WorldWideScience

Sample records for advanced fusion material

  1. Fusion reactor design towards radwaste minimum with advanced shield material

    International Nuclear Information System (INIS)

    A new concept of fusion reactor design is proposed to minimize the radioactive waste of the reactor. The main point of the concept is to clear massive structural components located outside the neutron shield from regulatory control. The concept requires some reinforcement of shielding with an advanced shield material such as a metal hydride, detriation, and tailoring of a detrimental element from the superconductor. Our assessment confirmed a large impact of the concept on radwaste reduction, in that it reduces the radwaste fraction of a fusion reactor A-SSTR2 from 92 wt.% to 17 wt.%. (author)

  2. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  3. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    International Nuclear Information System (INIS)

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods presented during the

  4. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.C.; Smith, D.L. [Argonne National Lab., IL (United States); Palmer, A.J.; Ingram, F.W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Wiffen, F.W. [Dept. of Energy, Germantown, MD (United States). Office of Fusion Energy

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  5. Multimodal options for materials research to advance the basis for fusion energy in the ITER era

    Science.gov (United States)

    Zinkle, S. J.; Möslang, A.; Muroga, T.; Tanigawa, H.

    2013-10-01

    Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

  6. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  7. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    Science.gov (United States)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  8. Assessment of advanced materials development in the European Fusion long-term Technology Programme. Report to the FTSC-P by the Advanced Materials Working Group

    International Nuclear Information System (INIS)

    In view of the transition to the next, fifth, framework program, and the resources available, the European Commission (EC) requested to launch an assessment for the Advanced Materials area, as part of the European Fusion Technology Programme. A working group chaired by the Materials Field Coordinator assessed the current status of the programme with the view to prepare its future focusing on one class of materials, as expressed by the FTSC-P. Two classes of materials: SiC/SiC ceramic composites and low activation alloys on the basis of V, Ti and Cr are presently in the Advanced Materials area. They are all in very early stages of development with a view to their application in fusion power reactors. All have adverse properties that could exclude their use. SiC/SiC ceramic composites have by far the highest potential operating temperature, contributing greatly to the efficiency of fusion power reactors. At the same time it is also the development with the highest development loss risk. This class of materials needs an integrated approach of design, manufacturing and materials development different from alloy development. The alloys with vanadium and titanium as base element have limited application windows due to their inherent properties. If the development of RAFM steels continues as foreseen, the development of V and Ti alloys is not justifiable in the frame of the advanced materials programme. The oxide dispersion strengthened variant of RAFM steels might reach similar temperature limits: about 900K. Chromium based alloys hold the promise of higher operating temperatures, but the knowledge and experience in fusion applications is limited. Investigating the potential of chromium alloys is considered worthwhile. The alloys have comparable activation hazards and early recycling potential, with properly controlled compositions. Recycling of the SiC/SiC class of materials needs further investigation. The working group concludes that at this stage no contender can be

  9. Quantification of structural materials for reactor systems: synergy's in materials for fusion/fission reactors and advanced fission reactor

    International Nuclear Information System (INIS)

    In nuclear technology a lot of experience has been accumulated meanwhile from reactor programmes for ferritic alloys, austenitic steels and Ni-based alloys as main component materials during R and D, design, construction and operation. Generally materials are a key issue for a safe and reliable operation of -NPPs. Many grades investigated are of interest for the design of GenIVs and fusion reactors. Synergisms of materials, material technologies, mechanical data, corrosion and other topics -for the qualification of materials for nuclear systems are generally discussed and information on a qualification procedure is compiled. Also some lessons learned from fabrication, test programmes or operation of NPPs are provided. A special problem is the fusion system because a final validation for alloy performance in the long term will need irradiation under realistic -fusion condition anticipated in a high-energetic, fusion-specific intense neutron source such as (IFMIF), the International Fusion Materials Irradiation Facility. (author)

  10. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques - A European effort to accelerate fusion materials development

    DEFF Research Database (Denmark)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.;

    2013-01-01

    For the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons...... having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected...... as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced...

  11. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  12. An Advanced Plasma-material Test Station for R&D on Materials in a Fusion Environment

    International Nuclear Information System (INIS)

    Full text: A new era of fusion research has started with ITER under construction and DEMO for power demonstration on the horizon. However, the related fusion reactor material science requires further development before DEMO can be designed. One of the most crucial and most complex outstanding science issues to be solved is the plasma surface interaction (PSI) in the hostile environment of a nuclear reactor. Not only are materials exposed to unprecedented steady-state and transient power fluxes, but they are also exposed to unprecedented neutron fluxes. Both the ion fluxes and the neutron fluxes will change the properties and the micro-structure of the plasma-facing materials (PFM) significantly, even to the extent that their structural integrity is compromised. A new PMTS (Plasma Material Test Station) is proposed to address these challenges, utilizing a new high-intensity plasma source concept. This device will be well suited to test toxic, as well as irradiated material samples. The advanced plasma source is based on an RF based plasma production and heating system. The source is electrode-less, so that impurity generation in the source region that could invalidate the interpretation of PSI processes will be minimized. This is especially important for high fluence experiments, accelerated lifetime studies and reduced maintenance in a radiological managed environment. B2-Eirene simulations demonstrate that ion fluxes in excess of 1024 m-2s-1 should be achievable at the target delivering power fluxes of > 30 MW/m2. Upstream temperatures at the exit of the source system should be high enough (Te > 30 eV) to study also radiative dissipation of heat fluxes in this device. The RF source system consists of a helicon antenna for plasma production and additional electron as well as ion heating to increase electron and ion temperature separately. A pre-prototype helicon antenna has been tested at moderate magnetic fields. A maximum electron density of ne = 4.0 x 1019 m-3

  13. Recycling fusion materials

    International Nuclear Information System (INIS)

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  14. Polymer materials for fusion reactors

    International Nuclear Information System (INIS)

    The radiation-resistant polymer materials have recently drawn much attention from the viewpoint of components for fusion reactors. These are mainly applied to electrical insulators, thermal insulators and structural supports of superconducting magnets in fusion reactors. The polymer materials used for these purposes are required to withstand the synergetic effects of high mechanical loads, cryogenic temperatures and intense nuclear radiation. The objective of this review is to summarize the anticipated performance of candidate materials including polymer composites for fusion magnets. The cryogenic properties and the radiation effects of polymer materials are separately reviewed, because there is only limited investigation on the above-mentioned synergetic effects. Additional information on advanced polymer materials for fusion reactors is also introduced with emphasis on recent developments. (orig.)

  15. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed

  16. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the behaviour of fusion reactor materials and components during and after irradiation. Ongoing projects include: the study of the mechanical behaviour of structural materials under neutron irradiation; the investigation of the characteristics of irradiated first wall material such as beryllium; the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; and the study of dismantling and waste disposal strategy for fusion reactors. Progress and achievements in these areas in 2000 are discussed

  17. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  18. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  19. Fusion advanced studies Torus

    International Nuclear Information System (INIS)

    The successful development of ITER and DEMO scenarios requires preparatory activities on devices that are smaller than ITER, sufficiently flexible and capable of investigating the peculiar physics of burning plasma conditions. The aim of the Fusion Advanced Studies Torus (FAST) proposal [2.1] (formerly FT3 [2.2]) is to show that the preparation of ITER scenarios and the development of new expertise for the DEMO design and RD can be effectively implemented on a new facility. FAST will a) operate with deuterium plasmas, thereby avoiding problems associated with tritium, and allow investigation of nonlinear dynamics (which are important for understanding alpha particle behaviour in burning plasmas) by using fast ions accelerated by heating and current drive systems; b) work in a dimensionless parameter range close to that of ITER; c) test technical innovative solutions, such as full-tungsten plasma-facing components and an advanced liquid metal divertor target for the first wall/divertor, directly relevant for ITER and DEMO; d) exploit advanced regimes with a much longer pulse duration than the current diffusion time; e) provide a test bed for ITER and DEMO diagnostics; f) provide an ideal framework for model and numerical code benchmarks, their verification and validation in ITER/ DEMO-relevant plasma conditions

  20. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    The design of advanced solid breeding blanket in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high fluence, and the development of such as advanced blanket materials has been carried out by the cooperation activities among JAERI, universities and industries in Japan. The Li2TiO3 pebble fabricated by wet process is a reference material as a tritium breeder, but the stability on high temperature has to be improved for application to DEMO blanket. As one of such the improved materials, TiO2-doped Li2TiO3 pebbles were successfully fabricated and TiO2-doped Li2TiO3 has been studied. For the advanced neutron multiplier, the beryllides that have high melting point and good chemical stability have been studied. Some characterization of Be12Ti was conducted, and it became clear that Be12Ti had lower swelling and tritium inventory than that of beryllium metal. The pebble fabrication study for Be12Ti was also performed and Be12Ti pebbles were successfully fabricated. From these activities, the bright prospect was obtained to realize the DEMO blanket by the application of TiO2-doped Li2TiO3 and beryllides. (author)

  1. Materials for Fusion Applications

    OpenAIRE

    Jiří Matějíček

    2013-01-01

    An overview of materials foreseen for use or already used in fusion devices is given. The operating conditions, material requirements and characteristics of candidate materials in several specific application segments are briefly reviewed. These include: construction materials, electrical insulation, permeation barriers and plasma facing components. Special attention will be paid to the latter and to the issues of plasma-material interaction, materials joining and fuctionally graded interlayers.

  2. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  3. Fusion reactor materials

    International Nuclear Information System (INIS)

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  4. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  5. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised

  6. In-Service Design and Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    International Nuclear Information System (INIS)

    This final report on ''In-Service Design and Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation'' (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: (1) A Transport and Fate Model for Helium and Helium Management; (2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; (3) Multiscale Modeling of Fracture consisting of: (3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), (3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, (3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, (3d) A Model for the KJc(T) of a High Strength NFA MA957, (3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, (3f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; (4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and (5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES

  7. Advanced fusion concepts project summaries

    International Nuclear Information System (INIS)

    The activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, DOE, are described. These descriptions are project summaries of each of the individual projects, and contain title, persons responsible, funding, purpose, approach, recent progress, future plans, planned milestones, graduate students and other staff, and recent publications

  8. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  9. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  10. Materials for Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří

    2013-01-01

    Roč. 53, č. 2 (2013), s. 197-212. ISSN 1210-2709. [Symposium on Plasma Physics and Technology/25./. Praha, 18.06.2012-21.06.2012] R&D Projects: GA ČR(CZ) GAP108/12/1872; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : nuclear fusion * materials * plasma facing components * plasma-material interaction * functionally graded materials Subject RIV: BL - Plasma and Gas Discharge Physics http://ctn.cvut.cz/ap/download.php?id=797

  11. The advanced 3D method for activation analysis of fusion reactor materials

    International Nuclear Information System (INIS)

    The method allows analyzing the complex objects activated by neutrons (e.g. fusion reactors) combining advantages of the 3D radiation transport by MCNP program with calculations of multiple activation and radioactive decay chains by FISPACT program. The problem of preparing the gamma-ray sources in cells of 3D geometry was solved by creation of an interface between the MCNP and FISPACT programs. The interface allows optimizing the process of activation analysis by revealing dominant sources of radiation. The developed interface essentially reduces the time needed for calculations. The main advantage of the method is realization of so-called 'multibox' procedure for decay gamma source sampling during decay gamma transport in very large and complex fusion reactor models. Shutdown dose rate calculations are faster (up to 600 times in ITER cryostat) in comparison with applied MCNP standard source definition by using an external user-supplied source subroutine of the 'multibox' procedure. The offered method is intended for solution of the activation tasks with deep penetration of radiation. The method was used in the engineering design of ITER-FEAT and RF DEMO-S

  12. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  13. Advanced fusion concepts: project summaries

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac

  14. Advanced fusion concepts: project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  15. Overview of advanced fuel fusion

    International Nuclear Information System (INIS)

    The status and issues related to the development of advanced fuel fusion are discussed. D-3He is a key advanced fuel since it has the potential of igniting in a variety of confinement concepts. However, to obtain a plentiful source of 3He, either lunar mining or breeding becomes necessary. Highly non-Maxwellian plasmas, such as might occur in beam-beam fusion concepts, are necessary to address fuels like p-11B which have the added advantages of a more aneutronic character and plentiful fuel supply. Such plasmas appear very difficult to achieve but several possible approaches such as electrostatic confinement are noted. 52 refs., 13 figs, 5 tabs

  16. Advanced superconducting materials

    International Nuclear Information System (INIS)

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo6S8 are compared to those of the most advanced practical conductors based on alloyed by Nb3Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.)

  17. Structural materials for fusion magnets

    International Nuclear Information System (INIS)

    Of major technical and cost impact to Magnetic Fusion Energy development are the materials for the magnet structure. Those materials and fabrication techniques that are attractive to fusion magnets are discussed and relative comparisons made. Considerations such as strength, toughness, and joining techniques are balanced against recommended design criteria to reach an optimum design. Several examples of material selection are cited for large fusion magnets such as Base II, the Mirror Fusion Test Facility, the Toroidal Fusion Test Facility, and the Large Coil Project

  18. Irradiation of fusion materials

    International Nuclear Information System (INIS)

    In collaboration with the EFDA (European Fusion Development Agreement), SCK-CEN irradiates several materials in the BR2 reactor at different temperatures and up to different doses to study their mechanical and physical properties during and after the irradiation. These materials are candidates for the construction of different parts of the ITER (International Thermonuclear Experimental Reactor) fusion reactor and of the long-term DEMO (DEMOnstration) reactor. The objectives of research at SCK-CEN in this area are: (1) to irradiate RAFM (Reduced Activity Ferritic Martensitic) steel joints and RAFM ODS (Oxide Dispersion Strengthening) at 300 degrees Celsius up to 2 dpa; (2) to irradiate RAFM steel and different FeCr alloys at 300 degrees C above 1.5 dpa; (3) to irradiate Beryllium and Tungsten specimen at 300 degress C up to 0.75 dpa; (4) to irradiate copper/stainless steel joints at 150 degrees C up to 0.1 dpa; (5) to perform in-situ creep-fatigue tests with CuCrZr specimens under neutron irradiation

  19. Structural materials for fusion magnets

    International Nuclear Information System (INIS)

    Of major technical and cost impact to Magnetic Fusion Energy development are the materials for the magnet structure. Likened to gas pressure, the magnetic field lines try to expand the structure with equivalent pressures up to 1000 atm. Not only are large tensile forces produced, but significant bending forces may also be present. To withstand these forces in the restricted spaces available, materials of exceptional strength and toughness are required. In this regard, the low-temperature environment of superconducting magnets can be an advantage because many materials exhibit enhanced properties at reduced temperatures. Those materials and fabrication techniques that are attractive to fusion magnets are discussed and relative comparisons made. Considerations such as strength, toughness, and joining techniques are balanced agains recommended design criteria to reach an optimum design. Several examples of material selection are cited for large fusion magnets such as Baseball II, the Mirror Fusion Test Facility, the Toroidal Fusion Test Facility, and the Large Coil Project. (orig.)

  20. Advances in inertial confinement fusion

    International Nuclear Information System (INIS)

    This paper reports on inertial confinement fusion which has made a great progress. In fact several significant scientific developments have been achieved in the last few years. These have presented the ICF community with the opportunity to advance to a new step in the ICF research. The key issues of laser fusion are to attain a high absorption of laser light in a plasma, to prevent preheating of the fuel during the compression and to achieve highly efficient implosion by the ablation and uniform compression of the fuel due to the homogeneous deposition of laser energy on the pellet surface. Direct drive and indirect drive have been investigated. The progress in both schemes is described. The neutron yield reaches 1013 per shot and the compressed fuel density is now about 600 times of the liquid density

  1. Book of abstracts of the joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems

    International Nuclear Information System (INIS)

    Materials performance and reliability are key issues for the safety and competitiveness of future nuclear installations: Generation IV nuclear systems for increased sustainability, advanced systems for non-electrical uses of nuclear energy, partitioning and transmutation systems, as well as thermo-nuclear fusion systems. These systems will have to feature high thermal efficiency and optimized utilization of fuel combined with minimized nuclear waste. For the sustainability of the nuclear option, there is a renewed interest worldwide in new reactor systems, closed fuel cycle research and technology development, and nuclear process heat applications. This requires the development and qualification of new high temperature structural materials with improved radiation and corrosion resistance. To achieve the challenging materials performance parameters, focused research and targeted testing of new candidate materials are necessary. Recent developments regarding new classes of materials with improved microstructural features, such as fibre-reinforced ceramic composite materials, oxide dispersion strengthened steels or advanced ferritic-martensitic steels are promising since they combine good radiation resistance and corrosion properties with high-temperature strength and toughness. In view of a successful and timely implementation of design parameters, in particular for primary circuits, new structural materials have to be qualified during the next decade. To this end an international R and D effort is being undertaken. Recent progress in materials science, supported by computer modelling and advanced materials characterisation techniques, has the potential to accelerate the process of new structural materials development. The scope of the meeting is information exchange and cross-fertilisation of various disciplines, including an overview of recent status of world-wide R and D activities. A comprehensive review of the designs of fission as well as fusion reactor systems

  2. Current activities in the interactive joint research at Tohoku University. Advanced evaluation of radiation effects on fusion materials

    International Nuclear Information System (INIS)

    International Research Center for Nuclear Materials Science of the Institute for Materials Research, Tohoku University (hereafter the 'Center') was founded in 1969 and has been playing a vital role as the joint-use research center in Japan to assess the dynamic and static effects of neutron irradiation on the physical and mechanical properties of a variety of structural and functional materials through the use of nuclear reactors in Japan and overseas. The Center is now also open to researchers overseas. As a new initiative, the Center started an interactive joint research scheme on nuclear fusion reactor engineering with the NIFS in fiscal 2010. The interactive joint research aims at pioneering inter-disciplinary fields that connect neutron reactor engineering with other nuclear fusion sciences, and at conducting activities primarily on the key research subjects through inter-research-center collaboration. For this, a TDS (Thermal Desorption Spectrometer) with an ion gun (IG-TDS) has been installed in the radiation controlled area at the Center. Development of a compact divertor plasma simulator (C-DPS) system that will be integrated with the IG-TDS apparatus is in progress. It is prospected that the Center could play a leading role in international collaborative studies of neutron irradiation effects on plasma material interaction, along with other major research institutes over the world. (author)

  3. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    Science.gov (United States)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  4. Structural materials for fusion reactors

    International Nuclear Information System (INIS)

    In order to preserve the condition of an environmentally safe machine, present selection of materials for structural components of a fusion reactor is made not only on the basis of adequate mechanical properties, behavior under irradiation and compatibility with other materials and cooling media, but also on their radiological properties, i.e. activity, decay heat, radiotoxicity. These conditions strongly limit the number of materials available to a few families of alloys, generically known as low activation materials. We discuss the criteria for deciding on such materials, the alloys resulting from the application of the concept and the main issues and problems of their use in a fusion environment. (author)

  5. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  6. (Meeting on fusion reactor materials)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H. (Pacific Northwest Lab., Richland, WA (USA)); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. (Oak Ridge National Lab., TN (USA)); Loomis, B.A. (Argonne National Lab., IL (USA))

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  7. Materials requirements for fusion reactors

    International Nuclear Information System (INIS)

    Once the physics of fusion devices is understood, one or more experimental power reactors (EPR) are planned which will produce net electrical power. The structural material for the device will probably be a modification of an austenitic stainless steel. Unlike fission reactors, whose pressure boundaries are subjected to no or only light irradiation, the pressure boundary of a fusion reactor is subjected to high atomic displacement-damage and high production rates of transmutation products, e.g., helium and hydrogen. The design data base must include irradiated materials. Since in situ testing to obtain tensile, fatigue, creep, crack-growth, stress-rupture, and swelling data is currently impossible for fusion reactor conditions, a program of service-temperature irradiations in fission reactors followed by postirradiation testing, simulation of fusion conditions, and low-fluence 14 MeV neutron-irradiation tests are planned. For the Demonstration Reactor (DEMO) expected to be built within ten years after theEPR, higher heat fluxes may require the use of refractory metals, at least for the first 20 cm. A partial data base may be provided by high-flux 14 MeV neutron sources being planned. Many materials other than those for structural components will be required in the EPR and DEMO. These include superconducting magnets, insulators, neutron reflectors and shields, and breeding materials. The rest of the device should utilize conventional materials except that portion involved in tritium confinement and recovery

  8. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  9. Advanced fusion concepts project summaries: 1981

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  10. Advanced Fusion Concepts project summaries, FY 1982

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, U.S. Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications

  11. Systematic analysis of advanced fusion fuel in inertial fusion energy

    Science.gov (United States)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  12. Advanced Fusion Concepts project summaries. FY 1983

    International Nuclear Information System (INIS)

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate studients, graduates, other professional staff, and recent publications. The individual project summaries are prepared by the principle investigators in collaboration with the Advanced Fusion Concepts (AFC) Branch. In addition to the project summaries, statements of branch objectives, and budget summaries are also provided

  13. Advanced synfuel production with fusion

    International Nuclear Information System (INIS)

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  14. Series lecture on advanced fusion reactors

    International Nuclear Information System (INIS)

    The problems concerning fusion reactors are presented and discussed in this series lecture. At first, the D-T tokamak is explained. The breeding of tritium and the radioactive property of tritium are discussed. The hybrid reactor is explained as an example of the direct use of neutrons. Some advanced fuel reactions are proposed. It is necessary to make physics consideration for burning advanced fuel in reactors. The rate of energy production and the energy loss are important things. The bremsstrahlung radiation and impurity radiation are explained. The simple estimation of the synchrotron radiation was performed. The numerical results were compared with a more detailed calculation of Taimor, and the agreement was quite good. The calculation of ion and electron temperature was made. The idea to use the energy more efficiently is that one can take X-ray or neutrons, and pass them through a first wall of a reactor into a second region where they heat the material. A method to convert high temperature into useful energy is the third problem of this lecture. The device was invented by A. Hertzberg. The lifetime of the reactor depends on the efficiency of energy recovery. The idea of using spin polarized nuclei has come up. The spin polarization gives a chance to achieve a large multiplication factor. The advanced fuel which looks easiest to make go is D plus He-3. The idea of multipole is presented to reduce the magnetic field inside plasma, and discussed. Two other topics are explained. (Kato, T.)

  15. Advanced functional materials

    CERN Document Server

    2011-01-01

    This book reviews the results of recent research on new materials arising from progress in polymer, ceramic, sensor, and fuel cell technology, including advanced inorganic-organic-hybrid polymeric materials, high functional sensor, and microbial fuel cells.

  16. Advanced materials-2007

    International Nuclear Information System (INIS)

    The 10th International Symposium on Advanced Materials (ISAM) was held from 3-7 September, 2007. From this symposium, material scientists and engineers can keep abreast with recent technologies involving advanced structural and functional materials. The proceeding of ISAM includes 94 papers which have been divided into six different sections: i) Development in material processing ii) Surface Engineering iii) phase transformation iv) advances in magnetic materials v) Nanotechnology and vi) reliability and life assessment. ISAM provides the opportunity to exchange technical know-how amongst Scientists, Engineers and researchers. (A.B.)

  17. Structural materials for fission & fusion energy

    Directory of Open Access Journals (Sweden)

    Steven J. Zinkle

    2009-11-01

    Full Text Available Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.

  18. Low activation materials for fusion

    International Nuclear Information System (INIS)

    The viability of fusion as a future energy source may eventually be determined by safety and environmental factors. Control of the induced radioactivity characteristics of the materials used in the first wall and blanket could have a major favorable impact on these issues. In the United States, materials program efforts are focused on developing new structural alloys with radioactive decay characteristics which would greatly simplify long-term waste disposal of reactor components. A range of alloy systems is being explored in order to maintain the maximum number of design options. Significant progress has been made, and it now appears probable that reduced-activation engineering alloys with properties at least equivalent to conventional alloys can be successfully developed and commercialized. 10 refs., 1 fig

  19. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  20. Advanced lasers for fusion applications

    International Nuclear Information System (INIS)

    Projections indicate that MJ/MW laser systems, operating with efficiencies in escess of 1 percent, are required to drive laser fusion power reactors. Moreover, a premium in pellet performance is anticipated as the wavelength of the driver laser system is decreased. Short wavelength laser systems based on atomic selenium (lambda = 0.49μ), terbium molcular vapors (0.55μ), thulium doped dielectric solids (0.46μ), and on pulse compressions of KrF excimer laser radiaton (0.27μ) have been proposed and studied for this purpose. The technological scalability and efficiency of each of these systems is examined in this paper. All of these systems are projected to meet minimum systems requirements. Amont them, the pulse-compressed KrF system is projected to have the highest potential efficiency (6%) and the widest range of systems design options

  1. Advanced lasers for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Krupke, W.F.

    1978-11-01

    Projections indicate that MJ/MW laser systems, operating with efficiencies in escess of 1 percent, are required to drive laser fusion power reactors. Moreover, a premium in pellet performance is anticipated as the wavelength of the driver laser system is decreased. Short wavelength laser systems based on atomic selenium (lambda = 0.49..mu..), terbium molcular vapors (0.55..mu..), thulium doped dielectric solids (0.46..mu..), and on pulse compressions of KrF excimer laser radiaton (0.27..mu..) have been proposed and studied for this purpose. The technological scalability and efficiency of each of these systems is examined in this paper. All of these systems are projected to meet minimum systems requirements. Amont them, the pulse-compressed KrF system is projected to have the highest potential efficiency (6%) and the widest range of systems design options.

  2. Plasma facing materials for fusion reactor applications

    OpenAIRE

    Gonzalez Arrabal, Raquel; Gordillo Garcia, Nuria; Rivera de Mena, Antonio; Alvarez Ruiz, Jesus; Garoz, D.; Perlado Martin, Jose Manuel

    2012-01-01

    The lack of plasma facing materials (PFM) able to withstand the severe magnetiicffusiion radiation conditions expected in fusion reactors is the actual bottle In both fusions approaches energy is released in the form of kinetic energy of neck for fusion to becomes a reality.

  3. A comparative study of the performance and economics of advanced and conventional structural materials in fusion systems

    International Nuclear Information System (INIS)

    The impact of the neutron wall load as well as the lifetime and operating temperature of the structural material on tokamak reactor economics was investigated and a comparative study of stainless steel and vanadium alloys was performed. In order to limit the fractional increase in the cost of energy due to the plant downtime, t, for replacement of the structural material to delta, the structure lifetime, T, must be greater than t/delta where T and t are in years. Economically attractive tokamak reactors produce a neutron wall load of 3-4 MW/m2 for 3000 MW thermal power. The cost of energy is optimized by an operating temperature of the structural material in the wall/blanket in the range 475-5000C for stainless steel and 620-6600C for vanadium alloys. The gain in electric power due to higher operating temperatures is not sufficient to offset the penalty in the capital cost associated with the use of vanadium alloys as compared to stainless steel. Therefore, the vanadium alloy must exhibit a significant lifetime advantage over stainless steel to be economically competitive. The magnitude of this advantage is particularly sensitive to the plant downtime and the reference lifetime of stainless steel as well as the extent to which the refractory alloy has to be used in the heat transport system. (orig.)

  4. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  5. Advanced healthcare materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    Advanced materials are attracting strong interest in the fundamental as well as applied sciences and are being extensively explored for their potential usage in a range of healthcare technological and biological applications. Advanced Healthcare Nanomaterials summarises the current status of knowledge in the fields of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, up and coming bio-engineering devices. The book highlights the key features which enable engineers to design stimuli-responsive smart nanoparticles, novel biomaterials, nan

  6. Fusion materials: insulators and plasma facing materials

    International Nuclear Information System (INIS)

    Insulating materials: surface damage: Oxide materials will be extensively used in ITER in heating and current drive, and diagnostic systems where they will play important roles as electrical insulators, and RF and optical transmission components. These materials will be subjected to neutron and gamma radiation, and additionally to bombardment by low energy ions and neutral particles of energies between eV and keV as a consequence of neutron reactions and related sputtering at vacuum surfaces, as well as ionization and acceleration of the residual gas due to local electric fields. To assess the damage, SiO2 (KS-4V), Al2O3, AlN, and BeO, the main candidate ceramic insulators for ITER were implanted (bombarded) with light ions, and KS-4V and sapphire were also irradiated with electrons. In-situ surface electrical conductivity measurements in high vacuum during implantation or irradiation were carried out. In addition, before and after implantation or irradiation, both optical absorption measurements and SEM X-ray analysis were performed. It was found that the origin of the surface electrical and related optical degradation is radiolytic, i.e. the damage is caused by the electronic excitation induced during material irradiation. Plasma Wall Interaction: In fusion devices, in the region next to high temperature plasma (typically ∼10 keV), material erodes from plasma-facing materials in one location and is transported to other, sometimes remote, locations throughout the device. The transported material may then be deposited on, or implanted into, other materials. If the plasma facing material in a device consists of more than a single element there is a high probability that the composition of the plasma-facing surfaces will evolve over time and may exhibit plasma interaction properties much different from the originally installed material. These plasma-created materials are so - called mixed materials. The creation of mixed-material surfaces will depend on many

  7. Structural materials for fusion reactors

    International Nuclear Information System (INIS)

    Full text: A long term solution to problems of energy production, green house gas generation, and pollution control may rest with controlled nuclear fusion reactors. Candidate structural materials for such reactors include low activation ferritic steels. Understanding and eliminating deleterious irradiation effects in these materials is the goal of these experiments in this collaboration using the ANL facility. In recent experiments on ferritic alloys we have recently found a significant difference with alloy composition in the microstructural response to irradiation, which corresponds to a bulk mechanical property change at a similar composition. In a collaboration between the Department of Materials at the University of Oxford and the Materials Science Division at Argonne National Laboratory, experiments which employ the unique transmission electron microscope and in situ ion irradiation user facility at ANL were performed on a series of Fe-Cr alloys. Enhanced nanometer-sized defect formation with Cr concentrations up to 11 % have been found and correlated with a decrease in mechanical hardening and embrittlement in similar alloys. (author)

  8. Joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems. PowerPoint presentations

    International Nuclear Information System (INIS)

    The key topics of the meeting are the following: Radiation damage phenomena and modelling of material properties under irradiation; On-going challenges in radiation materials science; Key material parameters and operational conditions of selected reactor designs; Microstructures and mechanical properties of nuclear structural materials; Pathways to development of new structural materials; Qualification of new structural materials; Advanced microstructure probing methods; Special emphasis is given to the application of nuclear techniques in the development and qualification of new structural materials.

  9. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  10. A comparative study of various advanced fusions

    International Nuclear Information System (INIS)

    For the purpose of comparing the merits and demerits of various advanced fuel cycles, parametric studies of operation conditions are examined. The effects of nuclear elastic collisions and synchrotron radiation are taken into account. It is found that the high-#betta# Catalyzed DD fuel cycle with the transmutation of fusion-produced tritium into helium-3 is most feasible from the point of view of neutron production and tritium handling. The D-D fuel cycles seem to be less attractive compared to the Catalyzed DD. The p-11B and p-6Li fusion plasmas hardly attain the plasma Q value relevant to reactors. (author)

  11. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  12. Compact Fusion Advanced Rankine (CFARII) power cycle

    International Nuclear Information System (INIS)

    The Compact Fusion Advanced Rankine (CFARII) power cycle is a direct plasma energy conversion scheme for inertial fusion (ICF) and magnetically-insulated, inertially confined fusion (MICF) reactors utilizing: (1) conversion of plasma thermal ionization and thermal energy into kinetic energy of a supersonic plasma jet, (2) conversion of the plasma jet kinetic energy into DC electricity by slowing down in an ''impulse'' type of magnetohydrodynamic (MHD) generator, and (3) condensation and heat rejection of the exhaust plasma on droplets of recirculating condensate (''raindrop'' condensor). A preliminary evaluation of a particular reference case CFARII Balance-of-Plant (BoP) is found sufficiently attractive (52% gross cycle efficiency, 40 million 1991 $ BoP for 1 GWe gross electric) to warrant further work on several design issues

  13. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  14. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  15. Advanced materials-2005

    International Nuclear Information System (INIS)

    The 9. International Symposium on Advanced Materials (ISAM) was held from 19-22 September, 2005. This popular biennial event is one of the prime international forums in South Asia where material scientists and engineers can keep abreast with recent technologies involving advanced structural and functional materials. The technical committee of ISAM received 213 papers, 49 from abroad 164 from within the country. These papers were submitted in response to five important topics; i) Processing, Production and Developments, ii) Surface Engineering, iii) Phase Transformation and Characterization, iv) Advances in Magnetic Materials and v) Reliability and Life Assessment. The proceedings of the 9. ISAM consists of 108 reviewed papers. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers, and researchers. (A.B.)

