiency Durable DACS Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systima is developing a high performance 25 lbf DACS thruster that operates with a novel non-toxic monopropellant. The monopropellant has a 30% higher...

  15. High-temperature fatigue in metals

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    The presentation focuses primarily on the progress we at NASA Lewis Research Center have made. The understanding of the phenomenological processes of high temperature fatigue of metals for the purpose of calculating lives of turbine engine hot section components is discussed. Improved understanding resulted in the development of accurate and physically correct life prediction methods such as Strain-Range Partitioning for calculating creep fatigue interactions and the Double Linear Damage Rule for predicting potentially severe interactions between high and low cycle fatigue. Examples of other life prediction methods are also discussed.

  16. Precipitation Hardenable High Temperature Shape Memory Alloy

    Science.gov (United States)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  17. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  18. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  19. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  20. Experimental investigation of high temperature and high pressure coal gasification

    International Nuclear Information System (INIS)

    Highlights: ► Gasification kinetics at temperature up to 1600 °C and pressure up to 0.5 MPa. ► Experimental investigation of pyrolysis under realistic conditions. ► Experiments in lab-scale using three different setups. ► Comparison of lab-scale data to experimental results from a pilot-scale gasifier. -- Abstract: Pyrolysis and gasification behavior is analyzed at operation conditions relevant to industrial scale entrained flow gasifiers. A wire mesh reactor and the Pressurized High Temperature Entrained Flow Reactor (PiTER) are used to measure volatile yield of Rhenish lignite, a bituminous coal and German anthracite at high temperature and high pressure. In the wire mesh reactor at 1000 °C a significant influence of pressure on volatile yield is observed. For lignite the volatile yield (daf) decreases from 57 wt% at atmospheric pressure to 53 wt% at 5.0 MPa. In the same pressure interval the volatile yield of the bituminous coal strongly decreases, whereas no significant influence of pressure on the volatile yield of anthracite is detected. In entrained flow experiments (PiTER) at higher temperature and 0.5 MPa an enhanced devolatilization of the lignite is observed. At 1200 °C, the maximum volatile yield is 62 wt% and it increases to 67 wt% at 1400 °C. In entrained flow gasification experiments with Rhenish lignite a high level of conversion is measured at atmospheric pressure and at 0.5 MPa. At both pressures, coal conversion increases with temperature and residence time. The highest conversion of 96 wt% is achieved at a particle residence time of 1.3 s, at a temperature of 1600 °C, and a pressure of 0.5 MPa. The experimental results show a large influence of operation parameters on pyrolysis and gasification behavior of Rhenish lignite. The volatile release in the pyrolysis stage and the high level of conversion after a short residence time indicate that Rhenish lignite is suitable for gasification in an entrained flow reactor. The reactivities

  1. On-orbit absolute temperature calibration using multiple phase change materials: overview of recent technology advancements

    Science.gov (United States)

    Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Perepezko, John H.

    2010-11-01

    NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors onorbit, that uses the transient melt signatures from multiple phase change materials, has been demonstrated in the laboratory at the University of Wisconsin and is now undergoing technology advancement under NASA Instrument Incubator Program funding. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.

  2. Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought

    Directory of Open Access Journals (Sweden)

    Ali Behrangi

    2015-11-01

    Full Text Available The fraction of land area over the Continental United States experiencing extreme hot and dry conditions has been increasing over the past several decades, consistent with expectation from anthropogenic climate change. A clear concurrent change in precipitation, however, has not been confirmed. Vapor pressure deficit (VPD, combining temperature and humidity, is utilized here as an indicator of the background atmospheric conditions associated with meteorological drought. Furthermore, atmospheric conditions associated with warm season drought events are assessed by partitioning associated VPD anomalies into the temperature and humidity components. This approach suggests that the concurrence of anomalously high temperature and low humidity was an important driver of the rapid development and evolution of the exceptionally severe 2011 Texas and the 2012 Great Plains droughts. By classification of a decade of extreme drought events and tracking them back in time, it was found that near surface atmospheric temperature and humidity add essential information to the commonly used precipitation-based drought indicators and can advance efforts to determine the timing of drought onset and its severity.

