WorldWideScience

Sample records for advanced engineering environment

  1. Advanced engineering environment collaboration project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  2. Advanced engineering environment pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty (Parametric Technology Corporation, Needham, MA)

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  3. Advanced Engineering Environment FY09/10 pilot project.

    Energy Technology Data Exchange (ETDEWEB)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.; Dutra, Edward G.; Sego, Abraham L.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporate product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.

  4. Requirements Development for the NASA Advanced Engineering Environment (AEE)

    Science.gov (United States)

    Rogers, Eric; Hale, Joseph P.; Zook, Keith; Gowda, Sanjay; Salas, Andrea O.

    2003-01-01

    The requirements development process for the Advanced Engineering Environment (AEE) is presented. This environment has been developed to allow NASA to perform independent analysis and design of space transportation architectures and technologies. Given the highly collaborative and distributed nature of AEE, a variety of organizations are involved in the development, operations and management of the system. Furthermore, there are additional organizations involved representing external customers and stakeholders. Thorough coordination and effective communication is essential to translate desired expectations of the system into requirements. Functional, verifiable requirements for this (and indeed any) system are necessary to fulfill several roles. Requirements serve as a contractual tool, configuration management tool, and as an engineering tool, sometimes simultaneously. The role of requirements as an engineering tool is particularly important because a stable set of requirements for a system provides a common framework of system scope and characterization among team members. Furthermore, the requirements provide the basis for checking completion of system elements and form the basis for system verification. Requirements are at the core of systems engineering. The AEE Project has undertaken a thorough process to translate the desires and expectations of external customers and stakeholders into functional system-level requirements that are captured with sufficient rigor to allow development planning, resource allocation and system-level design, development, implementation and verification. These requirements are maintained in an integrated, relational database that provides traceability to governing Program requirements and also to verification methods and subsystem-level requirements.

  5. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  6. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  7. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    Science.gov (United States)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  8. Modeling of a V-type mining support in an advanced engineering environment

    Science.gov (United States)

    Gwiazda, A.; Banas, W.; Foit, K.; Topolska, S.; Monica, Z.; S^kala, A.

    2016-08-01

    Designing technical means using advanced computer systems requires the change in approaches to specific tasks carried out in this process. The solution of this problem is an integrative approach, which allows linking different operating ranges, various tools and complicated sets of requirements into a single operating design system. The elements of this integrative approach is the concept of splitting a technical mean system into three sub-system components. The first is structural sub-system containing solutions and their attributes regarding the structural concept of a designed system. The second is drive sub-system containing solutions of drive systems along with the parameters of their operation. Finally the last sub-system contains information relating to the control system and its settings. Systems attributes include such design features as the geometrical characteristics, material characteristics and assembly characteristics. The subject of the integrated design process is a mechanized mining support. As a part of the project the construction system of a mechanized mining support was divided on the three sub-systems. The structural subsystem includes a canopy, a burst shield and foot parts. Whereas the drive sub-system comprises includes the system of hydraulic props and hydraulic cylinders responsible for the functioning of the support. In the example, presented in the paper, is shown the system of hydraulic props where they are arranged in a V-system. These indicated two sub-systems form the structure of the support. It is complemented by the control sub-system basing on the use of control valves and separator valves and an operator control panel.

  9. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  10. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  11. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design....... For this reason, the book puts emphasis on the state-space approach. The main contents of the book includes state-space representation of dynamic systems, analysis of linear control systems, feedback control and observer design. Both continuous-time and discrete-time systems have been addressed in this book....

  12. Advanced engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2001-01-01

    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

  13. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  14. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  15. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  16. Advancement in Engineering Technology

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....

  17. Advanced Metasearch Engine Technology

    CERN Document Server

    Meng, Weiyi

    2010-01-01

    Among the search tools currently on the Web, search engines are the most well known thanks to the popularity of major search engines such as Google and Yahoo!. While extremely successful, these major search engines do have serious limitations. This book introduces large-scale metasearch engine technology, which has the potential to overcome the limitations of the major search engines. Essentially, a metasearch engine is a search system that supports unified access to multiple existing search engines by passing the queries it receives to its component search engines and aggregating the returned

  18. Advanced Surface Engineering of Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    H. Dong

    2000-01-01

    Despite their outstanding combination of properties, titanium and its alloys are very susceptible to severe adhesive wear in rubbing with most engineering surfaces and can exhibit poorcorrosion resistance in some aggressive environments. Surface engineering research centred at the University of Birmingham has been focused on creating designer surfaces for titanium components via surface engineering.Great progress has been made recently through the development of such advanced surface engineering techniques as thermal oxidation, palladium-treated thermal oxidation, oxygen boost diffusion and duplex systems.Such advances thus provide scope for designing titanium components for a diversified range of engineering application, usually as direct replacements for steel components. By way of example, some of the successful steps towards titanium designer surfaces are demonstrated. To data, the potential of these advanced technologies has been realised first in auto-sport and off-shore industrials.

  19. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  20. Advances in Medical Engineering

    CERN Document Server

    Buzug, Thorsten M

    2007-01-01

    Presents research and development trends of physics, engineering, mathematics and computer sciences in biomedical engineering. This work uses contributions from industry, clinics, universities and research labs with foci on medical imaging, computer-assisted surgery, and others to give insight to engineering, clinical and mathematical studies.

  1. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  2. Advances in tissue engineering

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tissue engineering is a newly developed specialty involved in the construction of tissues and organs either in vitro or in vivo. Tremendous progress has been achieved over the past decade in tisse construction as well as in other related areas, such as bone marrow stromal cells, embryonic stem cells and tissue progenitor cells. In our laboratory, tissues of full-thickness skin, bone, cartilage and tendon have been successfully engineered, and the engineered tissues have repaired full-thickness skin wound, cranial bone defects, articular cartilage defects and tendon defects in animals. In basic research areas, bone marrow stromal cells have been induced and transformed into osteoblasts and chondrocytes in vitro. Mouse embryo stem cell lines we established have differentiated into neuron precursor, cardiac muscle cells and epithelial cells. Genetic modifications of seed cells for promoting cell proliferation, delaying cell aging and inducing immune tolerance have also been investigated.

  3. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  4. Advances in yeast genome engineering.

    Science.gov (United States)

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.

  5. Advanced engineering mathematics

    CERN Document Server

    Kreyszig, Erwin

    1972-01-01

    Introducing those areas of mathematics which are most important to practical problem solving in the field, this book pays particular attention to ordinary differential equations, linear algebra and vector analysis, complex analysis, and numerical methods. Fourier series and partial differential equations are also covered thoroughly. The problem sets in this edition have been updated and revised to give greater weight to modeling, phase-plane and numerical multi-step methods, and applications. Each section includes examples and problems illustrating concepts, methods and results, and their engineering applications.

  6. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  7. Advanced Technology for Engineering Education

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1998-01-01

    This document contains the proceedings of the Workshop on Advanced Technology for Engineering Education, held at the Peninsula Graduate Engineering Center, Hampton, Virginia, February 24-25, 1998. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry and universities. The objectives of the workshop were to assess the status of advanced technologies for engineering education and to explore the possibility of forming a consortium of interested individuals/universities for curriculum reform and development using advanced technologies. The presentations covered novel delivery systems and several implementations of new technologies for engineering education. Certain materials and products are identified in this publication in order to specify adequately the materials and products that were investigated in the research effort. In no case does such identification imply recommendation or endorsement of products by NASA, nor does it imply that the materials and products are the only ones or the best ones available for this purpose. In many cases equivalent materials and products are available and would probably produce equivalent results.

  8. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  9. Advanced Natural Gas Reciprocating Engine(s)

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  10. Advanced fuel chemistry for advanced engines.

    Energy Technology Data Exchange (ETDEWEB)

    Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

    2009-09-01

    Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

  11. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  12. Cummins advanced turbocompound diesel engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  13. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    Science.gov (United States)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  14. Advanced General Aviation Turbine Engine (GATE) study

    Science.gov (United States)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  15. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  16. Recent Advances in Genetic Engineering - A Review

    Directory of Open Access Journals (Sweden)

    Sobiah Rauf

    2012-01-01

    Full Text Available Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial importance and of transferring genetic material from one organism to another. In order to achieve potential benefits of genetic engineering the only need is to develop perfect tools and techniques. Once it has been perfected then all of the problems associated with food production can be solved, the world environment can be restored, and human health and lifestyle will improve beyond imagination. No doubt that there are almost no limits to what can be achieved through responsible genetic engineering. Classical field of genetic engineering and some of its advancements are discussed in this review.

  17. Cummins/Tacom advanced adiabatic engine

    Energy Technology Data Exchange (ETDEWEB)

    Kamo, R.; Bryzik, W.

    1984-01-01

    Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high-performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential. Adiabatic engine materials requirements are defined and the possible ceramic materials which will satisfy these requirements are identified. Examples in design considerations of engine components are illustrated. In addition to these important points, the use of ceramic coatings in the design of engine components. The first generation adiabatic engine with ceramic coatings is described. The advanced adiabatic engine with minimum friction features utilizaing ceramics is also presented. The advanced ceramic turbocharger turbine rotor as well as the oilless ceramic bearing design is described. Finally, the current status of the advanced adiabatic engine program culminating in the AA750 V-8 adiabatic engine is presented.

  18. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  19. Cummins advanced turbocompound diesel-engine evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, J.L.; Werner, J.R.

    1982-12-01

    The turbocompound diesel engine has been under development since 1972. Development reached a mature stage following the evolution of three power turbine and gear train designs. In 1978, the Department of Energy sponsored a program for comprehensive vehicle testing of the turbocompound engine. Upon successful completion of the vehicle test program, an advanced turbocompound diesel engine program was initiated in 1980 to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. This paper presents the individual and cumulative performance gains achieved with the advanced turbocompound engine improvements.

  20. Advances in communication systems and electrical engineering

    CERN Document Server

    Huang, Xu

    2008-01-01

    This volume contains contributions from participants in the 2007 International Multiconference of Engineers and Computer Scientists Topics covered include communications theory, communications protocols, network management, wireless networks, telecommunication, electronics, power engineering, control engineering, signal processing, and industrial applications. The book will offer the states of arts of tremendous advances in communication systems and electrical engineering and also serve as an excellent reference work for researchers and graduate students working with/on communication systems a

  1. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orbital Technologies Corporation (ORBITEC) proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a highly-reliable, low-cost and...

  2. Advanced Vortex Hybrid Rocket Engine (AVHRE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a unique Advanced Vortex Hybrid Rocket Engine (AVHRE) to achieve a safe, highly-reliable, low-cost and uniquely versatile propulsion...

  3. The School Advanced Ventilation Engineering Software (SAVES)

    Science.gov (United States)

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  4. Advanced Training Technologies and Learning Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  5. Research advances in industrial engineering

    CERN Document Server

    2015-01-01

    This book provides discussions and the exchange of information on principles, strategies, models, techniques, methodologies and applications of industrial engineering. It communicates the latest developments and research activity on industrial engineering and is useful for all those interested in the technological challenges in the field.

  6. Advanced materials for aircraft engine applications.

    Science.gov (United States)

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  7. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  8. Advancing Sustainable Surface Engineering: Challenges & Future Opportunities

    Science.gov (United States)

    2014-11-01

    Energy costs – Inefficient processes – Supply chain risk • Reduced Liability – Environmental and occupational • Increased Availability...2013 Noblis, Inc. Advancing Sustainable Surface Engineering: Challenges & Future Opportunities Dr. Jeffrey Marqusee Chief Scientist...control number. 1. REPORT DATE NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Advancing Sustainable

  9. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model...... of the engine dynamics, a mean value engine model....

  10. Advanced Center for Engineering (ACE)

    Data.gov (United States)

    Federal Laboratory Consortium — Cave Automatic Virtual Environment (CAVE™)The ACE Team provides the ability to conduct fullscale interactive virtual CAD reviews using the CAVE.CapabilitiesTARDEC's...

  11. Humor Engineering in Smart Environments

    NARCIS (Netherlands)

    Nijholt, Anton; Fukuda, S.

    2016-01-01

    Enjoyment is one of the positive emotions we expect to have when visiting environments that have been designed to provide us with entertainment experiences. However, enjoyment is also part of our daily life, whether we are at home, in our office environment, in public environments or on the move fro

  12. Humor engineering in smart environments

    NARCIS (Netherlands)

    Nijholt, Anton; Fukuda, Shuichi

    2016-01-01

    Enjoyment is one of the positive emotions we expect to have when visiting environments that have been designed to provide us with entertainment experiences. However, enjoyment is also part of our daily life, whether we are at home, in our office environment, in public environments or on the move fro

  13. Advances in high voltage engineering

    CERN Document Server

    Haddad, A

    2005-01-01

    This book addresses the very latest research and development issues in high voltage technology and is intended as a reference source for researchers and students in the field, specifically covering developments throughout the past decade. This unique blend of expert authors and comprehensive subject coverage means that this book is ideally suited as a reference source for engineers and academics in the field for years to come.

  14. Monitoring advances in chemical engineering

    OpenAIRE

    Peters, H.P.F.; Hartmann, D; Van Raan, A.F.J.

    1988-01-01

    This paper describes an approach to monitoring scientific progress in chemical engineering in order to operationalize concepts such as 'research performance' which can be used in the retrospective evaluation and the future anticipation of scientific research activities. We focus on various quantitative methods. Bibliometric methods form an important, but not the only, part of the work. The use of bibliometric approaches and measures is plagued by many problems. This is es...

  15. Three Important Advances in Engineering Strength Theories

    Institute of Scientific and Technical Information of China (English)

    YuMaohong; FanWen; MitustoshiYoshimine

    2003-01-01

    There are there great advances in the research on engineering strength theories in the latter half of the 20th Century. The first advance was the devel-opment of strength theory from the single-shear strength theory including the Tresca yield criterion and Mohr-Coulomb failure criterion to theoctahe-dral-shear strength theory; the second one was that from the octahedral-shear strength theory to the twin-shear strength theory; and the third wasthe theories from the single criteria to the unifiedstrength theory. These three advances are summa-rized in this paper. It is interesting and useful for re-searchers to choose an appropriate failure criterion in studying the strength of materials and struc-tures, for engineers to correctly use it and for stu-dents to understand strength theory.

  16. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  17. Advances in genetic engineering of domestic animals

    Directory of Open Access Journals (Sweden)

    Shaohua WANG,Kun ZHANG,Yunping DAI

    2016-03-01

    Full Text Available Global population will increase to over nine billion by 2050 with the doubling in demand for meat and milk. To overcome this challenge, it is necessary to breed highly efficient and productive livestock. Furthermore, livestock are also excellent models for human diseases and ideal bioreactors to produce pharmaceutical proteins. Thus, genetic engineering of domestic animals presents a critical and valuable tool to address these agricultural and biomedical applications. Overall, genetic engineering has evolved through three stages in history: transgenesis, gene targeting, and gene editing. Since the birth of the first transgenic pig, genetic engineering in livestock has been advancing slowly due to inherent technical limitations. A major breakthrough has been the advent of somatic cell nuclear transfer, which, for the first time, provided the technical ability to produce site-specific genome-modified domestic animals. However, the low efficiency of gene targeting events in somatic cells prohibits its wide use in agricultural and biomedical applications. Recently, rapid progress in tools and methods of genome engineering has been made, allowing genetic editing from mutation of a single base pair to the deletion of entire chromosomes. Here, we review the major advances of genetic engineering in domestic animals with emphasis placed on the introduction of latest designer nucleases.

  18. Development of Advanced Small Hydrogen Engines

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  19. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  20. Library of Advanced Materials for Engineering : LAME.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-08-01

    Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simple object oriented programming structure. This report summarizes the current status of LAME.

  1. Genome engineering in cattle: recent technological advancements.

    Science.gov (United States)

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered

  2. Advanced Engineering Strategies for Periodontal Complex Regeneration

    Directory of Open Access Journals (Sweden)

    Chan Ho Park

    2016-01-01

    Full Text Available The regeneration and integration of multiple tissue types is critical for efforts to restore the function of musculoskeletal complex. In particular, the neogenesis of periodontal constructs for systematic tooth-supporting functions is a current challenge due to micron-scaled tissue compartmentalization, oblique/perpendicular orientations of fibrous connective tissues to the tooth root surface and the orchestration of multiple regenerated tissues. Although there have been various biological and biochemical achievements, periodontal tissue regeneration remains limited and unpredictable. The purpose of this paper is to discuss current advanced engineering approaches for periodontal complex formations; computer-designed, customized scaffolding architectures; cell sheet technology-based multi-phasic approaches; and patient-specific constructs using bioresorbable polymeric material and 3-D printing technology for clinical application. The review covers various advanced technologies for periodontal complex regeneration and state-of-the-art therapeutic avenues in periodontal tissue engineering.

  3. Distilling complexity to advance cardiac tissue engineering

    OpenAIRE

    Ogle, Brenda M.; Bursac, Nenad; Domian, Ibrahim; Huang, Ngan F.; Menasché, Philippe; Murry, Charles; Pruitt, Beth; Radisic, Milica; Wu, Joseph C; Wu, Sean M.; Zhang, Jianyi; Zimmermann, Wolfram-Hubertus; Vunjak-Novakovic, Gordana

    2016-01-01

    The promise of cardiac tissue engineering is in the ability to recapitulate in vitro the functional aspects of healthy heart and disease pathology as well as to design replacement muscle for clinical therapy. Parts of this promise have been realized; others have not. In a meeting of scientists in this field, five central challenges or “big questions” were articulated that, if addressed, could substantially advance the current state-of-the-art in modeling heart disease and realizing heart repa...

  4. Engineering subcultures and working environment in Danish enterprises

    DEFF Research Database (Denmark)

    Broberg, Ole

    2000-01-01

    Engineers' role in the management of working environment has been studied in 20 Danish enterprises based on questionnaires to 680 engineers. In general, engineers are not aware that they may influence the working environment of other people through their decisions. It is suggested that engineering...... subcultures be examined in order to change engineers' attitudes toward the working environment of workers and users....

  5. Liquid lubricants for advanced aircraft engines

    Science.gov (United States)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  6. Risk Assessment in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    M. Holický

    2003-01-01

    Full Text Available Traditional methods for designing of civil engineering structures and other engineering systems are frequently based on the concept of target probability of failure. However, this fundamental quantity is usually specified on the basis of comparative studies and past experience only. Moreover, probabilistic design methods suffer from several deficiencies, including lack of consideration for accidental and other hazard situations and their consequences. Both of these extreme conditions are more and more frequently becoming causes of serious failures and other adverse events. Available experience clearly indicates that probabilistic design procedures may be efficiently supplemented by a risk analysis and assessment, which can take into account various consequences of unfavourable events. It is therefore anticipated that in addition to traditional probabilistic concepts the methods of advanced engineering design will also commonly include criteria for acceptable risks.

  7. Modeling Virtual Meetings within Software Engineering Environment

    Directory of Open Access Journals (Sweden)

    Dr. Aiman Turani

    2014-04-01

    Full Text Available It is a common scenario to see project’s stakeholders, such as managers, team leaders, and developers carrying out their meeting in the online environment without a suitable preparation and facilitation For instance, stakeholders engaging in negotiation sessions trying to communicate system requirements in the virtual environment might face requirements misunderstanding which in turn might cause a whole project to fail. Usually a meeting agenda and design is implicit in the facilitator’s head. Conducting such meetings without obvious structure would potentially lead to various problems such as no one seemed to be in charge? Or there was no clear reason to meet or no agenda etc. In this paper, we are presenting a general framework to model group-based activities and meetings within software engineering field in a simplified and formal manner. Traditionally, managers submit their web-based group meeting information in a form of text-based instructions [1]. Then a group facilitator or chairperson will lead the group throughout the meeting to achieve the desired objectives. These types of meeting are relatively easy to manage in face-to-face environment where web based meeting in the other hand, is more challenging to facilitate and manage. Therefore, more and more specialized tools are immerging to manage and facilitate such meetings. For instance, Adobe Connect [2] is tool for facilitating web-based meetings. These tools usually allow facilitators to organize and prepare the meeting floor by inserting specific collaboration components such as chat, whiteboard, voting, etc. Then during the meeting the facilitator guides participants using the video or text component. This usually leads to undesirable outputs due to the lack of a clear structure or agenda in addition to the virtual distance that weakens the communication. In this paper a two level of modeling views are proposed, the static view and the dynamic view. The static view mainly

  8. ALPES: an advanced logic programming environment

    Directory of Open Access Journals (Sweden)

    Cristina Ruggieri

    1988-11-01

    Full Text Available This paper introduces a software programming environment for an extended Prolog language, called ALPES. The purpose of ALPES is to enable a logic programming paradigm to become a software engineering tool to design, develop and prototype traditional software systems, as well as artificial intelligence applications. The key structuring concepts for programs, as well as for the system architecture as a whole are those of contexts, processes and communication. The software design and development methodologies induced by the use of the Alpes-Prolog language have been incrementally used to develop the environment itself. This research was conducted under the Esprit projects P973 (ALPES.

  9. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  10. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  11. Engineering food crops to grow in harsh environments.

    Science.gov (United States)

    López-Arredondo, Damar; González-Morales, Sandra Isabel; Bello-Bello, Elohim; Alejo-Jacuinde, Gerardo; Herrera, Luis

    2015-01-01

    Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.

  12. [Advanced online search techniques and dedicated search engines for physicians].

    Science.gov (United States)

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  13. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2004-11-23

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  14. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    G.H. Nieder-Westermann

    2005-04-07

    The purpose of this report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The abstraction model is used in the total system performance assessment for the license application (TSPA LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of these abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2004 [DIRS 171156], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports.

  15. Engineered Barrier System: Physical and Chemical Environment

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  16. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  17. Ceramic technology for advanced heat engines project

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  18. Advances in Research on Genetically Engineered Plants for Metal Resistance

    Institute of Scientific and Technical Information of China (English)

    Ri-Qing Zhang; Chun-Fang Tang; Shi-Zhi Wen; Yun-Guo Liu; Ke-Lin Li

    2006-01-01

    The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens-mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants.

  19. Magnetic bearings: A key technology for advanced rocket engines?

    Science.gov (United States)

    Girault, J. PH.

    1992-01-01

    For several years, active magnetic bearings (AMB) have demonstrated their capabilities in many fields, from industrial compressors to control wheel suspension for spacecraft. Despite this broad area, no significant advance has been observed in rocket propulsion turbomachinery, where size, efficiency, and cost are crucial design criteria. To this respect, Societe Europeenne de Propulsion (SEP) had funded for several years significant efforts to delineate the advantages and drawbacks of AMB applied to rocket propulsion systems. Objectives of this work, relative technological basis, and improvements are described and illustrated by advanced turbopump layouts. Profiting from the advantages of compact design in cryogenic environments, the designs show considerable improvements in engine life, performances, and reliability. However, these conclusions should still be tempered by high recurrent costs, mainly due to the space-rated electronics. Development work focused on this point and evolution of electronics show the possibility to decrease production costs by an order of magnitude.

  20. Advanced interdisciplinary undergraduate program: light engineering

    Science.gov (United States)

    Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia

    2016-09-01

    The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.

  1. SAPLE: Sandia Advanced Personnel Locator Engine.

    Energy Technology Data Exchange (ETDEWEB)

    Procopio, Michael J.

    2010-04-01

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  2. Computer Aided Software Engineering (CASE) Environment Issues.

    Science.gov (United States)

    1987-06-01

    evelopment process for the understanding required. to change a sof’tw-are ~.se. Thev need to be ablc to repeat testing and co mpare results to origenal tests...dccade software engineering methodologies, tools and environments I-a-,e e- plcded on the market offering and delivering partial solutions to the soft\\ are...hegan conu’nd:::e a laree market share. As software eneineers came to grips with tlhe so:w,are problem. more compiex intercperable toolsets appeared

  3. Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE (trademark)) Guidelines

    Science.gov (United States)

    2011-06-01

    Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM...Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM) Guidelines 5a

  4. FY2014 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  5. FY2015 Advanced Combustion Engine Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Vehicle Technologies Office, Washington, DC (United States); Gravel, Roland M. [Vehicle Technologies Office, Washington, DC (United States); Howden, Kenneth C. [Vehicle Technologies Office, Washington, DC (United States); Breton, Leo [Vehicle Technologies Office, Washington, DC (United States)

    2016-03-25

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  6. Advanced Flip Chips in Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni

    2010-01-01

    material and the silicon die or chip, and also the underfill materials. Advanced packaging interconnects technology such as flip-chip interconnect test boards have been subjected to various extreme temperature ranges that cover military specifications and extreme Mars and asteroid environments. The eventual goal of each process step and the entire process is to produce components with 100 percent interconnect and satisfy the reliability requirements. Underfill materials, in general, may possibly meet demanding end use requirements such as low warpage, low stress, fine pitch, high reliability, and high adhesion.

  7. ENGINEERED BARRIER SYSTEM: PHYSICAL AND CHEMICAL ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    R. Jarek

    2005-08-29

    The purpose of this model report is to describe the evolution of the physical and chemical environmental conditions within the waste emplacement drifts of the repository, including the drip shield and waste package surfaces. The resulting seepage evaporation and gas abstraction models are used in the total system performance assessment for the license application (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. This report develops and documents a set of abstraction-level models that describe the engineered barrier system physical and chemical environment. Where possible, these models use information directly from other reports as input, which promotes integration among process models used for TSPA-LA. Specific tasks and activities of modeling the physical and chemical environment are included in ''Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration'' (BSC 2005 [DIRS 173782], Section 1.2.2). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system reports. To be consistent with other project documents that address features, events, and processes (FEPs), Table 6.14.1 of the current report includes updates to FEP numbers and FEP subjects for two FEPs identified in the technical work plan (TWP) governing this report (BSC 2005 [DIRS 173782]). FEP 2.1.09.06.0A (Reduction-oxidation potential in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.06.0B (Reduction-oxidation potential in Drifts; see Table 6.14-1). FEP 2.1.09.07.0A (Reaction kinetics in EBS), as listed in Table 2 of the TWP (BSC 2005 [DIRS 173782]), has been updated in the current report to FEP 2.1.09.07.0B (Reaction kinetics in Drifts; see Table 6.14-1). These deviations from the TWP are justified because they improve integration with FEPs

  8. ESSE: Engineering Super Simulation Emulation for Virtual Reality Systems Environment

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of); Yeon, Choul W. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-04-15

    Informative Construction Emulation (VENICE) is aimed at developing leading-edge digital process management solution for NPP systems optimal design and construction resorting to the Neo systemic Optimization Technical Unit Soft Power (NOTUS) in 4{sup +}D Technology{sup TM}, Digital Information Operating NPP Integrated Safety (DIONIS) employs a physics system that substantiates a 3D visualization of major events in NPPs. The network system that substantiates a 3D visualization of major events in NPPs. The network system makes available online exchange of the safety information in the ubiquitous environment. Navigator Artificial Reality Campus Interactive Simulation (NARCIS) is a environment. Navigator Artificial Reality Campus Interactive Simulation in the ubiquitous environment. Navigator Artificial Reality Campus Interactive Simulation (NARCIS) is a real-time on-line VR simulator. NARCIS creates a 3D cyber college environment providing visibility of VR campus. The 3D information delivery system allows providing visibility of VR campus. The 3D information delivery system allows exchange and share of information between faculty and the student. Multi physics Aqueous Navigation Intra peninsular Labyrinth Animation (MANILA) is an advanced 3D CG visualization project that includes CG animation of physical phenomena and interactions of fluids with structures by the Informative Neo graphic Utilities Unit Soft Power (INUUS), Junctional Analysis Neo dynamic Unit Soft Power (JANUS) and Engineering Utilities Research Unit Soft Power (EURUS), VENUS, INUUS, NOTUS, JANUS and EURUS empower VENICE, DIONIS, NARCIS and MANILA.

  9. Autoignition Chemistry of Surrogate Fuel Components in an Engine Environment

    Science.gov (United States)

    2015-08-21

    Environment David L. Miller and Nicholas P. Cernansky Mechanical Engineering and Mechanics Drexel University, Philadelphia, Pennsylvania, 19104... Engineering and Mechanics Department at Drexel University, and utilized an existing single cylinder research engine facility. The facility...a single-cylinder, variable compression ratio research engine . The program objectives were to determine the branching pathways of JP-8 components at

  10. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will provide an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.

  11. Advancement in Engineering Technology: A Novel Perspective

    DEFF Research Database (Denmark)

    Kalia, Kartik; Rehman, M. Atiqur; Hussain, Dil muhammed Akbar;

    2016-01-01

    In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas but to...... the environment on a great scale; in some cases, technology is even replacing human being or use of manpower. So proper counter measures have been mentioned, which can be used to control and limit harmful effect....... but to harvest those ideas, technology is a must. With the huge requirement of engineering equipment's, the industry needs specialists who can manage and operate these technologies. Detailed information about the merits and demerits of technology is also mentioned in this paper. Findings: Technology has affected......In this paper we will be discussing about the impact of technology on our daily lives. How everybody is dependent upon technology in one or other way. Methods/Statistical Analysis: Technology has played a significant role in the evolution of the society. Science has produced many new ideas...

  12. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  13. Advances in complex societal, environmental and engineered systems

    CERN Document Server

    Essaaidi, Mohammad

    2017-01-01

    This book addresses recent technological progress that has led to an increased complexity in many natural and artificial systems. The resulting complexity research due to the emergence of new properties and spatio-temporal interactions among a large number of system elements - and between the system and its environment - is the primary focus of this text. This volume is divided into three parts: Part one focuses on societal and ecological systems, Part two deals with approaches for understanding, modeling, predicting and mastering socio-technical systems, and Part three includes real-life examples. Each chapter has its own special features; it is a self-contained contribution of distinguished experts working on different fields of science and technology relevant to the study of complex systems. Advances in Complex Systems of Contemporary Reality: Societal, Environmental and Engineered Systems will provide postgraduate students, researchers and managers with qualitative and quantitative methods for handling th...

  14. Advances in biomedical engineering and biotechnology during 2013-2014.

    Science.gov (United States)

    Liu, Feng; Wang, Ying; Burkhart, Timothy A; González Penedo, Manuel Francisco; Ma, Shaodong

    2014-01-01

    The 3rd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2014), held in Beijing from the 25th to the 28th of September 2014, is an annual conference that intends to provide an opportunity for researchers and practitioners around the world to present the most recent advances and future challenges in the fields of biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, amongst others. The papers published in this issue are selected from this conference, which witnesses the advances in biomedical engineering and biotechnology during 2013-2014.

  15. Systems Engineering Leadership Development: Advancing Systems Engineering Excellence

    Science.gov (United States)

    Hall, Phil; Whitfield, Susan

    2011-01-01

    This slide presentation reviews the Systems Engineering Leadership Development Program, with particular emphasis on the work being done in the development of systems engineers at Marshall Space Flight Center. There exists a lack of individuals with systems engineering expertise, in particular those with strong leadership capabilities, to meet the needs of the Agency's exploration agenda. Therefore there is a emphasis on developing these programs to identify and train systems engineers. The presentation reviews the proposed MSFC program that includes course work, and developmental assignments. The formal developmental programs at the other centers are briefly reviewed, including the Point of Contact (POC)

  16. A Virtual Engineering Framework for Simulating Advanced Power System

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

    2008-06-18

    In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering

  17. Engineered Materials for Advanced Gas Turbine Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  18. Advancing intercultural competency: Canadian engineering employers' experiences with immigrant engineers

    Science.gov (United States)

    Friesen, Marcia; Ingram, Sandra

    2013-05-01

    This paper explores Canadian engineering employers' perceptions of and experiences with internationally educated engineers (recent immigrants to Canada) employed in their organisations for varying lengths of time. Qualitative data were collected from employers using focus group methodology. Findings reflected employers' observations of culturally different behaviours and characteristics in their internationally educated employees, employers' reactions to cultural differences ranging from negative attributions to tolerance, and the implementation of largely ad hoc intra-organisational strategies for managing cultural differences in employer-employee relationships. Findings exposed the lack of corporate intercultural competency in the Canadian engineering profession. Equity and gatekeeping implications are discussed.