  16. Fusion materials irradiations at MaRIE'S fission fusion facility

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F3), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in situ, during irradiation. The calculated radiation damage conditions within the F3 match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show that F3 has conditions that are consistent with those of a steady-state fusion reactor first wall.

  17. Fusion materials irradiations at MaRIE's fission fusion facility

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F3), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F3 match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F3 has conditions that are consistent with those of a steady-state fusion reactor first wall.

  18. Advances in dental materials.

    Science.gov (United States)

    Vaderhobli, Ram M

    2011-07-01

    The use of materials to rehabilitate tooth structures is constantly changing. Over the past decade, newer material processing techniques and technologies have significantly improved the dependability and predictability of dental material for clinicians. The greatest obstacle, however, is in choosing the right combination for continued success. Finding predictable approaches for successful restorative procedures has been the goal of clinical and material scientists. This article provides a broad perspective on the advances made in various classes of dental restorative materials in terms of their functionality with respect to pit and fissure sealants, glass ionomers, and dental composites. PMID:21726695

  19. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  20. Materials for advanced packaging

    CERN Document Server

    Lu, Daniel

    2010-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  1. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2008-01-01

    Significant progress has been made in advanced packaging in recent years. Several new packaging techniques have been developed and new packaging materials have been introduced. This book provides a comprehensive overview of the recent developments in this industry, particularly in the areas of microelectronics, optoelectronics, digital health, and bio-medical applications. The book discusses established techniques, as well as emerging technologies, in order to provide readers with the most up-to-date developments in advanced packaging.

  2. HFR irradiation testing of fusion materials

    International Nuclear Information System (INIS)

    The present and future role of the High Flux Reactor Petten for fusion materials testing has been assessed. For practical purposes the Tokamak-based fusion reactor is chosen as a point of departure to identify material problems and materials data needs. The identification is largely based on the INTOR and NET design studies, the reported programme strategies of Japan, the U.S.A. and the European Communities for technical development of thermonuclear fusion reactors and on interviews with several experts. Existing and planned irradiation facilities, their capabilities and limitations concerning materials testing have been surveyed and discussed. It is concluded that fission reactors can supply important contributions for fusion materials testing. From the point of view of future availability of fission testing reactors and their performance it appears that the HFR is a useful tool for materials testing for a large variety of materials. Prospects and recommendations for future developments are given

  3. Designing Radiation Resistance in Materials for Fusion Energy

    Science.gov (United States)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  4. Tritium Behaviour in the Fusion Reactor Materials

    OpenAIRE

    Pajuste, Elīna

    2012-01-01

    ABSTRACT Doctoral thesis is devoted to the development of future energy source nuclear fusion. The objective of this research is to evaluate fusion reactor material suitability regarding their behaviour and tritium retention in the fusion reactor relevant conditions. Methods and technique developed in the UL Institute of Chemical Physics Laboratory of Radiation Chemistry of Solid State has been used in this study. Synergetic facilitating effect of accelerated electrons and high magnetic fi...

  5. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  6. Inertial Confinement Fusion Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2004-06-01

    Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable

  7. Annual report 1991. Institute for Advanced Materials

    International Nuclear Information System (INIS)

    The Institute executed in 1991 the R and D programme on advanced materials of the Joint Research Centre and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately. (Author). refs., figs., tabs

  8. Inertial fusion reactors using Compact Fusion Advanced Rankine (CFARII) MHD conversion

    International Nuclear Information System (INIS)

    This study evaluates the potential performance (efficiency and cost) of inertial fusion reactors assumed capable of vaporizing blankets of various working materials to a temperature (10,000-20,000 K) suitable for economical MHD conversion in a Compact Fusion Advanced Rankine II (CFARII) power cycle. Using a conservative model, 1-D neutronics calculations of the fraction of fusion yield captured as a function of the blanket thickness of Flibe, lithium and lead-lithium blankets are used to determine the optimum blanket thickness for each material to minimize CoE for various assumed fusion yields, 'generic' driver costs, and target gains. Lithium-hydride blankets are also evaluated using an extended neutronics model. Generally optimistic ('advanced') combinations of lower driver cost/joule and higher target gain are assumed to allow high enough fusion yields to vaporize and ionize target blankets thick enough to stop most 14 MeV neutrons, and to breed tritium. A novel magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the CFARII Balance-of-Plant (BoP), consisting of a supersonic plasma jet, MHD generator, and 'raindrop' condensor. High fusion yields (20 to 80 GJ) are found necessary to heat and ionize the Flibe, lithium, and lead-lithium blankets for MHD conversion, with initial solid thicknesses sufficient to capture most of the fusion yield. Much smaller fusion yields (1 to 20 GJ) are required for lithium-hybride blankets. For Flibe, lithium, and lead-lithium blankets, improvements in target gain and/or driver cost/joule, characterized by a 'Bang per Buck' figure-of-merit of > or ∼20 joules yield per driver Dollar, would be required for competitive CoE, while a figure-of-merit of > or ∼1 joule yield per driver Dollar would suffice for lithium-hybride blankets. Advances in targets/driver costs would benefit any IFE reactor, but the very low CFARII BoP costs (contributing only 3 mills/kWh for CoE) allows this

  9. Status of beryllium materials for fusion application

    International Nuclear Information System (INIS)

    The possible use of beryllium as a material for fusion reactors is discussed. Based on the results of recent Russian elaborations, which were not covered previously in the scientific literature, an attempt of complex analysis of the techniques of using beryllium is made. The specific requirements on beryllium as a protective material for first wall and divertor are considered. Also the possibility of creating a fusion grade of beryllium is discussed and an optimum strategy is suggested. (orig.)

  10. Structural materials challenges for fusion power systems

    International Nuclear Information System (INIS)

    Full text: Structural materials in a fusion power system must function in an extraordinarily demanding environment that includes various combinations of high temperatures, reactive chemicals, time-dependent thermal and mechanical stresses, and intense damaging radiation. The fusion neutron environment produces displacement damage equivalent to displacing every atom in the material about 150 times during its expected service life, and changes in chemical composition by transmutation reactions, which includes creation of reactive and insoluble gases. Fundamental materials challenges that must be resolved to effectively harness fusion power include (1) understanding the relationships between material strength, ductility and resistance to cracking, (2) development of materials with extraordinary phase stability, high-temperature strength and resistance to radiation damage, (3) establishment of the means to control corrosion of materials exposed to aggressive environments, (4) development of technologies for large-scale fabrication and joining, and (5) design of structural materials that provide for an economically attractive fusion power system while simultaneously achieving safety and environmental acceptability goals. The most effective approach to solve these challenges is a science-based effort that couples development of physics-based, predictive models of materials behavior with key experiments to validate the models. The U.S. Fusion Materials Sciences program is engaged in an integrated effort of theory, modeling and experiments to develop structural materials that will enable fusion to reach its safety, environmental and economic competitiveness goals. In this presentation, an overview of recent progress on reduced activation ferritic/martensitic steels, nanocomposited ferritic alloys, and silicon carbide fiber reinforced composites for fusion applications will be given

  11. Composite materials for fusion applications

    International Nuclear Information System (INIS)

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O2 concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab

  12. The challenge of developing structural materials for fusion power systems

    International Nuclear Information System (INIS)

    Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts). (orig.)

  13. Advanced materials-2003

    International Nuclear Information System (INIS)

    The 8th International Symposium on Advanced Materials (ISAM) was held from 8-11 September, 2003. The proceeding of ISAM includes 87 papers which have been divided in to ten different sections. These include production and processing, coating and thin films, characterization, superconductors and semiconductors mechanical modeling, mechanical testing and life prediction composites, corrosion and oxidation, single crystals and related papers. Ten eminent researchers and scholars of international fame presented their keynote/invited lectures of 40 minutes each. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers, and researchers from all over Pakistan and 30 other countries of the world. (A.B.)

  14. Accelerating advanced-materials commercialization

    Science.gov (United States)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  15. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  16. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  17. Advanced fusion technology research and development. Annual report to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    OAK-B135 The General Atomics (GA) Advanced Fusion Technology program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility, the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility. The report summarizes GA's FY00 work in the areas of Fusion Power Plant Studies, Next Step Options, Advanced Liquid Plasma Facing Surfaces, Advanced Power Extraction Study, Plasma Interactive Materials, Radiation Testing of Magnetic Coil, Vanadium Component Demonstration, RF Technology, Inertial Fusion Energy Target Supply System, ARIES Integrated System Studies, and Spin-offs Brochure. The work in these areas continues to address many of the issues that must be resolved for the successful construction and operation of next-generation experiments and, ultimately, the development of safe, reliable, economic fusion power plants

  18. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  19. Advanced materials processing

    International Nuclear Information System (INIS)

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni3Al and MoSi2. Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  20. Development of advanced coatings for ITER and future fusion devices

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Chráska, Pavel

    ZURICH: TRANS TECH PUBLICATIONS LTD, 2010 - (VINCENZINI, P.; MONTAVON, G.), s. 47-65. (Advances in Science and Technology. 66). ISSN 1662-0356. [INTERNATIONAL CERAMICS CONGRESS/12th./. Montecatini Terme (IT), 06.06.2010-11.06.2010] R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion materials * coatings * ITER * DEMO * plasma facing components * blanket Subject RIV: JG - Metallurgy http://www.scientific.net/AST.66.47

  1. Fusion Reactor Materials Program Plan. Section IV. Special purpose materials

    International Nuclear Information System (INIS)

    Components that were considered include breeding materials, coolants, materials for tritium service, graphite (boronated) and silicon carbide, ceramics, heat-sink materials, and magnet materials. The Task Group on Special Purpose Materials has limited its purview to crucial and generic materials problems that must be resolved if a given class of devices such as mirrors or tokamaks is to succeed. For the moment, the materials problems associated with the fusion-reactor balance of plant have been ignored; but it must be recognized that, at a later date, this area could become a major source of problems. Assumptions made in this analysis were that the goal of the program is to demonstrate commercial fusion power by the end of this century; that only pure fusion systems were considered; that only normal operating conditions were considered for long-life applications; and that radioactive waste disposal is a manageable problem

  2. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  3. Nuclear fusion reactor material data base

    International Nuclear Information System (INIS)

    The working conditions for the materials to be used for nuclear fusion reactors are many sided, complicated and harsh. The existing experimental results can not be employed directly for reactor design. In such a case, it is insufficient to simply accumulate the experimental data on the specific properties of specific materials, and it is necessary to predict the material behaviour in the reactor system by rearranging those data in accordance with the purpose. When extreme characteristics are frequently pursued, wide insight is necessary regarding from the fundamental theory to the testing of practical equipment. In the development of nuclear fusion reactor materials, it is especially important to satisfy the condition that the design purpose of the system for selecting the optimum materials should be fully understood. A new material engineering approach has become necessary, in which a barrier existing so far between materials and the design is removed. From this viewpoint, the specifications, present status and design and development of material data base presently under development, the use of the data base made for trial, and the interface of material development and nuclear fusion reactor design, are described. In this data base, most of the data handle literature data, and the event data base mainly composed of experimental data is very few, similarly to other fields. Data modification will be necessary to respond the questions of users. (Wakatsuki, Y.)

  4. Modelling irradiation effects in fusion materials

    DEFF Research Database (Denmark)

    Victoria, M.; Dudarev, S.; Boutard, J.L.;

    2007-01-01

    We review the current status of the European fusion materials modelling programme. We describe recent findings and outline potential areas for future development. Large-scale density functional theory (DFT) calculations reveal the structure of the point defects in α-Fe, and highlight the crucial...

  5. Hydrogen interaction with fusion-relevant materials

    International Nuclear Information System (INIS)

    This paper is an outline of the work carried out at JRC Ispra in the Tritium-materials Interaction Laboratory, on the interaction of gaseous hydrogen with several materials of interest in the field of fusion technology. Experimental work is reported and a concise review of relevant theoretical and numerical supporting activity is given as well. A period of about seven years is covered since 1982. Current work and possible future extensions are also briefly mentioned. 11 figs., 18 refs

  6. Index of competences Advanced Materials

    International Nuclear Information System (INIS)

    This index gathers the main french competences in advanced materials field (university laboratories, research and development organisms, technical centers, experts...). The concerned advanced materials are plastics and technical polymers, metals and alloys, composite materials, technical ceramics, glasses, paper, wood and textile. A PC computer version is also available. (A.B.)

  7. Fusion reactor materials research in China

    International Nuclear Information System (INIS)

    The fusion materials research in China is introduced. Many kinds of structural materials (such as Ti-modified stainless steel, ferritic steel, HT-9, HT-7, oxide dispersion strengthening ferritic steel), tritium breeders (lithium, Li2O, γ-LiAlO2) and plasma facing materials (PFMs) (graphite with TiC and SiC coatings) have been developed or being developed. A systematic research activities on irradiation effects, compatibility, plasma materials interaction, thermal shock during disruption, tritium production, release and permeation, neutron multiplication in Be and Pb, etc. have been performed. The research activities are summarized and some experimental results are also given

  8. Advancing Fusion by Innovations: Smaller, Quicker, Cheaper

    DEFF Research Database (Denmark)

    Gryaznevich, Mikhail; Chuyanov, V. A.; Kingham, D.;

    2015-01-01

    On the path to Fusion power, the construction of ITER is on-going, however there is not much progress in performance improvements of tokamaks in the last 15 years, Fig.1. One possible reason for this stagnation is the lack of innovations in physics and technology that could be implemented...... with this approach in which progress is expected mainly from the increase in the size of a Fusion device. Such innovations could be easier to test and use in much smaller (and so cheaper and quicker to build) compact Fusion devices. In this paper we propose a new path to Fusion energy based on a compact high field...

  9. Fusion ceramic materials and components

    International Nuclear Information System (INIS)

    Present-day approach for the radiation hardness assurance of components and materials for the International Thermonuclear Experimental Reactor ITER is based on extensive testing under representative conditions. Those conditions include radiation, temperature and vacuum and the possibility of in-situ monitoring of radiation-induced changes in characteristics of interest. The resistive bolometers are an example of an ITER component currently tested at SCK-CEN. Bolometers will be used for the plasma emission monitoring in high-radiation and high-temperature locations such as the divertor region. Previous tests with bolometers having gold strips on mica substrates were performed in the JMTR (Japan) and revealed problems of adhesion of the strips on the mica surface, which naturally has a very low roughness. A new type of the resistive bolometer based on platinum meander on alumina or aluminum-nitride (AlN) substrates have to be tested at a high neutron flux (0.01 dpa), high temperature (400 C) and in vacuum (10-3 mBar)- conditions appropriate for the ITER. Another illustration of on-going radiation testing for the ITER is the investigation of the Radiation-Induced Electrical Degradation (RIED). RIED is degradation of electrical insulation under the combined effect of radiation, temperature, vacuum and a strong electric field. It may be an issue to be dealt with in the design phase. Our objective is to develop instrumentation capabilities, which can provide in-situ data on the radiation hardness of materials and components intended for the use in the ITER. These capabilities will allow assessment of the performance parameters under conditions representative in terms of radiation load, temperature and vacuum, and will include on-line electric measurements

  10. The European Fusion Material properties database

    International Nuclear Information System (INIS)

    Materials research represents a significant part of the European and world effort on fusion research. A European Fusion Materials web-based relational database is being developed to collect, expand and preserve for the future the data produced in support of the NET, DEMO and ITER. The database allows understanding of material properties and their critical parameters for fusion environments. The system uses J2EE technologies and the PostgreSQL relational database, and flexibility ensures that new methods to automate material design for specific applications can be easily implemented. It runs on a web server and allows users access via the Internet using their preferred web browser. The database allows users to store, browse and search raw tests, material properties and qualified data, and electronic reports. For data security, users are issued with individual accounts, and the origin of all requests is checked against a list of trusted sites. Different user accounts have access to different datasets to ensure the data is not shared unintentionally. The system allows several levels of data checking/cleaning and validation. Data insertion is either online or through downloaded templates, and validation is through different expert groups, which can apply different criteria to the data

  11. Advances in the real-time interpretation of fusion experiments

    International Nuclear Information System (INIS)

    The National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion energy research by creating a robust, user-friendly collaborative environment and deploying this to the more than one thousand fusion scientists in forty institutions who perform magnetic fusion research in the US. Work specifically focusing on advancing real-time interpretation of fusion experiments includes collocated collaboration in tokamak control rooms via shared display walls, remote collaboration using Internet based audio and video, and pseudo-real-time data analysis via the National Fusion Energy Grid (FusionGrid). The technologies being developed and deployed will also scale to the next generation experimental devices such as ITER

  12. Magnetized Target Fusion in Advanced Propulsion Research

    Science.gov (United States)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  13. Materials needs for compact fusion reactors

    International Nuclear Information System (INIS)

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m3 versus 0.3 to 0.5 MW/m3), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.)

  14. External costs of silicon carbide fusion power plants compared to other advanced generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lechon, Y. E-mail: yolanda.lechon@ciemat.es; Cabal, H.; Saez, R.M.; Hallberg, B.; Aquilonius, K.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2003-09-01

    This study was performed in the framework of the Socio-Economic Research on Fusion (SERF3), which is jointly conducted by Euratom and the fusion associations. Assessments of monetarized external impacts of the fusion fuel-cycle were previously performed (SERF1 and SERF2). Three different power plant designs were studied, with the main difference being the structural materials and cooling system used. In this third phase of the SERF project the external costs of three additional fusion power plant models using silicon carbide as structural material have been analysed. A comparison with other advanced generation technologies expected to be in use around 2050, when the first fusion power plant would be operative, has also been performed. These technologies include advanced fossil technologies, such as Natural Gas Combined Cycle, Pressurised Fluidised Bed Combustion and Integrated Gasification Combined Cycle with carbon sequestration technologies; fuel cells and renewable technologies including geothermal energy, wind energy and photovoltaic systems with energy storage devices. Fusion power plants using silicon carbide as structural material have higher efficiencies than plants using steel and this fact has a very positive effect on the external costs per kW h. These external costs are in the lowest range of the external costs of advanced generation technologies indicating the outstanding environmental performance of fusion power.

  15. External costs of silicon carbide fusion power plants compared to other advanced generation technologies

    International Nuclear Information System (INIS)

    This study was performed in the framework of the Socio-Economic Research on Fusion (SERF3), which is jointly conducted by Euratom and the fusion associations. Assessments of monetarized external impacts of the fusion fuel-cycle were previously performed (SERF1 and SERF2). Three different power plant designs were studied, with the main difference being the structural materials and cooling system used. In this third phase of the SERF project the external costs of three additional fusion power plant models using silicon carbide as structural material have been analysed. A comparison with other advanced generation technologies expected to be in use around 2050, when the first fusion power plant would be operative, has also been performed. These technologies include advanced fossil technologies, such as Natural Gas Combined Cycle, Pressurised Fluidised Bed Combustion and Integrated Gasification Combined Cycle with carbon sequestration technologies; fuel cells and renewable technologies including geothermal energy, wind energy and photovoltaic systems with energy storage devices. Fusion power plants using silicon carbide as structural material have higher efficiencies than plants using steel and this fact has a very positive effect on the external costs per kW h. These external costs are in the lowest range of the external costs of advanced generation technologies indicating the outstanding environmental performance of fusion power

  16. BR2 Reactor: Irradiation of Fusion Materials

    International Nuclear Information System (INIS)

    In collaboration with the EFDA (European Fusion Development Agreement), SCK-CEN irradiates several materials in the BR2 reactor at different temperatures and up to different doses to study their mechanical and physical properties during and after irradiation. Those materials are candidates for the construction of different parts of the ITER fusion reactor and of the long-term DEMO (DEMOnstration) reactor. The objectives of research performed at SCK-CEN are to irradiate up to 2 dpa RAFM (Reduced Activity Ferritic Martensitic) steels joints and RAFM ODS (Oxide Dispersion Strengthening) at 300 degrees Celsius; to build and test an experimental rig to perform in-situ creep-fatigue tests under neutron irradiation and its out-pile equipment and to design a new irradiation basket to irradiate in BR2 copper/stainless steel joints and RAFM specimens with implanted helium at low dose

  17. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher βN and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (βN=6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  18. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  19. Organic materials for fusion-reactor applications

    International Nuclear Information System (INIS)

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made

  20. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author)

  1. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  2. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  3. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  4. Context Representation and Fusion: Advancements and Opportunities

    Directory of Open Access Journals (Sweden)

    Asad Masood Khattak

    2014-05-01

    Full Text Available The acceptance and usability of context-aware systems have given them the edge of wide use in various domains and has also attracted the attention of researchers in the area of context-aware computing. Making user context information available to such systems is the center of attention. However, there is very little emphasis given to the process of context representation and context fusion which are integral parts of context-aware systems. Context representation and fusion facilitate in recognizing the dependency/relationship of one data source on another to extract a better understanding of user context. The problem is more critical when data is emerging from heterogeneous sources of diverse nature like sensors, user profiles, and social interactions and also at different timestamps. Both the processes of context representation and fusion are followed in one way or another; however, they are not discussed explicitly for the realization of context-aware systems. In other words most of the context-aware systems underestimate the importance context representation and fusion. This research has explicitly focused on the importance of both the processes of context representation and fusion and has streamlined their existence in the overall architecture of context-aware systems’ design and development. Various applications of context representation and fusion in context-aware systems are also highlighted in this research. A detailed review on both the processes is provided in this research with their applications. Future research directions (challenges are also highlighted which needs proper attention for the purpose of achieving the goal of realizing context-aware systems.

  5. Multiscale study on hydrogen mobility in metallic fusion divertor material

    OpenAIRE

    Heinola, Kalle

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reactio...

  6. Modeling plasma facing materials for fusion power

    Directory of Open Access Journals (Sweden)

    D.M. Duffy

    2009-11-01

    Full Text Available Plasma facing materials, the materials that line the vacuum vessel, experience particularly hostile conditions as they are subjected to high particle and neutron flux and high heat loads. Plasma facing materials must have high thermal conductivity for efficient heat transport, high cohesive energy for low erosion by particle bombardment and low atomic number to minimize plasma cooling. These contradictory requirements make the development of plasma facing materials one of the greatest challenges ever faced by materials scientists. Modeling has made, and continues to make, a valuable contribution to the understanding of the various processes involved in the radiation damage of plasma facing materials. The techniques used to model the effects of high thermal and particle flux range from ab initio techniques that study processes occurring on femtosecond timescales and nanometre length scales, to molecular dynamics for intermediate length and timescales and finite element models for macroscopic length scales and experimental timescales. The synergy between the effects of the plasma, high heat flux and particle flux presents particular challenges for modeling. In this review we summarise the potential candidates for plasma facing materials and describe the methods used for modeling the response of these materials to the conditions experienced in a fusion reactor.

  7. Materials to deliver the promise of fusion power - progress and challenges

    Science.gov (United States)

    Bloom, E. E.; Zinkle, S. J.; Wiffen, F. W.

    2004-08-01

    High-performance reduced-activation materials are crucial for fulfillment of the promise of fusion to provide safe, economical, and environmentally acceptable energy. Three reduced activation structural materials have emerged as promising candidates, based on 8-9Cr ferritic/martensitic steels, V-Cr-Ti alloys, and SiC/SiC composites. Due to advances in understanding how to control and engineer the nanoscale phase stability required for harsh neutron irradiation environments, these reduced activation materials have unirradiated properties that are superior to commercially available analogs. Perhaps the most important accomplishment to date from fusion materials research is the radiation effects knowledge base. Models of radiation effects and supporting experiments highlight the critical role of helium production on the microstructural stability and lifetime of irradiated materials. The proposed International Fusion Materials Irradiation Facility (IFMIF) would fill a critical need for fusion materials development.

  8. Special purpose materials for fusion application

    International Nuclear Information System (INIS)

    Originally in 1978 the Special Purpose Materials Task Group was concerned with tritium breeding materials, coolants, tritium barriers, graphite and silicon carbide, ceramics, heat-sink materials, and magnet components. Since then several other task groups have been created, so now the category includes only materials for superconducting magnets and ceramics. For the former application copper-stabilized Nb3Sn (Ti) insulated with polyimides will meet the general requirements, so that testing of prototype components is the priority task. Ceramics are required for several critical components of fusion reactors either as dielectrics or as a structural material. Components near the first wall will receive exposures of 5 to 20 MW.year/m"2. Other ceramic applications are well behind the first wall, with lower damage levels. Most insulators operate near room temperature, but ceramic blanket structures may operate up to 10000C. Because of a meager data base, one cannot identify optimum ceramics for structural application; but MgAl2O4 is an attractive dielectric material

  9. Irradiation of Fusion Materials for ORNL (US)

    International Nuclear Information System (INIS)

    A representative selection of high chromium steels of fusion relevance has been irradiated in the BR2 reactor, in the framework of a collaborative project between ORNL (Oak Ridge National Laboratory, US) and SCK-CEN. The experiment, denominated FRISCO-F (Fusion and Reactor Materials Irradiation SCK-CEN/ORNL - Fusion materials), included tensile and miniature C(T) fracture toughness specimens of the following materials: EUROFER97, F82H, CLAM (Chinese Low Activation Material) and four ORNL developmental alloys (9Cr, 5Cr, 3Cr, 3Cr+Ta); in addition, we also irradiated samples of the well-known ferritic/martensitic steel T91, which is not relevant for fusion (its chemical composition cannot be considered reduced-activation) but is regarded as one of the reference materials for applications such as accelerated-driven systems (ADS) and future high temperature nuclear energy systems (Gen IV). Irradiation of RPV Steels for ORNL (US) The primary goal of the Heavy-Section Steel Irradiation (HSSI) Program is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behaviour, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water RPV integrity. The program includes studies of the effects of irradiation on the degradation of mechanical and fracture properties of vessel materials augmented by enhanced examinations and modelling of the accompanying microstructural changes. Effects of: specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and post-irradiation mitigation are being examined on a wide range of fracture properties. Results from the HSSI studies are incorporated into codes and standards directly applicable to resolving major regulatory issues that involve RPV irradiation embrittlement such as pressurized-thermal shock, operating pressure-temperature limits, low-temperature over pressurization, and

  10. Relevance of advanced nuclear fusion research: Breakthroughs and obstructions

    Science.gov (United States)

    Coppi, Bruno

    2016-03-01

    An in depth understanding of the collective modes that can be excited in a wide range of high-energy plasmas is necessary to advance nuclear fusion research in parallel with other fields that include space and astrophysics in particular. Important achievements are shown to have resulted from implementing programs based on this reality, maintaining a tight connection with different areas of investigations. This involves the undertaking of a plurality of experimental approaches aimed at understanding the physics of fusion burning plasmas. At present, the most advanced among these is the Ignitor experiment involving international cooperation, that is designed to investigate burning plasma regimes near ignition for the first time.

  11. Advanced neutron diagnostics for ITER fusion experiments

    International Nuclear Information System (INIS)

    Results are presented from the neutron emission spectroscopy (NES) diagnosis of JET plasma performed with the MPR during the DTE1 campaign of 1997 and the recent TTE of 2003. The NES diagnostic capabilities at JET are presently being drastically enhanced by an upgrade of the MPR (MPRu) and a new 2.5-MeV TOF neutron spectrometer (TOFOR). The principles of MPRu and TOFOR are described and illustrated with the diagnostic role they will play in the high performance fusion experiments in the forward program of JET largely aimed at supporting ITER. The importance for the JET NES effort for ITER is discussed. (author)

  12. IFMIF suitability for evaluation of fusion functional materials

    OpenAIRE

    Casal, N.; Sordo Balbín, Fernando; Mota, F.; Jordanova, J.; Garcia, A.; Ibarra, A.; Vila, R.; Rapisarda, D; Queral, V.; Perlado Martin, Jose Manuel

    2011-01-01

    The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is plan...

  13. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, John J.

    2011-06-15

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  14. Advanced Fusion Reactors for Space Propulsion and Power Systems

    Science.gov (United States)

    Chapman, John J.

    2011-01-01

    In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

  15. Sensor Fusion for Electromagnetic Stress Measurement and Material Characterisation

    OpenAIRE

    Wilson, John; Tian, Gui; Morozov, Maxim; Qubaa, Abd

    2010-01-01

    Sensor fusion for electromagnetic NDE at different stages and levels has been discussed and three case studies for fusion at sensor and feature levels have been investigated. Instead of applying innovative mathematical techniques to utilise multiple sensors to improve the fidelity of defect and material characterisation, physics based sensor fusion is investigated. It has been shown that the three types of sensing system fusion, feature selection and integration and information combination fo...

  16. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. PMID:20217798

  17. Unique materials requirements for inertial confinement fusion

    International Nuclear Information System (INIS)

    The emphasis in the present discussion is on performance of structural materials in an ICF environment. The irradiation performance is discussed in the context of the processes of primary damage production, microstructural evolution and subsequent effects on physical and mechanical properties. The high-rate, pulsed irradiation environment can directly affect the damage efficiency and the point defect clustering processes which produce the irradiation-induced microstructure. The irradiation flux and the irradiation-induced microstructure can affect material properties such as embrittlement, fatigue, irradiation creep, swelling, phase stability, non-equilibrium solute segregation, and the surface damage stages. Issues that relate to the fuel cycle and coolant compatibility are not strongly dependent on the irradiation environment but remain as unique for ICF. In addition, the challenge of producing fusion energy dictates materials development for drivers and pellets. Driver systems (lasers or accelerators) must be capable of high-energy, high-power, pulsed operation. Multi-shelled fuel pellets must be fabricated inexpensively and in large numbers. Furthermore, the interdependence of driver, pellet, and structural materials issues is discussed. (author)

  18. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  19. Advanced neutron diagnostics for ITER fusion experiments

    International Nuclear Information System (INIS)

    The diagnostics functions of neutron measurements are reviewed as well as the roles played by neutron yield monitors, cameras and spectrometers. The importance of recent developments in neutron emission spectroscopy (NES) diagnostics is emphasized. Results are presented from NES diagnosis of JET plasma performed with the MPR during the DTE1 campaign of 1997 and the recent TTE of 2003. The NES diagnostic capabilities at JET are presently being enhanced by an upgrade of the MPR (MPRu) and a new 2.5-MeV TOF neutron spectrometer (TOFOR). The principles of MPRu and TOFOR are described and illustrated with the diagnostic role they will play in the high performance fusion experiments in the forward program of JET largely aimed at supporting ITER. The importance for the JET NES effort for ITER is discussed

  20. Chromium--a material for fusion technology

    International Nuclear Information System (INIS)

    Due to their low neutron-induced radioactivity chromium based materials are considered to be candidates for structure materials in fusion technology. In this paper investigations are presented of unirradiated chromium with a purity of 99.96% (DUCROPUR) and a dispersion strengthened chromium alloy Cr5Fe1Y2O3 (DUCROLLOY). Both materials have been produced in a powder metallurgical route. Mechanical tests of smooth and pre-cracked specimens have been performed in a wide temperature range. Below 280 deg. C the fracture toughness values of DUCROPUR are very low (1/2), above the transition temperature they exceed 500 MPa m1/2. Large plastic deformations have been observed. DUCROLLOY does not indicate such a significant increase of fracture toughness in the tested temperature range. But above 400 deg. C large plastic deformations can be obtained in bending samples, too. The fatigue crack propagation behaviour of DUCROPUR at 300 deg. C is similar to that of a ductile metal

  1. FTIR characterization of advanced materials

    Science.gov (United States)

    Young, P. R.; Chang, A. C.

