WorldWideScience

Sample records for advanced flame quality

  1. The advanced flame quality indicator system

    Energy Technology Data Exchange (ETDEWEB)

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A. [Insight Technologies, Inc., Bohemia, NY (United States)

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  2. Recent Advances in Flame Tomographyt

    Institute of Scientific and Technical Information of China (English)

    闫勇; 邱天; 卢钢; M.M.Hossain; G.Gilabert; 刘石

    2012-01-01

    To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.

  3. FIELD TEST OF THE FLAME QUALITY INDICATOR

    Energy Technology Data Exchange (ETDEWEB)

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion

  4. Advanced monitoring of industrial burners based on fluctuating flame signals

    Energy Technology Data Exchange (ETDEWEB)

    A. Sanz; J. Ballester; R. Hernandez; L.M. Cerecedo [University of Zaragoza, Zaragoza (Spain). Fluid Mechanics Group/LITEC

    2008-06-15

    The present work explores the potential of pressure and radiation sensors for the advanced monitoring/control of industrial flames. These instruments are rugged, non-intrusive and non-expensive and might be used in routine plant operation to obtain direct information from the flame. However, further research is needed to assess the existence of relationships among their outputs and operating conditions as well as to define suitable methods for signal processing. Those aspects have been addressed by means of a thorough experimental programme in a model industrial burner. Parametric analysis of flame signals recorded for a broad range of operating conditions revealed that they varied widely with the actual combustion state. In order to perform a systematic study, different correlation techniques were tried. Multiple regression methods provided some insight into mutual influences among different variables, although only in case of linear dependences. Artificial neural networks have been used as a more versatile type of algorithms, suitable for complex functional forms between input and output variables. Remarkably good results were obtained when NOx emissions or some burner settings were estimated from selected features of the flame signals, supporting their applicability for the development of advanced diagnostic methods in combustion processes. 40 refs., 13 figs., 3 tabs.

  5. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    Science.gov (United States)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  6. Advancements in analyzing food quality

    Science.gov (United States)

    This editorial provides insight on investigations regarding advancement in the application of technology and it’s advancement to food quality. The discussion elaborates on the advantages of recent analytical technologies and techniques, along with their impact on food safety, characterization of its...

  7. Flame experiments at the advanced light source: new insights into soot formation processes.

    Science.gov (United States)

    Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina

    2014-05-26

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation

  8. Recent Advances in Understanding of Thermal Expansion Effects in Premixed Turbulent Flames

    Science.gov (United States)

    Sabelnikov, Vladimir A.; Lipatnikov, Andrei N.

    2017-01-01

    When a premixed flame propagates in a turbulent flow, not only does turbulence affect the burning rate (e.g., by wrinkling the flame and increasing its surface area), but also the heat release in the flame perturbs the pressure field, and these pressure perturbations affect the turbulent flow and scalar transport. For instance, the latter effects manifest themselves in the so-called countergradient turbulent scalar flux, which has been documented in various flames and has challenged the combustion community for approximately 35 years. Over the past decade, substantial progress has been made in investigating (a) the influence of thermal expansion in a premixed flame on the turbulent flow and turbulent scalar transport within the flame brush, as well as (b) the feedback influence of countergradient scalar transport on the turbulent burning rate. The present article reviews recent developments in this field and outlines issues to be solved in future research.

  9. 近年来阻燃不饱和聚酯树脂的研究进展%Recent advances in research of flame retardant unsaturated polyester resins

    Institute of Scientific and Technical Information of China (English)

    齐双春; 兰丽琴; 张彦; 程海涛

    2011-01-01

    The research advances tor recent years in preparation of flame retardant unsaturated polyester resins (UPR) adding flame retardant containing aluminum, magnesium and phosphours or intumescent flame retardant in UPR and using flame retardant containing phosphours or monomers containing flame retardant elements as reactants were reviewed.%综述了近年来在不饱和聚酯树脂中添加含铝、镁、磷及膨胀型阻燃剂阻燃不饱和聚酯树脂以及以含磷元素的阻燃剂或含阻燃元素的单体为反应物制备阻燃型不饱和聚酯树脂的研究进展.

  10. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants.

    Science.gov (United States)

    Stieger, Greta; Scheringer, Martin; Ng, Carla A; Hungerbühler, Konrad

    2014-12-01

    Polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCDD) are major brominated flame retardants (BFRs) that are now banned or under restrictions in many countries because of their persistence, bioaccumulation potential and toxicity (PBT properties). However, there is a wide range of alternative BFRs, such as decabromodiphenyl ethane and tribromophenol, that are increasingly used as replacements, but which may possess similar hazardous properties. This necessitates hazard and risk assessments of these compounds. For a set of 36 alternative BFRs, we searched 25 databases for chemical property data that are needed as input for a PBT assessment. These properties are degradation half-life, bioconcentration factor (BCF), octanol-water partition coefficient (Kow), and toxic effect concentrations in aquatic organisms. For 17 of the 36 substances, no data at all were found for these properties. Too few persistence data were available to even assess the quality of these data in a systematic way. The available data for Kow and toxicity show surprisingly high variability, which makes it difficult to identify the most reliable values. We propose methods for systematic evaluations of PBT-related chemical property data that should be performed before data are included in publicly available databases. Using these methods, we evaluated the data for Kow and toxicity in more detail and identified several inaccurate values. For most of the 36 alternative BFRs, the amount and the quality of the PBT-related property data need to be improved before reliable hazard and risk assessments of these substances can be performed.

  11. Free Radical Imaging Techniques Applied to Hydrocarbon Flames Diagnosis

    Institute of Scientific and Technical Information of China (English)

    A. Caldeira-Pires

    2001-01-01

    This paper evaluates the utilization of free radical chemiluminescence imaging and tomographic reconstruction techniques to assess advanced information on reacting flows. Two different laboratory flow configurations were analyzed, including unconfined non-premixed jet flame measurements to evaluate flame fuel/air mixing patterns at the burner-port of a typical glass-furnace burner. The second case characterized the reaction zone of premixed flames within gas turbine combustion chambers, based on a laboratory scale model of a lean prevaporized premixed (LPP) combustion chamber.The analysis shows that advanced imaging diagnosis can provide new information on the characterization of flame mixing and reacting phenomena. The utilization of local C2 and CH chemiluminescence can assess useful information on the quality of the combustion process, which can be used to improve the design of practical combustors.

  12. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production.

    Directory of Open Access Journals (Sweden)

    Gerard Cornelissen

    Full Text Available Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns, also avoiding use of external fuel for start-up.A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57, average surface areas (11 to 215 m2 g-1, low EPA16-PAHs (2.3 to 6.6 mg kg-1 and high CECs (43 to 217 cmolc/kg(average for all feedstocks, mainly woody shrubs were obtained, in compliance with the European Biochar Certificate (EBC.Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks; CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10 = 11 ± 15, total products of incomplete combustion (PIC = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05 lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2.With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap

  13. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

    Science.gov (United States)

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-08-13

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs.

  14. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio

    2014-07-14

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  15. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Science.gov (United States)

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs.

  16. Methodology and Supporting Toolset Advancing Embedded Systems Quality

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Soler, José; Brewka, Lukasz Jerzy;

    2013-01-01

    Software quality is of primary importance in the development of embedded systems that are often used in safety-critical applications. Moreover, as the life cycle of embedded products becomes increasingly tighter, productivity and quality are simultaneously required and closely interrelated towards...... delivering competitive products. In this context, the MODUS (Methodology and supporting toolset advancing embedded systems quality) project aims to provide a pragmatic and viable solution that will allow SMEs to substantially improve their positioning in the embedded-systems development market. This paper...... will describe the MODUS project with focus on the technical methodologies that will be developed advancing embedded system quality....

  17. Measure for Measure: Advancement's Role in Assessments of Institutional Quality.

    Science.gov (United States)

    Wedekind, Annie; Pollack, Rachel H.

    2002-01-01

    Explores how accreditation, bond ratings, and magazine rankings--including advancement's role in these assessments--continue to be incomplete and controversial indicators of educational quality. Asserts that advancement officers should work to demonstrate the importance of their efforts, such as increasing endowments and alumni support, within the…

  18. Quality of pathology reports for advanced ovarian cancer

    DEFF Research Database (Denmark)

    Verleye, Leen; Ottevanger, Petronella B; Kristensen, Gunnar B

    2011-01-01

    To assess the quality of surgical pathology reports of advanced stage ovarian, fallopian tube and primary peritoneal cancer. This quality assurance project was performed within the EORTC-GCG 55971/NCIC-CTG OV13 study comparing primary debulking surgery followed by chemotherapy with neoadjuvant...

  19. ADVANCES IN TRANSGENIC MAIZE FOR QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    M.Rajendar Reddy

    2015-12-01

    Full Text Available Maize (Zea mays is a major food and animal feed worldwide and occupies a relevant place in the world economy and trade as an industrial grain crop. Currently more than 70% of maize production is used for food and feed; therefore, knowledge of genes involved in grain structure and chemical is important for improving the nutritional and food-making properties of maize. It is a good source of carbohydrates, fats, proteins, vitamins and minerals but deficient in two essential amino acids, Viz., lysine and tryptophan. To overcome this problem and to improve the above quality characters the maize breeders have followed different strategies like opaque 2, QPM and development of transgenic maize with improved quality characters. Finally we can conclude that the conventional breeding techniques and now plant biotechnology are helping meet the growing demand for food production, nutrition security while preserving our environment for future generations

  20. Contributions of CCLM to advances in quality control.

    Science.gov (United States)

    Kazmierczak, Steven C

    2013-01-01

    Abstract The discipline of laboratory medicine is relatively young when considered in the context of the history of medicine itself. The history of quality control, within the context of laboratory medicine, also enjoys a relatively brief, but rich history. Laboratory quality control continues to evolve along with advances in automation, measurement techniques and information technology. Clinical Chemistry and Laboratory Medicine (CCLM) has played a key role in helping disseminate information about the proper use and utility of quality control. Publication of important advances in quality control techniques and dissemination of guidelines concerned with laboratory quality control has undoubtedly helped readers of this journal keep up to date on the most recent developments in this field.

  1. Research on flame retardation of wool fibers

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Ichiro; Ametani, Kazuo; Sawai, Takeshi (Tokyo Metropolitan Isotope Research Center (Japan))

    1990-01-01

    Flame retardant, vinyl phosphonate oligomer, was uniformly impregnated in wool fibers, and by irradiating low energy electron beam or cobalt-60 gamma ray, the flame retardation of fabrics was attempted, as the results, the following knowledges were obtained. At the rate of sticking of flame retardant lower than that in cotton fabrics, sufficient flame retarding property can be given. The flame retarding property withstands 30 times of washing. The lowering of strength due to the processing hardly arose. For the flame retardation, gamma-ray was more effective than electron beam. Since the accidents of burning clothes have occurred frequently, their flame retardation has been demanded. So far the flame retardation of cotton fabrics has been advanced, but this time the research on the flame retardation of wool fabrics was carried out by the same method. The experimental method is explained. As for the performance of the processed fabrics, the rate of sticking of the flame retardant, the efficiency of utilization, the flame retarding property, the endurance in washing and the tensile and tearing strength were examined. As the oxygen index was higher, the flame retarding property was higher, and in the case of the index being more than 27, the flame retarding property is sufficient, that is, the rate of sticking of 6% in serge and 5% in muslin. (K.I.).

  2. Dramatic Advance in Quality in Flexographic Printing

    Directory of Open Access Journals (Sweden)

    Jochen Richter

    2004-12-01

    Full Text Available The enormous changes in flexography printing in recent years concerning the printing quality achievable cannot generally be ascribed to a single revolutionary invention, but are the result of continuous developments to the complete system. Thus the direct drive technology in all machine types and its associated advantages in terms of printing length corrections has become established since drupa 2000. The race for ever finer raster rolls has also been completed to the benefit of improvements in bowl geometry and in ceramic surfaces. Clearly improved colour transfer behaviour has become feasible as a result. In a closely intermeshed system such as flexography printing this naturally has to have an effect on the printing colours used. Further improvements in bonding agents and pigment concentrations now allow users to print ever thinner colour layers while maintaining all of the required authenticities.Furthermore, it has become possible to reduce additional disturbing characteristics in the UV colour area, such as the unpleasant odour. While the digital imaging of printing plates has primarily been improved in terms of economic efficiency by the use of up to eight parallel laser beams, extreme improvements in the system are noticeable especially in the area of directly engraved printing moulds. Whereas many still dismissed directly engraved polymer plates at the last drupa as a laboratory system, the first installation was recently placed on the market a mere three years later. A further noteworthy innovation of recent years that has reached market maturity is thin sleeve technology, which combines the advantages of a photopolymer plate with a round imaged printing mould. There are no high sleeve costs for each printing mould, except for one-off cost for an adapter sleeve. To conclude, it can be said that although flexography printing has experienced many new features in the time between drupa 2000 and today, it still has enormous potential for

  3. Recent Advances and Future Directions for Quality Engineering

    DEFF Research Database (Denmark)

    Vining, Geoff; Kulahci, Murat; Pedersen, Søren

    2015-01-01

    The origins of quality engineering are in manufacturing, where quality engineers apply basic statistical methodologies to improve the quality and productivity of products and processes. In the past decade, people have discovered that these methodologies are effective for improving almost any type...... of system or process, such as financial, health care, and supply chains. This paper begins with a review of key advances and trends within quality engineering over the past decade. The second part uses the first part as a foundation to outline new application areas for the field. It also discusses how...... quality engineering needs to evolve in order to make significant contributions to these new areas. © 2015 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd....

  4. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  5. Development of an Advanced Fluid Mechanics Measurement Facility for Flame Studies of Neat Fuels, Jet Fuels, and their Surrogates

    Science.gov (United States)

    2009-08-26

    through the use of hot - wire anemometry . Implementing a DPIV system in flames and achieving the level of accuracy of LDV is a challenge, particularly...temperature at the hot boundary for a given strain rate and fuel concentration in the fuel jet. Law and coworkers (e.g., Law et al. 1986; Law 1988... wired into a single USB LaVision PTU timing box to share a single LaVision acquisition license through partitioning of the dongle with a USB switch

  6. Advanced spot quality analysis in two-colour microarray experiments

    Directory of Open Access Journals (Sweden)

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  7. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  8. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  9. Knowledge Management Platform in Advanced Product Quality Planning

    Science.gov (United States)

    Chiliban, Bogdan; Baral, Lal Mohan; Kifor, Claudiu

    2014-12-01

    Knowledge is an essential part of organizational competitiveness. This vital resource must be managed correctly within organizations in order to achieve desired performance levels within all undertakings. The process of managing knowledge is a very difficult one due to the illusive nature of the resource itself. Knowledge is stored within every aspect of an organization starting from people and ending with documents and processes. The Knowledge Management Platform is designed as a facilitator for managers and employees in all endeavours knowledge related within the Advanced Product Quality Planning Procedure

  10. High quality mask storage in an advanced Logic-Fab

    Science.gov (United States)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  11. Quality-of-life assessment in advanced cancer.

    LENUS (Irish Health Repository)

    Donnelly, S

    2000-07-01

    In the past 5 years, quality-of-life (QOL) assessment measures such as the McGill, McMaster, Global Visual Analogue Scale, Assessment of QOL at the End of Life, Life Evaluation Questionnaire, and Hospice QOL Index have been devised specifically for patients with advanced cancer. The developers of these instruments have tried to respond to the changing needs of this specific population, taking into account characteristics including poor performance status, difficulty with longitudinal study, rapidly deteriorating physical condition, and change in relevant issues. Emphasis has been placed on patient report, ease and speed of completion, and the existential domain or meaning of life. Novel techniques in QOL measurement have also been adapted for palliative care, such as judgment analysis in the Schedule for the Evaluation of Individual Quality of Life. It is generally agreed that a single tool will not cover all QOL assessment needs.

  12. The discrete regime of flame propagation

    Science.gov (United States)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  13. Advances in the study of current-use non-PBDE brominated flame retardants and dechlorane plus in the environment and humans

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The fate of the high production volume,currently in use,and not regulated non-polybrominated diphenyl ether(PBDE) flame retardants,such as tetrabromobisphenol A(TBBPA) ,hexabromocyclododecane(HBCD) and dechlorane plus(DP),and the alternative flame retardants of PBDE,such as BTBPE and DBDPE,in the environment has attracted increasing attention and aroused concern due to the increasing regulation and phasing-out of PBDEs.This paper reviews the distribution,bioaccumulation,human exposure and environmental behavior of those non-PBDE flame retardants in various environmental compartments.The data gaps and needs for future research are discussed.

  14. 聚乙烯无卤阻燃研究进展%ADVANCE IN RESEARCH OF HALOGEN-FREE FLAME RETARDANT POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    杨志骅

    2011-01-01

    Various halogen-free flame retardants in polyethylene system were introduced, and the flame retardant mechanism, flame retardant effect and development direction were summarized.%介绍了金属氢氧化物、磷系阻燃剂、硅系阻燃剂、膨胀型阻燃剂等无卤阻燃剂在聚乙烯体系中的应用进展,综述了无卤阻燃剂对聚乙烯的阻燃机理、阻燃效果及其发展方向.

  15. Study of Hydrogen flame annealed Au thin-film surface morphology, integrity and film quality on various substrate surfaces

    Science.gov (United States)

    Schell, Michael; Senevirathne, Indrajith

    2013-03-01

    Au thin-films have many applications in both industry and proof of concept investigations in device engineering. Typical Au depositions on substrate give rise to Stanski-Krastanov (SK) like growth while Frank-van der Merwe (FM) mode like growth is desired in many molecular self assembly and other engineering applications. Au films are magnetron sputter deposited at 100mtorr at low deposition rates (~ 1ML/min) on cleaved/fresh mica, glass microscopy slides and Si surfaces. Samples are hydrogen flame annealed to facilitate surface diffusion with minimal film contamination. Resulting Au surfaces were investigated and compared against purchased Au(111) on mica (standard) surface. Regular and custom built hydrophilic and hydrophobic AFM (Atomic Force Microcopy) probes were used in contact, and non contact AFM with topography and phase imaging to access the contamination and surface defects. Surface integrity, roughness, corrugation and morphology on Au surfaces were estimated. LHU Nanotechnology Program, PASSHE FPDC (LOU # 2010-LHU-03).

  16. Research Advance in Halogen-free Flame-retarded EVA-based Composites%EVA基无卤阻燃复合材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭晓东

    2011-01-01

    分别介绍了采用金属氢氧化物阻燃剂、蒙脱石型阻燃剂、磷系阻燃剂、氮系阻燃剂、膨胀型阻燃剂、有机硅阻燃剂、碱式硫酸镁晶须(MOS)阻燃剂和辐射交联技术制备的无卤阻燃乙烯―乙酸乙烯共聚物(EVA)复合材料的研究开发现状,并展望了无卤阻燃EVA复合材料的发展趋势。%The research and development actuality of halogen-free flame-retarded ethylene-vinyl acetate copolymer(EVA) composites prepared by adding with inorganic flame retardants,intumescent flame retardants,phosphorus-series flame retardants,organic silicon flame retardants,magnesium sulfate whiskers(MOS) retardant and radiation-crosslinking technology was introduced respectively.The development of halogen-free flame-retarding EVA composites was predicted.

  17. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    Autoignition characteristics of pre-vaporized iso-octane, primary reference fuels, gasolines, and dimethyl ether (DME) have been investigated experimentally in a coflow with elevated temperature of air. With the coflow air at relatively low initial temperatures below autoignition temperature Tauto, an external ignition source was required to stabilize the flame. Non-autoignited lifted flames had tribrachial edge structures and their liftoff heights correlated well with the jet velocity scaled by the stoichiometric laminar burning velocity, indicating the importance of the edge propagation speed on flame stabilization balanced with local flow velocity. At high initial temperatures over Tauto, the autoignited flames were stabilized without requiring an external ignition source. The autoignited lifted flames exhibited either tribrachial edge structures or Mild combustion behaviors depending on the level of fuel dilution. For the iso-octane and n-heptane fuels, two distinct transition behaviors were observed in the autoignition regime from a nozzle-attached flame to a lifted tribrachial-edge flame and then a sudden transition to lifted Mild combustion as the jet velocity increased at a certain fuel dilution level. The liftoff data of the autoignited flames with tribrachial edges were analyzed based on calculated ignition delay times for the pre-vaporized fuels. Analysis of the experimental data suggested that ignition delay time may be much less sensitive to initial temperature under atmospheric pressure conditions as compared with predictions. For the gasoline fuels for advanced combustion engines (FACEs), and primary reference fuels (PRFs), autoignited liftoff data were correlated with Research Octane Number and Cetane Number. For the DME fuel, planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and CH* chemiluminescence were visualized qualitatively. In the autoignition regime for both tribrachial structure and mild combustion, formaldehyde were found

  18. Advanced olive selections with enhanced quality for minor constituents

    Directory of Open Access Journals (Sweden)

    Velasco, L.

    2015-12-01

    Full Text Available Squalene, phytosterols and tocopherols are minor constituents of paramount importance for the olive fruit and oil quality. The objective of this research was to conduct a two-year evaluation of these compounds in the fruits of seven advanced breeding selections. They were mainly selected for early bearing and high oil content from progenies of crosses between the cultivars ‘Arbequina’ and ‘Picual’. An analysis of variance showed high genotypic effects, non-significant year effects, and genotype x year interactions of low magnitude. The selections showed great variability for the traits, surpassing in some cases the parental values. One selection with total tocopherol content of 263 mg·kg−1 fruit flesh, compared to a maximum of 148 mg·kg −1 in the parents, and another one with Δ5-avenasterol concentration of 30.7% of total sterols, compared to a maximum of 22.1% in the parents, were the most relevant phenotypes. These selections may play an important role for improving olive fruit and oil quality for specific market niches.Compuestos como el escualeno, los fitoesteroles y los tocoferoles tienen una enorme importancia para la calidad del fruto y del aceite de oliva. El objetivo de este trabajo fue la evaluación durante dos años de estos compuestos en los frutos de siete selecciones avanzadas de olivo, seleccionadas principalmente para entrada temprana en producción y alto contenido en aceite a partir de las descendencias de cruzamientos entre los cultivares ‘Arbequina’ y ‘Picual’. El análisis de la varianza mostró, para la mayoría de los caracteres, un elevado efecto del genotipo, ausencia de efecto del factor año, e interacciones entre año y genotipo de baja magnitud. Las selecciones mostraron gran variabilidad para todos los caracteres, sobrepasando en algunos casos los valores de los parentales. Entre las selecciones con valores superiores a los parentales, destacaron una selección con un contenido en tocoferoles

  19. Recent Advances and Future Directions for Quality Engineering

    DEFF Research Database (Denmark)

    Vining, Geoff; Kulahci, Murat; Pedersen, Søren

    2015-01-01

    The origins of quality engineering are in manufacturing, where quality engineers apply basic statistical methodologies to improve the quality and productivity of products and processes. In the past decade, people have discovered that these methodologies are effective for improving almost any type...... quality engineering needs to evolve in order to make significant contributions to these new areas. © 2015 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd....

  20. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  1. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  2. Advancement in modern approaches to mineral production quality control

    Science.gov (United States)

    Freidina, EV; Botvinnik, AA; Dvornikova, AN

    2017-02-01

    The natural resource potential of mineral deposits is represented by three categories: upside, attainable and investment. A modern methodology is proposed in this paper for production quality control, and its tools aimed at ensuring agreement between the product quality and the market requirements are described. The definitions of the costs of the product quality compliance and incompliance with the consumer requirements are introduced; the latter is suggested to use in evaluating resource potential of mineral deposits at a certain degree of probability.

  3. Advances in Application of Models in Soil Quality Evaluation

    Institute of Scientific and Technical Information of China (English)

    SI Zhi-guo; WANG Ji-jie; YU Yuan-chun; LIANG Guan-feng; CHEN Chang-ren; SHU Hong-lan

    2012-01-01

    Soil quality is a comprehensive reflection of soil properties.Since the soil quality concept was put forward in the 1970s,the quality of different type soils in different regions have been evaluated through a variety of evaluation methods,but it still lacks universal soil quantity evaluation models and methods.In this paper,the applications and prospects of grey relevancy comprehensive evaluation model,attribute hierarchical model,fuzzy comprehensive evaluation model,matter-element model,RAGA-based PPC /PPE model and GIS model in soil quality evaluation are reviewed.

  4. Research Advance in Pollution of Flame Retardant Tetrabromobisphenol-A to Environment%阻燃剂四溴双酚-A环境污染研究进展

    Institute of Scientific and Technical Information of China (English)

    武焕阳

    2011-01-01

    随着多溴联苯醚(PBDEs)生产的逐渐限制和淘汰,目前尚未被限制且大量生产的非PBDEs阻燃剂,如四溴双酚-A(TBBP-A),在环境中的污染现状逐渐引起重视.该文介绍了在不同环境下TBBP-A的分布、生物富集、人类暴露和环境行为影响.%Along with the gradual limit and elimination of polybrominated diphenyl ether (PBDEs) production, the environment pollution status of un- regulated and mass -producing non -PBDEs flame retardants, such as tetrabromobisphenol -A (TBBP -A) has attracted increasing attention and concern. This paper reviews the distribution, bioaccumulation, human exposure and environmental behavior of flame retardant TBBP - A in various environments.

  5. 阻燃SEBS热塑性弹性体研究进展%Advance on research of flame retardant for SEBS thermoplastic elastomer

    Institute of Scientific and Technical Information of China (English)

    谭逸伦; 彭治汉

    2013-01-01

    Styrene-b-ethylene-co-butylene-b-styrene triblock copolymers(SEBS) was a high performance thermoplastic elastomer,which has a wide developmental prospects,but its flammable defect limited the application.The recent research on flame retardant SEBS was presented in this paper.The kinds of flame-retardant system applied in SEBS,the mechanism of the flame retardant,existing problems and countermeasures were introduced.%苯乙烯-乙烯丁烯共聚物-苯乙烯三嵌段共聚物(SEBS)是一种性能优异的热塑性弹性体,具有广泛的发展前景,但存在易燃的缺陷,限制了其应用领域.本文综述了近年来国内外阻燃SEBS的应用研究进展,主要介绍了应用于阻燃SEBS的阻燃体系、阻燃机理和存在的问题及其解决方法.

  6. Prometheus' spirit: quality survival in advanced hepatocellular carcinoma after gemcitabine and cisplatin-based chemotherapy.

    Science.gov (United States)

    Doval, D C; Pande, S B; Sharma, J B; Pavithran, K; Jena, A; Vaid, A K

    2008-10-01

    In advanced virus-induced hepatocellular carcinoma (HCC) associated with cirrhosis, the average survival is four months. We report a 56-year-old man with a large-volume advanced HCC, in whom gemcitabine and cisplatin-based chemotherapy resulted in near-complete regression, and quality survival of 24 months.

  7. Quality of experience advanced concepts, applications and methods

    CERN Document Server

    Raake, Alexander

    2014-01-01

    This pioneering book develops definitions and concepts related to Quality of Experience in the context of multimedia- and telecommunications-related applications, systems and services, and applies these to various fields of communication and media technologies. The editors bring together numerous key-protagonists of the new discipline “Quality of Experience” and combine the state-of-the-art knowledge in one single volume. 

  8. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

    Science.gov (United States)

    Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

  9. Reconstructing the Cryptanalytic Attack behind the Flame Malware

    NARCIS (Netherlands)

    Fillinger, M.J.

    2013-01-01

    Flame was an advanced malware, used for espionage, which infected computers running a Microsoft Windows operating system. Once a computer in a local network was infected, Flame could spread to the other computers in the network via Windows Update, disguised as a security patch from Microsoft. Window

  10. FLAME MONITORING IN POWER STATION BOILERS USING IMAGE PROCESSING

    OpenAIRE

    K Sujatha; VENMATHI, M.; N. Pappa

    2012-01-01

    Combustion quality in power station boilers plays an important role in minimizing the flue gas emissions. In the present work various intelligent schemes to infer the flue gas emissions by monitoring the flame colour at the furnace of the boiler are proposed here. Flame image monitoring involves capturing the flame video over a period of time with the measurement of various parameters like Carbon dioxide (CO2), excess oxygen (O2), Nitrogen dioxide (NOx), Sulphur dioxide (SOx) and Carbon monox...

  11. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    Science.gov (United States)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient

  12. Advanced Breast Cancer as Indicator of Quality Mammography

    Science.gov (United States)

    Gaona, Enrique

    2003-09-01

    Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is the more important screening tool for detecting early breast cancer. Screening mammography involves taking x-rays from two views from each breast, typically from above (cranial-caudal view, CC) and from an oblique or angled view (mediolateral-oblique, MLO). The purpose of this study was to carry out an exploratory survey of the issue of patients with advanced breast cancer who have had a screening mammography. A general result of the survey is that 22.5% of all patients (102) with advanced breast cancer that participated in the study had previous screening mammography. But we should consider that 10% of breast cancers are not detected by mammography. Only 70% of the family doctors prescribed a diagnostic mammography when the first symptoms were diagnosed.

  13. Multivariate data analysis as a tool in advanced quality monitoring in the food production chain

    DEFF Research Database (Denmark)

    Bro, R.; van den Berg, F.; Thybo, A.;

    2002-01-01

    This paper summarizes some recent advances in mathematical modeling of relevance in advanced quality monitoring in the food production chain. Using chemometrics-multivariate data analysis - it is illustrated how to tackle problems in food science more efficiently and, moreover, solve problems tha...... processing, and will cover areas such as analysis of variance, monitoring and handling of sampling variation, calibration, exploration/data mining and hard modeling. (C) 2002 Elsevier Science Ltd. All rights reserved.......This paper summarizes some recent advances in mathematical modeling of relevance in advanced quality monitoring in the food production chain. Using chemometrics-multivariate data analysis - it is illustrated how to tackle problems in food science more efficiently and, moreover, solve problems...... that could not otherwise be handled before. The different mathematical models are all exemplified by food related subjects to underline the generic use of the models within the food chain. Applications will be given from meat, storage, vegetable characterization, fish quality monitoring and industrial food...

  14. Recent advances in omic technologies for meat quality management.

    Science.gov (United States)

    Picard, B; Lebret, B; Cassar-Malek, I; Liaubet, L; Berri, C; Le Bihan-Duval, E; Hocquette, J F; Renand, G

    2015-11-01

    The knowledge of the molecular organization of living organisms evolved considerably during the last years. The methodologies associated also progressed with the development of the high-throughput sequencing (SNP array, RNAseq, etc.) and of genomic tools allowing the simultaneous analysis of hundreds or thousands of genes, proteins or metabolites. In farm animals, some proteins, mRNAs or metabolites whose abundance has been associated with meat quality traits have been detected in pig, cattle, chicken. They constitute biomarkers for the assessment and prediction of qualities of interest in each species, with potential biomarkers across species. The ongoing development of rapid methods will allow their use for decision-making and management tools in slaughterhouses, to better allocate carcasses or cuts to the appropriate markets. Besides, their application on living animals will help to improve genetic selection and to adapt a breeding system to fulfill expected quality level. The ultimate goal is to propose effective molecular tools for the management of product quality in meat production chains.

  15. Flame Holder System

    Science.gov (United States)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  16. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  17. DATA ANALYSIS TECHNIQUES IN SERVICE QUALITY LITERATURE: ESSENTIALS AND ADVANCES

    Directory of Open Access Journals (Sweden)

    Mohammed naved Khan

    2013-05-01

    Full Text Available Academic and business researchers have for long debated on the most appropriate data analysis techniques that can be employed in conducting empirical researches in the domain of services marketing. On the basis of an exhaustive review of literature, the present paper attempts to provide a concise and schematic portrayal of generally followed data analysis techniques in the field of services quality literature. Collectively, the extant literature suggests that there is a growing trend among researchers to rely on higher order multivariate techniques viz. confirmatory factor analysis, structural equation modeling etc. to generate and analyze complex models, while at times ignoring very basic and yet powerful procedures such as mean, t-Test, ANOVA and correlation. The marked shift in orientation of researchers towards using sophisticated analytical techniques can largely beattributed to the competition within the community of researchers in social sciences in general and those working in the area of service quality in particular as also growing demands of reviewers ofjournals. From a pragmatic viewpoint, it is expected that the paper will serve as a useful source of information and provide deeper insights to academic researchers, consultants, and practitionersinterested in modelling patterns of service quality and arriving at optimal solutions to increasingly complex management problems.

  18. Influence of the radiation absorbed by micro particles on the flame propagation and combustion regimes

    CERN Document Server

    Ivanov, M F; Liberman, M A

    2015-01-01

    Thermal radiation of the hot combustion products usually does not influence noticeably the flame propagating through gaseous mixture. the situation is changed drastically in the presence even small concentration of particles, which absorb radiation, transfer the heat to the surrounding unburned gaseous mixture by means of heat conduction, so that the gas phase temperature in front of the advancing flame lags that of the particles. It is shown that radiative preheating of unreacted mixture ahead of the flame results in a modest increase of the advancing flame velocity for a highly reactive gaseous fuel, or to considerable increase of the flame velocity in the case of a slow reactive mixture. The effects of radiation preheating as stronger as smaller the normal flame velocity. The radiation heat transfer can become a dominant mechanism compared with molecular heat conduction, determining the structure and the speed of combustion wave in the case of a small enough velocity of the advancing flame. It is shown tha...

  19. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    Energy Technology Data Exchange (ETDEWEB)

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  20. Hi-tech Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Modern science plays a crucial role in lighting the Olympic flame on the world’s highest mountain when the world saw live telecasts of the Olympic flame burning onthe top of Mount Qomolangma(Mount Everest) at 9:17 on the morning of May 8, few realized the years of work and high level of technology that had

  1. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  2. Structure of low-stretch methane nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T' ien, James S. [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  3. Advanced monitoring of wastewater quality: data collection and data quality assurance

    DEFF Research Database (Denmark)

    Alferes, Janelcy; Lamaire-Chad, C.; Chhetri, Ravi Kumar

    . In this paper, a data quality assessment strategy is presented to achieve efficient water quality monitoring in real-world scenarios. Next to practical aspects concerning installation and maintenance of sensors, the paper also presents a software tool aimed at assessing the quality of the data being collected...... and in evaluating the impact of discharges on the receiving water bodies. As measurements are carried out under arduous conditions, practical implementation of such monitoring systems entails several challenges, and automation of data collection and data quality assessment has been recognised as a critical issue...

  4. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    Science.gov (United States)

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.

  5. Numerical solution of an edge flame boundary value problem

    Science.gov (United States)

    Shields, Benjamin; Freund, Jonathan; Pantano, Carlos

    2016-11-01

    We study edge flames for modeling extinction, reignition, and flame lifting in turbulent non-premixed combustion. An adaptive resolution finite element method is developed for solving a strained laminar edge flame in the intrinsic moving frame of reference of a spatially evolving shear layer. The variable-density zero Mach Navier-Stokes equations are used to solve for both advancing and retreating edge flames. The eigenvalues of the system are determined simultaneously (implicitly) with the scalar fields using a Schur complement strategy. A homotopy transformation over density is used to transition from constant- to variable-density, and pseudo arc-length continuation is used for parametric tracing of solutions. Full details of the edge flames as a function of strain and Lewis numbers will be discussed. This material is based upon work supported [in part] by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  6. Advance in Researches on Toxicology of Brominated Flame Retardants%溴系阻燃剂的毒理学研究进展

    Institute of Scientific and Technical Information of China (English)

    杜苗苗; 张娴; 颜昌宙

    2012-01-01

    溴系阻燃剂(brominated flame retardants,BFRs)广泛应用于塑料、电子、建筑、纺织等材料和产品中,在多种环境介质中都可以检测到BFRs的存在.目前市场上的溴系阻燃剂主要有3种:四溴双酚A(tetrabromobisphenol A,TBBPA)、多溴联苯醚(polybrominated diphenyl ethers,PBDEs)和六溴环十二烷(hexabromocyclododecanes,HBCDs).近年来,进入环境中的BFRs在数量和种类上迅速增加,由此引发的环境效应日益受到国际社会广泛关注,有关BFRs的毒理学研究也成为相关领域的焦点内容.在总结近年来国内外相关研究的基础上,就BFRs在内分泌干扰效应、肝脏毒性、生殖毒性和神经毒性等方面的研究现状及需要进一步研究的内容进行了综述.

  7. Advances to improve the eating and cooking qualities of rice by marker-assisted breeding.

    Science.gov (United States)

    Phing Lau, Wendy Chui; Latif, Mohammad Abdul; Y Rafii, Mohd; Ismail, Mohd Razi; Puteh, Adam

    2016-01-01

    The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.

  8. Igniting the Paralympic Flame

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Deaf-mute Jiang Xintian lights a small cauldron in the hands of wheelchairbound fencer Jin Jing at the Paralympic Flame Lighting Ceremony in Beijing’s symbolic Temple of Heaven on August 28. For nine days until September 6, when the 13th Paralympics opens in Beijing, a total of 850 torchbearers would relay the Paralympic flame along two routes through 11 Chinese provinces,

  9. LES of Sooting Flames

    Science.gov (United States)

    2006-12-01

    represented by a vertical line that is convected downstream. The work concluded that the effect of Lewis number counteracts the preferential diffusion...diffusion is of less importance. On the other hand, the effect of thermophoresis is more important as we go downstream, where the temperature gradients are...axial direction. This effect in non-premixed flames is more important due to the nature if the flame structure. In the radial direction the reaction zone

  10. Quality Control Review of BDO USA, LLP FY 2013 Single Audit of Advanced Technology International

    Science.gov (United States)

    2014-11-03

    foundation for uniform audit requirements of non-Federal entities administering Federal awards. Entities that expend $500,000 or more in a year are subject...Report No. DODIG-2015-027 N o v e m b e r 3 , 2 0 1 4 Quality Control Review of BDO USA, LLP FY 2013 Single Audit of Advanced Technology...Single Audit of Advanced Technology International 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e

  11. Large Scale Flame Spread Environmental Characterization Testing

    Science.gov (United States)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  12. Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system

    Institute of Scientific and Technical Information of China (English)

    Kazuhiko TANAKA; Chao-Hong SHI; Nobukazu NAKAGOSHI

    2012-01-01

    The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy.In this study,the novel,simple and convenient water quality monitoring of Jialing-River in Chongqing,China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO42 -,Cl -,and NO3- and the cations such as Na+,NH4+,K+,Mg2+,and Ca2+,the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions,and the IEC with the enhanced conductivity detection using a post column of K+ -form cation-exchange resin for determining HCO3- -alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions.According to the ionic balance theory between the total equivalent con-centrations of anions and cations,the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system.As a result,the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.

  13. Improving the Data Quality of Advanced LIGO Based on Early Engineering Run Results

    CERN Document Server

    Nuttall, L K; Areeda, J; Betzwieser, J; Dwyer, S; Effler, A; Fisher, R P; Fritschel, P; Kissel, J S; Lundgren, A P; Macleod, D M; Martynov, D; McIver, J; Mullavey, A; Sigg, D; Smith, J R; Vajente, G; Williamson, A R; Wipf, C C

    2015-01-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors have completed their initial upgrade phase and will enter the first observing run in late 2015, with detector sensitivity expected to improve in future runs. Through the combined efforts of on-site commissioners and the Detector Characterization group of the LIGO Scientific Collaboration, interferometer performance, in terms of data quality, at both LIGO observatories has vastly improved from the start of commissioning efforts to present. Advanced LIGO has already surpassed Enhanced LIGO in sensitivity, and the rate of noise transients, which would negatively impact astrophysical searches, has improved. Here we give details of some of the work which has taken place to better the quality of the LIGO data ahead of the first observing run.

  14. Advances in quality control for dioxins monitoring and evaluation of measurement uncertainty from quality control data.

    Science.gov (United States)

    Eppe, Gauthier; De Pauw, Edwin

    2009-08-01

    This paper describes an application of multivariate and multilevel quality control charts with the aim of improving the internal quality control (IQC) procedures for the monitoring of dioxins and dioxin-like PCBs analysis in food. Dioxin analysts have to use the toxic equivalent concept (TEQ) to assess the toxicity potential of a mixture of dioxin-like compounds. The TEQ approach requires quantifying individually 29 dioxin-like compounds. Monitoring the congeners separately on univariate QC charts is misleading owing to the increase of false alarm rate. We propose to subdivide the TEQ value into 3 sub-groups and to control simultaneously the 3 variables in a T(2) chart. When a T(2) exceeds the upper control limit, it acts as a warning to trigger additional investigations on individual congeners. We discuss the minimum number of runs required to reliably estimate the QC chart parameters and we suggest using data from multilevel QC charts to properly characterize the standard deviations and the correlation coefficients. Moreover, the univariate QC chart can be sensitised to detect systematic errors by using exponentially weighted moving average (EWMA) technique. The EWMA chart provides an additional guidance on setting appropriate criteria to control the method bias and to support trend analysis. Finally, we present an estimate of measurement uncertainty by computing the accuracy profile in a retrospective way with the QC data generated and we discuss assessment of compliance with regulatory maximum levels.

  15. Improving quality of life in patients with advanced cancer: Targeting metastatic bone pain

    OpenAIRE

    von Moos, Roger; Costa, Luis; Ripamonti, Carla Ida; Niepel, Daniela; Santini, Daniele

    2017-01-01

    Metastatic bone disease in patients with advanced cancer is frequently associated with skeletal complications. These can be debilitating, causing pain, impaired functioning and decreased quality of life, as well as reduced survival. This review considers how the management of metastatic bone pain might be optimised, to limit the considerable burden it can impose on affected patients. Cancer-related pain is notoriously under-reported and under-treated, despite the availability of many therapeu...

  16. The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition

    Institute of Scientific and Technical Information of China (English)

    B.Malekynia; S.S.Razavipour

    2013-01-01

    An accelerated skin layer may be used to ignite solid state fuels.Detailed analyses were clarified by solving the hydrodynamic equations for nonlinear force driven plasma block ignition.In this paper,the complementary mechanisms are included for the advanced fuel ignition:external factors such as lasers,compression,shock waves,and sparks.The other category is created within the plasma fusion as reheating of an alpha particle,the Bremsstrahlung absorption,expansion,conduction,and shock waves generated by explosions.With the new condition for the control of shock waves,the spherical deuterium-tritium fuel density should be increased to 75 times that of the solid state.The threshold ignition energy flux density for advanced fuel ignition may be obtained using temperature equations,including the ones for the density profile obtained through the continuity equation and the expansion velocity for the r ≠ 0 layers.These thresholds are significantly reduced in comparison with the ignition thresholds at x =0 for solid advanced fuels.The quantum correction for the collision frequency is applied in the case of the delay in ion heating.Under the shock wave condition,the spherical protonboron and proton-lithium fuel densities should be increased to densities 120 and 180 times that of the solid state.These plasma compressions are achieved through a longer duration laser pulse or X-ray.