  3. Physical properties of high temperature superconductors

    International Nuclear Information System (INIS)

    In this thesis, the magnetic characterization of some Bi1.6Pb0.4Sr2Ca2Cu3O10, Bi1.84Pb0.34Sr1.91Ca2.03Cu2.06O10, Tl2Ba2Ca2Cu3O10 and Bi-2212/Ag high temperature superconductors were given by ac magnetic susceptibility and electrical resistivity measuring techniques. Bi1.6Pb0.4Sr2Ca2Cu3O10 and Bi1.84Pb0.34Sr1.91Ca2.03Cu2.06O10 high temperature superconductors were prepared by liquid ammonium nitrate method, while conventional solid state reaction route was applied to make Tl2Ba2Ca2Cu3O10 superconductor. On the other hand, Powder-In Tube (PIT) technique was used to make multi-filamentary Bi-2212/Ag tapes. Structural characterizations were carried out by X-ray powder diffraction (XRD) patterns and scanning electron microscopy (SEM). Unit cell parameters of Bi1.6Pb0.4Sr2Ca2Cu3O10 and Tl2Ba2Ca2Cu3O10 high temperature superconductors which have tetragonal crystal structure were calculated as a=b=5.3538 AA and c=37.1137 AA, a=b=3.8520 AA and c=35.5970 AA respectively. The results are consistent with the literature. Some information with regards to the grain size and phase content were given by the SEM studies. Fundamental and high order ac susceptibilities, χ=χn'''+iχn''(n=1, 2, 3, 5 and 7) of the samples were measured for the temperature range 15 K-140 K, ac field range 8 A/rn-1600 A/m and the frequency range 11 Hz-2110 Hz. All the susceptibilities exhibit field, frequency and temperature dependences. The observed dependences were analyzed using Bean model. For temperature scaling a function of the form Hp=Hα(l-t)''β was found empirically. The best fitting parameters for the Bi1.6Pb0.4Sr2Ca2Cu3O10 superconductor were found as Hα 3.3x104 A/m and β=2.05. Odd-order harmonic susceptibilities were calculated from the Bean model to make comparison with the experiments. In addition, ac losses were also calculated from the Bean model to compare with the experimentally measured values. At low temperatures and fields, the Bean model is observed to account for the ac losses

  4. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  5. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  6. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  7. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  8. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  9. Multichannel pyrometry applications in high temperature thermophysics

    International Nuclear Information System (INIS)

    Full Text: Temperature measurements play a key role in the measurements of thermophysical properties performed with the aid of laser heating. This technique is very often applied when the measurements are made in the vicinity of the melting point where effective spectral emissivity of the surface cannot be evaluated with the required reliability. Optical measurements are also sometimes perturbed by evaporation at very high temperatures followed by aerosol agglomeration. Moreover, rapid temperature excursions - one of the main features of the laser heating experiments - call for sufficiently fast temperature measurements. Multichannel pyrometry can be considered as an almost unique solution since it essentially increases the information about thermal radiation in respect to the conventional single or double channel pyrometry. However, this extension makes sense only if the photometric properties of each channel (dynamic range, linearity, long term stability) are similar to those of precision monochromatic pyrometers. Yet, very recently the basic opto-electronical components for this application - high-speed Si-array detectors working in conjunction with high-speed 16 bit analog-to-digital converters - became available. First results of the characterization and application of a multichannel pyrometer based on a 200-channel Si-array spectrometer with the full spectrum acquisition time of ≥0.8 ms are presented. The pyrometer consists of a complex objective, which focuses the light from the defined area of 0.3 mm in dia. at a distance of 500 mm from objective onto optical fiber. Then the light is transmitted to the spectrometer mounted on a PC computer board. An absolute calibration of the pyrometer has been performed at the wavelength 650 nm against a standard tungsten ribbon lamp. The extension of the calibration to all the spectrometer channels, covering the range of 500 - 900 nm, has been made against graphite Black-Body (BB) radiator in the temperature range of

  10. Comparison of advanced cooling technologies efficiency depending on outside temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blaise Hamanaka; Haihua Zhao; Phil Sharpe

    2009-09-01

    In some areas, water availability is a serious problem during the summer and could disrupt the normal operation of thermal power plants which needs large amount of water to operate. Moreover, when water quantities are sufficient, there can still be problem created by the waste heat rejected into the water which is regulated in order to limit the impact of thermal pollution on the environment. All these factors can lead to a decrease of electricity production during the summer and during peak hours, when electricity is the most needed. In order to deal with these problems, advanced cooling technologies have been developed and implemented to reduce water consumption and withdrawals but with an effect in the plant efficiency. This report aims at analyzing the efficiency of several cooling technologies with a fixed power plant design and so to produce a reference to be able to compare them.