    1986-01-01

    This paper surveys the application of Fourier transform infrared spectroscopy to the characterization of advanced materials. FTIR sampling techniques including internal and external reflectance and photoacoustic spectroscopy are discussed. Representative examples from the literature of the analysis of resins, fibers, prepregs and composites are reviewed. A discussion of several promising specialized FTIR techniques is also presented.

  2. Advanced batteries materials science aspects

    CERN Document Server

    Huggins, Robert A

    2008-01-01

    Storage and conversion are critical components of important energy-related technologies. This title employs materials science concepts and tools to describe the features that control the behavior of advanced electrochemical storage systems. It focuses on the basic phenomena that determine the properties of the components.

  3. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  4. Analysis of carbon based materials under fusion relevant thermal loads

    International Nuclear Information System (INIS)

    Carbon based materials (CBMs) are used in fusion devices as plasma facing materials for decades. They have been selected due to the inherent advantages of carbon for fusion applications. The main ones are its low atomic number and the fact that it does not melt but sublimate (above 3000 C) under the planned working conditions. In addition, graphitic materials retain their mechanical properties at elevated temperatures and their thermal shock resistance is one of the highest, making them suitable for thermal management purpose during long or extremely short heat pulses. Nuclear grade fine grain graphite was the prime form of CBM which was set as a standard but when it comes to large fusion devices created nowadays, thermo-mechanical constraints created during transient heat loads (few GW.m-2 can be deposited in few ms) are so high that carbon/carbon composites (so-called Carbon Fiber Composites (CFCs)) have to be utilized. CFCs can achieve superior thermal conductivity as well as mechanical properties than fine grain graphite. However, all the thermo-mechanical properties of CFCs are highly dependent on the loading direction as a consequence of the graphite structure. In this work, the background on the anisotropy of the graphitic structures but also on the production of fine grain graphite and CFCs is highlighted, showing the major principles which are relevant for the further understanding of the study. Nine advanced CBMs were then compared in terms of microstructure and thermo-mechanical properties. Among them, two fine grain graphites were considered as useful reference materials to allow comparing advantages reached by the developed CFCs. The presented microstructural investigation methods permitted to make statements which can be applied for CFCs presenting similarities in terms of fiber architecture. Determination of the volumetric percentage of the major sub-units of CFCs, i.e. laminates, felt layers or needled fiber groups, lead to a better understanding on

  5. Advanced fusion technologies developed for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    The modification of JT-60U is planned as a full superconducting tokamak (JT-60SC). The objectives of the JT-60SC program are to establish scientific and technological bases for the steady-state operation of high performance plasmas and utilization of reduced-activation materials in economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to DEMO reactor have been developed in the superconducting magnet technology and plasma facing components for the design of JT-60SC. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFC) of JT-60SC. The R and D to demonstrate applicability of Nb3Al conductor to the TFC by a react-and-wind technique have been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low AC loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the CFC target was successfully demonstrated on the electron beam irradiation stand. (author)

  6. Advances in U.S. Heavy Ion Fusion Science

    International Nuclear Information System (INIS)

    During the past two years, the US heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high-brightness beam transport, advanced theory and numerical simulations, and heavy ion target physics for fusion. First experiments combining radial and longitudinal compression π of intense ion beams propagating through background plasma resulted in on-axis beam densities increased by 700X at the focal plane. With further improvements planned in 2008, these results enable initial ion beam target experiments in warm dense matter to begin next year. They are assessing how these new techniques apply to higher-gain direct-drive targets for inertial fusion energy

  7. Selected advances in materials research

    International Nuclear Information System (INIS)

    Several findings emanating from materials research that should have a beneficial impact on technological advancement in the future are described. The report deals with the GRAPHNOL, a new class of high-temperature brazing alloy for joining refractory components, gel-sphere-pac process for manufacture of nuclear fuel, and noble-metal fuel cladding for service in radioisotope thermoelectric generators designed to provide auxiliary power aboard spacecraft for planetary exploration

  8. Fission-reactor experiments for fusion-materials research

    International Nuclear Information System (INIS)

    The US Fusion Materials Program makes extensive use of fission reactors to study the effects of simulated fusion environments on materials and to develop improved alloys for fusion reactor service. The fast reactor, EBR-II, and the mixed spectrum reactors, HFIR and ORR, are all used in the fusion program. The HFIR and ORR produce helium from transmutations of nickel in a two-step thermal neutron absorption reaction beginning with 58Ni, and the fast neutrons in these reactors produce atomic displacements. The simultaneous effects of these phenomena produce damage similar to the very high energy neutrons of a fusion reactor. This paper describes irradiation capsules for mechanical property specimens used in the HFIR and the ORR. A neutron spectral tailoring experiment to achieve the fusion reactor He:dpa ratio will be discussed

  9. Advanced Material Rendering in Blender

    Czech Academy of Sciences Publication Activity Database

    Hatka, Martin; Haindl, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 15-23. ISSN 1081-1451 R&D Projects: GA ČR GAP103/11/0335; GA ČR GA102/08/0593 Grant ostatní: CESNET(CZ) 387/2010; CESNET(CZ) 409/2011 Institutional support: RVO:67985556 Keywords : realistic material rendering * bidirectional texture function * Blender Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/haindl-advanced material rendering in blender.pdf

  10. Recent advances on thermoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Jin-cheng ZHENG

    2008-01-01

    By converting waste heat into electricity through the thermoelectric power of solids without producing greenhouse gas emissions,thermoelectric generators could be an important part of the solution to today's energy challenge.There has been a resurgence in the search for new materials for advanced thermoelectric energy conversion applications. In this paper,we will review recent efforts on improving thermoelectric efficiency. Particularly,several novel proof-of-principle approaches such as phonon disorder in phonon-glasselectron crystals,low dimensionality in nanostructured materials and charge-spin-orbital degeneracy in strongly correlated systems on thermoelectric performance will be discussed.

  11. Advanced computational tools and methods for nuclear analyses of fusion technology systems

    International Nuclear Information System (INIS)

    An overview is presented of advanced computational tools and methods developed recently for nuclear analyses of Fusion Technology systems such as the experimental device ITER ('International Thermonuclear Experimental Reactor') and the intense neutron source IFMIF ('International Fusion Material Irradiation Facility'). These include Monte Carlo based computational schemes for the calculation of three-dimensional shut-down dose rate distributions, methods, codes and interfaces for the use of CAD geometry models in Monte Carlo transport calculations, algorithms for Monte Carlo based sensitivity/uncertainty calculations, as well as computational techniques and data for IFMIF neutronics and activation calculations. (author)

  12. Report of Nuclear Fusion Reactor Engineering Research Meeting. 6. Advanced reactor engineering technology for nuclear fusion demonstration reactor

    International Nuclear Information System (INIS)

    This research meeting has been held every year, and the 6th meeting was held on January 17, 1995 at University of Tokyo. As the type of a demonstration reactor, tokamak type and helical type were set up, and the topics on the various subjects of their reactor engineering technology were presented, and active discussion was carried out. At the meeting, lectures were given on the reactor engineering technology required for a prototype reactor, the material technology supposed for a demonstration reactor, thermal-electric conversion and the direct electricity generation using Nernst effect, the advanced manufacturing technology of functional, structural materials, the application of high temperature superconductors to nuclear fusion reactors, the reactor engineering technology required for a helical type demonstration reactor, and tokamak demonstration reactor and the common technology of fission and fusion. This report is the summary of these lecture materials. The useful knowledges were obtained for considering the development of nuclear fusion reactor technology hereafter in this meeting. (K.I.)

  13. Plasma Processing of Advanced Materials

    Energy Technology Data Exchange (ETDEWEB)

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  14. Material Development for Nuclear Fusion and Energy Development Using Actinoids

    OpenAIRE

    Kayano, Hideo

    1994-01-01

    In our Facilities. fundamental researches on nuclear fuels and reactor materials have been performed by making use of JMTR and JOYO. Authors outline original studies among them currently performed by having myself as the core. Research fields in progress are material developments for the nuclear fusion such as ferritic steel and V alloy and energy development using Actinoids. As the material development for practical nuclear fusion, we do those of low activation V alloys, ferritic steels and ...

  15. Fusion fuel cycle: material requirements and potential effluents

    International Nuclear Information System (INIS)

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described

  16. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  17. Engineering spinal fusion: evaluating ceramic materials for cell based tissue engineered approaches

    NARCIS (Netherlands)

    Wilson, C.E.

    2011-01-01

    The principal aim of this thesis was to advance the development of tissue engineered posterolateral spinal fusion by investigating the potential of calcium phosphate ceramic materials to support cell based tissue engineered bone formation. This was accomplished by developing several novel model syst

  18. Advances in polypropylene based materials

    International Nuclear Information System (INIS)

    Polypropylene is an extremely versatile thermoplastic polymer known for its good performance/price ratio, excellent heat, moisture and chemical resistance, favorable processing characteristics and recyclability. Due to its universal properties, polypropylene is applied in numerous industrial fields such as electronic and electrical, automobile, textile, pipeline, etc. Furthermore, the progress in its synthesis and property modification in the last decade has contributed to the development of new polypropylene based materials with advanced performance. This review aims at reporting on some recent developments in polypropylene based materials, such as nano fibers, natural fiber reinforced composites, self-reinforced polypropylene and polypropylene/clay hybrids, that have replaced many types of engineering thermoplastics in high-performance applications. (Author)

  19. Present status of the European Community's Fusion Materials Programme

    International Nuclear Information System (INIS)

    The Fusion Materials Programme of the European Communities is largely focused on the next step in the European strategy towards fusion energy development, i.e. on NET, the Next European Torus. The main objectives and operating conditions of NET are therefore first briefly presented. A review is then given of the present status of our knowledge regarding the main metallic structural materials envisaged for the first wall/blanket and for the divertor plates. Attention is paid to the need for longer term research and development towards low activation structural materials to be used in a post-NET Demonstration Reactor. Finally, a survey is presented of the current European Fusion Technology Programme devoted to the various candidate structural and protection materials for fusion devices. (author)

  20. Nuclear data for structural materials of fission and fusion reactors

    International Nuclear Information System (INIS)

    The document presents the status of nuclear reaction theory concerning optical model development, level density models and pre-equilibrium and direct processes used in calculation of neutron nuclear data for structural materials of fission and fusion reactors. 6 refs

  1. Session: CSP Advanced Systems: Optical Materials (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.

    2008-04-01

    The Optical Materials project description is to characterize advanced reflector, perform accelerated and outdoor testing of commercial and experimental reflector materials, and provide industry support.

  2. Deuterium behavior in first-wall materials for nuclear fusion

    OpenAIRE

    Bernard, Elodie

    2012-01-01

    Plasma-wall interactions play an important part while choosing materials for the first wall in future fusion reactors. Moreover, the use of tritium as a fuel will impose safety limits regarding the total amount present in the tokamak. Previous analyses of first-wall samples exposed to fusion plasma highlighted an in-bulk migration of deuterium (used as an analog to tritium) in carbon materials. Despite its limited value, this retention is problematic: contrary to co-deposited layers, it seems...

  3. Methodology of predicting materials failures in advanced nuclear systems

    International Nuclear Information System (INIS)

    Experiences in the nuclear power plant operation and the fixing of unexpected component failures, originated mainly from corrosion damages, have led to a base methodology of predicting, correcting and preventing failures. Some analogies of the algorithm developed have been extended to the evolution of reliable materials, their testing and database construction in the development of advanced systems for next generation. An illustrative topic was chosen from the materials development and reliability testing carried out in the development of an advanced HTGR for process heat applications. Possibility and issues in making the similar approach in the case of nuclear fusion is also discussed

  4. Material Challenges For Plasma Facing Components in Future Fusion Reactors

    International Nuclear Information System (INIS)

    Increasing attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO2-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible materials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PFMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm-2; the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm-2 for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs and heat sink materials as well as reliable fabrication processes for actively cooled plasma facing components. The technical solutions which are considered today are mainly based on the PFMs beryllium, carbon or tungsten joined to copper alloys or stainless steel heat sinks. In addition to the above mentioned quasi-stationary heat loads, short transient thermal pulses with deposited energy densities up to several tens of MJm-2 are a serious concern for next step tokamak devices. The most frequent events are so-called Edge Localized Modes (type I ELMs) and plasma disruptions

  5. Advanced diagnostics for magnetic and inertial confinement fusion

    International Nuclear Information System (INIS)

    This book is a collection of papers, written by specialists in the field, on advanced topics of nuclear fusion diagnostics. The 78 contributions were originally presented at the International Conference on Advanced Diagnostics for Magnetic and Inertial Fusion held at Villa Monastero, Italy in September 2001. Both magnetically confined and inertial fusion programmes are quite extensively covered, with more emphasis given to the former scheme. In the case of magnetic confinement, since the present international programme is strongly focused on next-step devices, particular attention is devoted to techniques and technologies viable in an environment with strong neutron fluxes. Indeed, in the first section, the various methods are considered in the perspective of performing the measurements of the relevant parameters in conditions approaching a burning plasma, mainly in the Tokamak configuration. The most demanding requirements, like the implications of the use of tritium and radiation resistance, are reviewed and the most challenging open issues, which require further research and development, are also clearly mentioned. The following three sections are devoted to some of the most recent developments in plasma diagnostics, which are grouped according to the following classification: 'Neutron and particle diagnostics', 'Optical and x-ray diagnostics' and 'Interferometry, Polarimetry and Thomson Scattering'. In these chapters, several of the most recent results are given, covering measurements taken on the most advanced experiments around the world. Here the developments described deal more with the requirements imposed by the physical issues to be studied. They are therefore more focused on the approaches adopted to increase the spatial and time resolution of the diagnostics, on some methods to improve the characterisation of the turbulence and on fast particles. Good coverage is given to neutron diagnostics, which are assuming increasing relevance as the plasma

  6. Contributions to the course and workshop on basic and advanced fusion plasmas diagnostic techniques

    International Nuclear Information System (INIS)

    Three papers read at the Course and workshop on basic and advanced fusion plasmas diagnostic techniques held in Varenna from 3 to 13 September 1986 and prepared by searchers of Fusion Department of ENEA are reported

  7. Fusion blanket materials development and recent R and D activities

    International Nuclear Information System (INIS)

    Development of structural materials plays an important role in the feasibility of fusion power plant. The candidate structural materials for future fusion reactors are Reduced Activation Ferritic Martensitic (RAFM) steel, nano structured ODS Steel, vanadium alloys and SiC/SiCf composite etc. RAFM steel is presently considered as the structural material for Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) because of its high void swelling resistance and improved thermal properties compared to austenitic steel. Development of RAFM steel in India is being carried out in full swing in collaboration with various research laboratories and steel industries. This paper presents an overview of the Indian activities on fusion blanket materials and describes in brief the efforts made to develop IN-RAFM steel as structural material for the LLCB TBM. In future, due to enhanced properties of vanadium base alloy and nano structured materials like ODS RAFMS, RAFM steel may be replaced by these materials for its application in DEMO relevant fusion reactor. Future R and D activities will be specifically towards the development of these structural materials for fusion reactor

  8. EPRI Asilomar papers: on the possibility of advanced fuel fusion reactors, fusion-fission hybrid breeders, small fusion power reactors, Asilomar, California, December 15--17, 1976

    International Nuclear Information System (INIS)

    An EPRI Ad Hoc Panel met in Asilomar, California for a three day general discussion of topics of particular interest to utility representatives. The three main topics considered were: (1) the possibility of advanced fuel fusion reactors, (2) fusion-fission hybrid breeders, and (3) small fusion power reactors. The report describes the ideas that evolved on these three topics. An example of a ''neutron less'' fusion reactor using the p-11B fuel cycle is described along with the critical questions that need to be addressed. The importance to the utility industry of using fusion neutrons to breed fission fuel for LWRs is outlined and directions for future EPRI research on fusion-fission systems are recommended. The desirability of small fusion power reactors to enable the early commercialization of fusion and for satisfying users' needs is discussed. Areas for possible EPRI research to help achieve this goal are presented

  9. Fusion materials irradiations at MaRIE's fission fusion facility

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, Eric J [Los Alamos National Laboratory

    2010-10-06

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

  10. ITER at the international conference on fusion reactor materials

    International Nuclear Information System (INIS)

    The reports summarizes the topics of the eighth International Conference on Fusion Reactor Materials (ICFRM-8) which was held in Sendai, Japan, on 26-31 October 1997. The ICFRM is focused on the whole spectrum of materials and technologies to be applied in fusion reactors and related facilities. The total number of conference participants was over 500, representing 24 countries and about 600 oral and poster papers were presented at the conference. Three sessions were devoted to ITER materials: (i) Design-Materials Interface and ITER (oral session); (ii) ITER, Irradiation Facility and Technology, (poster session); (iii) ITER and Beyond (discussion session)

  11. Advanced fusion plasma diagnostics. Task IIIB. Final report

    International Nuclear Information System (INIS)

    The goal of the Task IIIB program at UCLA has been to initiate, develop and demonstrate advanced diagnostic systems and techniques relevant to mainline fusion devices such as TFTR, ''Big DEE'', MFTF-B, and TEXT. The main activities carried out under IIIB have centered around the development of multichannel detector arrays for interferometry, scattering and polarimetry applications, high power far infrared sources and α-particle distribution measurements. Historically, the program philosophy has been to take advantage of UCLA's unique location in the midst of the center of the US aerospace and microwave electronics industry to enter into cooperative research and development programs with nearby high technology laboratories. This technology is then transferred to the fusion program at low cost. An increasingly important role which was latterly successfully implemented within the program was the dissemination of diagnostics information to the fusion community. This was achieved by a variety of means: organizing and participating in topical workshops and writing review articles on the state-of-the-art in a number of areas

  12. Suitability and feasibility of the International Fusion Materials Irradiation Facility (IFMIF) for fusion materials studies

    International Nuclear Information System (INIS)

    There is a global consensus among materials scientists and engineers that the qualification of materials in an appropriate test environment is indispensable for the design, construction and safe operation of demonstration fusion reactors as well as for the calibration of data generated from fission reactor and accelerator irradiations. In an evaluation process based on a series of technical workshops it was concluded that an accelerator driven D-Li stripping source would be the best choice to fulfil the requirements within a realistic time frame. In response to this need, an international design team with members from the European Union, Japan, the United States of America and the Russian Federation has developed, under the auspices of the International Energy Agency during a conceptual design activity phase (1994-1996), a suitable and feasible concept for an accelerator driven D-Li stripping source. This reference design for the International Fusion Materials Irradiation Facility (IFMIF) is based on conservative linac technology and two parallel operating 125 mA, 40 MeV deuteron beams that are focused onto a common liquid Li target with a beam footprint of 50 mm by 200 mm. The materials testing volume behind the Li target is subdivided into different flux regions: the high flux test region (0.5 L, 20-55 dpa/full power year), the medium flux test region (6 L, 1-20 dpa/full power year), and the low flux test region ( > 100 L, < 1 dpa/full power year). The design developed was the basis for the conceptual design evaluation phase (1997-1998) and for subsequent engineering oriented activities. On the basis of comprehensive neutron transport calculations, an evaluation of the irradiation parameters and the available testing volumes has shown that the users' requirements can be fulfilled. Major engineering efforts have been undertaken to establish an IFMIF design that is based on available and already proven technologies. The design developed is based on extensive

  13. Materials problems in magnetically confined pulsed fusion reactors

    International Nuclear Information System (INIS)

    It is noted that materials in fusion power reactors must function satisfactorily under conditions of intense high energy neutron flux heat loads, and temperatures ranging from cryogenic to about 13000K. The competition between fatigue and thermal creep will occur in all pulsed fusion reactors, but with the additional possibility of radiation creep being the dominant deformation mode. The response of structural support members to the effects of neutron irradiation, in pulses, of cyclic temperature transients, and therefore cyclic thermal stresses, and of elevated temperature must be evaluated for each different type of pulsed fusion reactor having different combinations of cyclic stress, steady stress, temperature, flux level, and metal choice. (U.S.)

  14. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.;

    2001-01-01

    requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW...

  15. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  16. Progress in the US program to develop low-activation structural materials for fusion

    International Nuclear Information System (INIS)

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current US structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  17. Progress in the U.S. program to develop low-activation structural materials for fusion

    International Nuclear Information System (INIS)

    It has long been recognized that attainment of the safety and environmental potential of fusion energy requires the successful development of low-activation materials for the first wall, blanket and other high heat flux structural components. Only a limited number of materials potentially possess the physical, mechanical and low-activation characteristics required for this application. The current U.S. structural materials research effort is focused on three candidate materials: advanced ferritic steels, vanadium alloys, and silicon carbide composites. Recent progress has been made in understanding the response of these materials to neutron irradiation. (author)

  18. Modeling plasma facing materials for fusion power

    OpenAIRE

    Duffy, D.M.

    2009-01-01

    Plasma facing materials, the materials that line the vacuum vessel, experience particularly hostile conditions as they are subjected to high particle and neutron flux and high heat loads. Plasma facing materials must have high thermal conductivity for efficient heat transport, high cohesive energy for low erosion by particle bombardment and low atomic number to minimize plasma cooling. These contradictory requirements make the development of plasma facing materials one of the greatest challen...

  19. A U.S. high-flux neutron facility for fusion materials development

    Energy Technology Data Exchange (ETDEWEB)

    Rei, Donald J [Los Alamos National Laboratory

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  20. The ARIES-AT advanced tokamak, Advanced technology fusion power plant

    International Nuclear Information System (INIS)

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant and to identifying physics and technology areas with the highest leverage for achieving attractive and competitive fusion power in order to guide fusion R and D. The 1000-MWe ARIES-AT design has a major radius of 5.2 m, a minor radius of 1.3 m, a toroidal β of 9.2% (β N = 5.4) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current-drive power is 35 MW. The ARIES-AT design uses the same physics basis as ARIES-RS, a reversed-shear plasma. A distinct difference between ARIES-RS and ARIES-AT plasmas is the higher plasma elongation of ARIES-AT (κ x = 2.2) which is the result of a 'thinner' blanket leading to a large increase in plasma β to 9.2% (compared to 5% for ARIES-RS) with only a slightly higher β N. ARIES-AT blanket is a simple, low-pressure design consisting of SiC composite boxes with a SiC insert for flow distribution that does not carry any structural load. The breeding coolant (Pb-17Li) enters the fusion core from the bottom, and cools the first wall while traveling in the poloidal direction to the top of the blanket module. The coolant then returns through the blanket channel at a low speed and is superheated to ∼1100 deg. C. As most of the fusion power is deposited directly into the breeding coolant, this method leads to a high coolant outlet temperature while keeping the temperature of the SiC structure as well as interface between SiC structure and Pb-17Li to about 1000 deg. C. This blanket is well matched to an advanced Brayton power cycle, leading to an overall thermal efficiency of ∼59%. The very low afterheat in SiC composites results in exceptional safety and waste disposal characteristics. All of the fusion core components qualify for shallow land burial under U.S. regulations (furthermore, ∼90% of components qualify as Class-A waste, the lowest level). The ARIES

  1. Study of an advanced D-T tokamak fusion reactor with compact fusion advanced rankine (CFAR) cycle

    International Nuclear Information System (INIS)

    Recent progress of the CFAR (Compact Fusion Advanced Rankine) cycle concept for a D-T tokamak reactor is presented with emphasis on how an enthalpy extraction can be achieved by a nonequilibrium disk-type MHD generator. For the gas stagnation temperatures of 3,000 K, enthalpy extraction in excess of 50% is found to be achievable, leading to a 40% overall plant efficiency with application of recuperative heat cycle and recently advanced thermoelectric converters. About 6 ton/sec mercury flow is required to remove fusion energy while achieving the 3,000 K gas stagnation temperature prior to the MHD generator. Studies of plasma parameters in the steady-state operation regime subject to plasma physics constraints, the minimum power in the start up phase required for ignition, effects of MHD magnet to the plasma confining magnetic fields, neutron and microwave superheat, and mercury corrosion test of ceramic rods for 2,000 hours are also described. 14 refs., 6 figs., 1 tab

  2. Energy, material and land requirement of a fusion plant

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L. E-mail: lotte.schleisner@risoe.dk; Hamacher, T.; Cabal, H.; Hallberg, B.; Lechon, Y.; Korhonen, R.; Saez, R.M

    2001-11-01

    The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the 'consumption' of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m{sup 2}/MW and the land requirement for a fission plant is a little less than 200 m{sup 2}/MW. The energy pay back time, defined later, is little more than half a year for a fusion plant with capacity 1 GWe. Only the electrical energy is accounted for as released energy not the thermal energy. In all these indicators, fusion compares well with conventional technologies while it consumes less 'environment' for the construction than renewable technologies, especially wind and solar.

  3. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.; Hallberg, B.; Lechon, Y.; Korhonen, R.; Saez, R.M.

    The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...... requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW. The...... energy pay back time, defined later in Section 6, is little more than half a year for a fusion plant with capacity 1 GWe. Only the electrical energy is accounted for as released energy not the thermal energy. In all these indicators, fusion compares well with conventional technologies while it consumes...

  4. Suitability and feasibility of the International Fusion Materials Irradiation Facility (IFMIF) for fusion materials studies

    International Nuclear Information System (INIS)

    There is a global consensus among materials scientists and engineers that the qualification of materials in an appropriate test environment is inevitable for design, construction and safe operation of DEMOnstration fusion reactors as well as for calibration of data generated from fission reactor and accelerators irradiations. In an evaluation process based on a series of technical workshops it was concluded that an accelerator driven D-Li stripping source would be the best choice to fulfill the requirements within a realistic time frame. In response to this need, an international design team with members from Europe, Japan, USA and Russia has developed under the auspices of the IEA during a Conceptual Design Activity Phase (1994-96) a suitable and feasible concept for an accelerator driven D-Li stripping source. This IFMIF reference design is based on conservative linac technology and two parallel operating 125-mA, 40-MeV deuteron beams that are focused onto a common liquid lithium target with a beam footprint of 50 mm by 200 mm. The materials testing volume downstream the Li-target is subdivided into different flux regions: The high flux test region (0.5 liter, 20-55 dpa/full power year), the medium flux test region (6 liter, 1-20 dpa/fpy), and low flux test regions (> 100 liter, < 1 dpa/fpy). The developed design was the basis fore the present Conceptual Design Evaluation Phase (1997-98) and for subsequent engineering oriented activities. Based on comprehensive neutron transport calculations, an evaluation of the irradiation parameters and the available test volumes has shown that the users requirements can be fulfilled. Major engineering efforts have been undertaken to establish an IFMIF design that is based on available and already proven technologies. The developed design includes extensive reliability, availability, maintainability as well as safety studies and is conceived for long-term operation with a total annual facility availability of at least 70

  5. Suitability and feasibility of the international fusion materials irradiation facility (IFMIF) for fusion materials studies

    International Nuclear Information System (INIS)

    There is a global consensus among materials scientists and engineers that the qualification of materials in an appropriate test environment is inevitable for design, construction and safe operation of DEMOnstration fusion reactors as well as for calibration of data generated from fission reactor and accelerators irradiations. In an evaluation process based on a series of technical workshops it was concluded that an accelerator driven D-Li stripping source would be the best choice to fulfill the requirements within a realistic time frame. In response to this need, an international design team with members from Europe, Japan, USA and Russia has developed under the auspices of the IEA during a Conceptual Design Activity Phase (1994-96) a suitable and feasible concept for an accelerator driven D-Li stripping source. This IFMIF reference design is based on conservative linac technology and two parallel operating 125-mA, 40-MeV deuteron beams that are focused onto a common liquid lithium target with a beam footprint of 50 mm by 200 mm. The materials testing volume downstream the Li-target is subdivided into different flux regions: The high flux test region (0.5 liter, 20-55 dpa/full power year), the medium flux test region (6 liter, 1-20 dpa/fpy), and low flux test regions (>100 liter, < 1 dpa/fpy). The developed design was the basis fore the present Conceptual Design Evaluation Phase (1997-98) and for subsequent engineering oriented activities. Based on comprehensive neutron transport calculations, an evaluation of the irradiation parameters and the available test volumes has shown that the users requirements can be fulfilled. Major engineering efforts have been undertaken to establish an IFMIF design that is based on available and already proven technologies. The developed design includes extensive reliability, availability, maintainability as well as safety studies and is conceived for long-term operation with a total annual facility availability of at least 70

  6. 11 International Symposium on Advanced Materials

    International Nuclear Information System (INIS)

    The 11 International Symposium on Advanced Materials (ISAM) was held from 08-12 August, 2009 at Islamabad, Pakistan. The main theme of the proceedings encompasses technological advances of recent years. The significance of advanced materials and technological advancements made in this respect have been incorporated in this proceeding. The scientists, researchers and engineers doing their research in different areas of material sciences would benefit from this proceedings. The proceeding of ISAM includes 61 papers which reflects on various aspects of materials and alloys and their properties. (A.B.)

  7. Study meeting on 'criteria for materials of nuclear fusion reactors'

    International Nuclear Information System (INIS)

    This study meeting was held on March 1 and 2, 1984, at the Institute of Plasma Physics, Nagoya University. Recently, the problems required for the materials of nuclear fusion reactors have become considerably clear. The problem of the high concentration damage due to 14 MeV neutrons and the problem of surface materials have been well known from the beginning, but moreover, the radioactivation of materials, the problem of safety, and the feasibility of remote operation related to it have become urgent problems. Besides, the plan of large scale facilities as the means of promoting research is one of the important themes. The research on materials must take part in the whole technological problems which enable the construction of actual nuclear fusion devices. This study meeting was held as a part of the R project of the Institute of Plasma Physics, Nagoya University, but it aimed at grasping the present status and discussing the future perspective of the materials of nuclear fusion reactors, and examining the criteria for nuclear fusion materials. The gists of 23 lectures presented at the meeting are collected in this report. (Kako, I.)

  8. Hydrogen isotopes transport parameters in fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Serra, E. [Politecnico di Torino (Italy). Dipartimento di Energetica; Benamati, G. [ENEA Fusion Division, CR Brasimone, 40032 Camungnano, Bologna (Italy); Ogorodnikova, O.V. [Moscow State Engineering Physics Institute, Moscow 115409 (Russian Federation)

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.) 62 refs.

  9. Hydrogen isotopes transport parameters in fusion reactor materials

    Science.gov (United States)

    Serra, E.; Benamati, G.; Ogorodnikova, O. V.

    1998-06-01

    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned.

  10. An Advanced Tokamak Fusion Nuclear Science Facility (FNSF-AT)

    Science.gov (United States)

    Chan, V. S.; Garofalo, A. M.; Stambaugh, R. D.

    2010-11-01

    A Fusion Development Facility (FDF) is a candidate for FNSF-AT. It is a compact steady-state machine of moderate gain that uses AT physics to provide the neutron fluence required for fusion nuclear science development. FDF is conceived as a double-null plasma with high elongation and triangularity, predicted to allow good confinement of high plasma pressure. Steady-state is achieved with high bootstrap current and radio frequency current drive. Neutral beam injection and 3D non-resonant magnetic field can provide edge plasma rotation for stabilization of MHD and access to Quiescent H-mode. The estimated power exhaust is somewhat lower than that of ITER because of higher core radiation and stronger tilting of the divertor plates. FDF is capable of further developing all elements of AT physics, qualifying them for an advanced performance DEMO. The latest concept has accounted for realistic neutron shielding and divertor implementation. Self-consistent evolution of the transport profiles and equilibrium will quantify the stability and confinement required to meet the FNS mission.