  17. Linkage between an advanced air quality model and a mechanistic watershed model

    Directory of Open Access Journals (Sweden)

    K. Vijayaraghavan

    2010-09-01

    Full Text Available An offline linkage between two advanced multi-pollutant air quality and watershed models is presented. The models linked are (1 the Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM (a three-dimensional Eulerian plume-in-grid model derived from the Community Multiscale Air Quality (CMAQ model and (2 the Watershed Analysis Risk Management Framework (WARMF. The pollutants linked include gaseous and particulate nitrogen, sulfur and mercury compounds. The linkage may also be used to obtain meteorological fields such as precipitation and air temperature required by WARMF from the outputs of the meteorology chemistry interface processor (MCIP that processes meteorology simulated by the fifth generation Mesoscale Model (MM5 or the Weather Research and Forecast (WRF model for input to AMSTERDAM. The linkage is tested in the Catawba River basin of North and South Carolina for ammonium, nitrate and sulfate. Modeled air quality and meteorological fields transferred by the linkage can supplement the conventional measurements used to drive WARMF and may be used to help predict the impact of changes in atmospheric emissions on water quality.

  18. Linkage between an advanced air quality model and a mechanistic watershed model

    Science.gov (United States)

    Vijayaraghavan, K.; Herr, J.; Chen, S.-Y.; Knipping, E.

    2010-09-01

    An offline linkage between two advanced multi-pollutant air quality and watershed models is presented. The models linked are (1) the Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM) (a three-dimensional Eulerian plume-in-grid model derived from the Community Multiscale Air Quality (CMAQ) model) and (2) the Watershed Analysis Risk Management Framework (WARMF). The pollutants linked include gaseous and particulate nitrogen, sulfur and mercury compounds. The linkage may also be used to obtain meteorological fields such as precipitation and air temperature required by WARMF from the outputs of the meteorology chemistry interface processor (MCIP) that processes meteorology simulated by the fifth generation Mesoscale Model (MM5) or the Weather Research and Forecast (WRF) model for input to AMSTERDAM. The linkage is tested in the Catawba River basin of North and South Carolina for ammonium, nitrate and sulfate. Modeled air quality and meteorological fields transferred by the linkage can supplement the conventional measurements used to drive WARMF and may be used to help predict the impact of changes in atmospheric emissions on water quality.

  19. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, Ard; Verleur, Ria

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  20. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  1. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  2. FLAME OF GLORY

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Olympic torch relay will spread peace and harmony across the world Two old nations,one shared dream.A symbolic integration of Eastern and Western civi- lizations was realized when a dramatically dressed Greek priestess kindled a specially designed torch for the Beijing Olympics at the ancient stadium in Olympia,Greece.In a flawless ceremony amid sunrays on March 24,High Priestess Maria Nafpliotou lit the Olympic flame with a concave mirror in front of the Hera Temple in Olympia.The flame was then held in a replica of an ancient urn to ignite the first torch for the upcoming Summer Games in

  3. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  4. Flame Stretch Analysis in Diffusion Flames with Inert Gas

    Institute of Scientific and Technical Information of China (English)

    Ay Su; Ying-Chieh Liu

    2001-01-01

    Experimental investigations of impinging flame with fuel mixed with non-reaction gas were conducted.According to the observations of combustion test and temperature measurement, the non-reaction gas might dilute the local concentration of fuel in the diffusion process. The shape of the flame was symmetrical due to the flame stretch force. Results show that the conical flame might be de-structured by the addition of inert gas in pure methane fuel. The impinging flame became shorter and bluer as nitrogen was added to the fuel. The conditions of N2/CH4 equal to 1/2 and 1/1 show a wider plane in the YZ plane. The effect of inert gas overcomes the flame stretch and destroys the symmetrical column flame as well as the cold flow. Nitrogen addition also enhances the diffusion rate and combustion efficiency.

  5. Propagation Limits of High Pressure Cool Flames

    Science.gov (United States)

    Ju, Yiguang

    2016-11-01

    The flame speeds and propagation limits of premixed cool flames at elevated pressures with radiative heat loss are numerically modelled using dimethyl ether mixtures. The primary focus is paid on the effects of pressure, mixture dilution, flame size, and heat loss on cool flame propagation. The results showed that cool flames exist on both fuel lean and fuel rich sides and thus dramatically extend the lean and rich flammability limits. There exist three different flame regimes, hot flame, cool flame, and double flame. A new flame flammability diagram including both cool flames and hot flames is obtained at elevated pressure. The results show that pressure significantly changes cool flame propagation. It is found that the increases of pressure affects the propagation speeds of lean and rich cool flames differently due to the negative temperature coefficient effect. On the lean side, the increase of pressure accelerates the cool flame chemistry and shifts the transition limit of cool flame to hot flame to lower equivalence ratio. At lower pressure, there is an extinction transition from hot flame to cool flame. However, there exists a critical pressure above which the cool flame to hot flame transition limit merges with the lean flammability limit of the hot flame, resulting in a direct transition from hot flame to cool flame. On the other hand, the increase of dilution reduces the heat release of hot flame and promotes cool flame formation. Moreover, it is shown that a smaller flame size and a higher heat loss also extend the cool flame transition limit and promote cool flame formation.

  6. "Magic Eraser" Flame Tests

    Science.gov (United States)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  7. [The quality of life after chemotherapy in advanced non-small cell lung cancer patients].

    Science.gov (United States)

    Słowik-Gabryelska, A; Szczepanik, A; Kalicka, A

    1999-01-01

    The intensity of complains, short survival and great number of patients makes many oncologists to apply chemotherapy in advanced non-small cell lung cancer/NSCLC/. The achieved median duration of life after chemotherapy was 6 to 12 month. From the other hand non small cell lung cancer chemotherapy is a big burden even to healthy persons. It can worsen the quality of life. That was the reason we evaluated the quality of life after chemotherapy in advanced non small cell lung cancer patients. Taking into account, that the evaluation of quality of life, used in most diseases is useless in advanced NSCLC patients, for appreciation the quality of life in these cases the lung cancer symptoms scale/LCSS/was adopted. In 110 non small cell lung cancer patients in stage IIIB and IV, who received combined chemotherapy by Le Chevalier/Vindesine, Cisplatin, Cyclophosphamide, Lomustin/or by Rosell/Mitomycin, Cyclophosphamide, Cisplatin/the quality of life was evaluated. In 20-persons control group all patients received the symptomatic treatment. In observed group of 110 patients, tumor regressions after 4 courses of chemotherapy allowed to resect cancer in 14 cases, to apply radiotherapy in 42 and to continue chemiotherapy in 23 persons. In every person from above mentioned group the quality of life was evaluated on the basis of intensity of cancer symptoms, accordingly to LCSS. The intensity of cancer symptoms was compared before and after treatment. There were compared; the innensity of complains, weakness, appetite, malnutrition, and hematological, neurological, performans state as well as respiratory sufficiency, infections, cardiac disorders and pain. Apart it, the side effects of applied therapy were assessed in 5 degree scale. The level of hemoglobin, the number of leucocytes, thrombocytes, bilirubine and transaminases in peripheral blood, hematurie, proteinurie, bleedings, appetite, nausea, vomitings, diarrhea, mucosal lesions, infections, skin lesions, cardiac lesions

  8. Goals of care in advanced dementia: quality of life, dignity and comfort.

    Science.gov (United States)

    Volicer, L

    2007-01-01

    Prolongation of human lifespan is increasing the number of individuals suffering from Alzheimer's disease and other progressive dementia worldwide. There are about 5 million of these individuals in both United States and European Union and many more in other countries of the world (1). Because there is no curative treatment for these diseases, most individuals with dementia survive to an advanced stage of dementia at which time many of them require institutional care. Home care for individuals with advanced dementia and especially institutional care are very expensive and are becoming major public health problems. The cost of care for advanced dementia is often increased by the use of aggressive medical interventions that may not be in the best interest of the patient. Because advanced dementia is currently incurable, it should be considered a terminal illness, similar to terminal cancer. Therefore, palliative care may be the most appropriate strategy for management of advanced dementia (2). The goals of palliative care are maintenance of quality of life, dignity and comfort and the four articles in this special issue are addressing these goals. Enhancement of quality of life in dementia requires attention to three main domains: provision of meaningful activities, appropriate medical care, and treatment of behavioral symptoms (3). Individuals with advanced dementia may not be able to participate in many activity programs but they still may maintain some quality of life if they are provided care in a pleasant environment with constant presence of a caregiver. Simard describes a program, Namaste Care, which is specifically tailored for individuals with advanced dementia. This program requires neither major expenditure nor increased staffing and should be instituted in all facilities that care for individuals with advanced dementia. Maintaining functional status of individuals with advanced dementia is important because it improves their self esteem and facilitates

  9. Quality Control Methodologies for Advanced EMI Sensor Data Acquisition and Anomaly Classification - Former Southwestern Proving Ground, Arkansas

    Science.gov (United States)

    2015-07-01

    DEMONSTRATION REPORT Quality Control Methodologies for Advanced EMI Sensor Data Acquisition and Anomaly Classification – Former Southwestern...concentrations. A total of 11.23 acres of dynamic surveys were conducted using MetalMapper advanced electromagnetic induction ( EMI ) sensor. A total of...Order Navigation Points ................................................................................13 5.2.3 Initial EMI Survey

  10. Recent Developments in Halogen Free Flame Retardants for Epoxy Resins for Electrical and Electronic Applications

    Directory of Open Access Journals (Sweden)

    Manfred Döring

    2010-08-01

    Full Text Available The recent implementation of new environmental legislations led to a change in the manufacturing of composites that has repercussions on printed wiring boards (PWB. This in turn led to alternate processing methods (e.g., lead-free soldering, which affected the required physical and chemical properties of the additives used to impart flame retardancy. This review will discuss the latest advancements in phosphorus containing flame retardants for electrical and electronic (EE applications and compare them with commercially available ones. The mechanism of degradation and flame retardancy of phosphorus flame retardants in epoxy resins will also be discussed.

  11. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These

  12. Health-related quality of life among patients with advanced cancer: an integrative review

    Directory of Open Access Journals (Sweden)

    Maria Eliane Moreira Freire

    2014-04-01

    Full Text Available This integrative literature review aimed to characterize scientific articles on health-related quality of life – HRQoL – among patients with advanced cancer from national and international literature, and summarize those factors evidenced in the literature that contributed to the improvement or worsening of HRQoL among patients with advanced cancer. The search for materials was conducted in the following databases: CINAHL, EMBASE, PubMed, SciELO and LILACS. Among the 21 articles in the sample, 13 showed an improvement of HRQoL among patients with advanced cancer related to the development of physical, emotional and spiritual interventions. In eight studies, we identified predictive symptoms of low HRQoL, such as pain, fatigue, sleep disorders, depression, nutritional changes, and others. The results showed that clinical manifestations, which many times were inherent in cancer, such as factors that can lower patients’ HRQoL, while physical, psychological and spiritual benefits resulting from therapeutic interventions may promote its improvement.

  13. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  14. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    Science.gov (United States)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature

  15. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    Science.gov (United States)

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter.

  16. Flame image monitoring and analysis in combustion management

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D. [CEZ, a.s. Elektrarna Detmarovice, Detmarovice (Czech Republic); Huttunen, A.J.; Nihtinen, J.J. [Imatran Voima Oy, IVO Technology Centre, Vantaa (Finland)

    1997-12-31

    When NO{sub x} emissions are reduced with new low-NO{sub x} burners and infurnace modifications in old pulverised fuel boilers, many changes in the firing conditions may occur. Depending on coal quality and the original furnace design, low-NO{sub x} burners, overtire air, low-excess-air firing and other primary modifications in various combinations may cause flame instability, increased slagging, increased minimum load and other difficulties in controlling the burning process. To find and solve these problems quicker, a new type of burner management system for pulverised fuel and oil-fired boilers was developed by Imatran Voima Oy. The DIMAC combustion management system monitors and analyses individually each burner or burner level. There are special software for wall and corner fired boilers. The DIMAC system is comprised of two functional subsystems: flame monitoring and flame analysis. The DIMAC enables the power plant operators to minimise NO{sub x} emissions and optimise the burning efficiency with varying coal qualities and boiler loads at the same time so that slagging, unburnt carbon in fly ash and flame stability stay in acceptable limits. It also guarantees that burners operate in good safety conditions in each burner level. The DIMAC system monitors perpendicularly each individual burner and evaluates flame parameters. Real-time flame monitoring and analysis allows the operator to directly see the effect of changing fuel distribution on flame pattern and flame stability. Based on data from the DIMAC references the system can improve boiler efficiency by 0.2 - 0.5 per cent unit as a result of more efficient control of the burning process. At the same time, the NO{sub x} formation can be reduced by 10 - 20 % 2 refs.

  17. [Advanced nursing practice: a must for the quality of care and mental health services].

    Science.gov (United States)

    Ricard, Nicole; Page, Claire; Laflamme, France

    2014-01-01

    New professional legislation and reorganization of mental health services have had a significant influence on mental health nursing practice. Many nurses have demonstrated clinical leadership and have been able to adapt their services to the needs of the population specially in the primary health care setting. However, many believe that the role of nurses is not sufficiently known and optimally utilized in mental health services. In this article we take a critical look at the mental health nursing practice in Quebec and at the essential requirements for its development. This review aims to: 1) describe current trends in the changing roles and the modernization of mental health nursing practice in Quebec, 2) provide an overview of the development of advanced nursing practice and its impact on the quality of mental health services; 3) clarify the concept of advanced nursing practice and position its development in Quebec and 4) propose various strategies for optimizing the role of nurses and their complementarity with other professionals providing mental health services. This review presents innovative practices developed by nurses in the context of the restructuring of mental health services. For example, new nursing roles have been developed to improve the collaboration with general practitioners groups in primary care settings and facilitate the evaluation and monitoring of patient presenting medical and psychological problems. Another interesting innovation was set up by nurses in developing a new service to allow timely access to integrated care for patients with substance abuse and mental health problems. The various testimonies reported in this article illustrate the potential contribution of these nursing innovations in improving the mental health services in Quebec. Also, in few countries, the reform of mental health services has been a good time to recognize this potential. Thus, some countries have repositioned the role of mental health nurses and

  18. Dynamics of unconfined spherical flames

    CERN Document Server

    Leblanc, Louis; Dennis, Kadeem; Zhe,; Liang,; Radulescu, Matei I

    2012-01-01

    Using the soap bubble technique, we visualize the dynamics of unconfined hydrogen-air flames using high speed schlieren video. We show that for sufficiently weak mixtures, i.e., low flame speeds, buoyancy effects become important. Flame balls of a critical dimension begin to rise. The experiments are found in very good agreement with the scaling laws proposed by Zingale and Dursi. We report the results in a fluid dynamics video.

  19. Effects of advanced wastewater treatment on the quality of White River, Indiana

    Science.gov (United States)

    Crawford, Charles G.; Wangsness, David J.

    1991-01-01

    In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and Southport Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978-1980) and post- (1983-1988) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.

  20. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    Science.gov (United States)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  1. Influence of sulfur in fuel on the properties of diffusion flame soot

    Science.gov (United States)

    Zhao, Yan; Ma, Qingxin; Liu, Yongchun; He, Hong

    2016-10-01

    Previous studies indicate that sulfur in fuel affects the hygroscopicity of soot. However, the issue of the effect of sulfur in fuel on soot properties is not fully understood. Here, the properties of soot prepared from fuel with a variable sulfur content were investigated under lean and rich flame conditions. Lean flame soot was influenced more by sulfur in fuel than rich flame soot. The majority of sulfur in fuel in lean flame was converted to gaseous SO2, while a small fraction appeared as sulfate and bisulfate (referred to as sulfate species) in soot. As the sulfur content in fuel increased, sulfate species in lean flame soot increased nonlinearly, while sulfate species on the surface of lean flame soot increased linearly. The hygroscopicity of lean flame soot from sulfur-containing fuel was enhanced mainly due to sulfate species. Meanwhile, more alkynes were formed in lean flame. The diameter of primary lean flame soot particles increased and accumulation mode particle number concentrations of lean flame soot from sulfur-containing fuel increased as a result of more alkynes. Because the potential effects of soot particles on air pollution development greatly depend on the soot properties, which are related to both chemical aging and combustion conditions, this work will aid in understanding the impacts of soot on air quality and climate.

  2. Quality assurance and risk management: Perspectives on Human Factors Certification of Advanced Aviation Systems

    Science.gov (United States)

    Taylor, Robert M.; Macleod, Iain S.

    1994-01-01

    This paper is based on the experience of engineering psychologists advising the U.K. Ministry of Defense (MoD) on the procurement of advanced aviation systems that conform to good human engineering (HE) practice. Traditional approaches to HE in systems procurement focus on the physical nature of the human-machine interface. Advanced aviation systems present increasingly complex design requirements for human functional integration, information processing, and cognitive task performance effectiveness. These developing requirements present new challenges for HE quality assurance (QA) and risk management, requiring focus on design processes as well as on design content or product. A new approach to the application of HE, recently adopted by NATO, provides more systematic ordering and control of HE processes and activities to meet the challenges of advanced aircrew systems design. This systematic approach to HE has been applied by MoD to the procurement of mission systems for the Royal Navy Merlin helicopter. In MoD procurement, certification is a judicial function, essentially independent of the service customer and industry contractor. Certification decisions are based on advice from MoD's appointed Acceptance Agency. Test and evaluation (T&E) conducted by the contractor and by the Acceptance Agency provide evidence for certification. Certification identifies limitations of systems upon release to the service. Evidence of compliance with HE standards traditionally forms the main basis of HE certification and significant non-compliance could restrict release. The systems HE approach shows concern for the quality of processes as well as for the content of the product. Human factors certification should be concerned with the quality of HE processes as well as products. Certification should require proof of process as well as proof of content and performance. QA criteria such as completeness, consistency, timeliness, and compatibility provide generic guidelines for

  3. FLAME MONITORING IN POWER STATION BOILERS USING IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    K. Sujatha

    2012-05-01

    Full Text Available Combustion quality in power station boilers plays an important role in minimizing the flue gas emissions. In the present work various intelligent schemes to infer the flue gas emissions by monitoring the flame colour at the furnace of the boiler are proposed here. Flame image monitoring involves capturing the flame video over a period of time with the measurement of various parameters like Carbon dioxide (CO2, excess oxygen (O2, Nitrogen dioxide (NOx, Sulphur dioxide (SOx and Carbon monoxide (CO emissions plus the flame temperature at the core of the fire ball, air/fuel ratio and the combustion quality. Higher the quality of combustion less will be the flue gases at the exhaust. The flame video was captured using an infrared camera. The flame video is then split up into the frames for further analysis. The video splitter is used for progressive extraction of the flame images from the video. The images of the flame are then pre-processed to reduce noise. The conventional classification and clustering techniques include the Euclidean distance classifier (L2 norm classifier. The intelligent classifier includes the Radial Basis Function Network (RBF, Back Propagation Algorithm (BPA and parallel architecture with RBF and BPA (PRBFBPA. The results of the validation are supported with the above mentioned performance measures whose values are in the optimal range. The values of the temperatures, combustion quality, SOx, NOx, CO, CO2 concentrations, air and fuel supplied corresponding to the images were obtained thereby indicating the necessary control action taken to increase or decrease the air supply so as to ensure complete combustion. In this work, by continuously monitoring the flame images, combustion quality was inferred (complete/partial/incomplete combustion and the air/fuel ratio can be automatically varied. Moreover in the existing set-up, measurements like NOx, CO and CO2 are inferred from the samples that are collected periodically or by

  4. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  5. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Qin Ling; Leung, Kwok Sui (eds.) [Chinese Univ. of Hong Kong (China). Dept. of Orthopaedics and Traumatology; Genant, H.K. [California Univ., San Francisco, CA (United States); Griffith, J.F. [Chinese Univ. of Hong Kong (China). Dept. of Radiology and Organ Imaging

    2007-07-01

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  6. Photochemical treatment as an alternative to improve the quality of wastewater after advanced primary treatment.

    Directory of Open Access Journals (Sweden)

    Hernández Fernando

    2014-12-01

    Full Text Available The present research contains the photochemical treatment (PCT of residual wastewater effluent derived from an advanced primary treatment process (APT. The application employed an ultraviolet light system, hydrogen peroxide and ozone as a free hydroxyl’s radicals generator; strong oxidants for the organic contaminants mineralization which affects the water quality. The aliquots of the APT and PCT were analyzed by determination of the parameters as the color, turbidity, electric conductivity, COD, UV-Vis spectrometry, anion and cation techniques, enabling the determination of the photo-oxidative wastewater treatment efficiency. The microbiological assays denote the one hundred percent photo-oxidative effectiveness for the removal of undesirable microorganisms. After the treatment, the water is suitable for its reuse, commercialization or spill into a body receptor without any risk for the environment or the health.

  7. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    Science.gov (United States)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  8. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    Energy Technology Data Exchange (ETDEWEB)

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  9. Impact of Duodopa on Quality of Life in Advanced Parkinson's Disease: A UK Case Series

    Directory of Open Access Journals (Sweden)

    T. Foltynie

    2013-01-01

    Full Text Available Treatment options in advanced Parkinson’s disease (PD include subcutaneous apomorphine, pallidal or subthalamic nucleus Deep Brain Stimulation (DBS, or levodopa/carbidopa intestinal gel (LCIG/Duodopa. In this study, we describe the outcome of 12 PD patients with PD related complications started on LCIG, with respect to their quality of life measured by a disease specific validated scale—the PDQ39, together with diaries recording time spent “On,” “Off,” “Dyskinetic,” or “Asleep.” At the time of latest follow up, improvements were observed in both the PDQ39 Summary index as well as diary reports of PD symptom control following introduction of LCIG, supporting its use in well selected patients. The use of a trial period of LCIG via naso-jejunal administration allows objective evaluation of improvement in PD symptom control in advance of the placement of the more invasive percutaneous jejunostomy procedure. The decision to embark on LCIG, apomorphine or DBS should be supported by input from centres with experience of all 3 approaches. Since LCIG is an expensive option, development of the most appropriate future commissioning of this therapy in the absence of Class 1 evidence requires careful scrutiny of the outcomes of its use in a broad range of published series.

  10. An Overview of Mode of Action and Analytical Methods for Evaluation of Gas Phase Activities of Flame Retardants

    Directory of Open Access Journals (Sweden)

    Khalifah A. Salmeia

    2015-03-01

    Full Text Available The latest techniques used to prove, describe and analyze the gas phase activity of a fire retardant used in polymeric materials are briefly reviewed. Classical techniques, such as thermogravimetric analysis or microscale combustion calorimetry, as well as complex and advanced analytical techniques, such as modified microscale combustion calorimeter (MCC, molecular beam mass spectroscopy and vacuum ultra violet (VUV photoionization spectroscopy coupled with time of flight MS (TOF-MS, are described in this review. The recent advances in analytical techniques help not only in determining the gas phase activity of the flame-retardants but also identify possible reactive species responsible for gas phase flame inhibition. The complete understanding of the decomposition pathways and the flame retardant activity of a flame retardant system is essential for the development of new eco-friendly-tailored flame retardant molecules with high flame retardant efficiency.

  11. Solid Propellant Flame Spectroscopy

    Science.gov (United States)

    1988-08-01

    400 jm to reach the maximum flame temperature, a distance that can be reduced by replacing the HTPB binder with a polyester or CMDB binder. The...the dark zone for propellants similar to HIX2 is 2-2.5 mm at 1.8 MPa (18 atm, 265 psia) (Ref. 22,187). In contrast, the dark zone for HMX CMDB ...propellants eliminates the dark zone is not surprising, since TMETN is a nitrate ester as was the double-base matrix of Kubota’s HMX CMDB propellant. A

  12. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  13. Advancement in the chemical analysis and quality control of flavonoid in Ginkgo biloba.

    Science.gov (United States)

    Liu, Xin-Guang; Wu, Si-Qi; Li, Ping; Yang, Hua

    2015-09-10

    Flavonoids are the main active constituents in Ginkgo biloba L., which have been suggested to have broad-spectrum free-radical scavenging activities. This review summarizes the recent advances in the chemical analysis of the flavonoids in G. biloba and its finished products (from 2009 to 2014), including chemical composition, sample preparation, separation, detection and different quality criteria. More than 70 kinds of flavonoids have been identified in this plant. In this review, various analytical approaches as well as their chromatographic conditions have been described, and their advantages/disadvantages are also compared. Quantitative analyses of Ginkgo flavonoids applied by most pharmacopeias start with an acidic hydrolysis followed by determination of the resulting aglycones using HPLC. But increasing direct assay of individual flavonol glycosides found that many adulterated products were still qualified by the present tests. To obtain an authentic and applicable analytical approach for quality evaluation of Ginkgo and its finished products, related suggestions and opinions in the recent publications are mainly discussed in this review. This discussion on chemical analyses of Ginkgo flavonoids will also be found as a significant guide for widely varied natural flavonoids.

  14. PROFILE: Potential for Advanced Technology to Improve Air Quality and Human Health in Shanghai.

    Science.gov (United States)

    STREETS; HEDAYAT; CARMICHAEL; ARNDT; CARTER

    1999-04-01

    / Air quality in most Asian cities is poor and getting worse. It will soon become impossible to sustain population, economic, and industrial growth without severe deterioration of the atmospheric environment. This paper addresses the city of Shanghai, the air-quality problems it faces over the next 30 years, and the potential of advanced technology to alleviate these problems. Population, energy consumption, and emission profiles are developed for the city at 0.1 degrees x 0.1 degrees resolution and extrapolated from 1990 to 2020 using sector-specific economic growth factors. Within the context of the RAINS-Asia model, eight technology scenarios are examined for their effects on ambient concentrations of sulfur dioxide and sulfate and their emission control costs. Without new control measures, it is projected that the number of people exposed to sulfur dioxide concentrations in excess of guidelines established by the World Health Organization will rise from 650,000 in 1990 to more than 14 million in 2020. It is apparent that efforts to reduce emissions are likely to have significant health benefits, measured in terms of the cost of reducing the number of people exposed to concentrations in excess of the guidelines ($10-50 annually per person protected). Focusing efforts on the control of new coal-fired power plants and industrial facilities has the greatest benefit. However, none of the scenarios examined is alone capable of arresting the increases in emissions, concentrations, and population exposure. It is concluded that combinations of stringent scenarios in several sectors will be necessary to stabilize the situation, at a potential cost of $500 million annually by the year 2020. KEY WORDS: Coal; China; Shanghai; Sulfur dioxide; Air quality; Health effects

  15. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)

    2003-01-01

    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  16. Establishing a portfolio of quality-improvement projects in pediatric surgery through advanced improvement leadership systems.

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.

  17. The Quality-of-Life Effects of Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Joseph M., E-mail: jherma15@jhmi.edu [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Narang, Amol K. [Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Griffith, Kent A. [Department of Biostatistics, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Zalupski, Mark M. [Department of Hematology Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Reese, Jennifer B. [Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Gearhart, Susan L. [Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Azad, Nolifer S. [Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Chan, June; Olsen, Leah [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Efron, Jonathan E. [Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Lawrence, Theodore S.; Ben-Josef, Edgar [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)

    2013-01-01

    Purpose: Existing studies that examine the effect of neoadjuvant chemoradiation (CRT) for locally advanced rectal cancer on patient quality of life (QOL) are limited. Our goals were to prospectively explore acute changes in patient-reported QOL endpoints during and after treatment and to establish a distribution of scores that could be used for comparison as new treatment modalities emerge. Methods and Materials: Fifty patients with locally advanced rectal cancer were prospectively enrolled at 2 institutions. Validated cancer-specific European Organization for Research and Treatment of Cancer (EORTC QLQ-CR30) and colorectal cancer-specific (EORTC QLQ-CR38 and EORTC QLQ-CR 29) QOL questionnaires were administered to patients 1 month before they began CRT, at week 4 of CRT, and 1 month after they had finished CRT. The questionnaires included multiple symptom scales, functional domains, and a composite global QOL score. Additionally, a toxicity scale was completed by providers 1 month before the beginning of CRT, weekly during treatment, and 1 month after the end of CRT. Results: Global QOL showed a statistically significant and borderline clinically significant decrease during CRT (-9.50, P=.0024) but returned to baseline 1 month after the end of treatment (-0.33, P=.9205). Symptoms during treatment were mostly gastrointestinal (nausea/vomiting +9.94, P<.0001; and diarrhea +16.67, P=.0022), urinary (dysuria +13.33, P<.0001; and frequency +11.82, P=.0006) or fatigue (+16.22, P<.0001). These symptoms returned to baseline after therapy. However, sexual enjoyment (P=.0236) and sexual function (P=.0047) remained persistently diminished after therapy. Conclusions: Rectal cancer patients undergoing neoadjuvant CRT may experience a reduction in global QOL along with significant gastrointestinal and genitourinary symptoms during treatment. Moreover, provider-rated toxicity scales may not fully capture this decrease in patient-reported QOL. Although most symptoms are transient

  18. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  19. Control of the flame front advance in a sintering bed of iron ores; Control del avance del frente de llama en el lecho de sinterizacion de minerales de hierro

    Energy Technology Data Exchange (ETDEWEB)

    Cores, A.; Mochon, J.; Ruiz-Bustinza, I.; Parra, R.

    2010-07-01

    A sintering pan of 40 cm cubed is loaded with a mixture of iron ores, limestone and coke weighing 110 kg in a sintering pilot plant. In this sintering pan, a series of thermocouples have been introduced at different depths. Tests have been carried out to study the width of the combustion zone and the maximum temperature of the flame front across the sintering bed. For the analysis of the results, a data acquisition system was used. This consisted of two modules connected in serie, for performing the analogue-digital conversion. The analogue entry point is the exit point of the thermocouples and the digital exit point was the temperature average. A computer was used for conserving and storing the data and for carrying out interpolations, simulating the state and evolution of the flame front across the bed. (Author) 21 refs.

  20. Premixed flame propagation in vertical tubes

    CERN Document Server

    Kazakov, Kirill A

    2015-01-01

    Analytical treatment of premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations describing quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds, and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by the gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are ide...

  1. Assessment of voice, speech, and related quality of life in advanced head and neck cancer patients 10-years+ after chemoradiotherapy

    NARCIS (Netherlands)

    Kraaijenga, S.A.C.; Oskam, I.M.; van Son, R.J.J.H.; Hamming-Vrieze, O.; Hilgers, F.J.M.; van den Brekel, M.W.M.; van der Molen, L.

    2016-01-01

    Objectives: Assessment of long-term objective and subjective voice, speech, articulation, and quality of life in patients with head and neck cancer (HNC) treated with concurrent chemoradiotherapy (CRT) for advanced, stage IV disease. Materials and methods: Twenty-two disease-free survivors, treated

  2. Metallic iron nanoparticles: Flame synthesis, characterization and magnetic properties

    Institute of Scientific and Technical Information of China (English)

    Yunfeng Li; Yanjie Hu; Guangjian Huang; Chunzhong Li

    2013-01-01

    Metallic iron (Fe) nanoparticles (NPs) with a typical core-shell structure have been prepared by a simple and continuous flame spray pyrolysis (FSP) method,which are stabilized by the corresponding Fe3O4 shell with a thickness of 4-6 nm.The size of metallic Fe cores is about 30-80 nm.The core-shell structured iron NPs show an air stability as long as one month as a result of the protection of oxide shell.Through the control of the residence time of materials in flame and flame atmosphere,metallic Fe and iron oxides are obtained,showing a better external magnetic field responsibility.It is concluded that the evolution of morphology and composition of flame-made magnetic NPs could be attributed to the competition mechanism between reduction and oxidation reactions of in situ flame combustion,which offers more choices and better effective design strategy for the synthesis of advanced functional materials via FSP techniques.

  3. Electrical Aspects of Impinging Flames

    Science.gov (United States)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  4. Refractory Materials for Flame Deflector Protection System Corrosion Control: Flame Deflector Protection System Life Cycle Cost Analysis Report

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Coffman, Brekke E.; Kolody, Mark R.; Curran, Jerome P.; Trejo, David; Reinschmidt, Ken; Kim, Hyung-Jin

    2009-01-01

    A 20-year life cycle cost analysis was performed to compare the operational life cycle cost, processing/turnaround timelines, and operations manpower inspection/repair/refurbishment requirements for corrosion protection of the Kennedy Space Center launch pad flame deflector associated with the existing cast-in-place materials and a newer advanced refractory ceramic material. The analysis compared the estimated costs of(1) continuing to use of the current refractory material without any changes; (2) completely reconstructing the flame trench using the current refractory material; and (3) completely reconstructing the flame trench with a new high-performance refractory material. Cost estimates were based on an analysis of the amount of damage that occurs after each launch and an estimate of the average repair cost. Alternative 3 was found to save $32M compared to alternative 1 and $17M compared to alternative 2 over a 20-year life cycle.

  5. High quality coal extraction and environmental remediation of fine coal refuse ponds using advanced cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Mohanty, M.K.; Patwardhan, A. [Department of Mining Engineering, Southern Illinois University-Carbondale, Carbondale, Illinois (United States)

    1998-07-01

    A vast number of coal refuse ponds represent a significant economical resource base that are also considered to be environmentally harmful. Significant amounts of cleanable fine coal generally exist in the refuse ponds due to the inability of conventional technologies to effectively separate the fine coal from the associated gangue particles. In addition, acid generation, generally a result of pyrite oxidation, has potential to adversely affect the surrounding environment. An integrated processing strategy of simultaneously recovering high quality coal and pyrite-rich products from the treatment of a coal refuse pond slurry has been successfully evaluated using an advanced physical cleaning circuit. A clean coal product having ash and pyritic sulfur contents of 10.1% and 0.41% was recovered with a mass yield of nearly 49%. In addition, a pyrite-rich product containing nearly 83% of the coal pyrite particles present in the refuse pond material was generated for neutralization purposes for the environmental remediation of the slurry pond. 4 refs.

  6. Collagen modifications in postmenopausal osteoporosis: advanced glycation endproducts may affect bone volume, structure and quality.

    Science.gov (United States)

    Willett, Thomas L; Pasquale, Julia; Grynpas, Marc D

    2014-09-01

    The classic model of postmenopausal osteoporosis (PM-OP) starts with the depletion of estrogen, which in turn stimulates imbalanced bone remodeling, resulting in loss of bone mass/volume. Clinically, this leads to fractures because of structural weakness. Recent work has begun to provide a more complete picture of the mechanisms of PM-OP involving oxidative stress and collagen modifications known as advanced glycation endproducts (AGEs). On one hand, AGEs may drive imbalanced bone remodeling through signaling mediated by the receptor for AGEs (RAGE), stimulating resorption and inhibiting formation. On the other hand, AGEs are associated with degraded bone material quality. Oxidative stress promotes the formation of AGEs, inhibits normal enzymatically derived crosslinking and can degrade collagen structure, thereby reducing fracture resistance. Notably, there are multiple positive feedback loops that can exacerbate the mechanisms of PM-OP associated with oxidative stress and AGEs. Anti-oxidant therapies may have the potential to inhibit the oxidative stress based mechanisms of this disease.

  7. Health-Related Quality of Life after surgery for primary advanced rectal cancer and recurrent rectal cancer

    DEFF Research Database (Denmark)

    Thaysen, Henriette Vind; Jess, Per; Laurberg, Søren

    2012-01-01

    Aim: A review of the literature was undertaken to provide an overview of Health-related quality of life (HRQoL) after surgery for primary advanced or recurrent rectal cancer and to outline proposals for future HRQoL studies in this area. Method: A systematic literature search was undertaken. Only...... studies concerning surgery for primary advanced or recurrent rectal cancer and describing methods used for measuring HRQoL were considered. Results Seven studies were identified including two prospective longitudinal, three cross-sectional and two based on qualitative data. Global quality of life...... cancer. Larger prospective longitudinal studies are needed to improve information on the effects of this extensive surgery on quality of life....

  8. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  9. Effect of Intermittent Androgen Blockade on the Quality of Life of Patients with Advanced Prostate Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    OBJECTIVE To investigate the effect of intermittent androgen blockade (IAB) on the quality of life (QOL) of patients with advanced prostatic carcinoma (APC).METHODS Investigations on the QOL of 51 APC patients receiving IAB treatment, totaling 3 times, i.e. 6 months before and after, and 12 months after treatment, were perform using the EORTC QLQ-C30 measuring scale and QLQ-PR25 scale.RESULTS Although IAB became an economic burden for the families, it was lessened during the intermission (P<0.05). The overall health status significantly improved 6 months after IAB treatment (P<0.01), especially during the intermission (P<0.05), with a total or local easement of pain (P<0.01) and an improvement of urinary function (P<0.01). Although there was impairment,to various degrees, in many functions of the patients on the 6th month of treatment, such as the physical function (P<0.05), role function (P<0.05), the emotional (P<0.01) and the social functions (P<0.01), with an enhancement of fatigue (P<0.01), these functions gradually recovered by the 12th month as the intermission started. Treatment-related symptoms such as flushing and mammary swelling significantly emerged on the 6th treatment month (P<0.01), and lessened on the 12th (P<0.01). During the treatment period,therewas an notable drop in sexual interest (P<0.01), with a deprivation of sex life, but revived to various degrees during the intermission (P<0.01).CONCLUSION Although IAB treatment of APC patients did impair the physiologic and psychologic status of patients to varying degrees, these were improved and restored during the intermission.

  10. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated....... The simple hydrocarbon flames are dominated by a series of hydrocarbonic ions and, to a minor extent, protonated oxo-compounds. The introduction of sulfur to the flames leads to significant changes in the ion composition, as sulfur-containing species become dominant. The ability of the technique to study...

  11. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    Directory of Open Access Journals (Sweden)

    Mark P. McHenry

    2016-01-01

    Full Text Available The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the network characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.

  12. 新型成炭剂在聚合物膨胀阻燃中的应用和研究进展%Advance in Application and Research of Novel Charring Agents in Intumescent Flame Retardant Polymers

    Institute of Scientific and Technical Information of China (English)

    陈绪煌; 黄碧伟; 龙鹏; 邢为高

    2011-01-01

    The charring agent in tranditional intumescent flame retardants (IFR) are some small molecule alcoholates, which make the flame retardants have easy moisture absorption, easy migration and incompatible to polymer matrix. To improve these faults, some novel charring agents were researched. This article reviewed the applications and researches of some novel charring agents, such as novolac resin; polyamide; thermoplastic polyurethane and some derivatives of macromolecule compounds in IFR polymers.%传统膨胀型阻燃剂中炭源为小分子醇类化合物,导致阻燃剂具有易吸湿、易迁移、和聚合物基体不相容等缺点。为了改进这些缺点,各种新型成炭剂相继被研究开发出来。本文对一些新型成炭剂,如热塑性酚醛树脂、聚酰胺、热塑性聚氨酯以及一些大分子化合物的衍生物在化学膨胀阻燃聚合物中的应用和研究进行了综述。

  13. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  14. Advanced Quality Control Theory for Training and Education: A Guide to Optimizing Training and Education Efforts

    Science.gov (United States)

    Heppler, Brad

    2008-01-01

    This is a book about quality and how to control quality through deliberate actions on the part of the professionals developing and implementing the instances of instruction available at an organization. Quality control theory favors no particular learning philosophy and is only directed towards aspects of how, what, where and when measurements are…

  15. Enhancement of turbulent flame speed of V-shaped flames in fractal-grid-generated turbulence

    NARCIS (Netherlands)

    Verbeek, A.A.; Willems, P.A.; Stoffels, G.G.M.; Geurts, B.J.; Meer, van der T.H.

    2016-01-01

    A variety of fractal grids is used to investigate how fractal-grid-generated turbulence affects the turbulent flame speed for premixed flames. The grids are placed inside a rectangular duct and a V-shaped flame is stabilized downstream of the duct, using a metal wire. This flame is characterized usi

  16. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame arresters, and flame screens. 154.822 Section 154.822 Navigation and Navigable Waters COAST GUARD... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a)...

  17. Asymptotic analysis of outwardly propagating spherical flames

    Institute of Scientific and Technical Information of China (English)

    Yun-Chao Wu; Zheng Chen

    2012-01-01

    Asymptotic analysis is conducted for outwardly propagating spherical flames with large activation energy.The spherical flame structure consists of the preheat zone,reaction zone,and equilibrium zone.Analytical solutions are separately obtained in these three zones and then asymptotically matched.In the asymptotic analysis,we derive a correlation describing the spherical flame temperature and propagation speed changing with the flame radius.This correlation is compared with previous results derived in the limit of infinite value of activation energy.Based on this correlation,the properties of spherical flame propagation are investigated and the effects of Lewis number on spherical flame propagation speed and extinction stretch rate are assessed.Moreover,the accuracy and performance of different models used in the spherical flame method are examined.It is found that in order to get accurate laminar flame speed and Markstein length,non-linear models should be used.

  18. Cyberinfrastructure for Online Access to High-Quality Data: Advances and Opportunities (Invited)

    Science.gov (United States)

    Baru, C.