  11. Advanced surveillance of resistance temperature detectors in nuclear power plants

    International Nuclear Information System (INIS)

    The dynamic response of several RTDs located at the cold leg of a PWR has been studied. A theoretical model for the heat transfer between the RTDs and the surrounding fluid is derived. It proposes a two real poles transfer function. By means of noise analysis techniques in the time domain (autoregressive models) and the Dynamic Data System methodology, the two time constants of the system can be found. A Monte Carlo simulation is performed in order to choose the proper sampling time to obtain both constants. The two poles are found and they permit an advance in situ surveillance of the sensor response time and the sensor dynamics performance. One of the poles is related to the inner dynamics whereas the other one is linked to the process and the inner dynamics. So surveillance on the process and on the inner dynamics can be distinguished. (author)

  12. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  13. Conformal Properties in High Temperature QCD

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, T

    2015-01-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature $T_c,$ using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a $32^3\\times 16$ lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively $Z(3)$ center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial $Z(3)$ center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature $\\beta=100.0 \\, (T \\simeq10^{58} T_c)$ remarkably agrees with the temporal propagator of free quarks with the $Z(3)$ twisted boundary condition for $t/L_t \\geq 0.2$, but differs from that with the $Z(3)$ trivial boundary condition. As we increase the mass of quarks $m_q$, we find that the thermal ensemble continues to be dominated by the $Z(3)$ twisted gauge fi...

  14. Reliability Analysis of High Temperature Reactor Fuels

    International Nuclear Information System (INIS)

    This paper presents the results of reliability analysis of the TRISO -coated fuel particles for the High Temperature Test Reactor (HTTR), Japan. The reliability of fuel particle was evaluated based on the failure probability of each coating layer, and only the failure due to internal gas pressure and shrinkage of pyrolytic carbon (PyC) layer was considered The analysis results show that, no significant failure occurs up to about 45 MWd/kgU for the first core fuel particle and up to about 75 MWd/kgU for the reload core fuel particle. The fuel particle is predicted to fail completely at about 50 MWd/kgU for the first core fuel particle and at about 85 MWd/kgU for the reload core fuel particle. This results show that the TRISO -coated fuel particle for the HTTR to have high reliability. No failure occurs up to the maximum burnup design level, i.e. 33 MWd/kgU for the first core fuel particle and 60 MWd/kgU for the reload core fuel particle. The analysis results show also that the fuel particle reliability (coating layers) depends on the irradiation temperature. The failure occurs at lower burnup if the irradiation temperature increases. (author)

  15. High temperature thruster technology for spacecraft propulsion

    Science.gov (United States)

    Schneider, Steven J.

    A technology program has been underway since 1985 to develop high temperature oxidation-resistant thrusters for spacecraft applications. The successful development of this technology will provide the basis for the design of higher performance satellite engines with reduced plume contamination. Alternatively, this technology program will provide a material with high thermal margin to operate at conventional temperatures and provide increased life for refuelable or reusable spacecraft. The new chamber material consists of a rhenium substrate coated with iridium for oxidation protection. This material increases the operating temperature of thrusters to 2200°C, a significant increase over the 1400°C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20 to 25 seconds higher than niobium chambers. Ir-Re apogee class 440 N engines are expected to deliver an additional 10 to 15 seconds. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines. The program is attempting to envelope flight qualification requirements to reduce the potential risks and costs of flight qualification programs.