  11. Fusion and fission of atomic clusters: recent advances

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2005-01-01

    We review recent advances made by our group in finding optimized geometries of atomic clusters as well as in description of fission of charged small metal clusters. We base our approach to these problems on analysis of multidimensional potential energy surface. For the fusion process we have...... developed an effective scheme of adding new atoms to stable cluster geometries of larger clusters in an efficient way. We apply this algorithm to finding geometries of metal and noble gas clusters. For the fission process the analysis of the potential energy landscape calculated on the ab initio level...... of theory allowed us to obtain very detailed information on energetics and pathways of the different fission channels for the Na^2+_10 clusters....

  12. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  13. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  14. Advanced ceramic materials for next-generation nuclear applications

    International Nuclear Information System (INIS)

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  15. A strategic analysis of the development of structural materials for proto-type reactors for fusion

    International Nuclear Information System (INIS)

    Structural Materials Research and Development Subcommittee of Nuclear Materials Committee in Japan Atomic Energy Research Institute had made a study to propose a strategy how to expedite the research and development of structural materials for fusion reactors. This study was carried out along with the interim report of the Development of Structural Materials in Fusion Reactors proposed by Planning and Promotion Subcommittee of Fusion Council as well as with the Third Phase Basic Program of Fusion Research and Development settled by the Atomic Energy Commission. The present report was published to publicize the results of analyses of this study. In this report we focused mostly on the development of structural materials of blankets for tritium breeding because it is considered to be the most difficult task in the materials development due to severe conditions imposing on the blankets. We selected three candidate materials, namely, reduced low activation ferritic/ martensitic steel, SiC/SiC composites and Vanadium alloys, and elucidate the conditions in which these materials would be used as well as the design requirements for each material. Based on these conditions and requirements, we described the present status and the key issues of each material. For the development of the structural materials for the blankets, the keenest issue is the improvement and evaluation of radiation integrity and stability. Therefore, the necessity of radiation facilities, especially accelerator-type neutron sources with near fusion energy spectra was described. In addition the usage of fission reactors as irradiation facilities was also emphasized. In the processing of this reviewing we categorized reduced low activation ferritic/martensitic steel as advanced material, and SiC/SiC composites and Vanadium alloys as next-generation advanced material from the present status of developmental maturity. A periodical check and review in order to take the future progress in the development of

  16. Silicon carbide composites as fusion power reactor structural materials

    International Nuclear Information System (INIS)

    Silicon carbide was first proposed as a low activation fusion reactor material in the mid 1970s. However, serious development of this material did not begin until the early 1990s, driven by the emergence of composite materials that provided enhanced toughness and an implied ability to use these typically brittle materials in engineering application. In the decades that followed, SiC composite system was successfully transformed from a poorly performing curiosity into a radiation stable material of sufficient maturity to be considered for near term nuclear and non-nuclear systems. In this paper the recent progress in the understanding and of basic phenomenon related to the use of SiC and SiC composite in fusion applications will be presented. This work includes both fundamental radiation effects in SiC and engineering issues such as joining and general materials properties. Additionally, this paper will briefly discuss the technological gaps remaining for the practical application of this material system in fusion power devices such as DEMO and beyond.

  17. Stored energy in fusion magnet materials irradiated at low temperatures

    International Nuclear Information System (INIS)

    During the power cycle of a fusion reactor, the radiation reaching the superconducting magnet system will produce an accumulation of immobile defects in the magnet materials. During a subsequent warm-up cycle of the magnet system, the defects will become mobile and interact to produce new defect configurations as well as some mutual defect annihilations which generate heat-the release of stored energy. This report presents a brief qualitative discussion of the mechanisms for the production and release of stored energy in irradiated materials, a theoretical analysis of the thermal response of irradiated materials, theoretical analysis of the thermal response of irradiated materials during warm-up, and a discussion of the possible impact of stored energy release on fusion magnet operation 20 refs

  18. External costs of material recycling strategies for fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hallberg, B. E-mail: bengt.hallberg@studsvik.se; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R

    2003-09-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher.

  19. Editorial, Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma-Surface Interactions

    International Nuclear Information System (INIS)

    Because plasma-boundary physics encompasses some of the most important unresolved issues for both the International Thermonuclear Experimental Reactor (ITER) project and future fusion power reactors, there is a strong interest in the fusion community for better understanding and characterization of plasma-wall interactions. Chemical and physical sputtering cause the erosion of the limiters/divertor plates and vacuum vessel walls (made of C, Be and W, for example) and degrade fusion performance by diluting the fusion fuel and excessively cooling the core, while carbon redeposition could produce long-term in-vessel tritium retention, degrading the superior thermo-mechanical properties of the carbon materials. Mixed plasma-facing materials are proposed, requiring optimization for different power and particle flux characteristics. Knowledge of material properties as well as characteristics of the plasma-material interaction are prerequisites for such optimizations. Computational power will soon reach hundreds of teraflops, so that theoretical and plasma science expertise can be matched with new experimental capabilities in order to mount a strong response to these challenges. To begin to address such questions, a Workshop on New Directions for Advanced Computer Simulations and Experiments in Fusion-Related Plasma-Surface Interactions for Fusion (PSIF) was held at the Oak Ridge National Laboratory from 21 to 23 March, 2005. The purpose of the workshop was to bring together researchers in fusion related plasma-wall interactions in order to address these topics and to identify the most needed and promising directions for study, to exchange opinions on the present depth of knowledge of surface properties for the main fusion-related materials, e.g., C, Be and W, especially for sputtering, reflection, and deuterium (tritium) retention properties. The goal was to suggest the most important next steps needed for such basic computational and experimental work to be facilitated

  20. Computer simulation of multi-elemental fusion reactor materials

    International Nuclear Information System (INIS)

    Thermonuclear fusion is a sustainable energy solution, in which energy is produced using similar processes as in the sun. In this technology hydrogen isotopes are fused to gain energy and consequently to produce electricity. In a fusion reactor hydrogen isotopes are confined by magnetic fields as ionized gas, the plasma. Since the core plasma is millions of degrees hot, there are special needs for the plasma-facing materials. Moreover, in the plasma the fusion of hydrogen isotopes leads to the production of high energetic neutrons which sets demanding abilities for the structural materials of the reactor. This thesis investigates the irradiation response of materials to be used in future fusion reactors. Interactions of the plasma with the reactor wall leads to the removal of surface atoms, migration of them, and formation of co-deposited layers such as tungsten carbide. Sputtering of tungsten carbide and deuterium trapping in tungsten carbide was investigated in this thesis. As the second topic the primary interaction of the neutrons in the structural material steel was examined. As model materials for steel iron chromium and iron nickel were used. This study was performed theoretically by the means of computer simulations on the atomic level. In contrast to previous studies in the field, in which simulations were limited to pure elements, in this work more complex materials were used, i.e. they were multi-elemental including two or more atom species. The results of this thesis are in the microscale. One of the results is a catalogue of atom species, which were removed from tungsten carbide by the plasma. Another result is e.g. the atomic distributions of defects in iron chromium caused by the energetic neutrons. These microscopic results are used in data bases for multiscale modelling of fusion reactor materials, which has the aim to explain the macroscopic degradation in the materials. This thesis is therefore a relevant contribution to investigate the

  1. A fusion power plant without plasma-material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  2. Determination of residual gases in nuclear materials by vacuum fusion

    International Nuclear Information System (INIS)

    The presence of residual gases (hydrogen, nitrogen and oxygen) in nuclear materials considerably affects their mechanical and thermal properties. This problem has stimulated the development of precise and efficient methods of analysis, applicable to the determination and quality control of impurities in these materials. The most suitable technique for this purpose is high vacuum fusion. The feasibility of the method was checked with steel, Zircaloy and nuclear fuel samples. The results experimentally determined are in good agreement with the specified values. (Author)

  3. Contributions to the sixth international conference on fusion reactor materials

    International Nuclear Information System (INIS)

    The ICFRM series has documented progress in the field of fusion reactor materials since the first conference held in Tokyo in 1984. The conference series has continually increased its coverage to the point where it now includes the comprehensive range of materials science and technology areas that enable systems designers to meet the needs of current experiments and to present innovative solutions for future energy systems. This publication contains five contributions to the sixth international conference which have each been indexed separately

  4. Joining and surfacing of advanced materials

    Institute of Scientific and Technical Information of China (English)

    Andrzej Kolasa; Wladyslaw Wlosinski

    2004-01-01

    The application of advanced materials, i.e. advanced ceramics, glasses, intermetallic phases and various type of composites, not only depends on their manufacture processes including a great input of know-how, but also on their abilities for processing, among which the joining processes play an important role. The uses of advanced materials are changing rapidly, with a major emphasis on technical applications, especially the components of machines, apparatus and technical devices expected to withstand very heavy exploitation conditions. Furthermore,these materials are becoming more complex, in terms of being strengthened and toughened by transformation processes as well as by the addition of other ceramic or metallic materials including nanomaterials. The successful use of advanced materials requires the development of equally advanced joining materials, processes and technology. Some selected examples of results of joining advanced materials with the use of various procedures as well as surface modification of structural components with the use of advanced materials obtained in the Welding Engineering Department of Warsaw University of Technology, Poland, are presented.

  5. NIFS workshop on application of micro-indentation technique to evaluation of mechanical properties of fusion materials. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, Hiroaki; Katoh, Yutai [eds.] [Tohoku Univ., Oarai, Ibaraki (Japan). Oarai Branch, Inst. for Materials Research

    1996-11-01

    NIFS workshop on `Application of Micro-Indentation Technique to Evaluation of Mechanical Properties of Fusion Materials` were help in Toki on October 9, 1996, as a part of the activity of NIFS collaborative research on `Advanced Technologies for Small-Volume Mechanical Property Testing of Fusion Reactor Materials`. The major topics at the workshop included the application of micro- (and nano-) indentation technique to evaluation of tensile stress-strain property, interfacial mechanical property of composite and joining materials and hardening of this layers in ion-irradiated materials. This report compiles the abstract and viewgraphs for each presentation. (author)

  6. Lead-lithium eutectic material database for nuclear fusion technology

    International Nuclear Information System (INIS)

    Fully validated material databases are needed for coherent technological developments in any R and D field. For nuclear fusion technology (NFT), within a near-term perspective of qualification and licensing of nuclear components and systems, this goal is both compulsory and urgent. This mandatory requirement applies for the particular case of the Pb-Li eutectic database as fusion reactor material. Pb16Li is today a reference breeder material in diverse fusion R and D programs worldwide. Technical consensus on most part of the material database inputs seems a major technological objective. In this work Pb16Li material database inputs for NFT have been systematically reviewed. Database inputs (bulk, thermal, physical-chemistry properties, and H-isotopes transport) are discussed and extended to base magnetohydrodynamic (MHD) properties, values for non-dimensional parameters and pipe/channel correlations in 2-phases dispersion models. Ongoing efforts to develop the Pb16Li material database as a computing expert system are reported

  7. Wafer Fusion for Integration of Semiconductor Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  8. Glycopolymeric Materials for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2015-04-01

    Full Text Available In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  9. Radiation Effects in Functional Materials for Nuclear Fusion Application

    International Nuclear Information System (INIS)

    Radiation effects can be grouped into three major events: atomic displacement, electronic excitation and nuclear transmutation. In the meantime, radiation effects have two aspects, accumulation and dynamic effects. The diagnostic components developing group of the ITER Engineering Design Activities clearly declared that the only in-situ type radiation effects studies, preferably with a fission reactor, will be relevant to nuclear fusion development. As a background, the evolution of radiation effects as functions of time and environmental parameters such as temperatures, chemical potentials, and electrical and magnetic fields could be categorized into several domains: linear radiation effects dominating, environment effects dominating, synergistic effects modifying, multi-scale modelling effective and finally non-linear effects dominating. Among major irradiation tools such as spallation and fusion neutron sources charged particle accelerators, gamma ray facilities and fission reactors, as well as computer based simulations, only fission reactor irradiation can give an overall perspective of radiation effects in nuclear fusion materials with abundant and uniform irradiation volumes. In the meantime, fission reactor irradiation is handicapped by relatively low neutron fluence except for some very high neutron flux reactors, which will be needed for evaluation of structural materials. For the study of functional materials, some handicaps of fission reactor irradiation can be neglected such as primary knock-on cascade profiles, and the demanded neutron fluence is within the attainable range. The paper will describe some examples of irradiation tests of nuclear fusion functional materials in fission reactors, the electrical conductivity of ceramic insulators and hydrogen isotope mobility in solid breeders. Also, a recent attempt to evaluate nuclear fusion relevant irradiation effects in superconductive magnets will be briefly reported, noting that a cryogenic

  10. Low-Activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    This paper is devoted to the development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (orig.)

  11. Low-activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    Development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics is discussed, for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (author) 11 refs.; 3 figs

  12. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  13. Advanced Materials for Automotive Application

    International Nuclear Information System (INIS)

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  14. Materials program plan for inertial confinement fusion

    International Nuclear Information System (INIS)

    The effect of the irradiation environment on the microstructure of materials is studied. A major part of the initial activity in this area will be aimed toward evaluating the importance of pulse effects on microstructural development. The development effort that is necessary to cope with the high cycle loading of the first wall structure is studied. The loading pulses are expected to range from 1 to 20 per second (3 x 107 to 6 x 108/year), thus creating a high cycle fatigue problem for any long-lived first wall structure. The interrelationship between specimen and component testing is a major issue in this section. Static mechanical property requirements are also considered here. Lithium compatibility is treated. The final section integrates the conclusions reached in the body of the report into a unified strategy that suggests a particular effort level to support major program milestones

  15. Helium generation in fusion reactor materials

    International Nuclear Information System (INIS)

    The work performed under this giant included an analysis of the multiple-step helium production mechanism discovered in iron following long-term mixed-spectrum reactor exposure, the measurement of a large number of samples irradiated in fast-neutron environments for cross section determinations, the initial mapping of the neutron fluence distribution for a high-fluence T(d,n) irradiation experiment, the initial measurements of helium production in materials irradiated by 10-MeV neutrons, and the initiation of a joint experiment with ANL to measure the spectrum-integrated Be(n,2n) cross section at lower neutron energies. This work is summarized in the present report. The work is ongoing, and this document thus provides a status report rather than final numerical data

  16. A study on nuclear properties of Zr, Nb, and Ta nuclei used as structural material in fusion reactor

    OpenAIRE

    Sahan Halide; Tel Eyyup; Sahan Muhittin; Aydin Abdullah; Sarpun Ismail Hakki; Kara Ayhan; Doner Mesut

    2015-01-01

    Fusion has a practically limitless fuel supply and is attractive as an energy source. The main goal of fusion research is to construct and operate an energy generating system. Fusion researches also contains fusion structural materials used fusion reactors. Material issues are very important for development of fusion reactors. Therefore, a wide range of fusion structural materials have been considered for fusion energy applications. Zirconium (Zr), Niobium (Nb) and Tantalum (Ta) containing al...

  17. Fibres : future materials for advanced emerging applications

    OpenAIRE

    Fangueiro, Raúl; Rana, S

    2012-01-01

    Fibrous materials are finding widespread applications in diversified areas, starting from clothing sector to medical fields, various structural and infrastructural applications of civil engineering, aerospace industries and even for energy harvesting and storage applications. In this paper, the results of various research activities conducted by the Fibrous Materials Research Group (FMRG), University of Minho to explore fibrous materials in several advanced and emerging applicatio...

  18. Advances in the national inertial fusion program of China

    Directory of Open Access Journals (Sweden)

    He X.T.

    2013-11-01

    Full Text Available The planned inertial confinement fusion (ICF ignition in China in around 2020 is to be accomplished in three steps. The first is carrying out target physics experiments in the existing laser facilities SG-II, SG-IIIP and SG-IIU (operating in 2012 of output energy 3-24 kJ at 3ω. Results have been obtained for better understanding the implosion dynamics and radiation transport. Recent studies include efficiency of radiation generation, hydrodynamic instabilities, shock waves in cryogenic targets, opacity measurements using kJ lasers, etc. Hydrodynamic codes (the LARED series have been developed and experimentally verified with over 5000 shots, and are applied to investigating target physics and ignition target design. For fast ignition, a large number of experiments and numerical simulations have led to improved understanding relevant to target design, hot electron transport, collimation by the spontaneous magnetic fields in overdense plasmas, etc. In addition to the SG-II, SG-IIU and SG-IIIP, the SG-III laser facility with energy of 200–400 kJ at 3ω shall operate in 2014 and be used for advanced target physics research. In the last step, the 1.5 MJ SG-IV laser facility still under design will be used to investigate ignition and burning.

  19. Ceramic materials for fission and fusion nuclear reactors

    International Nuclear Information System (INIS)

    A general survey on the ceramics for nuclear applications is presented. For the fission nuclear reactor, the ceramics materials are almost totally used as fuel e.g. (U,Pu)O2; other types of ceramics, e.g. Uranium-Plutonium carbide and nitride, have been investigated as potential nuclear fuels. The (U,Pu)N compound is to be the fuel for the space nuclear power reactor in the U.S.A. For the fusion nuclear reactor, the ceramics should be the fundamental materials for many components: first wall, breeder, RF heating systems, insulant and shielding parts, etc. In recent years many countries are involved on the research and development of ceramic compounds with the principal purpose of being used in the fusion powerplant (year 2010-2020 ?). An effort has been even made to verify if it is possible to use more ceramic components in the fission nuclear plant (probably differntly disigned) to improve the safety level

  20. Ion beam processing of advanced electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  1. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  2. Experimental results on advanced inertial fusion schemes obtained within the HiPER project

    OpenAIRE

    Honrubia Checa, José Javier; Batani, D; al., et

    2012-01-01

    This paper presents de results of experiments conducted within the Work Package 10 (fusion experimental programme) of the HiPER project. The aim of these experiments was to study the physics relevant for advanced ignition schemes for inertial confinement fusion, i.e. the fast ignition and the shock ignition. Such schemes allow to achieve a higher fusion gain compared to the indirect drive approach adopted in the National Ignition Facility in United States, which is important for the fut...

  3. Advance of the Japanese fusion program into big science

    International Nuclear Information System (INIS)

    Fusion reactor development is one of the top priority national projects in Japan. Although the Japanese fusion program was started at a relatively late date, it is characterized by an extremely fast growth, strong participation of industry, and comprehensive research activities, especially on alternative concepts, at various universities. Intensive cooperation exists also with the United States on Tokamak facilities. Major efforts in Japan are the Tokamak program of JAERI, for which the most important machine under construction is JT-60, a large Tokamak of the JET generation, which is to be operational by 1984. The Japanese fusion budget, including estimated personnel costs, in 1981 exceeded the aggregate European fusion budget. (orig.)

  4. Advanced materials in radiation dosimetry

    CERN Document Server

    Bruzzi, M; Nava, F; Pini, S; Russo, S

    2002-01-01

    High band-gap semiconductor materials can represent good alternatives to silicon in relative dosimetry. Schottky diodes made with epitaxial n-type 4 H SiC and Chemical Vapor Deposited diamond films with ohmic contacts have been exposed to a sup 6 sup 0 Co gamma-source, 20 MeV electrons and 6 MV X photons from a linear accelerator to test the current response in on-line configuration in the dose range 0.1-10 Gy. The released charge as a function of the dose and the radiation-induced current as a function of the dose-rate are found to be linear. No priming effects have been observed using epitaxial SiC, due to the low density of lattice defects present in this material.

  5. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  6. Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches

    International Nuclear Information System (INIS)

    This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new

  7. Proceedings of 1995 the first Taedok international fusion symposium on advanced tokamak researches

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Lee, K. W.; Hwang, C. K.; Hong, B. G.; Hong, G. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-05-01

    This proceeding is from the First Taeduk International Fusion Symposium on advanced tokamak research, which was held at Korea Atomic Energy Research Institute, Taeduk Science Town, Korea on March 28-29, 1995. (Author) .new.

  8. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  9. Methane storage in advanced porous materials.

    Science.gov (United States)

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-01

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described. PMID:22990753

  10. Materials for Advanced Power Engineering 2014

    OpenAIRE

    2014-01-01

    The 10th Liege Conference on Materials for Advanced Power Engineering presents theachievements of international materials related research for high eciency, low-emissionpower plants. Furthermore the new demands of the transition of electricity supply towardsmore and more regenerative power sources are reported.Resource preservation and maximization of economic success by improved plant e-ciency were the driving forces in past materials and power plant technology development.Fossil fuels will ...

  11. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, Frederick W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Noe, Susan P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.

  12. Emerging materials by advanced processing

    International Nuclear Information System (INIS)

    This volume contains 36 contributions with following subjects (selection): Densification of highly reactive aluminium titanate powders; influence of precursor history on carbon fiber characteristics; influence of water removal rate during calcination on the crystallization of ZrO2 from amorphous hydrous precipitates; tape casting of AlN; influence of processing on the properties of beta-SiC powders; corrosion of SiSiC by gases and basic slag at high temperature; influence of sintering and thermomechanical treatment on microstructure and properties of W-Ni-Fe alloys; mechanical alloying for development of sintered steels with high hard phase content (NbC); early stages of mechanical alloying in Ni-Ti and Ni-Al powder mixtures; growth and microstructural development of melt-oxidation derived Al2O3/Al-base composites; fabrication of RSBN composites; synthesis of high density coridierite bodies; comparative studies on post-HIP and sinter-HIP treatments on transformation thoughened ceramics; sinter HIP of SiC; precipitation mixing of Si3N4 with bimetallic oxides; temperature dependence of the interfacial energies in Al2O3-liquid metal systems; synthesis and microstructural examination of Synroc B; solid state investigation of ceramic-metal bonding; thermophysical properties of MgAl2O4; preparation, sintering and thermal expansion of MgAl2O4; microstructural studies on alumina-zirconia and metallized alumina ceramics; electrodeposition of metals (e.g. Ti, Mo, In) and metal oxides from molten salts; electrochemical deposition of Ti from nonaqueous media (DMSO, DMF); lithium as anode material in power sources (passivation); reduction of chromium(VI) when solar selective black chromium is deposited; thermodynamic optimization of phase diagrams (computer calculations); optimization of Na-Tl phase diagram; phase relations in the Y-Si-Al-O-N system: Controlled manufacturing of alpha/beta-SIALON composites. (MM)

  13. Advanced Materials and Processing 2010

    Science.gov (United States)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  14. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  15. Evaluation of high energy intense neutron source concepts for fusion materials testing

    International Nuclear Information System (INIS)

    Fusion materials testing and development cannot be achieved without a high energy intense neutron source which simulates the fusion reactor neutron environment. Criteria of suitability for a fusion materials irradiation test facility fulfilling the world-wide demand, so-called 'International Fusion Material Irradiation Facility' (IFMIF), were defined in an IEA activity on fusion materials research and development (R and D). Several concepts of IFMIF candidates were proposed. Furthermore, a concept of high energy neutron irradiation facility named 'Energy Selective Neutron Irradiation Test Facility' (ESNIT) was conceived at Japan Atomic Energy Research Institute (JAERI) as a facility for materials researches in generic nuclear applications of which major potential research incentives were originated from nuclear fusion application. In this paper, current evaluation of suitability of various IFMIF and ESNIT concepts for fusion material irradiation testing and their technological feasibility and so on is described. (author)

  16. Production of nuclear fusion reactor fuel by ceramic tritium breeder material

    International Nuclear Information System (INIS)

    Fuel tritium is generated from the nuclear reaction between the fusion neutron and the lithium of the breeder material arranged in the blanket that encloses the fusion plasma in the fusion reactor. However, the release process of the generated tritium has not been completely clarified. Recently, Japan Atomic Energy Agency started the tritium generation and recovery experiment in using nuclear fusion neutron source (FNS). In this report, the recent results of study on breeder material and its manufacturing technology is presented. (author)

  17. Fracture toughness test methods and examples for fusion reactor materials

    International Nuclear Information System (INIS)

    This paper introduces the importance of the evaluation of fracture toughness in nuclear fusion reactor structural materials, and the fracture toughness evaluation methods that are used as the standards and their actual examples. It also discusses the problems involved in the standardized approach and the efforts for the technology improvement. To evaluate the material life under nuclear fusion reactor environment, fracture toughness measurement after neutron irradiation is indispensable. Due to a limitation in the irradiation area size of an irradiation reactor, and to avoid the temperature difference in a specimen, the size of the specimen is required to be minimized, which is different from the common standards. As for the size effect of the test specimen, toughness value tends to decrease when ligament length is 7 mm or below. The main problems and challenges are as follows. (1) As for the tendency that fracture toughness value decreases along with the miniaturization of the ligament length, it is necessary to elucidate the mechanism of size effects, and to develop the correction method for size effects. (2) As for the issues of the curve shape and application to irradiation time in the master curve method, it is necessary to review the data checking method and plastic constraint conditions for crack tip M = 30 that is stipulated in ASTM E1921, and to elucidate the material dependence of master curve shape. (A.O.)

  18. Neutron irradiation of candidate ceramic breeder materials of fusion reactors

    International Nuclear Information System (INIS)

    In the context of the European programs for the future fusion reactors, the Process Chemistry Department of ENEA, Casaccia Center (Rome), has been involved in preparing ceramic blanket materials as tritium breeders; a special consideration has been addressed to the nuclear characterization of LiAlO2 and Li2ZrO3. In this paper are reported neutron irradiation of ceramic specimens in TRIGA reactor and γ-spectrometric measurements for INAA purposes; and isothermal annealing of the irradiated samples and tritium extraction, by using an 'out of pile' system. (author) 3 refs.; 4 figs.; 4 tabs

  19. Advanced Materials for Redox Flow Batteries

    OpenAIRE

    Friedl, Jochen

    2015-01-01

    We investigate two advanced materials electrochemically in order to see if they can be applied to improve energy- and power-density of Redox Flow Batteries (RFBs). First, multi-walled carbon nanotubes are analyzed as electrode material for the All-Vanadium RFB. We discovered that an enhanced activity assigned by previous studies was a misinterpretation caused by an apparent catalytic effect. Second, large inorganic molecules, polyoxometalates (POMs), were investigated as nano-sized el...

  20. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  1. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  2. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  3. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  4. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  5. Advances in statistical multisource-multitarget information fusion

    CERN Document Server

    Mahler, Ronald PS

    2014-01-01

    This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development.Since 2007, FISST has inspired a considerable amount of research

  6. Advanced Industrial Materials (AIM) fellowship program

    Energy Technology Data Exchange (ETDEWEB)

    McCleary, D.D. [Oak Ridge Institute for Science and Education, TN (United States)

    1997-04-01

    The Advanced Industrial Materials (AIM) Program administers a Graduate Fellowship Program focused toward helping students who are currently under represented in the nation`s pool of scientists and engineers, enter and complete advanced degree programs. The objectives of the program are to: (1) establish and maintain cooperative linkages between DOE and professors at universities with graduate programs leading toward degrees or with degree options in Materials Science, Materials Engineering, Metallurgical Engineering, and Ceramic Engineering, the disciplines most closely related to the AIM Program at Oak Ridge National Laboratory (ORNL); (2) strengthen the capabilities and increase the level of participation of currently under represented groups in master`s degree programs, and (3) offer graduate students an opportunity for practical research experience related to their thesis topic through the three-month research assignment or practicum at ORNL. The program is administered by the Oak Ridge Institute for Science and Education (ORISE).

  7. Interfacial metallurgy study of brazed joints between tungsten and fusion related materials for divertor design

    International Nuclear Information System (INIS)

    Highlights: • We created brazed joints between tungsten and EUROFER 97, Cu and SS316L with Au80Cu19Fe1 filler. • No elemental transitions were detected between the W and the AuCuFe filler in either direction. • Transition regions between filler to EUROFER97/316L showed similar elastic modulus and hardness to the filler. • Smooth elemental and mechanical properties transition were detected between the filler and Cu. - Abstract: In the developing DEMO divertor, the design of joints between tungsten to other fusion related materials is a significant challenge as a result of the dissimilar physical metallurgy of the materials to be joined. This paper focuses on the design and fabrication of dissimilar brazed joints between tungsten and fusion relevant materials such as EUROFER 97, oxygen-free high thermal conductivity (OFHC) Cu and SS316L using a gold based brazing foil. The main objectives are to develop acceptable brazing procedures for dissimilar joining of tungsten to other fusion compliant materials and to advance the metallurgical understanding within the interfacial region of the brazed joint. Four different butt-type brazed joints were created and characterised, each of which were joined with the aid of a thin brazing foil (Au80Cu19Fe1, in wt.%). Microstructural characterisation and elemental mapping in the transition region of the joint was undertaken and, thereafter, the results were analysed as was the interfacial diffusion characteristics of each material combination produced. Nano-indentation tests are performed at the joint regions and correlated with element composition information in order to understand the effects of diffused elements on mechanical properties. The experimental procedures of specimen fabrication and material characterisation methods are presented. The results of elemental transitions after brazing are reported. Elastic modulus and nano-hardness of each brazed joints are reported

  8. Structural materials challenges for advanced reactor systems

    Science.gov (United States)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  9. A carbon-carbon composite materials development program for fusion energy applications

    International Nuclear Information System (INIS)

    Carbon-carbon composites increasingly are being used for plasma-facing component (PFC) applications in magnetic-confinement plasma-fusion devices. They offer substantial advantages such as enhanced physical and mechanical properties and superior thermal shock resistance compared to the previously favored bulk graphite. Next-generation plasma-fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER) and the Burning Plasma Experiment (BPX), will require advanced carbon-carbon composites possessing extremely high thermal conductivity to manage the anticipated extreme thermal heat loads. This report outlines a program that will facilitate the development of advanced carbon-carbon composites specifically tailored to meet the requirements of ITER and BPX. A strategy for developing the necessary associated design data base is described. Materials property needs, i.e., high thermal conductivity, radiation stability, tritium retention, etc., are assessed and prioritized through a systems analysis of the functional, operational, and component requirements for plasma-facing applications. The current Department of Energy (DOE) Office of Fusion Energy Program on carbon-carbon composites is summarized. Realistic property goals are set based upon our current understanding. The architectures of candidate PFC carbon-carbon composite materials are outlined, and architectural features considered desirable for maximum irradiation stability are described. The European and Japanese carbon-carbon composite development and irradiation programs are described. The Working Group conclusions and recommendations are listed. It is recommended that developmental carbon-carbon composite materials from the commercial sector be procured via request for proposal/request for quotation (RFP/RFQ) as soon as possible

  10. Intense neutron source requirements for fusion reactor materials development

    International Nuclear Information System (INIS)

    Materials research should precede machine construction by at least ten years because considerable time is required for the materials development. When the next generation machine is under discussion, materials scientists and engineers should consider next-next generation device as DEMO for establishing the materials database in time. In this sense, development of an intense high energy neutron source is an urgent problem. Characteristic features of radiation effects with 14 MeV neutrons will be briefly reviewed. Then, the reasons why we need intense source will be discussed. These discussions will lead to identify requirements for the intense neutron sources. There are both near term and long term materials issues which can be studied with such intense neutron sources depending on their capacity. One should also recognize that development of such an intense source will require considerable time and maximum use of existing intense fission reactor neutrons will be one of the practical options for the moment. In other words, the intense neutron sources under discussion should be superior for the study of fusion radiation effects than the existing fission reactors. Items are listed for the evaluation of the sources and some critical comments will be made on several kinds of sources currently being proposed. (author)

  11. Irradiation capsule for testing magnetic fusion reactor first-wall materials at 60 and 2000C

    International Nuclear Information System (INIS)

    A new type of irradiation capsule has been designed, and a prototype has been tested in the Oak Ridge Research Reactor (ORR) for low-temperature irradiation of Magnetic Fusion Reactor first-wall materials. The capsule meets the requirements of the joint US/Japanese collaborative fusion reactor materials irradiation program for the irradiation of first-wall fusion reactor materials at 60 and 2000C. The design description and results of the prototype capsule performance are presented

  12. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiffen, F. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Melton, Stephanie G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  13. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    International Nuclear Information System (INIS)

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by ''FOA'' in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  14. A review of the prospects for fusion breeding of fissile material

    International Nuclear Information System (INIS)

    This report is the result of an eight month study by the AECL Fusion Status Study Group. The objectives of this study were to review the current status of fusion research, to evaluate the neutronic performance of various fusion-breeder systems, and to assess the economic and technological outlook for the fusion breeder as a source of fissile material to support CANDU reactors operating on the thorium fuel cycle

  15. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  16. Concept definition of an FRC/DD-3He advanced fusion reactor

    International Nuclear Information System (INIS)

    Posibilities of advanced fusion fuel cycle reactors are investigated. Characteristics of various D - D fusion fuel cycles are clarified and which magnetic confinement method can fit the most efficient advanced fuel cycle reactor is examined. A concept definition is considered for an advanced fusion reactor with DD - 3He fuel cycle in which the plasma is confined in a field-reversed configuration or field-reversed mirror. The concept definition is developed with emphasis on the feasibility of a steady-state self-ignited DD - 3He plasma with temperatures of 100 keV, the production method, the formation of ambipolar potential in the ambient plasma and the design of plasma energy direct convertor. (author)

  17. 13th International Symposium on Advanced Materials

    International Nuclear Information System (INIS)

    The 13th international symposium on advanced materials (ISAM) was held from september 23-27, 2013, at islamabad, Pakistan. The main theme of this conference was to discuss the ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. In five day of the symposium, nearly Two hundred and twenty seven contributory and invited papers, comprising of Nineteen technical sessions and two poster sessions were presented. Renowned scientists and researchers from foreign and local institutes have shared their counter parts on the topics of common interest. This symposium provided an ideal opportunity for exchange of information amongst scientists, engineers and researchers from all over pakistan and other countries of the world. (A.B.)