    2010-12-01

    Advanced cyberinfrastructure capabilities are enabling end-to-end management of data flows in observing system networks and online access to very large data archives. We provide an overview of several projects in earth and environmental sciences that have developed and deployed cyberinfrastructure for collecting and organizing field observations and remote sensing data, to make them available to a community of users. The data cyberinfrastructure framework should cover the range from data acquisition, quality control, data archiving, discovery, access, integration, and modeling. Using examples from different earth and environmental science cyberinfrastructure efforts, we will describe the state of the art in data cyberinfrastructure and future directions and challenges. The Tropical Ecology, Assessment and Monitoring (TEAM) Network (http://teamnetwork.org), which is a network of forested sites—currently consisting of 15 sites, and growing—distributed across Central America, South America, Africa, and Asia. Each site implements a standardized set of data collection protocols, all under the control of a common cyberinfrastructure. The data are available via a portal from a central site, but with appropriate access controls. The TEAM Network is run by Conservation International, in partnership with the Wildlife Conservation Society, Smithsonian Institute, and the Missouri Botanical Gardens, and is funded by the Moore Foundation. The EarthScope Data Portal (portal.earthscope.org) implements a virtual metadata catalog and a data cart to provides a means for simultaneously exploring EarthScope's various instrument networks, as well as seamlessly downloading data from multiple stations and instrument types. The prototype of the US Geoinformatics Information Network (US GIN) project is implementing a federated catalog, using the Catalog Services for Web (CSW) standard. The NSF-funded Opentopography.org—a spinoff of the GEON project, www.geongrid.org—provides online

  19. DOES URINARY DIVERSION IMPROVE THE QUALITY OF LIFE IN OBSTRUCTIVE UROPATHY SECONDARY TO ADVANCED PELVIC MALIGNANCY?

    Directory of Open Access Journals (Sweden)

    Shivashankarappa

    2016-02-01

    Full Text Available INTRODUCTION The incidence of patients presenting with advanced pelvic malignancy with obstructive uropathy is high in our country. Relentless progress of the malignancy will cause deterioration of renal function, aggravation of pain, infection, deterioration of Quality of Life (QOL, uremia and death. Decreased renal function is considered as a contraindication for palliative chemo and radiotherapy. However urinary diversion in these patients will lead to improvement in renal function and may help in administration of palliative therapy and thus, improve the quality of life of these patients. MATERIALS AND METHODS The present study includes the obstructive uropathy patients secondary to pelvic malignancy referred to our institution for urinary diversion between Jan 2010 to Dec 2014. Total 40 patients were included, of which, 25 patients underwent PCN, 9 patients retrograde DJ stenting, 4 patients refused the treatment, 2 patients were not fit for any intervention due to coagulopathy & comorbid conditions. Of 34 treated patients, 30 were female patients and 4 were male patients. All the patients were explained about the procedure and proper consent taken. Laboratory investigations like CBC, coagulation profile, LFT, routine urine analysis, urine C&S and serum electrolytes were carried out. Haemodialysis was done for 10 patients whose serum creatinine was >6mg% & potassium >6meq. USG guided PCN insertion was done in 8 patients, and in those who failed in this procedure, fluoroscopic C-ARM guided PCN insertion done in 17 patients. Post operatively RFT and serum electrolytes were assessed on 3, 7, 15, & 30th day. PCN catheter was changed once in 3 months. RESULTS 8 patients succeeded in USG guided PCN insertion and 17 patients who failed USG PCN insertion, was done under C–Arm guidance. 3 patients received blood transfusion. No deaths were seen during or post procedure in the hospital. Renal functions improved and normalised in most of the

  20. Firefighters and flame retardant activism.

    Science.gov (United States)

    Cordner, Alissa; Rodgers, Kathryn M; Brown, Phil; Morello-Frosch, Rachel

    2015-02-01

    In the past decade, exposure to flame retardant chemicals has become a pressing health concern and widely discussed topic of public safety for firefighters in the United States. Working through local, state, and national unions and independent health and advocacy organizations, firefighters have made important contributions to efforts to restrict the use of certain flame retardants. Firefighters are key members in advocacy coalitions dedicated to developing new environmental health regulations and reforming flammability standards to reflect the best available fire science. Their involvement has been motivated by substantiated health concerns and critiques of deceptive lobbying practices by the chemical industry. Drawing on observations and interviews with firefighters, fire safety experts, and other involved stakeholders, this article describes why firefighters are increasingly concerned about their exposure to flame retardant chemicals in consumer products, and analyzes their involvement in state and national environmental health coalitions.

  1. Environmental Considerations for Flame Resistant Textiles

    Science.gov (United States)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  2. Hysteresis and transition in swirling nonpremixed flames

    NARCIS (Netherlands)

    Tummers, M.J.; Hübner, A.W.; Veen, van E.H.; Hanjalic, K.; Meer, van der Th.H.

    2009-01-01

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change f

  3. Acoustic power measurements of oscillating flames

    NARCIS (Netherlands)

    Valk, M.

    1981-01-01

    The acoustic power of an oscillating flame is measured. A turbulent premixed propane/air flame is situated near a pressure antinode of a standing wave in a laboratory combustion chamber. This standing wave is generated by a piston. The fluctuating heat release of the flame will supply acoustic power

  4. Premixed flame propagation in vertical tubes

    Science.gov (United States)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  5. Droplet and Supercritical Flame Dynamics in Propulsion

    Science.gov (United States)

    2010-03-26

    In order to study the stability of a lifted jet flame by nozzle-generated vortexes, we have developed a chemical explosive mode analysis ( CEMA ) to...runaway can consequently be distinguished. CEMA of the lifted flame shows the existence of two premixed flame fronts, which are difficult to detect

  6. 30 CFR 14.20 - Flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flame resistance. 14.20 Section 14.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF... § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  7. Cars Spectroscopy of Propellant Flames

    Science.gov (United States)

    1983-11-01

    Harris, K. Aron, and J. Fendell "N2 and 00 Vibrational CARS and H2 Rotational CARS Spectroscopy of CHI/N20 Flames," Proceedings of the Nineteenth...JANNAF Combustion Meeting, CIIA Publication No. 366, 1982, p 123. 21. K. Aron, L. E. Harris, and J. Fendell , "N and CO Vibrational CARS and H2 Rotational...9 6 5 . p 3 8 4 . . . . . 23. J. Fendell , L. E, Harris, and K. Aron, "Theoretical Calculation of 11 CARS S-Branches for Propellant Flames

  8. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  9. Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

    KAUST Repository

    Im, Hong G.

    2016-07-15

    Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

  10. Organ function and quality of life after transoral laser microsurgery and adjuvant radiotherapy for locally advanced laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Olthoff, Arno; Hess, Clemens F. [Dept. of Phoniatrics and Pedaudiology, Univ. of Goettingen (Germany); Ewen, Andreas; Wolff, Hendrik Andreas; Hermann, Robert Michael; Vorwerk, Hilke; Hille, Andrea; Christiansen, Hans [Dept. of Radiotherapy, Univ. of Goettingen (Germany); Roedel, Ralph; Steiner, Wolfgang [Dept. of Otorhinolaryngology, Univ. of Goettingen (Germany); Pradier, Olivier [Dept. of Cancerology, CHU Morvan, Brest (France)

    2009-05-15

    Background and purpose: transoral laser microsurgery (TLM) and adjuvant radiotherapy are an established therapy regimen for locally advanced laryngeal cancer at our institution. Aim of the present study was to assess value of quality of life (QoL) data with special regard to organ function under consideration of treatment efficacy in patients with locally advanced laryngeal cancer treated with larynx-preserving TLM and adjuvant radiotherapy. Patients and methods: from 1994 to 2006, 39 patients (ten UICC stage III, 29 UICC stage IVA/B) with locally advanced laryngeal carcinomas were treated with TLM and adjuvant radiotherapy. Data concerning treatment efficacy, QoL (using the VHI [Voice Handicap Index], the EORTC QLQ-C30 and QLQ-H and N35 questionnaires) and organ function (respiration, deglutition, voice quality) were obtained for ten patients still alive after long-term follow-up. Correlations were determined using the Spearman rank test. Results: after a median follow-up of 80.8 months, the 5-year overall survival rate was 46.8% and the locoregional control rate 76.5%, respectively. The larynx preservation rate was 89.7% for all patients and 100% for patients still alive after follow-up. Despite some verifiable problems in respiration, speech and swallowing, patients showed a subjectively good QoL. Conclusion: TLM and adjuvant radiotherapy is a curative option for patients with locally advanced laryngeal cancer and an alternative to radical surgery. Even if functional deficits are unavoidable in the treatment of locally advanced laryngeal carcinomas, larynx preservation is associated with a subjectively good QoL. (orig.)

  11. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial

    Directory of Open Access Journals (Sweden)

    Strauss Ingrid

    2011-07-01

    Full Text Available Abstract Background Tumor patients exhibit an increased peripheral demand of fatty acids and protein. Contrarily, tumors utilize glucose as their main source of energy supply. Thus, a diet supplying the cancer patient with sufficient fat and protein for his demands while restricting the carbohydrates (CHO tumors thrive on, could be a helpful strategy in improving the patients' situation. A ketogenic diet (KD fulfills these requirements. Therefore, we performed a pilot study to investigate the feasibility of a KD and its influence on the quality of life of patients with advanced metastatic tumors. Methods Sixteen patients with advanced metastatic tumors and no conventional therapeutic options participated in the study. The patients were instructed to follow a KD (less than 70 g CHO per day with normal groceries and were provided with a supply of food additives to mix a protein/fat shake to simplify the 3-month intervention period. Quality of life [assessed by EORTC QLQ-C30 (version 2], serum and general health parameters were determined at baseline, after every two weeks of follow-up, or after drop out. The effect of dietary change on metabolism was monitored daily by measuring urinary ketone bodies. Results One patient did not tolerate the diet and dropped out within 3 days. Among those who tolerated the diet, two patients died early, one stopped after 2 weeks due to personal reasons, one felt unable to stick to the diet after 4 weeks, one stopped after 6 and two stopped after 7 and 8 weeks due to progress of the disease, one had to discontinue after 6 weeks to resume chemotherapy and five completed the 3 month intervention period. These five and the one who resumed chemotherapy after 6 weeks report an improved emotional functioning and less insomnia, while several other parameters of quality of life remained stable or worsened, reflecting their very advanced disease. Except for temporary constipation and fatigue, we found no severe adverse side

  12. Flame monitoring enhances burner management

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Bailey, R.; Fuller, T.; Daw, S.; Finney, C.; Stallings, J. [Babcock & Wilcox Research Center (USA)

    2003-02-01

    A new burner monitoring and diagnostic system called Flame Doctor offers users a more precise and discriminating understanding of burner conditions. Alpha testing on Unit 4 at AmerenUE's Meramec power plant in St. Louis, MO, USA and Beta testing is underway at plants owned by Dynegy and Allegheny Energy. 6 refs., 3 figs.

  13. Olympic Flame Burning In Athens

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正>At 6:00pm March 25 (Beijing time), 2004 Athens Olympic flame was lit in Greece’s ancient sanctuary, indicating that the torch relay started.The torch relay, established at the Berlin Games in 1936, will for the first time visit all five continents

  14. Turbulent Oxygen Flames in Type Ia Supernovae

    CERN Document Server

    Aspden, A J; Woosley, S E; 10.1088/0004-637X/730/2/144

    2011-01-01

    In previous studies, we examined turbulence-flame interactions in carbon-burning thermonuclear flames in Type Ia supernovae. In this study, we consider turbulence-flame interactions in the trailing oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen flame. Scaling arguments analogous to the carbon flames are presented and then compared against three-dimensional simulations for a range of Damk\\"ohler numbers ($\\Da_{16}$) at a fixed Karlovitz number. The simulations suggest that turbulence does not significantly affect the oxygen flame when $\\Da_{16}1$, turbulence enhances heat transfer and drives the propagation of a flame that is {\\em narrower} than the corresponding inductive flame would be. Furthermore, burning under these conditions appears to occur as part of a combined carbon-oxygen turbulent flame with complex compound structure. The simulations do not ...

  15. Sooting limit of a double diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Michio; Kobayashi, Hideaki; Nishiki, Nobuhiko (Tohoku Univ., Faculty of Engineering, Sendai, Japan Sony Corp., Tokyo (Japan))

    1989-07-25

    The soot exhaust from the flame of pot type burner for the domestic heating use was basically studied. Inside a fuel (secondary) diffusion flame in air atmosphere, which was an ordinary diffusion flame, an air (primary) diffusion flame in fuel atmosphere, which was reverse in relation between them, was formed by using propane fuel. For the sooting limit of that double diffusion flame, the effect of primary air ratio, distance between primary and secondary flames, thermal condition on wall surface and flow stretch being investigated by use of three different types of burner, the double diffusion flame method was studied in effectiveness on the soot exhaust and known to heighten the control against it, which heightening however depended in degree upon the locative relation between both the flames. The control was more heightened with a more lengthening in the secondary flame. Because the sooting limit is governed by the secondary flame temperature, the establishment of condition so as to heighten the flame temperature is necessary for the effective control against the soot exhaust. 11 refs., 11 figs.

  16. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  17. Flame Reconstruction Using Synthetic Aperture Imaging

    CERN Document Server

    Murray, Preston; Tree, Dale; Truscott, Tadd

    2011-01-01

    Flames can be formed by burning methane (CH4). When oxygen is scarce, carbon particles nucleate into solid particles called soot. These particles emit photons, making the flame yellow. Later, methane is pre-mixed with air forming a blue flame; burning more efficiently, providing less soot and light. Imaging flames and knowing their temperature are vital to maximizing efficiency and validating numerical models. Most temperature probes disrupt the flame and create differences leading to an inaccurate measurement of the flame temperature. We seek to image the flame in three dimensions using synthetic aperture imaging. This technique has already successfully measured velocity fields of a vortex ring [1]. Synthetic aperture imaging is a technique that views one scene from multiple cameras set at different angles, allowing some cameras to view objects that are obscured by others. As the resulting images are overlapped different depths of the scene come into and out of focus, known as focal planes, similar to tomogr...

  18. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  19. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue

    2004-01-01

    created in the flame, the monomers will nucleate homogeneously and agglomerate to form aggregates of large ensembles of monomers. The aggregates will then sinter together to form single particles. If the flame temperature and the residence time are sufficiently high, the formed oxide particles...... will be spherical due to the fast coalescence at the high temperatures in the flame. The primary product from the flame pyrolysis is an aerosol of metal oxide nanoparticles. The aerosol gas from the flame can be utilized for several different purposes, depending on the precursors fed to the flame. With the present...... technology it is possible to make supported catalysts, composite metal oxides, catalytically active surfaces, and porous ceramic membranes. Membrane layers can be formed by using a porous substrate tube (or surface) as a nano-particle filter. The aerosol gas from the flame is led through a porous substrate...

  20. Patient, carer and professional perspectives on barriers and facilitators to quality care in advanced heart failure.

    Directory of Open Access Journals (Sweden)

    Susan Browne

    Full Text Available BACKGROUND: Those with advanced heart failure (HF experience high levels of morbidity and mortality, similar to common cancers. However, there remains evidence of inequity of access to palliative care services compared to people with cancer. This study examines patient, carer, and professional perspectives on current management of advanced HF and barriers and facilitators to improved care. METHODS: Qualitative study involving semi-structured interviews and focus groups with advanced HF patients (n = 30, carers (n = 20, and professionals (n = 65. Data analysed using Normalisation Process Theory (NPT as the underpinning conceptual framework. FINDINGS: Uncertainty is ubiquitous in accounts from advanced HF patients and their caregivers. This uncertainty relates to understanding of the implications of their diagnosis, appropriate treatments, and when and how to seek effective help. Health professionals agree this is a major problem but feel they lack knowledge, opportunities, or adequate support to improve the situation. Fragmented care with lack of coordination and poor communication makes life difficult. Poor understanding of the condition extends to the wider circle of carers and means that requests for help may not be perceived as legitimate, and those with advanced HF are not prioritised for social and financial supports. Patient and caregiver accounts of emergency care are uniformly poor. Managing polypharmacy and enduring concomitant side effects is a major burden, and the potential for rationalisation exists. This study has potential limitations because it was undertaken within a single geographical location within the United Kingdom. CONCLUSIONS: Little progress is being made to improve care experiences for those with advanced HF. Even in the terminal stages, patients and caregivers are heavily and unnecessarily burdened by health care services that are poorly coordinated and offer fragmented care. There is evidence that these poor

  1. Editorial: Advances in healthcare provider and patient training to improve the quality and safety of patient care

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Borycki

    2015-09-01

    Full Text Available This special issue of the Knowledge Management & E-Learning: An International Journal is dedicated to describing “Advances in Healthcare Provider and Patient Training to Improve the Quality and Safety of Patient Care.” Patient safety is an important and fundamental requirement of ensuring the quality of patient care. Training and education has been identified as a key to improving healthcare provider patient safety competencies especially when working with new technologies such as electronic health records and mobile health applications. Such technologies can be harnessed to improve patient safety; however, if not used properly they can negatively impact on patient safety. In this issue we focus on advances in training that can improve patient safety and the optimal use of new technologies in healthcare. For example, use of clinical simulations and online computer based training can be employed both to facilitate learning about new clinical discoveries as well as to integrate technology into day to day healthcare practices. In this issue we are publishing papers that describe advances in healthcare provider and patient training to improve patient safety as it relates to the use of educational technologies, health information technology and on-line health resources. In addition, in the special issue we describe new approaches to training and patient safety including, online communities, clinical simulations, on-the-job training, computer based training and health information systems that educate about and support safer patient care in real-time (i.e. when health professionals are providing care to patients. These educational and technological initiatives can be aimed at health professionals (i.e. students and those who are currently working in the field. The outcomes of this work are significant as they lead to safer care for patients and their family members. The issue has both theoretical and applied papers that describe advances in patient

  2. Comparison of Quality Oncology Practice Initiative (QOPI) Measure Adherence Between Oncology Fellows, Advanced Practice Providers, and Attending Physicians.

    Science.gov (United States)

    Zhu, Jason; Zhang, Tian; Shah, Radhika; Kamal, Arif H; Kelley, Michael J

    2015-12-01

    Quality improvement measures are uniformly applied to all oncology providers, regardless of their roles. Little is known about differences in adherence to these measures between oncology fellows, advance practice providers (APP), and attending physicians. We investigated conformance across Quality Oncology Practice Initiative (QOPI) measures for oncology fellows, advance practice providers, and attending physicians at the Durham Veterans Affairs Medical Center (DVAMC). Using data collected from the Spring 2012 and 2013 QOPI cycles, we abstracted charts of patients and separated them based on their primary provider. Descriptive statistics and the chi-square test were calculated for each QOPI measure between fellows, advanced practice providers (APPs), and attending physicians. A total of 169 patients were reviewed. Of these, 31 patients had a fellow, 39 had an APP, and 99 had an attending as their primary oncology provider. Fellows and attending physicians performed similarly on 90 of 94 QOPI metrics. High-performing metrics included several core QOPI measures including documenting consent for chemotherapy, recommending adjuvant chemotherapy when appropriate, and prescribing serotonin antagonists when prescribing emetogenic chemotherapies. Low-performing metrics included documentation of treatment summary and taking action to address problems with emotional well-being by the second office visit. Attendings documented the plan for oral chemotherapy more often (92 vs. 63%, P=0.049). However, after the chart audit, we found that fellows actually documented the plan for oral chemotherapy 88% of the time (p=0.73). APPs and attendings performed similarly on 88 of 90 QOPI measures. The quality of oncology care tends to be similar between attendings and fellows overall; some of the significant differences do not remain significant after a second manual chart review, highlighting that the use of manual data collection for QOPI analysis is an imperfect system, and there may

  3. Determinants of quality of life in advanced kidney disease: time to screen?

    Science.gov (United States)

    Iyasere, Osasuyi; Brown, Edwina A

    2014-06-01

    The incidence of older patients with end stage renal disease is on the increase. This group of patients have multiple comorbidities and a high symptom burden. Dialysis can be life sustaining for such patients. But it is often at the expense of quality of life, which starts to decline early in the pathway of chronic kidney disease. Quality of life is also important to patients and is a major determinant in decisions regarding renal replacement. As a result, validated patient-reported outcome measures are increasingly used to assess quality of life in renal patients. Cognitive impairment, depression, malnutrition and function decline are non-renal determinants of quality of life and mortality. They are under-recognised in the renal population but are potentially treatable, if not preventable. This review article discusses aetio-pathogenesis, prevalence and impact of these four outcomes, advocating regular screening for early identification and management.

  4. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  5. In-flight Quality and Accuracy of Attitude Measurements from the CHAMP Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz;

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute...

  6. Advanced Methods for Air Distribution in Occupied Spaces for Reduced Risk from Air-Borne Diseases and Improved Air Quality

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov

    The current Ph.D. thesis deals with new advanced methods of air distribution in occupied places aimed to improve the inhaled air quality and to reduce the risk from airborne cross infection among the occupants. The existing ventilation strategies nowadays are not able to provide enough clean air...... pathogens. The threat from possible bio-terrorist attacks in the last decade makes the topic quite important. So far the existing methods of indoor air cleaning rely on several basic strategies: dilution, filtration and Ultra Violet Germicidal Irradiation (UVGI). Dilution utilizes ventilation at high flow...... rates to reduce the concentration of pollutants/pathogens to levels that would not deteriorate the air quality or be harmful for the occupants. It is also connected to certain energy limitation issues. Filtration and UVGI are efficient in protecting occupants provided the sources are located outdoors...

  7. Palliative Care Improves Survival, Quality of Life in Advanced Lung Cancer | Division of Cancer Prevention

    Science.gov (United States)

    Results from the first randomized clinical trial of its kind have revealed a surprising and welcome benefit of early palliative care for patients with advanced lung cancer—longer median survival. Although several researchers said that the finding needs to be confirmed in other trials of patients with other cancer types, they were cautiously optimistic that the trial results could influence oncologists’ perceptions and use of palliative care. |

  8. Effects on Semiconductor Optical Amplifier Gain Quality for Applications in Advanced All-optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Riyam A. Johni

    2014-04-01

    Full Text Available Semiconductor optical amplifiers are strong candidates to replace traditional erbium-doped-fibre-amplifiers in future all-optical networks by virtue of their proven functional capabilities, in addition to gain. They are also smaller, cheaper and easier to integrate than fibre amplifiers. This study summarizes the gain quality of the semiconductor optical amplifier with varying effects such as input power, bias current and wavelength and data rate. The results reported herein show high quality gain, coupled with accept ably low noise figure values.

  9. CONTROL OF POLLUTANT EMISSIONS IN NATURAL GAS DIFFUSION FLAMES BY USING CASCADE BURNERS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Ala Qubbaj

    2001-12-30

    The goal of this exploratory research project is to control the pollutant emissions of diffusion flames by modifying the air infusion rate into the flame. The modification was achieved by installing a cascade of venturis around the burning gas jet. The basic idea behind this technique is controlling the stoichiometry of the flame through changing the flow dynamics and rates of mixing in the combustion zone with a set of venturis surrounding the flame. A natural gas jet diffusion flame at burner-exit Reynolds number of 5100 was examined with a set of venturis of specific sizes and spacing arrangement. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The instantaneous chemistry model was used as the reaction model. The concentration of NO was determined through CFD-POST, a post processing utility program for CFD-ACE+. The numerical results showed that, in the near-burner, midflame and far-burner regions, the venturi-cascaded flame had lower temperature by an average of 13%, 19% and 17%, respectively, and lower CO{sub 2} concentration by 35%, 37% and 32%, respectively, than the baseline flame. An opposite trend was noticed for O{sub 2} concentration; the cascaded flame has higher O{sub 2} concentration by 7%, 26% and 44%, in average values, in the near-burner, mid-flame and far-burner regions, respectively, than in the baseline case. The results also showed that, in the near-burner, mid-flame, and far-burner regions, the venturi-cascaded flame has lower NO concentrations by 89%, 70% and 70%, in average values, respectively, compared to the baseline case. The numerical results substantiate that venturi-cascading is a feasible method for controlling the pollutant emissions of a burning gas jet. In addition, the numerical results were useful to understand the thermo-chemical processes involved. The results showed that the prompt-NO mechanism

  10. Numerical study of effects of the intermediates and initial conditions on flame propagation in a real homogeneous charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Zhang Meng

    2014-01-01

    Full Text Available The premixed flame speed under a small four stock homogeneous charge compression ignition engine, fueled with dimethyl ether, was investigated. The effects of intermediate species, initial temperature, initial pressure, exhaust gas recirculation, and equivalence ratio were studied and compared to the baseline condition. Results show that, under all conditions, the flame speeds calculated without intermediates are higher than those which took the intermediates in consideration. Flame speeds increase with the increase of crank angle. The increase rate is divided into three regions and the increase rate is obviously high in the event of low temperature heat release. Initial temperature and pressure only affect the crank angle of flame speed, but have little influence on its value. Equivalence ratio and exhaust gas recirculation ratio do not only distinctly decrease the flame speed, but also advance the crank angle of flame speed.

  11. Quality of life after hyperthermic isolated limb perfusion for locally advanced extremity soft tissue sarcoma

    NARCIS (Netherlands)

    Thijssens, KMJ; Hoekstra-Weebers, JEHM; van Ginkel, RJ; Hoekstra, HJ

    2006-01-01

    Background: Quality of life (QoL) and posttraumatic stress symptoms (PTSS) were studied in patients with soft tissue sarcoma (STS) of the extremities treated with isolated limb perfusion and delayed resection, with or without adjuvant irradiation. Methods: Forty-one patients received a questionnaire

  12. Leveraging effective clinical registries to advance medical care quality and transparency.

    Science.gov (United States)

    Klaiman, Tamar; Pracilio, Valerie; Kimberly, Laura; Cecil, Kate; Legnini, Mark

    2014-04-01

    Policy makers, payers, and the general public are increasingly focused on health care quality improvement. Measuring quality requires robust data systems that collect data over time, can be integrated with other systems, and can be analyzed easily for trends. The goal of this project was to study effective tools and strategies in the design and use of clinical registries with the potential to facilitate quality improvement, value-based purchasing, and public reporting on the quality of care. The research team worked with an expert panel to define characteristics of effectiveness, and studied examples of effective registries in cancer, cardiovascular care, maternity, and joint replacement. The research team found that effective registries were successful in 1 or more of 6 key areas: data standardization, transparency, accuracy/completeness of data, participation by providers, financial sustainability, and/or providing feedback to providers. The findings from this work can assist registry designers, sponsors, and researchers in implementing strategies to increase the use of clinical registries to improve patient care and outcomes.

  13. Flame Propagation Through Concentration Gradient

    Institute of Scientific and Technical Information of China (English)

    JunyaIINO; MitsuakiTANABE; 等

    2000-01-01

    The experiment was carried out in homogeneous propane-air mixture and in several concentration gradient of mixture.Igniter is put on the upper side of the combustion chamber,In concentration gradient experiment.ixture was ignited from lean side.An experimental study was conducted in a combustion chamber.The combustion chamber has glass windows for optical measurements at any side.For the measurement of distribution of fuel concentration,infraed absorption method using 3.39μm He-Ne laser was used,and for the observation of proagating flams,Schlieren method was employed.As a measurment result of flame propagation velocity and flammable limit,for a mixture of an identical local equivalence ratio.flame propagation velocity in concentration gradient is faster than that in homogeneous mixture,and rich flammable limit in concentration gradient shows a tendency to be higher than that in homogeneous mixture.

  14. The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure

    CERN Document Server

    Poludnenko, Alexei Y; 10.1016/j.combustflame.2009.11.018

    2011-01-01

    We study the dynamics and properties of a turbulent flame, formed in the presence of subsonic, high-speed, homogeneous, isotropic Kolmogorov-type turbulence in an unconfined system. Direct numerical simulations are performed with Athena-RFX, a massively parallel, fully compressible, high-order, dimensionally unsplit, reactive-flow code. A simplified reaction-diffusion model represents a stoichiometric H2-air mixture. The system being modeled represents turbulent combustion with the Damkohler number Da = 0.05 and with the turbulent velocity at the energy injection scale 30 times larger than the laminar flame speed. The simulations show that flame interaction with high-speed turbulence forms a steadily propagating turbulent flame with a flame brush width approximately twice the energy injection scale and a speed four times the laminar flame speed. A method for reconstructing the internal flame structure is described and used to show that the turbulent flame consists of tightly folded flamelets. The reaction zon...

  15. Heat and mass transfer in flames

    Science.gov (United States)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  16. Advanced practice quality improvement project: how to influence physician radiologic imaging ordering behavior.

    Science.gov (United States)

    Durand, Daniel J; Kohli, Marc D

    2014-12-01

    With growing pressure on the health care sector to improve quality and reduce costs, the stakes associated with imaging appropriateness have never been higher. Although radiologists historically functioned as imaging gatekeepers, this role has been deprioritized in the recent past. This article discusses several potential practice quality improvement projects that can help radiologists regain their role as valued consultants and integral members of the care team. By applying the PDSA framework, radiologists can incrementally optimize their practice's consultation service. While it can be expected that different strategies will gain traction in different environments, it is our hope that the methodology described here will prove useful to most or all practices as a starting point. In addition, we discuss several other influencing techniques that extend beyond traditional consultation services.

  17. Flame Suppression Agent, System and Uses

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  18. [Advances in psychosocial interventions on quality of life of cancer survivors].

    Science.gov (United States)

    Chen, Xuefen; Wang, Jiwei; Gong, Xiaohuan; Yu, Jinming

    2015-02-01

    In recent years, there has been increasing recognition of the importance of psychosocial interventions' studies on quality of life in cancer survivors because of improving cancer survival rate. This paper was an integrative literatures review of various psychosocial interventions including cognitive behavioral therapy, group-based supportive therapy, counseling or psychotherapy, education or psychoeducation and music therapy et al, and analyzing the complexity of psychosocial interventions' RCTs in oncology and the current characteristic of these studies in China.

  19. Pole solutions for flame front propagation

    CERN Document Server

    Kupervasser, Oleg

    2015-01-01

    This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.

  20. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  1. BALANCED SCORECARD AS AN ADVANCED MANAGEMENT CONCEPT WITHIN THE INTEGRATED QUALITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Stevan Zivojinovic

    2008-03-01

    Full Text Available The significance of >Integratedquality management< (IQM model, originating form St.Gallen-model, is reflected in the need for synergic application of new and advanced concepts of management theory and practise. Balanced score card (BSC within IQM model becomes a catalyst of business success for a modern organization by focusing on organizational variables-business strategy, organization structure and corporate culture. BSC is the leading system of performance tracking and strategy implementation, consistent with other management concepts and methods for managing process improvement. Through BSC, IQM processes' activities correlate with organization business results. BSC management processes enable integration of all decision-making levels, from institutional via strategic to operative, in the process starting from planing, i.e. formulating and implementation of strategy, to feed back by performance measurement and control.

  2. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine.

    Science.gov (United States)

    Xiao, Wenming; Wu, Leihong; Yavas, Gokhan; Simonyan, Vahan; Ning, Baitang; Hong, Huixiao

    2016-04-22

    Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging "third generation sequencing" technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune-response, tailoring

  3. Content and quality of websites supporting self-management of chronic breathlessness in advanced illness: a systematic review.

    Science.gov (United States)

    Luckett, Tim; Disler, Rebecca; Hosie, Annmarie; Johnson, Miriam; Davidson, Patricia; Currow, David; Sumah, Anthony; Phillips, Jane

    2016-05-26

    Chronic breathlessness is a common, burdensome and distressing symptom in many advanced chronic illnesses. Self-management strategies are essential to optimise treatment, daily functioning and emotional coping. People with chronic illness commonly search the internet for advice on self-management. A review was undertaken in June 2015 to describe the content and quality of online advice on breathlessness self-management, to highlight under-served areas and to identify any unsafe content. Google was searched from Sydney, Australia, using the five most common search terms for breathlessness identified by Google Trends. We also hand-searched the websites of national associations. Websites were included if they were freely available in English and provided practical advice on self-management. Website quality was assessed using the American Medical Association Benchmarks. Readability was assessed using the Flesch-Kincaid grades, with grade 8 considered the maximum acceptable for enabling access. Ninety-one web pages from 44 websites met the inclusion criteria, including 14 national association websites not returned by Google searches. Most websites were generated in the USA (n=28, 64%) and focused on breathing techniques (n=38, 86%) and chronic obstructive pulmonary disease (n=27, 61%). No websites were found to offer unsafe advice. Adherence to quality benchmarks ranged from 9% for disclosure to 77% for currency. Fifteen (54%) of 28 written websites required grade ⩾9 reading level. Future development should focus on advice and tools to support goal setting, problem solving and monitoring of breathlessness. National associations are encouraged to improve website visibility and comply with standards for quality and readability.

  4. Advances in the meta-analysis of heterogeneous clinical trials II: The quality effects model.

    Science.gov (United States)

    Doi, Suhail A R; Barendregt, Jan J; Khan, Shahjahan; Thalib, Lukman; Williams, Gail M

    2015-11-01

    This article examines the performance of the updated quality effects (QE) estimator for meta-analysis of heterogeneous studies. It is shown that this approach leads to a decreased mean squared error (MSE) of the estimator while maintaining the nominal level of coverage probability of the confidence interval. Extensive simulation studies confirm that this approach leads to the maintenance of the correct coverage probability of the confidence interval, regardless of the level of heterogeneity, as well as a lower observed variance compared to the random effects (RE) model. The QE model is robust to subjectivity in quality assessment down to completely random entry, in which case its MSE equals that of the RE estimator. When the proposed QE method is applied to a meta-analysis of magnesium for myocardial infarction data, the pooled mortality odds ratio (OR) becomes 0.81 (95% CI 0.61-1.08) which favors the larger studies but also reflects the increased uncertainty around the pooled estimate. In comparison, under the RE model, the pooled mortality OR is 0.71 (95% CI 0.57-0.89) which is less conservative than that of the QE results. The new estimation method has been implemented into the free meta-analysis software MetaXL which allows comparison of alternative estimators and can be downloaded from www.epigear.com.

  5. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  6. Quality of life assessment in advanced cancer patients treated at home, an inpatient unit, and a day care center

    Directory of Open Access Journals (Sweden)

    Leppert W

    2014-05-01

    Full Text Available Wojciech Leppert,1 Mikolaj Majkowicz,2 Maria Forycka,1 Eleonora Mess,3 Agata Zdun-Ryzewska2 1Department of Palliative Medicine, Poznan University of Medical Sciences, Poznan, Poland; 2Department of Quality of Life Research, Gdansk Medical University, Gdansk, Poland; 3Palliative Care Nursing Department, Wroclaw Medical University, Wroclaw, Poland Aim of the study: To assess quality of life (QoL in cancer patients treated at home, at an in-patient palliative care unit (PCU, and at a day care center (DCC. Patients and methods: QoL was assessed in advanced cancer patients at baseline and after 7 days of symptomatic treatment using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 15-Palliative Care (EORTC QLQ-C15-PAL, the Edmonton Symptom Assessment System (ESAS, and the Karnofsky Performance Status (KPS scale. Results: A total of 129 patients completed the study, with 51 patients treated at home, 51 patients treated at the PCU, and 27 patients at DCC. In the EORTC QLQ-C15-PAL, improvement in functional and symptom scales was observed except in physical functioning and fatigue levels; patients at DCC had a better physical functioning, global QoL, appetite, and fatigue levels. In the ESAS, improvement in all items was found except for drowsiness levels, which was stable in patients treated at DCC and deteriorated in home and PCU patients. Higher activity, better appetite and well-being, and less drowsiness were observed in patients treated at DCC. KPS was better in DCC patients compared to those treated at home and at the PCU; the latter group deteriorated. Conclusions: QoL improved in all patient groups, with better results in DCC patients and similar scores in those staying at home and at the PCU. Along with clinical assessment, baseline age, KPS, physical and emotional functioning may be considered when assigning patients to care at a DCC, PCU, or at home. Keywords: oncology, patient care

  7. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    Directory of Open Access Journals (Sweden)

    Yoshikazu Kobayashi

    2010-04-01

    Full Text Available Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets.

  8. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: a review.

    Science.gov (United States)

    Cheng, Jun-Hu; Sun, Da-Wen; Zeng, Xin-An; Liu, Dan

    2015-01-01

    The freshness quality of fish plays an important role in human health and the acceptance of consumers as well as in international fishery trade. Recently, with food safety becoming a critical issue of great concern in the world, determination and evaluation of fish freshness is much more significant in research and development. This review renovates and concentrates recent advances of evaluating methods for fish freshness as affected by preharvest and postharvest factors and highlights the determination methods for fish freshness including sensory evaluation, microbial inspection, chemical measurements of moisture content, volatile compounds, protein changes, lipid oxidation, and adenosine triphosphate (ATP) decomposition (K value), physical measurements, and foreign material contamination detection. Moreover, the advantages and disadvantages of these methods and techniques are compared and discussed and some viewpoints about the current work and future trends are also presented.

  9. Assessing the quality of a deliberative democracy mini-public event about advanced biofuel production and development in Canada.

    Science.gov (United States)

    Longstaff, Holly; Secko, David M

    2016-02-01

    The importance of evaluating deliberative public engagement events is well recognized, but such activities are rarely conducted for a variety of theoretical, political and practical reasons. In this article, we provide an assessment of the criteria presented in the 2008 National Research Council report on Public Participation in Environmental Assessment and Decision Making (NRC report) as explicit indicators of quality for the 2012 'Advanced Biofuels' deliberative democracy event. The National Research Council's criteria were selected to evaluate this event because they are decision oriented, are the products of an exhaustive review of similar past events, are intended specifically for environmental processes and encompass many of the criteria presented in other evaluation frameworks. It is our hope that the results of our study may encourage others to employ and assess the National Research Council's criteria as a generalizable benchmark that may justifiably be used in forthcoming deliberative events exploring different topics with different audiences.

  10. Unsteady planar diffusion flames: Ignition, travel, burnout

    Science.gov (United States)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  11. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Advanced Cell Therapy Applications

    Science.gov (United States)

    Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter

    2015-09-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  12. Ultra Stable, Industrial Green Tailored Pulse Fiber Laser with Diffraction-limited Beam Quality for Advanced Micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Deladurantaye, P; Roy, V; Desbiens, L; Drolet, M; Taillon, Y; Galarneau, P, E-mail: pascal.deladurantaye@ino.ca [INO, 2740 rue Einstein, Quebec City, QC, G1P 4S4 (Canada)

    2011-02-01

    We report on a novel pulsed fiber laser platform providing pulse shaping agility at high repetition rates and at a wavelength of 532 nm. The oscillator is based on the direct modulation of a seed laser diode followed by a chain of fiber amplifiers. Advanced Large Mode Area (LMA) fiber designs as well as proprietary techniques to mitigate non-linear effects enable output energy per pulse up to 100 {mu}J at 1064 nm with diffraction-limited beam quality and narrow line widths suitable for efficient frequency conversion. Ultra stable pulses with tailored pulse shapes were demonstrated in the green region of the spectrum at repetition rates higher than 200 kHz. Pulse durations between 2.5 ns and 640 ns are available, as well as pulse to pulse dynamic shape selection at repetition rates up to 1 MHz. The pulse energy stability at 532 nm is better than {+-} 1.5%, 3{sigma}, over 10 000 pulses. Excellent beam characteristics were obtained. The M{sup 2} parameter is lower than 1.05, the beam waist astigmatism and beam waist asymmetry are below 10% and below 8% respectively, with high stability over time. We foresee that the small spot size, high repetition rate and pulse tailoring capability of this platform will provide advantages to practitioners who are developing novel, advanced processes in many industrially important applications.

  13. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip for Advanced Cell Therapy Applications

    Directory of Open Access Journals (Sweden)

    David eWartmann

    2015-09-01

    Full Text Available The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  14. Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

    KAUST Repository

    Kedia, K.S.

    2011-01-01

    In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  15. Numerical Study on Laminar Burning Velocity and Flame Stability of Premixed Methane/Ethylene/Air Flames

    Institute of Scientific and Technical Information of China (English)

    陈珊珊; 蒋勇; 邱榕; 安江涛

    2012-01-01

    A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.

  16. Monitoring Atmospheric Transmission with FLAME

    Science.gov (United States)

    Zimmer, Peter C.; McGraw, J. T.; Zirzow, D. C.; Koppa, M.; Buttler-Pena, K.

    2014-01-01

    Calibration of ground-based observations in the optical and near-infrared requires precise and accurate understanding of atmospheric transmission, at least as precise and accurate as that required for the spectral energy distributions of science targets. Traditionally this has used the Langley extrapolation method, observing targets and calibrators over a range of airmass and extrapolating to zero airmass by assuming a plane-parallel homogeneous atmosphere. The technique we present uses direct measurements of the atmosphere to derive the transmission along the line of sight to science targets at a few well-chosen wavelengths. The Facility Lidar Atmospheric Monitor of Extinction (FLAME) is a 0.5m diameter three Nd:YAG wavelength (355nm, 532nm & 1064nm) elastic backscatter lidar system. Laser pulses are transmitted into the atmosphere in the direction of the science target. Photons scattered back toward the receiver by molecules, aerosols and clouds are collected and time-gated so that the backscatter intensity is measured as a function of range to the scattering volume. The system is housed in a mobile calibration lab, which also contains auxiliary instrumentation to provide a NIST traceable calibration of the transmitted laser power and receiver efficiency. FLAME was designed to create a million photons per minute signal from the middle stratosphere, where the atmosphere is relatively calm and dominated by molecules of the well-mixed atmosphere (O2 & N2). Routine radiosonde measurements of the density at these altitudes constrain the scattering efficiency in this region and, combined with calibration of the transmitter and receiver, the only remaining unknown quantity is the two-way transmission to the stratosphere. These measurements can inform atmospheric transmission models to better understand the complex and ever-changing observatory radiative transfer environment. FLAME is currently under active development and we present some of our ongoing measurements.

  17. Flame retardant cotton based highloft nonwovens

    Science.gov (United States)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  18. Flame retardant cotton barrier nonwovens for mattresses

    Science.gov (United States)

    According to regulation CPSC 16 CFR 1633, every new residential mattress sold in the United States since July 2007 must resist ignition by open flame. An environmentally benign “green”, inexpensive way to meet this regulation is to use a low-cost flame retardant (FR) barrier fabric. In this study, a...

  19. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  20. Flaming in CMC: Prometheus' Fire or Inferno's?

    Science.gov (United States)

    Abrams, Zsuzsanna Ittzes

    2003-01-01

    Reports on a descriptive study with 75 intermediate college learners of German participating in two sessions of synchronous computer mediated communication during the course of a semester that investigated students' flaming behavior--aggressive interpersonal language and rude behavior. Shows that not only is flaming a very infrequent occurrence,…

  1. Physical and Chemical Processing in Flames

    Science.gov (United States)

    2013-08-12

    than the classical Troe formula, and the development of a Chemical Explosive Mode Analysis ( CEMA ) computation algorithm that allows on-the-fly...6-311++G(d,p) method. 3. Flame Stabilization and Chemical Explosive Mode Analysis ( CEMA ) Flame stabilization is essential in the understanding of

  2. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ RTE Arlington, Virginia 22203 Air Force Research...two-year subject program, conducted through tight coupling between experiment, theory and computation, and reported in high impact journal articles ...The thrust for this program constitutes of three major areas of turbulent combustion: (1) Flame surface statistics , (2) Flame-turbulence interaction

  3. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables.