  16. Aerospace Applications Of High Temperature Superconductivity

    Science.gov (United States)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  17. Metals behaviour at very high temperature

    International Nuclear Information System (INIS)

    The present in-situ investigations focus on the crystallographic behavior of metals in their high-temperature phase, such as the β-phase in Ti alloys or the δ-ferrite in steel. Conventional investigations involving quench unavoidably distort the high temperature lattice through phase transformations, anisotropic thermal expansion or precipitates. Neutron and synchrotron high-energy X-ray diffraction methods were used to obtain crystallographic information in-situ and in real time. Upon annealing, primary neutron extinction allows to follow the perfection of the crystal lattice as a function of time, revealing the kinetics of dislocation annihilation. Upon cooling, the precipitating a-phase distorts the lattice of the [3-phase, seen in its very early stages. Deviation from the Avrami behavior reveals changes of dimensionality of the nucleation and growth process. The intensity morphology of Debye-Scherrer rings upon high-energy X-ray diffraction allows to distinguish deformation processes in a thermo-mechanical simulation, revealing deformation by slip, dynamic recovery and recrystallization.

  18. Filter materials for absorbing high temperature cobalt

    International Nuclear Information System (INIS)

    Purpose: To remove dissolved cobalts at high temperature and at high pressure without cooling primary coolants in nuclear reactor, thereby decreasing the heat loss. Constitution: In the case of using ion exchange resins for removing cobalts dissolved in reactor water which may cause radiation exposure, a large heat loss is resulted because of the requirement for cooling the reactor water in order to avoid the thermal decomposition of the resins. In view of the above, heat- and corrosion-resistant metals such as stainless steels and zircaloys are formed into granular, fiberous, mesh or porous configurations suitable to column filter materials and oxide film layers are formed to the surface of the metals to prepare adsorbing filter materials. By extracting impurity cobalts from the oxide film layers, the cobalt can be prevented from leaching, to improve the cobalt-removing performance from the treated water. Purification can be applied by chemical purification using extracting liquids such as mineral acids or organic acids and hot water treatment under high temperature and high pressure. (Horiuchi, T.)

  19. High-Temperature Strain-And-Temperature Gauge

    Science.gov (United States)

    Wnuk, S. P.; Lanius, S. J.

    1989-01-01

    Two-element gauge used alternately in two different bridge circuits to measure both temperature and strain. Three-lead strain-and-temperature gauge developed for use at temperatures up to 750 degree F (390 degree C) on fiber-reinforced carbon/carbon composite material having coefficient of thermal expansion of 0.8 ppm/degree F. Unlike most temperature-compensated gauges, gauge gives accurate results even during rapid heating and cooling cycles. Similar gauges produced for materials with different coefficients of thermal expansion.

  20. Structural application of high strength, high temperature ceramics

    Science.gov (United States)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  1. Heterogeneous metasurface for high temperature selective emission

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, D., E-mail: dwoolf@psicorp.com; Hensley, J. [Physical Sciences, Inc., 20 New England Business Center, Andover, Massachusetts 01810 (United States); Cederberg, J. G.; Bethke, D. T.; Grine, A. D.; Shaner, E. A. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States)

    2014-08-25

    We demonstrate selective emission from a heterogeneous metasurface that can survive repeated temperature cycling at 1300 K. Simulations, fabrication, and characterization were performed for a cross-over-a-backplane metasurface consisting of platinum and alumina layers on a sapphire substrate. The structure was stabilized for high temperature operation by an encapsulating alumina layer. The geometry was optimized for integration into a thermophotovoltaic (TPV) system, and was designed to have its emissivity matched to the external quantum efficiency spectrum of 0.6 eV InGaAs TPV material. We present spectral measurements of the metasurface that result in a predicted 22% optical-to-electrical power conversion efficiency in a simplified model at 1300 K. Furthermore, this broadly adaptable selective emitter design can be easily integrated into full-scale TPV systems.

  2. Vortex motion in high temperature superconducting junctions

    International Nuclear Information System (INIS)

    Coherent vortex motion in bridge structures (BS) of high temperature superconducting junctions under transport current transfer and external microwave radiation is detected. The investigated samples were 6x2.5x0.5mm rectangular bars of Y-Ba-Cu-O ceramics with BS cut in the centre, which dimensions were: length L=150-200μm, width W=150-200μm, thickness d < or approx. 100μm. Ceramics grain size was a ∼ 1μm. The voltampere characteristics of the samples were measured using a four-contact method both under off-line conditions and under different frequency microwave external radiations in the wide temperature range from 300 to 4.2 K

  3. Heterogeneous metasurface for high temperature selective emission

    International Nuclear Information System (INIS)

    We demonstrate selective emission from a heterogeneous metasurface that can survive repeated temperature cycling at 1300 K. Simulations, fabrication, and characterization were performed for a cross-over-a-backplane metasurface consisting of platinum and alumina layers on a sapphire substrate. The structure was stabilized for high temperature operation by an encapsulating alumina layer. The geometry was optimized for integration into a thermophotovoltaic (TPV) system, and was designed to have its emissivity matched to the external quantum efficiency spectrum of 0.6 eV InGaAs TPV material. We present spectral measurements of the metasurface that result in a predicted 22% optical-to-electrical power conversion efficiency in a simplified model at 1300 K. Furthermore, this broadly adaptable selective emitter design can be easily integrated into full-scale TPV systems.