  18. Nondestructive characterization of advanced composite materials

    International Nuclear Information System (INIS)

    A comprehensive review of nondestructive characterization (NDC) techniques and their application to metal-matrix, polymer-matrix and ceramic-matrix composites is presented. Particular attention is given to the identification of critical materials properties and defects in these advanced composites. NDC is required: (i) to detect discrete defects, such as delaminations and cracking, and (ii) to measure distributed material properties, such as density, resistivity and elastic constants. Ultrasonic and eddy-current characterization are described in detail, along with new NDC results obtained at the Aeronautical and Maritime Research Laboratory. These include a method for the determination of fibre volume fraction in continuous fibre reinforced metal-matrix composites using eddy-current NDC, and the use of eddy-current methods to complement ultrasonic testing for characterization of impact damage in graphite-epoxy laminates. Future problem areas and possible solutions in NDC of advanced composites are also discussed. 90 refs., 1 tab., 6 figs

  19. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  20. Cellulose nanocrystals : surface modification and advanced materials

    OpenAIRE

    Lin, Ning

    2014-01-01

    The present work focuses on the properties of cellulose nanocrystals, their surface modification and development of advanced materials. Diverse approaches are employed on these nanoscaled substrates aiming to modify their surface properties and extend their use in highly sophisticated applications, such as postsulfation and desulfation, polymer grafting and adsorption, selective oxidation, molecular grafting, and ‘host-guest' inclusion. On the basis of surface modifications, properties analys...

  1. Advances in materials for fossil power plants

    International Nuclear Information System (INIS)

    The external constraints on the electric power industry over the past 10-15 years have resulted in increased demands on the performance and reliability of materials used in fossil power plants. At the same time, the construction of new plants has been at a low ebb, because of reduced capacity growth and surplus capacity. This led to creation of new institutions to support materials research and development during a period of malaise in industrial support. A remarkable surge of new materials and components for turbines, boilers, and auxiliaries have emerged. Some of the materials advances developed during this period are described. These include improved 1 CrMoV and 12 Cr rotors, temper resistant low Mn 3.5 NiCrMoV, super 9 Cr for heavy section piping and castings, super 12 Cr tubing for superheaters, Nimonic 80A high temperature bolting, titanium alloy blading for L.P. turbines, and many others covered by the present conference

  2. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  3. Advanced textural representation of materials appearance

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří

    New York: ACM, 2011 - (Sander, P.), s. 1-84 ISBN 978-1-4503-1135-9. [SIGGRAPH Asia 2011. Hong Kong (CN), 12.12.2011-15.12.2011] R&D Projects: GA ČR GA102/08/0593; GA ČR GAP103/11/0335 Grant ostatní: CESNET(CZ) 387/2010 Institutional research plan: CEZ:AV0Z10750506 Keywords : visual texture * Bidirectional Texture Function * materials appearance Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2012/RO/haindl-advanced textural representation of materials appearance.pdf

  4. Towards a reduced activation structural materials database for fusion reactors

    International Nuclear Information System (INIS)

    Full text: The development of First Wall, Blanket and Divertor materials which are capable of withstanding many years the high neutron and heat fluxes, is a critical path to fusion power. Therefore, the timely availability of a sound materials database has become an indispensable element in international fusion road maps. In order to provide a related materials database for design, construction, licensing and safe operation of the ITER Test Blanket Modules and of a DEMO reactor, a wealth of R and D results on the European reduced activation ferritic-martensitic steel EUROFER, and on oxide dispersion strengthened (ODS) variants have become available, mainly in the temperature window 250-700 deg. C. Industrial EUROFER-batches of 3.5 and 8.0 tons have been produced with a variety of semi-finished, quality-assured product forms. Extensive chipless shaping and joining experience taking into account different welding procedures and powder technology product forms have demonstrated that EUROFER type steel complies with a wide range of established manufacturing processes. EUROFER is also resistant to high temperature aging, and the existing creep-rupture properties (∼30000 h) indicated long term stability and predictability. To increase the thermal efficiency of blankets beyond 45%, high temperature resistant SiCf/SiC channel inserts for liquid metal coolant tubes are developed. Mechanical and thermal properties of various SiCf/SiC composits have been measured after neutron radiation. Regarding radiation damage resistance of blanket structural materials, a broad based reactor irradiation programme counts several steps from 2 needs to be removed, the design is presently based on tiles made of W (∼2000 deg. C), as well as on structural materials like W-alloy (∼700-1300 deg. C) and RAF(M)-ODS steel (∼650 deg. C). Severe plastic deformation of pure W and W alloys improves ductility, but does not prevent from re-crystallisation between 850 and 1200 deg. C. For the

  5. Deuterium behavior in first-wall materials for nuclear fusion

    International Nuclear Information System (INIS)

    Plasma-wall interactions play an important part while choosing materials for the first wall in future fusion reactors. Moreover, the use of tritium as a fuel will impose safety limits regarding the total amount present in the tokamak. Previous analyses of first-wall samples exposed to fusion plasma highlighted an in-bulk migration of deuterium (as an analog to tritium) in carbon materials. Despite its limited value, this retention is problematic: contrary to co-deposited layers, it seems very unlikely to recover easily the deuterium retained in such a way. Because of the difficult access to in situ samples, most published studies on the subject were carried out using post-mortem sample analysis. In order to access to the dynamic of the phenomenon and come apart potential element redistribution during storage, we set up a bench intended for simultaneous low-energy ion implantation, reproducing the deuterium interaction with first-wall materials, and high-energy micro beam analysis. Nuclear reaction analysis performed at the micrometric scale (μNRA) allows to characterize deuterium repartition profiles in situ. This analysis technique was confirmed to be non-perturbative of the mechanisms studied. We observed on the experimental data set that the material surface (0-1 μm) display a high and nearly constant deuterium content, with a uniform distribution. On the contrary, in-bulk deuterium (1-11 μm) localizes in preferential trapping sites related to the material microstructure. In-bulk deuterium inventory seems to increase with the incident fluence, in spite of the wide data scattering attributed to the structure variation of studied areas. Deuterium saturation at the surface as well as in-depth migration are instantaneous; in-vacuum storage leads to a small deuterium global desorption. Observations made via μNRA were coupled with results from other characterization techniques. X-ray μtomography allowed to identify porosities as the preferential trapping sites

  6. Fusion materials high energy-neutron studies. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Guinan, M.W.

    1980-01-01

    The objectives of this paper are (1) to provide background information on the US Magnetic Fusion Reactor Materials Program, (2) to provide a framework for evaluating nuclear data needs associated with high energy neutron irradiations, and (3) to show the current status of relevant high energy neutron studies. Since the last symposium, the greatest strides in cross section development have been taken in those areas providing FMIT design data, e.g., source description, shielding, and activation. In addition, many dosimetry cross sections have been tentatively extrapolated to 40 MeV and integral testing begun. Extensive total helium measurements have been made in a variety of neutron spectra. Additional calculations are needed to assist in determining energy dependent cross sections.

  7. Proposed rf system for the fusion materials irradiation test facility

    International Nuclear Information System (INIS)

    Preliminary rf system design for the accelerator portion of the Fusion Materials Irradiation Test (FMIT) Facility is in progress. The 35-MeV, 100-mA, cw deuteron beam will require 6.3 MW rf power at 80 MHz. Initial testing indicates the EIMAC 8973 tetrode is the most suitable final amplifier tube for each of a series of 15 amplifier chains operating at 0.5-MW output. To satisfy the beam dynamics requirements for particle acceleration and to minimize beam spill, each amplifier output must be controlled to +-10 in phase and the field amplitude in the tanks must be held within a 1% tolerance. These tolerances put stringent demands on the rf phase and amplitude control system

  8. High temperature indentation tests on fusion reactor candidate materials

    International Nuclear Information System (INIS)

    Flat-top cylinder indenter for mechanical characterization (FIMEC) is an indentation technique employing cylindrical punches with diameters ranging from 0.5 to 2 mm. The test gives pressure-penetration curves from which the yield stress can be determined. The FIMEC apparatus was developed to test materials in the temperature range from -180 to +200 oC. Recently, the heating system of FIMEC apparatus has been modified to operate up to 500 oC. So, in addition to providing yield stress over a more extended temperature range, it is possible to perform stress-relaxation tests at temperatures of great interest for several nuclear fusion reactor (NFR) alloys. Data on MANET-II, F82H mod., Eurofer-97, EM-10, AISI 316 L, Ti6Al4V and CuCrZr are presented and compared with those obtained by mechanical tests with standard methods

  9. Advanced research workshop: nuclear materials safety

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, L J; Moshkov, M M

    1999-01-28

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  10. Radiation damage studies in fusion reactor materials. Part of a coordinated programme on energetic particle interactions with materials of importance for fusion reactors

    International Nuclear Information System (INIS)

    This paper constitutes the final report (IAEA Research Contract No. 1882/RB) on Radiation Damage Studies in Fusion Reactor Materials (Sputtering and Blistering) performed at the Research Centre of Bhabha, India

  11. Advances in the national inertial fusion program of China

    OpenAIRE

    He X.T.; Zhang W.Y.

    2013-01-01

    The planned inertial confinement fusion (ICF) ignition in China in around 2020 is to be accomplished in three steps. The first is carrying out target physics experiments in the existing laser facilities SG-II, SG-IIIP and SG-IIU (operating in 2012) of output energy 3-24 kJ at 3ω. Results have been obtained for better understanding the implosion dynamics and radiation transport. Recent studies include efficiency of radiation generation, hydrodynamic instabilities, shock waves in cryogenic targ...

  12. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  13. Fusion--fision hybrid breeders: economic and performance issues, role of advanced converters, interdependence between fission and fusion programs

    International Nuclear Information System (INIS)

    This paper considers nuclear breeding systems (i.e., production of fissile fuel from fertile materials). The range of breeding technologies considered is deliberately wide. We include systems which breed by using internal neutron sources--a reactor-breeder, exemplified by the liquid metal fast breeder reactor (LMFBR)--and systems which breed by using external neutron sources--exemplified in this paper primarily by hybrid fusion-fission breeders

  14. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Science.gov (United States)

    Garrison, L. M.; Zenobia, S. J.; Egle, B. J.; Kulcinski, G. L.; Santarius, J. F.

    2016-08-01

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA-500 μA; the typical current used is 72 μA, which is an average flux of 9 × 1014 ions/(cm2 s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  15. Joint research centre fusion materials irradiations in HFR: present status and prospectives

    International Nuclear Information System (INIS)

    First a review is made of the Joint Research Centre experimental activity at HFR-Petten in the frame of the Fusion Technology and Safety Programme. The materials under investigation are: . Cr-Ni Austenitic steels (316-L type) and Cr-Mn Austenitic Steels (AMCR and FI type) as structural materials and . Pb-17Li eutectic as tritium breeding material. The experiments on structural materials comprise: . Sample irradiations with post-irradiation tensile tests (FRUST) . Sample irradiations under constant load and post-irradiation strain measurement (TRIESTE) . On-line creep tests (CRISP). The experiments on Pb-17Li breeder material regard sample irradiations to investigate tritium production and recovery as well as tritium permeation through blanket structures (LIBRETTO Experiment). Both irradiations on structural and breeding materials will be pursued. Expected developments of the testing programme at HFR are discussed. New areas of research should involve materials for divertor applications (NET/ITER) and advanced low activation composite materials for Commercial Power Reactors

  16. International Symposium on Advanced Materials (ISAM 2013)

    Science.gov (United States)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  17. Microstructural and mechanical characterization of W/SiC bonding for structural material in fusion

    International Nuclear Information System (INIS)

    The SiC/SiC composites are expected to be employed as structural materials in fusion reactors after DEMO. Tungsten may be used as armor material of divertor to protect from the high temperature heat flux. An advanced SiC/SiC composite, NITE SiC/SiC, has excellent resistance to high stress and temperature, and diffusion and sinter bonding methods using high temperature are able to join SiC/SiC composites. This work evaluates the microstructure of interphases when tungsten is joined to SiC to screen potential bonding techniques. The W/SiC joints were produced by diffusion bonding, sinter bonding and liquid phase sinter bonding methods using the hot-pressing methods. Evaluation by SEM, EPMA, TEM and shear test showed the promise of these bonding methods.

  18. Advanced Deuterium Fusion Rocket Propulsion for Manned Deep Space Missions

    Science.gov (United States)

    Winterberg, F.

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion can there be refuelled. To obtain a high thrust with high specific impulse favours the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of a propulsion system in space would be very high, but it can also be developed on Earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, making obsolete the ignition of deuterium-tritium with a laser, where 80% of the energy goes into neutrons, this would also mean a breakthrough in fusion research, and therefore would justify the large development costs.

  19. ASME Material Challenges for Advanced Reactor Concepts

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at higher temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.

  20. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  1. Helium generation in fusion-reactor materials. Progress report, January-March 1981

    International Nuclear Information System (INIS)

    The objectives of this program are to measure helium generation rates of materials for Magnetic Fusion Reactor applications in the various neutron environments used for fusion reactor materials testing, to characterize these neutron test environments, and to develop helium accumulation neutron dosimeters for neutron fluence and energy spectrum dosimetry in these test environments

  2. History, progress, achievement and future prospect of research activities on fusion materials by Japanese university researchers

    International Nuclear Information System (INIS)

    Research activities on fusion materials by Japanese university researchers are reviewed. Organized research on fusion materials has been initiated around mid 1970s under auspices of Monbusho (Ministry of Education, Science and Culture). Particularly effective was the Special Research Project on Fusion for fiscal year 1980 - 1989. At the same time, Japan/U.S. collaboration on fusion materials (1982 - 2000) has been very successful, yielding numerous useful results. The highlights of the technical achievement of these projects are briefly summarized. Both of these projects may be characterized to be composed of two major tasks, namely, fundamental aspects of alloy development for fusion and high fluence irradiation effects under fusion reactor environment. The basic philosophy of the project is discussed. The recent trend is to organize the university research activities into a comprehensive research network. (orig.)

  3. Advanced fusion reactor design using remountable HTc SC magnet

    International Nuclear Information System (INIS)

    A new concept of fusion reactor design is proposed using remountable high critical temperature (HTc) superconducting (SC) magnet. There are two advantages using this system. First one is that the magnet system can be composed by parts, which means it easy to replace the damaged magnet module. The second one is that it becomes possible to access the reactor first wall easily. In order to realize this system, we have performed experiments using HTc SC tape. The experimental results indicate that the resistance of the jointed region becomes about 60 μΩ, which shows the feasibility of this concept. Using this system the remountable first wall system also has the feasibility based on thermomechanical analysis. (author)

  4. Advanced SiC composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Schwarz, O.J. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This is a short review of the motivation for and progress in the development of ceramic matrix composites for fusion. Chemically vapor infiltrated silicon carbide (SiC) composites have been fabricated from continuous fibers of either SiC or graphite and tested for strength and thermal conductivity. Of significance is the the Hi-Nicalon{trademark} SiC based fiber composite has superior unirradiated properties as compared to the standard Nicalon grade. Based on previous results on the stability of the Hi-Nicalon fiber, this system should prove more resistant to neutron irradiation. A graphite fiber composite has been fabricated with very good mechnical properties and thermal conductivity an order of magnitude higher than typical SiC/SiC composites.

  5. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  6. A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen R. Sanderson; Christopher R. Johnson

    2006-08-01

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  7. A National Collaboratory To Advance The Science Of High Temperature Plasma Physics For Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create

  8. Advances in High Energy Materials (Review Paper

    Directory of Open Access Journals (Sweden)

    U. R. Nair

    2010-03-01

    Full Text Available Research and development efforts for realizing higher performance levels of high energy materials (HEMs are continued unabated all over the globe. Of late, it is becoming increasingly necessary to ensure that such materials are also eco-friendly. This has provided thrust to research in the area of force multiplying HEMs and compounds free from pollution causing components. Enhancement of the performance necessitates introduction of strained structure or increase in oxygen balance to achieve near stoichiometry. The search for environment friendly molecules is focused on chlorine free propellant compositions and lead free primary explosives. Energetic polymers offer added advantage of partitioning of energy and thus not necessitating the concentration of only solid components (HEMs and metal fuels in the formulations, to achieve higher performance, thereby leading to improvement in energetics without adversely affecting the processability and mechanical properties. During recent times, research in the area of insensitive explosives has received impetus particularly with the signature of STANAG. This paper gives a review of the all-round advances in the areas of HEMs encompassing oxidizers, high-energy dense materials, insensitive high-energy materials, polymers and plasticizers. Selected formulations based on these materials are also included.Defence Science Journal, 2010, 60(2, pp.137-151, DOI:http://dx.doi.org/10.14429/dsj.60.327

  9. Advanced Materials Laboratory User Test Planning Guide

    Science.gov (United States)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. On the fracture toughness of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Ritchie, Robert O.

    2008-11-24

    Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as

  11. Advances in material capsule technology in HANARO

    International Nuclear Information System (INIS)

    A material capsule system has been developed for irradiation tests of non-fissile materials in HANARO. This capsule system has been actively utilized for various material irradiation tests requested by users from research institutes, universities, and the industries. Based on the accumulated experience and the user's sophisticated requirements, several advances in material capsule technologies were obtained recently for a more precise control and analysis of the neutron irradiation effect in HANARO. New instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen, irrespective of the reactor operation, have been developed and out-pile tested. The OR/IP capsule technologies for an irradiation test in the HANARO OR and IP test holes with a relatively lower neutron flux than the CT and IR test holes have also been developed and in-pile tested, successfully. A high temperature irradiation technology up to 1000degC is under development. An evaluation of the DPA (Displacement Per Atom) and activation of irradiated specimens was attempted by using the SPECTOR and ORIGEN2 codes, respectively. A new fluence monitor with a decreased activity was designed to measure the thermal and fast neutron fluences of the irradiated specimens. A friction welded tube using STS304 and Al1050 alloys was introduced to prevent a coolant leakage into a capsule during a capsule cutting process after an irradiation. (author)

  12. Advances in material capsule technology in HANARO

    International Nuclear Information System (INIS)

    A material capsule system has been developed for irradiation tests of non fissile materials in HANARO. This capsule system has been actively utilized for various material irradiation tests requested by users from research institutes, universities, and the industries. Based on the accumulated experience and the user's sophisticated requirements, several advances in material capsule technologies were obtained recently for a more precise control and analysis of the neutron irradiation effect in HANARO. New instrumented capsule technologies for a more precise control of the irradiation temperature and fluence of a specimen, irrespective of the reactor operation, have been developed and out pile tested. The OR/IP capsule technologies for an irradiation test in the HANARO OR and IP test holes with a relatively lower neutron flux than the CT and IR test holes have also been developed and in pile tested, successfully. A high temperature irradiation technology up to 1000 .deg. C is under development. An evaluation of the DPA (Displacement Per Atom) and activation of irradiated specimens was attempted by using the SPECTOR and ORIGEN2 codes, respectively. A new fluence monitor with a decreased activity was designed to measure the thermal and fast neutron fluences of the irradiated specimens. A friction welded tube using STS304 and Al1050 alloys was introduced to prevent a coolant leakage into a capsule during a capsule cutting process after an irradiation

  13. 1980's - Payoff decade for advanced materials Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980

    International Nuclear Information System (INIS)

    The symposium focuses on recent developments in advanced structural materials and adhesive formulations, material characterization, processing techniques, design and fabrication of composite structures, testing methods, and applications. Papers are presented on the advanced composite hardware utilized on the Intelsat V spacecraft, the development of advanced structural materials for fusion power, an instrumented tensile impact method for composite materials, and prospects for bonding primary aircraft structures in the 80's

  14. Advanced Deuterium Fusion Rocket Propulsion For Manned Deep Space Missions

    CERN Document Server

    Winterberg, Dr Friedwardt

    2009-01-01

    Excluding speculations about future breakthrough discoveries in physics, it is shown that with what is at present known, and also what is technically feasible, manned space flight to the limits of the solar system and beyond deep into the Oort cloud is quite well possible. Using deuterium as the rocket fuel of choice, abundantly available on the comets of the Oort cloud, rockets driven by deuterium fusion, can there be refueled. To obtain a high thrust with a high specific impulse, favors the propulsion by deuterium micro-bombs, and it is shown that the ignition of deuterium micro-bombs is possible by intense GeV proton beams, generated in space by using the entire spacecraft as a magnetically insulated billion volt capacitor. The cost to develop this kind of propulsion system in space would be very high, but it can also be developed on earth by a magnetically insulated Super Marx Generator. Since the ignition of deuterium is theoretically possible with the Super Marx Generator, rather than deuterium-tritium ...

  15. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  16. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-15

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  17. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    International Nuclear Information System (INIS)

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DTx fuel with a small tritium initial content (xe and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in SiC, modify the understanding of the calculation of displacement per atom, dpa, to quantify the collisional damage. An important analysis has been the confirmation, using Molecular Dynamics (MD) with an astonishing agreement, of the experimental evidence of low-temperature amorphization by damage accumulation in SiC, which could modify extensively its viability as a

  18. Graphite as a plasma-facing material in fusion experiments

    International Nuclear Information System (INIS)

    Graphite is now used extensively in most of the major fusion experiments in the world and will be used more extensively in future devices. In addition to its excellent tolerance of high heat fluxes, graphite has many unusual characteristics that pertain to its use as a plasma-facing material; these are its propensity for releasing gases when heated and when exposed to ion fluxes, its ability to absorb copious quantities of hydrogen during hydrogen bombardment, and its ability to pump hydrogen after noble gas bombardment. The graphite used in existing machines and considered for use in future machines is isotropic on a macroscopic scale and anisotropic on a microscopic scale; it has a large open porosity, up to 20%. This leads to enormous internal surface areas for adsorption and desorption of gases. Most early hydrogen-graphite interaction experiments were incorrectly analyzed because of this property. In addition, interaction of energetic hydrogen ions with graphite can lead to erosion, with concomitant deposition of carbon films with high hydrogen content on chamber surfaces. These effects are observed experimentally and have been modeled with some success. This paper presents experimental data dealing with these topics and their influences on present-day plasma operations and on graphite use in future machines. 34 refs., 8 figs., 1 tab

  19. Activation and waste management considerations of fusion materials

    Science.gov (United States)

    Cheng, E. T.; Saji, G.

    1994-09-01

    Inconel-625 (Ni625), SS316, Ti-6Al-4V (Ti64), ferritic steel (FS), reduced activity ferritic steel (RAFS), manganese steel (Mn-steel), and V5Cr5Ti (V55), were examined for a near-term experimental D-T fueled fusion power reactor with respect to waste management. Activation calculations for these materials were performed assuming one year continuous operation at 1 MW/m 2 wall loading. The results show that the blanket components made of V55, Ti64, Mn-steel, and FS will be allowed for transfer to an on-site dry storage facility after 10 years of cooling after discharge. To transport the discharged blanket components to a permanent disposal site, the cooling time needed can be within 10 years for Ti64 and V55, provided that the impurities (mainly Ni, Nb and Mo) be controlled to an acceptable level. The RAFS and Mn-steel will need about 30 y cooling time because of its Fe and Mn contents. Ni625, 316SS, and FS, however, will require more than 50000 y cooling time because of their Nb and Mo contents. The RAFS, Mn-steel, Ti64 and V55 can be shallow-land wastes if the impurity level for Nb and Mo is dropped below 10 ppm.

  20. Material classification through distance aware multispectral data fusion

    International Nuclear Information System (INIS)

    Safety applications require fast, precise and highly reliable sensors at low costs. This paper presents signal processing methods for an active multispectral optical point sensor instrumentation for which a first technical implementation exists. Due to the very demanding requirements for safeguarding equipment, these processing methods are targeted to run on a small embedded system with a guaranteed reaction time T < 2 ms and a sufficiently low failure rate according to applicable safety standards, e.g., ISO-13849. The proposed data processing concept includes a novel technique for distance-aided fusion of multispectral data in order to compensate for displacement-related alteration of the measured signal. The distance measuring is based on triangulation with precise results even for low-resolution detectors, thus strengthening the practical applicability. Furthermore, standard components, such as support vector machines (SVMs), are used for reliable material classification. All methods have been evaluated for variants of the underlying sensor principle. Therefore, the results of the evaluation are independent of any specific hardware. (paper)

  1. Thermodynamics of ceramic breeder materials for fusion reactors

    International Nuclear Information System (INIS)

    Based on known or deduced phase relationships in ternary lithium oxygen systems such as Li-Al-O, Li-Si-O and Li-Zr-O, the unknown free enthalpy of formation values of ternary compounds are calculated starting from the known data of the compounds of the binary border systems. Criterion for the data assessment is interconsistency of the data of all the compounds within a given multi-component system. With the help of these data the development of partial pressures during the breeding process can be calculated for all the compounds of interest. In order to facilitate a compatibility assessment the quaternary systems Cr-Li-Si-O, Fe-Li-Si-O and Be-Li-Si-O were also investigated and thermodynamic data of pertinent ternary and quaternary compounds determined. Both the partial pressure development and the compatibility behaviour of a lithium containing compound are criteria for its qualification as a breeder material for a fusion reactor. (orig.)

  2. Fusion Technology Facility — Key Attributes and Interfaces to Technology and Materials

    International Nuclear Information System (INIS)

    Full text: On the way to a Demonstration Fusion Power Plant (DEMO), a number of fusion technology issues will need to be resolved including the long burn or steady state DT operation, net tritium breeding ratio of > 1 and the application of the Fusion Technology Facility (FTF) as a material and component testing vehicle. This paper focuses on four interface areas between physics and technology that will have significant impacts on the design of FTF. For the interface area of divertor peak heat flux, both water and helium-cooled divertor designs are projected to be able to handle a maximum heat flux of 10 MW/m2. When extended to the FTF, both mantle and divertor radiation will be needed including an innovative snowflake or super-X divertor concept. For a robust divertor design, based on results from edge localized mode (ELM) and disruption simulation experiments, both high power ELMs and disruptions will have to be avoided; otherwise the surface material will suffer significant damage. For the interface area of uniform chamber wall surface heat flux, 1-D estimates were performed and, due to the minimum and maximum temperature limits of > 350° C and 2. For the area of robust chamber wall surface material, presently W is the favored surface material for the chamber wall and divertor. Recent vertical displacement event exposures to Si-W samples in DIII-D indicated the formation of the lower melting point eutectic tungsten silicide, which forms when the surface temperature reached 1400°C. The intent was for silicon to protect the tungsten by the vapor shielding effect. For the area of low activation structural material, recent boron-doped RAFM steel results indicate the possible increase of the minimum operating temperature of RAFM steel to higher than 350°C. This could significantly narrow the operating temperature window of the RAFM steel at higher neutron fluence, leading to the need for development of ODS and nano-ferritic-alloys. These areas of plasma edge

  3. Fusion of heavy ions in advanced focused discharges

    International Nuclear Information System (INIS)

    Field distortion elements (FDEs) in the interelectrode gap of focused discharge machines with a peak current of ≥0.6 MA have been successfully used for increasing the current density in the pinch at the stage of maximum compression. A suitable FDE increases the neutron emission per shot, Yn, by a factor of ≥5 as compared with the value of Yn from DD fusion reactions in the same machine operating under identical conditions but without an FDE. The variations of the current distribution with and without an FDE (peak current density and current sheath width in the interelectrode gap) are monitored from magnetic probe signals and are of the order of 20%. With a doping by pressure of 2-8% of the filling gas of the discharge chamber with CD4 or N2 the reactions 12C(d,n)13N(β+) or 14N(d,n)15O(β+), of the order of ∼ 1% of the DD reactions in the same shot, are detected. The location and linear dimensions (n = AW02, A approx.= 1.3x108 neutrons/(kJ)2 (where W0 is the energy in kJ of the capacitor bank which feeds the discharge) for 5 kJ 0 n) are virtually eliminated. All reaction yields and ion energy spectrum data are consistent with the view that the bulk of the reactions occur in a multiplicity of localized regions with a density of >1020cm-3. (author). 14 refs, 2 figs

  4. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  5. A spallation-based irradiation test facility for fusion and future fission materials

    CERN Document Server

    Samec, K; Kadi, Y; Luis, R; Romanets, Y; Behzad, M; Aleksan, R; Bousson, S

    2014-01-01

    The EU’s FP7 TIARA program for developing accelerator-based facilities has recently demonstrated the unique capabilities of a compact and powerful spallation source for irradiating advanced nuclear materials. The spectrum and intensity of the neutron flux produced in the proposed facility fulfils the requirements of the DEMO fusion reactor for ITER, ADS reactors and also Gen III / IV reactors. Test conditions can be modulated, covering temperature from 400 to 550°C, liquid metal corrosion, cyclical or static stress up to 500 MPa and neutron/proton irradiation damage of up to 25 DPA per annum. The entire “TMIF” facility fits inside a cube 2 metres on a side, and is dimensioned for an accelerator beam power of 100 kW, thus reducing costs and offering great versatility and flexibility.

  6. Atomic and plasma-material interaction data for fusion. V. 5

    International Nuclear Information System (INIS)

    Volume 5 of the supplements on ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' is devoted to a critical assessment of the physical and thermo-mechanical properties of presently considered candidate plasma-facing and structural materials for next-generation thermonuclear fusion devices. It contains 9 papers. The subjects are: (i) requirements and selection criteria for plasma-facing materials and components in the ITER EDA (Engineering Design Activities) design; (ii) thermomechanical properties of Beryllium; (iii) material properties data for fusion reactor plasma-facing carbon-carbon composites; (iv) high-Z candidate plasma facing materials; (v) recommended property data for Molybdenum, Niobium and Vanadium alloys; (vi) copper alloys for high heat flux structure applications; (vii) erosion of plasma-facing materials during a tokamak disruption; (viii) runaway electron effects; and (ix) data bases for thermo-hydrodynamic coupling with coolants. Refs, figs, tabs

  7. Fusion reactor materials. Semiannual progress report for period ending September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.; Burn, G.L.; Knee`, S.S.; Dowker, C.L. [comps.