  19. Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Terrance [Ford Motor Co., Dearborn, MI (United States)

    2015-12-31

    This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, and to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.

  20. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  1. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  2. Recent Advances in Genetic Engineering - A Review

    OpenAIRE

    Sobiah Rauf; Zubair Anwar; Hussain Mustatab Wahedi; Jabar Zaman Khan Khattak; Talal Jamil

    2012-01-01

    Humans have been doing genetic engineering, a technology which is transforming our world, for thousands of years on a wide range of plants, animals and micro organism and have applications in the field of medicine, research, industry and agriculture. The rapid developments in the field of genetic engineering have given a new impetus to biotechnology. This introduces the possibility of tailoring organisms in order to optimize the production of established or novel metabolites of commercial imp...

  3. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  4. Advanced quantum communications an engineering approach

    CERN Document Server

    Imre, Sandor

    2012-01-01

    The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum ph

  5. Center for Advanced Energy Studies: Computer Assisted Virtual Environment (CAVE)

    Data.gov (United States)

    Federal Laboratory Consortium — The laboratory contains a four-walled 3D computer assisted virtual environment - or CAVE TM — that allows scientists and engineers to literally walk into their data...

  6. Rocket Engine Innovations Advance Clean Energy

    Science.gov (United States)

    2012-01-01

    During launch countdown, at approximately T-7 seconds, the Space Shuttle Main Engines (SSMEs) roar to life. When the controllers indicate normal operation, the solid rocket boosters ignite and the shuttle blasts off. Initially, the SSMEs throttle down to reduce stress during the period of maximum dynamic pressure, but soon after, they throttle up to propel the orbiter to 17,500 miles per hour. In just under 9 minutes, the three SSMEs burn over 1.6 million pounds of propellant, and temperatures inside the main combustion chamber reach 6,000 F. To cool the engines, liquid hydrogen circulates through miles of tubing at -423 F. From 1981to 2011, the Space Shuttle fleet carried crew and cargo into orbit to perform a myriad of unprecedented tasks. After 30 years and 135 missions, the feat of engineering known as the SSME boasted a 100-percent flight success rate.

  7. Neck Injury in Advanced Military Aircraft Environments

    Science.gov (United States)

    1990-02-01

    concentration durlrg his mission but also with his off duty life as well. Here also, preferred medicet treat- ment was physiotherapy although some pilots admitted...symptomatic cervical disease later in life. The *Gz environment appears to play a role in an Sccelerated rate of Cervical osteoarthritis in high performance... osteoarthritis . This paper attenmpts to establish that progressive cervical osteoarthiitic changes Occur In pilots exposed to a repetitive eGz environment as

  8. Advanced Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the third in a series of short books on probability theory and random processes for biomedical engineers. This book focuses on standard probability distributions commonly encountered in biomedical engineering. The exponential, Poisson and Gaussian distributions are introduced, as well as important approximations to the Bernoulli PMF and Gaussian CDF. Many important properties of jointly Gaussian random variables are presented. The primary subjects of the final chapter are methods for determining the probability distribution of a function of a random variable. We first evaluate the prob

  9. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  10. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  11. The influence of engine technology advancements on aircraft economics

    Science.gov (United States)

    Witherspoon, J. W.; Gaffin, W. O.

    1973-01-01

    A technology advancement in a new powerplant has both favorable and unfavorable effects. Increased bypass ratio and compression ratio, coupled with high turbine temperatures, improve performance but also increase engine price and maintenance cost. The factors that should be evaluated in choosing an engine for airline use are discussed. These factors are compared for two engines that might be considered for future 150 to 200 passenger airplanes: an all-new turbofan and a quiet derivative of an existing first generation turbofan. The results of the performance and cost evaluations of the example engines are reduced to common units so they can be combined.

  12. XG40 - Rolls-Royce Advanced Fighter Engine Demonstrator

    Directory of Open Access Journals (Sweden)

    G. M. Lewis

    1988-10-01

    Full Text Available Commenced in 1982, the XG40 programme is central to the demonstration of Rolls-Royce technology appropriate to the requirements of the advanced combat engine for mid 1990's operation. At the same time, the technology in scaled form is viewed as having wider application than for the advanced combat engine alone.To meet the multi-role requirements of advanced twin and single engined fighters, the combat engine must be designed to give enhanced dry thrust, retain good dry specific fuel consumption and reduce reheated fuel consumption compared with current fighter engines. A thrust/weight ratio of 10 : 1 is targeted and at the same time requirements for operating cost, reliability and durability are stringent.Advanced materials, manufacturing technology and design of structures have been incorporated to enable the required levels of reliability, durability, component cost and weight to be demonstrated.The engine is in the 90/95 kN nominal Sea Level Static Combat thrust class.

  13. Virtual Environments for Advanced Trainers and Simulators

    NARCIS (Netherlands)

    Jense, G.J.; Kuijper, F.

    1993-01-01

    Virtual environment technology is expected to make a big impact on future training and simulation systems. Direct stimulation of human senses (eyesight, auditory, tactile) and new paradigms for user input will improve the realism of simulations and thereby the effectiveness of training systems. Afte

  14. Advances in Electrical Engineering and Automation

    CERN Document Server

    Huang, Xiong

    2012-01-01

    EEA2011 is an integrated conference concentration its focus on Electrical Engineering and Automation. In the proceeding, you can learn much more knowledge about  Electrical Engineering and Automation of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.  

  15. Advances in genetic engineering of domestic animals

    OpenAIRE

    Shaohua WANG,Kun ZHANG,Yunping DAI

    2016-01-01

    Global population will increase to over nine billion by 2050 with the doubling in demand for meat and milk. To overcome this challenge, it is necessary to breed highly efficient and productive livestock. Furthermore, livestock are also excellent models for human diseases and ideal bioreactors to produce pharmaceutical proteins. Thus, genetic engineering of domestic animals presents a critical and valuable tool to address these agricultural and biomedical applications. Overall, genetic enginee...

  16. Advances in reliability and system engineering

    CERN Document Server

    Davim, J

    2017-01-01

    This book presents original studies describing the latest research and developments in the area of reliability and systems engineering. It helps the reader identifying gaps in the current knowledge and presents fruitful areas for further research in the field. Among others, this book covers reliability measures, reliability assessment of multi-state systems, optimization of multi-state systems, continuous multi-state systems, new computational techniques applied to multi-state systems and probabilistic and non-probabilistic safety assessment.

  17. ADVANCE, a modular vehicle simulation environment in MATLAB/SIMULINK

    NARCIS (Netherlands)

    Eelkema, J.; Vink, W.; Tillaart, E. van den

    2002-01-01

    This paper presents the development of a hybrid electric powertrain test platform. In the development process use has been made of ADVANCE, a modular vehicle simulation environment in MATLAB/Simulink. The background, philosophy, and the concept of the ADVANCE tool are discussed and a brief introduct

  18. Computational electromagnetics recent advances and engineering applications

    CERN Document Server

    2014-01-01

    Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.

  19. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  20. Knowledge management in the engineering design environment

    Science.gov (United States)

    Briggs, Hugh C.

    2006-01-01

    The Aerospace and Defense industry is experiencing an increasing loss of knowledge through workforce reductions associated with business consolidation and retirement of senior personnel. Significant effort is being placed on process definition as part of ISO certification and, more recently, CMMI certification. The process knowledge in these efforts represents the simplest of engineering knowledge and many organizations are trying to get senior engineers to write more significant guidelines, best practices and design manuals. A new generation of design software, known as Product Lifecycle Management systems, has many mechanisms for capturing and deploying a wider variety of engineering knowledge than simple process definitions. These hold the promise of significant improvements through reuse of prior designs, codification of practices in workflows, and placement of detailed how-tos at the point of application.

  1. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  2. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  3. Cofactor engineering for advancing chemical biotechnology.

    Science.gov (United States)

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-12-01

    Cofactors provide redox carriers for biosynthetic reactions, catabolic reactions and act as important agents in transfer of energy for the cell. Recent advances in manipulating cofactors include culture conditions or additive alterations, genetic modification of host pathways for increased availability of desired cofactor, changes in enzyme cofactor specificity, and introduction of novel redox partners to form effective circuits for biochemical processes and biocatalysts. Genetic strategies to employ ferredoxin, NADH and NADPH most effectively in natural or novel pathways have improved yield and efficiency of large-scale processes for fuels and chemicals and have been demonstrated with a variety of microbial organisms.

  4. Mechanical engineering utilizing advanced engineering tools for the CANDU 9 project

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, F.; Yu, S.K.W.; Hedges, K.R. [Atomic Energy of Canada Limited (AECL), Ontario (Canada)

    1998-05-01

    To meet the increasing challenging project requirements such as cost and schedule reduction, AECL has incorporated a comprehensive suite of integrated, advanced engineering tools for CANDU project engineering and delivery. This paper provides a description of the advanced engineering tools developed and used by AECL in the pre-project engineering of the CANDU 9 product and the construction projects such as the construction of two CANDU 6 units in Qinshan, China. The advanced mechanical engineering tools described include: the Process and Instrument Diagram ; the mechanical/piping 3D models; the CADDS/piping analysis interface (PAI) tool; the pipe support design system (SDS) tool; and the powerful equipment database tool - TeddyBase. A description of the enhanced work process will also be provided. The work process improvement is a direct result of the implementation of advanced information technology and the integration of AECL tools with commercial engineering and project tools available in the market. The use of these advanced tools results in better design quality; enhanced presentation of the engineering deliverables to construction and commissioning staff; and potential support to future plant operations (Ref.1). (author). 2 refs., 3 figs.

  5. Dynamic process management for engineering environments

    NARCIS (Netherlands)

    Mentink, R.J.; Houten, van F.J.A.M.; Kals, H.J.J.

    2003-01-01

    The research presented in this paper proposes a concept for dynamic process management as part of an integrated approach to engineering process support. The theory of information management is the starting point for the development of a process management system based on evolution of information con

  6. Bioreactors Drive Advances in Tissue Engineering

    Science.gov (United States)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both

  7. Recent Advances in Intelligent Engineering Systems

    CERN Document Server

    Klempous, Ryszard; Araujo, Carmen

    2012-01-01

    This volume is a collection of 19 chapters on intelligent engineering systems written by respectable experts of the fields. The book consists of three parts. The first part is devoted to the foundational aspects of computational intelligence. It consists of 8 chapters that include studies in genetic algorithms, fuzzy logic connectives, enhanced intelligence in product models, nature-inspired optimization technologies, particle swarm optimization, evolution algorithms, model complexity of neural networks, and fitness landscape analysis. The second part contains contributions to intelligent computation in networks, presented in 5 chapters. The covered subjects include the application of self-organizing maps for early detection of denial of service attacks, combating security threats via immunity and adaptability in cognitive radio networks, novel modifications in WSN network design for improved SNR and reliability, a conceptual framework for the design of audio based cognitive infocommunication channels, and a ...

  8. Powder metallurgy bearings for advanced rocket engines

    Science.gov (United States)

    Fleck, J. N.; Killman, B. J.; Munson, H.E.

    1985-01-01

    Traditional ingot metallurgy was pushed to the limit for many demanding applications including antifriction bearings. New systems require corrosion resistance, better fatigue resistance, and higher toughness. With conventional processing, increasing the alloying level to achieve corrosion resistance results in a decrease in other properties such as toughness. Advanced powder metallurgy affords a viable solution to this problem. During powder manufacture, the individual particle solidifies very rapidly; as a consequence, the primary carbides are very small and uniformly distributed. When properly consolidated, this uniform structure is preserved while generating a fully dense product. Element tests including rolling contact fatigue, hot hardness, wear, fracture toughness, and corrosion resistance are underway on eleven candidate P/M bearing alloys and results are compared with those for wrought 440C steel, the current SSME bearing material. Several materials which offer the promise of a significant improvement in performance were identified.

  9. Recent Advances and Future Directions for Quality Engineering

    DEFF Research Database (Denmark)

    Vining, Geoff; Kulahci, Murat; Pedersen, Søren

    2015-01-01

    The origins of quality engineering are in manufacturing, where quality engineers apply basic statistical methodologies to improve the quality and productivity of products and processes. In the past decade, people have discovered that these methodologies are effective for improving almost any type...... of system or process, such as financial, health care, and supply chains. This paper begins with a review of key advances and trends within quality engineering over the past decade. The second part uses the first part as a foundation to outline new application areas for the field. It also discusses how...... quality engineering needs to evolve in order to make significant contributions to these new areas. © 2015 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd....

  10. Advanced Health Management System for the Space Shuttle Main Engine

    Science.gov (United States)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  11. Thermodynamics an advanced textbook for chemical engineers

    CERN Document Server

    Astarita, Gianni

    1989-01-01

    If a Writer would know how to behave himself with relation to Posterity; let him consider in old Books, what he finds, that he is glad to know; and what Omissions he most laments. Jonathan Swift This book emerges from a long story of teaching. I taught chemical engineering thermodynamics for about ten years at the University of Naples in the 1960s, and I still remember the awkwardness that I felt about any textbook I chose to consider-all of them seemed to be vague at best, and the standard of logical rigor seemed immensely inferior to what I could find in books on such other of the students in my first class subjects as calculus and fluid mechanics. One (who is now Prof. F. Gioia of the University of Naples) once asked me a question which I have used here as Example 4. 2-more than 20 years have gone by, and I am still waiting for a more intelligent question from one of my students. At the time, that question compelled me to answer in a way I didn't like, namely "I'll think about it, and I hope I'll have the ...

  12. Engineering development of advanced froth flotation. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R.; Torak, E.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-03-01

    This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.

  13. Sino-UX Advanced Engineering Cooperation Set Off

    Institute of Scientific and Technical Information of China (English)

    Alice

    2009-01-01

    @@ Asignificant marketing document produced by UK Trade & Investment (UKTI) to promote greater bilateral trade and investment co-operation between the UK and China in the area of advanced engineering was launched on 11 March,Beijing,by HM Ambassador,Sir William Erhman,UK Ambassador to China.

  14. Stem and progenitor cells: advancing bone tissue engineering.

    Science.gov (United States)

    Tevlin, R; Walmsley, G G; Marecic, O; Hu, Michael S; Wan, D C; Longaker, M T

    2016-04-01

    Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone--the best option--is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body's own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

  15. Advanced materials research for long-haul aircraft turbine engines

    Science.gov (United States)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  16. Engineering Compensations in Web Service Environment

    DEFF Research Database (Denmark)

    Schäfer, Micahel; Dolog, Peter; Nejdl, Wolfgang

    2007-01-01

    Business to business integration has recently been performed by employing Web service environments. Moreover, such environments are being provided by major players on the technology markets. Those environments are based on open specifications for transaction coordination. When a failure...... compensations based on forward recovery principles. We extend the existing Web service transaction coordination architecture and infrastructure in order to support flexible compensation operations. A contract-based approach is being used, which allows the specification of permitted compensations at runtime. We...... introduce the abstract service and adapter components which allow us to separate the compensation logic from the coordination logic. In this way, we can easily plug in or plug out different compensation strategies based on a specification language defined on top of basic compensation activities and complex...

  17. Creating a Learning Environment for Engineering Education

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    ? And the introduction of IT has highlighted the importance of the learning environment, but the focus has narrowly been on the physical environment. However, the mental frame-work is also very important. To assure educational quality it is necessary to take all these elements into account and consider the total......Until recently discussions about improvement of educational quality have focussed on the teacher – it was as-sumed that by training the teacher you could increase the students’ learning outcome. Realising that other changes than better teaching were necessary to give the students more useful...

  18. Effect of advanced injection timing on the performence of natural gas in diesel engines

    Indian Academy of Sciences (India)

    O M I Nwafor

    2000-02-01

    Concern over the environment and/or the increasing demand for conventional fossil fuel has promoted interest in the development of alternative sources of fuel energy for internal combustion (IC) engines. The effect ofadvanced injection timing on the performance of natural gas used as primary fuel in dual-fuel combustion has been examined. Satisfactory diesel engine combustion demands self-ignition of the fuel as it is injected near the top dead centre (TDC) into the hot swirling compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise (diesel knock) because too much fuel is ready to burn when combustion eventually occurs. Natural gas has been noted to exhibit longer ignition delays and slower burning rates especially at low load levels hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate for these effects. The engine has standard injection timing of 30° before TDC (BTDC). The injection was first advanced by 5.5° given injection timing of 35.5° BTDC. The engine ran for about 5 minutes at this timing and stopped. The engine failed to start upon subsequent attempts. The injection was then advanced by 3.5° (i.e. 33.5° BTDC). The engine ran smoothly on this timing butseemed to incur penalty on fuel consumption especially at high load levels.

  19. The software factory: A fourth generation software engineering environment

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.W.

    1989-01-01

    The software-development process and its management are examined in a text intended for engineering managers and students of computer science. A unified concept based on the principle that software design is an engineering science rather than an art is applied, and a software engineering environment (SEE) analogous to an industrial plant is proposed. Chapters are devoted to the classical software environment, the history of software engineering, the evolution of the SEE, the fourth-generation SEE, the engineering process, software-data relationships, the SEE data base, data control in the SEE, software life cycles, information-system product assurance, business management and control, and automating and adapting the SEE. 143 refs.

  20. Study of Fussy Clustering of Engineering Geological Environment with GIS

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen-hua; JIANG Zhen-quan; ZUO Ru-song

    2003-01-01

    Based on previous evaluating methods, a new method which combines GIS with Fussy Clustering algorithm is proposed and applied in evaluating the engineering geological environment of the research area of XuZHou City in this paper. By analyzing the characteristics and formation of engineering geological environment,the major problems are discussed, including stability of basement rock, sandy soil liquefaction and cultural stratum.According to effecting factors of these problems, the stability of every engineering geological problem in the worked area is classified into different classes. Then, the Fussy Clustering method is used in assessing all conditions of engineering geological environment. Finally, the evaluation is fulfilled in the whole studied area. The calculating result shows the method is feasible.

  1. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  2. Thermal Barrier Coatings for Advanced Gas Turbine and Diesel Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    Ceramic thermal barrier coatings (TBCS) have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, durability issues of these thermal barrier coatings under high temperature cyclic conditions are still of major concern. The coating failure depends not only on the coating, but also on the ceramic sintering/creep and bond coat oxidation under the operating conditions. Novel test approaches have been established to obtain critical thermomechanical and thermophysical properties of the coating systems under near-realistic transient and steady state temperature and stress gradients encountered in advanced engine systems. This paper presents detailed experimental and modeling results describing processes occurring in the ZrO2-Y2O3 thermal barrier coating systems, thus providing a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  3. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  4. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  5. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...

  6. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further.

  7. Inspiring engineering minds to advance human health: the Henry Samueli School of Engineering's Department of BME.

    Science.gov (United States)

    Lee, Abraham; Wirtanen, Erik

    2012-07-01

    The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).

  8. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  9. Metabolic engineering of microbial pathways for advanced biofuels production.

    Science.gov (United States)

    Zhang, Fuzhong; Rodriguez, Sarah; Keasling, Jay D

    2011-12-01

    Production of biofuels from renewable resources such as cellulosic biomass provides a source of liquid transportation fuel to replace petroleum-based fuels. This endeavor requires the conversion of cellulosic biomass into simple sugars, and the conversion of simple sugars into biofuels. Recently, microorganisms have been engineered to convert simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, alkanes, and terpenes, with high titers and yields. Here, we review recently engineered biosynthetic pathways from the well-characterized microorganisms Escherichia coli and Saccharomyces cerevisiae for the production of several advanced biofuels.

  10. Collaboration in Research and Engineering for Advanced Technology.

    Energy Technology Data Exchange (ETDEWEB)

    Vrieling, P. Douglas [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  11. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  12. Advances in polymeric systems for tissue engineering and biomedical applications.

    Science.gov (United States)

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  13. Complex Adaptive Systems of Systems (CASOS) engineering environment.

    Energy Technology Data Exchange (ETDEWEB)

    Detry, Richard Joseph; Linebarger, John Michael; Finley, Patrick D.; Maffitt, S. Louise; Glass, Robert John, Jr.; Beyeler, Walter Eugene; Ames, Arlo Leroy

    2012-02-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex physical-socio-technical systems which we must understand to design a secure future for the nation. The Phoenix initiative implements CASoS Engineering principles combining the bottom up Complex Systems and Complex Adaptive Systems view with the top down Systems Engineering and System-of-Systems view. CASoS Engineering theory and practice must be conducted together to develop a discipline that is grounded in reality, extends our understanding of how CASoS behave and allows us to better control the outcomes. The pull of applications (real world problems) is critical to this effort, as is the articulation of a CASoS Engineering Framework that grounds an engineering approach in the theory of complex adaptive systems of systems. Successful application of the CASoS Engineering Framework requires modeling, simulation and analysis (MS and A) capabilities and the cultivation of a CASoS Engineering Community of Practice through knowledge sharing and facilitation. The CASoS Engineering Environment, itself a complex adaptive system of systems, constitutes the two platforms that provide these capabilities.

  14. International Conference on Advances in Tribology and Engineering Systems

    CERN Document Server

    Deheri, Gunamani; Patel, Harshvadan; Mehta, Shreya

    2014-01-01

    This book contains advanced-level research material in the area of lubrication theory and related aspects, presented by eminent researchers during the International Conference on Advances in Tribology and Engineering Systems (ICATES 2013) held at Gujarat Technological University, Ahmedabad, India during October 15–17, 2013. The material in this book represents the advanced field of tribology and reflects the work of many eminent researchers from both India and abroad. The treatment of the presentations is the result of the contributions of several professionals working in the industry and academia. This book will be useful for students, researchers, academicians, and professionals working in the area of tribology, in general, and bearing performance characteristics, in particular, especially from the point-of-view of design. This book will also appeal to researchers and professionals working in fluid-film lubrication and other practical applications of tribology. A wide range of topics has been included des...

  15. Open source engineering and sustainability tools for the built environment

    NARCIS (Netherlands)

    Coenders, J.L.

    2013-01-01

    This paper presents two novel open source software developments for design and engineering in the built environment. The first development, called “sustainability-open” [1], aims on providing open source design, analysis and assessment software source code for (environmental) performance of building

  16. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  17. Integrating Sustainability in a PBL Environment for Electronics Engineering

    DEFF Research Database (Denmark)

    2013-01-01

    in a problem based learning environment. Three electronics engineering project modules were selected as example and empirically supported by constructed interviews with staff and document analysis of selected material. The findings were analysed with a systems approach and presented with reference to three...

  18. Risk Identification and Visualization in a Concurrent Engineering Team Environment

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Shishko, Robert

    2010-01-01

    Incorporating risk assessment into the dynamic environment of a concurrent engineering team requires rapid response and adaptation. Generating consistent risk lists with inputs from all the relevant subsystems and presenting the results clearly to the stakeholders in a concurrent engineering environment is difficult because of the speed with which decisions are made. In this paper we describe the various approaches and techniques that have been explored for the point designs of JPL's Team X and the Trade Space Studies of the Rapid Mission Architecture Team. The paper will also focus on the issues of the misuse of categorical and ordinal data that keep arising within current engineering risk approaches and also in the applied risk literature.

  19. Product audit for heavy duty diesel engines in production environment

    Science.gov (United States)

    Suh, Sanghoon; Beresford, Jim

    2005-09-01

    A product audit at manufacturing plants has become more important due to the customer's requirements on product quality. Noise and vibration performance have been a primary concern for gas engines and small size diesel engines. Lately, more interest has been shown by truck manufacturers about engine noise for heavy duty diesel application. It has been regarded that acoustic measurements requires dedicated measurement environment for detailed study. This case study shows that acoustic measurements can be performed at performance cell without any dedicated acoustic treatment at the manufacturing plant to identify some of the noise characteristics with proper preparation. Order tracking and loudness were used to identify two different characteristics related to front gear train in heavy duty diesel engines. In addition, the coordination between technical organization and manufacturing plant for the data acquisition and analysis is discussed.

  20. Joining teleoperation with robotics for advanced manipulation in hostile environments

    Energy Technology Data Exchange (ETDEWEB)

    Martin, H.L.; Hamel, W.R.

    1984-01-01

    Manipulators have been used for many years to perform remote handling tasks in hazardous environments. The development history of teleoperators is reviewed, and applications around the world are summarized. The effect of computer supervisory control is discussed, and similarities between robots and teleoperator research activities are delineated. With improved control strategies and system designs, combination of positive attributes of robots with teleoperators will lead to advanced machines capable of autonomy in unstructured environments. This concept of a telerobot is introduced as a goal for future activities.

  1. Engineering of Glasses for Advanced Optical Fiber Applications

    Directory of Open Access Journals (Sweden)

    Nathan Carlie

    2009-12-01

    Full Text Available Advanced optical applications (such as fiber opticsdemand the engineering of innovative materialswhich provide the requisite optical performance in aform with specific functionality necessary for thedesired application. We will report on recent effortsto engineer new non-oxide glasses with tailoredphoto-sensitive response, and multi-component oxideglasses optimized for use in next generation Ramanamplification applications. The ultimate performanceof such glasses relies on control of the formation andstability of defective and/or metastable structuralconfigurations and their impact on physical as well aslinear and nonlinear optical properties. Direct laserwriting has drawn considerable attention since thedevelopment of femtosecond lasers and therecognition that such systems possess the requisiteintensity to modify, reversibly or irreversibly thephysical properties of optical materials. Such“structuring” has emerged as one of several possibleroutes for the fabrication of waveguides and otherphoto-induced structures.

  2. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  3. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  4. Materials for advanced rocket engine turbopump turbine blades

    Science.gov (United States)

    Chandler, W. T.

    1985-01-01

    A study program was conducted to identify those materials that will provide the greatest benefits as turbine blades for advanced liquid propellant rocket engine turbines and to prepare technology plans for the development of those materials for use in the 1990 through 1995 period. The candidate materials were selected from six classes of materials: single-crystal (SC) superalloys, oxide dispersion-strengthened (ODS) superalloys, rapid solidification processed (RSP) superalloys, directionally solidified eutectic (DSE) superalloys, fiber-reinforced superalloy (FRS) composites, and ceramics. Properties of materials from the six classes were compiled and evaluated and property improvements were projected approximately 5 years into the future for advanced versions of materials in each of the six classes.

  5. Biomass and biofuels from microalgae advances in engineering and biology

    CERN Document Server

    Moheimani, Navid Reza; de Boer, Karne; Bahri, Parisa

    2015-01-01

    This comprehensive book details the most recent advances in the microalgae biological sciences and engineering technologies for biomass and biofuel production in order to meet the ongoing need for new and affordable sources of food, chemicals and energy for future generations. The chapters explore new microalgae cultivation techniques, including solid (biofilm) systems, and heterotrophic production methods, while also critically investigating topics such as combining wastewater as a source of nutrients, the effect of CO2 on growth, and converting biomass to methane through anaerobi

  6. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Evaluation, Engineering and Development of Advanced Cyclone Processes'' is a research and development project for the reduction of pyritic sulfur in coal. Project goals are to remove 80 to 90% of the ash and pyritic sulfur while retaining 80 to 90% of the parent coal's heating value. A number of media and media separator options are to be evaluated and tested, culminating with the implementation of the preferred combination in a 1,000 lb/hr bench-scale process optimization circuit.

  7. Application of advanced coating techniques to rocket engine components

    Science.gov (United States)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  8. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment : Proceedings of the 19th ISPE International Conference on Concurrent Engineering

    CERN Document Server

    Rock, Georg; Bil, Cees

    2013-01-01

    The CE Conference series is organized annually by the International Society for Productivity Enhancement (ISPE) and constitutes an important forum for international scientific exchange on concurrent and collaborative enterprise engineering. These international conferences attract a significant number of researchers, industrialists and students, as well as government representatives, who are interested in the recent advances in concurrent engineering research and applications. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment: Proceedings of the 19th ISPE International Conference on Concurrent Engineering contains papers accepted, peer reviewed and presented at the annual conference held  at the University of Applied Sciences in Trier, Germany, from 3rd-7th of September 2012. This covers a wide range of cutting-edge topics including: •Systems Engineering and Innovation •Design for Sustainability •Knowledge Engineering and Management •Managing pro...

  9. Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

  10. Evaluating model of frozen soil environment change under engineering actions

    Institute of Scientific and Technical Information of China (English)

    WU; Qingbai(吴青柏); ZHU; Yuanlin(朱元林); LIU; Yongzhi(刘永智)

    2002-01-01

    The change of frozen soil environment is evaluated by permafrost thermal stability, thermal thaw sensibility and surface landscape stability and the quantitatively evaluating model of frozen soil environment is proposed in this paper. The evaluating model of frozen soil environment is calculated by 28 ground temperature measurements along Qinghai-Xizang Highway. The relationships of thermal thaw sensibility and freezing and thawing processes and seasonally thawing depth, thermal stability and permafrost table temperature, mean annual ground temperature and seasonally thawing depth, and surface landscape stability and freezing and thawing hazards and their forming possibility are analyzed. The results show that thermal stability, thermal thaw sensibility and surface landscape stability can be used to evaluate and predict the change of frozen soil environment under human engineering action.

  11. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  12. Advanced Scientific Computing Environment Team new scientific database management task

    Energy Technology Data Exchange (ETDEWEB)

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future computer'' will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This network computer'' will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of Jvv'' concepts and capabilities to distributed and/or parallel computing environments.

  13. A solution of multidisciplinary collaborative simulation for complex engineering systems in a distributed heterogeneous environment

    Institute of Scientific and Technical Information of China (English)

    ZHANG HeMing

    2009-01-01

    This paper presents an integrated approach to multidisciplinary collaborative simulation for complex engineering systems. The formulized paradigm of mulUdisciplinary collaborative simulation for com-plex engineering systems is principally analyzed. An IEEE HLA and web services based framework is proposed to provide a heterogeneous, distributed and collaborative running environment where multi-disciplinary modeling, running management and post-processing of collaborative simulation are under-taken. The mechanism of multidisciplinary collaborative modeling, disciplinary model transformation, and time-synchronized simulation advancement are studied in detail. A prototype with the functions of multidisciplinary modeling, running management and post-processing for collaborative simulations is developed, and a typical complex engineering system is chosen as a case study to demonstrate the effectiveness of this new approach towards collaborative simulation.

  14. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  15. Cost/benefit studies of advanced materials technologies for future aircraft turbine engines: Materials for advanced turbine engines

    Science.gov (United States)

    Stearns, M.; Wilbers, L.

    1982-01-01

    Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.

  16. Recent Advances in Application of Biosensors in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anwarul Hasan

    2014-01-01

    Full Text Available Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.

  17. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  18. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  19. Control of harmful hydrocarbon species in the exhaust of modern advanced GDI engines

    Science.gov (United States)

    Hasan, A. O.; Abu-jrai, A.; Turner, D.; Tsolakis, A.; Xu, H. M.; Golunski, S. E.; Herreros, J. M.

    2016-03-01

    A qualitative and quantitative analysis of toxic but currently non-regulated hydrocarbon compounds ranging from C5-C11, before and after a zoned three-way catalytic converter (TWC) in a modern gasoline direct injection (GDI) engine has been studied using gas chromatography-mass spectrometry (GC-MS). The GDI engine has been operated under conventional and advanced combustion modes, which result in better fuel economy and reduced levels of NOx with respect to standard SI operation. However, these fuel-efficient conditions are more challenging for the operation of a conventional TWC, and could lead to higher level of emissions released to the environment. Lean combustion leads to the reduction in pumping losses, fuel consumption and in-cylinder emission formation rates. However, lean HCCI will lead to high levels of unburnt HCs while the presence of oxygen will lower the TWC efficiency for NOx control. The effect on the catalytic conversion of the hydrocarbon species of the addition of hydrogen upstream the catalyst has been also investigated. The highest hydrocarbon engine-out emissions were produced for HCCI engine operation at low engine load operation. The catalyst was able to remove most of the hydrocarbon species to low levels (below the permissible exposure limits) for standard and most of the advanced combustion modes, except for naphthalene (classified as possibly carcinogenic to humans by the International Agency for Research on Cancer) and methyl-naphthalene (which has the potential to cause lung damage). However, when hydrogen was added upstream of the catalyst, the catalyst conversion efficiency in reducing methyl-naphthalene and naphthalene was increased by approximately 21%. This results in simultaneous fuel economy and environmental benefits from the effective combination of advanced combustion and novel aftertreatment systems.