  4. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  5. Fort St. Vrain high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The construction, testing, and preliminary operating experience of the Fort St. Vrain Nuclear Generating Station are described. This station utilizes the advanced high-temperature gas-cooled reactor (HTGR) concept and is the first nuclear reactor system in the United States to use a prestressed concrete reactor vessel (PCRV). Helium is used as the primary coolant, and a nitrogen system provides refrigeration for the low temperature equipment of the helium purification system and for the moisture monitors in the primary coolant system. Design, construction and testing to date at this station have made a significant contribution to the HTGR concept for central station electric generating plants to supply the increasing demands for electrical energy. (U.S.)

  6. Advanced Ultra high Strength Bainitic Steels

    OpenAIRE

    García Caballero, Francisca; García Mateo, Carlos; Capdevila, Carlos; García de Andrés, Carlos

    2007-01-01

    The addition of about 2 wt.% of silicon to steel enables the production of a distinctive microstructure consisting of a mixture of bainitic ferrite, carbon-enriched retained austenite, and some martensite. With careful design, impressive combinations of strength and toughness have been reported for high-silicon bainitic steels. More recently, it has been demonstrated experimentally that models based on phase transformation theory can be applied successfully to the design of carbide-free baini...

  7. Advanced interferometric techniques for high resolution bathymetry

    OpenAIRE

    LLORT PUJOL, Gerard; SINTES, Christophe; Chonavel, Thierry; MORRISON, Archie T.; DANIEL, Sylvie

    2012-01-01

    Current high-resolution side scan and multibeam sonars produce very large data sets. However, conventional interferometry-based bathymetry algorithms underestimate the potential information of such soundings, generally because they use small baselines to avoid phase ambiguity. Moreover, these algorithms limit the triangulation capabilities of multibeam echosounders to the detection of one sample per beam, i.e., the zero-phase instant. In this paper we argue that the correlation between signal...

  8. Confinement studies in high temperature spheromak plasmas

    International Nuclear Information System (INIS)

    Full text: Recent results from the SSPX spheromak experiment demonstrate the potential for obtaining good energy confinement (Te > 350 eV and radial electron thermal diffusivity comparable to tokamak L-mode values) in a self-organized toroidal plasma. In this paper we discuss energy confinement and transport in ohmically-heated SSPX discharges and compare data against several transport models applicable to self-organized systems maintained by DC helicity injection. A strong decrease in thermal conductivity with temperature is observed and at the highest temperatures, transport is well below that expected from the Rechester-Rosenbluth model. Recent improvements to performance (raising Te from 200 eV) result from increasing both gun flux and current to increase the magnetic field while keeping a relatively flat current profile to minimize magnetic fluctuations. In the near term, a new capacitor bank is expected to produce higher magnetic fields and longer pulses, allowing operation with temperatures as high as 0.5 keV. At temperatures above 300 eV, it becomes possible to use modest (1.8 MW) amounts of neutral beam injection (NBI) auxiliary heating to significantly change the power balance in the core plasma, making it an effective tool for improving transport analysis. We are now developing detailed designs for adding NBI to SSPX and have developed a new module for the CORSICA transport code to compute the correct fast-ion orbits in SSPX. This module, coupled to a deposition code (NFREYA), is used to calculate the particle, current and power deposition from Neutral Beam injection. Initial CORSICA results show that a substantial fraction of the injected bean, of order 70%, is confined as fast ions, which is sufficient to raise the electron temperature and total plasma pressure in the core by a factor of two. (author)

  9. Oxidation behavior of rhenium at high temperatures

    International Nuclear Information System (INIS)