    1994-02-01

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  8. Workshop on beryllium for fusion applications. Proceedings. IEA Implementing Agreement for a Programme of Research and Development on Fusion Materials

    International Nuclear Information System (INIS)

    As shown by recent developments beryllium has become one of the most important materials in the development of fusion reactors. It is practically the only neutron multiplier available for blankets with ceramic breeder materials and can be used with liquid metal breeders as well. It is one of the most likely materials to be used on the surface of the first walls and of the divertor. The neutron irradiation behavior of beryllium in a fusion reactor is not well know. Beryllium was extensively irradiated about 25-40 years ago and has been used since then in material testing reactors as reflector. In the meantime, however, beryllium has been improved quite considerably. Today it is possible to obtain commercially beryllium which is much more isotropic and contains smaller ammounts of oxide. There are already indications that these new kinds of beryllium behave better under irradiation. (orig.)

  9. Advanced neutron source materials surveillance program

    International Nuclear Information System (INIS)

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing

  10. Thermal fatigue durability for advanced propulsion materials

    Science.gov (United States)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  11. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  12. NATO Conference on Materials for Advanced Batteries

    CERN Document Server

    Broadhead, J; Steele, B

    1980-01-01

    The idea of a NATO Science Committee Institute on "Materials for Advanced Batteries" was suggested to JB and DWM by Dr. A. G. Chynoweth. His idea was to bring together experts in the field over the entire spectrum of pure research to applied research in order to familiarize everyone with potentially interesting new systems and the problems involved in their development. Dr. M. C. B. Hotz and Professor M. N. Ozdas were instrumental in helping organize this meeting as a NATO Advanced Science Institute. An organlzlng committee consisting of the three of us along with W. A. Adams, U. v Alpen, J. Casey and J. Rouxel organized the program. The program consisted of plenary talks and poster papers which are included in this volume. Nearly half the time of the conference was spent in study groups. The aim of these groups was to assess the status of several key aspects of batteries and prospects for research opportunities in each. The study groups and their chairmen were: Current status and new systems J. Broadhead Hig...

  13. Advanced Simulation of Electron Heat Transport in Fusion Plasmas

    International Nuclear Information System (INIS)

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  14. Advanced simulation of electron heat transport in fusion plasmas

    International Nuclear Information System (INIS)

    Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E X B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual

  15. Decay heat measurement on fusion reactor materials and validation of calculation code system

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Wada, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Decay heat rates for 32 fusion reactor relevant materials irradiated with 14-MeV neutrons were measured for the cooling time period between 1 minute and 400 days. With using the experimental data base, validity of decay heat calculation systems for fusion reactors were investigated. (author)

  16. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Executive summary

    International Nuclear Information System (INIS)

    This report is a summary of the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  17. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M. [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  18. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  19. Re-evaluation of the use of low activation materials in waste management strategies for fusion

    International Nuclear Information System (INIS)

    The world fusion programs have had a long goal that fusion power stations should produce only low level waste and thus not pose a burden for the future generations. However, the environmental impact of waste material is determined not only by the level of activation, but also the total volume of activated material. Since a tokamak power plant is large, the potential to generate a correspondingly large volume of activated material exists. The adoption of low activation materials, while important for reducing the radiotoxicity of the most active components, should be done as part of a strategy that also minimizes the volume of waste material that might be categorized as radioactive, even if lower in level. In this paper we examine different fusion blanket and shield designs in terms of their ability to limit the activation of the large vessel/ex-vessel components (e.g. vacuum vessel, magnets) and we identify the trends that allow improved in-vessel shielding to result in reduced vessel/ex-vessel activation. Recycling and clearance are options for reducing the volume of radioactive waste in a fusion power plant. Thus, the performance of typical fusion power plant designs with respect to recycling and clearance criteria are also assessed, to show the potential for improvement in waste volume reduction by careful selection of materials' combinations. We discuss the impact of these results on fusion waste strategies and on the development of fusion power in the future

  20. Atomic and plasma-material interaction data for fusion. V. 6

    International Nuclear Information System (INIS)

    Volume 6 of the supplement ''atomic and plasma-material interaction data for fusion'' to the journal ''Nuclear Fusion'' includes critical assessments and results of original experimental and theoretical studies on inelastic collision processes among the basic and dominant impurity constituents of fusion plasmas. Processes considered in the 15 papers constituting this volume are: electron impact excitation of excited Helium atoms, electron impact excitation and ionization of plasma impurity ions and atoms, electron-impurity-ion recombination and excitation, ionization and electron capture in collisions of plasma protons and impurity ions with the main fusion plasma neutral components helium and atomic and molecular hydrogen. Refs, figs, tabs

  1. A concept for next step advanced tokamak fusion device

    International Nuclear Information System (INIS)

    A concept is introduced for initiating the design study of a special class of tokamak, which has a magnetic confinement configuration intermediate between contemporary advanced tokamak and the recently established spherical torus (ST, also well known by the name 'spherical tokamak'). The leading design parameter in the present proposal is a dimensionless geometrical parameter the machine aspect ratio A = R0/a0 = 2.0, where the parameters a0 and R0 denote, respectively, the plasma (equatorial)minor radius and the plasma major radius. The aim of this choice is to technologically and experimentally go beyond the aspect ratio frontier (R0/a0 ≅ 2.5) of present day tokamaks and enter a broad unexplored domain existing on the (a0, R0) parameter space in current international tokamak database, between the data region already moderately well covered by the advanced conventional tokamaks and the data region planned to be covered by STs. Plasma minor radius a0 has been chosen to be the second basic design parameter, and consequently, the plasma major radius R0 is regarded as a dependent design parameter. In the present concept, a nominal plasma minor radius a0 = 1.2 m is adopted to be the principal design value, and smaller values of a0 can be used for auxiliary design purposes, to establish extensive database linkage with existing tokamaks. Plasma minor radius can also be adjusted by mechanical and/or electromagnetic means to smaller values during experiments, for making suitable data linkages to existing machines with higher aspect ratios and smaller plasma minor radii. The basic design parameters proposed enable the adaptation of several confinement techniques recently developed by STs, and thereby a specially arranged central-bore region insider the envisioned tokamak torus, with retrieved space in the direction of plasma minor radius, will be available for technological adjustments and maneuvering to facilitate implementation of engineering instrumentation and real

  2. Irradiation effects on the ductility of fusion reactor structural materials

    International Nuclear Information System (INIS)

    Austenitic and ferritic-martensitic stainless steels have been proposed as first wall structural materials for the next generation of fusion devices. In order to study the effect of high temperature irradiation on their tensile properties, specimens of the steel AISI 316 L (CEC reference), of the martensitic steel W. Nr 1.4914 and of the duplex ferritic-martensitic steel EM12 have been irradiated in the BR2 reactor in Mol. The austenitic steel was irradiated at 4700C to about 1.1 1022n/cm2 ( E>0.1 MeV) while the ferritic-martensitic steels were irradiated at 5900C to about 7.7 1022n/cm2 (E>0.1 MeV). The tensile tests of the 316 L steel have been performed between 250 and 7500C. Below around 5500C, the yield stress after irradiation increased from about 160 to 270 MPa and the total elongation decreased from 42 to about 26%. At 7500C, the yield stress increase was small but the total elongation decreased from 60 to only 10%. At this temperature, the rupture of the irradiated specimen was intergranular while all the other specimens presented a transgranular rupture. At 6500C the variations were intermediate. The change of the ultimate tensile strength was small at all test temperatures. The EM12 and W. Nr 1.4914 steels tested only at 5500C, showed a decrease of the yield and tensile strength as well as an increase of the total elongation. The same tests performed on specimens which have been heat treated in parallel showed that the observed changes were due, in a large part, if not completely, to the maintenance of steels at high temperature

  3. Fatigue effects in insulation materials for fusion magnets

    International Nuclear Information System (INIS)

    The mechanical properties of insulation materials for the superconducting magnets of ITER (International Thermonuclear Experimental Reactor) and future fusion plants, i.e. woven fiber reinforced composites, have been identified as an area of concern for the long-term operation of such magnets. The magnets will be subjected to fast neutron and γ-radiation over their lifetime, which influence the mechanical properties of the insulation materials. The ultimate tensile strength and, above all, the interlaminar shear strength and their performance under dynamic load, corresponding to the pulsed operation of a TOKAMAK-confinement system, are sensitive indicators of material failure in fiber-reinforced laminates especially at cryogenic temperatures. To simulate these conditions, low frequency fatigue measurements at 10 Hz were made at 77 K up to one million cycles. Tension-tension fatigue tests were performed according to ASTM D3479. However, due to the space limitations in all irradiation facilities, the tests have to be done on samples, which are considerably smaller than those required for standard test conditions. The influence of the specimen geometry on the ultimate tensile strength under static and dynamic load conditions was, therefore, investigated on fiber-reinforced plastics. They did not show any systematic trends as long as the sample thickness does not exceed the thickness recommended in ASTM D3479. The double lap shear test method was chosen for the shear experiments because of the symmetry of the specimen geometry under tensile load and the suitability for fatigue tests. Like almost every existing test procedure for the interlaminar shear strength, this test method does not provide for a completely uniform interlaminar shear stress distribution over a sizable region in the test section of the specimen. A scaling program combined with FE-simulations was, therefore, initiated to assess the influence of the length of the test section and of the sample

  4. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  5. Safety and economical requirements of conceptual fusion power reactors in co-existing advanced fission plants

    International Nuclear Information System (INIS)

    An EPR fission plant is expected to operate from 2010 to 2070. In this time range a new generation of advanced fission reactors and several stages of fusion reactors from ITER to DEMO will emerge. Their viability in the competitive socio-economic environment and also their possible synergy benefits are discussed in this paper. The studied cases involve the Finnish EPR, Generation IV, and the EFDA Power Plant Conceptual Study Models A-D. The main focus is on economic and safety assessments. Some cross-cutting issues of technologies are discussed. Concerning the economic potential of both conceptual fusion power plants and those of Generation IV candidates, we have used the present Finnish EPR as a reference. Comparisons using various pricing methods are made for fusion and Generation IV: mass flow analyses together with engineering, construction and financial margins form one method and another one is based on simple scaling relations between components or structures with common technology level. In all these studies fusion competitiveness has to be improved in terms of plant availability and internal power recirculation. At present the best fission plants have a plant availability close to 95% and an internal power recirculation of the order of 3-4%. The operation and maintenance solutions of Model C and D show the right way for fusion. A remarkable rise of the fuel costs of present LWRs would first make the Generation IV breeder options and thereafter the fusion plants more competitive. The costs of safety related components, such as the containment and the equipment for severe accident mitigation (e.g. the core catcher in a LWR), should be accounted for and the extent to which the inherent fusion safety features could compensate such expenses should be analysed. For an overall assessment of the various nuclear options both internal and external costs are considered. (author)

  6. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    Science.gov (United States)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  7. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  8. Experimental results on advanced inertial fusion schemes obtained within the HiPER project

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Gizzi, L.A.; Koester, P.; Labate, L.; Honrubia, J.; Antonelli, L.; Morace, A.; Volpe, L.; Santos, J.J.; Schurtz, G.; Hulin, S.; Ribeyre, X.; Nicolai, P.; Vauzour, B.; Dorchies, F.; Nazarov, W.; Pasley, J.; Richetta, M.; Lancaster, K.; Spindloe, C.; Tolley, M.; Neely, D.; Kozlová, Michaela; Nejdl, Jaroslav; Rus, Bedřich; Wolowski, J.; Badziak, J.

    2012-01-01

    Roč. 57, č. 1 (2012), s. 3-10. ISSN 0029-5922. [International Workshop and Summer School on Towards Fusion Energy /10./. Kudowa Zdroj, 12.06.2011-18.06.2011] Institutional research plan: CEZ:AV0Z10100502 Keywords : advanced ignition schemes * fast ignition * shock ignition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.507, year: 2012

  9. Executive summary: advanced-fuel fusion systems, the D-3He satellite approach

    International Nuclear Information System (INIS)

    An evaluation was made of the potential advantages and feasibility of fusion power plants designed to employ near-term non-D--T fuels such as deuterium and D-3He. The following topics are discussed here: (1) cost studies and net-energy analysis, (2) D-3He Bumpy Torus satellite, (3) exploratory studies of a D-3He field-reversed mirror satellite, (4) preliminary advanced fuel pellet studies, and (5) 3He neutral beam injector

  10. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  11. Advances in Target Design for Heavy-Ion Fusion

    International Nuclear Information System (INIS)

    Over the past few years, the emphasis in heavy ion target design has moved from the distributed radiator target to the 'hybrid' target because the hybrid target allows a larger beam focal spot than the distributed radiator (∼ 5 mm radius rather than ∼ 2 mm radius). The larger spot relaxes some of the requirements on the driver, but introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam placement. The shim is a thin layer of material placed on or near the capsule surface to block a small amount of excess radiation. While we have been developing this technique for the heavy ion hybrid target, the technique can be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z-pinch hohlraum on the Sandia Z-machine. Experiments using shimmed thin wall capsules have shown that we can reverse the sign of a P2 asymmetry and significantly reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules

  12. Advances in target design for heavy ion fusion

    International Nuclear Information System (INIS)

    Over the past few years, the emphasis in heavy ion target design has moved from the distributed radiator target to the 'hybrid' target because the hybrid target allows a larger beam focal spot than the distributed radiator (∼5 mm radius rather than ∼2 mm radius). The larger spot relaxes some of the requirements on the driver, but introduces some new target physics issues. Most notable is the use of shine shields and shims in the hohlraum to achieve symmetry rather than achieving symmetry by beam placement. The shim is a thin layer of material placed on or near the capsule surface to block a small amount of excess radiation. While we have been developing this technique for the heavy ion hybrid target, the technique can also be used in any indirect drive target. We have begun testing the concept of a shim to improve symmetry using a double-ended z-pinch hohlraum on the Sandia Z-machine. Experiments using shimmed thin wall capsules have shown that we can reverse the sign of a P2 asymmetry and significantly reduce the size of a P4 asymmetry. These initial experiments demonstrate the concept of a shim as another method for controlling early time asymmetries in ICF capsules

  13. IAEA advisory group meeting on: Critical assessment of tritium retention in fusion reactor materials. Summary report

    International Nuclear Information System (INIS)

    The proceedings, conclusions and recommendations of the IAEA Advisory Group Meeting on 'Critical Assessment of Tritium Retention in Fusion Reactor Materials', held on June 7-8, 1999 at the IAEA Headquarters in Vienna, Austria, are briefly described. The report contains a summary of the presentations of meeting participants, a review of the data status (availability and needs) for the fusion most relevant bulk and mixed materials, and recommendations to the IAEA regarding its future activity in this data area. (author)

  14. Design of intense neutron source for fusion material study and the role of universities

    International Nuclear Information System (INIS)

    Need and requirement for the intense neutron source for fusion materials study have been discussed for many years. Recently, international climate has been becoming gradually maturing to consider this problem more seriously because of the recognition of crucial importance of solving materials problems for fusion energy development. The present symposium was designed to discuss the problems associated with the intense neutron source for material irradiation studies which will have a potential for the National Institute for Fusion Science to become one of the important future research areas. The symposium comprises five sessions; first, the role of materials research in fusion development strategies was discussed followed by a brief summary of current IFMIF (International Fusion Materials Irradiation Facility) activity. Despite the pressing need for intense fusion neutron source, currently available neutron sources are reactor or accelerator based sources of which FFTF and LASREF were discussed. Then, various concepts of intense neutron source candidates were presented including ESNIT, which are currently under design by JAERI. In the fourth session, discussions were made on the study of materials with the intense neutron source from the viewpoint of materials scientists and engineers as the user of the facility. This is followed by discussions on the role of universities from the two stand points, namely, fusion irradiation studies and fusion materials development. Finally summary discussions were made by the participants, indicating important role fundamental studies in universities for the full utilization of irradiation data and the need of pure 14 MeV neutron source for fundamental studies together with the intense surrogate neutron sources. (author)

  15. Fusion Materials Semiannual Progress Report for the Period Ending June 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.

    1999-09-01

    This is the twenty-sixth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and its reported separately.

  16. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately.

  17. Advanced High-Temperature Engine Materials Technology Progresses

    Science.gov (United States)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  18. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    International Nuclear Information System (INIS)

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  19. Engineered Materials for Advanced Gas Turbine Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  20. Recent advances and challenges for diode-pumped solid-state lasers as an inertial fusion energy driver candidate

    International Nuclear Information System (INIS)

    We discuss how solid-state laser technology can serve in the interests of fusion energy beyond the goals of the National Ignition Facility (NIF), which is now being constructed to ignite a deuterium-tritium target to fusion conditions in the laboratory for the first time. We think that advanced solid-state laser technology can offer the repetition-rate and efficiency needed to drive a fusion power plant, in contrast to the single-shot character of NIF. As discuss below, we propose that a gas-cooled, diode-pumped Yb:S-FAP laser can provide a new paradigm for fusion laser technology leading into the next century

  1. Fusion materials semiannual progress report for period ending December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G.

    2000-03-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components.

  2. Fusion materials semiannual progress report for period ending December 31, 1999

    International Nuclear Information System (INIS)

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components

  3. Fusion reactor materials semiannual progress report for the period ending September 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-04-01

    This paper discusses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  4. Fusion reactor materials semiannual progress report for the period ending September 30, 1988

    International Nuclear Information System (INIS)

    This paper discusses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  5. Insulator materials in high power lasers for inertial fusion: present and future

    International Nuclear Information System (INIS)

    A summary is given of the important characteristics of currently used insulator materials. Figures of merit for materials needed in future systems are identified. A methodology for identifying and evaluating new materials meeting the stringent performance requirements of future fusion laser systems is outlined

  6. Advanced tokamak research at the DIII-D National Fusion Facility in support of ITER

    International Nuclear Information System (INIS)

    Fusion energy research aims to develop an economically and environmentally sustainable energy system. The tokamak, a doughnut shaped plasma confined by magnetic fields generated by currents flowing in external coils and the plasma, is a leading concept. Advanced Tokamak (AT) research in the DIII-D tokamak seeks to provide a scientific basis for steady-state high performance operation. This necessitates replacing the inherently pulsed inductive method of driving plasma current. Our approach emphasizes high pressure to maximize fusion gain while maximizing the self-driven bootstrap current, along with external current profile control. This requires integrated, simultaneous control of many characteristics of the plasma with a diverse set of techniques. This has already resulted in noninductive conditions being maintained at high pressure on current relaxation timescales. A high degree of physical understanding is facilitated by a closely coupled integrated modelling effort. Simulations are used both to plan and interpret experiments, making possible continued development of the models themselves. An ultimate objective is the capability to predict behaviour in future AT experiments. Analysis of experimental results relies on use of the TRANSP code via the FusionGrid, and our use of the FusionGrid will increase as additional analysis and simulation tools are made available

  7. EURAC: accelerator-based material testing device for a fusion reactor

    International Nuclear Information System (INIS)

    The European Communities' Joint Research Center (JCR) has studied the feasibility of spallation neutrons to simulate the fusion reactor first wall conditions. It can be shown that spallation neutrons, produced by 600 MeV protons impinging on a thin lead target are simulating the fusion reactor first wall conditions as well as, or even better than, neutron sources based on the D-Li stripping or D-T fusion reaction. A D-T fusion cycle produces five times more neutrons per unit of energy released than a fission cycle, with about twice the damage energy and the capability to produce ten times more hydrogen, helium and transmutation products than fission neutrons. They determine, together with other parameters, the lifetime of the construction materials for the low plasma-density fusion reactors (Tokamak, Tandem-Mirror, etc.), which require a first wall. 15 refs., 1 fig

  8. Atomic and plasma-material interaction data for fusion. V. 2

    International Nuclear Information System (INIS)

    This issues of the Atomic and Plasma-Material Interaction Data for Fusion contains 9 papers on atomic and molecular processes in the edge region of magnetically confined fusion plasmas, including spectroscopic data for fusion edge plasmas; electron collision processes with plasma edge neutrals; electron-ion collisions in the plasma edge; cross-section data for collisions of electrons with hydrocarbon molecules; dissociative and energy transfer reactions involving vibrationally excited hydrogen or deuterium molecules; an assessment of ion-atom collision data for magnetic fusion plasma edge modeling; an extended scaling of cross sections for the ionization of atomic and molecular hydrogen as well as helium by multiply-charged ions; ion-molecule collision processes relevant to fusion edge plasmas; and radiative losses and electron cooling rates for carbon and oxygen plasma impurities. Refs, figs and tabs

  9. Atomic and plasma-material interaction data for fusion. Vol.1

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency, through its Atomic and Molecular Data Unit, coordinates a wide spectrum of programmes for the compilation, evaluation, and generation of atomic, molecular, and plasma-wall interaction data for fusion research. The present, first, volume of Atomic and Plasma-Material Interaction Data for Fusion, contains extended versions of the reviews presented at the IAEA Advisory Group Meeting on Particle-Surface Interaction Data for Fusion, held 19-21 April 1989 at the IAEA Headquarters in Vienna, The plasma-wall interaction processes covered here are those considered most important for the operational performance of magnetic confinement fusion reactors. In addition to processes due to particle impact under normal operation, plasma-wall interaction effects due to off-normal plasma events (disruptions, electron runaway bombardment) are covered, and a summary of the status of data information on these processes is given from the point of view of magnetic fusion reactor design. Refs, figs and tabs

  10. Fusion materials semiannual progress report for the period ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. [ed.] [comp.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1987-09-01

    This is the second in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities in the following areas: (1) Alloy Development for Irradiation Performance; (2) Damage Analysis and Fundamental Studies; and (3) Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. Separate analytics were prepared for the reports in this volume.

  12. Fusion reactor materials: Semiannual progress report for the period ending March 31, 1987

    International Nuclear Information System (INIS)

    This is the second in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities in the following areas: (1) Alloy Development for Irradiation Performance; (2) Damage Analysis and Fundamental Studies; and (3) Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. Separate analytics were prepared for the reports in this volume

  13. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section.

  14. Fusion materials semiannual progress report for the period ending June 30, 1998

    International Nuclear Information System (INIS)

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  15. Fusion reactor materials semiannual progress report for the period ending March 31, 1993

    International Nuclear Information System (INIS)

    This is the fourteenth in a series of semiannual technical progress reports on fusion reactor materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Depart of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Separate abstracts were prepared for each individual section

  16. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    CERN Document Server

    Gilbert, M R; Nguyen-Manh, D; Zheng, S; Packer, L W; Sublet, J -Ch

    2013-01-01

    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the "next-step" fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant co...

  17. Mechanical properties of materials for fusion power plants

    OpenAIRE

    Forsik, St?phane Alexis Jacques

    2009-01-01

    Fusion power is the production of electricity from a hot plasma of deuterium and tritium, reacting to produce particles and 14 MeV neutrons, which are collected by a cooling system. Their kinetic energy is transformed into heat and electricity via steam turbines. The constant ux of neutrons on the rst wall of the reactor produces atomic displacement damage through collisions with nuclei, and gas bubbles as a result of transmutation reactions. This leads eventually to ...

  18. The properties and weldability of materials for fusion reactor applications

    International Nuclear Information System (INIS)

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found

  19. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Picciotto, A.; Velyhan, Andriy; Krása, Josef; Kucharik, M.; Morrissey, Michael; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, Jiří; Bellutti, P.; Korn, Georg

    Bellingham: SPIE, 2015 - (Awwal, A.; Lane, M.), "93450F-1"-"93450F-8". (Proceedings of SPIE. 9345). ISBN 978-1-62841-435-6. ISSN 0277-786X. [Biennial Conference on High Power Lasers for Fusion Research /3./. San Francisco (US), 20150210] R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279 Grant ostatní: ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : proton-boron fusion * advanced targets * laser-induced nuclear reactions Subject RIV: BF - Elementary Particles and High Energy Physics; BH - Optics, Masers, Lasers (UFP-V)

  20. Study on advanced cancer treatment method using quantum beam fusion technology

    International Nuclear Information System (INIS)

    This study on advanced cancer treatment method using quantum beam fusion technology aims at the realization of the fusion therapy device between boron neutron capture therapy device and THz wave hyperthermia device. To achieve this purpose, it is necessary to develop an intra-body transmission technology of THz beams. From the transmission experiment of 0.2 THz wave using sapphire microfiber, it has been found that the transmission of THz microbeam into the intra-body cancer affected part is possible. As the technologies to commercially realize the intra-body transmission of THz beams, this paper describes the coupler for transmission, flexible corrugated horn, and the micro-fabrication techniques of microfibers. In addition, the authors conducted the development of an optical fiber type rotary encoder for the long-distance transmission of THz waves, and confirmed that the effects of vibration did not exist through the evaluation of vibration durability. (A.O.)

  1. A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion

    International Nuclear Information System (INIS)

    This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large

  2. State of the art of fusion material recycling and remaining issues

    International Nuclear Information System (INIS)

    Fusion as a power production system presents several advantages in terms of safety and environmental impact, one of these being the limited amount of radioactive waste production which is burden for future generations. Nevertheless, even if fusion does not produce long term radioactive waste, e.g. by adequate material selection for plasma facing components, there are two important aspects deserving consideration: the presence of tritium in relatively large quantity, and the very hard neutron spectrum leading to large amounts of active materials. In order to keep radioactive waste levels to a minimum it has been proposed to recycle the materials removed from the reactor, after adequate decay period and proper handling and treatment. Treatment may include detritiation, separation of different material types and sorting of the non reusable materials, among others. Moreover if recycle or reuse (within the nuclear industry in general or, for some particular materials, within the fusion industry) are foreseen, the material has to be melted or reduced to reusable raw material, machined or the pieces fabricated again, assembled and checked (for geometrical correctness, or leak tightness for instance). And all this has to be made on industrial scale, as fusion will produce large amounts of material presenting various degrees of radioactivity and tritium content. Even if some experience of recycling exists in the nuclear fission industry, which can be used for fusion materials, the different steps mentioned above are challenging operations when dealing with tritiated materials or highly radioactive components. The paper presents a review of the current situation and state-of-the-art recycling methods for typical fusion materials (e.g. Beryllium, Tungsten, Copper and Copper alloys, steel, Carbon) and components of future fusion plants based on current conceptual design studies. It also focuses attention on R-and-D issues to be addressed in order to be able to recycle as much

  3. The scaling of economic and performance parameters of DT and advanced fuel fusion reactors

    International Nuclear Information System (INIS)

    In this study, the plasma stability index beta and the fusion power density in the plasma were treated as independent variables to determine how they influenced three economic performance parameters of fusion reactors burning the DT and four advanced fusion fuel cycles. The economic/performance parameters included the total power produced per unit length of reactor; the mass per unit length, and the specific mass in kilograms/kilowatt. The scaling of these parameters with beta and fusion power density was examined for a common set of engineering assumptions on the allowable wall loading limits, the maximum magnetic field existing in the plasma, average blanket mass density, etc. It was found that the power per unit length decreased as the plasma power density and beta increased. This is a consequence of the fact that the first wall is a bottleneck in the energy flow from the plasma to the generating equipment, and the wall power flux will exceed wall loading limits if the plasma radius exceeds a critical value. If one wished to build an engineering test reactor which produced a burning plasma at the lowest possible initial cost, and without regard to whether such a reactor would ultimately produce the cheapest power, then one would minimize the mass per unit length. The mass per unit length decreases with increasing plasma power density and beta, with the DT reaction being the most expensive at a fixed plasma power density (because of its thicker blanket), and the least expensive at a fixed value of beta, at least up to values of beta of 50%. The specific mass, in kg/kw, which is a rough measure of the cost of the power generated by the reactor, shows an opposite trend. It increases with increasing plasma power density and beta. At a given plasma power density and low beta, the DT reaction gives the lowest specific mass, but at a fixed beta above 10%, the advanced fuel cycles have the lowest specific mass

  4. Atomic and plasma-material interaction data for fusion. V. 3

    International Nuclear Information System (INIS)

    This volume of Atomic and Plasma-Material Interaction Data for Fusion is devoted to atomic collision processes of helium atoms and of beryllium and boron atoms and ions in fusion plasmas. Most of the articles included in this volume are extended versions of the contributions presented at the IAEA experts' meetings on Atomic Data for Helium Beam Fusion Alpha Particle Diagnostics and on the Atomic Database for Beryllium and Boron, held in June 1991 at the IAEA headquarters in Vienna, or have resulted from the cross-section data analyses and evaluations performed by the working groups of these meetings. Refs, figs and tabs

  5. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    Science.gov (United States)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  6. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  7. Engineering with advanced materials for tailing dam designing

    OpenAIRE

    Kostadinov, Ljubisa; Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Ilievski, Darko

    2012-01-01

    Tailing dam accidents hapened in the past serve as "alarm" for application of advanced methods and techniques at designing of tailing dams. The designing of advanced tailing dam nowdays is very current topic, due to the fact that designing would resolve very important issues for environmental protection. Advanced materials (geosyntetics) are used at process of construction in order the tailing dam to be constructed and to perform according to the advanced world standards. By applying the geos...

  8. Fusion materials semiannual progress report for period ending June 30, 1997

    International Nuclear Information System (INIS)

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods

  9. Perspectives for the high field approach in fusion research and advances within the Ignitor Program

    Science.gov (United States)

    Coppi, B.; Airoldi, A.; Albanese, R.; Ambrosino, G.; Belforte, G.; Boggio-Sella, E.; Cardinali, A.; Cenacchi, G.; Conti, F.; Costa, E.; D'Amico, A.; Detragiache, P.; De Tommasi, G.; DeVellis, A.; Faelli, G.; Ferraris, P.; Frattolillo, A.; Giammanco, F.; Grasso, G.; Lazzaretti, M.; Mantovani, S.; Merriman, L.; Migliori, S.; Napoli, R.; Perona, A.; Pierattini, S.; Pironti, A.; Ramogida, G.; Rubinacci, G.; Sassi, M.; Sestero, A.; Spillantini, S.; Tavani, M.; Tumino, A.; Villone, F.; Zucchi, L.

    2015-05-01

    The Ignitor Program maintains the objective of approaching D-T ignition conditions by incorporating systematical advances made with relevant high field magnet technology and with experiments on high density well confined plasmas in the present machine design. An additional objective is that of charting the development of the high field line of experiments that goes from the Alcator machine to the ignitor device. The rationale for this class of experiments, aimed at producing poloidal fields with the highest possible values (compatible with proven safety factors of known plasma instabilities) is given. On the basis of the favourable properties of high density plasmas produced systematically by this line of machines, the envisioned future for the line, based on novel high field superconducting magnets, includes the possibility of investigating more advanced fusion burn conditions than those of the D-T plasmas for which Ignitor is designed. Considering that a detailed machine design has been carried out (Coppi et al 2013 Nucl. Fusion 53 104013), the advances made in different areas of the physics and technology that are relevant to the Ignitor project are reported. These are included within the following sections of the present paper: main components issues, assembly and welding procedures; robotics criteria; non-linear feedback control; simulations with three-dimensional structures and disruption studies; ICRH and dedicated diagnostics systems; anomalous transport processes including self-organization for fusion burning regimes and the zero-dimensional model; tridimensional structures of the thermonuclear instability and control provisions; superconducting components of the present machine; envisioned experiments with high field superconducting magnets.

  10. Development of high electric resistant functionally gradient material for fusion reactor components

    International Nuclear Information System (INIS)

    Electric insulation is required in a tokamak fusion reactor to prevent damages of pipes and vessels due to a transient electromagnetic force during a plasma disruption. Stainless steel/ceramic/stainless steel functionally gradient material (FGM) has been proposed and developed as the high electric resistant element for the components. It can be welded to a usual pipe or vessel wall at both ends of the material, and expected as a reliable highly resistant element under fusion reactor environment. In this study, an elastic stress analysis was performed to prevent crack generation after sintering of the material. Following the result, several tubular FGM elements were successfully manufactured. (author)

  11. Multiscale damage modeling of advanced composite materials

    OpenAIRE

    Menna, Costantino

    2013-01-01

    The use of composite materials has spread over the years throughout the engineering areas of structures. The technological progress in this field has recently expanded, resulting in the design of new composite configurations, including multilayered composite materials and multifunctional nanostructured materials. Even though traditional and emerging composite materials offer wide potentialities for engineering, a significant challenge is still open with respect to damage phenomena. Driven by ...