  20. Recent Advances In Optimization Of Aerospace Structures And Engines

    Science.gov (United States)

    Rao*, J. S.

    Optimization theories have been well advanced during the last few decades; however when it came to handle real life engineering structures it has been always time consuming and approximate when the structure geometry is highly complex. Design of Experiments has helped in understanding the influence of size and shape parameters on achieving a specified objective function with required constraints and a suitable analysis platform, but has its limitations in arriving at the final optimal solution. There are several commercial codes that addressed this need to handle large size structures subjected to dynamic loads. Most advanced tools in this category are Altair OptiStruct and Altair HyperStudy available in Altair HyperWorks suite. Application of these tools in achieving optimum solutions for linear advanced aircraft structures for minimization of weight are first explained. The application of these tools for globally elastic and locally plastic nonlinear structures to reduce local plastic strains and achieve higher life under dynamic loads will then be discussed.

  1. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    Science.gov (United States)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  2. Engineered Barrier System: Physical and Chemical Environment Model

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley; R. Jarek; P. Mariner

    2004-02-09

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

  3. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  4. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  5. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    Science.gov (United States)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  6. Architecture independent environment for developing engineering software on MIMD computers

    Science.gov (United States)

    Valimohamed, Karim A.; Lopez, L. A.

    1990-01-01

    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management.

  7. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma

    Directory of Open Access Journals (Sweden)

    Chen JQ

    2015-09-01

    Full Text Available Jian-qiang Chen,1 Yue-fu Zhan,2 Wei Wang,1 Sheng-nan Jiang,2,3 Xiang-ying Li21Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China; 2Department of Radiology, Affiliated to Haikou Hospital Xiangya School of Medicine, Central South University, Haikou, People’s Republic of China; 3Department of Nuclear Medicine, Central South University Xiangya School of Medicine Affiliated HaiKou Hospital, Haikou, Hainan, People’s Republic of ChinaObjective: To explore the antitumor role of the attenuated Salmonella typhimurium ΔppGpp with inducible cytolysin A (ClyA in advanced stage of glioma.Materials and methods: The C6 rat glioma cells were orthotopically implanted by surgery into the caudate nucleus of rat brains. The rats were then randomly divided into the treatment group (SL + ClyA (n=12, negative control group (SL (n=12, and control group (phosphate-buffered saline [PBS] (n=12. In the treatment group, the attenuated S. typhimurium were transformed with the plasmid-encoded antitumor gene ClyA. The expression of ClyA was controlled by the TetR-regulated promoter in response to extracellular doxycycline. The plasmid also contained an imaging gene lux to allow illumination of the tumor infected by the bacteria. The rat glioma C6 cells were implanted into the caudate nucleus of all rats. The engineered S. typhimurium and respective controls were injected intravenously into the rats 21 days after initial tumor implantation. The pathological analysis of the glioma tumor was performed at 21 days and 28 days (7 days after doxycycline treatment postimplantation. All rats underwent MRI (magnetic resonance imaging and bioluminescence study at 21 days and 28 days postimplantation to detect tumor volume. The differences between the three groups in tumor volume and survival time were analyzed.Results: Advanced stage glioma  was detected at 21 days postimplantation. Bioluminescence showed that the

  8. An advanced search engine for patent analytics in medicinal chemistry.

    Science.gov (United States)

    Pasche, Emilie; Gobeill, Julien; Teodoro, Douglas; Gaudinat, Arnaud; Vishnykova, Dina; Lovis, Christian; Ruch, Patrick

    2012-01-01

    Patent collections contain an important amount of medical-related knowledge, but existing tools were reported to lack of useful functionalities. We present here the development of TWINC, an advanced search engine dedicated to patent retrieval in the domain of health and life sciences. Our tool embeds two search modes: an ad hoc search to retrieve relevant patents given a short query and a related patent search to retrieve similar patents given a patent. Both search modes rely on tuning experiments performed during several patent retrieval competitions. Moreover, TWINC is enhanced with interactive modules, such as chemical query expansion, which is of prior importance to cope with various ways of naming biomedical entities. While the related patent search showed promising performances, the ad-hoc search resulted in fairly contrasted results. Nonetheless, TWINC performed well during the Chemathlon task of the PatOlympics competition and experts appreciated its usability.

  9. 78 FR 46932 - Notice of Intent to Grant Exclusive Patent License; Safe Environment Engineering

    Science.gov (United States)

    2013-08-02

    ... Department of the Navy Notice of Intent to Grant Exclusive Patent License; Safe Environment Engineering... notice of its intent to grant to Safe Environment Engineering a revocable, nonassignable, exclusive license to practice Safe Environment Engineering's proprietary sensor systems for the field of use...

  10. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    Science.gov (United States)

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  11. Complex quantum networks as structured environments: engineering and probing

    Science.gov (United States)

    Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki

    2016-05-01

    We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.

  12. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s, FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports. CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  13. Bibliography of Connecticut Advanced Nuclear Engineering Laboratory reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-01

    This report, published in two, volumes, is a bibliography of the reports published at the Connecticut Advanced Nuclear Engineering Laboratory (CANEL). The reports cover the period 1952 through 1965 and include the Aircraft Nuclear Propulsion program, the Advanced Liquid Metal Cooled Reactor program, the Advanced Reactor Materials program and the SNAP-50 program. The bibliography contains the report number, title, author, date published, and classification. In some cases where the writing of a report was a group effort, and in some reports containing compilations of certain types of data, the author column is not applicable. This is indicated by a {open_quotes}n.a.{close_quotes} in the author column. The following types of reports are included: PWAC`s, TIM`s, CNLM`s. FXM`s and miscellaneous reports. PWAC and TIM reports conform to the requirements of AEC Manual Chapter 3202-041 and 3202-042, respectively. Most of the technical information of interest generated by this project is documented in these reports, CNLM and FXM reports were written primarily for internal distribution. However, these reports contain enough information of technical interest to warrant their inclusion. All CNLM`s and those FXM`s considered to be of interest are included in this bibliography. The MPR`s (Monthly Progress Reports) are the most important of the miscellaneous categories of reports. The other miscellaneous categories relate primarily to equipment and reactor specifications. The Division of Technical Information Extension (DTIE) at Oak Ridge, Tennessee has been designated as the primary recipient of the reports in the CANEL library. When more than one copy of a report was available, the additional copies were delivered to the Lawrence Radiation Laboratory, Livermore, California.

  14. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  15. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  16. Tailoring Systems Engineering Processes in a Conceptual Design Environment: A Case Study at NASA Marshall Spaceflight Center's ACO

    Science.gov (United States)

    Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III

    2012-01-01

    This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.

  17. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  18. Advances in process intensification through multifunctional reactor engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Miller, James Edward; O' Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  19. Systems engineering in the global environment : a wicked future.

    Energy Technology Data Exchange (ETDEWEB)

    Griego, Regina M.

    2010-12-01

    This presentation discusses the following questions: (1) What are the Global Problems that require Systems Engineering; (2) Where is Systems Engineering going; (3) What are the boundaries of Systems Engineering; (4) What is the distinction between Systems Thinking and Systems Engineering; (5) Can we use Systems Engineering on Complex Systems; and (6) Can we use Systems Engineering on Wicked Problems?

  20. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  1. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    Science.gov (United States)

    Litchford, R. J.; Foote, J. P.; Clifton, W. B.; Hickman, R. R.; Wang, T.-S.; Dobson, C. C.

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilised constricted arc-heater to produce high-temperature pressurised hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of high-temperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterising candidate fuel/structural materials, improving associated processing/ fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead.

  2. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, Matt J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, Russell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, Nick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  3. Logistics engineering education from the point of view environment

    Science.gov (United States)

    Bányai, Ágota

    2010-05-01

    A new field of MSc programme offered by the Faculty of Mechanical Engineering and Informatics of the University of Miskolc is represented by the programme in logistics engineering. The Faculty has always laid great emphasis on assigning processes connected with environment protection and globalisation issues the appropriate weight in its programmes. This is based on the fact that the Faculty has initiated and been involved in a great number of research and development projects with a substantial emphasis on the fundamental principles of sustainable development. The objective of the programme of logistics engineering is to train engineers who, in possession of the science, engineering, economic, informatics and industrial, transportation technological knowledge related to the professional field of logistics, are able to analyse, design, organise, and control logistics processes and systems (freight transportation, materials handling, storage, commissioning, loading, purchasing, distribution and waste management) as well as to design and develop machinery and equipment as the elements of logistic systems and also to be involved in their manufacture and quality control and are able to control their operation. The programme prepares its students for performing the logistics management tasks in a company, for creative participation in solving research and development problems in logistics and for pursuing logistics studies in doctoral programmes. There are several laboratories available for practice-oriented training. The 'Integrated Logistics Laboratory' consists of various fixed and mobile, real industrial, i.e. not model-level equipment, the integration of which in one system facilitates not only the presentation, examination and development of the individual self-standing facilities, but the study of their interaction as well in terms of mechatronics, engineering, control engineering, informatics, identification technology and logistics. The state

  4. 77 FR 19030 - Automated Commercial Environment Required for the Transmission of Advance Ocean and Rail Cargo...

    Science.gov (United States)

    2012-03-29

    .... 12-06] Automated Commercial Environment Required for the Transmission of Advance Ocean and Rail Cargo... Automated Commercial Environment (ACE) for the transmission of advance ocean and rail cargo information... controlled environment.\\3\\ M1 test participants were chosen based on the specific type of software...

  5. Immersive virtual environments for emotional engineering: description and preliminary results.

    Science.gov (United States)

    Rodríguez, Alejandro; Rey, Beatriz; Alcañiz, Mariano

    2011-01-01

    This work aims to identify the arousal and presence level during an emotional engineering study. During the experimental sessions, a high-immersion Virtual Reality (VR) system, a CAVE-like configuration, will be used. Thirty-six volunteers will navigate through virtual houses that can be customized and that have been designed for emotional induction. Emotional induction will be obtained by stimulating the senses of sight, hearing and smell. For this purpose, the ambient lighting, music and smell will be controlled by the researcher, who will create a comfortable environment for the subject. Several physiological variables - Electrocardiogram (ECG), Respiratory signal and Galvanic Skin Response (GSR) - will be recorded during the sessions. The obtained results will help furniture companies identify the senses that have more influence on emotions and will be the basis for new studies about user needs in the sector of furniture and interior decoration.

  6. A development environment for operational concepts and systems engineering analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Raybourn, Elaine Marie; Senglaub, Michael E.

    2004-03-01

    The work reported in this document involves a development effort to provide combat commanders and systems engineers with a capability to explore and optimize system concepts that include operational concepts as part of the design effort. An infrastructure and analytic framework has been designed and partially developed that meets a gap in systems engineering design for combat related complex systems. The system consists of three major components: The first component consists of a design environment that permits the combat commander to perform 'what-if' types of analyses in which parts of a course of action (COA) can be automated by generic system constructs. The second component consists of suites of optimization tools designed to integrate into the analytical architecture to explore the massive design space of an integrated design and operational space. These optimization tools have been selected for their utility in requirements development and operational concept development. The third component involves the design of a modeling paradigm for the complex system that takes advantage of functional definitions and the coupled state space representations, generic measures of effectiveness and performance, and a number of modeling constructs to maximize the efficiency of computer simulations. The system architecture has been developed to allow for a future extension in which the operational concept development aspects can be performed in a co-evolutionary process to ensure the most robust designs may be gleaned from the design space(s).

  7. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  8. Research and Development of Some Advanced High Temperature Titanium Alloys for Aero-engine

    Directory of Open Access Journals (Sweden)

    CAI Jian-ming

    2016-08-01

    Full Text Available Some advanced high temperature titanium alloys are usually selected to be manufactured into blade, disc, case, blisk and bling under high temperature environment in compressor and turbine system of a new generation high thrust-mass ratio aero-engine. The latest research progress of 600℃ high temperature titanium alloy, fireproof titanium alloy, TiAl alloy, continuous SiC fiber reinforced titanium matrix composite and their application technology in recent years in China were reviewed in this paper. The key technologies need to be broken through in design, processing and application of new material and component are put forward, including industrial ingot composition of high purified and homogeneous control technology, preparation technology of the large size bar and special forgings, machining technology of blisk and bling parts, material property evaluation and application design technique. The future with the continuous application of advanced high temperature titanium alloys, will be a strong impetus to the development of China's aero-engine technology.

  9. Development of advanced strain diagnostic techniques for reactor environments.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  10. Multimedia services in intelligent environments advances in recommender systems

    CERN Document Server

    Virvou, Maria; Jain, Lakhmi

    2013-01-01

    Multimedia services are now commonly used in various activities in the daily lives of humans. Related application areas include services that allow access to large depositories of information, digital libraries, e-learning and e-education, e-government and e-governance, e-commerce and e-auctions, e-entertainment, e-health and e-medicine, and e-legal services, as well as their mobile counterparts (i.e., m-services). Despite the tremendous growth of multimedia services over the recent years, there is an increasing demand for their further development. This demand is driven by the ever-increasing desire of society for easy accessibility to information in friendly, personalized and adaptive environments. In this book at hand, we examine recent Advances in Recommender Systems. Recommender systems are crucial in multimedia services, as they aim at protecting the service users from information overload. The book includes nine chapters, which present various recent research results in recommender systems. This resear...

  11. Recent Advances and Future Directions for Quality Engineering

    DEFF Research Database (Denmark)

    Vining, Geoff; Kulahci, Murat; Pedersen, Søren

    2015-01-01

    The origins of quality engineering are in manufacturing, where quality engineers apply basic statistical methodologies to improve the quality and productivity of products and processes. In the past decade, people have discovered that these methodologies are effective for improving almost any type...... quality engineering needs to evolve in order to make significant contributions to these new areas. © 2015 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd....

  12. Fuel economy screening study of advanced automotive gas turbine engines

    Science.gov (United States)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  13. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    Science.gov (United States)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  14. Innovative tissue engineering structures through advanced manufacturing technologies.

    Science.gov (United States)

    Ciardelli, Gianluca; Chiono, Valeria; Cristallini, Caterina; Barbani, Niccoletta; Ahluwalia, Arti; Vozzi, Giovanni; Previti, Antonino; Tantussi, Giovanni; Giusti, Paolo

    2004-04-01

    Awide range of rapid prototyping (RP) techniques for the construction of three-dimensional (3-D) scaffolds for tissue engineering has been recently developed. In this study, we report and compare two methods for the fabrication of poly-(epsilon-caprolactone) and poly-(epsilon-caprolactone)-poly-(oxyethylene)-poly-(epsilon-caprolactone) copolymer scaffolds. The first technique is based on the use of a microsyringe and a computer-controlled three-axis micropositioner, which regulates motor speed and position. Polymer solutions are extruded through the needle of the microsyringe by the application of a constant pressure of 10-300 mm Hg, resulting in controlled polymer deposition of 5-600 microm lateral dimensions. The second method utilises the heating energy of a laser beam to sinter polymer microparticles according to computer-guided geometries. Materials may be fed either as dry powder or slurry of microparticles. Both powder granulometry and laser working parameters influence resolution (generally 300 microm x 700 microm), accuracy of sintering and surface and bulk properties of the final structures. The two RP methods allow the fabrication of 3-D scaffolds with a controlled architecture, providing a powerful means to study cell response to an environment similar to that found

  15. CMC Technology Advancements for Gas Turbine Engine Applications

    Science.gov (United States)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  16. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  17. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    Science.gov (United States)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni

  18. Engineers' Role in the Management of Working Environment in Danish Enterprises: Results of a National Survey

    DEFF Research Database (Denmark)

    Broberg, Ole; Hansen, Nanette Juhler; Høgsbo, Mette Maribo

    1998-01-01

    This study confirms that many engineers are not aware that they influence the working environment of other people through their engineering. Also, it indicates that the extent of influence dependends on engineering domain and task content. Many engineers and enterprises have an espoused theory...... with management policies and systems as the means to enhance such considerations. In spite that they overwhelmingly prefer dialogue (with other engineers) as a ‘tool' in their daily work, this is not the case regarding working environment considerations. The study indicates that effects of working enviroment...... expressing a positive attitude towards working environment considerations in engineering. However, the theory-in-action seems to be quite different. Engineers do not know what to do in relation to working environment considerations. They mainly point to solidifying their knowledge in the area combined...

  19. Recent advances in electrical engineering and control applications

    CERN Document Server

    Bououden, Sofiane; Zelinka, Ivan

    2017-01-01

    This book of proceedings includes papers presenting the state of art in electrical engineering and control theory as well as their applications. The topics focus on classical as well as modern methods for modeling, control, identification and simulation of complex systems with applications in science and engineering. The papers were selected from the hottest topic areas, such as control and systems engineering, renewable energy, faults diagnosis—faults tolerant control, large-scale systems, fractional order systems, unconventional algorithms in control engineering, signals and communications. The control and design of complex systems dynamics, analysis and modeling of its behavior and structure is vitally important in engineering, economics and in science generally science today. Examples of such systems can be seen in the world around us and are a part of our everyday life. Application of modern methods for control, electronics, signal processing and more can be found in our mobile phones, car engines, hom...

  20. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei;

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and prod......The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...

  1. 13th International Conference on Man-Machine-Environment System Engineering

    CERN Document Server

    Dhillon, Balbir

    2014-01-01

    The integrated and advanced science research topic Man-Machine-Environment System Engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”   MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, “man” refers to people in the workplace (e.g. operators, decision-makers); “ machine” is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and “environment” describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of Man-Machine-Environment system...

  2. 14th International Conference on Man-Machine-Environment System Engineering

    CERN Document Server

    Dhillon, Balbir

    2015-01-01

    The integrated and advanced science research topic man-machine-environment system engineering (MMESE) was first established in China by Professor Shengzhao Long in 1981, with direct support from one of the greatest modern Chinese scientists, Xuesen Qian. In a letter to Shengzhao Long from October 22nd, 1993, Xuesen Qian wrote: “You have created a very important modern science and technology in China!”   MMESE primarily focuses on the relationship between man, machines and the environment, studying the optimum combination of man-machine-environment systems. In this system, “man” refers to people in the workplace (e.g. operators, decision-makers); “ machine” is the general name for any object controlled by man (including tools, machinery, computers, systems and technologies), and “environment” describes the specific working conditions under which man and machine interact (e.g. temperature, noise, vibration, hazardous gases etc.). The three goals of optimization of man-machine-environment system...

  3. Proceedings of the 1987 coatings for advanced heat engines workshop

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This Workshop was conducted to enhance communication among those involved in coating development for improved heat engine performance and durability. We were fortunate to have Bill Goward review the steady progress and problems encountered along the way in the use of thermal barrier coatings (TBC) in aircraft gas turbine engines. Navy contractors discussed their work toward the elusive goal of qualifying TBC for turbine airfoil applications. In the diesel community, Caterpillar and Cummins are developing TBC for combustion chamber components as part of the low heat rejection diesel engine concept. The diesel engine TBC work is based on gas turbine technology with a goal of more than twice the thickness used on gas turbine engine components. Adoption of TBC in production for diesel engines could justify a new generation of plasma spray coating equipment. Increasing interests in tribology were evident in this Workshop. Coatings have a significant role in reducing friction and wear under greater mechanical loadings at higher temperatures. The emergence of a high temperature synthetic lubricant could have an enormous impact on diesel engine design and operating conditions. The proven coating processes such as plasma spray, electron-beam physical vapor deposition, sputtering, and chemical vapor deposition have shown enhanced capabilities, particularly with microprocessor controls. Also, the newer coating schemes such as ion implantation and cathodic arc are demonstrating intriguing potential for engine applications. Coatings will play an expanding role in higher efficiency, more durable heat engines.

  4. Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE(TM)) Guidelines

    Science.gov (United States)

    2011-06-01

    AND SUBTITLE Developing Systems Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM...Engineering Graduate Programs Aligned to the Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASETM) Guidelines Abstract The Body...develop new systems engineering graduate programs . One method is to develop the program within an existing department by combining new curriculum into a

  5. Advances in Research and Service of Space Environment in China

    Institute of Scientific and Technical Information of China (English)

    SHI Liqin; GONG Jiancun; LIU Siqing; HU Xiong; LIU Jing; HUANG Wengeng

    2008-01-01

    This paper presents the recent progress of space environment research and service in China.During the past two years,many models of space environment forecast and analysis methods of space environment effects have been developed for tailored space environment service for Chinese space mission.A new Re-locatable Atmospheric Observatory(RAO)for monitoring atmospheric wind,temperature,density and pressure of the near space from 20 km up to 120 km altitudes is being constructed.In space environment service space environment safety was provided to ensure the safety of CE-1 for its launch and operation in 2007.

  6. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  7. Advancing the Communication Discipline in the Community College Environment.

    Science.gov (United States)

    Kekke, Rhonda

    1999-01-01

    Suggests that community college department chairs have an imperative to advance the discipline in three major ways: (1) to fight for required speech courses; (2) to hire only those people who are trained in their discipline to teach speech courses; and (3) to supervise in a way as to advance the discipline and the cause of teaching and learning.…

  8. Comparison of advanced engines for parabolic dish solar thermal power plants

    Science.gov (United States)

    Fujita, T.; Bowyer, J. M.; Gajanana, B. C.

    1980-01-01

    A paraboloidal dish solar thermal power plant produces electrical energy by a two-step conversion process. The collector subsystem is composed of a two-axis tracking paraboloidal concentrator and a cavity receiver. The concentrator focuses intercepted sunlight (direct, normal insolation) into a cavity receiver whose aperture encircles the focal point of the concentrator. At the internal wall of the receiver the electromagnetic radiation is converted to thermal energy. A heat engine/generator assembly then converts the thermal energy captured by the receiver to electricity. Developmental activity has been concentrated on small power modules which employ 11- to 12-meter diameter dishes to generate nominal power levels of approximately 20 kWe. A comparison of advanced heat engines for the dish power module is presented in terms of the performance potential of each engine with its requirements for advanced technology development. Three advanced engine possibilities are the Brayton (gas turbine), Brayton/Rankine combined cycle, and Stirling engines.

  9. Bearings and gears for advanced turbine engines and transmissions

    Science.gov (United States)

    Parker, R. J.

    1975-01-01

    The improved technology is discussed of engine main-shaft ball bearings, and spur gears in power transmission drive trains. Much of the technology can be applied to other ball and roller bearings, and to other spur and bevel gears throughout the engine, drive train, and accessory systems.

  10. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurpreet [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  11. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  12. The Plant-Window System: A framework for an integrated computing environment at advanced nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.T.; Mullens, J.A. [Oak Ridge National Lab., TN (United States); Naser, J.A. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-10-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The extensive use of computer technology in advanced reactor designs provides the opportunity to greatly expand the capability to obtain, analyze, and present data about the plant to station personnel. However, to support highly efficient and increasingly safe operation of nuclear power plants, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and sued, to the proper users throughout the plan. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications within a common computing environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces so as to define a flexible computing environment for both current generation nuclear power plants and advanced reactor designs.

  13. CRISPR/Cas9 advances engineering of microbial cell factories

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Jensen, Michael Krogh; Keasling, Jay D.

    2016-01-01

    interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing......-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering....

  14. An Environment for Flexible Advanced Compensations of Web Service Transactions

    DEFF Research Database (Denmark)

    Schaefer, Michael; Dolog, Peter; Nejdl, Wolfgang

    2008-01-01

    Business to business integration has recently been performed by employing Web service environments. Moreover, such environments are being provided by major players on the technology markets. Those environments are based on open specifications for transaction coordination. When a failure...... recovery principles. We extend the existing Web service transaction coordination architecture and infrastructure in order to support flexible compensation operations. We use a contract-based approach, which allows the specification of permitted compensations at runtime. We introduce abstract service...

  15. Advances In Mining Engineering Education: A Case For Learning Communities

    Directory of Open Access Journals (Sweden)

    Michael Hitch

    2015-05-01

    Full Text Available Mining engineering involves the design, planning and management of operations for the development, production and eventual rehabilitation of resource extraction. These activities draw on a diverse set of skills. University of British Columbia mining engineers have traditionally been highly regarded for their strengths in the technical aspects of mining and mineral process but also for their understanding of the application of principles of sustainability and social responsibility. The current view of the UBC Mining curriculum demands the integration of aspects of environmental and social sciences shaping the future of tertiary engineering education. The solution is developing a curriculum that is focused on key learning objectives that are a reflection of all these external pressures. This paper examines the challenge of curriculum reform and the emergence of learning communities at the Norman B. Keevil Institute of Mining Engineering at the University of British Columbia, Canada.

  16. NATO Advanced Research Workshop on The Design of Mathematical Modelling Courses for Engineering Education

    CERN Document Server

    Moscardini, Alfredo

    1994-01-01

    As the role of the modern engineer is markedly different from that of even a decade ago, the theme of engineering mathematics educa­ tion (EME) is an important one. The need for mathematical model­ ling (MM) courses and consideration of the educational impact of computer-based technology environments merit special attention. This book contains the proceeding of the NATO Advanced Research Workshop held on this theme in July 1993. We have left the industrial age behind and have entered the in­ formation age. Computers and other emerging technologies are penetrating society in depth and gaining a strong influence in de­ termining how in future society will be organised, while the rapid change of information requires a more qualified work force. This work force is vital to high technology and economic competitive­ ness in many industrialised countries throughout the world. Within this framework, the quality of EME has become an issue. It is expected that the content of mathematics courses taught in schools o...

  17. Advances in cryogenic engineering, Volume 39, Part B

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, P. [ed.

    1994-12-31

    This book provides a review of the latest work in cryogenic engineering and technology as related to a number of differing disciplines. It should serve as a valuable reference to researchers and engineers in cryogenics, materials science, low-temperature physics, polymer science, and solid-state physics. This volume contains articles under the following general areas: instrumentation and control; cryocoolers; heat exchangers and cryopumps; heat and mass transfer; cryogenic properties. Separate articles have been indexed into the database.

  18. Advanced materials and protective coatings in aero-engines application

    OpenAIRE

    M. Hetmańczyk; L. Swadźba; B. Mendala

    2007-01-01

    Purpose: The following article demonstrates the characteristics of the materials applied as parts of aircraft engine turbines and the stationary gas turbines. The principal technologies for manufacturing the heat resistant coatings and the erosion and corrosion resistant coatings were characterized. Sample applications for the aforementioned coatings are presented: on turbine blades, compressor blades and on parts of combustion chambers of aircraft engines.Design/methodology/approach: The nic...

  19. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  20. Analysis of Engineered Nanomaterials in Complex Matricies (Environment and Biota): General Considerations and Conceptual Case Studies

    Science.gov (United States)

    Advances in the study of the environmental fate, transport, and ecotoxicological effects of engineered nanomaterials (ENMs) have been hampered by a lack of adequate techniques for the detection and quantification of ENMs at environmentally relevant concentrations in complex media...

  1. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  2. Incorporating Critical Thinking into an Engineering Undergraduate Learning Environment

    Science.gov (United States)

    Adair, Desmond; Jaeger, Martin

    2016-01-01

    Critical thinking extends to all aspects of professional engineering, especially in technical development, and, since the introduction of the ABET 2000 criteria, there has been an increased emphasis in engineering education on the development of critical thinking skills. What is hoped for is that the students obtain critical thinking skills to…

  3. Using an Improved Virtual Learning Environment for Engineering Students

    Science.gov (United States)

    Cartas, Ma. Lourdes Martinez

    2012-01-01

    In recent years, e-learning has been used in a chemical engineering subject in the final course of a mining engineering degree, a subject concerned with fuel technology. The low results obtained by students in this subject have led the teacher to search for new strategies to increase grades. Such strategies have consisted of incorporating into the…

  4. Advanced Diesel Engine Component Development Program, final report - tasks 4-14

    Energy Technology Data Exchange (ETDEWEB)

    Kaushal, T.S.; Weber, K.E.

    1994-11-01

    The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

  5. CRISPR/Cas9 advances engineering of microbial cell factories.

    Science.gov (United States)

    Jakočiūnas, Tadas; Jensen, Michael K; Keasling, Jay D

    2016-03-01

    One of the key drivers for successful metabolic engineering in microbes is the efficacy by which genomes can be edited. As such there are many methods to choose from when aiming to modify genomes, especially those of model organisms like yeast and bacteria. In recent years, clustered regularly interspaced palindromic repeats (CRISPR) and its associated proteins (Cas) have become the method of choice for precision genome engineering in many organisms due to their orthogonality, versatility and efficacy. Here we review the strategies adopted for implementation of RNA-guided CRISPR/Cas9 genome editing with special emphasis on their application for metabolic engineering of yeast and bacteria. Also, examples of how nuclease-deficient Cas9 has been applied for RNA-guided transcriptional regulation of target genes will be reviewed, as well as tools available for computer-aided design of guide-RNAs will be highlighted. Finally, this review will provide a perspective on the immediate challenges and opportunities foreseen by the use of CRISPR/Cas9 genome engineering and regulation in the context of metabolic engineering.

  6. The multilevel four-stroke swap engine and its environment

    Science.gov (United States)

    Uzdin, Raam; Kosloff, Ronnie

    2014-09-01

    A multilevel four-stroke engine where the thermalization strokes are generated by unitary collisions with thermal bath particles is analyzed. Our model is solvable even when the engine operates far from thermal equilibrium and in the strong system-bath coupling. Necessary operation conditions for the heat machine to perform as an engine or a refrigerator are derived. We relate the work and efficiency of the device to local and non-local statistical properties of the baths (purity, index of coincidence, etc) and put upper bounds on these quantities. Finally, in the ultra-hot regime, we analytically optimize the work and find a striking similarity to results obtained for efficiency at maximal power of classical engines. The complete swap limit of our results holds for any four-stroke quantum Otto engine that is coupled to the baths for periods that are significantly longer than the thermal relaxation time.

  7. An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment

    Science.gov (United States)

    Robinson, Jeffrey S.

    2011-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics

  8. Advances in cryogenic engineering, Volume 39, Part A

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, P. [ed.

    1994-12-31

    This volume presents the latest international work in the field of cryogenic engineering, in a broad range of applications. It can serve as a reference to the field of cryogenic applications for researchers and engineers working in cryogenics, materials science, low-temperature physics, polymer science, and solid-state physics. Section headings for this volume are: transportation applications; wind tunnels; space applications; magnet: design and performance; magnet: cooling; magnet: technology and applications; large scale systems; large hadron collider; superconducting super collider; superconducting magnetic energy storage; compressors and expanders; mechanisms and machinery; safety. Separate articles from this report have been indexed into the database.

  9. Advances in cryogenic engineering. Volume 41, Part A & B

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, P. [ed.

    1996-12-31

    This proceedings is of the 1995 Cryogenic Engineering Conference. It consists of 252 published papers covering the latest developments in all aspects of cryogenic engineering research. Contributions touch on fields including: cryobiology; heat and mass transfer (including data on boiling and superfluid helium); magnet technology; large-scale cryogenic systems, such as the large hadron collider and the TeV Electron Superconducting Linear Accelerator; cryofuels; minesweeping applications; space cryocooler applications; research on miscellaneous cryogenic machinery, techniques, and safety concerns. Separate abstracts have been submitted for contributions from this proceedings.