    Science.gov (United States)

    Ghidelli, Christian; Pérez-Gago, María B

    2016-07-28

    Processing of fruits and vegetables generates physiological stresses in the still living cut tissue, leading to quality deterioration and shorter shelf-life as compared with fresh intact produces. Several strategies can be implemented with the aim to reduce the rate of deterioration of fresh-cut commodities. Such strategies include low temperature maintenance from harvest to retail and the application of physical and chemical treatments such as modified atmosphere packaging (MAP) with low O2 and high CO2 levels and antioxidant dips. Other technologies such as edible coatings with natural additives, new generation of coatings using nanotechnological solutions such as nanoparticles, nanoencapsulation, and multilayered systems, and non-conventional atmospheres such as the use of pressurized inert/noble gases and high levels of O2 have gained a lot of interest as a possibility to extend the shelf life of minimally processed fruits and vegetables. However, the high perishability of these products challenges in many cases their marketability by not achieving sufficient shelf life to survive the distribution system, requiring the combination of treatments to assure safety and quality. This review reports the recent advances in the use of MAP, edible coatings, and the combined effect of both technologies to extend the shelf life of fresh-cut fruits and vegetables.

  4. Edge Diffusion Flame Propagation and Stabilization Studied

    Science.gov (United States)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  5. Interaction Between Flames and Electric Fields Studied

    Science.gov (United States)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  6. Advances in nutrition support for quality of life in HIV+/AIDS.

    Science.gov (United States)

    Suttajit, Maitree

    2007-01-01

    Globally, acquired immunodeficiency syndrome (AIDS) is an epidemic, severe and fatal disease. Along with the etiological factors of human immunodeficiency virus infection (HIV+) and decreased immunity, there are a number of other risk factors including opportunistic infection, malnutrition, wasting syndrome, and oxidative stress. The nutritional problems have been shown to be significant and contribute to health and death in HIV+/AIDS patients. Weight loss, lean tissue depletion, lipoatrophy, loss of appetite, diarrhea, and the hypermetabolic state each increase risk of death. The role of nutrition and how oxidative stress is involved in the pathogenesis of HIV+ leading to AIDS is reviewed. Studies consistently show that serum antioxidant vitamins and minerals decrease while oxidative stress increases during AIDS progression. The optimization of nutritional status, intervention with foods and supplements, including nutrients and other bio-active food components, are needed to maintain the immune system. Various food components may be recommended to reduce the incidence and severity of infectious illnesses by forms of bio-protection which include reduced oxidative stress due to reactive oxygen species which stimulate HIV replication and AIDS progression. Probiotics or lactic acid bacteria and prebiotics are sometimes given on the presumed basis that they help maintain integrity of mucosal surfaces, improve antibody responses and increase white blood cell production. People with HIV+/AIDS can be informed about the basic concepts of optimal nutrition by identifying key foods and nutrients, along with lifestyle changes, that contribute to a strengthened immune system. Moreover, nutritional management, counseling and education should be beneficial to the quality and extension of life in AIDS.

  7. Cool Sooting Flames of Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    Z.A. MANSUROV

    2001-01-01

    This paper presents the study of polycyclic aromatic hydrocarbons (PAH) and paramagnetism of soot particles sampled from cool sooting flames of methane and propane in a separately-heated two-sectional reactor under atmospheric pressure at the reactor temperatures of 670-1170 K. The temperature profiles of the flames were studied. The sampling was carried out with a quartz sampler and the samples were frozen with liquid nitrogen. A number of polyaromatic hydrocarbons such as pyrene, fluoranthene, coronene, anthanthrene, 1,12-benzperylene,were identified by spectroscopic methods in the extract of soot. The processes of soot formation at methaneoxygen mixture combustion in the electric field with applied potential changed from 0 to 2,2 kV at different polarity of electrodes have been investigated. It has been stated that at the electrical field application, an increase in soot particle sizes and soot yield occurs; besides, at the application of the field, speeding up the positively charged particles, the interplanar distance decreases. On the basis of investigation of soot particles paramagnetism, it was shown that initially soot particles have high carcinogetic activity and pollute the environment owing to a rapid decrease of the number of these radical centers. The reduction of the radical concentration is connected with radical recombination on soot.

  8. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  9. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  10. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    Science.gov (United States)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  11. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca Egg

    2002-09-30

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  12. Variability, heritability and genetic advance in some agronomic and forage quality characters of spring triticale in western Canada.

    Science.gov (United States)

    Aljarrah, Mazen; Oatway, Lori; Albers, Susan; Bergen, Colin

    2014-01-01

    The aim of this study was to estimate variability, broad sense heritability, and genetic advance for dry matter yield (DMY), days to anthesis (ANTH), plant height (HT), in-vitro fiber digestibility-30h (IVFD), lignin (LIGN), starch (STAR %), crude protein content (CP %), acid detergent fiber (ADF) and neutral detergent fiber (NDF) in spring triticale genotypes. Eighteen genotypes were tested at the Field Crop Development Centre (FCDC) in Lacombe, Alberta in 2010-2011 and 2011-2012 growing season. The experimental design was randomized complete block design with 3 replicates. Combined analysis of variance was carried out using SAS Enterprise 4.2 statistical package. Heritability was estimated following the variance component method. Simple correlation coefficients were determined among all traits using two years average data. The genotype mean squares were significant (P ≤ 0.05) for DMY, ANTH, HT, IFVD, ADF, NDF, STAR %, LIGN, and CP %. The effect of year was also highly significant on all studied traits. The phenotypic coefficient of variation was higher than the genetic coefficient of variation for all traits, indicating high influence of the environment on these traits. The significant genetic variability and the high heritability combined with high genetic advance of HT, STAR% and ADF in triticale genotypes suggested that selection could be successfully practiced for those traits. Correlation analysis showed significant and positive correlation of DMY with ANTH and HT, indicating that late and tall genotypes are more suitable as a forage type and they tend to produce more biomass yield. However, DMY did not show any significant correlation with the digestibility. IVFD and STAR % were negatively correlated with LIGN. In general, these results indicated that breeding for low lignin and high starch content will improve the digestibility in triticale genotypes. The preliminary results of this study were promising. Further research must include more diverse

  13. Advanced biosensing methodologies developed for evaluating performance quality and safety of emerging biophotonics technologies and medical devices (Conference Presentation)

    Science.gov (United States)

    Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin

    2016-03-01

    Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.

  14. Intraduodenal levodopa-carbidopa intestinal gel infusion improves both motor performance and quality of life in advanced Parkinson's disease.

    Science.gov (United States)

    Chang, Florence C F; Kwan, Vu; van der Poorten, David; Mahant, Neil; Wolfe, Nigel; Ha, Ainhi D; Griffith, Jane M; Tsui, David; Kim, Samuel D; Fung, Victor S C

    2016-03-01

    We report the efficacy and adverse effect profile of intraduodenal levodopa-carbidopa intestinal gel (LCIG) infusion from patients treated in a single Australian movement disorder centre. We conducted an open-label, 12 month prospective study of treatment with LCIG in patients with advanced Parkinson's disease in a single tertiary referral hospital unit specialising in movement disorders. Patients with levodopa-responsive, advanced Parkinson's disease with motor fluctuations despite optimal pharmacological treatment were enrolled and underwent a 16 hour daily infusion of LCIG for 12 months. Fifteen participants completed the trial. The mean (± standard deviation) improvement in Unified Parkinson's Disease Rating Scale part III was 37 ± 11%, mean daily "off" period reduced from 6.3 ± 2 to 1.9 ± 2 hours, total daily "on" time increased from 10.2 ± 3 to 13.7 ± 2 hours, "on" period without dyskinesia increased from 4.5 ± 3 to 7.5 ± 5 hours, and 39-item Parkinson's Disease Questionnaire Summary Index score improved by 32.5 ± 35%. The most common adverse event was reversible peripheral neuropathy secondary to vitamin B12 ± B6 deficiency (40%), local tube problems (40%), and impulse control disorder (ICD) (27%). No patient had stoma bleeding or peritonitis. All patients with ICD had a past psychiatric diagnosis of depression with or without anxiety and a higher daily levodopa intake at 6 and 12 months of LCIG infusion. Intraduodenal LCIG improves motor performance, quality of life and daily "on" period. Prior to and during duodenal LCIG infusion, clinicians should monitor for peripheral neuropathy and vitamin B12 and B6 deficiency, as supplementation can reverse peripheral neuropathy. This trial is registered at Clinicaltrials.gov as CT00335153.

  15. Advances in Electromyogram Signal Classification to Improve the Quality of Life for the Disabled and Aged People

    Directory of Open Access Journals (Sweden)

    M. D.R. Ahsan

    2010-01-01

    Full Text Available Problem statement: The social demands for the Quality Of Life (QOL are increasing with the exponentially expanding silver generation. To improve the QOL of the disabled and elderly people, robotic researchers and biomedical engineers have been trying to combine their techniques into the rehabilitation systems. Various biomedical signals (biosignals acquired from a specialized tissue, organ, or cell system like the nervous system are the driving force for the entire system. Examples of biosignals include Electro-Encephalogram (EEG, Electrooculogram (EOG, Electroneurogram (ENG and (EMG. Approach: Among the biosignals, the research on EMG signal processing and controlling is currently expanding in various directions. EMG signal based research is ongoing for the development of simple, robust, user friendly, efficient interfacing devices/systems for the disabled. The advancement can be observed in the area of robotic devices, prosthesis limb, exoskeleton, wearable computer, I/O for virtual reality games and physical exercise equipments. An EMG signal based graphical controller or interfacing system enables the physically disabled to use word processing programs, other personal computer software and internet. Results: Depending on the application, the acquired and processed signals need to be classified for interpreting into mechanical force or machine/computer command. Conclusion: This study focused on the advances and improvements on different methodologies used for EMG signal classification with their efficiency, flexibility and applications. This review will be beneficial to the EMG signal researchers as a reference and comparison study of EMG classifier. For the development of robust, flexible and efficient applications, this study opened a pathway to the researchers in performing future comparative studies between different EMG classification methods.

  16. Modeling studies of a turbulent pulsed jet flame using LES/PDF

    Science.gov (United States)

    Zhang, Pei; Wang, Haifeng

    2015-11-01

    The combustion field in a pulsed turbulent piloted jet flame is studied using an advanced large eddy simulation (LES) / probability density function (PDF) method. Measurement data with a joint OH-PLIF/OH* chemiluminescence/LDV system are available including the temporal series of the axial velocity and planar OH images. A time-dependent inflow condition is specified based on the measurement data. A direct comparison of the mean and rms velocities from the calculations and from the measurement shows a satisfactory prediction of the flow fields by using the employed modeling methods. The predicted OH mass fractions are compared qualitatively with the measured OH images at selected temporal and spatial locations. The comparison shows a good agreement. Conditional quantities and flame index are extracted from the simulations to examine the bimodal and multi-regime combustion dynamics in the flame. This paper is based upon work supported by the National Science Foundation under Grant No. CBET-1336075.

  17. Structure of a poly(ethylene) opposed flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W.J.; Brown, N.J.; Sawyer, R.F.

    1980-08-01

    Structural measurements were obtained and compared with other investigations of diffusion flames. Departures from the commonly assumed collapsed flame model of laminar diffusion flames were observed in terms of excessive CO concentrations and oxygen penetration into the fuel side of the flame. An upper bound on the importance of oxygen diffusion to the fuel surface and subsequent surface oxidation was placed at 20% of the energy required for fuel pyrolysis, with the remainder of the energy being delivered to the surface from the flame through heat transfer processes. As the oxygen concentration in the oxidizer flow was decreased and extinction conditions approached, the CO/CO/sub 2/ ratio at the flame increased slightly, the oxygen concentration at the luminous flame zone decreased, the flame stand-off distance decreased, and the flame temperature decreased. Radial similarity in the composition and temperature profiles was established experimentally which confirms predictions and greatly simplifies the modeling of the opposed flow diffusion flame.

  18. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  19. Decay in chest compression quality due to fatigue is rare during prolonged advanced life support in a manikin model

    Directory of Open Access Journals (Sweden)

    Bjørshol Conrad A

    2011-08-01

    Full Text Available Abstract Background The aim of this study was to measure chest compression decay during simulated advanced life support (ALS in a cardiac arrest manikin model. Methods 19 paramedic teams, each consisting of three paramedics, performed ALS for 12 minutes with the same paramedic providing all chest compressions. The patient was a resuscitation manikin found in ventricular fibrillation (VF. The first shock terminated the VF and the patient remained in pulseless electrical activity (PEA throughout the scenario. Average chest compression depth and rate was measured each minute for 12 minutes and divided into three groups based on chest compression quality; good (compression depth ≥ 40 mm, compression rate 100-120/minute for each minute of CPR, bad (initial compression depth 120/minute or decay (change from good to bad during the 12 minutes. Changes in no-flow ratio (NFR, defined as the time without chest compressions divided by the total time of the ALS scenario over time was also measured. Results Based on compression depth, 5 (26%, 9 (47% and 5 (26% were good, bad and with decay, respectively. Only one paramedic experienced decay within the first two minutes. Based on compression rate, 6 (32%, 6 (32% and 7 (37% were good, bad and with decay, respectively. NFR was 22% in both the 1-3 and 4-6 minute periods, respectively, but decreased to 14% in the 7-9 minute period (P = 0.002 and to 10% in the 10-12 minute period (P Conclusions In this simulated cardiac arrest manikin study, only half of the providers achieved guideline recommended compression depth during prolonged ALS. Large inter-individual differences in chest compression quality were already present from the initiation of CPR. Chest compression decay and thereby fatigue within the first two minutes was rare.

  20. Systems and methods for controlling flame instability

    KAUST Repository

    Cha, Min Suk

    2016-07-21

    A system (62) for controlling flame instability comprising: a nozzle (66) coupled to a fuel supply line (70), an insulation housing (74) coupled to the nozzle, a combustor (78) coupled to the nozzle via the insulation housing, where the combustor is grounded (80), a pressure sensor (82) coupled to the combustor and configured to detect pressure in the combustor, and an instability controlling assembly coupled to the pressure sensor and to an alternating current power supply (86), where, the instability controlling assembly can control flame instability of a flame in the system based on pressure detected by the pressure sensor.

  1. Aromatics oxidation and soot formation in flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  2. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  3. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    Energy Technology Data Exchange (ETDEWEB)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd, U-3139, Storrs, CT 06269 (United States); King, Galen B. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  4. Quality of life assessment with different radiotherapy schedules in palliative management of advanced carcinoma esophagus: A prospective randomized study

    Directory of Open Access Journals (Sweden)

    Shaveta Mehta

    2008-01-01

    Full Text Available Aim: To investigate the quality of life (QOL of patients with advanced carcinoma esophagus treated with different palliative radiation schedules. Methods: Sixty-two consecutive patients with inoperable, non-metastatic carcinoma of the esophagus were randomly allocated to Arm-A (external radiotherapy 30 Gy/10 fractions + brachytherapy 12 Gy/two sessions, Arm-B (external radiotherapy 30 Gy /10 fractions and Arm-C (external radiotherapy 20Gy /five fractions. The QOL was assessed using the European Organization for Research and Treatment of Cancer questionnaire at presentation, after treatment and at 3 months follow-up. Results: The mean QOL score improved, in arm-A from 38 to 52 after treatment and 56 at 3 months, in arm-B from 30 to 44 after treatment and 55 at 3 months and in arm-C from 24 to 40 after treatment but decreased to 37 at 3 months. Improvement in dysphagia scores at the first follow-up was 46.1% in arm-A, 25.0% in arm-B and 22.6% in arm-C. The difference was maintained at 3 months, with maximum improvement in arm-A (57.6%. No significant differences were found between the three arms with regard to complications and additional procedures needed for relief of dysphagia. Conclusion: In comparison with external radiotherapy alone, external radiotherapy with intraluminal brachytherapy has shown a trend toward better QOL and consistent dysphagia relief without significant difference in adverse effects.

  5. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  6. Changes in and Associations Among Functional Status and Perceived Quality of Life of Patients With Metastatic/Locally Advanced Cancer Receiving Rehabilitation for General Disability.

    Science.gov (United States)

    Sekine, Ryuichi; Ogata, Masami; Uchiyama, Ikuyo; Miyakoshi, Koichi; Uruma, Megumi; Miyashita, Mitsunori; Morita, Tatsuya

    2015-11-01

    The primary aims were to clarify the changes in the functional status and quality of life of patients with metastatic/locally advanced cancer who received rehabilitation therapy. This is a cohort study, and all consecutive patients who received rehabilitation therapy were evaluated before and 2 weeks after. Outcome measures were the Functional Independence Measure (FIM), perceived independence, and overall quality of life (European Organization for Research and Treatment of Cancer C30). A total of 128 patients were included. Although the FIM score significantly decreased, the overall quality of life significantly increased. Even in the patients with deteriorated FIM scores, the overall quality of life was maintained despite a significantly decreased perceived independence. Terminally ill patients with cancer who received a rehabilitation program maintained their overall quality of life despite an objective decline in the physical functional status.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in whole water by continuous liquid-liquid extraction and capillary-column gas chromatography with flame photometric detection

    Science.gov (United States)

    Jha, Virendra K.; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 organophosphate pesticide degradates from natural-water samples is described. Compounds are extracted from water samples with methylene chloride using a continuous liquid-liquid extractor for 6 hours. The solvent is evaporated using heat and a flow of nitrogen to a volume of 1 milliliter and solvent exchanged to ethyl acetate. Extracted compounds are determined by capillary-column gas chromatography with flame photometric detection. Single-operator derived method detection limits in three water-matrix samples ranged from 0.003 to 0.009 microgram per liter. Method performance was validated by spiking all compounds in three different matrices at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of most method compounds spiked in surface-water samples ranged from 54 to 137 percent and those in ground-water samples ranged from 40 to 109 percent for all pesticides. Recoveries in reagent-water samples ranged from 42 to 104 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had variable recovery in all three matrices ranging from 27 to 79 percent. As a result, the detected concentration of O-ethyl-O-methyl-S-propylphosphorothioate in samples is reported in this method with an estimated remark code. Based on the performance issue, two more compounds, disulfoton and ethion monoxon, also will be reported in this method with an estimated remark code. Estimated-value compounds, which are ?E-coded? in the data base, do not meet the performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible.

  8. Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer.

    Science.gov (United States)

    Holmes, Christopher; Gates, James C; Smith, Peter G R

    2014-12-29

    This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.

  9. Theory of DDT in unconfined flames

    CERN Document Server

    Khokhlov, A M; Wheeler, J C; Wheeler, J Craig

    1996-01-01

    This paper outlines a theoretical approach for predicting the onset of detonation in unconfined turbulent flames which is relevant both to problems of terrestrial combustion and to thermonuclear burning in Type Ia supernovae. Two basic assumuptions are made: 1) the gradient mechanism is the inherent mechanism that leads to DDT in unconfined conditions, and 2) the sole mechanism for preparing the gradient in induction time is by turbulent mixing and local flame quenching. The criterion for DDT is derived in terms of the one-dimensional detonation wave thickness, the laminar flame speed, and the laminar flame thickness in the reactive gas. This approach gives a lower-bound criterion for DDT for conditions where shock preheating, wall effects, and interactions with obstacles are absent. Regions in parameter space where unconfined DDT can and cannot occur are determined. A subsequent paper will address these issues specifically in the astrophysical context.

  10. Synthesis of Nano-Particles in Flames

    DEFF Research Database (Denmark)

    Johannessen, Tue

    energy expression.Furthermore, the model is validated by comparison with experimental data of the flame synthesis of titania by combustion of TiCl4 previously presented by Pratsinis et al. (1996).The combination of particle dynamics and CFD simulations has proved to be an efficient method......The scope of this work is to investigate the synthesis of aluminum oxide particles in flames from the combustion of an aluminum alkoxide precursor.A general introduction to particles formation in the gas phase is presented with emphasis on the mechanisms that control the particle morphology after...... for the analysis of particle formation in flames. Good results for a wide range of operating conditions were obtained. Therefore, the method should be useful as a tool for the optimization and/or design of flame processes for particle production....

  11. Advances in Flying Qualities

    Science.gov (United States)

    1988-05-01

    Oct. 1967. 32. Jex, N. R., H. W. Allen, and H. E. Magdalena , Display Format Effects on Precision Tracking Performance. AMRL-TR-71-63, Aug. 1971. 33...34 bach -sidodneas," continue to specify the long-term response. excessive time delay is a common cause of pilot-induced oscillations. Because a pilot senes...uuigteFI temo afaenab M lggar0fctoet lbetl f -eeasliq ep golt~.me n i loo aasla lemonsos ce asrdncsayt td h wlig sk Io rofwle".ler ANA %6 */ s~olmaalos evrlI

  12. Advanced Software Quality Assurance

    Science.gov (United States)

    1977-03-01

    AKltH I AHlAi HCIGHTi VOLUPt . ICTAL > livi-LT ( AhlA ) bkll* ( AHLA ■ FLIT •« 2, HllGhl z Ht1 , WOLUKt...EIGHT VOLUKt ICTAL NUHBEK CLASi KCCE 1ST TOTAL LAST AbSERTLC ACTUAL fHYSlCAL STfT USES STwT USE LSE UMlTi FAhAKtTE« hLAL PARA^ETE

  13. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  14. Flaming Pear Creative Pack1.0

    Institute of Scientific and Technical Information of China (English)

    Kane

    2003-01-01

    Flaming Pear是个一直给我留下深刻印象的软件开发公司。我以前评论过很多这个公司的插件,每一次都是不错的经历。同样的优良传统同样体现在Flaming Pear的新品Creative Pack1.0

  15. Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction

    Science.gov (United States)

    Zhang, Bin; Zhao, Minmin; Liu, Zhigang; Wu, Zhaohang

    2016-08-01

    Deflection tomography with limited angle projections was investigated to visualize a premixed flame. A projection sampling system for deflection tomography was used to obtain chronological deflectogram arrays at six view angles with only a pair of gratings. A new iterative reconstruction algorithm with deflection angle compressed-sensing revision was developed to improve reconstruction-distribution quality from incomplete projection data. Numerical simulation and error analysis provided a good indication of algorithm precision and convergence. In the experiment, 150 fringes were processed, and temperature distributions in 20 cross-sections were reconstructed from projection data in four instants. Four-dimensional flame structures and temperature distributions in the flame interior were visualized using the visualization toolkit. The experimental reconstruction was then compared with the result obtained from computational fluid dynamic analysis.

  16. NO concentration imaging in turbulent nonpremixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  17. Preparation of Flame Retardant Modified with Titanate for Asphalt Binder

    Directory of Open Access Journals (Sweden)

    Bo Li

    2014-01-01

    Full Text Available Improving the compatibility between flame retardant and asphalt is a difficult task due to the complex nature of the materials. This study explores a low dosage compound flame retardant and seeks to improve the compatibility between flame retardants and asphalt. An orthogonal experiment was designed taking magnesium hydroxide, ammonium polyphosphate, and melamine as factors. The oil absorption and activation index were tested to determine the effect of titanate on the flame retardant additive. The pavement performance test was conducted to evaluate the effect of the flame retardant additive. Oxygen index test was conducted to confirm the effect of flame retardant on flame ability of asphalt binder. The results of this study showed that the new composite flame retardant is more effective in improving the compatibility between flame retardant and asphalt and reducing the limiting oxygen index of asphalt binder tested in this study.

  18. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  19. Effects of advanced treatment of municipal wastewater on the White River near Indianapolis, Indiana; trends in water quality, 1978-86

    Science.gov (United States)

    Crawford, Charles G.; Wangsness, David J.

    1993-01-01

    The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the

  20. SU-F-BRA-02: Electromagnetic Tracking in Brachytherapy as An Advanced Modality for Treatment Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Kellermeier, M; Herbolzheimer, J; Kreppner, S; Lotter, M; Strnad, V [University Clinic Erlangen, Department of Radiation Oncology, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); Bert, C [University Clinic Erlangen, Department of Radiation Oncology, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, DE (Germany)

    2015-06-15

    Purpose: To present the use of Electromagnetic Tracking (EMT) for quality assurance in brachytherapy by means of phantom studies and to assess the clinical applicability of EMT during HDR breast brachytherapy. Methods: An EMT system was investigated to examine its suitability for clinical applications in brachytherapy. A field generator served as electromagnetic field emitter. Sensors (magnetic sensitive only), connected to a control unit, were used and their respective position and orientation inside a pre-defined measurement volume (500 mm cube length) determined. Up to three 6DoF sensors were placed on the phantom’s surface to obtain additional reference coordinates used to derive relative measured positions of a smaller 5DoF sensor inserted in the 6F catheters of the implant. The catheters were successively measured by manual displacement of the sensor at ∼40 mm/s. The measured catheter tracks, acquired multiple times at various locations (CT and treatment room), were smoothed, divided into intervals (2.5 mm dwell step size), registered (rigid Iterative Closest Point transformation) and compared against the known phantom geometry. Results: The reference coordinates were used to exclude the influence of external (e.g., respiratory-induced) motion. Precision tests in a clinical setting showed variances below 1 mm (translational) and 1° (rotational), respectively. Our method for catheter reconstruction preserved the length of the tracked catheter (within 1 mm). The measured tracking accuracy was 1±0.3 mm (maximum: 2 mm). The results are less accurate in environments potentially interfering with the magnetic field, e.g., in the vicinity of ferromagnetic table components. Conclusion: Our EMT system is able to perform reproducible and accurate catheter tracking and reconstruction. Currently, measurements of the implant geometry in HDR breast treatments are initiated. Online implant monitoring by means of EM tracking may be a first step towards advanced

  1. Combustion Synthesis of Nanomaterials Using Various Flame Configurations

    KAUST Repository

    Ismail, Mohamed Anwar

    2016-02-01

    Titanium dioxide (TiO2) is an important semiconducting metal oxide and is expected to play an important role in future applications related to photonic crystals, energy storage, and photocatalysis. Two aspects regarding the combustion synthesis have been investigated; scale-up in laboratory synthesis and advanced nanoparticle synthesis. Concerning the scale-up issue, a novel curved wall-jet (CWJ) burner was designed for flame synthesis. This was achieved by injecting precursors of TiO2 through a central port into different flames zones that were stabilized by supplying fuel/air mixtures as an annular-inward jet over the curved wall. This provides a rapid mixing of precursors in the reaction zone with hot products. In order to increase the contact surface between the precursor and reactants as well as its residence time within the hot products, we proposed two different modifications. The CWJ burner was modified by adding a poppet valve on top of the central port to deliver the precursor tangentially into the recirculating flow upstream within the recirculation zone. Another modification was made by adopting double-slit curved wall-jet (DS-CWJ) configuration, one for the reacting mixture and the other for the precursor instead of the central port. Particle growth of titanium dioxide (TiO2) nanoparticles and their phases were investigated. Ethylene (C2H4), propane (C3H8), and methane (CH4) were used with varying equivalence ratio and Reynolds number and titanium tetraisopropoxide (TTIP) was the precursor. Flow field and flame structure were quantified using particle image velocimetry (PIV) and OH planar laser-induced fluorescence (PLIF) techniques, respectively. TiO2 nanoparticles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman Spectroscopy, and BET nitrogen adsorption for surface area analysis. The flow field quantified by PIV consisted of a wall-jet region leading to a recirculation zone, an

  2. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    The precombustion degradation of organic compounds in the flame ionization detector has been studied (1) by heating the additives in hydrogen in a quartz capillary and analyzing the reaction products by GC and (2) by following the degradation of the additives in a hydrogen flame, by means of a th...

  3. Autoignition and flame stabilisation processes in turbulent non-premixed hot coflow flames

    NARCIS (Netherlands)

    Oldenhof , E.

    2012-01-01

    This dissertation examines stabilisation processes in turbulent non-premixed jet flames, created by injecting gaseous fuel into a co-flowing stream of hot, low-oxygen combustion products. Being able to predict whether and how a flame achieves stable and reliable combustion is a matter of great pract

  4. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  5. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames

    Science.gov (United States)

    2015-11-30

    at constant pressure D Diffusion coefficient f Stirring frequency h0 Total enthalpy h0f,k Heat of formation hs,k Sensible enthalpy k Sub-grid kinetic... contributions so the quantity of mass entering and leaving each LEM line is tracked. The mass transfer is accomplished by using the calculated outflux to...a CFD code that was designed by Charles Merkle’s group at Purdue University and is actively being used by Purdue and the Air Force Research Laboratory

  6. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  7. Health-Related Quality of Life in Locally Advanced Cervical Cancer Patients After Definitive Chemoradiation Therapy Including Image Guided Adaptive Brachytherapy: An Analysis From the EMBRACE Study

    DEFF Research Database (Denmark)

    Kirchheiner, Kathrin; Pötter, Richard; Tanderup, Kari

    2016-01-01

    Purpose This study analyzed functioning and symptom scores for longitudinal quality of life (QoL) from patients with locally advanced cervical cancer who underwent definitive chemoradiation therapy with image guided adaptive brachytherapy in the EMBRACE study. Methods and Materials In total, 744...... patients at a median follow-up of 21 months were included. QoL was prospectively assessed using European Organization for Research and Treatment of Cancer Quality of Life core module 30 (EORTC QLQ-C30) and EORTC cervical cancer module 24 (CX24) questionnaires at baseline, then every 3 months during...

  8. A, a Brominated Flame Retardant

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshita

    2013-01-01

    Full Text Available Tetrabromobisphenol A (TBBPA, a brominated flame retardant, has been found to exacerbate pneumonia in respiratory syncytial virus- (RSV- infected mice. We examined the effect of Brazilian propolis (AF-08 on the exacerbation of RSV infection by TBBPA exposure in mice. Mice were fed a powdered diet mixed with 1% TBBPA alone, 0.02% AF-08 alone, or 1% TBBPA and 0.02% AF-08 for four weeks and then intranasally infected with RSV. TBBPA exposure increased the pulmonary virus titer and level of IFN-γ, a representative marker of pneumonia due to RSV infection, in the lungs of infected mice without toxicity. AF-08 was significantly effective in reducing the virus titers and IFN-γ level increased by TBBPA exposure. Also, AF-08 significantly reduced proinflammatory cytokine (TNF-α and IL-6 levels in the lungs of RSV-infected mice with TBBPA exposure, but Th2 cytokine (IL-4 and IL-10 levels were not evidently increased. Neither TBBPA exposure nor AF-08 treatment affected the anti-RSV antibody production in RSV-infected mice. In flow cytometry analysis, AF-08 seemed to be effective in reducing the ratio of pulmonary CD8a+ cells in RSV-infected mice with TBBPA exposure. TBBPA and AF-08 did not exhibit anti-RSV activity in vitro. Thus, AF-08 probably ameliorated pneumonia exacerbated by TBBPA exposure in RSV-infected mice by limiting excess cellular immune responses.

  9. Engineering Flame Retardant Biodegradable Nanocomposites

    Science.gov (United States)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  10. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  11. Assessment of quality of life in patients with advanced non-small cell lung carcinoma treated with a combination of carboplatin and paclitaxel

    Directory of Open Access Journals (Sweden)

    Camila Uanne Resende Avelino

    2015-04-01

    Full Text Available OBJECTIVE: Non-small cell lung carcinoma (NSCLC is the most common type of lung cancer. Most patients are diagnosed at an advanced stage, palliative chemotherapy therefore being the only treatment option. This study was aimed at evaluating the health-related quality of life (HRQoL of advanced-stage NSCLC patients receiving palliative chemotherapy with carboplatin and paclitaxel. METHODS: This was a multiple case study of advanced-stage NSCLC outpatients receiving chemotherapy at a public hospital in Rio de Janeiro, Brazil. The European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire was used in conjunction with its supplemental lung cancer-specific module in order to assess HRQoL. RESULTS: Physical and cognitive functioning scale scores differed significantly among chemotherapy cycles, indicating improved and worsened HRQoL, respectively. The differences regarding the scores for pain, loss of appetite, chest pain, and arm/shoulder pain indicated improved HRQoL. CONCLUSIONS: Chemotherapy was found to improve certain aspects of HRQoL in patients with advanced-stage NSCLC.

  12. Launch Pad Flame Trench Refractory Materials

    Science.gov (United States)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  13. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.

    1998-11-01

    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  14. Distributed Flames in Type Ia Supernovae

    CERN Document Server

    Aspden, A J; Woosley, S E; 10.1088/0004-637X/710/2/1654

    2011-01-01

    In the distributed burning regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning depends on the turbulent Damkohler number (Da), which steadily declines from much greater than one to less that one as the density decreases to a few 10^6 g/cc. Scaling arguments predict that the turbulent flame speed s, normalized by the turbulent intensity u, follows s/u=Da^1/2 for Da1, and that localized excursions to as much as five times u can occur. The lambda-flame speed and width can be predicted based on the turbulence in the star and the turbulent nuclear burning time scale of the fuel. We propose a practical method for measuring these based on the scaling relations and small-scale computationally-inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed supernovae flames.

  15. Second Law Analysis of Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Yalcin Gogus

    2001-03-01

    Full Text Available The objective of this paper is to investigate the sources of volumetric irreversibilities in both laminar and turbulent diffusion flames. The theoretical background of analysis relies on the local exergy transport equation, which allows the microscopic formulation of the well-known Gouy-Stodola theorem. For laminar reacting flows, the volumetric entropy generation rate expression includes the viscous, thermal, diffusion and chemical components. Their expressions show that the corresponding irreversibilities are uncoupled if the combustion process occurs at constant pressure. The numerical simulation of a methane-air combustion process shows that the thermal, chemical and diffusive irreversibilities represent, in order of enumeration, the predominant irreversibilities in the laminar diffusion reacting flows. In the case of turbulent diffusion flames, the viscous, thermal, diffusion and chemical mean components have to be expressed in accordance with the combustion model. Two combustion models are used: the multi-species approach based on the eddy-break formulation of mean reaction rate, and the assumed probability density function for a conserved scalar that relies on the flame sheet model. For a diffusion methane-air jet flame, the distribution of mean irreversibility components is presented. Taking into account the technical importance of diffusion flames, the analysis could serve to improve the combustion geometry and the flow condition.

  16. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    Science.gov (United States)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this

  17. Beam steering effects in turbulent high pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The propagation of a laser beam through a flame is influenced by variations of the optical density. Especially in turbulent high pressure flames this may seriously limit the use of laser diagnostic methods. (author) 1 fig., 2 refs.

  18. Pulsating instability and self-acceleration of fast turbulent flames

    CERN Document Server

    Poludnenko, A Y

    2015-01-01

    (Abridged) A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully-resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damk\\"ohler numbers Da = 0.1-6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. 1) Turbulent flame speed develops pulsations with the observed peak-to-peak amplitude > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. 2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when the flame s...

  19. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  20. The Interaction of High-Speed Turbulence with Flames: Turbulent Flame Speed

    CERN Document Server

    Poludnenko, Alexei Y; 10.1016/j.combustflame.2010.09.002

    2011-01-01

    (Abridged) Direct numerical simulations of the interaction of a premixed flame with driven, subsonic, homogeneous, isotropic, Kolmogorov-type turbulence in an unconfined system are used to study the mechanisms determining the turbulent flame speed, S_T, in the thin reaction zone regime. High intensity turbulence is considered with the r.m.s. velocity 35 times the laminar flame speed, S_L, resulting in the Damkohler number Da = 0.05. Here we show that: (1) The flame brush has a complex internal structure, in which the isosurfaces of higher fuel mass fractions are folded on progressively smaller scales. (2) Global properties of the turbulent flame are best represented by the structure of the region of peak reaction rate, which defines the flame surface. (3) In the thin reaction zone regime, S_T is predominantly determined by the increase of the flame surface area, A_T, caused by turbulence. (4) The observed increase of S_T relative to S_L exceeds the corresponding increase of A_T relative to the surface area of...

  1. Annealing effect and stability of carbon nanotubes in hydrogen flame

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Annealing of carbon nanotubes (CNTs) by the hydrogen flame in air was investigated in this study. Raman spectroscopy and scanning electron microscopy were used to characterize the products. The peak width of Raman spectra decreased with the increase in the annealing time. The CNTs were not stable in the hydrogen flame and the etching rate of the CNTs by hydrogen flame was very high. The hydrogen flame annealing had some effects on improving the crystallinity of CNTs.

  2. Luminous Flame Temperature Distribution Measurement Using the Emission Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Flame temperature distribution is one of the most important characteristic parameters in combustion research. The emission method is a good way to measure the luminous flame temperature field. The maximum entropy method is introduced to the temperature distribution measurement of a luminous flame using the emission method. A simplified mathematical model was derived by combining the thermal radiation theory, reconstruction algorithm and maximum entropy method. Suitable parameters were selected in the computing process. Good experimental results were obtained with pulverized coal flames.

  3. The Influences of Electric Fields on Soot Formation and Flame Structure of Diffusion Flames

    Institute of Scientific and Technical Information of China (English)

    LinXie; TakeyukiKishi; 等

    1993-01-01

    The influences of DC and AC electric fields,at frequencies up to 1.48 MHz and the maximum strength of about 6 kV/cm,on soot formation and flame structure were investigated using a counterflow type acetylene diffusion flame.The distributioons of flame luminosity,soot volume fraction,Flame temperature and OH concentration in flame were measured by non-invasive detection methods.Under the influence of electric fields,the changes in distribution of the soot volume fraction were confirmed.Electric fields of high frequency and high intensity reduced the soot volume fraction.whereas other electric fields increased it.The maximum values of flame temperature and OH concentration decreased.In the relationship between the maximum value of the soot volume fraction and the maximum temperature,the maximum soot volum fraction showed toth increase and decrease with maximum temperatures depending on the frequencies and intensities of the electric fields,and both of them occurred at temperatures lower than 1990 K.The production of the incipient particles seemed to be the dominant process controlling the soot volume fraction due to the electric fields.The luminosity of a sooting diffusion flame was found to depend on the volume fraction and temperature of the soot particles in the flame,As for the behavior of the flame in the electric fields.the ionic wind effect was not found to be dominant in the present work,and the result of the precious simulation based on the ionic wind theory was not consistent with the present experimental results.

  4. Quality of life and management project for patients with advanced lung cancer%晚期肺癌生活质量与治疗方案选择

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Compared with best supportive care,chemotherapy can prolong survival and improve quality of life,and symptoms associated with society activities and disease.Chemotherapy can improve quality of life of patients with effective treatment and stable treatment. Treatment benefit was often underestimated using clinical relief rate,so which should not chosen as index for evaluating effect of palliative treatment. So for patients with poor status ,and objective of relieving symptoms,short term,low dose chemotherapy should be suggested due to its characteristic of low cost,short inhospitalization time,and favorable improvement of quality of life. For patients with good condition in limited advanced stage,radical treatment is objective,and hence single chemotherapy of standard dose or chemotherapy combining radiotherapy should be suggested.

  5. The Flame Challenge and Communicating Science

    Science.gov (United States)

    Ames, Ben

    2013-04-01

    When famed actor and science enthusiast Alan Alda was 11 years-old he was itching to know the science behind a flame. He asked his science teacher but her blunt response didn't exactly satisfy his curiosity. ``It's oxidation,'' she said. 65 years later, Alan Alda launched ``The Flame Challenge,'' an annual contest encouraging scientists to improve their communication to the general public. In this talk, last year's winner discusses his approach to successfully explaining the science behind a flame to a wide audience. Because communicating science is a pillar of the scientific method, he shares key elements of successful communication important for engaging funders, policy-makers, students, the general public, and even other scientists.

  6. 30 CFR 56.7805 - Smoking and open flames.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....

  7. 30 CFR 57.7805 - Smoking and open flames.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  8. 30 CFR 56.6904 - Smoking and open flames.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  9. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved cables; flame resistance. 75.600-1 Section 75.600-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant....

  10. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  11. Flame-Vortex Interactions Imaged in Microgravity - To Assess the Theory Flame Stretch

    Science.gov (United States)

    Driscoll, James F.

    2001-01-01

    The goals of this research are to: 1) Assess the Theory of Flame Stretch by operating a unique flame-vortex experiment under microgravity conditions in the NASA Glenn 2.2 Second Drop Tower (drops to identify operating conditions have been completed); 2) Obtain high speed shadowgraph images (500-1000 frames/s) using the drop rig (images were obtained at one-g, and the NASA Kodak RO camera is being mounted on the drop rig); 3) Obtain shadowgraph and PIV images at 1-g while varying the effects of buoyancy by controlling the Froude number (completed); 4) Numerically model the inwardly-propagating spherical flame that is observed in the experiment using full chemistry and the RUN 1DL code (completed); 5) Send images of the flame shape to Dr. G. Patniak at NRL who is numerically simulating the entire flame-vortex interaction of the present experiment (data transfer completed); and 6) Assess the feasibility of obtaining PIV velocity field images in the drop rig, which would be useful (but not required) for our assessment of the Theory of Flame Stretch (PIV images were obtained at one-g using same low laser power that is available from fiber optic cable in drop tower). The motivation for the work is to obtain novel measurement needed to develop a physically accurate model of turbulent combustion that can help in the control of engine pollutants. The unique experiment allows, for the first time, the detailed study of a negatively-curved (negatively stretched) flame, which is one of the five fundamental types of premixed flames. While there have been studies of flat flames, positively-curved (outwardly-propagating) cases and positively-strained (counterflow) cases, this is the first detailed study of a negatively-curved (inwardly-propagating) flame. The first set of drops in the 2.2 Second Drop Tower showed that microgravity provides more favorable conditions for achieving inwardly-propagating flames (IPFs) than 1-g. A vortex interacts with a flame and creates a spherical

  12. Computatonal and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, M.D.; Long, M.B. [Yale Univ., New Haven, CT (United States)

    1993-12-01

    This research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in counterflow, cylindrical and coflowing axisymmetric configurations. The authors have pursued both computational and experimental aspects of the research in parallel. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the one and two-dimensional nonlinear boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. In particular, spontaneous Raman scattering and laser induced fluorescence were used to measure the temperature, major and minor species profiles.

  13. Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly.