  12. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    International Nuclear Information System (INIS)

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits

  13. Insulation materials for advanced water storages

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    2005-01-01

    sections different insulation materials are described with respect to material characteristics and some comments on the easiness of application for tank insulation. The material properties listed in this paper are typical values, which gives an idea of the possibilities but in case of a specific design a...

  14. A concept of an advanced inertia fusion reactor; TAKANAWA-I

    International Nuclear Information System (INIS)

    A concept of an advanced inertia fusion reactor: TAKANAWA-I is proposed. A pellet with DT ignitor and DD major fuel, Pb wet walls, C or SiC blocks for shielding, and SiC vessels in the water pool are employed. This reactor does not need blanckets for T breeding, since T is supplied through DD reaction, and has low induced radioactivities. These and a simple structure might give a hopeful prediction of economical and safe advantages and mitigate difficulties of reactor technologies, especially remote maintenance of the reactor. (author)

  15. IAEA technical meeting on nuclear data library for advanced systems - Fusion devices

    International Nuclear Information System (INIS)

    A Technical Meeting on 'Nuclear Data Library for Advanced Systems - Fusion Devices' was held at the IAEA Headquarters in Vienna from 31 October to 2 November 2007. The main objective of the initiative has been to define a proposal and detailed plan of activities for a Co-ordinated Research Project on this subject. Details of the discussions which took place at the meeting, including a review of the current activities in the field, a list of recommendations and a proposed timeline schedule for the CRP are summarized in this report. (author)

  16. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    Czech Academy of Sciences Publication Activity Database

    Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W.W.; Battabyal, M.; Becquart, C.S.; Blagoeva, N.; Boldyryeva, Hanna; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J.B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M.R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, A.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matějíček, Jiří; Mishra, T.P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, Y.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, G.; van der Laan, J.G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M.A.; You, J.H.; Zivelonghi, A.

    2013-01-01

    Roč. 432, 1-3 (2013), s. 482-500. ISSN 0022-3115 Institutional support: RVO:61389021 Keywords : tungsten * joining * composites * graded materials * fusion materials Subject RIV: JF - Nuclear Energetics Impact factor: 2.016, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022311512004278

  17. Advanced materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Stevenson, J.

    1995-08-01

    The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs. The goal is to modify and improve the current state-of-the-art materials and minimize the total number of cations in each material to avoid negative effects on the materials properties. Materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabricatoin and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component composition and processing on those reactions.

  18. Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems

    Science.gov (United States)

    Sridhar, S.; Rozzelle, P.; Morreale, B.; Alman, D.

    2011-04-01

    This special section of Metallurgical and Materials Transactions is devoted to materials challenges associated with coal based energy conversion systems. The purpose of this introductory article is to provide a brief outline to the challenges associated with advanced combustion and advanced gasification, which has the potential of providing clean, affordable electricity by improving process efficiency and implementing carbon capture and sequestration. Affordable materials that can meet the demanding performance requirements will be a key enabling technology for these systems.

  19. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  20. New trends in advanced high energy materials

    OpenAIRE

    Adam S. Cumming

    2009-01-01

    In the last twenty years military explosives and energetic materials in general have changed significantly. This has been due to several factors which include new operational requirements such as Insensitive Munitions (IM), but is also due to the availability of new materials and to new assessment and modelling techniques. These permit more effective use of materials and a more detailed understanding of the processes involved in applying the technology. This article will outline some of the e...

  1. Advanced Magnetostrictive Materials for Sonar Applications

    Directory of Open Access Journals (Sweden)

    Rajapan Rajapan

    2005-01-01

    Full Text Available Piezoelectric or magnetostrictive materials can be utilised as active materials for electroacoustic underwater transducers. Piezoceramic materials gained edge over the conventional magnetostrictive materials during 1940s due to their unique electro-acoustic properties. At present, inspite of passive sonars there is a need of low-frequency high-power active sonars for the Navy. This led toresearch for new activematerials with competing characteristics to that of the existing piezo transducers. The discovery of a giant magnetostrictive material, commercially known as Terfenol-D, led to a breakthrough in the development of a new generation of sonar transducers. Now, the materials (including composites as well as sensors are commercially available. A new generation of transducers have emerged in ocean-related areas like acoustic tomography, longrange underwater communication, geophysical exploration, oil well exploration, etc.Indian Institute of Technology Madras, Chennai, has also developed the basic material technology a few years back. At present, in India, National Institute of Ocean Technology, Chennai, is developing underwater transducers utilising giant magnetostrictive materials as well as piezoelectric materials for marine applications like sub-bottom profiling (seafloor mapping and long-range underwater communications. A prototype of a portable, low-frequency medium power transmitter operating over a wide-frequency range has been developed. The main advantage of this transducer is its simplicity in design. In this paper, (he recent developments in material processes, importance of device-oriented material characterisation, and transducer design aspects have been emphasised. Some results on the underwater performance of a wide-band transducer have also been presented. These materials also have ultrasonic applications, capable of revolutionising the processing industry.

  2. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus;

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  3. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  4. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    International Nuclear Information System (INIS)

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  5. Fusion reactor materials: Semiannual progress report for period ending September 30, 1987

    International Nuclear Information System (INIS)

    This is the third in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development for Irradiation Performances; Damage Analysis and Fundamental Studies; Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  6. Fusion Reactor Materials semiannual progress report for the period ending March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This is the twelfth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  7. Fusion materials semiannual progress report for the period ending March 31, 1995

    International Nuclear Information System (INIS)

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: sm-bullet Alloy Development for Irradiation Performance. sm-bullet Damage Analysis and Fundamental Studies. sm-bullet Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged

  8. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1991-07-01

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide.

  9. Fusion reactor materials semiannual progress report for the period ending September 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This is the seventh in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: alloy development for irradiation performance, damage analysis and fundamental studies, and special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  10. Fusion materials semiannual progress report for the period ending March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This is the eighteenth in a series of semiannual technical progress reports on fusion materials. This report combines research and development activities which were previously reported separately in the following progress reports: {sm_bullet} Alloy Development for Irradiation Performance. {sm_bullet} Damage Analysis and Fundamental Studies. {sm_bullet} Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. This report has been compiled and edited under the guidance of A.F. Rowcliffe by Gabrielle Burn, Oak Ridge National Laboratory. Their efforts, and the efforts of the many persons who made technical contributions, are gratefully acknowledged.

  11. Fusion reactor materials semiannual progress report for the period ending March 31, 1991

    International Nuclear Information System (INIS)

    This is the tenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: alloy development for irradiation performance; damage analysis and fundamental studies; special purpose materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of program participants, and to provide a means of communicating the efforts of materials scientists to the test of the fusion community, both nationally and worldwide

  12. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    International Nuclear Information System (INIS)

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  13. Fusion materials semiannual progress report for the period ending December 31, 1997

    International Nuclear Information System (INIS)

    This is the twenty-third in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. A large fraction of this work, particularly in relation to fission reactor experiments, is carried out collaboratively with their partners in Japan, Russia, and the European Union. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  14. Fusion reactor materials semiannual progress report for period ending September 30, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This is the ninth in series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following technical progress reports: Alloy Development of Irradiation Performance; Damage Analysis and Fundamental Studies; and Special Purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide.

  15. Fusion materials semiannual progress report for the period ending December 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. [ed.] [comp.

    1998-03-01

    This is the twenty-third in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. A large fraction of this work, particularly in relation to fission reactor experiments, is carried out collaboratively with their partners in Japan, Russia, and the European Union. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  16. Tritium adsorption and desorption measurement on fusion relevant materials by beta induced spectrometry

    International Nuclear Information System (INIS)

    The use of tritium in future fusion power plants has the potential to make a major contribution to a sustainable and secure energy supply. For economic, licensing and safety reasons, tritium confinement in the fusion fuel system must be absolutely assured. Tritium adsorbed on a surface or diffused into a bulk material can escape from the fuel system and is lost for the process. Therefore, tritium confinement can be optimized by the use of materials with low adsorption and diffusion tendency. The Tritium Adsorption Desorption (TRIADE) Experiment is dedicated to investigate the tritium adsorption/desorption on fusion relevant materials by Beta Induced X-ray Spectrometry (BIXS) and mass spectrometry. The experimental setup and first results of the tritium measurements are presented.

  17. Critical questions in materials science and engineering for successful development of fusion power

    International Nuclear Information System (INIS)

    It is the general conclusion of all national programs that the development of high-performance reduced-activation structural materials is essential for the successful development of fusion power. In this paper, the experience gleaned from previous programs to develop materials for high temperature structural applications is used to identify and discuss some of the most critical issues that must be addressed in the development of candidate materials for fusion structural applications. Critical issues discussed include radiation-induced solute segregation and implications on phase stability in the development of high-performance alloys/ceramics; the effects of very large amounts of helium on mechanical properties and the implications for alloy design/development; development of high temperature design methodology and incorporation of radiation effects into this methodology; the effects of radiation damage on flow localization, and the implications and approach to control the phenomena; and considerations of mass transfer and corrosion in complex fusion systems

  18. Effects of non-steady irradiation conditions on fusion materials performance

    International Nuclear Information System (INIS)

    During startup of fusion reactors, materials are exposed to neutron irradiation under non-steady temperature condition. Since the temperature of irradiation has decisive effects on the microstructural evolution, the non-steady temperature will have important consequences in the performance of fusion reactor materials. In the present study, a series of vanadium based alloys have been irradiated with neutrons in a temperature cycling condition. It has been found from this study that cavity number density is much greater in temperature cycled specimens than in steady temperature irradiation. Keeping the upper temperature constant, cavity number density is greater for smaller difference between the upper and the lower temperature. It follows that relatively small temperature excursions may have rather significant effects on the fusion material performance in service. (author)

  19. Role of Fission Reactors and IFMIF in the Fusion Materials Programme

    International Nuclear Information System (INIS)

    In fusion power reactors, the plasma facing (first wall and divertor) and breeding blanket components will suffer irradiation by an intense flux of 14.1 MeV neutrons coming from the plasma. These fusion neutrons will produce nuclear transmutation reactions and atomic displacement cascades causing the presence of impurities and defects. Therefore, the chemical composition and the microstructure of the materials will change after irradiation, affecting its physical and mechanical properties. The study and evaluation of the changes in the material properties under irradiation is a top priority for the design of a fusion reactor. Key irradiation parameters include the accumulated damage, expressed in the number of displacements per atom or dpa, the damage rate in dpa/s, the rates of production of impurities (e.g. ppm(He)/dpa and ppm(H)/dpa ratios) and the temperature of the materials under irradiation. Unfortunately, at the moment, the existing sources of 14 MeV neutrons have very small intensity and do not allow us to get significant damage accumulation in a reasonable time. Therefore, it is necessary to simulate irradiation by fusion neutrons through the use of fission neutrons, high energy protons or heavy ions. Although the irradiation conditions provided by such particles are very different from those expected to occur in a fusion power reactor, especially in terms of damage rate and rates of production of impurities, relevant information can be obtained from present available fission reactors. In the paper a list with relevant experiments suitable for the fusion community is given, and the role of the future International Fusion Materials Irradiation Facility is discussed. (author)

  20. Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980

    International Nuclear Information System (INIS)

    Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research

  1. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic crystal fibers

    CERN Document Server

    Driben, Rodislav

    2012-01-01

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. We show that the mechanism of acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result of fusion large intensity robust light structures arise and propagate over significant distances. In presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  2. Advanced lubrication systems and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  3. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  4. Advanced materials for radiation-cooled rockets

    Science.gov (United States)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-11-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  5. Production of Construction Materials Using Advanced Recycling Technologies

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Waste reduction, material reuse, and use of recycle-content products can be focused on the management system somewhat. In contrast, material recycling is the technical issue how to create new materials using wastes. Thus, three advanced recycling technologies; 1) Synthetic Lightweight Aggregate technology (SLA), 2) Clean Coal Technology (CCT), and 3) RP-1 Polymer Identification System are introduced.

  6. New trends in advanced high energy materials

    Directory of Open Access Journals (Sweden)

    Adam S. Cumming

    2009-06-01

    Full Text Available In the last twenty years military explosives and energetic materials in general have changed significantly. This has been due to several factors which include new operational requirements such as Insensitive Munitions (IM, but is also due to the availability of new materials and to new assessment and modelling techniques. These permit more effective use of materials and a more detailed understanding of the processes involved in applying the technology. This article will outline some of the effects in addition to taking a glance at what the future might hold.

  7. Lignin-Derived Advanced Carbon Materials.

    Science.gov (United States)

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. PMID:26568373

  8. The impact of materials selection on long-term activation in fusion power plants

    International Nuclear Information System (INIS)

    Neutron-induced transmutation of materials in a D-T fusion power plant will give rise to the potential for long-term activation. To ensure that the attractive safety and environmental characteristics of fusion power are not degraded, careful design choices are necessary. An aim of optimising power plant design must be to minimise both the level of activation and the total volume of active material that might ultimately be categorised as waste requiring disposal. Materials selection is central to this optimisation. In this paper we assess the influence of materials choices for a power plant on the waste volume and the potential to clear (i.e. remove from regulatory control) and recycle material. Although the use of low activation materials in regions of high neutron flux is an important part of the strategy to minimise the level of activation, different choices may result from a strategy aimed at minimising the volume of active waste

  9. The feasibility of recycling and clearance of active materials from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M. [EURATOM/ENEA Fusion Association, Politecnico di Torino (Italy)]. E-mail: massimo.zucchetti@polito.it; El-Guebaly, L.A. [University of Wisconsin-Madison, Madison, WI (United States); Forrest, R.A. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Marshall, T.D. [Idaho National Laboratory, Idaho Falls (United States); Taylor, N.P. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Tobita, K. [Japan Atomic Energy Agency, Ibaraki (Japan)

    2007-08-01

    In order to minimize the quantity of active materials that require long-term storage, arising during operation and after fusion power plant decommissioning, maximum use should be made of both recycling within the nuclear industry and clearance. For the latter, revised limits have been recently issued at the international level and in the US and Europe. In this paper the implications for fusion materials of these new levels are considered. Concerning recycling, power plant studies have employed criteria based solely on radiological parameters. Reviews of remote procedures currently used within the nuclear industry suggest that these criteria have been unduly conservative and should be revised.

  10. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi; Yutani, Toshiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-03-01

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D{sup +})-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m{sup 2}, 20 dpa/year for Fe) in a volume of 500 cm{sup 3} for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  11. IFMIF (International Fusion Materials Irradiation Facility) key element technology phase interim report

    International Nuclear Information System (INIS)

    Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator-based deuteron (D+)-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m2, 20 dpa/year for Fe) in a volume of 500 cm3 for testing candidate fusion materials. In 2000, a 3 year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test facilities and design integration. (author)

  12. Advances in ultrafine-grained materials

    Directory of Open Access Journals (Sweden)

    Yi Huang

    2013-03-01

    Full Text Available This review addresses new developments in the processing and properties of ultrafine-grained (UFG materials. These materials are produced through the application of severe plastic deformation to conventional coarse-grained metals and typically they have grain sizes within the submicrometer or even the nanometer range. Although several techniques are now available for achieving excellent homogeneity and high fractions of high-angle grain boundaries, this review concentrates on the major procedures of equal-channel angular pressing and high-pressure torsion. It is shown that UFG materials exhibit both excellent strength at ambient temperature and, if the grains are reasonably stable, outstanding superplastic properties at elevated temperatures. These materials also have a high innovation potential for use in commercial applications.

  13. Advanced Materials Growth and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This most extensive of U.S. Army materials growth and processing facilities houses seven dedicated, state-of-the-art, molecular beam epitaxy and three metal organic...

  14. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    OpenAIRE

    Gilbert, M. R.; Dudarev, S. L.; Nguyen-Manh, D.; S. Zheng; Packer, L.W.; Sublet, J. -Ch.

    2013-01-01

    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displace...

  15. Breeding blanket concepts for fusion and materials requirements

    International Nuclear Information System (INIS)

    This paper summarizes the design and performances of recent breeding blanket concepts and identifies the key material issues associated with them. An assessment of different classes of concepts is carried out by balancing out the potential performance of the concepts with the risk associated with the required material development. Finally, an example strategy for blanket development is discussed

  16. Neutronic analysis of alternative structural materials for fusion reactor blankets

    International Nuclear Information System (INIS)

    The neutronic performance of the International Tokamak Reactor (INTOR) blanket was studied when several alternative structural materials were used instead of the INTOR reference structural material, type 316 stainless steel. The alternative structural materials included: ferritic-, vanadium-, titanium-, long range ordered-, manganese austenitic-, and nimonic-alloys. All were treated both with and without a first-wall coating of beryllium or graphite. The tritium breeding ratio, the nuclear heating, and the gas (hydrogen and helium) production rates in the structural materials were calclated for the possible combinations of structural material and first-wall coating. These parameters were compared with those obtained by using SS-316. The nimonic alloy was the only one with worse neutronic performance than the SS-316. (orig.)

  17. Recent advances in mass transport in materials

    CERN Document Server

    Ochsner, Andreas

    2012-01-01

    The present topical volume presents a representative cross-section of some recent advances made in the area of diffusion. The range of topics covered is very large, and, this reflects the enormous breadth of the topic of diffusion. The areas covered include diffusion in intermetallics, phenomenological diffusion theory, diffusional creep, kinetics of steel-making, diffusion in thin films, precipitation, diffusional phase transformations, atomistic diffusion simulations, epitaxial growth and diffusion in porous media. Review from Book News Inc.: In 13 invited and peer-reviewed papers, scientist

  18. Advanced Polymeric Materials for High-tech Innovations

    Institute of Scientific and Technical Information of China (English)

    TANG BenZhong

    2001-01-01

    @@ High technology is advancing our society and modernizing our life and advanced materials play an important role in the technological innovations. My research group has been working on the development of advanced polymeric materials and in this talk I will report our recent work on the creation of new conjugated polymers with novel molecular structures and unique materials properties.1-18 Our work include the design of molecular structures of monomeric building blocks, development of stable, effective and environmentally benign "green” polymerization catalysts, discovery of new polymerization reactions, synthesis of functional macromolecules, fabrication of nanodimensional composites, assembly and control of hierarchical structures, and construction of electrooptical devices. We have revealed the liquid crystallinity, light emission, photoconductivity, optical limiting, nano-hybridization, solvatochromism, optical activity, self-organization, and biological activity of the linear polyacetylenes and hyperbranched polyarylenes. The utilization of the advanced polymers and their interesting materials properties for high-tech innovations will be discussed.

  19. Advanced Polymeric Materials for High-tech Innovations

    Institute of Scientific and Technical Information of China (English)

    TANG; BenZhong

    2001-01-01

    High technology is advancing our society and modernizing our life and advanced materials play an important role in the technological innovations. My research group has been working on the development of advanced polymeric materials and in this talk I will report our recent work on the creation of new conjugated polymers with novel molecular structures and unique materials properties.1-18 Our work include the design of molecular structures of monomeric building blocks, development of stable, effective and environmentally benign "green” polymerization catalysts, discovery of new polymerization reactions, synthesis of functional macromolecules, fabrication of nanodimensional composites, assembly and control of hierarchical structures, and construction of electrooptical devices. We have revealed the liquid crystallinity, light emission, photoconductivity, optical limiting, nano-hybridization, solvatochromism, optical activity, self-organization, and biological activity of the linear polyacetylenes and hyperbranched polyarylenes. The utilization of the advanced polymers and their interesting materials properties for high-tech innovations will be discussed.  ……

  20. Advanced Insulation Materials for Cryogenic Propellant Storage Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the Topic X9 entitled [HTML_REMOVED]Propulsion and Propellant Storage[HTML_REMOVED] under subtopic X9.01,...

  1. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  2. Final report: Joining of dissimilar materials for fusion reactor applications

    International Nuclear Information System (INIS)

    The research activities in this project include the following: investigation into the microstructure evolution and structure-property relationship of vanadium alloys under simulated joining conditions, development and characterization of vanadium/stainless steel brazed joints, and studies of fracture and failure behaviors of vanadium/stainless steel dissimilar joints. In addition, both short term training and education towards advanced degrees for six students have been accomplished in this project

  3. Low-Density Materials for Use in Inertial Fusion Targets

    International Nuclear Information System (INIS)

    Low-density polymer foams have been an integral part of targets used in inertial confinement fusion (ICF) experiments. Target designs are unique in the ICF program, and targets are made on an individual basis. Costs for these targets are high due to the time required to machine, assemble, and characterize each target. To produce targets in high volume and at low cost, a polymer system is required that is amenable to scale up. High internal phase emulsion (HIPE) polystyrene is a robust system that offers great flexibility in terms of tailoring the density and incorporating metal dopants. Emulsions used to fabricate HIPE foams currently are made in a batch process. With the use of metering pumps for both the water and oil phases, emulsions can be produced in a continuous process. This not only makes these foams potential candidates for direct-drive capsules, but high-Z dopants can be metered in making these foams attractive for hohlraum components in indirect-drive systems. Preparation of HIPE foams are discussed for both direct-drive and indirect-drive systems

  4. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10−6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  5. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu-Tae, E-mail: ktkim@dongguk.ac.kr

    2013-10-15

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10{sup −6} on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure.

  6. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    International Nuclear Information System (INIS)

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m2, 20 dpa/y in Fe, in a volume of 500 cm3 and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  7. IFMIF-KEP. International fusion materials irradiation facility key element technology phase report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m{sup 2}, 20 dpa/y in Fe, in a volume of 500 cm{sup 3} and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration. (author)

  8. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  9. "Foreign material" to verify root fusion in welded joints

    Science.gov (United States)

    Kleint, R. E.

    1980-01-01

    Foil or thin wire at weld root is used to verify weld penetration. When weld is adequate, material mixes with weld and traces of it diffuse to weld crown. Spectroscopic analysis of samples identifies foreign material and verifies root has fused. Weld roots are usually inaccessible to visual inspection, and X-ray and ultrasonic inspection techniques are not always reliable. Good results are obtained with use of gold/nickel alloy.

  10. Advanced materials: processing, characterisation and applications

    International Nuclear Information System (INIS)

    The topics discussed in this symposium are: polymer nanocomposites, Li-ion batteries, materials for electrochemical systems, photoelectrochemical and photovoltaic solar cells, crystal growth, thin films, reaction dynamics and kinetics, catalysis, coordination compounds and irradiation studies. Papers relevant to INIS are indexed separately

  11. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Samulyak, Roman V. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States); Parks, Paul [General Atomics, San Diego, CA (United States)

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  12. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  13. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    International Nuclear Information System (INIS)

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops' as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems

  14. IFMIF - International Fusion Materials Irradiation Facility Conceptual Design Activity/Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Rennich, M.J.

    1995-12-01

    Environmental acceptability, safety, and economic viability win ultimately be the keys to the widespread introduction of fusion power. This will entail the development of radiation- resistant and low- activation materials. These low-activation materials must also survive exposure to damage from neutrons having an energy spectrum peaked near 14 MeV with annual radiation doses in the range of 20 displacements per atom (dpa). Testing of candidate materials, therefore, requires a high-flux source of high energy neutrons. The problem is that there is currently no high-flux source of neutrons in the energy range above a few MeV. The goal, is therefore, to provide an irradiation facility for use by fusion material scientists in the search for low-activation and damage-resistant materials. An accellerator-based neutron source has been established through a number of international studies and workshops` as an essential step for materials development and testing. The mission of the International Fusion Materials Irradiation Facility (IFMIF) is to provide an accelerator-based, deuterium-lithium (D-Li) neutron source to produce high energy neutrons at sufficient intensity and irradiation volume to test samples of candidate materials up to about a full lifetime of anticipated use in fusion energy reactors. would also provide calibration and validation of data from fission reactor and other accelerator-based irradiation tests. It would generate material- specific activation and radiological properties data, and support the analysis of materials for use in safety, maintenance, recycling, decommissioning, and waste disposal systems.

  15. Radiation Processing of Advanced Composite Materials

    International Nuclear Information System (INIS)

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and γ-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose

  16. Fusion reactor materials: Semiannual progress report for period ending September 30, 1986

    International Nuclear Information System (INIS)

    These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The major areas of concern covered in this report are irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; radiation effects; development of structural alloys; solid breeding materials; ceramics and superconducting magnet materials. There are 61 reports cataloged separately

  17. Fusion reactor materials: Semiannual progress report for period ending September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1987-09-01

    These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials program being conducted in support of the Magnetic Fusion Energy Program of the US Department of Energy. The major areas of concern covered in this report are irradiation facilities, test matrices, and experimental methods; dosimetry, damage parameters and activation calculations; materials engineering and design requirements; radiation effects; development of structural alloys; solid breeding materials; ceramics and superconducting magnet materials. There are 61 reports cataloged separately. (LSP)

  18. PREFACE: Advanced Materials for Demanding Applications

    Science.gov (United States)

    McMillan, Alison; Schofield, Stephen; Kelly, Michael

    2015-02-01

    This was a special conference. It was small enough (60+ delegates) but covering a wide range of topics, under a broad end-use focussed heading. Most conferences today either have hundreds or thousands of delegates or are small and very focussed. The topics ranged over composite materials, the testing of durability aspects of materials, and an eclectic set of papers on radar screening using weak ionized plasmas, composites for microvascular applications, composites in space rockets, and materials for spallation neutron sources etc. There were several papers of new characterisation techniques and, very importantly, several papers that started with the end-user requirements leading back into materials selection. In my own area, there were three talks about the technology for the ultra-precise positioning of individual atoms, donors, and complete monolayers to take modern electronics and optoelectronics ideas closer to the market place. The President of the Institute opened with an experience-based talk on translating innovative technology into business. Everyone gave a generous introduction to bring all-comers up to speed with the burning contemporary issues. Indeed, I wish that a larger cohort of first-year engineering PhD students were present to see the full gamut of what takes a physics idea to a success in the market place. I would urge groups to learn from Prof Alison McMillan (a Vice President of the Institute of Physics) and Steven Schofield, to set up conferences of similar scale and breadth. I took in more than I do from mega-meetings, and in greater depth. Professor Michael Kelly Department of Engineering University of Cambridge

  19. Polymers Advance Heat Management Materials for Vehicles

    Science.gov (United States)

    2013-01-01

    For 6 years prior to the retirement of the Space Shuttle Program, the shuttles carried an onboard repair kit with a tool for emergency use: two tubes of NOAX, or "good goo," as some people called it. NOAX flew on all 22 flights following the Columbia accident, and was designed to repair damage that occurred on the exterior of the shuttle. Bill McMahon, a structural materials engineer at Marshall Space Flight Center says NASA needed a solution for the widest range of possible damage to the shuttle s exterior thermal protection system. "NASA looked at several options in early 2004 and decided on a sealant. Ultimately, NOAX performed the best and was selected," he says. To prove NOAX would work effectively required hundreds of samples manufactured at Marshall and Johnson, and a concerted effort from various NASA field centers. Johnson Space Center provided programmatic leadership, testing, tools, and crew training; Glenn Research Center provided materials analysis; Langley Research Center provided test support and led an effort to perform large patch repairs; Ames Research Center provided additional testing; and Marshall provided further testing and the site of NOAX manufacturing. Although the sealant never had to be used in an emergency situation, it was tested by astronauts on samples of reinforced carbon-carbon (RCC) during two shuttle missions. (RCC is the thermal material on areas of the shuttle that experience the most heat, such as the nose cone and wing leading edges.) The material handled well on orbit, and tests showed the NOAX patch held up well on RCC.

  20. Development of resonance ionization spectroscopy system for fusion material surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Satoh, Yasushi; Nakazawa, Masaharu

    1996-10-01

    A Resonance Ionization Spectroscopy (RIS) system is now under development aiming at in-situ observation and analysis neutral particles emitted from fusion material surfaces under irradiation of charged particles and neutrons. The basic performance of the RIS system was checked through a preliminary experiment on Xe atom detection. (author)

  1. Theory and modeling of radiation effects in materials for fusion energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L.

    1996-04-01

    The U.S./Japan Workshop on Theory and Modeling of Radiation Effects in Materials for Fusion Energy Systems, under Phase III of the DOE/Monbusho collaboration, convened on July 17-18, 1995, at Lawrence Livermore National Laboratory. A brief summary of the workshop is followed by the workshop program.