  10. Recent advances in rational approaches for enzyme engineering

    Directory of Open Access Journals (Sweden)

    Kerstin Steiner

    2012-09-01

    Full Text Available Enzymes are an attractive alternative in the asymmetric syntheses of chiral building blocks. To meet the requirements of industrial biotechnology and to introduce new functionalities, the enzymes need to be optimized by protein engineering. This article specifically reviews rational approaches for enzyme engineering and de novo enzyme design involving structure-based approaches developed in recent years for improvement of the enzymes’ performance, broadened substrate range, and creation of novel functionalities to obtain products with high added value for industrial applications.

  11. Advanced FDTD methods parallelization, acceleration, and engineering applications

    CERN Document Server

    Yu, Wenhua

    2011-01-01

    The finite-difference time-domain (FDTD) method has revolutionized antenna design and electromagnetics engineering. Here's a cutting-edge book that focuses on the performance optimization and engineering applications of FDTD simulation systems. Covering the latest developments in this area, this unique resource offer you expert advice on the FDTD method, hardware platforms, and network systems. Moreover the book offers guidance in distinguishing between the many different electromagnetics software packages on the market today. You also find a complete chapter dedicated to large multi-scale pro

  12. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    Science.gov (United States)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1986-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  13. Using Advanced Search Operators on Web Search Engines.

    Science.gov (United States)

    Jansen, Bernard J.

    Studies show that the majority of Web searchers enter extremely simple queries, so a reasonable system design approach would be to build search engines to compensate for this user characteristic. One hundred representative queries were selected from the transaction log of a major Web search service. These 100 queries were then modified using the…

  14. Review on Recent Advances in Pulse Detonation Engines

    Directory of Open Access Journals (Sweden)

    K. M. Pandey

    2016-01-01

    Full Text Available Pulse detonation engines (PDEs are new exciting propulsion technologies for future propulsion applications. The operating cycles of PDE consist of fuel-air mixture, combustion, blowdown, and purging. The combustion process in pulse detonation engine is the most important phenomenon as it produces reliable and repeatable detonation waves. The detonation wave initiation in detonation tube in practical system is a combination of multistage combustion phenomena. Detonation combustion causes rapid burning of fuel-air mixture, which is a thousand times faster than deflagration mode of combustion process. PDE utilizes repetitive detonation wave to produce propulsion thrust. In the present paper, detailed review of various experimental studies and computational analysis addressing the detonation mode of combustion in pulse detonation engines are discussed. The effect of different parameters on the improvement of propulsion performance of pulse detonation engine has been presented in detail in this research paper. It is observed that the design of detonation wave flow path in detonation tube, ejectors at exit section of detonation tube, and operating parameters such as Mach numbers are mainly responsible for improving the propulsion performance of PDE. In the present review work, further scope of research in this area has also been suggested.

  15. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.

    Science.gov (United States)

    Ingavle, Ganesh C; Leach, J Kent

    2014-08-01

    Polymeric nanofibers have potential as tissue engineering scaffolds, as they mimic the nanoscale properties and structural characteristics of native extracellular matrix (ECM). Nanofibers composed of natural and synthetic polymers, biomimetic composites, ceramics, and metals have been fabricated by electrospinning for various tissue engineering applications. The inherent advantages of electrospinning nanofibers include the generation of substrata with high surface area-to-volume ratios, the capacity to precisely control material and mechanical properties, and a tendency for cellular in-growth due to interconnectivity within the pores. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro- to nanoscale topography similar to the natural ECM. This review describes the fundamental aspects of the electrospinning process when applied to spinnable natural and synthetic polymers; particularly, those parameters that influence fiber geometry, morphology, mesh porosity, and scaffold mechanical properties. We describe cellular responses to fiber morphology achieved by varying processing parameters and highlight successful applications of electrospun nanofibrous scaffolds when used to tissue engineer bone, skin, and vascular grafts.

  16. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    Science.gov (United States)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  17. Seal Technology Development for Advanced Component for Airbreathing Engines

    Science.gov (United States)

    Snyder, Philip H.

    2008-01-01

    Key aspects of the design of sealing systems for On Rotor Combustion/Wave Rotor (ORC/WR) systems were addressed. ORC/WR systems generally fit within a broad class of pressure gain Constant Volume Combustors (CVCs) or Pulse Detonation Combustors (PDCs) which are currently being considered for use in many classes of turbine engines for dramatic efficiency improvement. Technology readiness level of this ORC/WR approaches are presently at 2.0. The results of detailed modeling of an ORC/WR system as applied to a regional jet engine application were shown to capture a high degree of pressure gain capabilities. The results of engine cycle analysis indicated the level of specific fuel consumption (SFC) benefits to be 17 percent. The potential losses in pressure gain due to leakage were found to be closely coupled to the wave processes at the rotor endpoints of the ORC/WR system. Extensive investigation into the sealing approaches is reported. Sensitivity studies show that SFC gains of 10 percent remain available even when pressure gain levels are highly penalized. This indicates ORC/WR systems to have a high degree of tolerance to rotor leakage effects but also emphasizes their importance. An engine demonstration of an ORC/WR system is seen as key to progressing the TRL of this technology. An industrial engine was judged to be a highly advantageous platform for demonstration of a first generation ORC/WR system. Prior to such a demonstration, the existing NASA pressure exchanger wave rotor rig was identified as an opportunity to apply both expanded analytical modeling capabilities developed within this program and to identify and fix identified leakage issues existing within this rig. Extensive leakage analysis of the rig was performed and a detailed design of additional sealing strategies for this rig was generated.

  18. The multilevel four-stroke swap engine and its environment

    CERN Document Server

    Uzdin, Raam

    2014-01-01

    A multilevel four-stroke engine where the thermalization stokes are generated by unitary collisions with bath particles is analyzed. Our model is solvable even when the engine operates far from thermal equilibrium and in the strong system-bath coupling. Necessary operation conditions for the heat machine to perform as an engine or a refrigerator are derived. We relate the work and efficiency of the device to local and non-local statistical properties of the baths (purity, mutual coincidence etc.). In particular, we relate the Clausius inequality to the symmetrized relative entropy of the baths (Jefferys divergence). Other Clausius-like inequalities are derived as well. Finally, in the ultra-hot regime we optimize the work of the multilevel engine and obtain simpler forms for the work and efficiency.

  19. Radioprotection of the environment. Recent advances in nuclear ecotoxicology research

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Gilbin, R. [Institut de Radioprotection et de Surete Nucleaire, Service d' Etudes du Comportement des Radionucleides dans les Ecosystemes (IRSN/DEI/SECRE), Saint-Paul-Lez-Durance (France); Alonzo, F.; Beaugelin, K.; Hinton, T.G.

    2010-07-01

    Funding for radioecology in Europe escalated after the Chernobyl accident, and remained elevated for some 15 year. The enhanced funding permitted Europeans to explore new directions in radioecology, particularly in the area of effects to non-human biota. Herein we highlight several recent advances: (1) an attempt to merge environmental risk analysis methods for radioactive contamination with those for other pollutants using species sensitivity distribution; (2) attempts to extrapolate damage observed in individual organisms to potential effects in their populations; and (3) the use of advanced models to estimate and explain changes in an individual's energy allocation as a result of exposure to low doses of radionuclides. We conclude by presenting the radioecology Alliance: an international network whose goal is to integrate resources in order to efficiently fill knowledge gaps in radioecology and improve risk assessments tools that support both human and environmental radioprotection. (orig.)

  20. Advance Reservation of Resources for Task Execution in Grid Environments

    CERN Document Server

    Moise, Eliza; Pop, Florin; Cristea, Valentin

    2011-01-01

    The paper proposes a solution for the Grid scheduling problem, addressing in particular the requirement of high performance an efficient algorithm must fulfill. Advance Reservation engages a distributed, dynamic, fault-tolerant and efficient strategy which reserves resources for future task execution. The paper presents the main features of the strategy, the functioning mechanism the strategy is based on and the methods used for evaluating the algorithm.

  1. A Model of Application System for Man-Machine-Environment System Engineering in Vessels Based on IDEF0

    Institute of Scientific and Technical Information of China (English)

    Zhen Shang; Changhua Qiu; Shifan Zhu

    2011-01-01

    Applying man-machine-environment system engineering (MMESE) in vessels is a method to improve the effectiveness of the interaction between equipment,environment,and humans for the purpose of advancing operating efficiency,performance,safety,and habitability of a vessel and its subsystems.In the following research,the life cycle of vessels was divided into 9 phases,and 15 research subjects were also identified from among these phases.The 15 subjects were systemized,and then the man-machine-environment engineering system application model for vessels was developed using the ICAM definition method 0 (IDEF0),which is a systematical modeling method.This system model bridges the gap between the data and information flow of every two associated subjects with the major basic research methods and approaches included,which brings the formerly relatively independent subjects together as a whole.The application of this systematic model should facilitate the application of man-machine-environment system engineering in vessels,especially at the conceptual and embodiment design phases.The managers and designers can deal with detailed tasks quickly and efficiently while reducing repetitive work.

  2. Multidisciplinary teaching – Engineering course in advanced building design

    DEFF Research Database (Denmark)

    Dederichs, Anne; Karlshøj, Jan; Hertz, Kristian Dahl

    2011-01-01

    Collaboration within the building process is difficult. This calls for employees who are experienced in collaborating in interdisciplinary teams. To fulfil this demand a multidisciplinary course in “Advanced building design” has been developed at the Technical University of Denmark. The goal...

  3. Engineering industrial yeast for renewable advanced biofuels applications

    Science.gov (United States)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  4. Some Recent Advances on Ice Related Problems in Offshore Engineering

    Institute of Scientific and Technical Information of China (English)

    段梦兰; 刘杰鸣; 樊晓东; 朱守铭; 赵秀菊

    2000-01-01

    This paper deals with several hot topics in ice related problems. In recent years, advances have been made on ice breaking modes, dynamic ice loads on offshore structures, ice-induced structural vibrations, fatigue and fracture by ice-structure interaction, and design of jackets in the Bohai Gulf.

  5. The Center for Advanced Systems and Engineering (CASE)

    Science.gov (United States)

    2012-01-01

    project of advanced reconfigurable memristor circuit, new models based on Verilog - A was developed for simulating memristor devices with industry-standard...EDA (Electronic Design Automation) tools. Comparing to the previous models which are written in Matlab and LTSpice, the new Verilog -A models work

  6. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the tra

  7. Advances in Computer Science and Information Engineering Volume 1

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  8. Advances in Computer Science and Information Engineering Volume 2

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  9. Advanced Non-Intrusive Instrumentation for Propulsion Engines

    Science.gov (United States)

    1998-05-01

    intelligentes, la fluorescence induite par laser et les capteurs extensometriques pour les tres grands maillages. Ce symposium represente une...frequence d’emission et d’un Systeme de calagc et de pilotage en frequence dit Autoscan. En utilisant comme milieu actif le colorant Pyromethene 556...tool for research engineers. 1- INTRODUCTION Les capteurs ultrasonores sont largement utilises en contröle non destructif dans 1’industrie pour

  10. Recent advances in engineering microbial rhodopsins for optogenetics.

    Science.gov (United States)

    McIsaac, R Scott; Bedbrook, Claire N; Arnold, Frances H

    2015-08-01

    Protein engineering of microbial rhodopsins has been successful in generating variants with improved properties for applications in optogenetics. Members of this membrane protein family can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided mutagenesis, and directed evolution have proven effective strategies for tuning absorption wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin structure-function relationships.

  11. Advances and Computational Tools towards Predictable Design in Biological Engineering

    Directory of Open Access Journals (Sweden)

    Lorenzo Pasotti

    2014-01-01

    Full Text Available The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

  12. Advanced Engine/Aftertreatment System R&D

    Energy Technology Data Exchange (ETDEWEB)

    Pihl, J.; West, B.; Toops, T.; Adelman, B. (Navistar, Inc.); Derybowski, E. (Navistar, Inc.)

    2011-09-30

    Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT, also known as NOx adsorber catalyst) regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy.

  13. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  14. CSCE annual conference. Volume 5: sustainable development, environment, geotechnical engineering, transportation

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, R.; Johnson, C.; Gordon, M.; Lupien, C. [eds.

    1997-12-31

    Forty papers on sustainable development, environment, geotechnical engineering, and transportation are contained in this volume. Seven additional volumes contain 246 papers presented at the plenary sessions and sessions on history and education and the Confederation Bridge (volume 1); 2nd CSCE Construction Specialty Conference (volume 2); 13th Canadian Hydrotechnical Conference (volume 3); 2nd Symposium on Applied Mechanics, structures, and seismic engineering (volume 4); structures: composite materials, structural systems, and telecommunication towers (volume 6); structures: conception, concrete and reinforced concrete structures, and bridges (volume 7); and agricultural engineering, soil and water engineering, energy and processing/food engineering, machinery systems, waste management, and information and computer technologies (volume A).

  15. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  16. Overview of Advanced Stirling and Gas Turbine Engine Development Programs and Implications for Solar Thermal Electrical Applications

    Science.gov (United States)

    Alger, D.

    1984-01-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  17. Materials and welding engineering in advanced coal utilization plants

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, D.; Schulze-Frielinghaus, W.; Puetz, J.; Eichhorn, F.; Gaever, E. van

    1983-08-01

    The authors present the findings of studies on welding methods for high-temperature alloys used in advanced coal gasification plants. They discuss weld preparation, automatic TIG welding, MIG welding (also with pulsed arc) and plasma arc welding. The mechanical properties of welded joints before and after age hardening are investigated, and the results of fatigue and corrosion tests are presented. The welding methods are compared with a view to their suitability for high-temperature materials.

  18. Application of complex engineering solutions through advanced composite innovation (for repair of degraded buried pipe at Vandellos II Nuclear Power Plant); Reparacion de tuberias de un sistema de servicios no esenciales con recubrimiento interno de fibra de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, J. M.; Raji, B. B.

    2011-07-01

    This technical presentation is focused on introducing an engineering solution approach and identification of sensitivity of applications of advanced carbon fiber in a pressurized wet environment: Engineering design, quality assurance of installation, inspection, and a comprehensive testing program to validate and bench mark the design data and compliance with code requirements in nuclear power plants.

  19. Building an Advanced Computing Environment with SAN Support

    Institute of Scientific and Technical Information of China (English)

    DajianYANG; MeiMA; 等

    2001-01-01

    The current computing environment of our Computing Center in IHEP uses a SAS (server Attached Storage)architecture,attaching all the storage devices directly to the machines.This kind of storage strategy can't meet the requirement of our BEPC II/BESⅢ project properly.Thus we design and implement a SAN-based computing environment,which consists of several computing farms,a three-level storage pool,a set of storage management software and a web-based data management system.The feature of ours system includes cross-platform data sharing,fast data access,high scalability,convenient storage management and data management.

  20. An advanced machining simulation environment employing workpiece structural analysis

    Directory of Open Access Journals (Sweden)

    A.A. Becker

    2006-04-01

    Full Text Available Purpose: The study aims to reduce the surface dimensional error due to the part deflection during the machining of thin wall structures, thus, reduce machining costs and lead times by producing “right first time” components.Design/methodology/approach: The proposed simulation environment involves a data model, an analytical force prediction model, a material removal model and an FE analysis commercial software package. It focuses on the development of the simulation environment with a multi-level machining error compensation approach.Findings: The developed simulation environment can predict and reduce the form error, which is a limitation of the existing approaches.Research limitations/implications: The energy consumption, temperature change and residual stress are not studied in this research.Practical implications: The developed method provides a platform to deliver new functionality for machining process simulation. The convergence of the proposed integrated system can be achieved quickly after only a few iterations, which makes the methodology reliable and efficient.Originality/value: The study offers an opportunity to satisfy tight tolerances, eliminate hand-finishing processes and assure part-to-part accuracy at the right first time, which is a limitation of previous approaches.

  1. Assessment of advanced technologies for high performance single-engine business airplanes

    Science.gov (United States)

    Kohlman, D. L.; Holmes, B. J.

    1982-01-01

    The prospects for significantly increasing the fuel efficiency and mission capability of single engine business aircraft through the incorporation of advanced propulsion, aerodynamics and materials technologies are explored. It is found that turbine engines cannot match the fuel economy of the heavier rotary, diesel and advanced spark reciprocating engines. The rotary engine yields the lightest and smallest aircraft for a given mission requirement, and also offers greater simplicity and a multifuel capability. Great promise is also seen in the use of composite material primary structures in conjunction with laminar flow wing surfaces, a pusher propeller and conventional wing-tail configuration. This study was conducted with the General Aviation Synthesis Program, which can furnish the most accurate mission performance calculations yet obtained.

  2. Novel Engineered Refractory Materials for Advanced Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Steven [North Carolina State Univ., Raleigh, NC (United States); Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Maria, Jon-Paul [North Carolina State Univ., Raleigh, NC (United States); Weber, William [Univ. of Tennessee, Knoxville, TN (United States)

    2016-03-14

    This report summarizes the results of DOE-NEUP grant 10-853. The project spanned 48 months (36 months under the original grant plus a 12 month no cost extension). The overarching goal of this work was to fabricate and characterize refractory materials engineered at the atomic scale with emphasis on their tolerance to accumulated radiation damage. With an emphasis on nano-scale structure, this work included atomic scale simulation to study the underlying mechanisms for modified radiation tolerance at these atomic scales.

  3. The ahead project: Advanced hybrid engines for aircraft development

    NARCIS (Netherlands)

    Rao, A.G.; Yin, F.

    2013-01-01

    Aviation is an ever-increasing market and more passengers and cargo are carried each year. The world is becoming ever more connected. However, this does come at a price: aviation has a marked in!uence on the environment. If aviation is to thrive in the future, breakthroughs in aircraft design and pr

  4. a Conceptual Framework for Virtual Geographic Environments Knowledge Engineering

    Science.gov (United States)

    You, Lan; Lin, Hui

    2016-06-01

    VGE geographic knowledge refers to the abstract and repeatable geo-information which is related to the geo-science problem, geographical phenomena and geographical laws supported by VGE. That includes expert experiences, evolution rule, simulation processes and prediction results in VGE. This paper proposes a conceptual framework for VGE knowledge engineering in order to effectively manage and use geographic knowledge in VGE. Our approach relies on previous well established theories on knowledge engineering and VGE. The main contribution of this report is following: (1) The concepts of VGE knowledge and VGE knowledge engineering which are defined clearly; (2) features about VGE knowledge different with common knowledge; (3) geographic knowledge evolution process that help users rapidly acquire knowledge in VGE; and (4) a conceptual framework for VGE knowledge engineering providing the supporting methodologies system for building an intelligent VGE. This conceptual framework systematically describes the related VGE knowledge theories and key technologies. That will promote the rapid transformation from geodata to geographic knowledge, and furtherly reduce the gap between the data explosion and knowledge absence.

  5. A CONCEPTUAL FRAMEWORK FOR VIRTUAL GEOGRAPHIC ENVIRONMENTS KNOWLEDGE ENGINEERING

    Directory of Open Access Journals (Sweden)

    L. You

    2016-06-01

    Full Text Available VGE geographic knowledge refers to the abstract and repeatable geo-information which is related to the geo-science problem, geographical phenomena and geographical laws supported by VGE. That includes expert experiences, evolution rule, simulation processes and prediction results in VGE. This paper proposes a conceptual framework for VGE knowledge engineering in order to effectively manage and use geographic knowledge in VGE. Our approach relies on previous well established theories on knowledge engineering and VGE. The main contribution of this report is following: (1 The concepts of VGE knowledge and VGE knowledge engineering which are defined clearly; (2 features about VGE knowledge different with common knowledge; (3 geographic knowledge evolution process that help users rapidly acquire knowledge in VGE; and (4 a conceptual framework for VGE knowledge engineering providing the supporting methodologies system for building an intelligent VGE. This conceptual framework systematically describes the related VGE knowledge theories and key technologies. That will promote the rapid transformation from geodata to geographic knowledge, and furtherly reduce the gap between the data explosion and knowledge absence.

  6. Civil/structural engineering education in the Faculty for the Built Environment : looking ahead

    OpenAIRE

    Torpiano, Alex; Sustainable Development - Civil Engineering and the Built Environment

    2011-01-01

    The Faculty for the Built Environment of the University of Malta is currently changing its civil/structural engineering degree programmes. This paper explores the background, in the context of the history of the professions of architects and civil engineers in Malta, and of recent developments in the teaching of civil and structural engineering in the University. The paper explains the rationale behind the proposed changes, and outlines the new course structure which has been l...

  7. Re-engineering towards object-oriented environments: the TROOP project

    OpenAIRE

    Signore, Oreste; Loffredo, Mario

    1993-01-01

    Software re-engineering and object orientation are two areas of growing interest in the last years. However, while many researchers have focused their interest in the object-oriented design methodologies, a little attention has been paid to the re-engineering towards an object-oriented environment. In this paper we examine the motivations towards object-oriented re-engineering (extendibility, robustness and reusability of the code) and the related problems, due to the difficulty of moving fro...

  8. Advances in Microgeophysics for Engineering and Cultural Heritage

    Institute of Scientific and Technical Information of China (English)

    P L Cosentino; P Capizzi; G Fiandaca; R Martorana; P Messina

    2009-01-01

    A large number of unconventional investigations have been implemented, tested, and validated in the field of microgeophysics, with the aim being to solve specific diagnostic and/or monitoring problems regarding civli engineering and cultural beritage studies. The investigations were carried out using different tomographic 2D and 3D approaches as well as different energy sources, namely sonic, ultrasonic and electromagnetic (radar) waves, electric potential fields, and infrared thermography. Many efforts have been made to modify instruments and procedures in order to improve the resolution of the surveys as well as to greatly reduce the time of the measurements without any loss of information. The main new methodologies here discussed arc the sonic imprint, the global tomographic traveltime, the electrical resistivity tomography, and the control of external films (patinas) grown on stone monuments. The results seem to be very promising and suggest that it is the moment to dedicate time and effort to this new branch of geophysics, so that these methodologies can be used even more to diagnose, monitor, and safeguard not only engineering buildings and large structures but also ancient monuments and cultural artifacts, like pottery, statues, etc..

  9. Advances in computers dependable and secure systems engineering

    CERN Document Server

    Hurson, Ali

    2012-01-01

    Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of sugnificant, lasting value in this rapidly expanding field. In-depth surveys and tutorials on new computer technologyWell-known authors and researchers in the fieldExtensive bibliographies with m

  10. Increasing Engineering Students' Awareness to Environment through Innovative Teaching of Mathematical Modelling

    Science.gov (United States)

    Klymchuk, Sergiy; Zverkova, Tatyana; Gruenwald, Norbert; Sauerbier, Gabriele

    2008-01-01

    This article presents the results of two studies on using an innovative pedagogical strategy in teaching mathematical modelling and applications to engineering students. Both studies are dealing with introducing non-traditional contexts for engineering students in teaching/learning of mathematical modelling and applications: environment and…

  11. Gendered practices of constructing an engineering identity in a problem-based learning environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    2006-01-01

    This article examines the learning experiences of engineering students of both genders in a problem-based and project-organized learning environment (PBL) at a Danish university. This study relates an amalgam of theories on learning and gender to the context of engineering education. Based on data...

  12. How to teach engineers to interact in a political decision making environment

    NARCIS (Netherlands)

    López Royo, M.; Burgmeijer, M.; Verhagen, H.J.

    2015-01-01

    Sectoral professionals, like coastal engineers, need to know how to cooperate in a multi-disciplinary environment, as well as how to present substantial information to (political) decision makers. In order to train (coastal engineering) students in this matter, Unesco-IHE and TU Delft have in their

  13. Engineers' Perceptions of Diversity and the Learning Environment at Work: A Mixed Methods Study

    Science.gov (United States)

    Firestone, Brenda L.

    2012-01-01

    The purpose of this dissertation research study was to investigate engineers' perceptions of diversity and the workplace learning environment surrounding diversity education efforts in engineering occupations. The study made use of a mixed methods methodology and was theoretically framed using a critical feminist adult education lens and…

  14. Studies of dynamic contact of ceramics and alloys for advanced heat engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gaydos, P.A.; Dufrane, K.F. [Battelle, Columbus, OH (United States)

    1993-06-01

    Advanced materials and coatings for low heat rejection engines have been investigated for almost a decade. Much of the work has concentrated on the critical wear interface between the piston ring and cylinder liner. Simplified bench tests have identified families of coatings with high temperature wear performance that could meet or exceed that of conventional engine materials at today`s operating temperatures. More recently, engine manufacturers have begun to optimize material combinations and manufacturing processes so that the materials not only have promising friction and wear performance but are practical replacements for current materials from a materials and manufacturing cost standpoint. In this study, the advanced materials supplied by major diesel engine manufacturers were evaluated in an experimental apparatus that simulates many of the in-cylinder conditions of a low heat rejection diesel engine. Results include ring wear factors and average dynamic friction coefficients measured at intervals during the test. These results are compared with other advanced materials tested in the past as well as the baseline wear of current engines. Both fabricated specimens and sections of actual ring and cylinder liners were used in the testing. Observations and relative friction and wear performance of the individual materials are provided.

  15. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.

    Science.gov (United States)

    Bokinsky, Gregory; Peralta-Yahya, Pamela P; George, Anthe; Holmes, Bradley M; Steen, Eric J; Dietrich, Jeffrey; Lee, Taek Soon; Tullman-Ercek, Danielle; Voigt, Christopher A; Simmons, Blake A; Keasling, Jay D

    2011-12-13

    One approach to reducing the costs of advanced biofuel production from cellulosic biomass is to engineer a single microorganism to both digest plant biomass and produce hydrocarbons that have the properties of petrochemical fuels. Such an organism would require pathways for hydrocarbon production and the capacity to secrete sufficient enzymes to efficiently hydrolyze cellulose and hemicellulose. To demonstrate how one might engineer and coordinate all of the necessary components for a biomass-degrading, hydrocarbon-producing microorganism, we engineered a microorganism naïve to both processes, Escherichia coli, to grow using both the cellulose and hemicellulose fractions of several types of plant biomass pretreated with ionic liquids. Our engineered strains express cellulase, xylanase, beta-glucosidase, and xylobiosidase enzymes under control of native E. coli promoters selected to optimize growth on model cellulosic and hemicellulosic substrates. Furthermore, our strains grow using either the cellulose or hemicellulose components of ionic liquid-pretreated biomass or on both components when combined as a coculture. Both cellulolytic and hemicellulolytic strains were further engineered with three biofuel synthesis pathways to demonstrate the production of fuel substitutes or precursors suitable for gasoline, diesel, and jet engines directly from ionic liquid-treated switchgrass without externally supplied hydrolase enzymes. This demonstration represents a major advance toward realizing a consolidated bioprocess. With improvements in both biofuel synthesis pathways and biomass digestion capabilities, our approach could provide an economical route to production of advanced biofuels.

  16. Manufacturing technology for advanced jet engines; Jisedai jetto engine no seizo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirakawa, H. [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1997-04-05

    A part of the latest production technologies for aircraft jet engines is introduced. Outline of the turbofan engine, turbo-prop engine, and turbo-shaft engine are given. Every one of them employs a gas turbine engine comprising a compressor, combustor, and a turbine as the output generator. Increase in the turbine inlet temperature is effective for making the gas turbine engine more efficient. The development tread of heat resisting materials for realizing higher temperature is shown. The current status and future aspect of the manufacturing technology is discussed for each main component of the engine. Technological development for decreasing weight is important because the weight of the fan member increases when the fan diameter is increased to increase the bypass ratio. FRP is adopted for the blades and casing to decrease the weight of the compressor, and studies have been made on fiber reinforced materials to reduce the weight of the disks. The outlines of the latest manufacturing technologies for the combustor and turbine are introduced. 2 refs., 9 figs.

  17. Advancing the State-of-the-Practice for Liquid Rocket Engine Injector Design

    Science.gov (United States)

    Tucker, P. K.; Kenny, R. J.; Richardson, B. R.; Anderso, W. E.; Austin, B. J.; Schumaker, S. A.; Muss, J. A.

    2015-01-01

    Current shortcomings in both the overall injector design process and its underlying combustion stability assessment methodology are rooted in the use of empirically based or low fidelity representations of complex physical phenomena and geometry details that have first order effects on performance, thermal environments and combustion stability. The result is a design and analysis capability that is often inadequate to reliably arrive at a suitable injector design in an efficient manner. Specifically, combustion instability has been particularly difficult to predict and mitigate. Large hydrocarbon-fueled booster engines have been especially problematic in this regard. Where combustion instability has been a problem, costly and time-consuming redesign efforts have often been an unfortunate consequence. This paper presents an overview of a recently completed effort at NASA Marshall Space Flight Center to advance the state-of-the-practice for liquid rocket engine injector design. Multiple perturbations of a gas-centered swirl coaxial (GCSC) element that burned gaseous oxygen and RP-1 were designed, assessed for combustion stability, and tested. Three designs, one stable, one marginally unstable and one unstable, were used to demonstrate both an enhanced overall injector design process and an improved combustion stability assessment process. High-fidelity results from state-of-the-art computational fluid dynamics CFD simulations were used to substantially augment and improve the injector design methodology. The CFD results were used to inform and guide the overall injector design process. They were also used to upgrade selected empirical or low-dimensional quantities in the ROCket Combustor Interactive Design (ROCCID) stability assessment tool. Hot fire single element injector testing was used to verify both the overall injector designs and the stability assessments. Testing was conducted at the Air Force Research Laboratory and at Purdue University. Companion papers

  18. Swirling midframe flow for gas turbine engine having advanced transitions

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Matthew D.; Charron, Richard C.; Rodriguez, Jose L.; Kusters, Bernhard W.; Morrison, Jay A.; Beeck, Alexander R.

    2016-12-27

    A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configured to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.

  19. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used...... for production of several large volume products. Insulin and insulin analogs are by far the dominating biopharmaceuticals produced by yeast, and this will increase as the global insulin market is expected to grow from USD12B in 2011 to more than USD32B by 2018. Other important biopharmaceuticals produced...... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  20. 2nd International Conference on Advanced Engineering : Theory and Applications

    CERN Document Server

    Dao, Tran; Zelinka, Ivan; Choi, Hyeung-Sik; Chadli, Mohammed

    2016-01-01

    This proceeding book consists of 10 topical areas of selected papers like: telecommunication, power systems, robotics, control system, renewable energy, power electronics, computer science and more. All selected papers represent interesting ideas and state of the art overview. Readers will find interesting papers of those areas about design and implement of dynamic positioning control system for USV, scheduling problems, motor control, backtracking search algorithm for distribution network and others. All selected papers represent interesting ideas and state of art overview. The proceeding book will also be a resource and material for practitioners who want to apply discussed problems to solve real-life problems in their challenging applications. It is also devoted to the studies of common and related subjects in intensive research fields of modern electric, electronic and related technologies. For these reasons, we believe that this proceeding book will be useful for scientists and engineers working in the ...

  1. App Factory: A Flexible Approach to Rehabilitation Engineering in an Era of Rapid Technology Advancement.

    Science.gov (United States)

    Jones, Michael; Mueller, James; Morris, John

    2016-08-15

    This article describes a flexible and effective approach to research and development in an era of rapid technological advancement. The approach relies on secondary dispersal of grant funds to commercial developers through a competitive selection process. This "App Factory" model balances the practical reliance on multi-year funding needed to sustain a rehabilitation engineering research center (RERC), with the need for agility and adaptability of development efforts undertaken in a rapidly-changing technology environment. This approach also allows us to take advantage of technical expertise needed to accomplish a particular development task, and provides incentives to deliver successful products in a cost-effective manner. In this article, we describe the App Factory structure, process and results achieved to date; and we discuss the lessons learned and the potential relevance of this approach for other grant-funded research and development efforts. Data presented on the direct costs and number of downloads of the 16 app development projects funded in the App Factory's first 3 years show that it can be an effective means for supporting focused, short-term assistive technology development projects.