    Oxidation of polycrystalline Re has been studied at temperatures from 1,500 to 1,900 C. During oxidation volatile Re-oxides were emitted in the form of smoke and resulted in dramatic surface recessions of the samples. XRD analysis indicated that ReO3 was the primary oxide present in the condensed vapor deposits. Preferential oxidation of Re, manifested by the formation of crystallographic facets, was noted on the oxidized surfaces. Etchpits and islands bounded by high-symmetry planes showing a 6-fold symmetry were formed thereon, suggesting that the kinetics of oxidation are slower on close-packed planes. It is demonstrated that surface recession rate, dR/dt, which is equivalent to weight change per unit area and time (dW/A·dt), can be used to characterize oxidation behavior. The overall surface recessions of both the PM-Re and CVD-Re generally increased with oxidation duration and temperature. The CVD-Re exhibits lower recession rates than the PM-Re in the temperature range examined, which is attributable to the stronger basal-plane texture and larger grain size of CVD-Re. Oxidation of PM-Re was observed to be anisotropic. At 1500 degree C, oxidation rates on the direction I (rolling plane) were higher. At higher temperatures (1,700 and 1,900 C), on the other hand, an opposite result was obtained. The differential oxidation rate of the PM-Re is suggested to originate from the synergistic effects of temperature-dependent oxidation behavior and basal-plane texture that have evolved during sample processing. This hypothesis is consistent with the fact that similar activation energies were obtained for the oxidation of CVD-Re and PM-Re (I)

  10. Fast response bolometer for high temperature plasma

    International Nuclear Information System (INIS)

    A fast response bolometer is developed to measure the radiation loss from a high temperature plasma. Radiation from the plasma (mainly x-ray) is absorbed by a thin foil and heats it up. Change in far infrared (FIR) radiation, due to the change in temperature, emitted from the back surface of the foil is detected by an FIR detector which is contained in a shield box placed distant from a plasma generating machine to eliminate electrical noise. The FIR radiation is transmitted from the thin foil to the detector by a light pipe (metal pipe inner surface of which is polished). The foil (radiation absorber) consists of 5μm thick copper foil, both surfaces of which are coated with 1 μm thick carbon to increase the sensitivity and to simplify the calibration procedure. Calibration is done by two methods: One is to obtain the relation between temperature of the foil and the output of the detector. The other is to measure the detector output when the foil is illuminated by a flashlight with known light energy. Latter calibration procedure is excellent in that it is reliable and can be carried out with the same arrangement as the radiation from the plasma is measured. The result of this calibration is 0.46mV/mJ. This figure can be increased by adoption of FIR light collecting system. Time response of the bolometer (conduction of heat from radiation absorbing surface to the back surface of the foil) is calculated to be 400 ns. The thickness of the foil is chosen in such a way that the radiation from the plasma with electron temperature of about 100 eV is almost completely absorbed. This bolometer is applicable to plasmas with higher temperature when the foil thickness is increased with the sacrifice of time response and sensitivity. (author)

  11. Advance Mining of Temporal High Utility Itemset

    Directory of Open Access Journals (Sweden)

    Swati Soni

    2012-04-01

    Full Text Available The stock market domain is a dynamic and unpredictable environment. Traditional techniques, such as fundamental and technical analysis can provide investors with some tools for managing their stocks and predicting their prices. However, these techniques cannot discover all the possible relations between stocks and thus there is a need for a different approach that will provide a deeper kind of analysis. Data mining can be used extensively in the financial markets and help in stock-price forecasting. Therefore, we propose in this paper a portfolio management solution with business intelligence characteristics. We know that the temporal high utility itemsets are the itemsets with support larger than a pre-specified threshold in current time window of data stream. Discovery of temporal high utility itemsets is an important process for mining interesting patterns like association rules from data streams. We proposed the novel algorithm for temporal association mining with utility approach. This make us to find the temporal high utility itemset which can generate less candidate itemsets.