  2. Advanced Functional Materials for Energy Related Applications

    Science.gov (United States)

    Sasan, Koroush

    The current global heavy dependency on fossil fuels gives rise to two critical problems: I) fossil fuels will be depleted in the near future; II) the release of green house gas CO2 generated by the combustion of fossil fuels contributes to global warming. To potentially address both problems, this dissertation documents three primary areas of investigation related to the development of alternative energy sources: electrocatalysts for fuel cells, photocatalysts for hydrogen generation, and photoreduction catalysts for converting CO2 to CH4. Fuel cells could be a promising source of alternative energy. Decreasing the cost and improving the durability and power density of Pt/C as a catalyst for reducing oxygen are major challenges for developing fuel cells. To address these concerns, we have synthesized a Nitrogen-Sulfur-Iron-doped porous carbon material. Our results indicate that the synthesized catalyst exhibits not only higher current density and stability but also higher tolerance to crossover chemicals than the commercial Pt/C catalyst. More importantly, the synthetic method is simple and inexpensive. Using photocatalysts and solar energy is another potential alternative solution for energy demand. We have synthesized a new biomimetic heterogeneous photocatalyst through the incorporation of homogeneous complex 1 [(i-SCH 2)2NC(O)C5H4N]-Fe2(CO) 6] into the highly robust zirconium-porphyrin based metal-organic framework (ZrPF). As photosensitizer ZrPF absorbs the visible light and produces photoexcited electrons that can be transferred through axial covalent bond to di-nuclear complex 1 for hydrogen generation. Additionally, we have studied the photoreduction of CO2 to CH4 using self-doped TiO2 (Ti+3@TiO 2) as photocatalytic materials. The incorporation of Ti3+ into TiO2 structures narrows the band gap, leading to significantly increased photocatalytic activity for the reduction of CO2 into renewable hydrocarbon fuel in the presence of water vapor under visible

  3. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  4. Preface to Special Topic: Advances in Radio Frequency Physics in Fusion Plasmas

    International Nuclear Information System (INIS)

    It has long been recognized that auxiliary plasma heating will be required to achieve the high temperature, high density conditions within a magnetically confined plasma in which a fusion “burn” may be sustained by copious fusion reactions. Consequently, the application of radio and microwave frequency electromagnetic waves to magnetically confined plasma, commonly referred to as RF, has been a major part of the program almost since its inception in the 1950s. These RF waves provide heating, current drive, plasma profile control, and Magnetohydrodynamics (MHD) stabilization. Fusion experiments employ electromagnetic radiation in a wide range of frequencies, from tens of MHz to hundreds of GHz. The fusion devices containing the plasma are typically tori, axisymmetric or non, in which the equilibrium magnetic fields are composed of a strong toroidal magnetic field generated by external coils, and a poloidal field created, at least in the symmetric configurations, by currents flowing in the plasma. The waves are excited in the peripheral regions of the plasma, by specially designed launching structures, and subsequently propagate into the core regions, where resonant wave-plasma interactions produce localized heating or other modification of the local equilibrium profiles. Experimental studies coupled with the development of theoretical models and advanced simulation codes over the past 40+ years have led to an unprecedented understanding of the physics of RF heating and current drive in the core of magnetic fusion devices. Nevertheless, there are serious gaps in our knowledge base that continue to have a negative impact on the success of ongoing experiments and that must be resolved as the program progresses to the next generation devices and ultimately to “demo” and “fusion power plant.” A serious gap, at least in the ion cyclotron (IC) range of frequencies and partially in the lower hybrid frequency ranges, is the difficulty in coupling large amount of

  5. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  6. Nuclear data needs for neutron spectrum tailoring at International Fusion Materials Irradiation Facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    International Fusion Materials Irradiation Facility (IFMIF) is a proposal of D-Li intense neutron source to cover all aspects of the fusion materials development in the framework of IEA collaboration. The new activity has been started to qualifying the important technical issues called Key Element technology Phase since 2000. Although the neutron spectrum can be adjusted by changing the incident beam energy, it is favorable to be carried out many irradiation tasks at the same time under the unique beam condition. For designing the tailored neutron spectrum, neutron nuclear data for the moderator-reflector materials up to 50 MeV are required. The data for estimating the induced radioactivity is also required to keep the radiation level low enough at maintenance time. The candidate materials and the required accuracy of nuclear data are summarized. (author)

  7. International panel on 14 MeV intense neutron source based on accelerators for fusion material study

    International Nuclear Information System (INIS)

    The International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study was held January 14--16, 1991, at the Department of Nuclear Engineering, the University of Tokyo. The panel was attended by 38 participants, including 9 from the US, 3 from the EC, and 1 from Canada. This meeting had initially been planned as a bilateral US-Japan workshop, but was expanded to international participation in response to the recently issued FPAC report in the US and the FPEB report in the EC. Both of these documents proposed schedules for the DEMO fusion reactor that present a challenge for the materials community, and restated the importance of the required materials development and the necessity of an international 14 MeV neutron source for the development of the magnetic fusion energy option. The scope of the panel was restricted to source concepts judged to be practical within the next five years little further development. The goals of the panel were to reach a consensus on a practical approach, to collect information on accelerator based concepts, to list critical issues, and to produce tentative schedules for design and development of a neutron source. Most of the panel presentations and discussions were on the d-Li approach to neutron source. The status of the FMI project at its termination and the advance in accelerator technology and target concepts since the time were summarized. No feasibility questions remaining with this approach were seen, but high power beam-on-target verification tests and demonstration of accelerator performance limits remain to be accomplished

  8. Protection and structural materials for fusion reactors: Main challenges, long term materials development needs, differences and commonalities with fission

    International Nuclear Information System (INIS)

    Developing plasma-facing and structural materials with Low nuclear Activation (LA), high heat and radiation resistance, is a challenge that the materials community has to address to enable reliable development and safe operation of fusion reactors in the future. This requires scientific innovation, new knowledge, and the exploration of a range of new materials. To address this challenge, the EU fusion programme has set up a Fusion Materials Topical Group to strengthen coordination of long-term fusion materials development for DEMO, and to undertake physically based modelling of radiation induced microstructure and degradation of mechanical properties required to guide the experimental developments. In this paper we describe main radiation effects induced by the intense flux of 14 MeV neutrons in the reference structural materials (i) for Tritium-Breeding Blanket (TBB) modules, LA Ferritic/Martensitic Steel EUROFER, Oxide Dispersion (ODS) EUROFER and ODS ferritic steels, and, (ii) for the divertor, W and W-alloys. Specific issues concerning the peculiar microstructure induced by the impact of α particles on the surface of tungsten, foreseen as a reference protection material, will also be discussed. Modelling radiation effects in EUROFER under fusion reactor relevant conditions is the first priority for the programme, in order to inter-correlate the data obtained with various neutron spectra, contribute to the definition of the irradiation matrix in the future intense source of 14 MeV neutrons, IFMIF, and bring comprehensive understanding and extrapolation capabilities towards the very large range of DEMO operating conditions. Formulating and developing predictive modelling tools is therefore a task of prime significance. Particular care has been taken (i) to focus the modelling effort on the scale where physics can be mastered, i.e. on the scale of the chemical bond, which is triggered by electronic correlation in the case of Fe-Cr system and body cubic centred

  9. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    Science.gov (United States)

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. PMID:27364430

  10. Achievements and prospects of advanced materials processed by powder technology

    OpenAIRE

    Kaysser, W.

    1993-01-01

    In this paper examples from intermetallics, composites with ductile and high strength reinforcements, nanocrystalline and superplastic materials are used to illustrate generic and special achievements and prospects of advanced materials processed by powder technology. Processing technologies include reactive powder metallurgy, nanocrystalline processing, rapid solidification and mechanical alloying.

  11. Advanced materials and design for electromagnetic interference shielding

    CERN Document Server

    Tong, Xingcun Colin

    2008-01-01

    Exploring the role of EMI shielding in EMC design, this book introduces the design guidelines, materials selection, characterization methodology, manufacturing technology, and future potential of EMI shielding. It covers an array of issues in advanced shielding materials and design solutions, including enclosures and composites.

  12. Ultraintense Lasers Applied to Laser Fusion Material Testing: Production of Ions, X rays and Neutrons

    OpenAIRE

    Alvarez Ruiz, Jesus; Fernández-Tobias, J.; Mima, K.; Garoz, D.; Rivera de Mena, Antonio; Gonzalez Arrabal, Raquel; Gordillo Garcia, Nuria; Perlado Martin, Jose Manuel; Tanaka, K.A.; Kikuyama, K.; Kono, T.; Yabuuchi, T.; Habara, H; Mishima, Y; Hirooka, Y

    2012-01-01

    Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lase...

  13. Development of whole energy absorption spectrometer for decay heat measurement on fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    To measure decay heat on fusion reactor materials irradiated by D-T neutrons, a Whole Energy Absorption Spectrometer (WEAS) consisting of a pair of large BGO (bismuth-germanate) scintillators was developed. Feasibility of decay heat measurement with WEAS for various materials and for a wide range of half-lives (seconds - years) was demonstrated by experiments at FNS. Features of WEAS, such as high sensitivity, radioactivity identification, and reasonably low experimental uncertainty of {approx} 10 %, were found. (author)

  14. Dosimetry needs for the Magnetic Fusion Materials Program

    International Nuclear Information System (INIS)

    The significance of neutron dosimetry within the MFE materials program is discussed. Experimental results demonstrating the current MFE dosimetry methodology is presented for facilities such as RTNS-I and Be(d,n) facilities. Brief descriptions of planned facilities for high intensity neutron sources are given and experimental data needs are stressed. The potential use of nuclear emulsion techniques for these facilities is discussed

  15. Tritium interactions with steel and construction materials in fusion devices

    International Nuclear Information System (INIS)

    The literature on the interactions of tritium and tritiated water with metals, glasses, ceramics, concrete, paints, polymers and other organic materials is reviewed in this report Some of the processes affecting the amount of tritium found on various materials, such as permeation, sorption and the conversion of tritium found on various materials, such as permeation, sorption and conversion of elemental tritium (T2) to tritiated water (HTO), are also briefly outlined. Tritium permeation in steels is fairly well understood, but effects of surface preparation and coatings on sorption are not yet clear. Permeation of T2 into other metals with cleaned surfaces has been studied thoroughly at high temperature, and the effect of surface oxidation has also been explored. The room-temperature permeation rates of low-permeability metals with cleaned surfaces are much faster than indicated by high-temperature results, because of grain-boundary diffusion. Elastomers have been studied to a certain extent, but some mechanisms of interaction with tritium gas and sorbed tritium are unclear. Ceramics have some of the lowest sorption and permeation rates, but ceramic coatings on stainless steels do not lower permeation or tritium as effectively as coatings obtained by oxidation of the steel, probably because of cracking caused by differences in thermal expansion coefficient. Studies on concrete are in their early stages; they show that sorption of tritiated water on concrete is a major concern in cleanup of releases of elemental tritium into air in tritium handling facilities. Some of the codes for modelling releases and sorption of T2 and HTO contain unproven assumptions about sorption and T2 → HTO conversion. Several experimental programs will be required in order to clear up ambiguities in previous work and to determine parameters for materials which have not yet been investigated. (146 refs., tab.)

  16. Irradiation creep experiments on fusion reactor candidate structural materials

    International Nuclear Information System (INIS)

    Irradiation creep rates were determined for annealed and cold-worked AMCR- and 316-type steel alloys in the high flux reactor at Petten, for various irradiation temperatures, stresses and for neutron doses up to 4 dpa. Primary creep elongations were found in all annealed materials. A negative creep elongation was found in cold-worked materials for stresses equal to or below about 100 MPa. An increase of the negative creep elongation is found for decreasing irradiation temperatures and decreasing applied stresses. The stress exponent of the irradiation creep rate in annealed and cold-worked AMCR alloys is n = 1.85 and n = 1.1, respectively. The creep rates of cold-worked AMCR alloys are almost temperature independent over the range investigated (573-693 K). The results obtained in the HFR at Petten are compared with those obtained in ORR and EBR II. The smallest creep rates are found for cold-worked materials of AMCR- and US-PCA-type at Petten which are about a factor two smaller than the creep rates obtained of US-316 at Petten or for US-PCA at ORR or for 316L at EBR II. The scatter band factor for US-PCA, 316L, US-316 irradiated in ORR and EBR II is about 1.5 after a temperature and damage rate normalization

  17. Proceeding of JSPS-CAS Core-University Program (CUP) on superconducting key technology for advanced fusion device

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University Program (CUP) seminar on 'Superconducting Key Technology for Advanced Fusion Device' was held in Xi'an, China from October 18 to 21, 2010. This seminar was organized in the framework of the CUP in the field of plasma and nuclear fusion. This seminar honored by NIFS and ASIPP is aim to have a wide discussion on the new application and achievements on superconducting technology of nuclear fusion reactor. The superconducting technology on fusion reactor involves the fields on high current superconductor and magnet, quench protection, current control, cooling of the magnet, and reliability of large scale refrigerator. The technology on ITER high temperature superconductor current leads and the conductor test of JT-60SA are discussed in this seminar. Thirty-four oral talks and two summary talks were presented in this seminar. Total number of the participants was 34, including 12 Japanese participants. (author)

  18. Characterization of advanced preprocessed materials (Hydrothermal)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  19. International workshop on advanced materials for high precision detectors. Proceedings

    International Nuclear Information System (INIS)

    These proceedings gather together the contributions to the Workshop on Advanced Materials for High Precision Detectors, which was held from 28-30 September 1994 in Archamps, Haute-Savoie, France. This meeting brought together international experts (researchers, physicists and engineers) in the field of advanced materials and their use in high energy physics detectors or spacecraft applications. Its purpose was to discuss the status of the different materials currently in use in the structures of detectors and spacecraft, together with their actual performances, technological implications and future prospects. Environmental effects, such as those of moisture and radiation, were discussed, as were design and manufacturing technologies. Some case studies were presented. (orig.)

  20. Benchmark experiments of fusion neutron induced gamma-ray radioactivity in various structural materials

    International Nuclear Information System (INIS)

    The fusion reactor inventory code FISPACT, together with the European Activation File EAF, is the European reference software for calculating the neutron-induced activation of fusion reactor relevant materials. Experimental verifications (benchmarks) of the code predictions have been performed at ENEA Frascati by means of an irradiation facility consisting of a D-T neutron generator and a moderator/reflector structure which is employed to mimic the neutron spectrum at the a fusion device first wall. Various materials (vanadium alloy, SiC, AlSI 316, martensitic steel F82H, copper, tungsten, iron, niobium), candidates to e used in a fusion reactor, have been exposed to neutrons produced in the facility (about 109 n x cm-2 x s-1) and the short and medium-lived induced radioactivity has been measured by gamma-ray spectroscopy. The experimental results have been used to validate the inventory code FISPACT, the physical database EAF, including its uncertainty predictions, and the composition of the material irradiated in particular for its minor elements and impurities. The comparison between calculated (C) and experimental results (E) is reported as C/E values and shows a satisfactory agreement for almost all radionuclides. Radionuclides for which there is not agreement between calculations and experiments are also discussed and an analysis of the causes of the lack of agreement is carried out. (author)

  1. Status Report on Structural Materials for Advanced Nuclear Systems

    International Nuclear Information System (INIS)

    Materials performance is critical to the safe and economic operation of any nuclear system. As the international community pursues the development of Generation IV reactor concepts and accelerator-driven transmutation systems, it will be increasingly necessary to develop advanced materials capable of tolerating the more challenging environments of these new systems. The international community supports numerous materials research programmes, with each country determining its individual focus on a case-by-case basis. In many instances, similar alloys of materials systems are being studied in several countries, providing the opportunity for collaborative and cross-cutting research that benefits different systems. This report is a snapshot of the current materials programmes supporting the development of advanced concepts. The descriptions of the research are grouped by concept, and national programmes are described within each concept. The report provides an overall sense of the importance of materials research worldwide and the opportunities for synergy among the countries represented in this overview. (authors)

  2. FOREWORD: 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications 12th International Workshop on Plasma-Facing Materials and Components for Fusion Applications

    Science.gov (United States)

    Kreter, Arkadi; Linke, Jochen; Rubel, Marek

    2009-12-01

    knowledge is still limited, especially in relation to the behaviour of these metals in environments containing multiple species. There are many appealing issues related to material mixing and fuel retention that call for robust and comprehensive studies. In this sense, the aim of the workshop is not only to discuss hot topics, but also to identify the most important research areas and those that need urgent solutions. Another topic of foremost relevance to ITER is the development of plasma-facing components that are able to withstand extreme power fluxes, in particular, those during transient phases. Materials and production methods for high-heat-flux components have to be further developed and industrialized. A key requirement in this field is the development of non-destructive testing methods for the qualification of methods and quality assessment during production. Invited talks and contributed presentations therefore dealt with aspects of fundamental processes, experimental findings, advanced modelling and the technology of fusion reactor components. Several areas were selected as the major topics of PFMC-12: materials for the ITER-divertor (erosion, redeposition, fuel retention) carbon-based materials tungsten and tungsten coatings beryllium mixed materials (intentional and non-intentional) the ITER-Like Wall Project materials under high-heat-flux loads including transients (ELMs, disruptions) technology and testing of plasma-facing components neutron effects in plasma-facing materials. 26 invited lectures and oral contributions, and 131 posters were presented by participants from research laboratories and industrial companies. 210 researchers from 24 countries from all over the world participated in a lively and intense exchange of knowledge and ideas. The workshop was hosted by Forschungszentrum Jülich (FZJ), a centre where the integration of science and technology for fusion reactor materials has been a focus for decades. This is reflected by the operation of

  3. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Monica Sorescu

    2004-09-22

    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  4. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  5. Investigation of helium ions release processes from surface layer of lithium containing materials of fusion reactors

    International Nuclear Information System (INIS)

    Full text: The lithium-containing materials are considered as materials, which can be used to solve many pressing issues of creating fusion reactor. Each of these materials has its own specific advantages and disadvantages, but they have in common the ability of realization of the nuclear reactions on lithium isotopes to produce tritium and helium. All the data on the release of helium ions from the surface layer of lithium-containing materials under reactor irradiation were analyzed. To explain the effect of the intensive release of helium ions the experiments with different cooling rates of lead-lithium eutectics were performed

  6. Report of the 1990 workshop on plasma-materials interactions for fusion research

    International Nuclear Information System (INIS)

    The 1990 Workshop of the Working Group in Research Committee on A and M Data, on plasma-materials interactions was held at the Headquarters of JAERI, Tokyo, on July 10-11, 1990. The aim of the Workshop was to obtain future prospects for the activities of the Working Group, by discussing current problems in plasma-materials interactions relevant to fusion research. This report contains all the 16 papers presented at hte Workshop, which are mainly concerned with problems in the first wall of large Tokamak devices, such as retention and release of hydrogen in carbon materials, sputtering and problems in material data system. (author)

  7. Reducing Risk and Accelerating Delivery of a Neutron Source for Fusion Materials Research

    CERN Document Server

    Surrey, E; Davenne, T; Findlay, D; Letchford, A; Thomason, J; Roberts, S G; Marrow, J; Seryi, A; Connolly, B; Owen, H

    2014-01-01

    The materials engineering data base relevant to fusion irradiation is poorly populated and it has long been recognized that a fusion spectrum neutron source will be required, the facility IFMIF being the present proposal. Re- evaluation of the regulatory approach for the EU proposed DEMO device shows that the purpose of the source can be changed from lifetime equivalent irradiation exposure to data generation at lower levels of exposure by adopting a defence in depth strategy and regular component surveillance. This reduces the specification of the source with respect to IFMIF allowing lower risk technology solutions to be considered. A description of such a source, the Facility for Fusion Neutron Irradiation Research, FAFNIR, is presented here along with project timescales and costs.

  8. History, present status and future of fusion reactor materials research in Japan

    International Nuclear Information System (INIS)

    R and D programs on fusion reactor materials in Japan have been promoted mainly by universities, JAERI and NRIM. The historical development and highlights of the research of each of these sectors will be reported together with on-going programs and planning activities. The topics include the foundation of the National Institute of Fusion Science (NIFS), planning of an Energy Selective Neutron Irradiation Testing Facility (ESNIT), constrution of SUBNANOTRON facility, and current International Cooperation Progams. Industrial involvement is also growing larger in cooperation with universities, JAERI and NRIM. Future research trend and coordination of the research among these organizations will be discussed based on the objectives and roles in these organizations for the national fusion program. (orig.)

  9. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    OpenAIRE

    Chuan Cai; Ying Wang

    2009-01-01

    Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-o...

  10. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  11. Numerical Simulations and Optimisation in Forming of Advanced Materials

    Science.gov (United States)

    Huétink, J.

    2007-04-01

    With the introduction of new materials as high strength steels, metastable steels and fiber reinforce composites, the need for advanced physically valid constitutive models arises. A biaxial test equipment is developed and applied for the determination of material data as well as for validation of material models. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. An optimization strategy is proposed that assists an engineer to model an optimization problem.

  12. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  13. Assessment of fusion reactor development. Proceedings

    International Nuclear Information System (INIS)

    Symposium on assessment of fusion reactor development was held to make clear critical issues, which should be resolved for the commercial fusion reactor as a major energy source in the next century. Discussing items were as follows. (1) The motive force of fusion power development from viewpoints of future energy demand, energy resources and earth environment for 'Sustainable Development'. (2) Comparison of characteristics with other alternative energy sources, i.e. fission power and solar cell power. (3) Future planning of fusion research and advanced fuel fusion (D3He). (4) Critical issues of fusion reactor development such as Li extraction from the sea water, structural material and safety. (author)

  14. Fusion materials semiannual progress report for the period ending December 31, 1996

    International Nuclear Information System (INIS)

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods

  15. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  16. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  17. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Code Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP

  18. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    International Nuclear Information System (INIS)

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5–50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 109 n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  19. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. X.; Huang, C. J. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR (China); Li, L. F. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China and State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, C (China); Li, J. W. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China and University of Chinese Academy of Sciences, Beijing 100049, PR (China); Tan, R.; Tu, Y. P. [North China Electric Power University, Beijing 102206, PR (China)

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  20. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    Science.gov (United States)

    Wu, Z. X.; Li, L. F.; Li, J. W.; Huang, C. J.; Tan, R.; Tu, Y. P.

    2014-01-01

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  1. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    CERN Document Server

    Daum, E

    2000-01-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the sup 6 Li(n,t) sup 4 He channel as it occurs in a DEMO breeding blanket.

  2. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    International Nuclear Information System (INIS)

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C

  3. Use of the LAMPF accelerator as a fusion materials-radiation facility

    International Nuclear Information System (INIS)

    Materials for fusion applications will be subjected to radiation that produces large amounts of transmutation product gases such H and He, as well as others. These gaseous products can have a marked influence on material mechanical properties as they affect the microstructural evolution of the material. Previous calculations by others have shown that the 800 MeV proton beam at the Clinton P. Anderson Los Alamos Meson Physics Facility (LAMPF) will produce gaseous transmutation products in amounts near those expected in the fusion environment. This report will survey the LAMPF facility from the standpoint of experiment design, temperature control, available experimental volume and available beam time. Calculations have been made that predict that attainable displacement rates at specific available target stations at LAMPF. Results for W, Mo, Al and stainless steel will be reported

  4. Fusion Material Studies Relating to Safety in Russia in 2002

    Institute of Scientific and Technical Information of China (English)

    B. N. Kolbasov; M. I. Guseva; B. I. Khripunov; Y. V. Martynenko; P. V. Romanov; S. A. Lelekhov; S. A. Bartenev

    2004-01-01

    The paper is a summary of Russian material studies performed in frames of activities aiming at substantiation of safety of the International Thermonuclear Experimental Reactor (ITER) after 2001. Subthreshold sputtering of tungsten by 5eV deuterons was revealed at temperatures above 1150rm oC. Mechanism of globular films formation was further studied. Computations of tritium permeation into vacuum vessel coolant confirmed the acceptability of vacuum vessel cooling system for removal of the decay heat. The most dangerous accident with high-current arc in toroidal superconducting magnets able to burn out a bore up to 0.6 m in diameter in the cryostat vessel was determined. Radiochemical reprocessing of V-Cr-Ti alloy and its purification from activation products down to a contact dose rate of ~10muSv/h was developed.

  5. A study on nuclear properties of Zr, Nb, and Ta nuclei used as structural material in fusion reactor

    Directory of Open Access Journals (Sweden)

    Sahan Halide

    2015-01-01

    Full Text Available Fusion has a practically limitless fuel supply and is attractive as an energy source. The main goal of fusion research is to construct and operate an energy generating system. Fusion researches also contains fusion structural materials used fusion reactors. Material issues are very important for development of fusion reactors. Therefore, a wide range of fusion structural materials have been considered for fusion energy applications. Zirconium (Zr, Niobium (Nb and Tantalum (Ta containing alloys are important structural materials for fusion reactors and many other fields. Naturally Zr includes the 90Zr (%51.5, 91Zr (%11.2, 92Zr (%17.1, 94Zr (%17.4, 96Zr (%2.80 isotopes and 93Nb and 181Ta include the 93Nb (%100 and 181Ta (%99.98, respectively. In this study, the charge, mass, proton and neutron densities and the root-mean-square (rms charge radii, rms nuclear mass radii, rms nuclear proton, and neutron radii have been calculated for 87-102Zr, 93Nb, 181Ta target nuclei isotopes by using the Hartree–Fock method with an effective Skyrme force with SKM*. The calculated results have been compared with those of the compiled experimental taken from Atomic Data and Nuclear Data Tables and theoretical values of other studies.

  6. Fusion connection: contributions to industry, defense, and basic science resulting from scientific advances made in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Fusion research has led to significant contributions in many different areas of industry, defense, and basic science. This diversity is represented visually in the introductory figure which shows both a radio galaxy, and a microchip produced by plasma etching. Some of these spin-off technologies are discussed

  7. Advanced methods of continuum mechanics for materials and structures

    CERN Document Server

    Aßmus, Marcus

    2016-01-01

    This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

  8. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  9. Aluminizing of metallic materials for fusion power applications

    International Nuclear Information System (INIS)

    The necessity of coatings is fundamental for both liquid metal blanket concepts. In a water-cooled liquid metal blanket concept, the coating has to behave as tritium permeation barrier to minimize the tritium loss into the cooling water. An electrical insulation against the liquid metal is required in a self-cooled liquid metal blanket to reduce the MHD pressure drop. Therefore, V and V-base alloys and as well the ferritic steel MANET were coated by means of hot-dip aluminizing. The different base materials are dipped under inert atmosphere into molten Al to form aluminide layers on the surface. The nitriding of the aluminide layers on V and V-base alloys was tried in a sodium solution containing 0.15 wt% Li under N2 atmosphere. The aluminide layers on the MANET steel were oxidized at high temperature in air. The results of the hot-dip aluminizing and the following nitriding reps. oxidation will be presented in this paper. (author)

  10. Change in Properties of Superconducting Magnet Materials by Fusion Neutron Irradiation

    International Nuclear Information System (INIS)

    Recent researches on fusion reactor show neutron streaming from ports to outside of plasma vacuum vessels and neutron penetration through blanket and a neutron shielding structure. Therefore, superconducting magnet system in a fusion reactor will be irradiated by high energy particles. To evaluate the irradiation effect of fusion neutron on the superconducting magnet materials, a cryo-target system was constructed and installed at Fusion Neutron Source (FNS) Facility in Japan Atomic Energy Agency. The Nb3Sn, Nb3Al samples and copper wires were cooled down to 4.5 K by a GM refrigerator and irradiation tests by 14 MeV neutron at cryogenic temperature were carried out. Change in electric resistance and critical temperatures (Tc) were measured after irradiation. On the outside of the cryostat, GFRP and other sensors were arranged and irradiated at the same time. After the irradiation, the properties of those materials were investigated and the difference was discussed. In the presentation, some irradiation test results will be described, such as Tc change in Nb3Al wire, change in electric resistance of copper, CERNOX sensor performance, Interlaminar share strength of GFRP. (author)

  11. Resistance Welding of Advanced Materials and Micro Components

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard

    , thermal, electrical and metallurgical effects all signifcantly in uencing the process. Modelling is further complicated when down-scaling the process for welding micro components or when welding new advanced high strength steels in the automotive industry. The current project deals with three main themes...... resistance is addressed both theoretically and experimentally. Secondly the consequences of downscaling the process is investigated experimentally and discussed in relation to simulation of the process. Finally resistance welding of advanced high strength steels is addressed aimed at improving the simulation...... of the final weld properties. The temperature dependent material rheology of dierent advanced high strength steels and other materials, often resistance welded, were measured using hot tensile testing and hot compression testing. It is found that the Hollomon equation is capable of modelling material...

  12. Material performance evaluation -Development of the advanced nuclear materials-

    International Nuclear Information System (INIS)

    A multifrequency ACPD system was assembled. A SSRT equipment for stress corrosion cracking test was installed. A 25-ton capacity fatigue test machine was purchased as a first step to assemble a corrosion fatigue test facility. A test loop was designed to simulate the primary water chemistry condition. An Ag/AgCl external reference electrode which can be used at a temperature as high as 280 deg C was fabricated. A high temperature pH electrode was designed for fabrication. A creep test machine was designed conceptually for testing creep behaviors of Zr alloys. Preliminary design requirements were made for the instrumented capsule and a plan was made for using the uninstrumented capsule, as parts of activities to complete an integrated plan of in-reactor materials irradiation test. CHEC computer code which helped improving maintenance program against erosion/corrosion of secondary pipings of nuclear power plants was purchased. Erosion/corrosion of feedwater heater drain line of Kori Unit One was analyzed using the CHEC code as a sample calculation. (Author)

  13. Towards a reduced activation structural materials database for fusion DEMO reactors

    International Nuclear Information System (INIS)

    The development of First Wall, Blanket and Divertor materials which are capable of withstanding many years the high neutron and heat fluxes, is a critical path to fusion power. Therefore, the timely availability of a sound materials database has become an indispensable element in international fusion road maps. In order to provide materials design data for short term needs of ITER Test Blanket Modules and for a DEMOnstration fusion reactor, a wealth of R and D results on the European reduced activation ferritic-martensitic steel EUROFER, and on oxide dispersion strengthened variants are being characterized, mainly in the temperature window 250-650 deg. C. The characterisation includes irradiations up to 15 dpa in the mixed spectrum reactor HFR and up to 75 dpa in the fast breeder reactor BOR60. Industrial EUROFER-batches of 3.5 and 7.5 tons have been produced with a variety of semi-finished, quality-assured product forms. To increase thermal efficiency of blankets, high temperature resistant SiCf/SiC channel inserts for liquid metal coolant tubes are also developed. Regarding radiation damage resistance, a broad based reactor irradiation programs counts several steps from ≤5dpa (ITER TBMs) up to 75 dpa (DEMO). For the European divertor designers, a materials data base is presently being set up for pure W and W alloys, and related reactor irradiations are foreseen with temperatures from 650-1000 deg. C. (author)

  14. Waste management of first wall and blanket structural materials for tokamak fusion reactors

    International Nuclear Information System (INIS)

    A comparison has been made of the induced radioactivities in the first wall and structural materials of the breeder blanket in the high-flux region for two different fusion-reactor types. One system is the STARFIRE, a tokamak reactor with PCA, a modified stainless steel, as a first wall and a LiAlO2 breeder blanket; the other is a reactor based on the STARFIRE design with a vanadium alloy as the first wall and structural material, and circulating molten lithium as the breeder/coolant. The recycling or disposal of these structural materials is evaluated

  15. Damage of first wall materials in fusion reactors under nonstationary thermal effects

    International Nuclear Information System (INIS)

    The temperature distribution in the first wall of a fusion reactor was calculated for nonstationary thermal effects of the type of plasma destruction or the flow of 'running electrons' taking into account the melting of the surface layer of the material. The thickness of the resultant damaged layer in which thermal stresses were higher than the tensile strength of the material is estimated. The results were obtained for corrosion-resisting steel, aluminium and vanadium. Flowing down of the molten layer of the material of the first wall is calculated. (author)

  16. A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt

    International Nuclear Information System (INIS)

    Selection of first wall material for fusion reactors is very crucial when taking into account of fusion blanket design and operation cost. A realistic way to extend the working period of first wall structure is to use a protective flowing liquid wall between fusion plasma and first wall. HYLIFE-II, one of the important fusion reactor design concepts, uses such a liquid wall. In the current article, the radiation damage on the first wall of HYLIFE-II fusion reactor was investigated for various candidate materials. In the liquid wall of the reactor, a molten salt containing weapon grade (WG) plutonium isotopes was used. The numerical results indicated that a refractory alloy of W-5Re was found to have the lowest damage values. In addition, the use of WG plutonium isotopes did not have a negative effect on the radiation damage characteristics of the investigated structural materials. (orig.)

  17. Neutron irradiation effects on superconducting and stabilizing materials for fusion magnets

    International Nuclear Information System (INIS)

    Available low-temperature neutron irradiation data for the superconductors NbTi and Nb3Sn and the stabilization materials Cu and Al are collected and maximum tolerable doses for these materials are defined. A neutron flux in a reactor of about 109 n/cm2 s at the magnet position is expected. However, in fusion experiments the flux can be higher by an order of magnitude or more. The energy spectrum is similar to a fission reactor. A fluence of about 1018 n/cm2 results during the lifetime of a fusion magnet (about 20 full power years). At this fluence and energy spectrum no severe degradation of the superconducting properties of NbTi and Nb3Sn will occur. But the radiation-induced resistivity is for Cu about a twentieth of the room temperature resistivity and a tenth for Al. (orig.)

  18. International radiation damage tests in fusion materials: The oak ridge and beatrix exchange schemes

    Science.gov (United States)

    Von der Hardt, P.

    1988-07-01

    A number of R&D projects related to fusion energy have been launched under the auspices of the International Energy Agency. Annex II of the "Implementing Agreement for a Programme of Research and Development on Radiation Damage in fusion Materials" assigns the role of the Operating Agent to the European Atomic Energy Community (Euratom) for two large series of irradiations in fission reactors, viz. — the so-called "Oak Ridge Test Matrix" (ORTM), covering a variety of in-pile tests on candidate first wall austenitic steel specimens; — the Breeder Experiment Matrix (BEATRIX), concerning solid breeder material irradiation testing. Both schemes define about 20 tests each. The number of laboratories involved is 7 for the Oak Ridge and 11 for the BEATRIX test matrix. 10 test reactors in Canada, Japan, the United States, and Europe are used for the irradiations. The paper updates the present status of both schemes. An extensive list of publications is appended.

  19. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  20. Methods for the calculation of neutron nuclear data for structural materials of fast and fusion reactors

    International Nuclear Information System (INIS)

    This report contains the texts of the invited presentations (20) delivered at the third Research Co-ordination Meeting of the Co-ordinated Research Programme on Methods for the Calculation of Neutron Nuclear Data for Structural Materials of Fast and Fusion Reactors. The meeting was held at the IAEA Headquarters, Vienna, Austria, from 20 to 22 June 1990. A separate abstract was prepared for each of these presentations. Refs, figs and tabs