  2. Sentiment analysis and ontology engineering an environment of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2016-01-01

    This edited volume provides the reader with a fully updated, in-depth treatise on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligence in the realization of concepts and implementation of models of sentiment analysis and ontology –oriented engineering. The volume involves studies devoted to key issues of sentiment analysis, sentiment models, and ontology engineering. The book is structured into three main parts. The first part offers a comprehensive and prudently structured exposure to the fundamentals of sentiment analysis and natural language processing. The second part consists of studies devoted to the concepts, methodologies, and algorithmic developments elaborating on fuzzy linguistic aggregation to emotion analysis, carrying out interpretability of computational sentiment models, emotion classification, sentiment-oriented information retrieval, a methodology of adaptive dynamics in knowledge acquisition. The third part includes a plethora of applica...

  3. Salvaging Information Engineering Techniques in the Data Warehouse Environment

    Directory of Open Access Journals (Sweden)

    Anthony L. Politano

    2001-01-01

    Full Text Available The art of Information Engineering (IE continuously evolves and, by today's standards, is considered an integral function in most any organization. Strategic planning teams weave methodologies, which are integrated to process information, the goal being to sort, store, and retrieve useful data.The following article will describe three techniques that can utilize existing information engineering in a data warehouse project. First, the entity relationship diagram and its use in a three phase data model approach. Second, the functional decomposition diagram and its use in segmenting and defining key performance indicators and dimensions. Third, creating a modified CRUD (Create, Read, Update and Delete matrix that deals with logical entities and current systems.

  4. DFM/CAPP/CAM System in a Concurrent Engineering Environment

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In this paper the importance of DFM/CAPP/CAM system in Concurrent Engineering (CE) is discussed. Based on the analyses of the character of concurrent product design and manufacturing process design, the workflow of DFM/CAPP/CAM system in CE is given. DFM/CAPP/CAM theories, methods and functions are investigated in a delicate and all-round way, and are implemented in the developed DFM/CAPP/CAM system.

  5. Military Engineer Contribution to Operational Art: The Hybrid Threat Environment

    Science.gov (United States)

    2015-05-22

    People’s Republic of Korea KKK Khmer Kampuchea Krom KMAG Korean Military Advisor Group KNR Korean National Railroad KPA Korean People’s Army IED...irregular KPA and communist threat, included the Korean National Police (KNP) and Korean Student Volunteer Force. These anti-partisan forces assisted in...With the guidance and leadership of UN engineers, this labor force assisted in the reconstruction of the Korean National Railroad (KNR).96 The KNR was

  6. An Overview of the CapDEM Integrated Engineering Environment

    Science.gov (United States)

    2005-07-01

    cours d’un exercice d’élaboration et d’expérimentation de concepts (EEC) du DIGCap. On utilisera lors de cet exercice d’EEC les mêmes outils pour...DOORS, they can be tracked and managed throughout the project life cycle using a variety of features, such as views, links and traceability analyses ...data, trade study analyses and project related documents • Integrate data / model within the repository • Provide integrated views of engineering

  7. Evaluation, engineering and development of advanced cyclone processes

    Energy Technology Data Exchange (ETDEWEB)

    Durney, T.E.; Cook, A. [Coal Technology Corporation, Bristol, VA (United States); Ferris, D.D. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)] [and others

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  8. Advanced software development workstation project: Engineering scripting language. Graphical editor

    Science.gov (United States)

    1992-01-01

    Software development is widely considered to be a bottleneck in the development of complex systems, both in terms of development and in terms of maintenance of deployed systems. Cost of software development and maintenance can also be very high. One approach to reducing costs and relieving this bottleneck is increasing the reuse of software designs and software components. A method for achieving such reuse is a software parts composition system. Such a system consists of a language for modeling software parts and their interfaces, a catalog of existing parts, an editor for combining parts, and a code generator that takes a specification and generates code for that application in the target language. The Advanced Software Development Workstation is intended to be an expert system shell designed to provide the capabilities of a software part composition system.

  9. NASA University Research Centers Technical Advances in Education, Aeronautics, Space, Autonomy, Earth and Environment

    Science.gov (United States)

    Jamshidi, M. (Editor); Lumia, R. (Editor); Tunstel, E., Jr. (Editor); White, B. (Editor); Malone, J. (Editor); Sakimoto, P. (Editor)

    1997-01-01

    This first volume of the Autonomous Control Engineering (ACE) Center Press Series on NASA University Research Center's (URC's) Advanced Technologies on Space Exploration and National Service constitute a report on the research papers and presentations delivered by NASA Installations and industry and Report of the NASA's fourteen URC's held at the First National Conference in Albuquerque, New Mexico from February 16-19, 1997.

  10. PREFACE: Advances in Cryogenic Engineering: Proceedings of the Cryogenic Engineering Conference (CEC) 2015

    Science.gov (United States)

    Kittel, Peter; Sumption, Michael

    2015-12-01

    The 2015 joint Cryogenic Engineering and International Cryogenic Materials Conferences were held from June 28 through July 2 at the JW Marriott Starr Pass Resort & Spa in Tucson, Arizona. As at past conferences, the international scope of these meetings was strongly maintained with 26 countries being represented by 561 attendees who gathered to enjoy the joint technical programs, industrial exhibits, special events, and natural beauty of the surrounding Sonoran Desert. The program for the joint conferences included a total of 363 presentations in the plenary, oral, and poster sessions. Four plenary talks gave in-depth discussions of the readiness of bulk superconductors for applications, the role of cryogenics in the development of the hydrogen bomb and vice versa, superconducting turboelectric aircraft propulsion and UPS's uses and plans for LNG fuel. Contributed papers covered a wide range of topics including large-scale and small-scale cryogenics, advances in superconductors and their applications. In total, 234 papers were submitted for publication of which 224 are published in these proceedings. The CEC/ICMC Cryo Industrial Expo displayed the products and services of 38 industrial exhibitors and provided a congenial venue for a reception and refreshments throughout the week as well as the conference poster sessions. Spectacular panoramic views of Saguaro National Park, the Sonoran Desert and the night time lights of Tucson set the stage for a memorable week in the American Southwest. Conference participants enjoyed scenic hikes and bike rides, exploring Old Town Tucson, hot and spicy southwestern cuisine, a nighttime lightning display and a hailstorm. Conference Chairs for 2015 were Peter Kittel, Consultant, for CEC and Michael Sumption from The Ohio State University, Materials Science Department for ICMC. Program Chairs were Jonathan Demko from the LeTourneau University for CEC and Timothy Haugan from AFRL/RQQM for ICMC, assisted by the CEC Program Vice Chair

  11. Implementation of Advanced Warehouses in a Hospital Environment - Case study

    Science.gov (United States)

    Costa, J.; Sameiro Carvalho, M.; Nobre, A.

    2015-05-01

    In Portugal, there is an increase of costs in the healthcare sector due to several factors such as the aging of the population, the increased demand for health care services and the increasing investment in new technologies. Thus, there is a need to reduce costs, by presenting the effective and efficient management of logistics supply systems with enormous potential to achieve savings in health care organizations without compromising the quality of the provided service, which is a critical factor, in this type of sector. In this research project the implementation of Advanced Warehouses has been studied, in the Hospital de Braga patient care units, based in a mix of replenishment systems approaches: the par level system, the two bin system and the consignment model. The logistics supply process is supported by information technology (IT), allowing a proactive replacement of products, based on the hospital services consumption records. The case study was developed in two patient care units, in order to study the impact of the operation of the three replenishment systems. Results showed that an important inventory holding costs reduction can be achieved in the patient care unit warehouses while increasing the service level and increasing control of incoming and stored materials with less human resources. The main conclusion of this work illustrates the possibility of operating multiple replenishment models, according to the types of materials that healthcare organizations deal with, so that they are able to provide quality health care services at a reduced cost and economically sustainable. The adoption of adequate IT has been shown critical for the success of the project.

  12. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2016-05-01

    Tissue engineering and regenerative medicine represent areas of increasing interest because of the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Graphene and its derivatives have attracted much interest for applications in bone tissue engineering. For this purpose, this review focuses on more recent advances in tissue engineering based on graphene-biomaterials from 2013 to May 2015. The purpose of this article was to give a general description of studies of nanostructured graphene derivatives for bone tissue engineering. In this review, we highlight how graphene family nanomaterials are being exploited for bone tissue engineering. Firstly, the main requirements for bone tissue engineering were discussed. Then, the mechanism by which graphene based materials promote new bone formation was explained, following which the current research status of main types of nanostructured scaffolds for bone tissue engineering was reviewed and discussed. In addition, graphene-based bioactive glass, as a potential drug/growth factor carrier, was reviewed which includes the composition-structure-drug delivery relationship and the functional effect on the tissue-stimulation properties. Also, the effect of structural and textural properties of graphene based materials on development of new biomaterials for production of bone implants and bone cements were discussed. Finally, the present review intends to provide the reader an overview of the current state of the graphene based biomaterials in bone tissue engineering, its limitations and hopes as well as the future research trends for this exciting field of science.

  13. [Application of advanced engineering technologies to medical and rehabilitation fields].

    Science.gov (United States)

    Fujie, Masakatsu

    2012-07-01

    The words "Japan syndrome" can now be heard increasingly through the media. Facing the approach of an elderly-dominated society, Robot Technology(RT)is expected to play an important role in Japan's medical, rehabilitation, and daily support fields. The industrial robot, which has already spread through the world with a great success in certain isolated environments by doing the work which is specialized for the thing with the hard known characteristic. By comparison, in the medical and rehabilitation fields, environments always change intricately, and individual characteristics differ from person to person. Furthermore, there are many times when a robot will be asked to directly interact with people. Moreover, the relation between a robot and a person turns into a relation which should involve contact flexibly according to a situation, and also turns into a relation which should avoid contact. In our group, we have so far developed practical rehabilitation and medical robots which can respond to difficulties such as environmental change and individual specificity. In developing rehabilitation robots, it is especially important to consider intuitive operability and individual differences. In addition, in developing medical robots, it is important to replace the experimental knowledge of surgeons to the mechanical quantitative properties. In this article, we introduce some practical examples of rehabilitation and medical robots interweaving several detailed technologies we have so far developed.

  14. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology.

    Science.gov (United States)

    Liang, Ming-Hua; Jiang, Jian-Guo

    2013-10-01

    With the depletion of global petroleum and its increasing price, biodiesel has been becoming one of the most promising biofuels for global fuels market. Researchers exploit oleaginous microorganisms for biodiesel production due to their short life cycle, less labor required, less affection by venue, and easier to scale up. Many oleaginous microorganisms can accumulate lipids, especially triacylglycerols (TAGs), which are the main materials for biodiesel production. This review is covering the related researches on different oleaginous microorganisms, such as yeast, mold, bacteria and microalgae, which might become the potential oil feedstocks for biodiesel production in the future, showing that biodiesel from oleaginous microorganisms has a great prospect in the development of biomass energy. Microbial oils biosynthesis process includes fatty acid synthesis approach and TAG synthesis approach. In addition, the strategies to increase lipids accumulation via metabolic engineering technology, involving the enhancement of fatty acid synthesis approach, the enhancement of TAG synthesis approach, the regulation of related TAG biosynthesis bypass approaches, the blocking of competing pathways and the multi-gene approach, are discussed in detail. It is suggested that DGAT and ME are the most promising targets for gene transformation, and reducing PEPC activity is observed to be beneficial for lipid production.

  15. Advanced bearing materials for cryogenic aerospace engine turbopump requirements

    Science.gov (United States)

    Friedman, G.; Bhat, B. N.

    1986-01-01

    The properties of eleven alloys were investigated to select an improved bearing material for the High Pressure Oxygen Turbo Pump which delivers liquid oxygen to the Space Shuttle Main Engine. The alloys, selected through detailed literature analysis, X 405, MRC-2001, T440V, 14-4/6V, D-5, V-M Pyromet 350, Stellite 3, FerroTic CS-40, Tribaloy 800, WD-65, and CBS-600. The alloys were tested in hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness tests, and their performance was compared with the baseline 440C test alloy. As a result, five alloys were eliminated, leaving the remaining six (X 405, MRC-2001, T440V, 14-4/6V, D-5, and WD-65 to be evaluated in the next phase of NASA tests which will include fracture toughness, rolling contact fatigue, wear resistance, and corrosion resistance. From these, three alloys will be selected, which will be made into ninety bearings for subsequent testing.

  16. Secure and Faster Clustering Environment for Advanced Image Compression

    Directory of Open Access Journals (Sweden)

    D.Kesavaraja

    2010-11-01

    Full Text Available Cloud computing provides ample opportunity in many areas such as fastest image transmission, secure and efficient imaging as a service. In general users needs faster and secure service. Usually Image Compression Algorithms are not working faster. In spite of several ongoing researches, Conventional Compression and its Algorithms might not be able to run faster. So, we perform comparative study of three image compression algorithm and their variety of features and factors to choose best among them for cluster processing. After choosing a best one it can be applied for a cluster computing environment to run parallel image compression for faster processing. This paper is the real time implementation of a Distributed Image Compression in Clustering of Nodes. In cluster computing, security is also more important factor. So, we propose a Distributed Intrusion Detection System to monitors all the nodes in cluster . If an intrusion occur in node processing then take an prevention step based on RIC (Robust Intrusion Control Method. We demonstrate the effectiveness and feasibility of our method on a set of satellite images for defense forces. The efficiency ratio of this computation process is 91.20.

  17. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    Science.gov (United States)

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  18. Progress of Journal‘Advanced Technology of Electrical Engineering and Energy’

    Institute of Scientific and Technical Information of China (English)

    QIN Jie; LIN Liang-zhen; QI Zhi-ping; MA Yu-huan; SHEN Guo-liao; JING Bo-hong

    2009-01-01

    The paper has introduced the Journal 'Advanced Technology of Electrical Engineering and Energy', presented its main journal evaluation indexes. The result indicates that the journal has made great progress in recent years. It gives much info. about the journal to authors.

  19. Laser rapid prototyping techniques for fabrication of advanced implants and scaffolds for tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Popov; V.; K.

    2005-01-01

    Rapid prototyping (RP) techniques become more and more extensively used instrument for numerous biomedical applications ranging from 3-D biomodels design to fabrication of custom-designed implants and scaffolds for tissue engineering. In this paper we present the results of our development of advanced Laser Stereolithography (LS) and new Surface Selective Laser Sintering (SSLS) methodologies for these purposes.……

  20. Experimental validation of extended NO and soot model for advanced HD diesel engine combustion

    NARCIS (Netherlands)

    Seykens, X.L.J.; Baert, R.S.G.; Somers, L.M.T.; Willems, F.P.T.

    2009-01-01

    A computationally efficient engine model is developed based on an extended NO emission model and state-of-the-art soot model. The model predicts exhaust NO and soot emission for both conventional and advanced, high-EGR (up to 50%), heavy-duty DI diesel combustion. Modeling activities have aimed at l

  1. Integrated Computer Aided Planning and Manufacture of Advanced Technology Jet Engines

    Directory of Open Access Journals (Sweden)

    B. K. Subhas

    1987-10-01

    Full Text Available This paper highlights an attempt at evolving a computer aided manufacturing system on a personal computer. A case study of an advanced technology jet engine component is included to illustrate various outputs from the system. The proposed system could be an alternate solution to sophisticated and expensive CAD/CAM workstations.

  2. Laser rapid prototyping techniques for fabrication of advanced implants and scaffolds for tissue engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Rapid prototyping (RP) techniques become more and more extensively used instrument for numerous biomedical applications ranging from 3-D biomodels design to fabrication of custom-designed implants and scaffolds for tissue engineering. In this paper we present the results of our development of advanced Laser Stereolithography (LS) and new Surface Selective Laser Sintering (SSLS) methodologies for these purposes.

  3. Emerging advances in nanomedicine with engineered gold nanostructures

    Science.gov (United States)

    Webb, Joseph A.; Bardhan, Rizia

    2014-02-01

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  4. Review: Gigacycle fatigue data sheets for advanced engineering materials

    Directory of Open Access Journals (Sweden)

    Koji Yamaguchi, Takayuki Abe, Kazuo Kobayashi, Etsuo Takeuchi, Hisashi Hirukawa, Yoshio Maeda, Nobuo Nagashima, Masao Hayakawa, Yoshiyuki Furuya, Masuo Shimodaira and Kensuke Miyahara

    2007-01-01

    Full Text Available Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete.

  5. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  6. 提高木霉逆境适应性与生物防治效果的基因工程研究进展%Advances in Engineering of Trichoderma for Improvement of Adaption to Adverse Environment and Efficiency of Biological Control Against Plant Pathogen

    Institute of Scientific and Technical Information of China (English)

    陈勇; 朱廷恒; 汪琨; 崔志峰

    2012-01-01

    木霉生存范围广、生长繁殖迅速,对其他真菌有一定的拮抗能力,并能促进植物生长、诱导植物对病原菌产生抗性,是迄今开发最成功的植物病害生防真菌.目前,运用基因工程的方法对木霉进行遗传改良,提高它对环境的适应性与对致病菌的防治能力,已经取得了很大的进展,就近年采采用基因工程的方法对木霉进行改良的研究进行综述.%Trichoderma can survive in various environments and grow rapidly, it also can inhibit many phytopathogens, promote plant growth and induce the resistance of plants to the disease. Trichoderma has been the most successful biocontrol agent in plant disease control. Great efforts have been taken to improve their survival abilities and antifungal activities by genetic engineering. The recent achievements in the study of genetic engineering for Trichoderma were discussed.

  7. Advanced Distributed Simulation Technology II Synthetic Environment Strategic Plan For Synthetic Environment Strategic Plan

    Science.gov (United States)

    1998-07-15

    Masterplans 9 3.2 SYNTHETIC ENVIRONMENT DEFINED 10 3.3 THREE PERSPECTIVES OF THE SYNTHETIC ENVIRONMENT 11 3.3.1 Operational Perspective 11 3.3.2 Systems or...difficult to fund and to perform this task. To proactively seek a solution to this is a natural role for STRICOM. 3.1.2 Army M&S Masterplans The Army

  8. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  9. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2017-01-01

    Full Text Available Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to investigate the alternatives for producing a better replacement for the material used in catalytic converter. This paper aims at reviewing the present development and improvement on the catalytic converter used on the reduction of exhaust emission in order to meet the regulations and market demand. The use of new catalyst such as to replace the noble metal material of Platinum (Pt, Palladium (Pd and Rhodium (Rh has been reviewed. Material such as zeolite, nickel oxide and metal oxide has been found to effectively reduce the emission than the commercial converter. The preparation method of the catalyst has also evolved through the years as it is to ensure a good characteristic of a good monolith catalyst. Ultrasonic treatment with combination of electroplating technique, citrate method and Plasma Electrolytic Oxidation (PEO has been found as the latest novel preparation method on producing an effective catalyst in reducing the exhaust emission.

  10. Study of the costs and benefits of composite materials in advanced turbofan engines

    Science.gov (United States)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  11. Selected Topics on Advanced Information Systems Engineering: Editorial Introduction to the Issue 5 of CSIMQ

    Directory of Open Access Journals (Sweden)

    Janis Grabis

    2015-12-01

    Full Text Available The 5th issue of the journal on Complex Systems Informatics and Modeling (CSIMQ presents extended versions of five papers selected from the CAiSE Forum 2015. The forum was part of the 27th edition of international Conference on Advanced Information Systems engineering (CAiSE 2015, which took place in June 2015 in Stockholm, Sweden. Information systems engineering draws its foundation from various interrelated disciplines including, e.g., conceptual modeling, database systems, business process management, requirements engineering, human computer interaction, and enterprise computing to address various practical challenges in development and application of information systems. The guiding subjects of CAiSE 2015 were Creativity, Ability, and Integrity. The CAiSE Forum aimed at presenting and discussing new ideas and tools related to information systems Engineering.

  12. Nonlinear approaches in engineering applications advanced analysis of vehicle related technologies

    CERN Document Server

    Dai, Liming

    2016-01-01

    This book looks at the broad field of engineering science through the lens of nonlinear approaches. Examples focus on issues in vehicle technology, including vehicle dynamics, vehicle-road interaction, steering, and control for electric and hybrid vehicles. Also included are discussions on train and tram systems, aerial vehicles, robot-human interaction, and contact and scratch analysis at the micro/nanoscale. Chapters are based on invited contributions from world-class experts in the field who advance the future of engineering by discussing the development of more optimal, accurate, efficient, and cost and energy effective systems. This book is appropriate for researchers, students, and practicing engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems.

  13. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    Science.gov (United States)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  14. Recent advance on the efficiency at maximum power of heat engines

    Institute of Scientific and Technical Information of China (English)

    Tu Zhan-Chun

    2012-01-01

    This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years.The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine,the stochastic heat engine constructed from a Brownian particle,and Feynman's ratchet as a heat engine are presented.It is found that:the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time.

  15. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    Science.gov (United States)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  16. Ecological Engineering: Reshaping Our Environments to Achieve Our Goals.

    Science.gov (United States)

    Levy, Neil

    2012-12-01

    Human beings are subject to a range of cognitive and affective limitations which interfere with our ability to pursue our individual and social goals. I argue that shaping our environment to avoid triggering these limitations or to constrain the harms they cause is likely to be more effective than genetic or pharmaceutical modifications of our capacities because our limitations are often the flip side of beneficial dispositions and because available enhancements seem to impose significant costs. I argue that carefully selected environmental interventions respect agents' autonomy and are consistent with democratic decision making.

  17. From Pen-and-Paper Sketches to Prototypes: The Advanced Interaction Design Environment

    DEFF Research Database (Denmark)

    Störrle, Harald

    2014-01-01

    Pen and paper is still the best tool for sketching GUIs. How-ever, sketches cannot be executed, at best we have facilitated or animated scenarios. The Advanced User Interaction Environment facilitates turn-ing hand-drawn sketches into executable prototypes.......Pen and paper is still the best tool for sketching GUIs. How-ever, sketches cannot be executed, at best we have facilitated or animated scenarios. The Advanced User Interaction Environment facilitates turn-ing hand-drawn sketches into executable prototypes....

  18. What the Cited and Citing Environments Reveal of_Advances in Atmospheric Sciences?

    CERN Document Server

    Aolan, Shie

    2010-01-01

    The networking ability of journals reflects their academic influence among peer journals. This paper analyzes the cited and citing environments of the journal--Advances in Atmospheric Sciences--using methods from social network analysis. The journal has been actively participating in the international journal environment, but one has a tendency to cite papers published in international journals. Advances in Atmospheric Sciences is intensely interrelated with international peer journals in terms of similar citing pattern. However, there is still room for an increase in its academic visibility given the comparatively smaller reception in terms of cited references.

  19. Using an Agent-oriented Framework for Supervision, Diagnosis and Prognosis Applications in Advanced Automation Environments

    DEFF Research Database (Denmark)

    Thunem, Harald P-J; Thunem, Atoosa P-J; Lind, Morten

    2011-01-01

    This paper demonstrates how a generic agent-oriented framework can be used in advanced automation environments, for systems analysis in general and supervision, diagnosis and prognosis purposes in particular. The framework’s background and main application areas are briefly described. Next......-oriented supervision, diagnosis and prognosis purposes are equally explained. Finally, the paper sums up by also addressing plans for further enhancement and in that respect integration with other tailor-made tools for joint treatment of various modeling and analysis activities upon advanced automation environments....

  20. The Crosstalk between Tissue Engineering and Pharmaceutical Biotechnology: Recent Advances and Future Directions.

    Science.gov (United States)

    Pacheco, Daniela P; Reis, Rui L; Correlo, Vítor M; Marques, Alexandra P

    2015-01-01

    Tissue-engineered constructs made of biotechnology-derived materials have been preferred due to their chemical and physical composition, which offers both high versatility and a support to enclose/ incorporate relevant signaling molecules and/or genes known to therapeutically induce tissue repair. Herein, a critical overview of the impact of different biotechnology-derived materials, scaffolds, and recombinant signaling molecules over the behavior of cells, another element of tissue engineered constructs, as well its regulatory role in tissue regeneration and disease progression is given. Additionally, these tissue-engineered constructs evolved to three-dimensional (3D) tissue-like models that, as an advancement of two-dimensional standard culture methods, are expected to be a valuable tool in the field of drug discovery and pharmaceutical research. Despite the improved design and conception of current proposed 3D tissue-like models, advanced control systems to enable and accelerate streamlining and automation of the numerous labor-intensive steps intrinsic to the development of tissue-engineered constructs are still to be achieved. In this sense, this review intends to present the biotechnology- derived materials that are being explored in the field of tissue engineering to generate 3D tissue-analogues and briefly highlight their foremost breakthroughs in tissue regeneration and drug discovery. It also aims to reinforce that the crosstalk between tissue engineering and pharmaceutical biotechnology has been fostering the outcomes of tissue engineering approaches through the use of biotechnology-derived signaling molecules. Gene delivery/therapy is also discussed as a forefront area that represents another cross point between tissue engineering and pharmaceutical biotechnology, in which nucleic acids can be considered a "super pharmaceutical" to drive biological responses, including tissue regeneration.

  1. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    Science.gov (United States)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  2. Process Systems Engineering R&D for Advanced Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.

    2007-09-11

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

  3. AACN's healthy work environment standards and an empowering nurse advancement system.

    Science.gov (United States)

    Vollers, Dawn; Hill, Edie; Roberts, Cynthia; Dambaugh, Lori; Brenner, Zara R

    2009-12-01

    An empowering clinical nurse advancement system can facilitate institutional behaviors that embrace all of AACN's healthy work environment standards and thus serve as a building block for developing a flourishing health care environment. The results generate positive outcomes that are evident to health care professionals, patients, patients' families, and health care organizations. Patients benefit from highly satisfied employees who work in a culture of caring and excellence.

  4. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    Science.gov (United States)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  5. Development and application of water environment management information system based on ARCGIS Engine

    Institute of Scientific and Technical Information of China (English)

    Beijia HUANG; Shaoping WANG; Jun CAO

    2008-01-01

    Embedded ArcGIS Engine can improve development efficiency of environmental information system. The authors designed the structure, functions and database of the Yongjiang River Basin Water Environment Management Information System (YRBWEMIS) through the integration of ArcGIS Engine software with VC. The spatial data and attribute data in the YRBWEMIS are stored and managed separately. The system functions include display, query, statistics, spatial analysis and thematic mapping for water pollution sources, water quality, water function regionalization and catchments region.

  6. Software Engineering Environment for Component-based Design of Embedded Software

    DEFF Research Database (Denmark)

    Guo, Yu

    2010-01-01

    as well as application models in a computer-aided software engineering environment. Furthermore, component models have been realized following carefully developed design patterns, which provide for an efficient and reusable implementation. The components have been ultimately implemented as prefabricated...... executable objects that can be linked together into an executable application. The development of embedded software using the COMDES framework is supported by the associated integrated engineering environment consisting of a number of tools, which support basic functionalities, such as system modelling......, validation, and executable code generation for specific hardware platforms. Developing such an environment and the associated tools is a highly complex engineering task. Therefore, this thesis has investigated key design issues and analysed existing platforms supporting model-driven software development...

  7. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy.

    Science.gov (United States)

    Li, Kuei-Chang; Hu, Yu-Chen

    2015-05-01

    Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.

  8. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Hong WANG; He-Chun YE; Guo-Feng LI

    2005-01-01

    Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.

  9. Biomimetic tissue-engineered systems for advancing cancer research: NCI Strategic Workshop report.

    Science.gov (United States)

    Schuessler, Teresa K; Chan, Xin Yi; Chen, Huanhuan Joyce; Ji, Kyungmin; Park, Kyung Min; Roshan-Ghias, Alireza; Sethi, Pallavi; Thakur, Archana; Tian, Xi; Villasante, Aranzazu; Zervantonakis, Ioannis K; Moore, Nicole M; Nagahara, Larry A; Kuhn, Nastaran Z

    2014-10-01

    Advanced technologies and biomaterials developed for tissue engineering and regenerative medicine present tractable biomimetic systems with potential applications for cancer research. Recently, the National Cancer Institute convened a Strategic Workshop to explore the use of tissue biomanufacturing for development of dynamic, physiologically relevant in vitro and ex vivo biomimetic systems to study cancer biology and drug efficacy. The workshop provided a forum to identify current progress, research gaps, and necessary steps to advance the field. Opportunities discussed included development of tumor biomimetic systems with an emphasis on reproducibility and validation of new biomimetic tumor models, as described in this report.

  10. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  11. Cost benefit study of advanced materials technology for aircraft turbine engines

    Science.gov (United States)

    Hillery, R. V.; Johnston, R. P.

    1977-01-01

    The cost/benefits of eight advanced materials technologies were evaluated for two aircraft missions. The overall study was based on a time frame of commercial engine use of the advanced material technologies by 1985. The material technologies evaluated were eutectic turbine blades, titanium aluminide components, ceramic vanes, shrouds and combustor liners, tungsten composite FeCrAly blades, gamma prime oxide dispersion strengthened (ODS) alloy blades, and no coat ODS alloy combustor liners. They were evaluated in two conventional takeoff and landing missions, one transcontinental and one intercontinental.

  12. A CAMAC and FASTBUS engineering test environment supported by a MicroVAX/MicroVMS system

    Energy Technology Data Exchange (ETDEWEB)

    Logg, C.A.

    1987-10-01

    A flexible, multiuser engineering test environment has been established for the engineers in SLAC's Electronic Instrumentation Engineering group. The system hardware includes a standard MicroVAX II and MicroVAX I with multiple CAMAC, FASTBUS, and GPIB instrumentation buses. The system software components include MicroVMS licenses with DECNET/SLACNET, FORTRAN, PASCAL, FORTH, and a versatile graphical display package. In addition, there are several software utilities available to facilitate FASTBUS and CAMAC prototype hardware debugging. 16 refs., 7 figs.

  13. A repository based tool for re-engineering towards an object oriented environment

    OpenAIRE

    Signore, Oreste; Loffredo, Mario

    1993-01-01

    Software re-engineering and object orientation are two areas of growing interest in the last years. However, while many researchers have focused their interest in the object-oriented design methodologies, a little attention has been paid to the re-engineering towards an object-oriented environment. In this paper we examine the motivations towards object-oriented re-engineering (extendibility, robustness and reusability of the code) and the problems found in moving from a process-based to an o...

  14. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  15. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.

  16. Reference site selection report for the advanced liquid metal reactor at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sivill, R.L.

    1990-03-01

    This Reference Site Selection Report was prepared by EG G, Idaho Inc., for General Electric (GE) to provide information for use by the Department of Energy (DOE) in selecting a Safety Test Site for an Advanced Liquid Metal Reactor. Similar Evaluation studies are planned to be conducted at other potential DOE sites. The Power Reactor Innovative Small Module (PRISM) Concept was developed for ALMR by GE. A ALMR Safety Test is planned to be performed on a DOE site to demonstrate features and meet Nuclear Regulatory Commission Requirements. This study considered possible locations at the Idaho National Engineering Laboratory that met the ALMR Prototype Site Selection Methodology and Criteria. Four sites were identified, after further evaluation one site was eliminated. Each of the remaining three sites satisfied the criteria and was graded. The results were relatively close. Thus concluding that the Idaho National Engineering Laboratory is a suitable location for an Advanced Liquid Metal Reactor Safety Test. 23 refs., 13 figs., 9 tabs.

  17. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    drug delivery nanospheres) can provide high performance, functional materials that also serve as effective tissue forming 3D environments. Both general science knowledge and the translational potential of tissue engineered constructs were advanced by original contributions to the fields for tissue engineering and orthopedic medicine. The most original advancement of general science comes from a successful combination of advanced nanomaterials and biomaterials with existing 3D printing and CAD design to support multiple types of cells and tissues. Future translation of these technologies was advanced due to the highly functional nature of these constructs (i.e. mechanical and hydrodynamic characteristics). Future work would involve more evaluation of vascular neogenesis, small animal models to evaluate bioactivity and biocompatibility and large clinically relevant animals to measure gross tissue formation and biomechanical performance.