    Science.gov (United States)

    Köklükaya, Oruç; Carosio, Federico; Grunlan, Jaime C; Wågberg, Lars

    2015-10-28

    The highly flammable character of cellulose-rich fibers from wood limits their use in some advanced materials. To suppress the flammability and introduce flame-retardant properties to individual pulp fibers, we deposited nanometer thin films consisting of cationic chitosan (CH) and anionic poly(vinylphosphonic acid) (PVPA) on fibers using the layer-by-layer (LbL) technique. The buildup of the multilayer film was investigated in the presence and absence of salt (NaCl) using model cellulose surfaces and a quartz crystal microbalance technique. Fibers were then treated with the same strategy, and the treated fibers were used to prepare paper sheets. A horizontal flame test (HFT) and cone calorimetry were conducted to evaluate the combustion behavior of paper sheets as a function of the number of bilayers deposited on fibers. In HFT, paper made of fibers coated with 20 CH/PVPA bilayers (BL), self-extinguished the flame, while uncoated fibers were completely consumed. Scanning electron microscopy of charred paper after HFT revealed that a thin shell of the charred polymeric multilayer remained after the cellulose fibers had been completely oxidized. Cone calorimetry demonstrated that the phosphorus-containing thin films (20 BL is ∼25 nm) reduced the peak heat release rate by 49%. This study identifies a unique and highly effective way to impart flame-retardant characteristic to pulp fibers and the papers made from these fibers.

  14. The Cousins of Stuxnet: Duqu, Flame, and Gauss

    Directory of Open Access Journals (Sweden)

    Márk Félegyházi

    2012-11-01

    Full Text Available Stuxnet was the first targeted malware that received worldwide attention forcausing physical damage in an industrial infrastructure seemingly isolated from the onlineworld. Stuxnet was a powerful targeted cyber-attack, and soon other malware samples were discovered that belong to this family. In this paper, we will first present our analysis of Duqu, an information-collecting malware sharing striking similarities with Stuxnet. Wedescribe our contributions in the investigation ranging from the original detection of Duquvia finding the dropper file to the design of a Duqu detector toolkit. We then continue with the analysis of the Flame advanced information-gathering malware. Flame is unique in thesense that it used advanced cryptographic techniques to masquerade as a legitimate proxyfor the Windows Update service. We also present the newest member of the family, called Gauss, whose unique feature is that one of its modules is encrypted such that it can onlybe decrypted on its target system; hence, the research community has not yet been able to analyze this module. For this particular malware, we designed a Gauss detector serviceand we are currently collecting intelligence information to be able to break its very specialencryption mechanism. Besides explaining the operation of these pieces of malware, wealso examine if and how they could have been detected by vigilant system administrators manually or in a semi-automated manner using available tools. Finally, we discuss lessonsthat the community can learn from these incidents. We focus on technical issues, and avoidspeculations on the origin of these threats and other geopolitical questions.

  15. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-01-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  16. 光质对火焰无核葡萄胚挽救及试管苗生长发育的影响%Effect of light quality on embryo rescue and test-tube plantlets growth and development of Flame Seedless

    Institute of Scientific and Technical Information of China (English)

    李玉玲; 王勇; 郭平峰; 伍国红; 骆强伟

    2015-01-01

    以火焰无核自交胚珠为试材,研究了红光、蓝光、白光及暗处理对胚发育、胚萌发及试管苗生长发育的影响。结果表明:3种光质处理对胚发育均有一定促进作用,但与对照未达到显著性水平。在胚萌发阶段,红光对胚萌发有明显的促进作用。在试管苗发育成苗阶段,以蓝光处理的试管苗最为矮壮,红光下葡萄胚挽救苗试管苗节间最长,发育最高,叶绿素含量最低;各处理试管苗继代后移栽成活率均可达到90%以上。%The open pollination ovules from flame Seedless were used to investigate the effect of diffierent light quality on the proportion of embryo development and germination ,and test-tube plantlets growth and development in vitro, including red light, blue light, white light and dark condition. The results showed that three lights had positive effect on embryo during ovule development, but did not significantly; Red light could promote obsively embryo germination; the plantlets were the most stocky under blue light. Red light was favorable to the longitudinal growth of the test-tube Plantlets, Chlorophyll content were the lowest. Each treatment plantlets transplant survival rate could reach 90%.

  17. Radiative Structures of Lycopodium-Air Flames in Low Gravity

    Science.gov (United States)

    Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.

    1989-01-01

    Initially uniform clouds of fuel particulates in air sustain processes which may lead to particle cloud nonuniformities. In low gravity, flame-induced Kundt's Tube phenomena are observed to form regular patterns of nonuniform particle concentrations. Irregular patterns of particle concentrations also are observed to result from selected nonuniform mixing processes. Low gravity flame propagation for each of these classes of particle cloud flames has been found to depend importantly on the flame-generated infrared radiative fields. The spatial structures of these radiative fields are described. Application is made for the observed clases of lycopodium-air flames.

  18. Brominated flame retardants and endocrine disruption

    NARCIS (Netherlands)

    Vos, J.G.; Becher, G.; Berg, van den M.; Boer, de J.; Leonards, P.E.G.

    2003-01-01

    From an environmental point of view, an increasing important group of organohalogen compounds are the brominated flame retardants (BFRs), which are widely used in polymers and textiles and applied in construction materials, furniture, and electronic equipment. BFRs with the highest production volume

  19. The VLT-FLAMES Tarantula survey

    NARCIS (Netherlands)

    Taylor, W.D.; Evans, C.J.; Henault-Brunet, V.; Bastian, N.; Beletsky, Y.; Bestenlehner, J.; Brott, I.; Cantiello, M.; Carraro, G.; Clark, J.S.; Crowther, P.A.; de Koter, A.; de Mink, S.E.; Doran, E.; Dufton, P.L.; Dunstall, P.; Gieles, M.; Grafener, G.; Herrero, A.; Howarth, I.D.; Langer, N.; Lennon, D.J.; Maiz-Apellaniz, J; Markova, N.; Najarro, P.; Puls, J.; Sana, H.A.A.; Simon-Diaz, S.; Smartt, S.J.; Stroud, V.E.; van Loon, J.T.; Vink, J.S.; Walborn, N.R.

    2011-01-01

    The VLT-FLAMES Tarantula Survey is an ESO Large Programme that has provided multi-epoch spectroscopy of over 1000 stars in the 30 Doradus region in the Large Magellanic Cloud. Armed with this unique dataset the assembled consortium is now addressing a broad range of fundamental questions in both ste

  20. FLARE FLAME INSTABILITY AND BURNER COMBUSTION CONTROL

    OpenAIRE

    БОНДАРЕНКО А.В.; В. Э. Волков; Максимов, М. В.

    2014-01-01

    Research of the flare instability development and the laminar-to-turbulent transition for the flares was executed. It was proved that the effects of viscosity and compressibility have the stabilizing influence on the gas flame. The study of the individual flare stability makes the theoretical basis of the fuel burning technology in combustion chambers and for the burner combustion control.

  1. Experiments and modelling on vertical flame spread

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Mangs, J. [VTT Building and Transport, Espoo (Finland)

    2004-07-01

    he principle and some preliminary results are shown of a new vertical flame spread modelling effort. Quick experimental screenings on relevant phenomena are made, some models are evaluated, and a new set of needed measuring instruments is proposed. Finally a single example of FRNC cable is shown as application of the methods. (orig.)

  2. Radical recombinations in acetylene-air flames

    NARCIS (Netherlands)

    Zeegers, P.J.Th.; Alkemade, C.T.J.

    1965-01-01

    In this paper an analysis is given of the behaviour of excess radical concentrations, H, OH and O as a function of height above the reaction zone in premixed acetylene-air flames at 2–200° to 2400°K and 1 atmosphere pressure. The intensity was measured of the Li resonance line which is related to th

  3. Numerical study of one swirling flame

    DEFF Research Database (Denmark)

    Yang, Yang; Kær, Søren Knudsen; Yin, Chungen

    This paper presents numerical study of one of Sydney swirl flames. Good agreements gained between numerical results and the experimental data. Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods show different flow patterns in isothermal and reacting case. The influence...

  4. Numerical assessment of accurate measurements of laminar flame speed

    Science.gov (United States)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  5. Laser-saturated fluorescence measurements in laminar sooting diffusion flames

    Science.gov (United States)

    Wey, Changlie

    1993-01-01

    The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.

  6. The flame anchoring mechanism and associated flow structure in bluff-body stabilized lean premixed flames

    Science.gov (United States)

    Michaels, Dan; Shanbhogue, Santosh; Ghoniem, Ahmed

    2015-11-01

    We present numerical analysis of a lean premixed flame anchoring on a heat conducting bluff-body. Different mixtures of CH4/H2/air are analyzed in order to systematically vary the burning velocity, adiabatic flame temperature and extinction strain rate. The study was motivated by our experimental measurements in a step combustor which showed that both the recirculation zone length and stability map under acoustically coupled conditions for different fuels and thermodynamic conditions collapse using the extinction strain rate. The model fully resolves unsteady two-dimensional flow with detailed chemistry and species transport, and without artificial flame anchoring boundary conditions. The model includes a low Mach number operator-split projection algorithm, coupled with a block-structured adaptive mesh refinement and an immersed boundary method for the solid body. Calculations reveal that the recirculation zone length correlates with the flame extinction strain rate, consistent with the experimental evidence. It is found that in the vicinity of the bluff body the flame is highly stretched and its leading edge location is controlled by the reactants combustion characteristics under high strain. Moreover, the flame surface location relative to the shear layer influences the vorticity thus impacting the velocity field and the recirculation zone. The study sheds light on the experimentally observed collapse of the combustor dynamics using the reactants extinction strain rate.

  7. Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method

    KAUST Repository

    Liao, Y.-H.

    2016-01-27

    © 2016 American Chemical Society. The adiabatic, laminar flame speeds of gasoline surrogates at atmospheric pressure over a range of equivalence ratios of = 0.8-1.3 and unburned gas temperatures of 298-400 K are measured with the flat flame method, which produces a one-dimensional flat flame free of stretch. Surrogates used in the current work are the primary reference fuels (PRFs, mixtures of n-heptane and isooctane), the toluene reference fuels (TRFs, mixtures of toluene and PRFs), and the ethanol reference fuels (ERFs, mixtures of ethanol and PRFs). In general, there is good agreement between the present work and the literature data for single-component fuel and PRF mixtures. Surrogates of TRF mixtures are found to exhibit comparable flame speeds to a real gasoline, while there is discrepancy observed between isooctane and gasoline. Moreover, the laminar flame speeds of TRF mixtures with similar fractions of n-heptane are found to be insensitive to the quantity of toluene in the mixture. Mixtures of ERFs exhibit comparable flame speeds to those of TRFs with similar mole fractions of n-heptane and isooctane.

  8. Flame retardancy and its mechanism of polymers flame retarded by DBDPE/Sb2O3

    Institute of Scientific and Technical Information of China (English)

    ZUO Jian-dong; LI Rong-xun; FENG Shao-hua; LIU Guang-ye; ZHAO Jian-qing

    2008-01-01

    The flammability characterization and thermal composition of polymers flame retarded by decabromodiphenylethane(DBDPE) and antimony trioxide (Sb2O3) were studied by cone calorimeter and thermogravimetry (TG). The results show thatABS/DBDPE/Sb2O3 has the similar flammability parameters and thermal composition curves to ABS/DBDPO/Sb3O3. It suggests thatDBDPE/Sb2O3 has the similar flame retardant behavior to DBDPO/Sb2O3. The heat release rate (HRR) and the effect heat combustion (EHC) curves of polymers flame retarded by DBDPE/Sb2O3 all decrease, but the mass loss rate (MLR) curve slightly increase. It shows that the decrease of HRR is not due to the increase of char formation ratio but the generation of incombustible gases. The major flame retardant mechanism of DBDPE/Sb2O3 is gas phase flame retardant mechanism. Increasing content of Sb2O3in DBDPE/Sb2O3 can improve the flame retardant property and thermal stability of aerylonitrile butadiene styrene. Sb203 has a good synergistic effect with DBDPE.

  9. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    CERN Document Server

    Liberman, M A; Kiverin, A D

    2015-01-01

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  10. Leading-Edge Velocities and Lifted Methane Jet Flame Stability

    Directory of Open Access Journals (Sweden)

    W. Wang

    2010-01-01

    Full Text Available Current interest exists in understanding reaction-zone dynamics and mechanisms with respect to how they counterpropagate against incoming reactants. Images of flame position and flow-field morphology are presented from flame chemiluminescence and particle image velocimetry (PIV measurements. In the present study, PIV experiments were carried out to measure the methane jet lifted-flame flow-field velocities in the vicinity of the flame leading edge. Specifically, velocity fields within the high-temperature zone were examined in detail, which complements previous studies, whose prime focus is the flow-field upstream of the high-temperature boundary. PIV data is used not only to determine the velocities, but, along with chemiluminescence images, to also indicate the approximate location of the reaction zone (further supported by/through the leading-edge flame velocity distributions. The velocity results indirectly support the concept that the flame is anchored primarily through the mechanism of partially premixed flame propagation.

  11. Flame quenching process in cavity based on model scramjet combustor

    Institute of Scientific and Technical Information of China (English)

    Yu Pan; Jing Lei; Jian-Han Liang; Wei-Dong Liu; Zhen-Guo Wang

    2012-01-01

    The flame quenching process in combustors was observed by high speed camera and Schlieren system,at the inflow conditions of Ma =2.64,To =1 483 K,P0 =1.65 MPa,T =724 K and P =76.3 kPa.Changing process of the flame and shock structure in the combustor was clearly observed.The results revealed that the precombustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while.The rime of quenching process was extended by the cavity flame holder,and the ability of flame holding was enhanced by arranging more cavities in the downstream as well.The flame was blown from the upstream to the downstream,so the flame in the downstream of the cavity was quenched out later than that in the upstream.

  12. Modeling and simulation of axisymmetric stagnation flames

    Science.gov (United States)

    Sone, Kazuo

    Laminar flame modeling is an important element in turbulent combustion research. The accuracy of a turbulent combustion model is highly dependent upon our understanding of laminar flames and their behavior in many situations. How much we understand combustion can only be measured by how well the model describes and predicts combustion phenomena. One of the most commonly used methane combustion models is GRI-Mech 3.0. However, how well the model describes the reacting flow phenomena is still uncertain even after many attempts to validate the model or quantify uncertainties. In the present study, the behavior of laminar flames under different aerodynamic and thermodynamic conditions is studied numerically in a stagnation-flow configuration. In order to make such a numerical study possible, the spectral element method is reformulated to accommodate the large density variations in methane reacting flows. In addition, a new axisymmetric basis function set for the spectral element method that satisfies the correct behavior near the axis is developed, and efficient integration techniques are developed to accurately model axisymmetric reacting flow within a reasonable amount of computational time. The numerical method is implemented using an object-oriented programming technique, and the resulting computer program is verified with several different verification methods. The present study then shows variances with the commonly used GRI-Mech 3.0 chemical kinetics model through a direct simulation of laboratory flames that allows direct comparison to experimental data. It is shown that the methane combustion model based on GRI-Mech 3.0 works well for methane-air mixtures near stoichiometry. However, GRI-Mech 3.0 leads to an overprediction of laminar flame speed for lean mixtures and an underprediction for rich mixtures. This result is slightly different from conclusion drawn in previous work, in which experimental data are compared with a one-dimensional numerical solutions

  13. 3D velocity measurements in a premixed flame by tomographic PIV

    Science.gov (United States)

    Tokarev, M. P.; Sharaborin, D. K.; Lobasov, A. S.; Chikishev, L. M.; Dulin, V. M.; Markovich, D. M.

    2015-06-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV.

  14. Protein Quality, Growth, and Malnutrition: Advances in Science and the Role of Dairy Ingredients in Food Aid: Introduction.

    Science.gov (United States)

    Whitsett-Morrow, Dacia; LaGrange, Veronique

    2016-03-01

    This article is the introduction to our formal proceedings of the symposium titled "Protein Quality, Growth and Malnutrition: Latest Scientific Findings and the Role of Dairy in Food Aid," held during the Experimental Biology 2015 annual meeting in Boston, Massachusetts.

  15. Advanced system demonstration for utilization of biomass as an energy source. Technical Appendix B: air quality studies. Environmental report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The plant site studies include: climate, present ambient air quality, construction impacts, and operation impacts. The fuelwood harvest region studies include: present environment and harvesting impacts. The use of the Valley Model for alternative sites analysis is discussed. (MHR)

  16. Flame Propagation of Butanol Isomers/Air Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Egolfopoulos, Fokion N.

    2011-01-01

    An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.

  17. Effects of advanced treatment of municipal wastewater on the white river near Indianapolis, Indiana: Trends in water quality, 1978-86. Geological Survey water supply paper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.G.; Wangsness, D.J.

    1994-01-01

    The report describes changes in the water quality of the White River that occurred after the implementation of Advanced Wastwater Treatment (AWT). The report includes analyses of data collected from three locations on the White River between 1978 and 1986 by the City of Indianapolis, Department of Public Works, and by the USGS and data from one location on the White River collected by the Indiana State Board of Health between 1958 and 1986. The report also includes analyses of daily effluent data from the Belmont and Southport municipal wastewater-treatment plants from 1978 through 1986.

  18. An evaluation of the total quality management implementation strategy for the advanced solid rocket motor project at NASA's Marshall Space Flight Center. M.S. Thesis - Tennessee Univ.

    Science.gov (United States)

    Schramm, Harry F.; Sullivan, Kenneth W.

    1991-01-01

    An evaluation of the NASA's Marshall Space Flight Center (MSFC) strategy to implement Total Quality Management (TQM) in the Advanced Solid Rocket Motor (ASRM) Project is presented. The evaluation of the implementation strategy reflected the Civil Service personnel perspective at the project level. The external and internal environments at MSFC were analyzed for their effects on the ASRM TQM strategy. Organizational forms, cultures, management systems, problem solving techniques, and training were assessed for their influence on the implementation strategy. The influence of ASRM's effort was assessed relative to its impact on mature projects as well as future projects at MSFC.

  19. Behaviors of tribrachial edge flames and their interactions in a triple-port burner

    KAUST Repository

    Yamamoto, Kazuhiro

    2015-05-01

    In a triple-port burner, various non-premixed flames have been observed previously. Especially for the case with two lifted flames, such configuration could be suitable in studying interaction between two tribrachial flames. In the present study, the flame characteristics have been investigated numerically by adopting a reduced kinetic mechanism in the triple-port burner. Four different types of flame configurations, including two attached flames, inner lifted/outer attached flames, inner attached/outer lifted flames, and twin lifted flames, were successfully simulated depending on the flow conditions. The representative edge propagation speed of a single lifted flame or an upstream lifted flame in the case of twin lifted flames increased as the liftoff height became higher. In the twin lifted flames, the inner lifted flame was affected appreciably when the other flame was located further upstream such that the lifted flame located further downstream encountered the axial velocity acceleration induced by the gas expansion from the lifted flame located upstream, while thermal effects were not observed since the temperature of the incoming flow toward the lifted flame was not affected. A unique flip-flop behavior between the inner and outer flames, observed experimentally previously, was successfully captured in the simulation such that the inner lifted flame became attached to the nozzle as the liftoff height of the outer lifted flame grew higher with an increase in the outer air velocity.

  20. Influence of comorbidity on survival, toxicity and health-related quality of life in patients with advanced non-small-cell lung cancer receiving platinum-doublet chemotherapy

    DEFF Research Database (Denmark)

    Grønberg, Bjørn H; Sundstrøm, Stein; Kaasa, Stein;

    2010-01-01

    AIM OF THE STUDY: To investigate whether patients with severe comorbidity receiving platinum-based chemotherapy for advanced non-small-cell lung cancer (NSCLC) have a shorter overall survival, experience more toxicity or more deterioration of health-related quality of life (HRQoL) than other....... Comorbidity was assessed from hospital medical records using the Cumulative Illness Rating Scale for Geriatrics (CIRS-G). Toxicity was graded using the CTCAE v3.0 and the patients reported HRQoL on the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLQ)-C30...... neutropenic fevers (12% versus 5%; p=.012) and deaths from neutropenic infections (3% versus 0%; p=.027). They had more thrombocytopenia (46% versus 36%; p=.03), but not more thrombocytopenic bleedings (3% versus 4%; p=.65). In general, the patients with severe comorbidity reported poorer HRQoL...

  1. Relationship between quality of life and clinical outcomes in advanced non-small cell lung cancer: best supportive care (BSC) versus BSC plus chemotherapy.

    Science.gov (United States)

    Thongprasert, S; Sanguanmitra, P; Juthapan, W; Clinch, J

    1999-04-01

    In a prospective randomized study, 287 patients with advanced non-small cell lung cancer (NSCLC) stage IIIb or IV with ECOG performance status (PS) 0-1 or 2 were randomly assigned to receive either best supportive care (BSC) or supportive care plus combination chemotherapy (IEP regimen: ifosfamide 3 gm/m2 IV with mesna uroprotection, epirubicin 60 mg/m2 IV on day 1 and cisplatin 60 mg/m2 IV on day 2; or MVP regimen: mitomycin-C 8 mg/m2, cisplatin 100 mg/m2 IV on day 1, vinblastine 4 mg/m2 IV on days 1 and 15). Serial assessment of Karnofsky performance status (KPS), modified Functional Living Index-Cancer (T-FLIC) and modified Quality of Life-Index (T-QLI) were used to estimate the quality of life. Interviews were done at entry, at the third month and at 2 months post complete treatment. At least two courses of chemotherapy were considered to be adequate for response evaluation. Patients were treated for a total of four to six courses or until progression of disease. Partial response rates were 40 and 41.7% in IEP and MVP arms. Median survival durations were 5.9 and 8.1 months for the IEP and MVP chemotherapy arms, and 4.1 months for BSC (log-rank test: P = 0.0003). One year survival was 13, 29.8 and 39.3% for the BSC, IEP and MVP regimens, respectively. Two years survival was 7.8, 6.4 and 13.1% for the BSC, IEP and MVP regimens, respectively. Improvement in quality of life (QOL) scores at the first, second and third interview were seen in chemotherapy arms only, not in the BSC arm. We conclude that combination chemotherapy improves the quality of life as well as prolonging the survival of patients with advanced NSCLC.

  2. Flame front. Evaluation of camera based flame front control in grate furnaces regarding operation and emissions; Flamfront. Utvaerdering av drift och miljoe med hjaelp av kamerabaserad flamfrontsstyrning i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bubholz, Monika; Myringer, Aase; Nordgren, Daniel

    2007-09-15

    This project aims at showing the usability of camera based flame front control in grate furnaces regarding increased possibilities to use fuels with fluctuating moisture/quality with stable/improved levels of emissions and ash quality. A furnace camera and the human eye make the detection of the flame front movements. Further, the flame front was fixed due to an increase/decrease of the speed of the fuel feeding system. The result is to be generalised for all grate furnaces with a movable grate. During the spring 2007 two weeks of tests were executed at E.ON Heat's plant Hammargaarden at Kungsbacka. Dry and wet fuel pulses of approximately 10 m3, with moisture content of approximately 40 and 60 weights percent, were induced to the grate. At the same time, tries to ward off the flame front movement were carried through. The most important result of the tests were the following: The results is based on a relatively small number of tests and it should be considered to be more of an indication of the usefulness of the control strategy that has been investigated rather than definitive results. The results indicate that the economical and environmental benefits from using a system involving only visual detecting followed by warding off a movement of the flame front mechanically are small, and most likely hard to pay off. It is important to start to ward off the flame front as soon as it seems to be moving. In this way the flame front can be kept stable and often improved emission levels follow. A slight tendency to lower CO-emissions was observed when dry fuel pulses were warded off. When no warding off of dry fuel pulses took place, the combustion took place close to the lower part of the fuel-feeding wall. This was prevented when the dry fuel pulses were warded off. The content of unburnt carbon in ash at wet fuel pulses was lower when warding off in comparison with cases where no warding off took place. An important element of future work is, apart from using a

  3. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Rompel, Oliver; Janka, Rolf; Lell, Michael M.; Uder, Michael; Hammon, Matthias [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Gloeckler, Martin; Dittrich, Sven [University Hospital Erlangen, Department of Pediatric Cardiology, Erlangen (Germany); Cesnjevar, Robert [University Hospital Erlangen, Department of Pediatric Cardiac Surgery, Erlangen (Germany)

    2016-04-15

    Many technical updates have been made in multi-detector CT. To evaluate image quality and radiation dose of high-pitch second- and third-generation dual-source chest CT angiography and to assess the effects of different levels of advanced modeled iterative reconstruction (ADMIRE) in newborns and children. Chest CT angiography (70 kVp) was performed in 42 children (age 158 ± 267 days, range 1-1,194 days). We evaluated subjective and objective image quality, and radiation dose with filtered back projection (FBP) and different strength levels of ADMIRE. For comparison were 42 matched controls examined with a second-generation 128-slice dual-source CT-scanner (80 kVp). ADMIRE demonstrated improved objective and subjective image quality (P <.01). Mean signal/noise, contrast/noise and subjective image quality were 11.9, 10.0 and 1.9, respectively, for the 80 kVp mode and 11.2, 10.0 and 1.9 for the 70 kVp mode. With ADMIRE, the corresponding values for the 70 kVp mode were 13.7, 12.1 and 1.4 at strength level 2 and 17.6, 15.6 and 1.2 at strength level 4. Mean CTDI{sub vol}, DLP and effective dose were significantly lower with the 70-kVp mode (0.31 mGy, 5.33 mGy*cm, 0.36 mSv) compared to the 80-kVp mode (0.46 mGy, 9.17 mGy*cm, 0.62 mSv; P <.01). The third-generation dual-source CT at 70 kVp provided good objective and subjective image quality at lower radiation exposure. ADMIRE improved objective and subjective image quality. (orig.)

  4. Effects of side walls on facade flame entrainment and flame height from opening in compartment fires

    Directory of Open Access Journals (Sweden)

    Hu L.H.

    2013-11-01

    Full Text Available This paper presents an investigation of the side wall effects on facade flames ejected from the opening (such as a window of an under-ventilated room fire. Experiments are carried out in a reduced-scale experimental setup, consisting of a cubic fire compartment having an opening with a vertical facade wall and two side walls normal to the façade wall. By changing the distance of the two side walls, the facade flame heights for different opening conditions (width, height are recorded by a CCD camera. It is found that as the distance of the two side walls decreases the behavior the flame height can be distinguished into two regimes characterized by the dimensionless excess heat release rate, $skew5dot{Q}_{ex}^{ast}$ See Formula in PDF , outside the opening: (a for the “wall fire” (skew5dot{Q}_{ex}^{ast }$See Formula in PDF ≤ 1.3 , the flame height is shown to change little with decrease of side wall distance as the dominant entrainment is from the front direction (normal to the facade wall independent of the side wall distances; (b for the “axis-symmetrical fire” (\\skew5dot{Q}_{ex}^{ast}$ > 1.3, the flame height increases significantly with a decrease in side wall distance as both the entrainment from the two side directions (parallel to the facade wall and that from the front direction (normal to the facade wall together apply. A global physically based non-dimensional factor K is then brought forward based on the side wall constraint effect on the facade flame entrainment to characterize the side wall effect on the flame height, by accounting for the dimensionless excess heat release rate, the characteristic length scales of the opening as well as the side wall separation distance. The experimental data for different opening dimensions and side wall distances collapse by using this global non-dimensional factor.

  5. Investigation of Alien Wavelength Quality in Live Multi-Domain, Multi-Vendor Link Using Advanced Simulation Tool

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal; Nuijts, Roeland; Bjorn, Lars Lange

    2014-01-01

    This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength-division ......This article presents an advanced optical model for simulation of alien wavelengths in multi-domain and multi-vendor dense wavelength-division multiplexing networks. The model aids optical network planners with a better understanding of the non-linear effects present in dense wavelength......-division multiplexing systems and better utilization of alien wavelengths in future applications. The limiting physical effects for alien wavelengths are investigated in relation to power levels, channel spacing, and other factors. The simulation results are verified through experimental setup in live multi...

  6. Investigation of quality of life in the treatment of locally advanced and recurrent oropharyngeal cancer: State-of the-art

    Directory of Open Access Journals (Sweden)

    D. V. Sikorsky

    2015-01-01

    Full Text Available Postsurgical survival is considered to be indicators of treatment efficiency in most cases. However, the sociomedical rehabilitation of patients in this group is no less important; not only life expectancy, but also functional rehabilitation and quality of life are in the lead in patients with Stage III–IVA due to their low 2-year and much lower 5-year survival. The main efficiency criterion is patients, quality of life as compared to antitumor treatment programs in the absence of differences in survival.As the only chance of cure or life prolongation in most cases, multicomponent surgery for locally advanced and recurrent oropharyngeal cancer may be refused by a patient for fear of being lost to society. Identification of surgical treatment-induced changes in quality of life in patients may be used as a criterion for assessing the performed operations.The body's changes in a patient with otopharyngeal cancer are associated with impairment of basic physiological functions (deglutition, mastication, and breathing, sensitivity (taste, olfaction, and hearing, and individual characteristics of a human being (for example, appearance and voice. The quality of life is integral characteristics of the physical, psychological, emotional, and social functioning of a patient, which is based on his subjective perception. The methods for studying the quality of life include first of all questionnaires that are classified as general and special ones.The general questionnaires are intended to assess the quality of life of both healthy individuals and patients regardless of their disease; the special questionnaires are used to study that in certain categories and groups of patients. The general questionnaires allow the comparison of patients with a population of healthy people. Account must be also taken of the fact that the quality of life varies with age and comorbidities. A great deal of procedures for measuring the quality of life in different groups of

  7. Flame Retardation Modification of Paper-Based PVC Wallcoverings

    Directory of Open Access Journals (Sweden)

    Lin Hui

    2016-01-01

    Full Text Available The flame-retarded paper-based polyvinyl chloride (PVC wallcoverings were successfully prepared, using plant fiber paper as base material and adding inorganic flame retardants and flame-retarded plasticizer as additives. Flame retardancy, thermostability, smoke suppression and mechanical properties were tested regarding to the prepared wallcoverings. The results showed that 2ZnO·3B2O3·3.5H2O could improve flame retardancy and thermostability of paper-based PVC wallcoverings; plasticizer tricresyl phosphate increased flame retardancy of the prepared materials auxiliarily. Also, flame-retarded paper-based PVC wallcoverings with higher flame retardancy, smoke suppression and mechanical property was prepared using plant fiber paper with fix quantity of 90 g/m3 as base material, using 2ZnO·3B2O3·3.5H2O as inorganic flame retardant, and using tricresyl phosphate as plasticizer. For the flame-retarded paper-based PVC wallcoverings in this study, the limit oxygen index (LOI reaches 32.3, maximal smoke density is 16.91 %, and the horizontal and longitudinal wet tensile strength reaches 1.38 kN·m−1 and 1.51 kN·m−1 respectively. Meanwhile, its flame retardancy meets the requirements about flame retardancy for material Class B1 listed in Chinese National Standards GB 8624-2012, Classification for burning behavior of building materials and products. This research creates an effective path to prepare paper-based PVC wallcoverings with high flame retardancy.

  8. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  9. Lean premixed flames for low NO{sub x} combustors

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, P.; Tseng, L.; Bryjak, J. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1995-10-01

    Gas turbines are being used throughout the world to generate electricity. Due to increasing fuel costs and environmental concerns, gas turbines must meet stringent performance requirements, demonstrating high thermal efficiencies and low pollutant emissions. In order for U.S. manufactured gas turbines to stay competitive, their NO{sub x} levels must be below 10 ppm and their thermal efficiencies should approach 60%. Current technology is being stretched to achieve these goals. The twin goals of high efficiency and low NO{sub x} emissions require extending the operating range of current gas turbines. Higher efficiency requires operation at higher pressures and temperatures. Lower NO{sub x} emissions requires lower flame temperatures. Lower flame temperatures can be achieved through partially to fully pre-mixed combustion. However, increased performance and lower emissions result in a set of competing goals. In order to achieve a successful compromise between high efficiency and low NO{sub x} emissions, advanced design tools must be developed. One key design tool is a computationally efficient, high pressure, turbulent flow, combustion model capable of predicting pollutant formation in an actual gas turbine. Its development is the goal of this program. Achieving this goal requires completion of three tasks. The first task is to develop a reduced chemical kinetics model describing N{sub O}x formation in natural gas-air systems. The second task is to develop a computationally efficient model that describes turbulence-chemistry interactions. The third task is to incorporate the reduced chemical kinetics and turbulence-chemistry interaction models into a commercially available flow solver and compare its predictions with experimental data obtained under carefully controlled conditions so that the accuracy of model predictions can be evaluated.

  10. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics-Three Decades of High-Quality, Technically-Rigorous Normalization

    Science.gov (United States)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high-quality, technically-rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards contain testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards are used to generate accurate, reliable, repeatable and complete data. Within Committee C28, users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, 50 standards since the Committee's founding in 1986. This paper provides a detailed retrospective of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of standards for advanced ceramics to demonstrate their practical applications.

  11. Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide.

    Science.gov (United States)

    Cebon, J; Findlay, M; Hargreaves, C; Stockler, M; Thompson, P; Boyer, M; Roberts, S; Poon, A; Scott, A M; Kalff, V; Garas, G; Dowling, A; Crawford, D; Ring, J; Basser, R; Strickland, A; Macdonald, G; Green, M; Nowak, A; Dickman, B; Dhillon, H; Gebski, V

    2006-10-09

    Octreotide may extend survival in hepatocellular carcinoma (HCC). Forty-one per cent of HCCs have high-affinity somatostatin receptors. We aimed to determine the feasibility, safety, and activity of long-acting octreotide in advanced HCC; to identify the best method for assessing somatostatin receptor expression; to relate receptor expression to clinical outcomes; and to evaluate toxicity. Sixty-three patients with advanced HCC received intramuscular long-acting octreotide 20 mg monthly until progression or toxicity. Median age was 67 years (range 28-81 years), male 81%, Child-Pugh A 83%, and B 17%. The aetiologies of chronic liver disease were alcohol (22%), viral hepatitis (44%), and haemochromatosis (6%). Prior treatments for HCC included surgery (8%), chemotherapy (2%), local ablation (11%), and chemoembolisation (6%). One patient had an objective partial tumour response (2%, 95% CI 0-9%). Serum alpha-fetoprotein levels decreased more than 50% in four (6%). Median survival was 8 months. Thirty four of 61 patients (56%) had receptor expression detected by scintigraphy; no clear relationship with clinical outcomes was identified. There were few grade 3 or 4 toxicities: hyperglycaemia (8%), hypoglycaemia (2%), diarrhoea (5%), and anorexia (2%). Patients reported improvements in some symptoms, but no major changes in quality of life were detected. Long-acting octreotide is safe in advanced HCC. We found little evidence of anticancer activity. A definitive randomised trial would identify whether patients benefit from this treatment in other ways.

  12. "Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidrectional Ammonia Flux in CMAQ"

    Science.gov (United States)

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  13. Advances in Linked Air Quality, Farm Management and Biogeochemistry Models to Address Bidirectional Ammonia Flux in CMAQ

    Science.gov (United States)

    Recent increases in anthropogenic inputs of nitrogen to air, land and water media pose a growing threat to human health and ecosystems. Modeling of air-surface N flux is one area in need of improvement. Implementation of a linked air quality and cropland management system is de...

  14. Advanced spraying techniques in fruit growing--the ISAFRUIT project--towards safer and better quality of fruit

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Meuleman, J.; Doruchowski, G.; Balsari, P.; Marucco, P.

    2009-01-01

    In 2006 the project ISAFRUIT (www.isafruit.org)--"Increasing fruit consumption through a trans disciplinary approach leading to high quality produce from environmentally safe, sustainable methods"--was launched within the 6th Framework Program of the EC. Within the project's work package ECOFRUIT (W

  15. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  16. The association of quality of life with potentially remediable disruptions of circadian sleep/activity rhythms in patients with advanced lung cancer

    Directory of Open Access Journals (Sweden)

    Braun Donald P

    2011-05-01

    Full Text Available Abstract Background Cancer patients routinely develop symptoms consistent with profound circadian disruption, which causes circadian disruption diminished quality of life. This study was initiated to determine the relationship between the severity of potentially remediable cancer-associated circadian disruption and quality of life among patients with advanced lung cancer. Methods We concurrently investigated the relationship between the circadian rhythms of 84 advanced lung cancer patients and their quality of life outcomes as measured by the EORTC QLQ C30 and Ferrans and Powers QLI. The robustness and stability of activity/sleep circadian daily rhythms were measured by actigraphy. Fifty three of the patients in the study were starting their definitive therapy following diagnosis and thirty one patients were beginning second-line therapy. Among the patients who failed prior therapy, the median time between completing definitive therapy and baseline actigraphy was 4.3 months, (interquartile range 2.1 to 9.8 months. Results We found that circadian disruption is universal and severe among these patients compared to non-cancer-bearing individuals. We found that each of these patient's EORTC QLQ C30 domain scores revealed a compromised capacity to perform the routine activities of daily life. The severity of several, but not all, EORTC QLQ C30 symptom items correlate strongly with the degree of individual circadian disruption. In addition, the scores of all four Ferrans/Powers QLI domains correlate strongly with the degree of circadian disruption. Although Ferrans/Powers QLI domain scores show that cancer and its treatment spared these patients' emotional and psychological health, the QLI Health/Function domain score revealed high levels of patients' dissatisfaction with their health which is much worse when circadian disruption is severe. Circadian disruption selectively affects specific Quality of Life domains, such as the Ferrans/Powers Health

  17. Nurse Mentors to Advance Quality Improvement in Primary Health Centers: Lessons From a Pilot Program in Northern Karnataka, India.

    Science.gov (United States)

    Fischer, Elizabeth A; Jayana, Krishnamurthy; Cunningham, Troy; Washington, Maryann; Mony, Prem; Bradley, Janet; Moses, Stephen

    2015-12-01

    High-quality care during labor, delivery, and the postpartum period is critically important since maternal and child morbidity and mortality are linked to complications that arise during these stages. A nurse mentoring program was implemented in northern Karnataka, India, to improve quality of services at primary health centers (PHCs), the lowest level in the public health system that offers basic obstetric care. The intervention, conducted between August 2012 and July 2014, employed 53 full-time nurse mentors and was scaled-up in 385 PHCs in 8 poor rural districts. Each mentor was responsible for 6 to 8 PHCs and conducted roughly 6 mentoring visits per PHC in the first year. This paper reports the results of a qualitative inquiry, conducted between September 2012 and April 2014, assessing the program's successes and challenges from the perspective of mentors and PHC teams. Data were gathered through 13 observations, 9 focus group discussions with mentors, and 25 individual and group interviews with PHC nurses, medical officers, and district health officers. Mentors and PHC staff and leaders reported a number of successes, including development of rapport and trust between mentors and PHC staff, introduction of team-based quality improvement processes, correct and consistent use of a new case sheet to ensure adherence to clinical guidelines, and increases in staff nurses' knowledge and skills. Overall, nurses in many PHCs reported an increased ability to provide care according to guidelines and to handle maternal and newborn complications, along with improvements in equipment and supplies and referral management. Challenges included high service delivery volumes and/or understaffing at some PHCs, unsupportive or absent PHC leadership, and cultural practices that impacted quality. Comprehensive mentoring can build competence and improve performance by combining on-the-job clinical and technical support, applying quality improvement principles, and promoting team

  18. Flame Retardant Polyamide Fibres: The Challenge of Minimising Flame Retardant Additive Contents with Added Nanoclays

    Directory of Open Access Journals (Sweden)

    Richard Horrocks

    2016-08-01

    Full Text Available This work shows that halogen-free, flame retarded polyamide 6 (PA6, fabrics may be produced in which component fibres still have acceptable tensile properties and low levels (preferably ≤10 wt % of additives by incorporating a nanoclay along with two types of flame retardant formulations. The latter include (i aluminium diethyl phosphinate (AlPi at 10 wt %, known to work principally in the vapour phase and (ii ammonium sulphamate (AS/dipentaerythritol (DP system present at 2.5 and 1 wt % respectively, believed to be condense phase active. The nanoclay chosen is an organically modified montmorillonite clay, Cloisite 25A. The effect of each additive system is analysed in terms of its ability to maximise both filament tensile properties relative to 100% PA6 and flame retardant behaviour of knitted fabrics in a vertical orientation. None of the AlPi-containing formulations achieved self-extinguishability, although the presence of nanoclay promoted lower burning and melt dripping rates. The AS/DP-containing formulations with total flame retardant levels of 5.5 wt % or less showed far superior properties and with nanoclay, showed fabric extinction times ≤ 39 s and reduced melt dripping. The tensile and flammability results, supported by thermogravimetric analysis, have been interpreted in terms of the mechanism of action of each flame retardant/nanoclay type.

  19. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames

    Science.gov (United States)

    Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.

    2016-10-01

    Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.

  20. Analytical study in the mechanism of flame movement in horizontal tubes. II. Flame acceleration in smooth open tubes

    CERN Document Server

    Kazakov, Kirill A

    2013-01-01

    The problem of spontaneous acceleration of premixed flames propagating in open horizontal tubes with smooth walls is revisited. It is proved that in long tubes, this process can be considered quasi-steady, and an equation for the flame front position is derived using the on-shell description. Numerical solutions of this equation are found which show that as in the case of uniform flame movement, there are two essentially different regimes of flame propagation. In the type I regime, the flame speed and its acceleration are comparatively low, whereas the type II regime is characterized by significant flame acceleration that rapidly increases as the flame travels along the tube. A detailed comparison of the obtained results with the experimental data on flame acceleration in methane-air mixtures is given. In particular, it is confirmed that flames propagating in near-stoichiometric mixtures and mixtures near the limits of inflammability belong to the types II and I, respectively, whereas flames in transient mixt...

  1. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  2. Parametric Erosion Investigation: Propellant Adiabatic Flame Temperature

    Directory of Open Access Journals (Sweden)

    P. J. Conroy

    2002-01-01

    Full Text Available The influence of quasi-independent parameters and their potential influence on erosion in guns have been investigated. Specifically, the effects of flame temperature and the effect of assuming that the Lewis number (ratio of mass-to-heat transport to the surface, Le = 1, has been examined. The adiabatic flame temperature for a propellant was reduced by the addition of a diluent from a high temperature of 3843 K (similar to that of M9 down to 3004 K, which is near the value for M30A1 propellant. Mass fractions of critical species at the surface with and without the assumption of Le = 1 are presented, demonstrating that certain species preferentially reach the surface providing varied conditions for the surface reactions. The results for gun tube bore surface regression qualitatively agree with previous studies and with current experimental data.

  3. QA (Quality Assurance) role in advanced energy activities: Towards an /open quotes/orthodox/close quotes/ Quality Program: Canonizing the traditions at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.W.