  12. The DARPA manufacturing initiative in high temperature superconductivity

    International Nuclear Information System (INIS)

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications

  13. Development of a high vacuum, high temperature movable limiter support

    International Nuclear Information System (INIS)

    A mechanism for positioning the Advanced Limiter Test II (ALT-II) limiter blades inside the TEXTOR tokamak is described. Testing of two candidate material pairs for use as gears and bearings, Nitronic 60/aluminum bronze and Nitronic 60/Nitronic 60, is also described. The lubricant was a solid film of MoS/sub 2/. The testing, done at the temperature and pressure range of the tokamak, revealed that the combination of Nitronic 60 and the softer aluminum bronze performed much better than the Nitronic 60/Nitronic 60 combination. The latter combination performed well for 24,000 cycles (48% of expected lifetime), but then experienced a sudden increase in friction due to galling. The former pair performed well, exhibiting low friction throughout the duration of the test

  14. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  15. Stable Vanadium Isotope Fractionation at High Temperatures

    Science.gov (United States)

    Prytulak, J.; Parkinson, I. J.; Savage, P. S.; Nielsen, S. G.; Halliday, A. N.

    2011-12-01

    Vanadium is a redox sensitive transition metal existing in multiple valence states at terrestrial conditions. Stable vanadium isotopes (reported as δ51V in % relative to an Alfa Aesar standard [1]) are a potentially powerful tracer of oxidation-reduction processes. However, the determination of δ51V is analytically challenging, primarily due to the extreme abundance ratio between the only two stable isotopes (51V/50V ~ 400) and, also, significant isobaric interferences of 50Ti and 50Cr on the minor 50V isotope. We have developed the first method able to determine δ51V to a precision (2 s.d. ~ 0.15%, [1,2]) that enables application of this isotope system to geological processes. To usefully investigate high temperature processes using vanadium isotopes, knowledge of the isotope composition and range of values present in the ambient mantle is required. Here we discuss the first δ51V measured in igneous materials encompassing peridotites, MORB, and primitive mantle-derived melts such as picrites. This first dataset provides a preliminary reconnaissance of the magnitude of natural fractionation. We find little isotope fractionation in suites of peridotites and MORB (vanadium isotope fractionation that may be expected at high temperatures. The presence of significant isotope variation outside of analytical precision in these materials bodes well for the use of δ51V to address a variety of broad scale questions in high temperature planetary processes. [1] Nielsen, S.G., Prytulak, J., Halliday, A.N. 2011. Geost. Geoanal. Res., in press. [2] Prytulak, J., Nielsen, S.G., Halliday, A.N. 2011. Geost. Geoanal. Res., in press. [3] Parkinson and Pearce, 1998. Journal of Petrology, 39, 1577-1618. [4] Lee et al., 2005. Journal of Petrology, 46, 2313-2336. [5] Cottrell and Kelley, 2011. Earth and Planetary Sciences Letters, 305, 270-282.

  16. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    drive solution, which is applicable in cases when there are at least two power stages, and with minimal additional hardware requirements. It is experimentally confirmed that the method is suitable for both parallel and serial input configurations. Compared to state-of-the-art solutions, the proposed...... the use of conventional ICs, while still providing high control bandwidth and performance comparable to state-of-the-art solutions. Since in many applications of interest galvanic isolation is not a requirement, the thesis proposes a method for providing a DC power path from input to output...... response of VHF converters, on/off control schemes are often used for their output control. The options presented so far demonstrated excellent performance, but with very strict timing constraints on all functional blocks in the feedback loop. Therefore, an on/off control method is proposed which allows...

  17. High temperature ion channels and pores

    Science.gov (United States)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  18. High Temperature Sodium Thermal Convection Test Loop

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A project for the evaluation of compatibility characteristic of structural materials used in China experimental fast reactor(CEFR) has been in operation. The conditions which these structural materials contact with liquid sodium in reactor can be simulated by the tests in high temperature sodium thermal convection test loop. The main aims of designing and constructing the thermal convection test loop is for the corrosion test of CEFR materials, and the objective is to obtain the corrosion data of domestic materials.The main features of the test loop are shown in Fig.1. The primary components of the loop

  19. Physical properties of high temperature superconductors

    CERN Document Server

    Ginsberg, DM

    1998-01-01

    While a great effort has been made to discover new high temperature superconductors, a large-scale, parallel effort has been made to determine the fundamental properties of these fascinating new materials. This is perhaps one of the best books in the field describing these vital properties in an organized and comprehensive manner. The authors are well known for their creative and powerful research on the new superconductors. This volume will be a useful reference for research workers and for graduate students. A subject index is also included for the user's convenience.

  20. Atomic absorption spectroscopy with high temperature flames.

    Science.gov (United States)

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790