  18. Statistics and Analysis on Papers Published on Journal 'Advanced Technology of Electrical Engineering and Energy'

    Institute of Scientific and Technical Information of China (English)

    QIN Jie; LIN Liangzhen; QI Zhiping; MA Yuhuan; SHEN Guoliao; JING Bohong

    2009-01-01

    The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate, the paper category, the first author's affiliations, the top 7 first authors, the top 10 coauthors and also the joumal evaluation indexes of the journal. It offers details of the journal to anyone interested, especially to our editorial board and our broad readers.

  19. The inhabited environment, infrastructure development and advanced urbanization in China’s Yangtze River Delta Region

    Science.gov (United States)

    Zhu, Xiaoqing; Gao, Weijun; Zhou, Nan; Kammen, Daniel M.; Wu, Yiqun; Zhang, Yao; Chen, Wei

    2016-12-01

    This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China’s heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities’ differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities.

  20. StudentResearcher - A virtual learning environment for interactive engagement with advanced quantum mechanics

    CERN Document Server

    Pedersen, Mads Kock; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F

    2015-01-01

    A virtual learning environment can engage students in the learning process at the universities in ways that the traditional lecture and lab formats can not. We present our virtual learning environment StudentResearcher which incorporates simulations, multiple-choice quizzes, video lectures and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is build upon experiences made from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games was used to extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. Where we found an increased learning for the student whom were more active on the platform independent on their previous performances.

  1. Self-Healing of Microcracks in Engineered Cementitious Composites (ECC) Under a Natural Environment

    OpenAIRE

    Li, Victor C.; Emily N. Herbert

    2013-01-01

    This paper builds on previous self-healing engineered cementitious composites (ECC) research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Det...

  2. Development of Education Program for Okinawa Model Creative and Capable Engineers in Advanced Welding Technology

    Science.gov (United States)

    Manabe, Yukio; Matsue, Junji; Makishi, Takashi; Higa, Yoshikazu; Matsuda, Shoich

    Okinawa National College of Technology proposed “Educational Program for Practically Skilled Engineers in Advanced Welding Technology in Okinawa Style” to the Ministry of Economy, Trade and Industry and was adopted as a 2-year project starting from 2005. This project designed to fit for the regional characteristics of Okinawa, aims to develop the core human resources program that will help reinforce and innovate the welding engineering in the manufacturing industries. In 2005, the education program and the original textbook were developed, and in 2006, a proof class was held to confirm the suitability and the effectiveness of the program and the textbook in order to improve the attendees' basics and the application ability of welding. The results were quite positive. Also, by collaborating with the Japan Welding Society, points scored in this course were authorized as the education points of IIW international welding engineer qualification.

  3. Genetic engineering of novel flower colors in floricultural plants: recent advances via transgenic approaches.

    Science.gov (United States)

    Nishihara, Masahiro; Nakatsuka, Takashi

    2010-01-01

    Since the first successful genetic engineering of flower color in petunia, several new techniques have been developed and applied to modify flower color not only in model plants but also in floricultural plants. A typical example is the commercial violet-flowered carnation "Moondust series" developed by Suntry Ltd. and Florigene Ltd. More recently, blue-flowered roses have been successfully produced and are expected to be commercially available in the near future. In recent years, successful modification of flower color by sophisticated regulation of flower-pigment metabolic pathways has become possible. In this chapter, we review recent advances in flower color modification by genetic engineering, especially focusing on the methodology. We have included our own recent results on successful production of flower-color-modified transgenic plants in a model plant, tobacco and an ornamental plant, gentian. Based on these results, genetic engineering of flower color for improvement of floricultural plants is discussed.

  4. An Effective Review to Identify the Most Important Advances in Petroleum Production Engineering

    Directory of Open Access Journals (Sweden)

    Reza Cheraghi Kootiani

    2016-08-01

    Full Text Available The upstream of the petroleum industry involves itself in the business of oil and gas exploration and production (E & P activities. While the exploration activities find oil and gas reserves, the production activities deliver oil and gas to the downstream of the industry. The petroleum production is definitely the heart of the petroleum industry. Petroleum production engineering is that part of petroleum engineering that attempts to maximize oil and gas production in a cost-effective manner. To achieve this objective, production engineers need to have a thorough understanding of the petroleum production systems with which they work. The purpose of this paper is to identify the most important advances in petroleum production engineering in the past decade. Of course, a review paper in the allotted space simply cannot do justice to all new technologies, especially those that are advances to established techniques. We then expound upon two technologies that we feel have made already or have the capacity of quantum impact on the petroleum industry. These are high-permeability fracturing (often referred to in the vernacular as frac-pack and variants and complex well architecture which deals with wells with a main or mother bore from which branches are drilled.

  5. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols

    Directory of Open Access Journals (Sweden)

    H Madry

    2014-05-01

    Full Text Available Research in orthopaedic tissue engineering has intensified over the last decade and new protocols continue to emerge. The clinical translation of these new applications, however, remains associated with a number of obstacles. This report highlights the major issues that impede the clinical translation of advanced tissue engineering concepts, discusses strategies to overcome these barriers, and examines the need to increase incentives for translational strategies. The statements are based on presentations and discussions held at the AO Foundation-sponsored symposium "Where Science meets Clinics 2013" held at the Congress Center in Davos, Switzerland, in September, 2013. The event organisers convened a diverse group of over one hundred stakeholders involved in clinical translation of orthopaedic tissue engineering, including scientists, clinicians, healthcare industry professionals and regulatory agency representatives. A major point that emerged from the discussions was that there continues to be a critical need for early trans-disciplinary communication and collaboration in the development and execution of research approaches. Equally importantly was the need to address the shortage of sustained funding programs for multidisciplinary teams conducting translational research. Such detailed discussions between experts contribute towards the development of a roadmap to more successfully advance the clinical translation of novel tissue engineering concepts and ultimately improve patient care in orthopaedic and trauma surgery.

  6. Performance Optimization of Storable Bipropellant Engines to Fully Exploit Advanced Material Technologies

    Science.gov (United States)

    Miller, Scott; Henderson, Scott; Portz, Ron; Lu, Frank; Wilson, Kim; Krismer, David; Alexander, Leslie; Chapman, Jack; England, Chris

    2007-01-01

    This paper summarizes the work performed to dale on the NASA Cycle 3A Advanced Chemical Propulsion Technology Program. The primary goals of the program are to design, fabricate, and test high performance bipropellant engines using iridium/rhenium chamber technology to obtain 335 seconds specific impulse with nitrogen tetroxide/hydrazine propellants and 330 seconds specific impulse with nitrogen tetroxide/monomethylhydrazine propellants. Aerojet has successfully completed the Base Period of this program, wherein (1) mission and system studies have been performed to verify system performance benefits and to determine engine physical and operating parameters, (2) preliminary chamber and nozzle designs have been completed and a chamber supplier has been downselected, (3) high temperature, high pressure off-nominal hot fire testing of an existing state-of-the-art high performance bipropellant engine has been completed, and (4) thermal and performance data from the engine test have been correlated with new thermal models to enable design of the new engine injector and injector/chamber interface. In the next phase of the program, Aerojet will complete design, fabrication, and test of the nitrogen tetroxide/hydrazine engine to demonstrate 335 seconds specific impulse, and also investigate improved technologies for iridium/rhenium chamber fabrication. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. At the conclusion of the program, the objective is to have an engine ready for final design and qualification for a specific science mission or commercial application. The program also constitutes a stepping stone to future, development, such as higher pressure pump-fed in-space storable engines.

  7. Human Factors Engineering (HFE) insights for advanced reactors based upon operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.; Nasta, K.

    1997-01-01

    The NRC Human Factors Engineering Program Review Model (HFE PRM, NUREG-0711) was developed to support a design process review for advanced reactor design certification under 10CFR52. The HFE PRM defines ten fundamental elements of a human factors engineering program. An Operating Experience Review (OER) is one of these elements. The main purpose of an OER is to identify potential safety issues from operating plant experience and ensure that they are addressed in a new design. Broad-based experience reviews have typically been performed in the past by reactor designers. For the HFE PRM the intent is to have a more focussed OER that concentrates on HFE issues or experience that would be relevant to the human-system interface (HSI) design process for new advanced reactors. This document provides a detailed list of HFE-relevant operating experience pertinent to the HSI design process for advanced nuclear power plants. This document is intended to be used by NRC reviewers as part of the HFE PRM review process in determining the completeness of an OER performed by an applicant for advanced reactor design certification. 49 refs.

  8. An Interactive Reverse Engineering Environment for Large-Scale C++ Code

    NARCIS (Netherlands)

    Telea, Alexandru; Voinea, Lucian

    2008-01-01

    Few toolsets for reverse-engineering and understanding of C++ code provide parsing and fact extraction, querying, analysis and code metrics, navigation, and visualization of source-code-level facts in a way which is as easy-to-use as integrated development environments (IDEs) are for forward enginee

  9. An Interactive Reverse Engineering Environment for Large-Scale C plus plus Code

    NARCIS (Netherlands)

    Telea, Alexandru; Voinea, Lucian; Spencer, SN

    2008-01-01

    Few toolsets for reverse-engineering and understanding of C++ code provide parsing and fact extraction, querying, analysis and code metrics, navigation, and visualization of source-code-level facts in a way which is as easy-to-use as integrated development environments (IDEs) are for forward enginee

  10. 'Create the future': an environment for excellence in teaching future-oriented Industrial Design Engineering

    NARCIS (Netherlands)

    Eger, A.O.; Lutters, D.; Houten, van F.J.A.M.

    2004-01-01

    In 2001, the University of Twente started a new course on Industrial Design Engineering. This paper describes the insights that have been employed in developing the curriculum, and in developing the environment in which the educational activities are facilitated. The University of Twente has a broad

  11. Patterns of Information Use, Avoidance and Evaluation in a Corporate Engineering Environment.

    Science.gov (United States)

    Cool, Collen; Xie, Hong

    2000-01-01

    Examines the communication and information use environment of a corporate engineering community. Highlights include typical work practices; the accessibility of communication and information resources; frequency of use; satisfaction with use in seeking information; and the influence of trust and credibility in using the World Wide Web and human…

  12. An Investigation of an Open-Source Software Development Environment in a Software Engineering Graduate Course

    Science.gov (United States)

    Ge, Xun; Huang, Kun; Dong, Yifei

    2010-01-01

    A semester-long ethnography study was carried out to investigate project-based learning in a graduate software engineering course through the implementation of an Open-Source Software Development (OSSD) learning environment, which featured authentic projects, learning community, cognitive apprenticeship, and technology affordances. The study…

  13. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    Science.gov (United States)

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  14. Concept and Experiences of Prototyping in a Software-Engineering Environment with NATURAL

    OpenAIRE

    Mönckemeyer, Manfred; Spitta, Thorsten; Budde, Reinhard

    1984-01-01

    This paper describes how prototyping is made possible by using powerful tools ina software engineering environment based on a phase model. Prototyping is considered to be a useful technique within a detailed concept of software production rather than such a concept itself.

  15. Evaluation of a ubiquitous learning system in a design engineering environment

    NARCIS (Netherlands)

    Vroom, R.W.; Horvath, I.; Rusak, Z.; De Smit, A.; Opiyo, E.Z.

    2012-01-01

    Ubiquitous computing is computing power that is integrated in devices and environments in such a way that they offer optimal support to human daily life activities. For industrial design engineering students, applying ubiquitous technologies offer a great opportunity and challenge for innovating eve

  16. Enhancement of the Work in Scia Engineer's Environment by Employment of XML Programming Language

    Directory of Open Access Journals (Sweden)

    Kortiš Ján

    2015-12-01

    Full Text Available The productivity of the work of engineers in the design of building structures by applying the rules of technical standards [1] has been increasing by using different software products for recent years. The software products offer engineers new possibilities to design different structures. However, there are problems especially for design of structures with similar static schemes as it is needed to follow the same work-steps. This can be more effective if the steps are done automatically by using a programming language for leading the processes that are done by software. The design process of timber structure which is done in the environment of Scia Engineer software is presented in the article. XML Programming Language is used for automatization of the design and the XML code is modified in the Excel environment by using VBA Programming language [2], [3].

  17. Enhancement of the Work in Scia Engineer's Environment by Employment of XML Programming Language

    Science.gov (United States)

    Kortiš, Ján

    2015-12-01

    The productivity of the work of engineers in the design of building structures by applying the rules of technical standards [1] has been increasing by using different software products for recent years. The software products offer engineers new possibilities to design different structures. However, there are problems especially for design of structures with similar static schemes as it is needed to follow the same work-steps. This can be more effective if the steps are done automatically by using a programming language for leading the processes that are done by software. The design process of timber structure which is done in the environment of Scia Engineer software is presented in the article. XML Programming Language is used for automatization of the design and the XML code is modified in the Excel environment by using VBA Programming language [2], [3].

  18. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  19. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    Science.gov (United States)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  20. Plug-in to Eclipse environment for VHDL source code editor with advanced formatting of text

    Science.gov (United States)

    Niton, B.; Pozniak, K. T.; Romaniuk, R. S.

    2011-10-01

    The paper describes an idea and realization of a smart plug-in to the Eclipse software environment. The plug-in is predicted for editing of the VHDL source code. It extends considerably the capabilities of the VEditor program, which bases on the open license. There are presented the results of the formatting procedures performed on chosen examples of the VHDL source codes. The work is a part of a bigger project of building smart programming environment for design of advanced photonic and electronic systems. The examples of such systems are quoted in references.

  1. A Requirements Engineering Environment for Embedded Real- Time Software-SREE

    Institute of Scientific and Technical Information of China (English)

    LI Yonghua; SHU Fengdi; WU Guoqing; LIANG Zhengping

    2006-01-01

    The paper presents the embedded real-time software-oriented requirements engineering environment-SREE.It involves the whole process of software requirements engineering, including the definition, analysis and checking of requirements specifications. We first explain the principles of the executable specification language RTRSM. Subsequently,we introduce the main functions of SREE, illustrate the methods and techniques of checking requirements specifica tions, especially how to perform simulation execution, combining prototyping method with RTRSM and animated representations. At last, we compare the SREE with other requirements specifications methods and make a summary for SREE's advantages.

  2. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  3. Linkages from DOE’s Vehicle Technologies R&D in Advanced Combustion to More Efficient, Cleaner-Burning Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ruegg, Rosalie [TIA Consulting Inc., Emerald Isle, NC (United States); Thomas, Patrick [1790 Analytics LLC., Haddonfield, NC (United States)

    2011-06-01

    This report uses bibliometric analysis, supported by interview and review of documents and databases, to trace linkages from knowledge outputs resulting from DOE's advances in vehicle engine combustion to downstream innovations in commercial diesel engines and other areas. This analysis covers the period from 1974 through 2008 (and in some cases to early 2009).

  4. Contextualization of the superior courses of environment in Brazil: environmental engineering, sanitary engineering, ecology, technicians and sequences

    Directory of Open Access Journals (Sweden)

    Gerson Araújo de Medeiros,

    2005-06-01

    Full Text Available The creation of superior courses related to the environmental area has increased surprisingly in Brazil in the last decade and in the beginning of the 21st century, situation possibly stimulated by the policy of increase of the superior education, courses, and offered vacancies propagated by the Education Ministry in the last years as well as by the increasing environmental preoccupation and the consequent addition in the search for qualified professionals in this area. In this context, new undergraduation courses in Environmental Engineering and Environmental Management have emerged to form professionals with similar habilitation to other already established professions such as the sanitary engineer and the ecologist as well as the other traditional professionals (engineers, geologists, biologists, geographers, chemist. Because of that, there is, currently, a very offensive discussion in the organs of the class, at the education institutes, and in the general society about the area of actuation of the professionals that works in the environmental area. In the present article it is shown a data survey about superior courses (graduation, technology or sequences of environment in Brazil as well as the norms and legislations that regulate the performance of these professionals. The aim is to analyze the basic questions related to each course, and to work as subsidy to further analyses and discussions.

  5. Design and implementation of a flipped classroom learning environment in the biomedical engineering context.

    Science.gov (United States)

    Corrias, Alberto; Cho Hong, James Goh

    2015-01-01

    The design and implementation of a learning environment that leverages on the use of various technologies is presented. The context is an undergraduate core engineering course within the biomedical engineering curriculum. The topic of the course is data analysis in biomedical engineering problems. One of the key ideas of this study is to confine the most mathematical and statistical aspects of data analysis in prerecorded video lectures. Students are asked to watch the video lectures before coming to class. Since the classroom session does not need to cover the mathematical theory, the time is spent on a selected real world scenario in the field of biomedical engineering that exposes students to an actual application of the theory. The weekly cycle is concluded with a hands-on tutorial session in the computer rooms. A potential problem would arise in such learning environment if the students do not follow the recommendation of watching the video lecture before coming to class. In an attempt to limit these occurrences, two key instruments were put in place: a set of online self-assessment questions that students are asked to take before the classroom session and a simple rewards system during the classroom session. Thanks to modern learning analytics tools, we were able to show that, on average, 57.9% of students followed the recommendation of watching the video lecture before class. The efficacy of the learning environment was assessed through various means. A survey was conducted among the students and the gathered data support the view that the learning environment was well received by the students. Attempts were made to quantify the impacts on learning of the proposed measures by taking into account the results of selected questions of the final examination of the course. Although the presence of confounding factors demands caution in the interpretation, these data seem to indicate a possible positive effect of the use of video lectures in this technologically

  6. Engineering food crops to grow in harsh environments [v1; ref status: indexed, http://f1000r.es/5f1

    Directory of Open Access Journals (Sweden)

    Damar López-Arredondo

    2015-09-01

    Full Text Available Achieving sustainable agriculture and producing enough food for the increasing global population will require effective strategies to cope with harsh environments such as water and nutrient stress, high temperatures and compacted soils with high impedance that drastically reduce crop yield. Recent advances in the understanding of the molecular, cellular and epigenetic mechanisms that orchestrate plant responses to abiotic stress will serve as the platform to engineer improved crop plants with better designed root system architecture and optimized metabolism to enhance water and nutrients uptake and use efficiency and/or soil penetration. In this review we discuss such advances and how the generated knowledge could be used to integrate effective strategies to engineer crops by gene transfer or genome editing technologies.

  7. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  8. Advanced coupled-micro-resonator architectures for dispersion and spectral engineering applications

    Science.gov (United States)

    Van, Vien

    2009-02-01

    We report recent progress in the design and fabrication of coupled optical micro-resonators and their applications in realizing compact OEIC devices for optical spectral engineering. By leveraging synthesis techniques for analog and digital electrical circuits, advanced coupled-microring device architectures can be realized with the complexity and functionality approaching that of state-of-the-art microwave filters. In addition, the traveling wave nature of microring resonators can be exploited to realize novel devices not possible with standing wave resonators. Applications of coupledmicro- resonator devices in realizing complex optical transfer functions for amplitude, phase and group delay engineering will be presented. Progress in the practical implementation of these devices in the Silicon-on-Insulator OEIC platform will be highlighted along with the challenges and potential for constructing very high order optical filters using coupledmicroring architectures.

  9. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals.

    Science.gov (United States)

    Mukhopadhyay, Aindrila

    2015-08-01

    During microbial production of solvent-like compounds, such as advanced biofuels and bulk chemicals, accumulation of the final product can negatively impact the cultivation of the host microbe and limit the production levels. Consequently, improving solvent tolerance is becoming an essential aspect of engineering microbial production strains. Mechanisms ranging from chaperones to transcriptional factors have been used to obtain solvent-tolerant strains. However, alleviating growth inhibition does not invariably result in increased production. Transporters specifically have emerged as a powerful category of proteins that bestow tolerance and often improve production but are difficult targets for cellular expression. Here we review strain engineering, primarily as it pertains to bacterial solvent tolerance, and the benefits and challenges associated with the expression of membrane-localized transporters in improving solvent tolerance and production.

  10. Lexical bundles in an advanced INTOCSU writing class and engineering texts: A functional analysis

    Science.gov (United States)

    Alquraishi, Mohammed Abdulrahman

    The purpose of this study is to investigate the functions of lexical bundles in two corpora: a corpus of engineering academic texts and a corpus of IEP advanced writing class texts. This study is concerned with the nature of formulaic language in Pathway IEPs and engineering texts, and whether those types of texts show similar or distinctive formulaic functions. Moreover, the study looked into lexical bundles found in an engineering 1.26 million-word corpus and an ESL 65000-word corpus using a concordancing program. The study then analyzed the functions of those lexical bundles and compared them statistically using chi-square tests. Additionally, the results of this investigation showed 236 unique frequent lexical bundles in the engineering corpus and 37 bundles in the pathway corpus. Also, the study identified several differences between the density and functions of lexical bundles in the two corpora. These differences were evident in the distribution of functions of lexical bundles and the minimal overlap of lexical bundles found in the two corpora. The results of this study call for more attention to formulaic language at ESP and EAP programs.

  11. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    Science.gov (United States)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  12. Towards Precision Engineering of Canonical Polyketide Synthase Domains: Recent Advances and Future Prospects

    Directory of Open Access Journals (Sweden)

    Carmen L. Bayly

    2017-02-01

    Full Text Available Modular polyketide synthases (mPKSs build functionalized polymeric chains, some of which have become blockbuster therapeutics. Organized into repeating clusters (modules of independently-folding domains, these assembly-line-like megasynthases can be engineered by introducing non-native components. However, poor introduction points and incompatible domain combinations can cause both unintended products and dramatically reduced activity. This limits the engineering and combinatorial potential of mPKSs, precluding access to further potential therapeutics. Different regions on a given mPKS domain determine how it interacts both with its substrate and with other domains. Within the assembly line, these interactions are crucial to the proper ordering of reactions and efficient polyketide construction. Achieving control over these domain functions, through precision engineering at key regions, would greatly expand our catalogue of accessible polyketide products. Canonical mPKS domains, given that they are among the most well-characterized, are excellent candidates for such fine-tuning. The current minireview summarizes recent advances in the mechanistic understanding and subsequent precision engineering of canonical mPKS domains, focusing largely on developments in the past year.

  13. Challenging and Future of Homogeneous Charge Compression Ignition Engines; an Advanced and Novel Concepts Review

    Science.gov (United States)

    Elkelawy, Medhat; Yu-Sheng, Zhang; Hagar, Alm El-Din; Yu, Jing-Zhou

    The potential of HCCI combustion to reduce the internal combustion engines exhaust emissions, particularly NOX and soot emissions, and to delimit the application range of this technique as well as a detailed analysis of previous and current results of combustion chemistry, emission behaviors, the challenging facing this technique, and all controlling parameters including transient states are introduced. From HCCI combustion chemistry and emissions analysis it was found that, the heavy fuels displays two-stage heat release or two stage combustion process involving low temperature oxidation (LTO) stage followed by high temperature oxidation (HTO) stage separated by a time delay between them is attributed to negative temperature coefficient (NTC), the advantage of NOX emissions reduction from HCCI engine diminishing at high load condition, HC production is reduced with increasing the engine load, and the soot ejection is negligible during all operating conditions. Valve timing, compression ratio, inlet air temperature, and EGR show an advanced control on the HCCI combustion behaviors over a wide range of speed and load. The use of EGR in HCCI operation is limited at EGR-rates about 70% at this point the reaction rates and ignition timing are so much reduced and retarded, respectively, and leads to misfiring and production of HC-emissions. Homogenization of fuel, air, and recycled burnt gases prior to ignition in addition to the control of ignition and combustion timing, and heat release rates are obstructs that must be overcome in order to realize the advantages of HCCI engine in the future.

  14. Integration of magnetic bearings in the design of advanced gas turbine engines

    Science.gov (United States)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  15. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  16. The outline report of advanced basic engineering research in the fiscal year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The JNC has initiated the cooperation with universities and research institutes for advanced basic engineering on 1995. The number of research cooperation theme is increasing and satisfactorily improving in the forth year, 1998. The objective of this program is to promote the advanced basic engineering research with universities and research institutes in relation with the JNC's projects. The facilities and equipment of the JNC are mainly provided to the cooperation. The JNC has settled the research cooperation themes. The universities and research institute have applied to the themes with their issues, working plans and personnel. The JNC has selected the issues and personnel, and put into practice the cooperation with accepting guest staffs and/or research fellows from the universities. This report summarizes the results of the advanced basic engineering research cooperation executed in the fiscal year, 1998. The total number of issues is 34 for the 29 themes; those are categorized in to two groups. The one is related to the fast breeder reactor technologies and the other is on the environmental technologies. The 12 issues are finished in the fiscal year, 1998, in which the 9 issues are for the fast breeder reactor technologies and the 3 issues are for the environmental technologies. The themes/the issues, the host group, host key persons, university side key persons, a form of cooperation are summarized in the tables. The summary reports of research activities by the all cooperators are presented under the particular format. Those describe the total schedule, a form of cooperation, the research objective, the outline of research contents, main facilities for using, research status, research results, future schedules and bibliographies relevant to the research cooperation. The 25 tables and 158 figures are included. (Y. Tanaka)

  17. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; David Gertman

    2014-04-01

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms of human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.

  18. DEVELOPMENT OF HUMAN FACTORS ENGINEERING GUIDANCE FOR SAFETY EVALUATIONS OF ADVANCED REACTORS.

    Energy Technology Data Exchange (ETDEWEB)

    O' HARA, J.; PERSENSKY, J.; SZABO, A.

    2006-10-01

    Advanced reactors are expected to be based on a concept of operations that is different from what is currently used in today's reactors. Therefore, regulatory staff may need new tools, developed from the best available technical bases, to support licensing evaluations. The areas in which new review guidance may be needed and the efforts underway to address the needs will be discussed. Our preliminary results focus on some of the technical issues to be addressed in three areas for which new guidance may be developed: automation and control, operations under degraded conditions, and new human factors engineering methods and tools.

  19. Current status and biotechnological advances in genetic engineering of ornamental plants.

    Science.gov (United States)

    Azadi, Pejman; Bagheri, Hedayat; Nalousi, Ayoub Molaahmad; Nazari, Farzad; Chandler, Stephen F

    2016-11-01

    Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties.

  20. Polar Engineering and Research to Address Operational Challenges in Austere Environments

    Science.gov (United States)

    Mercer, J. L.; Richter-Menge, J.; Weale, J. C.; Lever, J. H.; Knuth, M. A.; Shoop, S. A.; Haehnel, R.; Arcone, S. A.; Bjella, K.; Finnegan, D. C.; Courville, Z.; Tracy, B. T.

    2009-12-01

    Logistics constraints and operational challenges in the austere environs of the polar regions present unique technological and engineering problems. Working closely with universities, government agencies and industry, the U.S. Army Corps of Engineers Cold Regions Research and Engineering Lab (CRREL) routinely conducts scientific research and engineering in the Arctic, sub-Arctic and Antarctic covering a wide range of topics and applications. Current areas of focus include: improved mobility techniques for overland traverses; robotic vehicles for traversing, sampling and data collection; snow road and transportation characterization; integrated operational systems including airfield consolidation proof-of-concept studies; infrastructure technology such as firn air cooling, building design, snow foundations and sewage handling; remote/renewable autonomous power solutions for data collection; subsurface radar for crevasse detection and cryosphere characterization; ground-based lidar topographic scanning and near-real-time climate/environmental monitoring linked to AIS infrastructure. While these research and engineering efforts provide solutions and improved technology for specific problems, the impacts are many and wide-reaching and the results are often applicable to other challenging environments. Here, an overview of current research foci and projects is presented along with in-the-field applications, effects and future implications. The results and solutions of these efforts typically lead to technological improvements in operations and logistics which are cost-beneficial, thus freeing up funding dollars for fundamental scientific research. The links between basic research and applied solutions delivering far-reaching impacts (both large- and small-scale) on society, the environment, industry and scientific research are also demonstrated.

  1. Internet-based distributed collaborative environment for engineering education and design

    Science.gov (United States)

    Sun, Qiuli

    2001-07-01

    This research investigates the use of the Internet for engineering education, design, and analysis through the presentation of a Virtual City environment. The main focus of this research was to provide an infrastructure for engineering education, test the concept of distributed collaborative design and analysis, develop and implement the Virtual City environment, and assess the environment's effectiveness in the real world. A three-tier architecture was adopted in the development of the prototype, which contains an online database server, a Web server as well as multi-user servers, and client browsers. The environment is composed of five components, a 3D virtual world, multiple Internet-based multimedia modules, an online database, a collaborative geometric modeling module, and a collaborative analysis module. The environment was designed using multiple Intenet-based technologies, such as Shockwave, Java, Java 3D, VRML, Perl, ASP, SQL, and a database. These various technologies together formed the basis of the environment and were programmed to communicate smoothly with each other. Three assessments were conducted over a period of three semesters. The Virtual City is open to the public at www.vcity.ou.edu. The online database was designed to manage the changeable data related to the environment. The virtual world was used to implement 3D visualization and tie the multimedia modules together. Students are allowed to build segments of the 3D virtual world upon completion of appropriate undergraduate courses in civil engineering. The end result is a complete virtual world that contains designs from all of their coursework and is viewable on the Internet. The environment is a content-rich educational system, which can be used to teach multiple engineering topics with the help of 3D visualization, animations, and simulations. The concept of collaborative design and analysis using the Internet was investigated and implemented. Geographically dispersed users can build the

  2. Integrated Design and Engineering Analysis (IDEA) Environment - Propulsion Related Module Development and Vehicle Integration

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2013-01-01

    This report documents the work performed during the period from May 2011 - October 2012 on the Integrated Design and Engineering Analysis (IDEA) environment. IDEA is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML). This report will focus on describing the work done in the areas of: (1) Integrating propulsion data (turbines, rockets, and scramjets) in the system, and using the data to perform trajectory analysis; (2) Developing a parametric packaging strategy for a hypersonic air breathing vehicles allowing for tank resizing when multiple fuels and/or oxidizer are part of the configuration; and (3) Vehicle scaling and closure strategies.

  3. Integrated Design Engineering Analysis (IDEA) Environment Automated Generation of Structured CFD Grids using Topology Methods

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2012-01-01

    This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.

  4. Role of a biodiesel blend in sustaining the energy and environment as a CI engine fuel

    Directory of Open Access Journals (Sweden)

    S.Saravanan, G.Nagarajan, G.Lakshmi Narayana rao, S.Sampath

    2011-01-01

    Full Text Available In the present work, biodiesel derived from high free fatty acid (FFA crude rice bran oil, (CRBO a non-edible vegetable oil was tested as a fuel in a compression ignition engine in blended form to test its suitability and also its ability to create a sustainable environment. A 4.4 kW direct injection stationary diesel engine was used for experimentation. Biodiesel (crude rice bran oil methyl ester blend was prepared by mixing 20 % crude rice bran oil methyl ester (CRBME with 80 % diesel on volume basis. An enhanced thermal oxidation was observed for the CRBME blend which oxidizes most of the UBHC into CO and CO2. As a result of this, UBHC emission and smoke density were reduced by 28 % and 35 % respectively with a marginal increase in CO and NOx emission than diesel. It was also observed that by blending CRBME with diesel, the brake thermal efficiency of the engine decreased only marginally which ensures the suitability of CRBME blend as a CI engine fuel. Experimental results show almost similar performance in CRBME blend when compared to diesel which strengthens its ability to have a sustainable environment. This research work can be extended to improve the thermal oxidation process which may result in further reduction in CO, UBHC and particulate emission than that of the emissions reported in this paper.

  5. Using Web 2.0 Techniques in NASA's Ares Engineering Operations Network (AEON) Environment - First Impressions

    Science.gov (United States)

    Scott, David W.