    1988-02-01

    After a brief description of the goal of Fermi National Accelerator Laboratory (Fermilab) this paper poses and answers three questions related to Quality Assurance (QA) at the Laboratory. First, what is the difference between 'orthodox' and 'unorthodox' QA and is there a place for 'orthodox' QA at a laboratory like Fermilab. Second, are the deeper philosophical and cultural frameworks of high-energy physics acommodating or antagonistic to an 'orthodox' QA Program. Finally, faced with the task of developing an institutional QA program for Fermilab where does one begin. The paper is based on experience with the on-going development and implementation of an institutional QA Program at Fermilab. 10 refs.

  4. Application of simultaneous determination of inorganic ionic species by advanced ion chromatography for water quality monitoring of river water and wastewater

    Institute of Scientific and Technical Information of China (English)

    Nobutake NAKATANI; Daisuke KOZAKI; Kazuhiko TANAKA

    2012-01-01

    In this study,our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions ( SO42 -,Cl- and NO3- ) and cations (Na+,NH4+,K+,Mg2+,and Ca2 + ),nutrients ( phosphate and silicate) and hydrogen ion/alkalinity are summarized first.Then,the applications using these methods for monitoring environmental water quality are also presented.For the determination of common anions and cations with nutrients,the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C ( Tosoh,150 mm x 6.0 mm i.d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry.For the determination of hydrogen ion/alkelinity,the separation was conducted by TSKgel ODS-100Z column (Tosoh,150 mm ×4.5 mm i.d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector.The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant.Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed.From these results,our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.

  5. Computational and experimental study of laminar flames

    Energy Technology Data Exchange (ETDEWEB)

    Smooke, Mitchell [Yale Univ., New Haven, CT (United States)

    2015-05-29

    During the past three years, our research has centered on an investigation of the effects of complex chemistry and detailed transport on the structure and extinction of hydrocarbon flames in coflowing axisymmetric configurations. We have pursued both computational and experimental aspects of the research in parallel on both steady-state and time-dependent systems. The computational work has focused on the application of accurate and efficient numerical methods for the solution of the steady-state and time-dependent boundary value problems describing the various reacting systems. Detailed experimental measurements were performed on axisymmetric coflow flames using two-dimensional imaging techniques. Previously, spontaneous Raman scattering, chemiluminescence, and laser-induced fluorescence were used to measure the temperature, major and minor species profiles. Particle image velocimetry (PIV) has been used to investigate velocity distributions and for calibration of time-varying flames. Laser-induced incandescence (LII) with an extinction calibration was used to determine soot volume fractions, while soot surface temperatures were measured with three-color optical pyrometry using a color digital camera. A blackbody calibration of the camera allows for determination of soot volume fraction as well, which can be compared with the LII measurements. More recently, we have concentrated on a detailed characterization of soot using a variety of techniques including time-resolved LII (TiRe-LII) for soot primary particles sizes, multi-angle light scattering (MALS) for soot radius of gyration, and spectrally-resolved line of sight attenuation (spec-LOSA). Combining the information from all of these soot measurements can be used to determine the soot optical properties, which are observed to vary significantly depending on spatial location and fuel dilution. Our goal has been to obtain a more fundamental understanding of the important fluid dynamic and chemical interactions in

  6. Physical and Chemical Processes in Flames

    Science.gov (United States)

    2007-09-01

    reaction rate constants was developed to model these measured laminar flame speeds as well as a wide spectrum of other experimental data. The kinetic ...temperatures of dimethyl ether ( DME ) and 1,3-butadiene, allowing developments of detailed and reduced reaction mechanisms. A mathematical theory and...and improvement of the existing reaction mechanisms. Furthermore, the ignition temperatures of counterflowing dimethyl ether ( DME ) and 1,3-butadiene

  7. New developments in the theory of flame propagation

    Energy Technology Data Exchange (ETDEWEB)

    Sivashinsky, G.I. [City College of the City Univ. of New York, NY (United States)

    1996-12-31

    Two topics in combustion fluid mechanics are discussed. The first is a theory of the outward propagating spherical flame in the regime of well-developed hydrodynamic instability. In a qualitative agreement with experimental observations it is shown that the flame assumes a fractal-like wrinkled structure resulting in the overall burning rate acceleration. In contrast to hydrodynamically unstable flames, the expanding flame subject exclusively to the effect of diffusive instability does not indicate any disposition toward acceleration. The second topic concerns the dynamics of diffusively unstable flames subjected to radiative heat losses. At high enough heat losses the flame breaks up into separate self-propagating cap-like flamelets while a significant portion of the fuel remains unconsumed.

  8. Real-time Flame Rendering with GPU and CUDA

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2011-02-01

    Full Text Available This paper proposes a method of flame simulation based on Lagrange process and chemical composition, which was non-grid and the problems associated with there grids were overcome. The turbulence movement of flame was described by Lagrange process and chemical composition was added into flame simulation which increased the authenticity of flame. For real-time applications, this paper simplified the EMST model. GPU-based particle system combined with OpenGL VBO and PBO unique technology was used to accelerate finally, the speed of vertex and pixel data interaction between CPU and GPU increased two orders of magnitude, frame rate of rendering increased by 30%, which achieved fast dynamic flame real-time simulation. For further real-time applications, this paper presented a strategy to implement flame simulation with CUDA on GPU, which achieved a speed up to 2.5 times the previous implementation.

  9. The research of far infrared flame retardant polyester staple fiber

    Science.gov (United States)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  10. Advancing the Potential of Citizen Science for Urban Water Quality Monitoring: Exploring Research Design and Methodology in New York City

    Science.gov (United States)

    Hsueh, D.; Farnham, D. J.; Gibson, R.; McGillis, W. R.; Culligan, P. J.; Cooper, C.; Larson, L.; Mailloux, B. J.; Buchanan, R.; Borus, N.; Zain, N.; Eddowes, D.; Butkiewicz, L.; Loiselle, S. A.

    2015-12-01

    Citizen Science is a fast-growing ecological research tool with proven potential to rapidly produce large datasets. While the fields of astronomy and ornithology demonstrate particularly successful histories of enlisting the public in conducting scientific work, citizen science applications to the field of hydrology have been relatively underutilized. We demonstrate the potential of citizen science for monitoring water quality, particularly in the impervious, urban environment of New York City (NYC) where pollution via stormwater runoff is a leading source of waterway contamination. Through partnerships with HSBC, Earthwatch, and the NYC Water Trail Association, we have trained two citizen science communities to monitor the quality of NYC waterways, testing for a suite of water quality parameters including pH, turbidity, phosphate, nitrate, and Enterococci (an indicator bacteria for the presence of harmful pathogens associated with fecal pollution). We continue to enhance these citizen science programs with two additions to our methodology. First, we designed and produced at-home incubation ovens for Enterococci analysis, and second, we are developing automated photo-imaging for nitrate and phosphate concentrations. These improvements make our work more publicly accessible while maintaining scientific accuracy. We also initiated a volunteer survey assessing the motivations for participation among our citizen scientists. These three endeavors will inform future applications of citizen science for urban hydrological research. Ultimately, the spatiotemporally-rich dataset of waterway quality produced from our citizen science efforts will help advise NYC policy makers about the impacts of green infrastructure and other types of government-led efforts to clean up NYC waterways.

  11. Application of ICH Q9 Quality Risk Management Tools for Advanced Development of Hot Melt Coated Multiparticulate Systems.

    Science.gov (United States)

    Stocker, Elena; Becker, Karin; Hate, Siddhi; Hohl, Roland; Schiemenz, Wolfgang; Sacher, Stephan; Zimmer, Andreas; Salar-Behzadi, Sharareh

    2017-01-01

    This study aimed to apply quality risk management based on the The International Conference on Harmonisation guideline Q9 for the early development stage of hot melt coated multiparticulate systems for oral administration. N-acetylcysteine crystals were coated with a formulation composing tripalmitin and polysorbate 65. The critical quality attributes (CQAs) were initially prioritized using failure mode and effects analysis. The CQAs of the coated material were defined as particle size, taste-masking efficiency, and immediate release profile. The hot melt coated process was characterized via a flowchart, based on the identified potential critical process parameters (CPPs) and their impact on the CQAs. These CPPs were prioritized using a process failure mode, effects, and criticality analysis and their critical impact on the CQAs was experimentally confirmed using a statistical design of experiments. Spray rate, atomization air pressure, and air flow rate were identified as CPPs. Coating amount and content of polysorbate 65 in the coating formulation were identified as critical material attributes. A hazard and critical control points analysis was applied to define control strategies at the critical process points. A fault tree analysis evaluated causes for potential process failures. We successfully demonstrated that a standardized quality risk management approach optimizes the product development sustainability and supports the regulatory aspects.

  12. Applications of Computer Vision for Assessing Quality of Agri-food Products: A Review of Recent Research Advances.

    Science.gov (United States)

    Ma, Ji; Sun, Da-Wen; Qu, Jia-Huan; Liu, Dan; Pu, Hongbin; Gao, Wen-Hong; Zeng, Xin-An

    2016-01-01

    With consumer concerns increasing over food quality and safety, the food industry has begun to pay much more attention to the development of rapid and reliable food-evaluation systems over the years. As a result, there is a great need for manufacturers and retailers to operate effective real-time assessments for food quality and safety during food production and processing. Computer vision, comprising a nondestructive assessment approach, has the aptitude to estimate the characteristics of food products with its advantages of fast speed, ease of use, and minimal sample preparation. Specifically, computer vision systems are feasible for classifying food products into specific grades, detecting defects, and estimating properties such as color, shape, size, surface defects, and contamination. Therefore, in order to track the latest research developments of this technology in the agri-food industry, this review aims to present the fundamentals and instrumentation of computer vision systems with details of applications in quality assessment of agri-food products from 2007 to 2013 and also discuss its future trends in combination with spectroscopy.

  13. Effect of Intense Sound Waves on a Stationary Gas Flame

    Science.gov (United States)

    Hahnemann, H; Ehret, L

    1950-01-01

    Intense sound waves with a resonant frequency of 5000 cycles per second were imposed on a stationary propane-air flame issuing from a nozzle. In addition to a slight increase of the flame velocity, a fundamental change both in the shape of the burning zone and in the flow pattern could be observed. An attempt is made to explain the origin of the variations in the flame configuration on the basis of transition at the nozzle from jet flow to potential flow.

  14. Flame dynamics in a micro-channeled combustor

    Science.gov (United States)

    Hussain, Taaha; Markides, Christos N.; Balachandran, Ramanarayanan

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  15. Laser-induced fluorescence in high pressure solid propellant flames.

    Science.gov (United States)

    Edwards, T; Weaver, D P; Campbell, D H

    1987-09-01

    The application of laser-induced fluorescence (LIF) to the study of high pressure solid propellant flames is described. The distribution of the OH and CN radicals was determined in several solid propellant flames at pressures up to 3.5 MPa. The greatest difficulty in these measurements was the separation of the desired LIF signals from the large scattering at the laser wavelength from the very optically thick propellant flames. Raman experiments using 308-nm excitation were also attempted in the propellant flames but were unsuccessful due to LIF interferences from OH and NH.

  16. Flame fronts in Supernovae Ia and their pulsational stability

    CERN Document Server

    Glazyrin, S I; Dolgov, A D

    2013-01-01

    The structure of the deflagration burning front in type Ia supernovae is considered. The parameters of the flame are obtained: its normal velocity and thickness. The results are in good agreement with previous work of different authors. After that the question of pulsational instability of the flame subject to plane perturbations is considered. The flame can be unstable if hydrodynamics can be ignored, e.g. in solid-body propellants. However, with account of hydrodynamics we find that the flame in type Ia supernovae is pulsationally stable with realistic parameters of reactions and thermal conduction.

  17. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid;

    High-temperature flame processes can be applied as a tool for chemical product engineering. The general principle behind flame synthesis is the decomposition/oxidation of evaporated metal-precursors in a flame, thereby forming metal oxide monomers which nucleate, aggregate, and - to some extent...... product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...

  18. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  19. Research on Alkaline Filler Flame-Retarded Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; ZHANG Houji; WANG Jiaolan

    2006-01-01

    Used as flame retardant of tunnel asphalt pavement, organic bromides produce a large amount of poisons and smoke in construction and flame retardation stage. The alkaline filler was found to replace mineral filler, and the flame-retarded asphalt mixtures were produced. Experimental results show that these asphalt mixtures are smoke restrained; the performances and construction technology of asphalt pavement are not influenced; also the alkaline filler is of low-price. So this kind of flame-retarded asphalt mixtures is suitable for tunnel pavement.

  20. Analytical Interaction of the Acoustic Wave and Turbulent Flame

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2007-01-01

    A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically.Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

  1. TG-FTIR characterization of flame retardant polyurethane foams materials

    Science.gov (United States)

    Liu, W.; Tang, Y.; Li, F.; Ge, X. G.; Zhang, Z. J.

    2016-07-01

    Dimethyl methylphosphonate (DMMP) and trichloroethyl phosphtate (TCEP) have been used to enhance the flame retardancy of polyurethane foams materials (PUF). Flame retardancy and thermal degradation of PUF samples have been investigated by the LOI tests and thermal analysis. The results indicate that the excellent flame retardancy can be achieved due to the presence of the flame retardant system containing DMMP and TCEP. TG-FTIR reveals that the addition of DMMP/TCEP can not only improve the thermal stability of PUF samples but can also affect the gaseous phase at high temperature.

  2. POLYAMIDE 6 WITH A FLAME RETARDANT ENCAPSULATED BY POLYAMIDE 66: FLAME RETARDATION, THERMO-DECOMPOSITION AND THE POTENTIAL MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Wei-cheng Xiong; Li Chen; Bin Zhao; De-yi Wang; Yu-zhong Wang

    2012-01-01

    A novel encapsulated flame retardant containing phosphorus-nitrogen (MSMM-Al-P) was prepared by encapsulating with polyamide 66 (PA66-MSMM-Al-P) for the flame retardation of polyamide 6 (PA6).The structure and thermal properties of PA66-MSMM-Al-P were characterized by Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy and thermogravimetric analysis.The flammability of PA6 containing' flame retardants (MSMMAl-P and PA66-MSMM-Al-P) was investigated by the limiting oxygen index test,vertical burning test and cone calorimeter.The flame retardancy and cone calorimetric analyses suggested a synergistic effect between PA66 and MSMM-Al-P in the flame-retardant PA6.Thermal stability of the flame-retardant PA6 was also investigated.

  3. A Novel Process for High-efficient Synthesis of One-dimensional Carbon Nanoraaterials from Flames

    Institute of Scientific and Technical Information of China (English)

    Xiang QI; Jun ZHANG; Chunxu PAN

    2008-01-01

    The substrate pre-treatment plays a key role in obtaining hollow-cored carbon nanotubes (CNTs) and solidcored carbon nanofibers (CNFs) from flames. This paper introduces a simply and high-efficient process by coating a NiSO4 or FeSO4 layer on the substrate as catalyst precursors. Comparing with the regular pretreatment methods, the present experiments showed that the coating pre-treatment provided the following advantages: 1) greatly shortening the synthesis time; 2) available variant substrates and carbon sources; 3) narrowing the diameters distribution. The sulfate is considered to be a crucial factor at the growth of CNTs and CNFs, because it increases the surface energy of catalyst particles and the surface specificity of sulfurs action in metallic grains. This novel process provides a possibility for high quality and mass production of CNTs and CNFs from flames.

  4. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  5. Litter decomposition over broad spatial and long time scales investigated by advanced solid-state NMR: insight into effects of climate, litter quality, and time

    Science.gov (United States)

    Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.

    2012-12-01

    Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.

  6. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  7. Investigations of two-phase flame propagation under microgravity conditions

    Science.gov (United States)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets

  8. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    Science.gov (United States)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  9. [Quality of advanced practice nurse counseling in home care settings (APN-BQ): psychometric testing of the instrument].

    Science.gov (United States)

    Petry, Heidi; Suter-Riederer, Susanne; Kerker-Specker, Carmen; Imhof, Lorenz

    2014-12-01

    Hintergrund: Patientenzentrierte und individuell ausgerichtete Angebote, wie die häusliche Beratung durch Pflegeexpertinnen-APN (Advanced Practice Nurses), eignen sich besonders, chronisch kranke alte Menschen in einer möglichst selbstständigen Lebensführung zu unterstützen. Methode: Um die Qualität einer patientenzentrierten Beratung zu evaluieren, wurde ein 23-Item Instrument entwickelt und seine psychometrischen Eigenschaften mit einer Stichprobe von 206 Personen, die 80 Jahre und älter waren getestet. Ziel: Ziel dieses Artikels ist es, die Entwicklung und Evaluation des APN-BQ zu beschreiben. Die psychometrische Testung des Instruments erfolgte anhand einer Hauptkomponentenanalyse mit Varimax-Rotation. Ergebnisse: Die Analyse ergab eine stabile vier Faktorenstruktur (FS = 0,91) mit 19 Items. Alle Faktoren hatten eine Faktorladung > 0,45. Die interne Konsistenz der Gesamtskala ergab einen Wert von Cronbachs alpha 0,86. Die hohe Rücklaufquote der Fragebogen und die Tatsache, dass 98,8 % der Fragen beantwortet wurden, bestätigten die Anwendungsfreundlichkeit und Akzeptanz des Instruments. Schlussfolgerungen: Das APN-BQ erwies sich als zuverlässiges und in Bezug auf Inhalt und Konstrukt valides Instrument, die Struktur-, Prozess- und Ergebnisqualität einer patientenzentrierten Beratungsintervention in der gemeindenahen Versorgung sowie das Ausmaß der Partizipation und Selbstbefähigung (Empowerment) der zu Beratenden zu messen.

  10. [The certification of advanced therapy medicinal products. A quality label for product development in small and medium-sized enterprises].

    Science.gov (United States)

    Berger, A; Schüle, S; Flory, E

    2011-07-01

    Advanced therapy medicinal products (ATMPs) are gene therapy, cell therapy, and tissue engineered products. To gain access to the market within the European Union, ATMPs must be authorized by the European Commission (EC). Especially for small and medium-sized enterprises (SMEs), the European centralized procedure of marketing authorization that is conducted by the European Medicines Agency (EMA) constitutes a major challenge, because SMEs often have little experience with regulatory procedures and many have limited financial possibilities. To tackle these challenges, a certification procedure exclusively for SMEs and their ATMP development was introduced by the EC. Independently from a marketing authorization application, development and/or production processes can be certified. An issued certificate demonstrates that the respective process meets the current regulatory and scientific requirements of the EMA, representing a valuable milestone for putative investors and licensees. This article highlights the background, the detailed procedure, the minimum requirements, as well as the costs of certification, while giving further noteworthy guidance for interested parties.

  11. In-Flame Characterization of a 30 MWth Bio-Dust Flame

    DEFF Research Database (Denmark)

    Johansen, Joakim Myung; Jensen, Peter Arendt; Clausen, Sønnik;

    This work presents a comprehensive flame characterization campaign on an operating full-scale Danish power plant. Amagerværket Unit 1 (AMV1, 350 MWth, 12 identical burners on 3 burner levels) is 100 % fuelled with wood dust burned in suspension and stabilized by swirling flows in a triple...

  12. Effect of Flame Conditions on Crystalline Structure of TiO2 in Liquid Flame Spraying

    Institute of Scientific and Technical Information of China (English)

    LI Chang-jiu; YANG Guan-jun; WANG Yu-yue

    2004-01-01

    Nanostructured TiO2 is a most promising functional ceramic owing to its potential utilization in photocatalytical, optical and electrical applications. Nanostructured TiO2 coating was deposited through thermal spraying with liquid feedstock. Two types of crystalline structures were present in the synthesized TiO2 coating including anatase phase and rutile phase.The effect of spray flame conditions on the crystalline structure was investigated in order to control the crystalline structure of the coating. The results showed that spray distance, flame power and precursor concentration in the liquid feedstock significantly influenced phase constitutions and grain size in the coating. Anatase phase was formed at spray distance from 150 to 250mm, while rutile phase was evidently observed in the coating deposited at 100 mm. The results suggested that anatase phase was firstly formed in the coating, and rutile phase resulted from the transformation of the deposited anatase phase. The phase transformation from anatase to rutile occurred through the annealing effect of spraying flame. The control of the phase formation can be realized through flame condition and spray distance.

  13. Developing a Patient Care Co-ordination Centre in Trafford, England: lessons from the International Foundation for Integrated Care (IFIC/Advancing Quality Alliance integrated care fellowship experience

    Directory of Open Access Journals (Sweden)

    Michael Gregory

    2015-05-01

    Full Text Available The NHS and Social Care in England are facing one of the biggest financial challenges for a generation. Commissioners and providers need to work on collaborative schemes to manage the increasing demand on health and social care within a period of financial constraint. Different forms of care co-ordination have been developed at different levels across the world.In the north-west of England, the Trafford health and social care economy have been working through a competitive dialogue process with industry to develop an innovative and dynamic solution to deliver seamless co-ordination for all patients and service users. The strategy is to develop a new Patient Care Co-ordination Centre, which will be responsible for the delivery of co-ordinated, quality care. The Patient Care Co-ordination Centre will work at clinical, service, functional and community levels across multiple providers covering risk stratification, preventative, elective and unscheduled care.I am the clinical lead for the Patient Care Co-ordination Centre and during my year as an Advancing Quality Alliance Integrated Care Fellow, I have had the opportunity to study examples of care coordination from UK and international sites. The learning from these visits has been assimilated into the design process of the Patient Care Co-ordination Centre.

  14. Nanotechnology finding its way into flame retardancy

    Energy Technology Data Exchange (ETDEWEB)

    Schartel, Bernhard, E-mail: bernhard.schartel@bam.de [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany)

    2014-05-15

    Nanotechnology is one of the key technologies of the 21{sup st} century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix.

  15. Atmospheric Pressure Plasma Based Flame Control and Diagnostics

    Science.gov (United States)

    2015-01-01

    TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Atmospheric Pressure Plasma Based Flame Control and Diagnostics 5a...to 10%)  Flame speed enhancement (>20%)  Extension of lean limit (factor of two)  Distributed ignition  Development of new diagnostics

  16. Laminar dust flames in a reduced-gravity environment

    Science.gov (United States)

    Goroshin, Samuel; Tang, Francois-David; Higgins, Andrew J.; Lee, John H. S.

    2011-04-01

    The propagation of laminar dust flames in suspensions of iron in gaseous oxidizers was studied in a low-gravity environment onboard a parabolic flight aircraft. The reduction of buoyancy-induced convective flows and particle settling permitted the measurement of fundamental combustion parameters, such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. Experimentally measured flame speeds and quenching distances were found in good agreement with theoretical predictions of a simplified analytical model that assumes particles burning in a diffusive mode. However, the comparison of flame speeds in oxygen-argon and oxygen-helium iron suspensions indicates the possibility that fine micron-sized particles burn in the kinetic mode. Furthermore, when the particle spacing is large compared to the scale of the reaction zone, a theoretical analysis suggests the existence of a new so-called discrete flame propagation regime. Discrete flames are strongly dependent on particle density fluctuations and demonstrate directed percolation behavior near flame propagation limits. The experimental observation of discrete flames in particle suspensions will require low levels of gravity over extended periods available only on orbital platforms.

  17. Characteristics of premixed, laminar CO/N2O flames

    NARCIS (Netherlands)

    Kalff, P.J.; Alkemade, C.T.J.

    1972-01-01

    Several properties are studied of fuel-rich (CO:N2O = 1.5:1) and stoichiometrie (CO:N2O = 1:1) carbon monoxide/nitrous oxide flames with varying water content up to 10%. Flame temperatures, ranging from 2680 to 2860°K. are measured with the line-reversal method, and compared with calculated adiabati

  18. An investigation of streaklike instabilities in laminar boundary layer flames

    Science.gov (United States)

    Miller, Colin; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael

    2016-11-01

    Observations of coherent structures in boundary layer flames, particularly wildland fires, motivated an investigation on flame instabilities within a boundary layer. This experimental study examined streaklike structures in a stationary diffusion flame stabilized within a laminar boundary layer. Flame streaks were found to align with pre-existing velocity perturbations, enabling stabilization of these coherent structures. Thermocouple measurements were used to quantify streamwise amplification of flame streaks. Temperature mapping indicated a temperature rise in the flame streaks, while the region in between these streaks, the trough, decreased in temperature. The heat flux to the surface was measured with a total heat flux gauge, and the heat flux below the troughs was found to be higher at all measurement locations. This was likely a function of the flame standoff distance, and indicated that the flame streaks were acting to modify the spanwise distribution of heat flux. Instabilities in boundary layer combustion can have an effect on the spanwise distribution of heat transfer. This finding has significant implications for boundary layer combustion, indicating that instantaneous properties can vary significantly in a three-dimensional flow field.

  19. Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations

    Science.gov (United States)

    Ne´el, Bastien; Crespo, Gasto´n A.; Perret, Didier; Cherubini, Thomas; Bakker, Eric

    2014-01-01

    A flame emission spectrometer was built in-house for the purpose of introducing this analytical technique to students at the high school level. The aqueous sample is sprayed through a homemade nebulizer into the air inlet of a consumer-grade propane camping burner. The resulting flame is analyzed by a commercial array spectrometer for the visible…

  20. 46 CFR 151.03-25 - Flame screen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Flame screen. 151.03-25 Section 151.03-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-25 Flame screen. A fitted single screen...

  1. Aspects of Cool-Flame Supported Droplet Combustion in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.

    2015-01-01

    Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.

  2. Measurement and Modeling of Particle Radiation in Coal Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker;

    2014-01-01

    properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information...

  3. FIBRED MAGNESIUM HYDROXIDE AND FLAME-RESISTANT POLYENE MATERIAL

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The fibred mangesiun hydroxide from the bracite was treated with a surface active agent. The modified fibred magesium hydroxide as f lame-retardant,boric acid, barium stearate, polydimethyl siloxane fluid,vinyltr iethoxysilane as synergists of the flame-retardant were added to polyene resin. The flame-resistance polyene material prepared meets the requirements of EWCZ -6287-1.

  4. 49 CFR 195.438 - Smoking or open flames.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Smoking or open flames. 195.438 Section 195.438 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Operation and Maintenance § 195.438 Smoking or open flames. Each operator shall prohibit...

  5. 30 CFR 57.6904 - Smoking and open flames.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 57.6904 Section 57.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... General Requirements-Surface and Underground § 57.6904 Smoking and open flames. Smoking and use of...

  6. 30 CFR 75.600 - Trailing cables; flame resistance.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables; flame resistance. 75.600 Section 75.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... cables; flame resistance. Trailing cables used in coal mines shall meet the requirements established...

  7. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  8. Oxyhydrogen burner for low-temperature flame fusion

    Science.gov (United States)

    Ueltzen, M.; Brüggenkamp, T.; Franke, M.; Altenburg, H.

    1993-04-01

    An oxyhydrogen burner as described in this article enables the growth of crystals by Verneuil's technique at temperatures of about 1000 °C. The powder fed to the crystal passes along a low-temperature pathway through the flame, so that evaporation of volatile components is prevented. Low-temperature flame fusion of superconducting Y-Ba-cuprate is reported.

  9. SU-C-BRD-05: Implementation of Incident Learning in the Safety and Quality Management of Radiotherapy: The Primary Experience in a New Established Program with Advanced Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Wang, J [Peking University Third Hospital, Beijing, Beijing (China)

    2014-06-15

    Purpose: To explore the implementation and effectiveness of incident learning for the safety and quality of radiotherapy in a new established radiotherapy program with advanced technology. Methods: Reference to the consensus recommendations by American Association of Physicist in Medicine, an incident learning system was specifically designed for reporting, investigating, and learning of individual radiotherapy incidents in a new established radiotherapy program, with 4D CBCT, Ultrasound guided radiotherapy, VMAT, gated treatment delivered on two new installed linacs. The incidents occurring in external beam radiotherapy from February, 2012 to January, 2014 were reported. Results: A total of 33 reports were analyzed, including 28 near misses and 5 incidents. Among them, 5 originated in imaging for planning, 25 in planning, 1 in plan transfer, 1 in commissioning and 1 in treatment delivery. Among them, three near misses originated in the safety barrier of the radiotherapy process. In terms of error type, 1 incident was classified as wrong patient, 7 near misses/incidents as wrong site, 6 as wrong laterality, 5 as wrong dose, 7 as wrong prescription, and 7 as suboptimal plan quality. 5 incidents were all classified as grade 1/2 of dosimetric severity, 1 as grade 0, and the other 4 as grade 1 of medical severity. For the causes/contributory factors, negligence, policy not followed, inadequate training, failure to develop an effective plan, and communication contributed to 19, 15, 12, 5 and 3 near misses/incidents, respectively. The average incident rate per 100 patients treated was 0.4; this rate fell to 0.28% in the second year from 0.56% in the first year. The rate of near miss fell to 1.24% from 2.22%. Conclusion: Effective incident learning can reduce the occurrence of near miss/incidents, enhance the culture of safety. Incident learning is an effective proactive method for improving the quality and safety of radiotherapy.

  10. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  11. Premixed double concentric jets flame with swirl flow

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Song, K.

    1987-01-01

    Swirl flow has been commonly used for stabilization of the high-intensity combustion process. The swirl flow is imparted to the secondary airflow by the swirl vane. Flame stability limits, flame shapes, the concentration of combustion gas, and the temperature distribution in the recirculation zone were measured, and high-speed schlieren photographs were taken. The results indicate that flame stability limits decrease with increasing swirl number in weak swirls because the mixture deteriorates due to the swirl in the recirculation zone. But an increase with increasing swirl number in strong swirls is seen in the mixing ratio, which is promoted by the swirl. For no swirl or weak swirls, a recirculation zone formed behind the burner rim affects the flame stability. When there is a strong swirl, a recirculation zone formed by the swirl affects the flame stability. 9 references.

  12. Flame front propagation in a channel with porous walls

    Science.gov (United States)

    Golovastov, S. V.; Bivol, G. Yu

    2016-11-01

    Propagation of the detonation front in hydrogen-air mixture was investigated in rectangular cross-section channels with sound-absorbing boundaries. The front of luminescence was detected in a channel with acoustically absorbing walls as opposed to a channel with solid walls. Flame dynamics was recorded using a high-speed camera. The flame was observed to have a V-shaped profile in the acoustically absorbing section. The possible reason for the formation of the V-shaped flame front is friction under the surface due to open pores. In these shear flows, the kinetic energy of the flow on the surface can be easily converted into heat. A relatively small disturbance may eventually lead to significant local stretching of the flame front surface. Trajectories of the flame front along the axis and the boundary are presented for solid and porous surfaces.

  13. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  14. Synchronization in flickering of three-coupled candle flames

    Science.gov (United States)

    Okamoto, Keiko; Kijima, Akifumi; Umeno, Yoshitaka; Shima, Hiroyuki

    2016-10-01

    When two or more candle flames are fused by approaching them together, the resulting large flame often exhibits flickering, i.e., prolonged high-frequency oscillation in its size and luminance. In the present work, we investigate the collective behaviour of three-coupled candle flame oscillators in a triangular arrangement. The system showed four distinct types of syncronised modes as a consequence of spontaneous symmetry breaking. The modes obtained include the in-phase mode, the partial in-phase mode, the rotation mode, and an anomalous one called the “death” mode that causes a sudden stop of the flame oscillation followed by self-sustained stable combustion. We also clarified the correlation between the inter-flame distance and the frequency with which the modes occur.

  15. Post-flame gas-phase sulfation of potassium chloride

    DEFF Research Database (Denmark)

    Li, Bo; Sun, Zhiwei; Li, Zhongshan;

    2013-01-01

    homogeneous systems are required to characterize the gas-phase formation of alkali sulfates. We have measured the temperature and gas-phase concentrations of KCl and HCl, and detected the presence of aerosols in the post-flame region of a range of hydrocarbon flames seeded with KCl, with and without......The sulfation of KCl during biomass combustion has implications for operation and emissions: it reduces the rates of deposition and corrosion, it increases the formation of aerosols, and it leads to higher concentrations of HCl and lower concentrations of SO2 in the gas phase. Rigorously...... the addition of SO2. Dilution of the flame products with different amounts of N2 ensured post-flame temperatures in the range 950–1400K. In the absence of SO2, KCl levels were constant in the post-flame zone and no aerosols were formed, even at the lowest temperatures. In the presence of SO2, KCl was consumed...

  16. Effects of Biofuel and Variant Ambient Pressure on FlameDevelopment and Emissions of Gasoline Engine.

    Science.gov (United States)

    Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum

    2016-11-01

    There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.

  17. Quantifying acoustic damping using flame chemiluminescence

    Science.gov (United States)

    Boujo, E.; Denisov, A.; Schuermans, B.; Noiray, N.

    2016-12-01

    Thermoacoustic instabilities in gas turbines and aeroengine combustors falls within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by post-processing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.

  18. Effect of vorticity flip-over on the premixed flame structure: First experimental observation of type I inflection flames

    CERN Document Server

    El-Rabii, Hazem

    2015-01-01

    Premixed flames propagating in horizontal tubes are observed to take on shape convex towards the fresh mixture, which is commonly explained as a buoyancy effect. A recent rigorous analysis has shown, on the contrary, that this process is driven by the balance of vorticity generated by a curved flame front with the baroclinic vorticity, and predicted existence of a regime in which the leading edge of the flame front is concave. We report first experimental realization of this regime. Our experiments on ethane and n-butane mixtures with air show that flames with an inflection point on the front are regularly produced in lean mixtures, provided that a sufficiently weak ignition is used. The observed flame shape perfectly agrees with the theoretically predicted.

  19. Development of a flaming machine for the disinfection of poultry grow-out facilities

    Directory of Open Access Journals (Sweden)

    Michele Raffaelli

    2013-06-01

    Full Text Available Chemical treatments are commonly adopted for poultry house sanitation. In fact, ordinary floor disinfection is needed to deplete the pathogenic population (i.e. various species of bacteria and fungi and reduce the risk of meat contamination. The increasing focus on the health of consumers and operators, as well as on food quality, has led farmers to consider alternative environmentally friendly methods. Research was carried out to set up a new machine for floor disinfection of poultry houses by open flame. The trials were run in controlled conditions in the laboratory of the University of Pisa, Italy, and on a private farm. The first experiment consisted of a series of test bench trials carried out to evaluate the efficacy and the adjustment of liquefied petroleum gas (LPG-fed open flame burners on pre-inoculated steel plates. In the second experiment, the operative parameters of a custom-built 1.5 m wide mounted flaming machine were determined and the biological effects of the treatment were compared to ordinary chemical treatments. The results obtained were very promising. Test bench trials showed a 4-log reduction in E. coli, and microbial determinations carried out on-farm did not show any difference between thermal and chemical treatment. In addition, the cost estimation showed that thermal disinfection is approximately 4-fold cheaper than chemical sanitation methods. The effective working capacity of the machine was approximately 1700 m2 h–1, and the LPG consumption was approximately 16 kg per 1000 m2. Flame disinfection of poultry grow-out facilities could represent a valid alternative to chemical disinfection.

  20. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    T. Scott Hickman; James J. Justice

    2002-01-09

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  1. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  2. Flame deposition of diamond : gas phase diagnostics and the effects of nitrogen addition

    NARCIS (Netherlands)

    Stolk, Robert Leendert

    2002-01-01

    This thesis presents research on oxyacetylene flame deposition of diamond. Two main topics are addressed, namely the development and application of laser spectroscopic techniques for flame diagnostics, and the influence of nitrogen addition on the flame and diamond layer properties. Flame diagnostic

  3. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flame spread limitations and fire... Fire Safety § 3280.203 Flame spread limitations and fire protection requirements. (a) Establishment of flame spread rating. The surface flame spread rating of interior-finish material must not exceed...

  4. Numerical Simulation of Microgravity Flame Spread Over Solid Combustibles

    Institute of Scientific and Technical Information of China (English)

    JIANGXi; FANWeicheng

    1995-01-01

    A computational model of three-dimensional,time-dependent flame spread in microgravity environment is presented.THe solid is assumed to be a thermally-thin,pyrolysing cellulosic sheet.The gas phase model includes the full Navier-Stokes equations with density and pressure variations and six-flus model of radiation heat transfer,The solid phase model consists of continuity and energy equations whose solution provides boundary conditions for the gas phase equatons.In the numerical procedure,the gas-and solid -phase equations are solved separately and iteratively at each time step.Predictions have been made of flame spreas in slow forced flow under gravitational acceleration normal to fuel surface and flame spread in a quiescent environment in an enclosed chamber under gravitational acceleration parallel to fuel surface.Numerical simulations show that,under microgravity,slow-flow conditions,flame spread process is highly unsteady with the upstream flame spreads faster than the downstream flame after a period of ignition,It has also been shown that the level of microgravity has a significant effect on the flame spread process.

  5. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  6. Flame Retardant Applications in Camping Tents and Potential Exposure.

    Science.gov (United States)

    Keller, Alexander S; Raju, Nikhilesh P; Webster, Thomas F; Stapleton, Heather M

    2014-02-11

    Concern has mounted over health effects caused by exposure to flame retardant additives used in consumer products. Significant research efforts have focused particularly on exposure to polybrominated diphenyl ethers (PBDEs) used in furniture and electronic applications. However, little attention has focused on applications in textiles, particularly textiles meeting a flammability standard known as CPAI-84. In this study, we investigated flame retardant applications in camping tents that met CPAI-84 standards by analyzing 11 samples of tent fabrics for chemical flame retardant additives. Furthermore, we investigated potential exposure by collecting paired samples of tent wipes and hand wipes from 27 individuals after tent setup. Of the 11 fabric samples analyzed, 10 contained flame retardant additives, which included tris(1,3-dichloroisopropyl) phosphate (TDCPP), decabromodiphenyl ether (BDE-209), triphenyl phosphate, and tetrabromobisphenol-A. Flame retardant concentrations were discovered to be as high as 37.5 mg/g (3.8% by weight) in the tent fabric samples, and TDCPP and BDE-209 were the most frequently detected in these samples. We also observed a significant association between TDCPP levels in tent wipes and those in paired hand wipes, suggesting that human contact with the tent fabric material leads to the transfer of the flame retardant to the skin surface and human exposure. These results suggest that direct contact with flame retardant-treated textiles may be a source of exposure. Future studies will be needed to better characterize exposure, including via inhalation and dermal sorption from air.

  7. Simulation of flame-vortex interaction using detailed and reduced

    Energy Technology Data Exchange (ETDEWEB)

    Hilka, M. [Gaz de France (GDF), 75 - Paris (France); Veynante, D. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Baum, M. [CERFACS (France); Poinsot, T.J. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Institut de Mecanique des Fluides de Toulouse

    1996-12-31

    The interaction between a pair of counter-rotating vortices and a lean premixed CH{sub 4}/O{sub 2}/N{sub 2} flame ({Phi} = + 0.55) has been studied by direct numerical simulations using detailed and reduced chemical reaction schemes. Results from the complex chemistry simulation are discussed with respect to earlier experiments and differences in the simulations using detailed and reduces chemistry are investigated. Transient evolutions of the flame surface and the total heat release rate are compared and modifications in the evolution of the local flame structure are displayed. (authors) 22 refs.

  8. Case study: flame arresters and exploding gasoline containers.

    Science.gov (United States)

    Hasselbring, Lori C

    2006-03-17

    This paper describes the case study of a portable plastic gasoline container explosion and fire. While working at home on a science project to determine the burn rates of different types of wood fuel, a 14-year-old boy was severely burned after flames traveled back up into the portable gasoline container and exploded. A witness heard the explosion and reports that the flames went perhaps 10 ft in the air. It is shown by experimentation that a flame arrester installed in the pour opening of the portable gasoline container would have prevented an explosion inside the gasoline container.

  9. Flame spectra of solid propellants during unstable combustion.

    Science.gov (United States)

    Eisel, J. L.; Ryan, N. W.; Baer, A. D.

    1972-01-01

    The spectral and temporal details of the flames of a series of ammonium perchlorate-polyurethane propellants during both unstable and stable combustion were observed experimentally. A 400-scan per second optical spectrometer operating in the middle infrared region was used. During unstable combustion at low ratios of chamber free volume to nozzle throat area, three different frequencies were observed simultaneously. These were attributable to at least two mechanisms. During stable combustion periodic fluctuations in flame temperature and composition were also observed. Some aspects of theory of bulk mode instability were confirmed, but the assumptions of constant flame temperature and constant composition were found to be inaccurate.

  10. Aspects of the mechanism of the flame ionization detector

    DEFF Research Database (Denmark)

    Holm, Torkil

    1999-01-01

    The development of flame ionization detection (FID) took place on an empirical basis without a clear understanding of the mechanism. The study of flames by MS showed that the all-important ion was the formylium ion CHO+. The pre-combustion degradation was thought to be a pyrolytic degradation...... and hydrogenation at the high temperatures obtained close to the combustion zone. Using a capillary probe inside the flame it was recently shown that a degradation of all hydrocarbons to methane takes place at low temperatures by the reaction of hydrogen atoms which are generated in the burning hydrogen...

  11. Theoretical and Numerical Investigation of Radiative Extinction of Diffusion Flames

    Science.gov (United States)

    Ray, Anjan

    1996-01-01

    The influence of soot radiation on diffusion flames was investigated using both analytical and numerical techniques. Soot generated in diffusion flames dominate the flame radiation over gaseous combustion products and can significantly lower the temperature of the flame. In low gravity situations there can be significant accumulation of soot and combustion products in the vicinity of the primary reaction zone owing to the absence of any convective buoyant flow. Such situations may result in substantial suppression of chemical activities in a flame, and the possibility of a radiative extinction may also be anticipated. The purpose of this work was to not only investigate the possibility of radiative extinction of a diffusion flame but also to qualitatively and quantitatively analyze the influence of soot radiation on a diffusion flame. In this study, first a hypothetical radiative loss profile of the form of a sech(sup 2) was assumed to influence a pure diffusion flame. It was observed that the reaction zone can, under certain circumstances, move through the radiative loss zone and locate itself on the fuel side of the loss zone contrary to our initial postulate. On increasing the intensity and/or width of the loss zone it was possible to extinguish the flame, and extinction plots were generated. In the presence of a convective flow, however, the movement of the temperature and reaction rate peaks indicated that the flame behavior is more complicated compared to a pure diffusional flame. A comprehensive model of soot formation, oxidation and radiation was used in a more involved analysis. The soot model of Syed, Stewart and Moss was used for soot nucleation and growth and the model of Nagle and Strickland-Constable was used for soot oxidation. The soot radiation was considered in the optically thin limit. An analysis of the flame structure revealed that the radiative loss term is countered both by the reaction term and the diffusion term. The essential balance for

  12. Quality of life in patients with advanced gastric cancer: a randomized trial comparing docetaxel, cisplatin, 5-FU (TCF with epirubicin, cisplatin, 5-FU (ECF

    Directory of Open Access Journals (Sweden)

    Montazeri Ali

    2006-12-01

    Full Text Available Abstract Background Health related quality of life (HRQOL is an important outcome after treatment for upper gastrointestinal carcinoma. This study aimed to compare HRQOL in patients with advanced gastric cancer (GC receiving either a standard or an experimental treatment. Methods Seventy-one patients have been treated in Cancer Institute (Tehran, Iran with docetaxel, cisplatin, 5 FU (TCF or epirubicin, cisplatin, 5-FU (ECF and were followed from Jan 2002 to Jan 2005. End points were response rate, HRQOL and survival. HRQOL was assessed using the EORCT QLQ-C30 at baseline and after the third cycle of chemotherapy. Results The baseline HRQOL scores were comparable between two groups. After treatment improvement was seen in a number of items and domains except for cognitive functioning, and diarrhoea. Pain decreased and physical functioning improved in both groups. However, only the TCF group showed statistically and clinically meaningful improvement in global QOL (P = 0.001. Surgical and pathologic response was better with TCF but there was no difference in survival rate between two groups. Conclusion Docetaxel based treatment (TCF showed better palliation and improvement of global QOL as compared with epirubicin based treatment (ECF. However, it seems that regardless of treatment offered, effective chemotherapy was the most important factor affecting QOL in these patients.