    2010-01-01

    The Mission Operations Laboratory (MOL) at Marshall Space Flight Center (MSFC) is responsible for Engineering Support capability for NASA s Ares rocket development and operations. In pursuit of this, MOL is building the Ares Engineering and Operations Network (AEON), a web-based portal to support and simplify two critical activities: Access and analyze Ares manufacturing, test, and flight performance data, with access to Shuttle data for comparison Establish and maintain collaborative communities within the Ares teams/subteams and with other projects, e.g., Space Shuttle, International Space Station (ISS). AEON seeks to provide a seamless interface to a) locally developed engineering applications and b) a Commercial-Off-The-Shelf (COTS) collaborative environment that includes Web 2.0 capabilities, e.g., blogging, wikis, and social networking. This paper discusses how Web 2.0 might be applied to the typically conservative engineering support arena, based on feedback from Integration, Verification, and Validation (IV&V) testing and on searching for their use in similar environments.

  6. Engineering Competencies in International Development Co-operation - the Case of Capacity Development in Environment (CDE)

    DEFF Research Database (Denmark)

    Wangel, Arne

    2001-01-01

    The focus of the paper is the need for engineers to develop new competencies, when they are involved in international development cooperation. Drawing on the case of the Post-RIO strategy of capacity development in environment in developing countries, the paper reviews a recent response to this n......The focus of the paper is the need for engineers to develop new competencies, when they are involved in international development cooperation. Drawing on the case of the Post-RIO strategy of capacity development in environment in developing countries, the paper reviews a recent response...... of such courses, which give emphasis to local views on institutional development and policy change. engineers from industrialised countries have a long tradition of working in the third world: building infrastructure to facilitate exports of raw materials during colonial times; implementing development aid...... on the transfer of managerial models across cultures, on how to develop inter-cultural competence in management, and on the significance of differences in engineering and industrial culture. Second, the concepts of dynamic assimilation and local learning processes and their implications for the practicing...

  7. Peer review, basic research, and engineering: Defining a role for QA professionals in basic research environments

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1989-02-01

    Within the context of doing basic research, this paper seeks to answer four major questions: (1) What is the authority structure of science. (2) What is peer review. (3) Where is the interface between basic physics research and standard engineering. and (4) Given the conclusions to the first three questions, what is the role of the QA professional in a basic research environment like Fermilab. 23 refs.

  8. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    Science.gov (United States)

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends.

  9. Advanced Scientific Computing Environment Team new scientific database management task. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Church, J.P.; Roberts, J.C.; Sims, R.N.; Smetana, A.O.; Westmoreland, B.W.

    1991-06-01

    The mission of the ASCENT Team is to continually keep pace with, evaluate, and select emerging computing technologies to define and implement prototypic scientific environments that maximize the ability of scientists and engineers to manage scientific data. These environments are to be implemented in a manner consistent with the site computing architecture and standards and NRTSC/SCS strategic plans for scientific computing. The major trends in computing hardware and software technology clearly indicate that the future ``computer`` will be a network environment that comprises supercomputers, graphics boxes, mainframes, clusters, workstations, terminals, and microcomputers. This ``network computer`` will have an architecturally transparent operating system allowing the applications code to run on any box supplying the required computing resources. The environment will include a distributed database and database managing system(s) that permits use of relational, hierarchical, object oriented, GIS, et al, databases. To reach this goal requires a stepwise progression from the present assemblage of monolithic applications codes running on disparate hardware platforms and operating systems. The first steps include converting from the existing JOSHUA system to a new J80 system that complies with modern language standards, development of a new J90 prototype to provide JOSHUA capabilities on Unix platforms, development of portable graphics tools to greatly facilitate preparation of input and interpretation of output; and extension of ``Jvv`` concepts and capabilities to distributed and/or parallel computing environments.

  10. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    Science.gov (United States)

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  11. Engineering advanced capsosomes: maximizing the number of subcompartments, cargo retention, and temperature-triggered reaction.

    Science.gov (United States)

    Chandrawati, Rona; Hosta-Rigau, Leticia; Vanderstraaten, Dirk; Lokuliyana, Shalitha A; Städler, Brigitte; Albericio, Fernando; Caruso, Frank

    2010-03-23

    Advanced mimics of cells require a large yet controllable number of subcompartments encapsulated within a scaffold, equipped with a trigger to initiate, terminate, and potentially restart an enzymatic reaction. Recently introduced capsosomes, polymer capsules containing thousands of liposomes, are a promising platform for the creation of artificial cells. Capsosomes are formed by sequentially layering liposomes and polymers onto particle templates, followed by removal of the template cores. Herein, we engineer advanced capsosomes and demonstrate the ability to control the number of subcompartments and hence the degree of cargo loading. To achieve this, we employ a range of polymer separation layers and liposomes to form functional capsosomes comprising multiple layers of enzyme-loaded liposomes. Differences in conversion rates of an enzymatic assay are used to verify that multilayers of intact enzyme-loaded liposomes are assembled within a polymer hydrogel capsule. The size-dependent retention of the cargo encapsulated within the liposomal subcompartments during capsosome assembly and its dependence on environmental pH changes are also examined. We further show that temperature can be used to trigger an enzymatic reaction at the phase transition temperature of the liposomal subcompartments, and that the encapsulated enzymes can be utilized repeatedly in several subsequent conversions. These engineered capsosomes with tailored properties present new opportunities en route to the development of functional artificial cells.

  12. Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This is being accomplished by utilization the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. 31 figs., 22 tabs.

  13. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  14. Optimal design of Stirling heat engine using an advanced optimization algorithm

    Indian Academy of Sciences (India)

    R V RAO; K C MORE; J TALER; P OCION

    2016-11-01

    The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently developed advanced optimization algorithm namely ‘‘teaching–learning-based optimization (TLBO) algorithm’’ is used for maximization of output power, minimization ofpressure losses and maximization of the thermal efficiency of the entire solar Stirling system. The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of preference by similarity to ideal solution (TOPSIS) and fuzzy Bellman–Zadeh method that have used the Pareto frontier gained through non-dominated sorting genetic algorithm-II (NSGA-II). The comparisons were also made with those obtained by the experimental results. It is found that the TLBO algorithm has produced comparatively better results than those given by the decision-making methods and the experimental results presented by the previous researchers.

  15. ADVANCED NICKEL-BASED AND NICKEL-IRON-BASED SUPERALLOYS FOR CIVIL ENGINEERING APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    U. Brill

    2005-01-01

    The use of high-temperature materials is especially important in power station construction,heating systems engineering, furnace industry, chemical and petrochemical industry, waste incineration plants, coal gasification plants and for flying gas turbines in civil and military aircrafts and helicopters. Particularly in recent years, the development of new processes and the drive to improve the economics of existing processes have increased the requirements significantly so that it is necessary to change from well-proven materials to new alloys. Hitherto, heat resistant ferritic steels sufficed in conventional power station constructions for temperatures up to 550℃ newly developed ferritic/martensitic steels provide sufficient strength up to about 600-620℃. In new processes, e.g. fiuidized-bed combustion of coal, process temperatures up to 900℃ occur. However, this is not the upper limit, since in combustion engines, e.g. gas turbines. Material temperatures up to 1100℃ are reached locally. Similar development trends can also be identified in the petrochemical industry and in the heat treatment and furnace engineering. The advance to ever higher material temperatures now not only has the consequence of having to use materials with enhanced high-strength properties, considerable attention now also has to be given to their chemical stability in corrosive media. Therefore not only examples of the use of high-temperature alloys for practical applications will be given but also be contributed to some general rules for material selection with regard to their high-temperature strength and corrosion resistance.

  16. Advances in Engineered Liver Models for Investigating Drug-Induced Liver Injury

    Science.gov (United States)

    Lin, Christine

    2016-01-01

    Drug-induced liver injury (DILI) is a major cause of drug attrition. Testing drugs on human liver models is essential to mitigate the risk of clinical DILI since animal studies do not always suffice due to species-specific differences in liver pathways. While primary human hepatocytes (PHHs) can be cultured on extracellular matrix proteins, a rapid decline in functions leads to low sensitivity (<50%) in DILI prediction. Semiconductor-driven engineering tools now allow precise control over the hepatocyte microenvironment to enhance and stabilize phenotypic functions. The latest platforms coculture PHHs with stromal cells to achieve hepatic stability and enable crosstalk between the various liver cell types towards capturing complex cellular mechanisms in DILI. The recent introduction of induced pluripotent stem cell-derived human hepatocyte-like cells can potentially allow a better understanding of interindividual differences in idiosyncratic DILI. Liver models are also being coupled to other tissue models via microfluidic perfusion to study the intertissue crosstalk upon drug exposure as in a live organism. Here, we review the major advances being made in the engineering of liver models and readouts as they pertain to DILI investigations. We anticipate that engineered human liver models will reduce drug attrition, animal usage, and cases of DILI in humans. PMID:27725933

  17. Ares First Stage "Systemology" - Combining Advanced Systems Engineering and Planning Tools to Assure Mission Success

    Science.gov (United States)

    Seiler, James; Brasfield, Fred; Cannon, Scott

    2008-01-01

    Ares is an integral part of NASA s Constellation architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Ares replaces the Space Shuttle in the post 2010 time frame. Ares I is an in-line, two-stage rocket topped by the Orion Crew Exploration Vehicle, its service module, and a launch abort system. The Ares I first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor. The Ares second or upper stage is propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This paper describes the advanced systems engineering and planning tools being utilized for the design, test, and qualification of the Ares I first stage element. Included are descriptions of the current first stage design, the milestone schedule requirements, and the marriage of systems engineering, detailed planning efforts, and roadmapping employed to achieve these goals.

  18. A geometry-based image search engine for advanced RADARSAT-1/2 GIS applications

    Science.gov (United States)

    Kotamraju, Vinay; Rabus, Bernhard; Busler, Jennifer

    2012-06-01

    Space-borne Synthetic Aperture Radar (SAR) sensors, such as RADARSAT-1 and -2, enable a multitude of defense and security applications owing to their unique capabilities of cloud penetration, day/night imaging and multi-polarization imaging. As a result, advanced SAR image time series exploitation techniques such as Interferometric SAR (InSAR) and Radargrammetry are now routinely used in applications such as underground tunnel monitoring, infrastructure monitoring and DEM generation. Imaging geometry, as determined by the satellite orbit and imaged terrain, plays a critical role in the success of such techniques. This paper describes the architecture and the current status of development of a geometry-based search engine that allows the search and visualization of archived and future RADARSAT-1 and -2 images appropriate for a variety of advanced SAR techniques and applications. Key features of the search engine's scalable architecture include (a) Interactive GIS-based visualization of the search results; (b) A client-server architecture for online access that produces up-to-date searches of the archive images and that can, in future, be extended to acquisition planning; (c) A techniquespecific search mode, wherein an expert user explicitly sets search parameters to find appropriate images for advanced SAR techniques such as InSAR and Radargrammetry; (d) A future application-specific search mode, wherein all search parameters implicitly default to preset values according to the application of choice such as tunnel monitoring, DEM generation and deformation mapping; (f) Accurate baseline calculations for InSAR searches, and, optimum beam configuration for Radargrammetric searches; (g) Simulated quick look images and technique-specific sensitivity maps in the future.

  19. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  20. 3D Printing of Scaffold for Cells Delivery: Advances in Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Deepti Singh

    2016-01-01

    Full Text Available Injury or damage to tissue and organs is a major health problem, resulting in about half of the world’s annual healthcare expenditure every year. Advances in the fields of stem cells (SCs and biomaterials processing have provided a tremendous leap for researchers to manipulate the dynamics between these two, and obtain a skin substitute that can completely heal the wounded areas. Although wound healing needs a coordinated interplay between cells, extracellular proteins and growth factors, the most important players in this process are the endogenous SCs, which activate the repair cascade by recruiting cells from different sites. Extra cellular matrix (ECM proteins are activated by these SCs, which in turn aid in cellular migrations and finally secretion of growth factors that can seal and heal the wounds. The interaction between ECM proteins and SCs helps the skin to sustain the rigors of everyday activity, and in an attempt to attain this level of functionality in artificial three-dimensional (3D constructs, tissue engineered biomaterials are fabricated using more advanced techniques such as bioprinting and laser assisted printing of the organs. This review provides a concise summary of the most recent advances that have been made in the area of polymer bio-fabrication using 3D bio printing used for encapsulating stem cells for skin regeneration. The focus of this review is to describe, in detail, the role of 3D architecture and arrangement of cells within this system that can heal wounds and aid in skin regeneration.

  1. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  2. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    Science.gov (United States)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  3. Scale-up of nature's tissue weaving algorithms to engineer advanced functional materials.

    Science.gov (United States)

    Ng, Joanna L; Knothe, Lillian E; Whan, Renee M; Knothe, Ulf; Tate, Melissa L Knothe

    2017-01-11

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently "smart" material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues' biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  4. An Advanced System for Monitoring Geomagnetic Environments by the Japan Meteorological Agency

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yasuhiro

    2011-06-01

    Full Text Available The Japan Meteorological Agency (JMA has developed an advanced system to monitor geomagnetic environments consisting of magnetometers and monitoring cameras. The new system calculates the magnetic moments and positions of sources of artificial disturbances and then visually identifies the sources. The intensity and location of a source of artificial disturbance are calculated assuming the source is a magnetic dipole. This new system was installed at two branch observatories operated by the JMA, which will enable the remote monitoring of sites for geomagnetic observations from the headquarters at Kakioka Magnetic Observatory.

  5. Advances in software engineering and their relations to pattern recognition and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, S.L.

    1982-01-01

    In recent years software engineering has emerged as a discipline of programming. It includes the conceptualization, design, implementation, testing and modification of software systems. Related issues are languages, standards, distribution and parallel processing, and total programming environments. The fact that more than 80 percent of system development costs were in software rather than hardware helps one appreciate the importance of any effort to understand and enhance the software production process. Many pattern recognition projects involve fairly large software efforts. It makes sense not only for researchers to make use of the latest software tools and methodologies but also to anticipate future changes. 76 references.

  6. Complex composite engineering architectures for nuclear and high-radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, Drew E [Los Alamos National Laboratory; Vaidya, Rajendra U [Los Alamos National Laboratory; Ammerman, Curtt N [Los Alamos National Laboratory

    2010-01-01

    Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of these elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.

  7. Enhancement of environment and resources engineering studies through an international cooperation network

    Science.gov (United States)

    Caporali, E.; Tuneski, A.

    2012-12-01

    Higher education plays a very important role in the modern societies development, enhancing social, cultural and economic development for a sustainable growth, environment respectful. In this framework, the European Commission promotes the TEMPUS-Trans European Mobility Programme for University Studies. Curricula harmonization and lifelong learning programme development in higher education are among the focused aspects of the TEMPUS programme. The DEREL-Development of Environment and Resources Engineering Learning, is a three years TEMPUS project coordinated by the University of Firenze, in cooperation with colleagues of the Ss Cyril and Methodius University, Skopje financed and activated since October 2010. The DEREL Project Consortium consists of 4 EU Universities (from Italy, Greece, Germany and Austria), 7 Partner Countries (PC) Universities (from FYR of Macedonia, Serbia and Albania), and 1 PC Ministry, 4 PC National Agencies, 1 PC non governmental organization and 1 PC enterprise. In cooperation with the same 4 EU Universities and the same Macedonian Institutions, in the period 2005-2008 also a TEMPUS JEP entitled DEREC-Development of Environmental and Resources Engineering Curriculum, was also carried out by the University of Firenze in cooperation with colleagues of the Ss Cyril and Methodius University. Within DEREC a new three-years first cycle curriculum in Environmental and Resources Engineering was opened at the University Ss Cyril and Methodius, Skopje, and the necessary conditions for offering a Joint Degree Title, on the basis of an agreement between the Ss. Cyril and Methodius University and the University of Firenze, were fulfilled. The running DEREL project, as a continuation of DEREC, is aimed to introduce a new, up-to-date, postgraduate second cycle curriculum in Environment and Resources Engineering at the Ss Cyril and Methodius University in Skopje, FYR of Macedonia, University of Novi Sad, Serbia and Polytechnic University of Tirana, Albania

  8. Towards Service Robots for Everyday Environments Recent Advances in Designing Service Robots for Complex Tasks in Everyday Environments

    CERN Document Server

    Zöllner, Marius; Bischoff, Rainer; Burgard, Wolfram; Haschke, Robert; Hägele, Martin; Lawitzky, Gisbert; Nebel, Bernhard; Plöger, Paul; Reiser, Ulrich

    2012-01-01

    People have dreamed of machines, which would free them from unpleasant, dull, dirty and dangerous tasks and work for them as servants, for centuries if not millennia. Service robots seem to finally let these dreams come true. But where are all these robots that eventually serve us all day long, day for day? A few service robots have entered the market: domestic and professional cleaning robots, lawnmowers, milking robots, or entertainment robots. Some of these robots look more like toys or gadgets rather than real robots. But where is the rest? This is a question, which is asked not only by customers, but also by service providers, care organizations, politicians, and funding agencies. The answer is not very satisfying. Today’s service robots have their problems operating in everyday environments. This is by far more challenging than operating an industrial robot behind a fence. There is a comprehensive list of technical and scientific problems, which still need to be solved. To advance the state of the art...

  9. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.; Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-12-31

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). Accomplishments during the quarter are described on the following tasks and subtasks: Development of near-term applications (engineering development and dewatering studies); Engineering development of selective agglomeration (bench-scale testing and process scale-up); PDU and advanced column flotation module (coal selection and procurement and advanced flotation topical report); Selective agglomeration module (module operation and clean coal production with Hiawatha, Taggart, and Indiana 7 coals); Disposition of the PDU; and Project final report. Plans for next quarter are discussed and agglomeration results of the three tested coals are presented.

  10. Self-Healing of Microcracks in Engineered Cementitious Composites (ECC Under a Natural Environment

    Directory of Open Access Journals (Sweden)

    Victor C. Li

    2013-07-01

    Full Text Available This paper builds on previous self-healing engineered cementitious composites (ECC research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Determining to what extent current ECC materials self-heal in the natural environment is the first step in the development of an ECC that can completely heal itself when exposed to everyday environmental conditions. This study monitored outdoor ECC specimens for one year using resonant frequency (RF and mechanical reloading to determine the rate and extent of self-healing in the natural environment. It was found that the level of RF, stiffness, and first cracking strength recovery increased as the duration of natural environment exposure increased. For specimens that underwent multiple damage cycles, it was found that the level of recovery was highly dependent on the average temperature and amount of precipitation between each damage event. However, RF, stiffness, and first cracking strength recovery data for specimens that underwent multiple loading cycles suggest that self-healing functionality can be maintained under multiple damage events.

  11. NATO Advanced Study Institute on Synthetic Membranes : Science, Engineering and Applications

    CERN Document Server

    Lonsdale, H; Pinho, M

    1986-01-01

    The chapters in this book are based upon lectures given at the NATO Advanced Study Institute on Synthetic Membranes (June 26-July 8, 1983, Alcabideche, Portugal), which provided an integrated presentation of syn­ thetic membrane science and technology in three broad areas. Currently available membrane formation mechanisms are reviewed, as well as the manner in which synthesis conditions can be controlled to achieve desired membrane structures. Membrane performance in a specific separa­ tionprocess involves complex phenomena, the understanding of which re­ quires a multidisciplinary approach encompassing polymer chemistry, phys­ ical chemistry, and chemical engineering. Progress toward a global understanding of membrane phenomena is described in chapters on the principles of membrane transport. The chapters on membrane processes and applications highlight both established and emerging membrane processes, and elucidate their myriad applications. It is our hope that this book will be an enduring, comprehensi...

  12. Advanced new lightweight materials: Hollow-sphere composites (HSCs) for mechanical engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Baumeister, E.; Klaeger, S. [Otto-von-Guerike-Universitaet, IFQ, Postfach 4120, D-39016 Magdeburg (Germany)

    2003-09-01

    ''Lightweight'' is a major trend in machine tool design to ensure higher speed and higher acceleration of elements, which results from state-of-the-art technology, such as the new linear drive and the control system.{sup [1]} Research is being carried out in institutes worldwide into lightweight construction by either design and/or choice of material. One type of advanced lightweight engineering material to reduce the mass of the moving parts of machine tools is hollow-sphere composites. Investigations of their thermal and mechanical properties show the superior quality of HSCs compared with alternative materials. Example applications of hollow-sphere composites include the table of a milling machine and robot arms. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  14. Application research of centrifugal investment cast TiAl component used for advanced aircraft engine

    Institute of Scientific and Technical Information of China (English)

    李俊涛; 李世琼; 张继; 马万青; 邹敦叙; 仲增墉

    2002-01-01

    A more complex structural component with small size and very thin walls and blades used for advanced aircraft engine was fabricated well by induction skull melting and centrifugal investment casting with a proper ceramic mold. The tensile elongation and ultimate strength of the hot isostatically pressed (HIPped) Ti-46.5Al-2.5V-1Cr (mole fraction, %) casting alloy sare up to 2.5% and 645 Mpa at room temperature, and 31% and 593 Mpa a t 800 ℃. The fracture roughness at room temperature is up to 28 Mpa*m1/2 . The endurance tensile strength at 800 ℃ for 150 h, is higher than 200 Mpa. The high cycle rotary bending fatigue strengths for 1×107 cycles at room temperature and 800 ℃ a re 412 Mpa and 270 Mpa, respectively.

  15. The Virtual Employment Test Bed: An Immersive Synthetic Environment Allows Engineers to Test and Evaluate Material Solutions

    Science.gov (United States)

    2014-04-03

    synthetic environment allows engineers to test and evaluate material solutions Robert DeMarco, MSBME; Gordon Cooke, MEME ; John Riedener, MSSE...ROBERT DEMARCO, MSBME, is a Project Lead Engineer and Certified LabVIEW Associate Developer. GORDON COOKE, MEME , is a Principal Investigator at the

  16. Collaborative Virtual Environments for Ergonomics: Embedding the Design Engineer Role in the Loop

    OpenAIRE

    Pontonnier, Charles; Duval, Thierry; Dumont, Georges

    2014-01-01

    International audience; The aim of this paper is to define the role and duties of a design engineer involved in a collaborative ergonomic design session supported by a 3D collaborative virtual environment. For example, such a session can be used to adapt the manual task an operator must achieve in the context of an industrial assembly line. We first present the interest of such collaborative sessions. Then we present a related work explaining the need of proper 3DCVE and metaphors to obtain e...

  17. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  18. Using Environment-Based Education To Advance Learning Skills and Character Development: A Report, Annotated Bibliography and Research Guide.

    Science.gov (United States)

    North American Association for Environmental Education, Rock Spring, GA.

    Environment-based education (EBE) focuses on the interdisciplinary integration of the subject by using constructivist, team teaching, self-learning, and student-centered instructional approaches. This report defines environment-based education and discusses advanced developments in learning skills and character education. Contents include: (1)…

  19. Recent Advances in Organic Photovoltaics: Device Structure and Optical Engineering Optimization on the Nanoscale.

    Science.gov (United States)

    Luo, Guoping; Ren, Xingang; Zhang, Su; Wu, Hongbin; Choy, Wallace C H; He, Zhicai; Cao, Yong

    2016-03-23

    Organic photovoltaic (OPV) devices, which can directly convert absorbed sunlight to electricity, are stacked thin films of tens to hundreds of nanometers. They have emerged as a promising candidate for affordable, clean, and renewable energy. In the past few years, a rapid increase has been seen in the power conversion efficiency of OPV devices toward 10% and above, through comprehensive optimizations via novel photoactive donor and acceptor materials, control of thin-film morphology on the nanoscale, device structure developments, and interfacial and optical engineering. The intrinsic problems of short exciton diffusion length and low carrier mobility in organic semiconductors creates a challenge for OPV designs for achieving optically thick and electrically thin device structures to achieve sufficient light absorption and efficient electron/hole extraction. Recent advances in the field of OPV devices are reviewed, with a focus on the progress in device architecture and optical engineering approaches that lead to improved electrical and optical characteristics in OPV devices. Successful strategies are highlighted for light wave distribution, modulation, and absorption promotion inside the active layer of OPV devices by incorporating periodic nanopatterns/nanostructures or incorporating metallic nanomaterials and nanostructures.

  20. Proceedings of the First International Conference on Advanced Data and Information Engineering

    CERN Document Server

    Deris, Mustafa; Abawajy, Jemal

    2014-01-01

    The proceeding is a collection of research papers presented  at the International Conference on Data Engineering 2013 (DaEng-2013), a conference dedicated to address the challenges in the areas of database, information retrieval, data mining and knowledge management, thereby presenting a consolidated view to the interested researchers in the aforesaid fields. The goal of this conference was to bring together researchers and practitioners from academia and industry to focus on advanced on data engineering concepts and establishing new collaborations in these areas. The topics of interest are as follows but are not limited to: • Database theory • Data management • Data mining and warehousing • Data privacy & security • Information retrieval, integration and visualization • Information system • Knowledge discovery in databases • Mobile, grid and cloud computing • Knowledge-based • Knowledge management • Web data, services and intelligence

  1. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  2. Recent advances in engineering the central carbon metabolism of industrially important bacteria

    Directory of Open Access Journals (Sweden)

    Papagianni Maria

    2012-04-01

    Full Text Available Abstract This paper gives an overview of the recent advances in engineering the central carbon metabolism of the industrially important bacteria Escherichia coli, Bacillus subtilis, Corynobacterium glutamicum, Streptomyces spp., Lactococcus lactis and other lactic acid bacteria. All of them are established producers of important classes of products, e.g. proteins, amino acids, organic acids, antibiotics, high-value metabolites for the food industry and also, promising producers of a large number of industrially or therapeutically important chemicals. Optimization of existing or introduction of new cellular processes in these microorganisms is often achieved through manipulation of targets that reside at major points of central metabolic pathways, such as glycolysis, gluconeogenesis, the pentose phosphate pathway and the tricarboxylic acid cycle with the glyoxylate shunt. Based on the huge progress made in recent years in biochemical, genetic and regulatory studies, new fascinating engineering approaches aim at ensuring an optimal carbon and energy flow within central metabolism in order to achieve optimized metabolite production.

  3. Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology.

    Science.gov (United States)

    Zheng, Jin; Tashiro, Yukihiro; Wang, Qunhui; Sonomoto, Kenji

    2015-01-01

    Butanol has recently attracted attention as an alternative biofuel because of its various advantages over other biofuels. Many researchers have focused on butanol fermentation with renewable and sustainable resources, especially lignocellulosic materials, which has provided significant progress in butanol fermentation. However, there are still some drawbacks in butanol fermentation in terms of low butanol concentration and productivity, high cost of feedstock and product inhibition, which makes butanol fermentation less competitive than the production of other biofuels. These hurdles are being resolved in several ways. Genetic engineering is now available for improving butanol yield and butanol ratio through overexpression, knock out/down, and insertion of genes encoding key enzymes in the metabolic pathway of butanol fermentation. In addition, there are also many strategies to improve fermentation technology, such as multi-stage continuous fermentation, continuous fermentation integrated with immobilization and cell recycling, and the inclusion of additional organic acids or electron carriers to change metabolic flux. This review focuses on the most recent advances in butanol fermentation especially from the perspectives of genetic engineering and fermentation technology.

  4. Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2010-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight

  5. Thermal-environment testing of a 30-cm engineering model thruster

    Science.gov (United States)

    Mirtich, M. J.

    1976-01-01

    An experimental test program was carried out to document all 30-cm electron bombardment Hg ion bombardment thruster functions and characteristics over the thermal environment of several proposed missions. An engineering model thruster was placed in a thermal test facility equipped with -196 C walls and solar simulation. The thruster was cold soaked and exposed to simulated eclipses lasting in duration from 17 to 72 minutes. The thruster was operated at quarter, to full beam power in various thermal configurations which simulated multiple thruster operation, and was also exposed to 1 and 2 suns solar simulation. Thruster control characteristics and constraints; performance, including thrust magnitude and direction; and structural integrity were evaluated over the range of thermal environments tested.

  6. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  7. Corneal stem cells and tissue engineering: Current advances and future perspectives.

    Science.gov (United States)

    de Araujo, Aline Lütz; Gomes, José Álvaro Pereira

    2015-06-26

    Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.

  8. On recent advances in human engineering Provocative trends in embryology, genetics, and regenerative medicine.

    Science.gov (United States)

    Anton, Roman

    2016-01-01

    Advances in embryology, genetics, and regenerative medicine regularly attract attention from scientists, scholars, journalists, and policymakers, yet implications of these advances may be broader than commonly supposed. Laboratories culturing human embryos, editing human genes, and creating human-animal chimeras have been working along lines that are now becoming intertwined. Embryogenic methods are weaving traditional in vivo and in vitro distinctions into a new "in vivitro" (in life in glass) fabric. These and other methods known to be in use or thought to be in development promise soon to bring society to startling choices and discomfiting predicaments, all in a global effort to supply reliably rejuvenating stem cells, to grow immunologically non-provocative replacement organs, and to prevent, treat, cure, or even someday eradicate diseases having genetic or epigenetic mechanisms. With humanity's human-engineering era now begun, procedural prohibitions, funding restrictions, institutional controls, and transparency rules are proving ineffective, and business incentives are migrating into the most basic life-sciences inquiries, wherein lie huge biomedical potentials and bioethical risks. Rights, health, and heritage are coming into play with bioethical presumptions and formal protections urgently needing reassessment.

  9. Advanced end-to-end fiber optic sensing systems for demanding environments

    Science.gov (United States)

    Black, Richard J.; Moslehi, Behzad

    2010-09-01

    Optical fibers are small-in-diameter, light-in-weight, electromagnetic-interference immune, electrically passive, chemically inert, flexible, embeddable into different materials, and distributed-sensing enabling, and can be temperature and radiation tolerant. With appropriate processing and/or packaging, they can be very robust and well suited to demanding environments. In this paper, we review a range of complete end-to-end fiber optic sensor systems that IFOS has developed comprising not only (1) packaged sensors and mechanisms for integration with demanding environments, but (2) ruggedized sensor interrogators, and (3) intelligent decision aid algorithms software systems. We examine the following examples: " Fiber Bragg Grating (FBG) optical sensors systems supporting arrays of environmentally conditioned multiplexed FBG point sensors on single or multiple optical fibers: In conjunction with advanced signal processing, decision aid algorithms and reasoners, FBG sensor based structural health monitoring (SHM) systems are expected to play an increasing role in extending the life and reducing costs of new generations of aerospace systems. Further, FBG based structural state sensing systems have the potential to considerably enhance the performance of dynamic structures interacting with their environment (including jet aircraft, unmanned aerial vehicles (UAVs), and medical or extravehicular space robots). " Raman based distributed temperature sensing systems: The complete length of optical fiber acts as a very long distributed sensor which may be placed down an oil well or wrapped around a cryogenic tank.

  10. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K

    Science.gov (United States)

    Kirichek, O.; Timms, J. D.; Kelleher, J. F.; Down, R. B. E.; Offer, C. D.; Kabra, S.; Zhang, S. Y.

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  11. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources.

  12. Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment

    Science.gov (United States)

    Robinson, Jeffrey S.; Martin John G.

    2008-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration

  13. Current developments of research on permafrost engineering and cold region environment:a report of the 8th International Symposium on Permafrost Engineering

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Eighth International Symposium on Permafrost Engineering was held in Xi’an,China,October 2009.The major topics discussed in the symposium included:permafrost engineering (involving design,construction and evaluation);mitigation of frost hazards in the regions affected by seasonally frozen ground;properties of frozen soils,model development and their applications;frost hazards and periglacial environments in mountain and plateau regions;climatic,environmental and cryospheric changes;and permafrost hydrology,cold regions water resources and land uses.The papers submitted to the symposium and lectures during the meeting represented some new developments of research on cold region engineering and environment.Here we summarized the works of the symposium in topics including:Permafrost engineering;General geocryology;Properties of frozen soils:model development and their applications;And climatic,environmental and cryospheric changes.During the symposium,the attendees pointed out that future studies should pay more attention to theoretical study and engineering mechanism study,and also on interaction between climate change and cold region environments and their engineering affects.