  13. Calculations and surface quality measurements of high-asymmetry angle x-ray crystal monochromators for advanced x-ray imaging and metrological applications

    Science.gov (United States)

    Zápražný, Zdenko; Korytár, Dušan; Jergel, Matej; Šiffalovič, Peter; Dobročka, Edmund; Vagovič, Patrik; Ferrari, Claudio; Mikulík, Petr; Demydenko, Maksym; Mikloška, Marek

    2015-03-01

    We present the numerical optimization and the technological development progress of x-ray optics based on asymmetric germanium crystals. We show the results of several basic calculations of diffraction properties of germanium x-ray crystal monochromators and of an analyzer-based imaging method for various asymmetry factors using an x-ray energy range from 8 to 20 keV. The important parameter of highly asymmetric monochromators as image magnifiers or compressors is the crystal surface quality. We have applied several crystal surface finishing methods, including advanced nanomachining using single-point diamond turning (SPDT), conventional mechanical lapping, chemical polishing, and chemomechanical polishing, and we have evaluated these methods by means of atomic force microscopy, diffractometry, reciprocal space mapping, and others. Our goal is to exclude the chemical etching methods as the final processing technique because it causes surface undulations. The aim is to implement very precise deterministic methods with a control of surface roughness down to 0.1 nm. The smallest roughness (˜0.3 nm), best planarity, and absence of the subsurface damage were observed for the sample which was machined using an SPDT with a feed rate of 1 mm/min and was consequently polished using a fine polishing 15-min process with a solution containing SiO2 nanoparticles (20 nm).

  14. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2012-03-01

    Full Text Available The high-order decoupled direct method in three dimensions for particulate matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ sensitivities simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates poorly understood nonlinear responses of secondary inorganic aerosols to their precursors and competing species. Adding second-order sensitivity terms to the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx or SO2 emissions rates improves the prediction with statistical significance.

  15. Development of the high-order decoupled direct method in three dimensions for particulate matter: enabling advanced sensitivity analysis in air quality models

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2011-10-01

    Full Text Available The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM has been implemented in the Community Multiscale Air Quality (CMAQ model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity analysis of ISORROPIA, the inorganic aerosol module of CMAQ. A case-specific approach has been applied, and the sensitivities of activity coefficients and water content are explicitly computed. Stand-alone tests are performed for ISORROPIA by comparing the sensitivities (first- and second-order computed by HDDM and the brute force (BF approximations. Similar comparison has also been carried out for CMAQ results simulated using a week-long winter episode for a continental US domain. Second-order sensitivities of aerosol species (e.g., sulfate, nitrate, and ammonium with respect to domain-wide SO2, NOx, and NH3 emissions show agreement with BF results, yet exhibit less noise in locations where BF results are demonstrably inaccurate. Second-order sensitivity analysis elucidates nonlinear responses of secondary inorganic aerosols to their precursors and competing species that have not yet been well-understood with other approaches. Including second-order sensitivity coefficients in the Taylor series projection of the nitrate concentrations with a 50% reduction in domain-wide NOx emission shows a statistically significant improvement compared to the first-order Taylor series projection.

  16. Synergistic Effect of Nanosilica Aerogel with Phosphorus Flame Retardants on Improving Flame Retardancy and Leaching Resistance of Wood

    Directory of Open Access Journals (Sweden)

    Xiaodan Zhu

    2014-01-01

    Full Text Available Nanosilica (Nano-SiO2 sol fabricated by a sol-gel process was introduced into wood modification with phosphorus flame retardants to improve the flame retardancy and leaching resistance of wood. The obtained materials were characterized by scanning electron microscopy and energy dispersive spectrometer (SEM-EDS, thermogravimetric analysis (TGA, cone calorimetric (CONE, and infrared spectroscopy (FT-IR. The residual rate of flame retardants before and after leaching was determinated by a leaching resistance. The results showed that the phosphorus flame retardants and SiO2 sol could reside in the poplar wood and are widely distributed in the vessels, pits, wood timber, and the spaces between wood cells of poplar substrate. TGA and CONE results indicated that the introduction of nano-SiO2 aerogel with phosphorus flame retardants had a significantly synergistic effect on improving the flame retardancy and inhibiting the release of smoke and toxic gases. In addition, the leaching resistance test, combined with infrared analysis and EDS analysis, confirmed that the phosphorus flame retardants were able to be fixed by SiO2 aerogel in the wood.

  17. [Flame temperature distribution measurement of solid propellants].

    Science.gov (United States)

    Zhao, Wen-hua; Zhu, Shu-guang; Li, Yan; Fang, Zhong-yan; Yang, Rong-jie; Li, Yu-ping; Zhang, Jie; Liu, Yun-fei

    2004-09-01

    Many high temperature bodies such as flame, in which chemical reactions are very complex, emit their own spectra. These emission spectra usually consist of the spectral lines, spectral bands and the continuous spectra. In some cases, the spectral lines gather together. It is very difficult to find the right single spectral line when the spectral line intensity method is used. To deal with this problem, the idea that the single spectral line intensity is replaced by the total intensity of many spectral lines to measure the temperature is mentioned. And the relative intensity method is also changed to deal with this idea. The measurement of the temperature distribution based on this improved method is successful, and the measurement results are compared with the results of the thermocouple method.

  18. Advanced Quality Assurance for CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [TERA Foundation, Novara (Italy); Hajdas, W. [Paul Sherrer Institut, Villigen (Switzerland); Iliescu, S.; Malakhov, N.; Samarati, J. [TERA Foundation, Novara (Italy); Sauli, F., E-mail: Fabio.sauli@cern.c [TERA Foundation, Novara (Italy); Watts, D. [TERA Foundation, Novara (Italy)

    2010-05-21

    We describe the test results of a Proton Range Radiography system, designed to provide in-beam integrated density images of the patients before treatment at hadrontherapy centers. The instrument includes a set of position-sensitive detectors and a scintillator stack read out with solid-state sensors to record the Bragg energy loss profile for each track.

  19. Advanced Quality Assurance for CNAO

    Science.gov (United States)

    Amaldi, U.; Hajdas, W.; Iliescu, S.; Malakhov, N.; Samarati, J.; Sauli, F.; Watts, D.

    2010-05-01

    We describe the test results of a Proton Range Radiography system, designed to provide in-beam integrated density images of the patients before treatment at hadrontherapy centers. The instrument includes a set of position-sensitive detectors and a scintillator stack read out with solid-state sensors to record the Bragg energy loss profile for each track.

  20. STUDY ON STRUCTURE OF SINGULAR POINTS OF LAMINAR FLAME SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-e; YIN Xian-jun

    2005-01-01

    Under some certain assumptions, the physical model of the air combustion system was simplified to a laminar flame system. The mathematical model of the laminar flame system, which was built according to thermodynamics theory and the corresponding conservative laws, was studied. With the aid of qualitative theory and method of ordinary differential equations, the location of singular points on the Rayleigh curves is determined,the qualitative structure and the stability of the singular points of the laminar flame system,which are located in the areas of deflagration and detonation, are given for different parameter values and uses of combustion. The phase portraits of the laminar flame system in the reaction-stagnation enthalpy and combustion velocity-stagnation enthalpy planes are shown in the corresponding figures.

  1. Spontaneous Transition of Turbulent Flames to Detonations in Unconfined Media

    CERN Document Server

    Poludnenko, Alexei Y; Oran, Elaine S

    2011-01-01

    Deflagration-to-detonation transition (DDT) can occur in environments ranging from experimental and industrial systems to astrophysical thermonuclear (type Ia) supernovae explosions. Substantial progress has been made in explaining the nature of DDT in confined systems with walls, internal obstacles, or pre-existing shocks. It remains unclear, however, whether DDT can occur in unconfined media. Here we use direct numerical simulations (DNS) to show that for high enough turbulent intensities unconfined, subsonic, premixed, turbulent flames are inherently unstable to DDT. The associated mechanism, based on the nonsteady evolution of flames faster than the Chapman-Jouguet deflagrations, is qualitatively different from the traditionally suggested spontaneous reaction wave model, and thus does not require the formation of distributed flames. Critical turbulent flame speeds, predicted by this mechanism for the onset of DDT, are in agreement with DNS results.

  2. A Kinetic Model of Chromium in a Flame

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chromium has been identified as a carcinogenic metal.Incineration is the useful method for disposal of toxic chromium hazard waste and a chromium kinetic model in a flame is very important to study chromium oxidation.Chromium chemical kinetics over a range of temperatures of a hydrogen/air flame is proposed.Nine chromium compounds and fifty-eight reversible chemical reactions were considered The forward reaction rates are calculated based on the molecular collision approach for unknown ones and Arrhenius's Law for known ones.The backward reaction rates were calculated according to forward reaction rates, the equilibrium constants and chemical thermodynamics.It is verified by several equilibrium cases and is tested by a hydrogen/air diffusion flame.The results show that the kinetic model could be used in cases in which the chromium kinetics play an important role in a flame

  3. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis

    2014-01-01

    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  4. Structure and dynamics of modulated traveling waves in cellular flames

    CERN Document Server

    Bayliss, A; Riecke, H

    1994-01-01

    We describe spatial and temporal patterns in cylindrical premixed flames in the cellular regime, $Le < 1$, where the Lewis number $Le$ is the ratio of thermal to mass diffusivity of a deficient component of the combustible mixture. A transition from stationary, axisymmetric flames to stationary cellular flames is predicted analytically if $Le$ is decreased below a critical value. We present the results of numerical computations to show that as $Le$ is further decreased traveling waves (TWs) along the flame front arise via an infinite-period bifurcation which breaks the reflection symmetry of the cellular array. Upon further decreasing $Le$ different kinds of periodically modulated traveling waves (MTWs) as well as a branch of quasiperiodically modulated traveling waves (QPMTWs) arise. These transitions are accompanied by the development of different spatial and temporal symmetries including period doublings and period halvings. We also observe the apparently chaotic temporal behavior of a disordered cellul...

  5. Lean flammability limit of downward propagating hydrogen-air flames

    Science.gov (United States)

    Patnaik, G.; Kailasanath, K.

    1992-01-01

    Detailed multidimensional numerical simulations that include the effects of wall heat losses have been performed to study the dynamics of downward flame propagation and extinguishment in lean hydrogen-air mixtures. The computational results show that a downward propagating flame in an isothermal channel has a flammability limit of around 9.75 percent. This is in excellent agreement with experimental results. Also in excellent agreement are the detailed observations of the flame behavior at the point of extinguishment. The primary conclusion of this work is that detailed numerical simulations that include wall heat losses and the effect of gravity can adequately simulate the dynamics of the extinguishment process in downward-propagating hydrogen-air flames. These simulations can be examined in detail to gain understanding of the actual extinction process.

  6. Probing flame chemistry with MBMS, theory, and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, P.R. [Univ. of Massachusetts, Amherst (United States)

    1993-12-01

    The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

  7. The Rubens Tube: A Flaming Good Way to Teach Waves

    Science.gov (United States)

    Sandoval, Christopher

    2013-01-01

    The Ruben Flame Tube is named after H. Ruben, who published the demonstration experiment in "Annalen der Physik" in 1905. This article presents one of the many demonstrations the author uses to engage, motivate, and challenge his students.

  8. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    Qing-shan Kong; Bing-bing Wang; Quan Ji; Yan-zhi Xia; Zhao-xia Guo; Jian Yu

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride. The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry (TG), X-ray diffraction (XRD), limiting oxygen index (LOI) and cone calorimeter (CONE). The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34, and the heat release rate (HRR), total heat release (THR), CO and CO_2 concentrations during combustion are much lower compared with those of viscose fibers. Calcium carbonate and calcium oxide were formed during thermal degradation of calcium alginate fibers at different temperatures. The shape of calcium alginate fibers is well kept after LOI test. The rigid combustion residue char acts as an effective barrier to the outward diffusion of flame and heat. The combustion process and flame retardant mechanism of calcium alginate fibers are also discussed.

  9. Persistence, bioaccumulation and toxicity of halogen-free flame retardants.

    NARCIS (Netherlands)

    S.L. Waaijers; D Kong; H.S. Hendriks; C.A. de Wit; I.T. Cousins; R.H.S. Westerink; P.E.G. Leonards; M.H.S. Kraak; W. Admiraal; P. de Voogt; J.R. Parsons

    2012-01-01

    Polymers are synthetic organic materials that have a high carbon and hydrogen content, which renders them readily combustible. When used in buildings, electrical appliances, furniture, textiles, transportation, mining, and in many other applications, polymers have to fulfill flame retardancy regulat

  10. Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers

    Directory of Open Access Journals (Sweden)

    Li Chen

    2010-10-01

    Full Text Available Aryl polyphosphonates (ArPPN have been demonstrated to function in wide applications as flame retardants for different polymer materials, including thermosets, polycarbonate, polyesters and polyamides, particularly due to their satisfactory thermal stability compared to aliphatic flame retardants, and to their desirable flow behavior observed during the processing of polymeric materials. This paper provides a brief overview of the main developments in ArPPN and their derivatives for flame-retarding polymeric materials, primarily based on the authors’ research work and the literature published over the last two decades. The synthetic chemistry of these compounds is discussed along with their thermal stabilities and flame-retardant properties. The possible mechanisms of ArPPN and their derivatives containing hetero elements, which exhibit a synergistic effect with phosphorus, are also discussed.

  11. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu

    2014-09-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  12. Experimental investigation of unstrained diffusion flames and their instabilities

    OpenAIRE

    Robert, Etienne

    2009-01-01

    In this thesis, thermal-diffusive instabilities are studied experimentally in diffusion flames. The novel species injector of a recently developed research burner, consisting of an array of hypodermic needles, which allows to produce quasi one-dimensional unstrained diffusion flames has been improved. It is used in a new symmetric design with fuel and oxidizer injected through needle arrays which allows to independently choose both the magnitude and direction of the bulk flow through the flam...

  13. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  14. Flame retardancy of paulownia wood and its mechanism

    OpenAIRE

    2007-01-01

    Paulownia wood (Pauloumia tomentosa) is a special kind of wood material in that it has especially excellent flame retardancy. Using this property, it has been commonly used to make clothing wardrobes for a long time in Japan. In this research, the flame retardancy of paulownia wood has been verified by heating experiments and cone calorimeter testing. The structure and tissue of the material have been analyzed by scanning electron microscope and other methods. Moreover, the mechanism of the f...

  15. Mode Selection in Flame-Vortex driven Combustion Instabilities

    KAUST Repository

    Speth, Ray

    2011-01-04

    In this paper, we investigate flame-vortex interaction in a lean premixed, laboratory scale, backward-facing step combustor. Two series of tests were conducted, using propane/hydrogen mixtures and carbon monoxide/hydrogen mixtures as fuels, respectively. Pressure measurements and high speed particle imaging velocimetry (PIV) were employed to generate pressure response curves as well as the images of the velocity field and the flame brush. We demonstrate that the step combustor exhibits several operating modes depending on the inlet conditions and fuel composition, characterized by the amplitude and frequency of pressure oscillations along with distinct dynamic flame shapes. We propose a model in which the combustor\\'s selection of the acoustic mode is governed by a combustion-related time delay inversely proportional to the flame speed. Our model predicts the transition between distinct operating modes. We introduce non-dimensional parameters characterizing the flame speed and stretch rate, and develop a relationship between these quantities at the operating conditions corresponding to each mode transition. Based on this relationship, we show that numerically-calculated density-weighted strained flame speed can be used to collapse the combustion dynamics data over the full range of conditions (inlet temperature, fuel composition, and equivalence ratio). Finally, we validate our strain flame based model by measuring the strain rate using the flame image and the velocity field from the PIV measurement. Our results show that the measured strain rates lie in the same range as the critical values at the transitions among distinct modes as those predicted by our model.

  16. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    Science.gov (United States)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  17. Porous Flame-retarded Asphalt Pavement for Highway Tunnel

    Institute of Scientific and Technical Information of China (English)

    HU Shuguang; HUANG Shaolong; Ding Qingjun

    2008-01-01

    A new way to improve the tunnel fire protection by using flame-retarded porous asphalt pavement containing ATH powders was introduced. Based on the miniature burning test designed and conducted, the burning time and temperature of porous asphalt (PA) and flame-retarded porous asphalt (FRPA) were studied comparing with cement concrete pavement, dense-graded HMA and S MA. Results of burning test and pavement performance test indicate that FRPA is appropriate and suitable as the pavement material of highway tunnel.

  18. Detailed reduction of reaction mechanisms for flame modeling

    Science.gov (United States)

    Wang, Hai; Frenklach, Michael

    1991-01-01

    A method for reduction of detailed chemical reaction mechanisms, introduced earlier for ignition system, was extended to laminar premixed flames. The reduction is based on testing the reaction and reaction-enthalpy rates of the 'full' reaction mechanism using a zero-dimensional model with the flame temperature profile as a constraint. The technique is demonstrated with numerical tests performed on the mechanism of methane combustion.

  19. Flame Retardant Applications in Camping Tents and Potential Exposure

    OpenAIRE

    Keller, Alexander S.; Raju, Nikhilesh P.; Webster, Thomas F.; Stapleton, Heather M.

    2014-01-01

    Concern has mounted over health effects caused by exposure to flame retardant additives used in consumer products. Significant research efforts have focused particularly on exposure to polybrominated diphenyl ethers (PBDEs) used in furniture and electronic applications. However, little attention has focused on applications in textiles, particularly textiles meeting a flammability standard known as CPAI-84. In this study, we investigated flame retardant applications in camping tents that met C...

  20. Armazenamento refrigerado de pomelos variedades flame e henderson revestidos com cera Refrigerated storage of wax-coated grapefruit varieties Flame and Henderson

    Directory of Open Access Journals (Sweden)

    Ellen Toews Doll Hojo

    2010-10-01

    Full Text Available Objetivou-se, neste trabalho, estudar a conservação de pomelos (Citrus paradisi Macfad. varieties 'Flame' e 'Henderson' revestidos com cera Sparcitrus e mantidos sob refrigeração (8º C ± 1º C e 95% ± 5% UR. Para cada variedade estudada, utilizou-se delineamento inteiramente casualizado, disposto em esquema fatorial 2 x 5, com 3 repetições, onde o primeiro fator correspondeu aos tratamentos com e sem a aplicação de cera (controle e o segundo, ao tempo armazenamento (0, 10, 20, 30 e 40 dias. Cada parcela experimental foi composta por cinco frutos. Foram estudadas as seguintes variáveis: perda de massa, rendimento do suco, pH, sólidos solúveis (SS, acidez titulável (AT, SS/AT, açúcares redutores, açúcares não redutores, açúcares solúveis totais, vitamina C e aparência externa. A aplicação de cera é efetiva na preservação da aparência de pomelos 'Flame' e 'Henderson', não afetando sua qualidade interna.The goal of this work was to study the conservation of grapefruit (Citrus paradisi Macfad. "Flame" and "Henderson" coated with Sparcitrus wax and kept under refrigeration (8º C ± 1º C and 95% ± 5% RH. For each variety studied, the experimental design was completely randomized, build up in factorial 2 x 5, with 3 replicates, where the first factor corresponded to the treatments with and without wax application (control and the second factor to the storage period (0, 10, 20, 30 and 40 days. Each experimental parcel was composed of five fruits. The following variables were studied: mass loss, yield of juice, pH, soluble solids (SS, titratable acidity (TA, SS/AT, reducing, non-reducing and total soluble sugars, ascorbic acid and external appearance. Wax application is effective in the preservation of the appearance of grapefruits "Flame" and "Henderson", and does not affect their internal quality.

  1. Ion measurements in premixed methane-oxygen flames

    KAUST Repository

    Alquaity, Awad

    2014-07-25

    Ions are formed as a result of chemi-ionization processes in combustion systems. Recently, there has been an increasing interest in understanding flame ion chemistry due to the possible application of external electric fields to reduce emissions and improve combustion efficiency by active control of combustion process. In order to predict the effect of external electric fields on combustion plasma, it is critical to gain a good understanding of the flame ion chemistry. In this work, a Molecular Beam Mass Spectrometer (MBMS) is utilized to measure ion concentration profiles in premixed methane-oxygen-argon burner-stabilized flames. Lean, stoichiometric and rich flames at atmospheric pressure are used to study the dependence of ion chemistry on equivalence ratio of premixed flames. The relative ion concentration profiles are compared qualitatively with previous methane-oxygen studies and show good agreement. The relative ion concentration data obtained in the present study can be used to validate and improve ion chemistry models for methane-oxygen flames.

  2. Turbulence-Flame Interactions in Type Ia Supernovae

    CERN Document Server

    Aspden, A J; Day, M S; Woosley, S E; Zingale, M

    2008-01-01

    The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to $8 \\times 10^7$ g cm$^{-3}$, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and $3 \\times 10^7$ g cm$^{-3}$ where the na...

  3. Numerical study of flame structure in the mild combustion regime

    Directory of Open Access Journals (Sweden)

    Mardani Amir

    2015-01-01

    Full Text Available In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.

  4. Flame resistant cellulosic substrate using banana pseudostem sap

    Directory of Open Access Journals (Sweden)

    Basak S.

    2015-03-01

    Full Text Available Flame retardancy was imparted in cellulosic cotton textile using banana pseudostem sap (BPS, an eco-friendly natural product. The extracted sap was made alkaline and applied in pre-mordanted bleached and mercerized cotton fabrics. Flame retardant properties of both the control and the treated fabrics were analysed in terms of limiting oxygen index (LOI, horizontal and vertical flammability. Fabrics treated with the non-diluted BPS were found to have good flame retardant property with LOI of 30 compared to the control fabric with LOI of 18, i.e., an increase of 1.6 times. In the vertical flammability test, the BPS treated fabric showed flame for a few seconds and then, got extinguished. In the horizontal flammability test, the treated fabric showed no flame, but was burning only with an afterglow with a propagation rate of 7.5 mm/min, which was almost 10 times lower than that noted with the control fabric. The thermal degradation and the pyrolysis of the fabric samples were studied using a thermogravimetric analysis (TGA, and the chemical composition by FTIR, SEM and EDX, besides the pure BPS being characterized by EDX and mass spectroscopy. The fabric after the treatment was found to produce stable natural khaki colour, and there was no significant degradation in mechanical strengths. Based on the results, the mechanism of imparting flame retardancy to cellulosic textile and the formation of natural colour on it using the proposed BPS treatment have been postulated.

  5. Turbulent Chemical Diffusion in Convectively Bounded Carbon Flames

    CERN Document Server

    Lecoanet, Daniel; Quataert, Eliot; Bildsten, Lars; Timmes, F X; Burns, Keaton J; Vasil, Geoffrey M; Oishi, Jeffrey S; Brown, Benjamin P

    2016-01-01

    It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the pseudospectral code Dedalus. Because the flame propagation timescale is $\\sim 10^5$ times longer than the convection timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid. By evolving a passive scalar field, we derive a turbulent chemical diffusivity produced by the convection as a function of height, $D_t(z)$. Convection can stall a flame if the chemical mixing timescale, set by the turbulent chemical diffusivity, $D_t$, is shorter than the flame propagation timescale, set by the thermal diffusivity, $\\kappa$, i.e., when $D_t>\\kappa$. However, we find $D_t<\\kappa$ for most of the flame because convective plumes are not dense enoug...

  6. Conditional moment closure modeling of a lifted turbulent flame

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong; QIU Rong; ZHOU Wei; FAN Weicheng

    2005-01-01

    Results obtained using conditional moment closure (CMC) approach to modeling a lifted turbulent hydrogen flame are presented. Predictions are based on k-ε-g turbulent closure, a 23-step chemical mechanism and a radially averaged CMC model. The objectives are to find out how radially averaged CMC can represent a lifted flame and which mechanism of flame stabilization can be described by this modeling method. As a first stage of the study of multi-dimensional CMC for large eddy simulation (LES) of the lifted turbulent flames, the effect of turbulence upon combustion is included, the high-order compact finite- difference scheme (Padé) is used and previously developed characteristic-wave-based boundary conditions for multi- component perfect gas mixtures are here extended to their conditional forms but the heat release due to combustion is not part of the turbulent calculations. Attention is focused to the lift-off region of the flame which is commonly considered as a cold flow. Comparison with published experimental data and the computational results shows that the lift-off height can be accurately determined, and Favre averaged radial profiles of temperature and species mole fractions are also reasonably well predicted. Some of the current flame stabilization mechanisms are discussed.

  7. Flame retardant exposure among collegiate United States gymnasts.

    Science.gov (United States)

    Carignan, Courtney C; Heiger-Bernays, Wendy; McClean, Michael D; Roberts, Simon C; Stapleton, Heather M; Sjödin, Andreas; Webster, Thomas F

    2013-12-03

    Gymnastics training facilities contain large volumes of polyurethane foam, a material that often contains additive flame retardants such as PentaBDE. While investigations of human exposure to flame retardants have focused on the general population, potentially higher than background exposures may occur in gymnasts and certain occupational groups. Our objectives were to compare PentaBDE body burden among gymnasts to the general United States population and characterize flame retardants levels in gym equipment, air, and dust. We recruited 11 collegiate female gymnasts (ages 18-22) from one gym in the eastern United States. The geometric mean (GM) concentration of BDE-153 in gymnast sera (32.5 ng/g lipid) was 4-6.5 times higher than in the general United States population groups. Median concentrations of PentaBDE, TBB, and TBPH in paired handwipe samples were 2-3 times higher after practice compared to before, indicating the gymnasts contacted these flame retardants during practice. GM concentrations of PentaBDE, TBB, and TBPH were 1-3 orders of magnitude higher in gym air and dust than in residences. Our findings suggest that these collegiate gymnasts experienced higher exposures to PentaBDE flame retardants compared to the general United States population and that gymnasts may also have increased exposure to other additive flame retardants used in polyurethane foam such as TBB and TBPH.

  8. Real fuel effects on flame extinction and re-ignition

    Science.gov (United States)

    Zhao, Xinyu; Wu, Bifen; Xu, Chao; Lu, Tianfeng; Chen, Jacqueline H.

    2016-11-01

    Flame-vortex interactions have significant implications in studying combustion in practical aeronautical engines, and can be used to facilitate the model development in capturing local extinction and re-ignition. To study the interactions between the complex fuel and the intense turbulence that are commonly encountered in engines, direct numerical simulations of the interactions between a flame and a vortex pair are carried out using a recently-developed 24-species reduced chemistry for n-dodecane. Both non-premixed and premixed flames with different initial and inlet thermochemical conditions are studied. Parametric studies of different vortex strengths and orientations are carried out to induce maximum local extinction and re-ignition. Chemical-explosive-mode-analysis based flame diagnostic tools are used to identify different modes of combustion, including auto-ignition and extinction. Results obtained from the reduced chemistry are compared with those obtained from one-step chemistry to quantify the effect of fuel pyrolysis on the extinction limit. Effects of flame curvature, heat loss and unsteadiness on flame extinction are also explored. Finally, the validity of current turbulent combustion models to capture the local extinction and re-ignition will be discussed.

  9. Advance Payment ACO Model

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Advance Payment Model is designed for physician-based and rural providers who have come together voluntarily to give coordinated high quality care to the...

  10. Thermal properties of flame retardant cotton fabric grafted by dimethyl methacryloyloxyethyl phosphate

    Directory of Open Access Journals (Sweden)

    Xing Tie-Ling

    2012-01-01

    Full Text Available Thermal properties of flame retardant cotton fabric grafted by dimethyl methacryloy-loxyethyl phosphate were investigated by the atom transfer radical polymerization method. Thermal gravimetric analysis was used to explore the thermal decomposition mode of flamed retardant cotton fabric. The weight loss rate of the flamed retardant cotton was bigger than that of the control cotton fabric, and a more final residual char of flamed retardant cotton was also observed. Flammability tests were used to study the flame retardance property of the flame retardant cotton fabric. The results showed that flamed retardant cotton fabric with 16.8% of weight gain could keep good flame retardance. Scanning electron microscope pictures were applied to investigate the morphology of residual char of the flame retardant samples.

  11. Experimental study of flame microstructure and propagation behavior of mine-gas explosion

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-feng; ZHANG Jian-hua; WANG Yu-jie; REN Shao-feng

    2008-01-01

    The high speed cameral and schlieren images methods were used to record the photograph of flame propagation process. Meanwhile, the ionization current probes were set up to detect the reaction intensity of the reaction zone. The characteristics of methane/air flame propagation and microstructure were analyzed in detail by the experi-mental results coupled with chemical reaction thermodynamics. The high speed schlieren image showed the transition from laminar flame to turbulence combustion. The ion current curves disclosed the reaction intensity and combustion characteristic of flame front. In the test, the particular tulip flame was formed clearly, which was induced to some extent by turbulent combustion. Based on the schlieren images and iron current result, it can be drawn that the small scale turbulence combustion also appears in laminar flame, which thickens the flame front, but makes little influence on the flame front shape. During the laminar-turbulent transition, the explosion pressure plays an important role on the flame structure change.

  12. Laminar premixed methane/air flame extinction characteristics influenced by co-flow water mists

    Institute of Scientific and Technical Information of China (English)

    LIU XuanYa; LU ShouXiang; ZHU YingChun; LIU Yi

    2008-01-01

    Based on the tubular burner, the burning velocities, flame stretch and inhibition rules influenced by co-flow water mists were studied using a high-speed schlieren system. Moreover, the variation rules of the flame critical extinction in our burner equipment were also obtained by analyzing the process and mechanism of flame extinction and inhibition. It is shown that the flame stretch is related to the fuel concentration, co-flow fluxes and water mist diameters. For droplets with a larger diameter, the smaller the co-flow fluxes, the more obvious the flame stretch. When the water mist loading rate is rather smaller, for fuel-rich premixed flame with Le>1, the flame with larger burning rate tends to backfire more easily. Under the same water mist conditions, for fuel-lean premixed flame with Le<1, the smaller the gas concentration, the easier the flame is extinct.

  13. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  14. Polybrominated Diphenyl Ethers in Dryer Lint: An Advanced Analysis Laboratory

    Science.gov (United States)

    Thompson, Robert Q.

    2008-01-01

    An advanced analytical chemistry laboratory experiment is described that involves environmental analysis and gas chromatography-mass spectrometry. Students analyze lint from clothes dryers for traces of flame retardant chemicals, polybrominated diphenylethers (PBDEs), compounds receiving much attention recently. In a typical experiment, ng/g…

  15. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  16. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A L [Portsmouth Hospitals NHS Trust, Portsmouth, Hampshire (United Kingdom); University of Surrey, Guildford, Surrey (United Kingdom); Bradley, D A [University of Surrey, Guildford, Surrey (United Kingdom); Nisbet, A [University of Surrey, Guildford, Surrey (United Kingdom); Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey (United Kingdom)

    2014-06-01

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy. Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film

  17. Testicular radiation dose after multimodal curative therapy for locally advanced rectal cancer. Influence on hormone levels, quality of life, and sexual functioning

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, S.; Wolff, H.A.; Rave-Fraenk, M.; Hess, C.F. [University Medicine Goettingen (Germany). Dept. of Radiotherapy; Jung, K. [University Medicine Goettingen (Germany). Dept. of Medical Statistics; Gaedcke, J.; Ghadimi, M.; Becker, H. [University Medicine Goettingen (Germany). Dept. of General Surgery; Hermann, R.M. [University Medicine Goettingen (Germany). Dept. of Radiotherapy; Aerztehaus an der Ammerlandklinik, Westerstede (Germany). Radiotherapy; Christiansen, H. [University Medicine Goettingen (Germany). Dept. of Radiotherapy; Hannover Medical School (Germany). Dept. of Radiotherapy

    2012-10-15

    Purpose: The purpose of the current work was to prospectively measure the influence of testicular radiation dose on hormone levels, quality of life (QoL), and sexual functioning following multimodal therapy (neoadjuvant radiochemotherapy, surgery, and adjuvant chemotherapy) for rectal cancer. Patients and methods: From November 2007 to November 2009, 83 male patients were treated at the University of Goettingen with radiochemotherapy (RCT) for locally advanced rectal cancer [total dose 50.4 Gy, concomitant chemotherapy with two cycles of 5-fluorouracil (FU) or 5-FU and oxaliplatin]. Testicular radiation doses were analyzed and correlated with hormone levels [luteinizing hormone (LH), follicle stimulating hormone (FSH), total testosterone and free androgen index (FAI) serum levels], QoL, and sexual functioning, which were determined before and up to 1 year after RCT. Results: Mean dose at the testes was 3.9 Gy (range 0.28-11.98 Gy). It was higher for tumors located < 6 cm from the anocutaneous line (p < 0.05). One year after therapy, testosterone, the testosterone/LH ratio, and the FAI/LH ratio were significantly decreased (3.5-3.0 {mu}g/l, 0.9-0.4, 7.9-4.5, respectively) while LH and FSH (4.2-8.5 IU/l, 6.0-21.9 IU/l) were increased. QoL and sexual functioning were significantly impaired. However, there was no statistical correlation between testicular radiation dose and changes in hormone levels, QoL, or sexual functioning. Conclusion: Multimodal treatment for rectal cancer including RCT leads to hormone level changes and to impaired QoL and sexual functioning. However, because there was no apparent correlation between the analyzed parameters, QoL is probably also influenced by other factors, e.g., psychosocial aspects. (orig.)

  18. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Dědina, J. (Jiří)

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were ...

  19. Numerical Simulation of Transient Development of Flame, Temperature and Velocity under Reduced Gravity in a Methane Air Diffusion Flame

    Science.gov (United States)

    Bhowal, Arup Jyoti; Mandal, Bijan Kumar

    2017-02-01

    A methane air co flow diffusion flame has been numerically simulated with the help of an in-house developed code at normal gravity, 0.5 G, and 0.0001 G (microgravity) for the study of transient behavior of the flame in terms of flame shape, temperature profile and velocity (streamlines). The study indicates that lower is the gravity level, the higher is the time of early transience. The flame developments during transience are marked by the formation of a secondary flamelet at different heights above the primary flame at all gravity levels. The development of temperature profile at microgravity takes a much longer time to stabilize than the flame development. At normal gravity and 0.5 G gravity level, streamlines, during transience, show intermediate vortices which are finally replaced by recirculation of ambient air from the exit plane. At microgravity, neither any vortex nor any recirculation at any stage is observed. Centerline temperature plots, at all gravity levels during transience, demonstrate a secondary peak at some instants as a consequence of the secondary flamelet formation. The centerline velocity at microgravity decreases gradually during transience, unlike at other two gravity levels where the fall is very sharp and is indicative of negligible buoyancy at microgravity.

  20. Effect of fuel mixture fraction and velocity perturbations on the flame transfer function of swirl stabilized flames

    Science.gov (United States)

    Wysocki, Stefan; Di-Chiaro, Giacomo; Biagioli, Fernando

    2015-11-01

    A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.

  1. The Gaia-ESO Survey: processing of the FLAMES-UVES spectra

    CERN Document Server

    Sacco, G G; Franciosini, E; Maiorca, E; Randich, S; Modigliani, A; Gilmore, G; Asplund, M; Binney, J; Bonifacio, P; Drew, J; Feltzing, S; Ferguson, A; Jeffries, R; Micela, G; Negueruela, I; Prusti, T; Rix, H -W; Vallenari, A; Alfaro, E; Prieto, C Allende; Babusiaux, C; Bensby, T; Blomme, R; Bragaglia, A; Flaccomio, E; Francois, P; Hambly, N; Irwin, M; Koposov, S; Korn, A; Lanzafame, A; Pancino, E; Recio-Blanco, A; Smiljanic, R; Van Eck, S; Walton, N; Bergemann, M; Costado, M T; de Laverny, P; Heiter, U; Hill, V; Hourihane, A; Jackson, R; Jofre, P; Lewis, J; Lind, K; Lardo, C; Magrini, L; Masseron, T; Prisinzano, L; Worley, C

    2014-01-01

    The Gaia-ESO Survey is a large public spectroscopic survey that aims to derive radial velocities and fundamental parameters of about 10^5 Milky Way stars in the field and in clusters. Observations are carried out with the multi-object optical spectrograph FLAMES, using simultaneously the medium resolution (R~20,000) GIRAFFE spectrograph and the high resolution (R~47,000) UVES spectrograph. In this paper, we describe the methods and the software used for the data reduction, the derivation of the radial velocities, and the quality control of the FLAMES-UVES spectra. Data reduction has been performed using a workflow specifically developed for this project. This workflow runs the ESO public pipeline optimizing the data reduction for the Gaia-ESO Survey, performs automatically sky subtraction, barycentric correction and normalisation, and calculates radial velocities and a first guess of the rotational velocities. The quality control is performed using the output parameters from the ESO pipeline, by a visual insp...

  2. Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

    Science.gov (United States)

    Wu, James J.

    2015-01-01

    NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).

  3. Influence of rarefaction wave on premixed flame structure and propagation behavior

    Institute of Scientific and Technical Information of China (English)

    CHEN Xianfeng; SUN Jinhua; LU Shouxiang; CHU Guanquan; YAO Liyin; LIU Yi

    2007-01-01

    To explore the influence of rarefaction wave on the structure and propagation behavior of the premixed propane/air flame in a rectangle combustion pipe, the techniques of high speed Schlieren photograph method, pressure measurement and so on are used to study the interaction processes between rarefaction wave and flame. Two cases of rarefaction wave-flame interaction were performed in the experiment. The experimental result shows that both the rarefaction waves can cause the flame transition from laminar to turbulent combustion quickly. The cowflow rarefaction wave decreases the flame speed, while the counterflow rarefaction wave leads the flame propagation speed to increasing on the whole, accompanied with sharp vibration.

  4. Refractory Materials for Flame Deflector Protection System Corrosion Control: Refractory Ceramics Literature Survey

    Science.gov (United States)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.; Coffman, Brekke E.

    2009-01-01

    Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications

  5. Synthesis and Characterization of Flame Retardant Polyester Copolymer%共聚改性阻燃聚酯的合成与表征

    Institute of Scientific and Technical Information of China (English)

    徐焕辉; 覃迎峰; 彭锐

    2012-01-01

    The flame-retardant polyester containing the new phosphorus-nitrogen flame retardant Fyrol-6 was synthesized by copolymerization method, the optimized reaction conditions by changing the reaction temperature, reaction time and amount of catalyst was got. Under the optimized conditions, the flame retardant polyester, with the flame retardant quality content of 5% , 10% , 15% , 20% of the terephthalic acid bis-hydroxyethyl methacrylate (BHET) , were synthesized which were characterized by means of FT-IR, TG and LOT. The results showed that the flame-retardant polyester contained the structure features of BHET, Fyrol-6 and OPA. After the flame retardant agent was added into the molecular chain of PE, the thermal stability was improved. The obtained flame retardant polyester had a higher LOI value. The new flame-retardant polyester WAs expected to be applied to PET retardant modified as an additive flame retardant.%通过共聚法合成得到一种含有新型磷-氮阻燃剂Fyrol-6的阻燃聚酯,并通过改变反应温度、反应时间和催化剂用量,得到了优化的合成反应条件.在优化条件下,分别合成了阻燃剂添加量为对苯二甲酸双羟乙酯(BHET)质量的5%、10%、15%、20%的阻燃聚酯,对合成的阻燃聚酯进行了红外光谱(FTIR)、热失重(TG)和极限氧指数(LOI)测试.结果表明,合成的阻燃聚酯中含有BHET、Fyrol-6和OPA三种原料的结构特征;阻燃剂进入到聚酯分子链中后,其热稳定性提高,所制得的阻燃聚酯具有较高的LOI值,这种新型阻燃聚酯有望作为一种添加型阻燃剂应用于PET的阻燃改性.

  6. [Digestion-flame atomic absorption spectroscopy].

    Science.gov (United States)

    Xu, Liang; Hu, Jian-Guo; Liu, Rui-Ping; Wang, Zhi-Min; Narenhua

    2008-01-01

    A microwave digestion-flame atomic absorption spectroscopy (FAAS) method was developed for the determination of metal elements Na, Zn, Cu, Fe, Mn, Ca and Mg in Mongolian patents. The instrument parameters for the determination were optimized, and the appropriate digestion solvent was selected. The recovery of the method was between 95.8% and 104.3%, and the RSD was between 1.6% and 4.2%. The accuracy and precision of the method was tested by comparing the values obtained from the determination of the standard sample, bush twigs and leaves (GSV-1) by this method with the reference values of GSV-1. The determination results were found to be basically consistent with the reference values. The microwave digestion technique was applied to process the samples, and the experimental results showed that compared to the traditional wet method, the present method has the merits of simplicity, saving agents, rapidness, and non-polluting. The method was accurate and reliable, and could be used to determine the contents of seven kinds of metal elements in mongolian patents.

  7. CloudFlame: Cyberinfrastructure for combustion research

    KAUST Repository

    Goteng, Gokop

    2013-12-01

    Combustion experiments and chemical kinetics simulations generate huge data that is computationally and data intensive. A cloud-based cyber infrastructure known as Cloud Flame is implemented to improve the computational efficiency, scalability and availability of data for combustion research. The architecture consists of an application layer, a communication layer and distributed cloud servers running in a mix environment of Windows, Macintosh and Linux systems. The application layer runs software such as CHEMKIN modeling application. The communication layer provides secure transfer/archive of kinetic, thermodynamic, transport and gas surface data using private/public keys between clients and cloud servers. A robust XML schema based on the Process Informatics Model (Prime) combined with a workflow methodology for digitizing, verifying and uploading data from scientific graphs/tables to Prime is implemented for chemical molecular structures of compounds. The outcome of using this system by combustion researchers at King Abdullah University of Science and Technology (KAUST) Clean Combustion Research Center and its collaborating partners indicated a significant improvement in efficiency in terms of speed of chemical kinetics and accuracy in searching for the right chemical kinetic data.

  8. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  9. Investigation of H2 Concentration and Combustion Instability Effects on the Kinetics of Strained Syngas Flames

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2006-08-07

    The flame extinction limits of syngas (H{sub 2}-CO) flames were measured using a twin-flame-counter-flow burner. Plots of Extinction limits vs. global stretch rates were generated at different mixture compositions and an extrapolation method was used to calculate the flame extinction limit corresponding to an experimentally unattainable zero-stretch condition. The zero-stretch extinction limit of H{sub 2}-CO mixtures decreases (from rich to lean) with the increase in H{sub 2} concentration in the mixture. The average difference between the measured flame extinction limit and the Le Chatelier's calculation is around {approx} 7%. The measured OH{sup -} chemiluminescent data indicates that regardless of mixture compositions the OH radical concentration reduces (within the experimental uncertainties) to an extinction value prior to the flame extinction. Flame extinction limits of H{sub 2}-CO mixtures measured in a flat-flame burner configuration also show a similar relation. Additionally, the measured laminar flame velocity close to the extinction indicates that regardless of fuel composition the premixed flame of hydrogen fuel blends extinguishes when the mixture laminar flame velocity falls below a critical value. The critical laminar flame velocity at extinction for H{sub 2}-CO premixed flames (measured in the flat flame burner configuration) is found to be 3.77({+-}0.38) cm/s. An externally perturbed H{sub 2}-CO twin flame was not experimentally achievable for the mixture conditions used in the present investigation. A slightest perturbation in the flow-field distorts the H{sub 2}-CO twin-flame. The flame becomes highly unstable with the introduction of an externally excited flow oscillation.

  10. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  11. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio

    2015-01-01

    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  12. Development of a Multi-GeV spectrometer for laser-plasma experiment at FLAME

    Science.gov (United States)

    Valente, P.; Anelli, F.; Bacci, A.; Batani, D.; Bellaveglia, M.; Benocci, R.; Benedetti, C.; Cacciotti, L.; Cecchetti, C. A.; Clozza, A.; Cultrera, L.; Di Pirro, G.; Drenska, N.; Faccini, R.; Ferrario, M.; Filippetto, D.; Fioravanti, S.; Gallo, A.; Gamucci, A.; Gatti, G.; Ghigo, A.; Giulietti, A.; Giulietti, D.; Gizzi, L. A.; Koester, P.; Labate, L.; Levato, T.; Lollo, V.; Londrillo, P.; Martellotti, S.; Pace, E.; Pathak, N.; Rossi, A.; Tani, F.; Serafini, L.; Turchetti, G.; Vaccarezza, C.

    2011-10-01

    The advance in laser-plasma acceleration techniques pushes the regime of the resulting accelerated particles to higher energies and intensities. In particular, the upcoming experiments with the 250 TW laser at the FLAME facility of the INFN Laboratori Nazionali di Frascati, will enter the GeV regime with more than 100 pC of electrons. At the current status of understanding of the acceleration mechanism, relatively large angular and energy spreads are expected. There is therefore the need for developing a device capable to measure the energy of electrons over three orders of magnitude (few MeV to few GeV), with still unknown angular divergences. Within the PlasmonX experiment at FLAME, a spectrometer is being constructed to perform these measurements. It is made of an electro-magnet and a screen made of scintillating fibers for the measurement of the trajectories of the particles. The large range of operation, the huge number of particles and the need to focus the divergence, present challenges in the design and construction of such a device. We present the design considerations for this spectrometer that lead to the use of scintillating fibers, multichannel photo-multipliers and a multiplexing electronics, a combination which is innovative in the field. We also present the experimental results obtained with a high intensity electron beam performed on a prototype at the LNF beam test facility.

  13. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  14. Response mechanisms of attached premixed flames subjected to harmonic forcing

    Science.gov (United States)

    Shreekrishna

    The persistent thrust for a cleaner, greener environment has prompted air pollution regulations to be enforced with increased stringency by environmental protection bodies all over the world. This has prompted gas turbine manufacturers to move from nonpremixed combustion to lean, premixed combustion. These lean premixed combustors operate quite fuel-lean compared to the stochiometric, in order to minimize CO and NOx productions, and are very susceptible to oscillations in any of the upstream flow variables. These oscillations cause the heat release rate of the flame to oscillate, which can engage one or more acoustic modes of the combustor or gas turbine components, and under certain conditions, lead to limit cycle oscillations. This phenomenon, called thermoacoustic instabilities, is characterized by very high pressure oscillations and increased heat fluxes at system walls, and can cause significant problems in the routine operability of these combustors, not to mention the occasional hardware damages that could occur, all of which cumulatively cost several millions of dollars. In a bid towards understanding this flow-flame interaction, this research works studies the heat release response of premixed flames to oscillations in reactant equivalence ratio, reactant velocity and pressure, under conditions where the flame preheat zone is convectively compact to these disturbances, using the G-equation. The heat release response is quantified by means of the flame transfer function and together with combustor acoustics, forms a critical component of the analytical models that can predict combustor dynamics. To this end, low excitation amplitude (linear) and high excitation amplitude (nonlinear) responses of the flame are studied in this work. The linear heat release response of lean, premixed flames are seen to be dominated by responses to velocity and equivalence ratio fluctuations at low frequencies, and to pressure fluctuations at high frequencies which are in the

  15. Cool flames at terrestrial, partial, and near-zero gravity

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Michael; Pearlman, Howard [Department of Mechanical Engineering and Mechanics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States)

    2006-10-15

    Natural convection plays an important role in all terrestrial, Lunar, and Martian-based, unstirred, static reactor cool flame and low-temperature autoignitions, since the Rayleigh number (Ra) associated with the self-heating of the reaction exceeds the critical Ra (approximately 600) for onset of convection. At near-zero gravity, Ra<600 can be achieved and the effects of convection suppressed. To systematically vary the Ra without varying the mixture stoichiometry, reactor pressure, or vessel size, cool flames are studied experimentally in a closed, unstirred, static reactor subject to different gravitational accelerations (terrestrial, 1g; Martian, 0.38g; Lunar, 0.16g; and reduced gravity, {approx}10{sup -2}g). Representative results show the evolution of the visible light emission using an equimolar n-butane:oxygen premixture at temperatures ranging from 320 to 350? deg C (593-623 K) at subatmospheric pressures. For representative reduced-gravity, spherically propagating cool flames, the flame radius based on the peak light intensity is plotted as a function of time and the flame radius (and speed) is calculated from a polynomial fit to data. A skeletal chemical kinetic Gray-Yang model developed previously for a one-dimensional, reactive-diffusive system by Fairlie and co-workers is extended to a two-dimensional axisymmetric, spherical geometry. The coupled species, energy, and momentum equations are solved numerically and the spatio-temporal variations in the temperature profiles are presented. A qualitative comparison is made with the experimental results. (author)

  16. Synergistic Study on the Effect of Flame Retardants on Timber

    Directory of Open Access Journals (Sweden)

    Nwajiobi, C.C

    2015-12-01

    Full Text Available the fire characteristic proportion of Halleacilliata has been carried out. The timber was treated with different concentrations of ammonium chloride (0.01, 0.05, 0.10, 0.15, 0.50, and 0.55 mol/dm3 and borax (0.01, 0.03, 0.05, 0.07, 0.10, and 0.12 mol/dm3 . Flammability tests such as ignition time, flame propagation rate and after-glow time were carried out and the results showed that the flame retardants drastically reduced the flame propagation rate and after-glow time while ignition time and percentage add-on (% increased. Synergy was observed when the two flame retardants were mixed at different concentrations which gave better retarding properties than when treated individually. These results are interpreted as arising from the fact that on heating, these flame retardants evolve molecules that interfere with the chemistry and pyrolysis of combustion of timber.

  17. Flame wrinkles from the Zhdanov–Trubnikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Joulin, Guy, E-mail: guy.joulin@lcd.ensma.fr [Institut P-prime, UPR 3346 CNRS, ENSMA, Université de Poitiers, 1 rue Clément Ader, B.P. 40109, 86961 Futuroscope Cedex, Poitiers (France); Denet, Bruno, E-mail: bruno.denet@irphe.univ-mrs.fr [Aix-Marseille Univ., IRPHE, UMR 7342 CNRS, Technopole de Château-Gombert, 49 rue Joliot-Curie, 13384 Marseille Cedex 13 (France)

    2012-04-30

    The Zhdanov–Trubnikov equation describing wrinkled premixed flames is studied, using pole decompositions as starting points. Its one-parameter (−1⩽c⩽+1) nonlinearity generalises the Michelson–Sivashinsky equation (c=0) to a stronger Darrieus–Landau instability. The shapes of steady flame crests (or periodic cells) are deduced from Laguerre (or Jacobi) polynomials when c≈−1, which numerical resolutions confirm. Large wrinkles are analysed via a pole density: adapting results of Dunkl relates their shapes to the generating function of Meixner–Pollaczek polynomials, which numerical results confirm for −10 (over-stabilisation) such analytical solutions can yield accurate flame shapes for 0⩽c⩽0.6. Open problems are invoked. -- Highlights: ► We study a 1-parameter (c) nonlinear integral equation and get flame-wrinkle shapes. ► Pole decompositions of the front slope (periodic or not) are used as a basis. ► In limiting cases we relate the flame shapes to Laguerre or Jacobi polynomials. ► Linear integral equations for pole densities give accurate large-wrinkle shapes if c<0. ► Though locally singular the shapes so obtained for c>0 can be fairly accurate.

  18. Terahertz time-domain spectroscopy of high-pressure flames

    Institute of Scientific and Technical Information of China (English)

    Jason BASSI; Mark STRINGER; Bob MILES; Yang ZHANG

    2009-01-01

    Laser spectroscopy in the visible and near infrared is widely used as a diagnostic tool for combustion devices, but this approach is difficult at high pressures within a sooty flame itself. High soot concentrations render flames opaque to visible light, but they remain transparent to far-infrared or terahertz (THz) radiation. The first far-infrared absorption spectra, to the best of our knowledge, of sooty, non-premixed, ethylene high-pressure flames covering the region of 0.2-2.5 THz is presented. A specially designed high-pressure burner which is optically accessible to THz radiation has been built allowing flame transmission measurements up to pressures of 1.6 MPa. Calculations of the theoretical combustion species absorption spectra in the 0.2-3 THz range have shown that almost all the observable features arise from H2O. A few OH (1.84 and 2.51 THz), CH (2.58 THz), and NH3 (1.77 and 2.95 THz) absorption lines are also observable in principle. A large number of H2O absorption lines are observed in the ground vibrational in a laminar non-premixed, sooty flame (ethylene) at pressures up to 1.6 MPa.

  19. Review of soot measurement in hydrocarbon-air flames

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Soot,which is produced in fuel-rich parts of flames as a result of incomplete combustion of hydrocarbons,is the No.2 contributor to global warming after carbon dioxide.Developing soot measurement techniques is important to understand soot formation mechanism and control soot emission.The various soot measurement techniques,such as thermophoretic sampling par-ticles diagnostics followed by electron microscopy analysis,thermocouple particle densitometry,light extinction,laser-induced incandescence,two-color method,and emission computed tomography,are reviewed in this paper.The measurement principle and application cases of these measurement methods are described in detail.The development trend of soot measurement is to realize the on-line measurement of multi-dimensional distributions of temperature,soot volume fraction,soot particle size and other parameters in hydrocarbon-air flames.Soot measurement techniques suitable for both small flames in laboratories and large-scale flames in industrial combustion devices should be developed.Besides,in some special situations,such as high-pressure,zero gravity and micro-gravity flames,soot measurement also should be provided.

  20. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin

    2014-04-23

    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  1. Residual deficits in quality of life one year after intensity-modulated radiotherapy for patients with locally advanced head and neck cancer. Results of a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, Silke; Raguse, Marieclaire; Voigt, Christian; Petersen, Cordula; Kruell, Andreas [University Medical Center Hamburg-Eppendorf, Department of Radiation Oncology, Hamburg (Germany); Muenscher, Adrian [University Medical Center Hamburg-Eppendorf, Department of Otorhinolaryngology and Head and Neck Surgery, Hamburg (Germany); Groebe, Alexander [University Medical Center Hamburg-Eppendorf, Department of Maxillofacial Surgery, Hamburg (Germany); Bergelt, Corinna [University Medical Center Hamburg-Eppendorf, Department of Medical Psychology, Hamburg (Germany); Singer, Susanne [University Medical Center Mainz, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Mainz (Germany)

    2015-03-08

    Patients with locally advanced head and neck cancer (LAHNC) undergo life-changing treatments that can seriously affect quality of life (QoL). This prospective study examined the key QoL domains during the first year after intensity-modulated radiotherapy (IMRT) and identified predictors of these changes in order to improve patient outcomes. A consecutive series of patients with LAHNC completed the European Organisation for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core module (QLQ-C30) and the HNC-specific QLQ-HN35 before (t0) and at the end (t1) of definitive or adjuvant IMRT, then at 6-8 weeks (t2), 6 months (t3), and 1 year (t4) after IMRT. Patients (n = 111) completing questionnaires at all five time points were included (baseline response rate: 99 %; dropout rate between t0 and t4: 5 %). QoL deteriorated in all domains during IMRT and improved slowly during the first year thereafter. Many domains recovered to baseline values after 1 year but problems with smelling and tasting, dry mouth, and sticky saliva remained issues at this time. Increases in problems with sticky saliva were greater after 1 year in patients with definitive versus adjuvant IMRT (F = 3.5, P = 0.05). QoL in patients with LAHNC receiving IMRT takes approximately 1 year to return to baseline; some domains remain compromised after 1 year. Although IMRT aims to maintain function and QoL, patients experience long-term dry mouth and sticky saliva, particularly following definitive IMRT. Patients should be counseled at the start of therapy to reduce disappointment with the pace of recovery. (orig.) [German] Die Therapie von Patienten mit lokal fortgeschrittenen Kopf-Hals-Tumoren (LFKHT) geht mit einschneidenden Veraenderungen einher und beeinflusst die Lebensqualitaet (LQ) erheblich. Diese prospektive Studie untersucht die LQ waehrend des ersten Jahres nach intensitaetsmodulierter Strahlentherapie (IMRT) und hat Praediktoren dieser Veraenderungen herausgearbeitet, um

  2. Analysis of Reaction-Diffusion Systems for Flame Capturing in Type Ia Supernova Simulations

    CERN Document Server

    Zhiglo, Andrey V

    2009-01-01

    We present a study of numerical behavior of a thickened flame used in Flame Capturing (FC, Khokhlov (1995)) for tracking thin unresolved physical flames in deflagration simulations. We develop a steady-state procedure for calibrating the flame model used, and test it against analytical results. We observe numerical noises generated by original realization of the technique. Alternative artificial burning rates are discussed, which produce acceptably quiet flames. Two new quiet models are calibrated to yield required "flame" speed and width, and further studied in 2D and 3D setting. Landau-Darrieus type instabilities of the flames are observed. One model also shows significantly anisotropic propagation speed on the grid, both effects increasingly pronounced at larger matter expansion as a result of burning; this makes the model unacceptable for use in type Ia supernova simulations. Another model looks promising for use in flame capturing at fuel to ash density ratio of order 3 and below. That "Model B" yields f...

  3. Effect of CH4–Air Ratios on Gas Explosion Flame Microstructure and Propagation Behaviors

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2012-10-01

    Full Text Available To reveal the inner mechanism of gas explosion dynamic behavior affected by gas equivalent concentration, a high speed Schlieren image system and flow field measurement technology was applied to record the gas explosion flame propagation and flame structure transition. The results show that a flame front structure transition occurs, followed by a flame accelerating propagation process. The laminar to turbulence transition was the essential cause of the flame structure changes. The laminar flame propagation behavior was influenced mainly by gas expansion and fore-compressive wave effect, while the turbulent flame speed mostly depended on turbulence intensity, which also played an important role in peak value of the explosive pressure and flame speed. On the condition that the laminar-turbulent transition was easier to form, the conclusion was drawn that, the lowest CH4 concentration for maximum overpressure can be obtained, which was the essential reason why the ideal explosive concentration differs under different test conditions.

  4. Study of the mechanisms of the flame propagation and stabilization in porous media

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The CH4/air premixed gas combustion processes in porous media were numerically studied using the two-temperature reacting fluid model with dispersions and detailed chemical reaction mechanism GRI 3.0. The mechanisms of the propagation and stabilization of submerge flames and surface flames in porous media were illuminated distinctly by considering the magnitude of the terms in the two energy equations, analyzing the sensibility of flame propagation speed to flame location, heat exchange coefficient between gas and solid, thermal conductivity and radiative extinction coefficient of porous media. It was concluded that the propagation mechanism of a submerged flame is similar to that of a free flame with an additional preheat zone and that the surface-flame propagation mechanism in porous media is similar to that of a free flame with heat loss in reaction zone.

  5. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  6. Environmental monitoring of brominated flame retardants

    Science.gov (United States)

    Vagula, Mary C.; Kubeldis, Nathan; Nelatury, Charles F.

    2011-06-01

    Brominated flame retardants (BFRs) are synthetic organobromide compounds which inhibit ignition and combustion processes. Because of their immense ability to retard fire and save life and property, they have been extensively used in many products such as TVs, computers, foam, plastics etc. The five major classes of BFRs are tetrabromobisphenol-A (TBBPA), hexabromocyclododecane (HBCD), pentabromodiphenyl ether, octabromodiphenyl ether, and decabromodiphenyl ether. The last three are also commonly called PBDEs. BDE-85 and BDE-209 are the two prominent congeners of PBDEs and this study reports the adverse effects of these congeners in rodents. Exposure of rat sciatic nerves to 5 μg/mL and 20 μg/mL of BDE-85 and BDE-209 respectively lead to significant, concentration dependent reduction in nerve conduction function. Glucose absorption in the rat intestinal segments exposed to 5 μg/mL of BDE-85 and BDE-209 was significantly reduced for both the compounds tested. Lastly, mice when exposed to 0.25 mg/kg body weight for four days showed a disruption in oxidant and antioxidant equilibrium. The tissues namely liver and brain have shown increase in the levels of lipid hydroperoxides indicating oxidative stress. Moreover, all the protective enzymes namely superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and glutathione S transferase (GST) have shown tissue specific alterations indicating the induction of damaging oxidative stress and setting in of lipid peroxidation in exposed animals. The results indicate monitoring of PBDEs in the environment is essential because levels as low as 5 μg/mL and 0.25 mg/kg body weight were able to cause damage to the functions of rodents.

  7. On the influence of the gas velocity profile on the theoretically predicted opposed flow flame spread

    Energy Technology Data Exchange (ETDEWEB)

    DiBlasi, C.; Crescitelli, S.; Russo, G. (Dipartimento di Ingegneria Chimica, Universita de Napoli, Piazzale v Tecchio, Naples (IT)); FernandezPello, A.C. (California Univ., Berkeley, CA (USA). Dept. of Mechanical Engineering)

    1989-01-01

    A numerical analysis is presented of the effect on the predicted flame spread rate and flame structure of a prescribed gas velocity field opposing the direction of flame propagation. The calculations are made for two limiting cases of oxygen mass fraction and with Oseen and Hagen-Poiseuille velocity profiles. It is shown that the selected gas velocity profile has a significant influence on the flame spread predictions.

  8. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  9. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  10. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.

    2016-12-01

    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  11. The Influence of Flame Retardant Treated Timber Density on Combustibility

    Directory of Open Access Journals (Sweden)

    Zbignev Karpovič

    2011-04-01

    Full Text Available Timber is widely used as a construction material in the majority of countries. In most cases, timber is the main structural material. Timber and timber fabrics used in building structure elements have to fulfill the requirements of fire safety. This article presents factors affecting the combustibility of timber, mainly the influence of flame retardants on the combustion phase, timber density and moisture. The influence of flame retardant treated timber density on combustibility is analyzed in this paper. Research was performed according to the requirements of the standard LST ISO 5657:1999 “Reaction to fire tests – ignitibility of building products using a radiant heat source”. The influence of flame retardant treated timber density on combustibility is assessed according to duration up to the combustion of the specimen. Article in Lithuanian

  12. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    The scope of this work is to investigate flame synthesis of oxides and oxide composites for catalytic applications. Vaporized acetylcetonate precursors are combusted in a flame leading to the formation of metal oxides with high specific surface areas. The employed flame setup is a premixed flat...... agglomerates have a highly dendritic structure with a low density. The particle formation during alumina synthesis is modelled employing either a monodisperse model or a self-preserving model for coagulation in combination with a hybrid model describing the sintering kinetics. The hybrid model includes two...... mechanisms for the sintering, which allows the individual mechanisms to control the sintering in different temperature regimes. Simulation of the specific surface areas and collision diameters of the synthesized powder fits measured values nicely when the hybrid sintering model is applied. The temperature...

  13. Flame Retardant and Antimicrobial Jute Textile Using Sodium Metasilicate Nonahydrate

    Directory of Open Access Journals (Sweden)

    Basak S.

    2014-06-01

    Full Text Available Flame retardant and antimicrobial functionalities were imparted in jute textile using sodium metasilicate nonahydrate (SMSN, commonly known as “water glass”. Sodium metasilicate nonahydrate (SMSN was applied in jute fabric in different concentration by padding method followed by drying. Flame retardancy of the fabric was evaluated by Limiting Oxygen Index (LOI and burning behaviour under vertical flammability tester including the char length. Burning rate was found to decrease by almost 10 times after an application of 2% SMSN compared to the control sample. Thermogravimetry (TG and differential scanning calorimetry (DSC analysis of both the control and treated jute fabrics were utilized to understand the mechanism of developed flame retardance in jute fabric. It was observed that the SMSN treated samples showed excellent antimicrobial property against both gram positive and gram negative bacteria. Antimicrobial properties of both the control and treated jute fabrics were also measured quantitatively.

  14. Premixed Flame Dynamics in Narrow 2D Channels

    CERN Document Server

    Ayoobi, Mohsen

    2015-01-01

    Premixed flames propagating within small channels show complex combustion phenomena that differ from flame propagation at conventional scales. Available experimental and numerical studies have documented stationary/non-stationary and/or asymmetric modes that depend on properties of the incoming reactant flow as well as channel geometry and wall temperatures. The present work seeks to illuminate mechanisms leading to symmetry-breaking and limit cycle behavior that are fundamental to these combustion modes. Specifically, four cases of lean premixed methane/air combustion -- two equivalence ratios (0.53 and 0.7) and two channel widths (2 and 5mm) -- are investigated in a 2D configuration with constant channel length and bulk inlet velocity, where numerical simulations are performed using detailed chemistry. External wall heating is simulated by imposing a linear temperature gradient as a boundary condition on both walls. In the 2mm-channel, both equivalence ratios produce flames that stabilize with symmetric fla...

  15. A turbulent premixed flame on fractal-grid generated turbulence

    CERN Document Server

    Soulopoulos, Nikos; Beyrau, Frank; Hardalupas, Yannis; Taylor, A M K P; Vassilicos, J Christos

    2010-01-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent combustion experiment. In contrast to the power law decay of a standard turbulence grid, the downstream turbulence intensity of the fractal grid increases until it reaches a peak at some distance from the grid before it finally decays. The effective mesh size and the solidity are the same as those of a standard square mesh grid with which it is compared. It is found that, for the same flow rate and stoichiometry, the fractal generated turbulence enhances the burning rate and causes the flame to further increase its area. Using a flame fractal model, an attempt is made to highlight differences between the flames established at the two different turbulent fields.

  16. Testing of Action of Direct Flame on Concrete

    Science.gov (United States)

    Valek, Jaroslav; Novosad, Petr

    2015-01-01

    The paper states results of experimental exposition of concrete test specimens to direct flame. Concrete test specimens made from various mixtures differing in the type of aggregate, binder, dispersed reinforcement, and technological procedure were subjected to thermal load. Physicomechanical and other properties of all test specimens were tested before exposition to open flame: density, compressive strength, flexural strength, moisture content, and surface appearance. The specimens were visually observed during exposition to open flame and changes were recorded. Exposed surface was photographically documented before thermal load and at 10-minute intervals. Development of temperature of the specimens was documented with a thermocamera. After exposition to thermal load and cooling down, concrete specimens were visually observed, network of cracks was photographically documented, and maximal depth of spalled area was measured. PMID:25830162

  17. 46 CFR 32.20-10 - Flame arresters-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flame arresters-TB/ALL. 32.20-10 Section 32.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Equipment Installations § 32.20-10 Flame arresters—TB/ALL. Flame arresters must be of a type...

  18. 46 CFR 30.10-23 - Flame arrester-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Flame arrester-TB/ALL. 30.10-23 Section 30.10-23 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-23 Flame arrester—TB/ALL. The term flame arrester means any device or assembly of a cellular,...

  19. Mineralisation and primary biodegradation of aromatic organophosphorus flame retardants in activated sludge

    NARCIS (Netherlands)

    Jurgens, S.S.; Helmus, R.; Waaijers, S.L.; Uittenbogaard, D.; Dunnebier, D; Vleugel, M; Kraak, M.H.S.; de Voogt, P.; Parsons, J.R.

    2014-01-01

    Halogen-free flame retardants (HFFRs), such as the aromatic organophosphorus flame retardants (OPFRs) triphenyl phosphate (TPHP), resorcinol bis(diphenylphosphate) (PBDPP) and bisphenol A bis(diphenylphosphate) (BPA-BDPP) have been proposed as potential replacements for brominated flame retardants i

  20. An Experiment to Examine the Phosphate Interference in the Flame Emission Analysis of Calcium.

    Science.gov (United States)

    Jackman, Donald C.

    1985-01-01

    Procedures are provided for a flame emission experiment which covers five areas in a single laboratory exercise. These areas are: (1) the flame emission technique; (2) calibration plots; (3) interferences; (4) indirect flame emission analysis; and (5) techniques of removing interferences. Typical results obtained are discussed. (JN)

  1. Effects of heat conduction and radical quenching on premixed stagnation flame stabilised by a wall

    Science.gov (United States)

    Zhang, Huangwei; Chen, Zheng

    2013-08-01

    The premixed stagnation flame stabilised by a wall is analysed theoretically considering thermally sensitive intermediate kinetics. We consider the limit case of infinitely large activation energy of the chain-branching reaction, in which the radical is produced infinitely fast once the cross-over temperature is reached. Under the assumptions of potential flow field and constant density, the correlation for flame position and stretch rate of the premixed stagnation flame is derived. Based on this correlation, the effects of heat conduction and radical quenching on the wall surface are examined. The wall temperature is shown to have great impact on flame bifurcation and extinction, especially when the flame is close to the wall. Different flame structures are observed for near-wall normal flame, weak flame, and critically quenched flame. The fuel and radical Lewis numbers are found to have opposite effects on the extinction stretch rate. Moreover, it is also demonstrated that only when the flame is close to the wall does the radical quenching strongly influence the flame bifurcation and extinction. The extinction stretch rate is shown to decrease with the amount of radical quenching for different fuel and radical Lewis numbers. Besides, the coupling between the wall heat conduction and radical quenching is found to greatly influence the bifurcation and extinction of the premixed stagnation flame.

  2. 30 CFR 77.1102 - Warning signs; smoking and open flame.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Warning signs; smoking and open flame. 77.1102... COAL MINES Fire Protection § 77.1102 Warning signs; smoking and open flame. Signs warning against smoking and open flames shall be posted so they can be readily seen in areas or places where fire...

  3. Structure and stabilization of cryogenic spray flames; Structure et stabilisation des flammes cryotechniques

    Energy Technology Data Exchange (ETDEWEB)

    Juniper, M.

    2001-11-01

    Cryogenic rocket motors are fueled by liquid oxygen and gaseous hydrogen. The development of design methods is based on reliable numerical simulations, which rely on detailed knowledge of the flame structure and well-defined entry conditions. This research project concerns the region near the fuel injectors. We examine here: (1) The flame structure and injector geometry, (2) The flame stabilization. Tests have been performed on an injector which is similar to those in real motors. Models are developed and their results compared with experimental results in order to study the effect of the injector geometry. A new result of scientific interest is that a wake is more unstable when the outer flow is confined. This mechanism might explain the effect of recess on a cryogenic spray flame. The base of the flame is divided into two parts and a counter-flow flame analysis is applied to the first part. The second part is considered first as a flame in a corner (cross-flow flame). The flame above a porous plate with fuel injection is considered next and we envisage then a flame above a vaporizing fuel. Finally, the flame behind a step over a vaporizing fuel is envisaged. With this progression, the dimensionless parameters which control flame stabilization are identified. (author)

  4. Propagation and Extinction of a Cylindrical Premixed Flame Undergoing Equivalence Ratio Fluctuation Near the Lean Limit

    Science.gov (United States)

    Suenaga, Yosuke; Kitano, Michio; Takahashi, Yoichi

    Experimental study was made to investigate the propagation and extinction characteristics of a stretched cylindrical flame undergoing periodic fluctuation of equivalence ratio near the lean limit. With a lean methane-air and a lean propane-air mixture, burning velocity, flame luminosity and flame stretch rate were measured or evaluated for the fluctuation frequencies of 5Hz and 20Hz. The results were summarized as follows: (1) In some part of a period, burning velocity and flame luminosity of the dynamic flame near the lean limit were possible to become lower than those at the lean flammability limit of the static flame. (2) At the high frequency of 20Hz, the burning velocity took a negative value in a certain time range. In spite of this loss of propagation ability, the flame was not extinguished but sustained, indicating the recovery of the flame intensity due to the dynamic effect of fluctuating flame. (3) Flame recovery phenomenon could occur more easily for the methane flame which was strengthened by the Lewis number effect than the propane flame which was weakened by that effect.

  5. Blow-off characteristics of turbulent premixed flames in curved-wall Jet Burner

    KAUST Repository

    Mansour, Morkous S.

    2015-08-02

    This study concerns the flame dynamics of a curved-wall jet (CWJ) stabilized turbulent premixed flame as it approaches blow-off conditions. Time resolved OH planar laser-induced fluorescence (PLIF) delineated reaction zone contours and simultaneously stereoscopic particle image velocimetry (SPIV) quantified the turbulent flow field features. Ethylene/air flames were stabilized in CWJ burner to determine the sequence of events leading to blowoff. For stably burning flames far from blowoff, flames are characterized with a recirculation zone (RZ) upstream for flame stabilization followed by an intense turbulent interaction jet (IJ) and merged-jet regions downstream; the flame front counterparts the shear layer vortices. Near blowoff, as the velocity of reactants increases, high local stretch rates exceed the extinction stretch rates instantaneously resulting in localized flame extinction along the IJ region. As Reynolds number (Re) increases, flames become shorter and are entrained by larger amounts of cold reactants. The increased strain rates together with heat loss effects result in further fragmentation of the flame, eventually leading to the complete quenching of the flame. This is explained in terms of local turbulent Karlovitz stretch factor (K) and principal flow strain rates associated with C contours. Hydrogen addition and increasing the RZ size lessen the tendency of flames to be locally extinguished.

  6. 30 CFR 57.22105 - Smoking and open flames (IV mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames (IV mines). 57.22105... Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22105 Smoking and open flames (IV mines). Smoking or open flames shall not be permitted in a face or raise, or during release...

  7. 49 CFR 176.325 - Smoking or open flame and posting of warning signs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Smoking or open flame and posting of warning signs... Smoking or open flame and posting of warning signs. (a) Smoking or the use of open flame is prohibited in... material. (b) A sign carrying the legend: FLAMMABLE VAPORS KEEP LIGHTS AND FIRE AWAY NO SMOKING must...

  8. 49 CFR 176.220 - Smoking or open flame and posting of warning signs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Smoking or open flame and posting of warning signs... CARRIAGE BY VESSEL Detailed Requirements for Class 2 (Compressed Gas) Materials § 176.220 Smoking or open flame and posting of warning signs. (a) Smoking or the use of open flame is prohibited in any hold...

  9. Analysis of flame acceleration in open or vented obstructed pipes

    Science.gov (United States)

    Bychkov, Vitaly; Sadek, Jad; Akkerman, V'yacheslav

    2017-01-01

    While flame propagation through obstacles is often associated with turbulence and/or shocks, Bychkov et al. [V. Bychkov et al., Phys. Rev. Lett. 101, 164501 (2008), 10.1103/PhysRevLett.101.164501] have revealed a shockless, conceptually laminar mechanism of extremely fast flame acceleration in semiopen obstructed pipes (one end of a pipe is closed; a flame is ignited at the closed end and propagates towards the open one). The acceleration is devoted to a powerful jet flow produced by delayed combustion in the spaces between the obstacles, with turbulence playing only a supplementary role in this process. In the present work, this formulation is extended to pipes with both ends open in order to describe the recent experiments and modeling by Yanez et al. [J. Yanez et al., arXiv:1208.6453] as well as the simulations by Middha and Hansen [P. Middha and O. R. Hansen, Process Safety Prog. 27, 192 (2008) 10.1002/prs.10242]. It is demonstrated that flames accelerate strongly in open or vented obstructed pipes and the acceleration mechanism is similar to that in semiopen ones (shockless and laminar), although acceleration is weaker in open pipes. Starting with an inviscid approximation, we subsequently incorporate hydraulic resistance (viscous forces) into the analysis for the sake of comparing its role to that of a jet flow driving acceleration. It is shown that hydraulic resistance is actually not required to drive flame acceleration. In contrast, this is a supplementary effect, which moderates acceleration. On the other hand, viscous forces are nevertheless an important effect because they are responsible for the initial delay occurring before the flame acceleration onset, which is observed in the experiments and simulations. Accounting for this effect provides good agreement between the experiments, modeling, and the present theory.

  10. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    CONG BeiHua; LIAO GuangXuan

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7±0.6)% for H2O, (15.9±0.6)% for CO2, and (31.9±0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de-veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup-pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  11. Mechanisms of suppressing cup-burner flame with water vapor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanisms of suppressing a laminar methane-air co-flow diffusion flame formed on a cup burner with water vapor have been studied experimentally and numerically. The methane burned in a steel cup surrounded by a glass chimney. A mist generator produced fine droplets delivered though the glass chimney with air. These droplets were heated into water vapor when they went though the diffuser. The extinguishing limit was obtained by gradually increasing the amount of water vapor to replace the air in the coflowing oxidizer stream. Results showed that the agent concentration required for extinguishment was constant over a wide range of the oxidizer velocity, i.e., a so-called "plateau region". The measured extinguishing mass fractions of the agents were: (16.7 ± 0.6)% for H2O, (15.9 ± 0.6)% for CO2, and (31.9 ± 0.6)% for N2. The computation used the Fire Dynamics Simulator (FDS) de- veloped by the NIST. The numerical simulations showed that the predicted water vapor extinguishing limits and the flickering frequency were in good agreements with the experimental observations and, more importantly, revealed that the sup- pression of cup-burner flames occurred via a partial extinction mechanism (in which the flame base drifts downstream and then blows off) rather than the global extinction mechanism of typical counter-flow diffusion flames. And the flame-base oscillation just before the blow-off was the key step for the non-premixed flame extinction in the cup burner.

  12. Occurrence of halogenated flame retardants in commercial seafood species available in European markets.

    Science.gov (United States)

    Aznar-Alemany, Òscar; Trabalón, Laura; Jacobs, Silke; Barbosa, Vera Liane; Tejedor, Margarita Fernández; Granby, Kit; Kwadijk, Christiaan; Cunha, Sara C; Ferrari, Federico; Vandermeersch, Griet; Sioen, Isabelle; Verbeke, Wim; Vilavert, Lolita; Domingo, José L; Eljarrat, Ethel; Barceló, Damià

    2016-12-24

    PBDEs (congeners 28, 47, 99, 100, 153, 154, 183, 209), HBCD (α, β, γ), emerging brominated flame retardants (PBEB, HBB and DBDPE), dechloranes (Dec 602, 603, 604, syn- and anti-DP), TBBPA, 2,4,6-TBP and MeO-PBDEs (8 congeners) were analysed in commercial seafood samples from European countries. Levels were similar to literature and above the environmental quality standards (EQS) limit of the Directive 2013/39/EU for PBDEs. Contaminants were found in 90.5% of the seafood samples at n. d.-356 ng/g lw (n. d.-41.1 ng/g ww). DBDPE was not detected and 2,4,6-TBP was detected only in mussels, but at levels comparable to those of PBDEs. Mussel and seabream were the most contaminated species and the Mediterranean Sea (FAO Fishing Area 37) was the most contaminated location. The risk assessment revealed that there was no health risk related to the exposure to brominated flame retardants via seafood consumption. However, a refined risk assessment for BDE-99 is of interest in the future. Moreover, the cooking process concentrated PBDEs and HBB.

  13. Heat Transfer Effects on a Fully Premixed Methane Impinging Flame

    Science.gov (United States)

    2014-10-30

    HEAT TRANSFER EFFECTS ON A FULLY PREMIXED METHANE IMPINGING FLAME D. Mira1, M. Zavala1, M. Avila1, H. Owen1, J.C. Cajas1, G. Houzeaux1 and M...governing the oxidation of methane is taken into account by the 1-step chemical kinetic mechanism with equivalence ratio correction from Mantel et al. (1996...work correspond to a methane premixed flame with stoi- choimetric equivalance ratio impinging on a flat plate. The nozzle-to-plate distance is H/D

  14. Jet flow and premixed jet flame control by plasma swirler

    Science.gov (United States)

    Li, Gang; Jiang, Xi; Zhao, Yujun; Liu, Cunxi; Chen, Qi; Xu, Gang; Liu, Fuqiang

    2017-04-01

    A swirler based on dielectric barrier discharge plasma actuators is designed and its effectiveness in both jet flow and premixed jet flame control is demonstrated. In contrast to traditional spanwise-oriented actuators, plasma actuators are placed along the axial direction of the injector to induce a circumferential velocity to the main flow and create a swirl flow without any insertion or moving part. In the DBD plasma swirl injector, the discharge does not ignite the mixture nor does it induce flashback. Flame visualization is obtained by cameras while velocity profiles are obtained by Laser Doppler Anemometry measurements. The results obtained indicate the effectiveness of the new design.

  15. Synthesis and application of amino resinous intumescent flame retardants

    Institute of Scientific and Technical Information of China (English)

    Ming GAO; Rongjie YANG

    2009-01-01

    A kind of amino resinous intumescent flame retardants (IFR) was firstly synthesized, and the structure of the main composition was determined to be a caged bicyclic macromolecule containing phosphorus. The 30% weight of IFR was added into the flexible polyurethane foam (FPUF) to get retardant FPUF which has 26.5% of the limiting oxygen index. The date of CONE show that the heat release, smoke and gas of the flame retardant FPUF are much decreased and the activation energy decreases by 54kJ-mor1. It shows that the IFR can catalyze decomposition and carbonization of FPUF.

  16. Simulation study on radiative imaging of combustion flame in furnace

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. This paper presents a new method for calculating the radiative imaging of three-dimensional (3D) combustion flame based on Monte Carlo method and optical lens imaging. Numerical simulation case was used in this study. Radiative images were calculated and images obtained can not only present the energy distribution on the charge-coupled device (CCD) camera target plane but also reflect the energy distribution condition in the simulation furnace. Finally the relationships between volume elements and energy shares were also discussed.

  17. Numerical Simulation Model of Laminar Hydrogen/Air Diffusion Flame

    Institute of Scientific and Technical Information of China (English)

    于溯源; 吕雪峰

    2002-01-01

    A numerical simulation model is developed for a laminar hydrogen/air diffusion flame. Nineteen species and twenty chemical reactions are considered. The chemical kinetics package (CHEMKIN) subroutines are employed to calculate species thermodynamic properties and chemical reaction rate constants. The flow field is calculated by simultaneously solving a continuity equation, an axial momentum equation and an energy equation in a cylindrical coordinate system. Thermal diffusion and Brownian diffusion are considered in the radial direction while they are neglected in the axial direction. The results suggest that the main flame is buoyancy-controlled.

  18. Installation and first results of FLAMES, the VLT multifibre facility

    Science.gov (United States)

    Pasquini, Luca; Alonso, Jaime; Avila, Gerardo; Barriga, Pablo; Biereichel, Peter; Buzzoni, Bernard; Cavadore, Cyril; Cumani, Claudio; Dekker, Hans; Delabre, Bernard; Kaufer, Andreas; Kotzlowski, Heinz; Hill, Vanessa; Lizon, Jean-Luis; Nees, Walter; Santin, Paolo; Schmutzer, Ricardo; Kesteren, A. V.; Zoccali, Manuela

    2003-03-01

    FLAMES is the VLT Fibre Facility, installed and being commissioned at the Nasmyth A of UT2 (Kueyen Telescope). FLAMES has been built and assembled at the VLT telescope in about 4 years through an international collaboration between 10 institutes in 6 countries and 3 continents. It had first light with the fibre link to the red arm of UVES on April 1, and with the GIRAFFE spectrograph on July 3. We have not yet enough data to compare the observed vs. expected astronomical performances, although these first data are encouraging in many respects. We aim at proceeding soon with the remaining tests

  19. Plasma Assisted Combustion: Flame Regimes and Kinetic Studies

    Science.gov (United States)

    2015-01-05

    Fuel mole fraction LTC HTC P = 72 Torr, a= 250 1/s, f = 34 kHz, XO2=60%, varying Xf DME Sun et al. 2014, Combustion & Flame...temperature chemistries • RH + OH (~ 15% heat production ) • R + O2 reactions (~40%) • QOOH reactions • HO2 reactions Transport • Very sensitive to...flame speed between (~15 cm/s) transition – Temperature of N2= 600K – Temperature of DME /O3/O2=300 K – Strain rate=80 s-1 – Ozone

  20. THERMAL DEGRADATION AND FLAME RETARDANCY OF CALCIUM ALGINATE FIBERS

    Institute of Scientific and Technical Information of China (English)

    于建; 夏延致

    2009-01-01

    Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during ...