  14. Using focus groups to identify characteristics of an ideal work environment for Advanced Practice Clinicians.

    Science.gov (United States)

    Motley, Robert J; Mazzaccaro, Richard J; Burmeister, David B; Land, Samuel D; Boulay, Richard M; Chung, Heiwon; Deitrick, Lynn; Sumner, Andrew D

    2016-09-01

    Advanced Practice Clinicians (APCs) in collaborative practice represent a diverse and valuable group of health care professionals, including nurse practitioners, physician assistants, nurse anesthetists, and nurse midwives. Because these healthcare professionals have been identified as part of the solution to physician shortages, it is critical for health networks to examine and address issues affecting collaborative relationships. We invited our network APCs to participate in focus group sessions to determine both attributes and barriers to an ideal work environment. Four major themes emerged: (1) compensation, (2) network representation, (3) employment structure, and (4) workplace culture. While issues relating to compensation and representation were prevalent, discussions also revealed the importance of relationships and communication. To ensure successful collaboration and, thereby, reduce clinician turnover, leaders must address gaps between the existing and ideal states in structural factors affecting job satisfaction (Themes 1-3) as well as the behavioral factors represented in workplace culture (Theme 4).

  15. Recent Advances of the Engineering Prototype of the CALICE Analog Hadron Calorimeter

    CERN Document Server

    Hartbrich, Oskar

    2012-01-01

    The CALICE collaboration is developing an engineering prototype of an analog hadron calorimeter for a future linear collider detector. The prototype has to prove the feasibility of building a realistic detector with fully integrated front-end electronics. The performance goals are driven by the requirement of high jet energy resolution and the measurement of the details of the shower development. The signals are sampled by small scintillating plastic tiles that are read out by silicon photomultipliers. The ASICs are integrated into the calorimeter layers and are optimized for minimal power consumption. For the photodetector calibration an LED system is integrated into each of the detector channels. In this report the status and performance of the realized module are presented. In particular, results from timing measurements are discussed, as well as tests of the calibration system. The new module has also been used in the DESY test beam environment and first results from the electron beam tests are reported.

  16. Gender Equity in Science and Engineering: Advancing Change in Higher Education. Routledge Studies in Management, Organizations and Society

    Science.gov (United States)

    Bilimoria, Diana; Liang, Xiangfen

    2011-01-01

    Women faculty's participation in academic science and engineering is critical for future US global competitiveness, yet their underrepresentation particularly in senior positions remains a widespread problem. To overcome persistent institutional resistance and barriers to change, the "NSF ADVANCE" institutional transformation initiative,…

  17. Tailoring surface topographies of polymers by using ion beam: Recent advances and the potential applications in biomedical and tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu, E-mail: teru_hasebe@sakura.med.toho-u.ac.jp [Department of Radiology, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura, Chiba 285-8741 (Japan); Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Nagashima, So; Yoshimoto, Yukihiro; Hotta, Atsushi; Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2012-07-01

    Ion beam technique has recently been actively employed to create various patterns on the surface of polymers. In this paper, we highlight some of the recent advances in tailoring surface topographies of polymers by using ion beam and present a brief discussion on the potential applications in biomedical and tissue engineering.

  18. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  19. Degradation Mechanisms of an Advanced Jet Engine Service-Retired TBC Component

    Science.gov (United States)

    Wu, Rudder T.; Osawa, Makoto; Yokokawa, Tadaharu; Kawagishi, Kyoko; Harada, Hiroshi

    Current use of TBCs is subjected to premature spallation failure mainly due to the formation of thermally grown oxides (TGOs). Although extensive research has been carried out to gain better understanding of the thermo - mechanical and -chemical characteristics of TBCs, laboratory-scale studies and simulation tests are often carried out in conditions significantly differed from the complex and extreme environment typically of a modern gas-turbine engine, thus, failed to truly model service conditions. In particular, the difference in oxygen partial pressure and the effects of contaminants present in the engine compartment have often been neglected. In this respect, an investigation is carried out to study the in-service degradation of an EB-PVD TBC coated nozzle-guide vane. Several modes of degradation were observed due to three factors: 1) presence of residual stresses induced by the thermal-expansion mismatches, 2) evolution of bond coat microstructure and subsequent formation of oxide spinels, 3) deposition of CMAS on the surface of TBC.

  20. A Systems Engineering Process for Selecting Technologies to Mitigate the Risk of Operating Rotorcraft in Degraded Visual Environments

    Science.gov (United States)

    2013-09-30

    Rotorcraft in Degraded Visual Environments 6. AUTHOR(S) T.A. Dellert, C.C. Bivens, S. Balestrini-Robinson, PhD., J.M. Zentner, Ph.D. and IVl.D. Hopkins 3...their ability to mitigate the gaps. 15. SUBJECT TERMS Degraded Visual Environment; Design of Experiments, Functional Needs Analysis, Usable /cue...Environment, Systems Engineering, Pilot Vehicle Interface, Rotorcraft operations. Brownout, Reduced Visibility, Handling Qualities, Flight Controls

  1. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis

    Directory of Open Access Journals (Sweden)

    Linda Resnik, PT, PhD, OCS

    2011-07-01

    Full Text Available Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.

  2. Development of Advanced Continuum Models that Incorporate Nanomechanical Deformation into Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian

    2008-09-01

    Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J

  3. Domain-Specific Languages and Diagram Customization for a Concurrent Engineering Environment

    Science.gov (United States)

    Cole, Bjorn; Dubos, Greg; Banazadeh, Payam; Reh, Jonathan; Case, Kelley; Wang, Yeou-Fang; Jones, Susan; Picha, Frank

    2013-01-01

    A major open question for advocates of Model-Based Systems Engineering (MBSE) is the question of how system and subsystem engineers will work together. The Systems Modeling Language (SysML), like any language intended for a large audience, is in tension between the desires for simplicity and for expressiveness. In order to be more expressive, many specialized language elements may be introduced, which will unfortunately make a complete understanding of the language a more daunting task. While this may be acceptable for systems modelers, it will increase the challenge of including subsystem engineers in the modeling effort. One possible answer to this situation is the use of Domain-Specific Languages (DSL), which are fully supported by the Unified Modeling Language (UML). SysML is in fact a DSL for systems engineering. The expressive power of a DSL can be enhanced through the use of diagram customization. Various domains have already developed their own schematic vocabularies. Within the space engineering community, two excellent examples are the propulsion and telecommunication subsystems. A return to simple box-and-line diagrams (e.g., the SysML Internal Block Diagram) are in many ways a step backward. In order allow subsystem engineers to contribute directly to the model, it is necessary to make a system modeling tool at least approximate in accessibility to drawing tools like Microsoft PowerPoint and Visio. The challenge is made more extreme in a concurrent engineering environment, where designs must often be drafted in an hour or two. In the case of the Jet Propulsion Laboratory's Team X concurrent design team, a subsystem is specified using a combination of PowerPoint for drawing and Excel for calculation. A pilot has been undertaken in order to meld the drawing portion and the production of master equipment lists (MELs) via a SysML authoring tool, MagicDraw. Team X currently interacts with its customers in a process of sharing presentations. There are several

  4. Domain-specific languages and diagram customization for a concurrent engineering environment

    Science.gov (United States)

    Cole, B.; Dubos, G.; Banazadeh, P.; Reh, J.; Case, K.; Wang, Y.; Jones, S.; Picha, F.

    A major open question for advocates of Model-Based Systems Engineering (MBSE) is the question of how system and subsystem engineers will work together. The Systems Modeling Language (SysML), like any language intended for a large audience, is in tension between the desires for simplicity and for expressiveness. In order to be more expressive, many specialized language elements may be introduced, which will unfortunately make a complete understanding of the language a more daunting task. While this may be acceptable for systems modelers, it will increase the challenge of including subsystem engineers in the modeling effort. One possible answer to this situation is the use of Domain-Specific Languages (DSL), which are fully supported by the Unified Modeling Language (UML). SysML is in fact a DSL for systems engineering. The expressive power of a DSL can be enhanced through the use of diagram customization. Various domains have already developed their own schematic vocabularies. Within the space engineering community, two excellent examples are the propulsion and telecommunication subsystems. A return to simple box-and-line diagrams (e.g., the SysML Internal Block Diagram) are in many ways a step backward. In order allow subsystem engineers to contribute directly to the model, it is necessary to make a system modeling tool at least approximate in accessibility to drawing tools like Microsoft PowerPoint and Visio. The challenge is made more extreme in a concurrent engineering environment, where designs must often be drafted in an hour or two. In the case of the Jet Propulsion Laboratory's Team X concurrent design team, a subsystem is specified using a combination of PowerPoint for drawing and Excel for calculation. A pilot has been undertaken in order to meld the drawing portion and the production of master equipment lists (MELs) via a SysML authoring tool, MagicDraw. Team X currently interacts with its customers in a process of sharing presentations. There are severa

  5. An Advanced Educational Program for Software Design Engineering at Graduate School of Information Science and Technology of Osaka University

    Science.gov (United States)

    Masuzawa, Toshimitsu; Inoue, Katsuro; Murakami, Koso; Fujiwara, Toru; Nishio, Shojiro

    This paper gives an overview of an advanced educational program for software design engineering that is currently conducted at Graduate School of Information Science and Technology, Osaka University under the grant “ Initiatives for Attractive Education in Graduate Schools” from MEXT. Software design engineering is highly expected to play a critical role in winning success in designing the next-generation software systems. The aim of the program is to bring up young researchers with the latest design methodologies and practical design experience, who can pioneer the frontier of software design engineering. The program is conducted with the collaboration of industries that have rich practical experience and are facing the engineering problems to be solved in developing the next-generation software.

  6. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  7. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.  

  8. Advances in Computer Science, Engineering & Applications : Proceedings of the Second International Conference on Computer Science, Engineering & Applications

    CERN Document Server

    Zizka, Jan; Nagamalai, Dhinaharan

    2012-01-01

    The International conference series on Computer Science, Engineering & Applications (ICCSEA) aims to bring together researchers and practitioners from academia and industry to focus on understanding computer science, engineering and applications and to establish new collaborations in these areas. The Second International Conference on Computer Science, Engineering & Applications (ICCSEA-2012), held in Delhi, India, during May 25-27, 2012 attracted many local and international delegates, presenting a balanced mixture of  intellect and research both from the East and from the West. Upon a strenuous peer-review process the best submissions were selected leading to an exciting, rich and a high quality technical conference program, which featured high-impact presentations in the latest developments of various areas of computer science, engineering and applications research.

  9. Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles.

    Science.gov (United States)

    Hüffer, Thorsten; Praetorius, Antonia; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo

    2017-02-21

    Microplastics (MPs) have been identified as contaminants of emerging concern in aquatic environments and research into their behavior and fate has been sharply increasing in recent years. Nevertheless, significant gaps remain in our understanding of several crucial aspects of MP exposure and risk assessment, including the quantification of emissions, dominant fate processes, types of analytical tools required for characterization and monitoring, and adequate laboratory protocols for analysis and hazard testing. This Feature aims at identifying transferrable knowledge and experience from engineered nanoparticle (ENP) exposure assessment. This is achieved by comparing ENP and MPs based on their similarities as particulate contaminants, whereas critically discussing specific differences. We also highlight the most pressing research priorities to support an efficient development of tools and methods for MPs environmental risk assessment.

  10. Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Feizi, Amir; Bisschops, Markus M. M.

    2017-01-01

    Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions....... Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether...... sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid...

  11. Design of Detection Engine for Wormhole Attack in Adhoc Network Environment

    Directory of Open Access Journals (Sweden)

    Husain Shahnawaz

    2012-12-01

    Full Text Available Adhoc network is a collection of nodes that are capable to form dynamically atemporary network without the support of any centralized fixed infrastructure. There is no central controller to determine the reliable & secure communication paths in Mobile Adhoc network. Each node in the Adhoc network has to rely on each other in order to forward packets, thus highly cooperative nodes are required to ensure that the initiated data transmission process does not fail. In a mobile Adhoc network (MANET where security is a crucial issue and they are forced to rely on the neighbour node, trust plays an important role that could improve the number of successful data transmission. Larger the number of trusted nodes, higher successful data communication process rates could be expected. In this paper, a model is proposed for Intrusion Detection System and then Worm-Hole attack is assumed in the network, statistics are collected to design intrusion detection engine for MANET Intrusion Detection System (IDS. Important features extraction and rule inductions are applied to classify the data set. Training of data set and on the basis of confidence value generated in training is used for testing of dataset and investigated the accuracy of detection engine by using support vector machine. In this paper True Positive generated by the detection engine is very high and this is a novel and statistics based approach in the area of Mobile Adhoc Intrusion detection system. Though this research is carried out for Adhoc network environment but this is also applicable to Wireless Sensor network

  12. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  13. Gene editing and genetic engineering approaches for advanced probiotics: A Review.

    Science.gov (United States)

    Yadav, Ruby; Kumar, Vishal; Baweja, Mehak; Shukla, Pratyoosh

    2017-01-10

    The applications of probiotics are significant and thus resulted in need of genome analysis of probiotic strains. Various omics methods and systems biology approaches enables us to understand and optimize the metabolic processes. These techniques have increased the researcher's attention towards gut microbiome and provided a new source for the revelation of uncharacterized biosynthetic pathways which enables novel metabolic engineering approaches. In recent years, the broad and quantitative analysis of modified strains relies on systems biology tools such as in silico design which are commonly used methods for improving strain performance. The genetic manipulation of probiotic microorganisms is crucial for defining their role in intestinal microbiota and exploring their beneficial properties. This review describes an overview of gene editing and system biology approaches, highlighting the advent of omics methods which allows the study of new routes for studying probiotic bacteria. We have also summarized gene editing tools like TALEN, ZFNs and CRISPR-Cas that edits or cleave the specific target DNA. Furthermore, in this review an overview of proposed design of advanced customized probiotic is also hypothesized to improvise the probiotics.

  14. Recent advances in the science and engineering of organic light-emitting diodes (Conference Presentation)

    Science.gov (United States)

    Kippelen, Bernard; Gaj, Michael P.; Zhang, Xiaoqing; Choi, Sangmoo; Fuentes-Hernandez, Canek; Zhang, Yadong; Barlow, Stephen; Marder, Seth R.; Voit, Walter E.; Wei, Andrew

    2016-09-01

    In this talk, we will discuss recent advances in the science and engineering of organic light-emitting diodes (OLEDs). First, we will focus on materials in which light emission involves the process of thermally activated delayed fluorescence (TADF). In these materials, triplet excited states can convert into optically emissive singlet excited states by reverse intersystem crossing, allowing for nearly 100% internal quantum efficiency. This process can be used to design a new class of materials that are all organic, offering a lower cost alternative to conventional electrophosphorescent materials that contain heavy and expensive elements such as Pt and Ir. We will discuss molecular design strategies and present examples of materials that can be used as emitters or hosts in the emissive layer. In a second part of this talk, we will review recent progress in fabricating OLEDs on shape memory polymer substrates (SMPs). SMPs are mechanically active, smart materials that can exhibit a significant drop in modulus once an external stimulus such as temperature is applied. In their rubbery state upon heating, the SMP can be easily deformed by external stresses into a temporary geometric configuration that can be retained even after the stress is removed by cooling the SMP to below the glass transition temperature. Reheating the SMP causes strain relaxation within the polymer network and induces recovery of its original shape. We will discuss how these unique mechanical properties can also be extended to a new class of OLEDs.

  15. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    Science.gov (United States)

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing.

  16. Recent advances in T-cell engineering for use in immunotherapy [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Preeti Sharma

    2016-09-01

    Full Text Available Adoptive T-cell therapies have shown exceptional promise in the treatment of cancer, especially B-cell malignancies. Two distinct strategies have been used to redirect the activity of ex vivo engineered T cells. In one case, the well-known ability of the T-cell receptor (TCR to recognize a specific peptide bound to a major histocompatibility complex molecule has been exploited by introducing a TCR against a cancer-associated peptide/human leukocyte antigen complex. In the other strategy, synthetic constructs called chimeric antigen receptors (CARs that contain antibody variable domains (single-chain fragments variable and signaling domains have been introduced into T cells. Whereas many reviews have described these two approaches, this review focuses on a few recent advances of significant interest. The early success of CARs has been followed by questions about optimal configurations of these synthetic constructs, especially for efficacy against solid tumors. Among the many features that are important, the dimensions and stoichiometries of CAR/antigen complexes at the synapse have recently begun to be appreciated. In TCR-mediated approaches, recent evidence that mutated peptides (neoantigens serve as targets for endogenous T-cell responses suggests that these neoantigens may also provide new opportunities for adoptive T-cell therapies with TCRs.

  17. Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration

    Directory of Open Access Journals (Sweden)

    Weimin Guo

    2015-01-01

    Full Text Available The meniscus plays a crucial role in maintaining knee joint homoeostasis. Meniscal lesions are relatively common in the knee joint and are typically categorized into various types. However, it is difficult for inner avascular meniscal lesions to self-heal. Untreated meniscal lesions lead to meniscal extrusions in the long-term and gradually trigger the development of knee osteoarthritis (OA. The relationship between meniscal lesions and knee OA is complex. Partial meniscectomy, which is the primary method to treat a meniscal injury, only relieves short-term pain; however, it does not prevent the development of knee OA. Similarly, other current therapeutic strategies have intrinsic limitations in clinical practice. Tissue engineering technology will probably address this challenge by reconstructing a meniscus possessing an integrated configuration with competent biomechanical capacity. This review describes normal structure and biomechanical characteristics of the meniscus, discusses the relationship between meniscal lesions and knee OA, and summarizes the classifications and corresponding treatment strategies for meniscal lesions to understand meniscal regeneration from physiological and pathological perspectives. Last, we present current advances in meniscal scaffolds and provide a number of prospects that will potentially benefit the development of meniscal regeneration methods.

  18. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    Science.gov (United States)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  19. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication.

    Science.gov (United States)

    Hoque, M Enamul; Chuan, Y Leng; Pashby, Ian

    2012-02-01

    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.

  20. Incorporating Kansei Engineering in instructional design: Designing virtual reality based learning environments from a novel perspective

    Directory of Open Access Journals (Sweden)

    Kee Man Chuah

    2008-01-01

    Full Text Available In recent years, the application of virtual reality (VR technology in education is rapidly gaining momentum. The educational benefits offered by such technology have prompted many educators as well as instructional designers to investigate ways to create effective and engaging VR learning. Instructional designers have examined widely the capability of VR in influencing the cognitive capacity as well as motivational processes of learners. Nonetheless, one often-neglected aspect is its ability to stimulate emotions, which in turn can affect learning. With the current intense interest in designing emotionally sound instructional applications, this paper proposes a new outlook by incorporating Kansei Engineering methodology in the instructional design process. Specifically, as part of an on-going project, it describes how Kansei Engineering method can be incorporated in the design of VR based learning environments based on the model suggested by Chen, Toh and Wan (2004. The proposed method is not only able to facilitate the instructional designers in identifying desired design elements but also to refine the methods prescribed in an instructional model.

  1. 日本JAXA航天器环境工程验证能力研究%Verification capabilities of Japan JAXA spacecraft environment engineering

    Institute of Scientific and Technical Information of China (English)

    冯伟泉

    2013-01-01

    Japan Aerospace eXploration Agency(JAXA) is an institution responsible for Japan aerospace development, including Japan spacecraft research, development, launch and orbit management. JAXA spacecraft environment engineering concerns the verification of Japan’s most advanced space ground facilities and environment verification means, with many high level test facilities and various pieces of measurement equipment related with mechanical environment, thermal vacuum environment, and space special environment, to provide services for spacecraft AIT, including environment evaluation testing for spacecraft materials and components. JAXA spacecraft environment engineering is now in a most advanced international level after many year’s development, and we have much to learn for Chinese space technology development. This paper introduces the successful experiences of JAXA spacecraft environment engineering’s verification establishment, facility distribution and management and test standards. Some suggestions are put forward in this respect.%日本宇宙航空研究开发机构(JAXA)是负责日本航空航天开发的独立行政实体,主要承担日本航天器研究、开发、发射和运行等业务。JAXA 拥有日本先进的航天基础设施和环境验证手段,集中了大量高水平的力学环境、真空热环境和特殊环境的试验测试设备,能够承担航天器系统级总装、专业测试和环境试验,也具备航天器原材料、元器件等的环境试验与评价能力。JAXA 具有国际一流的航天器环境工程验证能力,对日本航天事业的飞速发展发挥了重要支撑作用。根据我国航天发展战略以及对标国际一流航天先进技术的要求,文章跟踪研究了JAXA的航天器环境工程验证能力的建设、基地布局、管理模式和标准体系等方面的成功经验,提出了我国航天器环境工程的发展建议与启示。

  2. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  3. Web Search Engines and Indexing and Ranking the Content Object Including Metadata Elements Available at the Dynamic Information Environments

    Directory of Open Access Journals (Sweden)

    Faezeh sadat Tabatabai Amiri

    2012-10-01

    Full Text Available The purpose of this research was to make exam the indexing and ranking of XML content objects containing Dublin Core and MARC 21 metadata elements in dynamic online information environments by general search engines and comparing them together in a comparative-analytical approach. 100 XML content objects in two groups were analyzed: those with DCXML elements and those with MARCXML elements were published in website http://www.marcdcmi.ir. from late Mordad 1388 till Khordad 1389. Then the website was introduced to Google and Yahoo search engines. Google search engine was able to retrieve fully all the content objects during the study period through their Dublin Core and MARC 21 metadata elements; Yahoo search engine, however, did not respond at all. The indexing of metadata elements embedded in content objects in dynamic online information environments and different between indexing and ranking of them were examined. Findings showed all Dublin Core and MARC 21 metadata elements by Google search engine were indexed. And there was not observed difference between indexing and ranking DCXML and MARCXML metadata elements in dynamic online information environments by Google search engine.

  4. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    Science.gov (United States)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  5. Engineering Deinococcus radiodurans into biosensor to monitor radioactivity and genotoxicity in environment

    Institute of Scientific and Technical Information of China (English)

    GAO GuanJun; FAN Lu; LU HuiMing; HUA YueJin

    2008-01-01

    Based on a genetically modified radioresistant bacteria Deinococcus radiodurans, we constructed a real time whole cell biosensor to monitor radioactivity and genotoxicity in highly radioactive environment. The enhanced green fluorescence protein (eGFP) was fused to the promoter of the crucial DNA damage-inducible recA gone from D. radiodurans, and the consequent DNA fragment (PrecA-egfp) carried by plasmid was introduced into D. radiodurans R1 strain to obtain the biosensor strain DRG300. This engineered strain can express eGFP protein and generate fluorescence in induction of the recA gone promoter. Based on the correlation between fluorescence intensity and protein expression level in live D. radiodurans cells, we discovered that the fluorescence induction of strain DRG300 responds in a remarkable dose-dependent manner when treated with DNA damage sources such as gamma radiation and mitomycin C. It is encouraging to find the widely detective range and high sensitivity of this reconstructed strain comparing with other whole cell biosensors in former reports. These results suggest that the strain DRG300 is a potential whole cell biosensor to construct a detective system to monitor the biological hazards of radioactive and toxic pollutants in environment in real time.

  6. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    Science.gov (United States)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    a single spine, with two-photon uncaging) and in rapid, flexible spatial-temporal patterns [10-14]. Nevertheless, current technology generally requires damaging doses of UV or violet illumination and the continuous re-introduction of the caged compound, which, despite interest, makes for a difficult transition beyond in vitro preparations. Thus, the tremendous progress in the in vivo application of photo-stimulation tools over the past five years has been largely facilitated by two 'exciting' new photo-stimulation technologies: photo-biological stimulation of a rapidly increasing arsenal of light-sensitive ion channels and pumps ('optogenetic' probes[15-18]) and direct photo-thermal stimulation of neural tissue with an IR laser [19-21]. The Journal of Neural Engineering has dedicated a special section in this issue to highlight advances in optical stimulation technology, which includes original peer-reviewed contributions dealing with the design of modern optical systems for spatial-temporal control of optical excitation patterns and with the biophysics of neural-thermal interaction mediated by electromagnetic waves. The paper by Nikolenko, Peterka and Yuste [22] presents a compact design of a microscope-photo-stimulator based on a transmissive phase-modulating spatial-light modulator (SLM). Computer-generated holographic photo-stimulation using SLMs [12-14, 23] allows the efficient parallel projection of intense sparse patterns of light, and the welcome development of compact, user-friendly systems will likely reduce the barrier to its widespread adoption. The paper by Losavio et al [24] presents the design and functional characteristics of their acousto-optical deflector (AOD) systems for studying spatial-temporal dendritic integration in single neurons in vitro. Both single-photon (UV) and two-photon (femtosecond pulsed IR) AOD uncaging systems are described in detail. The paper presents an excellent overview of the current state of the art and limitations of

  7. Application of Advanced Materials Protecting from Influence of Free Space Environment

    Science.gov (United States)

    Dotsenko, Oleg; Shovkoplyas, Yuriy

    2016-07-01

    High cost and low availability of the components certified for use in the space environment forces satellite designers to using industrial and even commercial items. Risks associated with insufficient knowledge about behavior of these components in radiation environment are parried, mainly, by careful radiating designing of a satellite where application of special protective materials with improved space radiation shielding characteristics is one of the most widely used practices. Another advantage of protective materials application appears when a satellite designer needs using equipment in more severe space environment conditions then it has been provided at the equipment development. In such cases only expensive repeated qualification of the equipment hardness can be alternative to protective materials application. But mostly this way is unacceptable for satellite developers, being within strong financial and temporal restrictions. To apply protective materials effectively, the developer should have possibility to answer the question: "Where inside a satellite shall I place these materials and what shall be their shape to meet the requirements on space radiation hardness with minimal mass and volume expenses?" At that, the minimum set of requirements on space radiation hardness include: ionizing dose, nonionizing dose, single events, and internal charging. The standard calculative models and experimental techniques, now in use for space radiation hardness assurance of a satellite are unsuitable for the problem solving in such formulation. The sector analysis methodology, widely used in satellite radiating designing, is applicable only for aluminium shielding and doesn't allow taking into account advantages of protective materials. The programs simulating transport of space radiations through a substance with the use of Monte-Carlo technique, such as GEANT4, FLUKA, HZETRN and others, are fully applicable in view of their capabilities; but time required for

  8. Research on Innovative Practice Teaching System Based on the High-End Practice Teaching Environment for Software Engineering Speciality

    Science.gov (United States)

    Dong, Jianli; Li, Cunhua; Ji, Zhaohui; Wu, Junming

    Through the analysis of current culture status of undergraduate engineering applied talents, the paper points out that the main reason causing the lack of student integrated application and practice innovation abilities is the poor construction of high-end practice environment. And then, how to enhance the practice environment construction and practical teaching innovation as well as building an appropriate innovation practice teaching system for engineering applied talents are systematically discussed. It is very obvious that the application and promotion of this kind of innovative practice teaching system could enhance the practice innovation abilities and entrepreneurial and employment awareness of the graduates.

  9. Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment

    Directory of Open Access Journals (Sweden)

    Fadri Gottschalk

    2015-05-01

    Full Text Available Predictions of environmental concentrations of engineered nanomaterials (ENM are needed for their environmental risk assessment. Because analytical data on ENM-concentrations in the environment are not yet available, exposure modeling represents the only source of information on ENM exposure in the environment. This work provides material flow data and environmental concentrations of nine ENM in Denmark. It represents the first study that distinguishes between photostable TiO2 (as used in sunscreens and photocatalytic TiO2 (as used in self-cleaning surfaces. It also provides first exposure estimates for quantum dots, carbon black and CuCO3. Other ENM that are covered are ZnO, Ag, CNT and CeO2. The modeling is based for all ENM on probability distributions of production, use, environmental release and transfer between compartments, always considering the complete life-cycle of products containing the ENM. The magnitude of flows and concentrations of the various ENM depends on the one hand on the production volume but also on the type of products they are used in and the life-cycles of these products and their potential for release. The results reveal that in aquatic systems the highest concentrations are expected for carbon black and photostable TiO2, followed by CuCO3 (under the assumption that the use as wood preservative becomes important. In sludge-treated soil highest concentrations are expected for CeO2 and TiO2. Transformation during water treatments results in extremely low concentrations of ZnO and Ag in the environment. The results of this study provide valuable environmental exposure information for future risk assessments of these ENM.

  10. In-Service Aircraft Engine System Life Monitor Using Advanced Life-Estimating Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop an accurate in-service aircraft engine life monitor system for the prediction of remaining component and system life for aircraft engines....

  11. Managing the advanced cancer patient in the Australian emergency department environment : Findings from a national survey of emergency department clinicians

    NARCIS (Netherlands)

    T.J. Weiland (Tracey); Lane, H. (Heather); G.A. Jelinek; C.H.L. Marck (Claudia); Weil, J. (Jennifer); M. Boughey (Mark); Philip, J. (Jennifer)

    2015-01-01

    textabstractBackground: Delivery of care to people with advanced cancer in the emergency department (ED) is complicated by competing service demands, workloads and physical design constraints. We explored emergency clinicians’ attitudes to the ED environment when caring for patients who present with

  12. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    Science.gov (United States)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  13. Experimental verification of Advanced Collapsed-cone Engine for use with a multichannel vaginal cylinder applicator.

    Science.gov (United States)

    Cawston-Grant, Brie; Morrison, Hali; Menon, Geetha; Sloboda, Ron S

    2017-03-20

    Model-based dose calculation algorithms have recently been incorporated into brachytherapy treatment planning systems, and their introduction requires critical evaluation before clinical implementation. Here, we present an experimental evaluation of Oncentra(®) Brachy Advanced Collapsed-cone Engine (ACE) for a multichannel vaginal cylinder (MCVC) applicator using radiochromic film. A uniform dose of 500 cGy was specified to the surface of the MCVC using the TG-43 dose formalism under two conditions: (a) with only the central channel loaded or (b) only the peripheral channels loaded. Film measurements were made at the applicator surface and compared to the doses calculated using TG-43, standard accuracy ACE (sACE), and high accuracy ACE (hACE). When the central channel of the applicator was used, the film measurements showed a dose increase of (11 ± 8)% (k = 2) above the two outer grooves on the applicator surface. This increase in dose was confirmed with the hACE calculations, but was not confirmed with the sACE calculations at the applicator surface. When the peripheral channels were used, a periodic azimuthal variation in measured dose was observed around the applicator. The sACE and hACE calculations confirmed this variation and agreed within 1% of each other at the applicator surface. Additionally for the film measurements with the central channel used, a baseline dose variation of (10 ± 4)% (k = 2) of the mean dose was observed azimuthally around the applicator surface, which can be explained by offset source positioning in the central channel.

  14. DOD Initiatives to Rapidly Transition Advanced Coating and Surface Finishing Technologies for Military Turbine Engine Manufacture and Repair

    Science.gov (United States)

    2005-03-21

    of PEWG Projects Involving Plating, Coating, and Surface Finishing • Advanced thermal spray coatings (HVOF) • Electrospark deposition • Laser...EWI, GEAE, P&W, Rolls-Royce FUNDING SOURCES RTOC STATUS OC-ALC request for FY06 Funding 3/21/2005 22 Other Technologies • Electrospark Deposition for...Aircraft Engines PEWG MANAGER Chuck Alford, Anteon Corp TECHNOLOGY OPPORTUNITY ADVANTAGES: Kinetic spray technologies deposit thick coatings with a

  15. Advanced high pressure engine study for mixed-mode vehicle applications

    Science.gov (United States)

    Luscher, W. P.; Mellish, J. A.

    1977-01-01

    High pressure liquid rocket engine design, performance, weight, envelope, and operational characteristics were evaluated for a variety of candidate engines for use in mixed-mode, single-stage-to-orbit applications. Propellant property and performance data were obtained for candidate Mode 1 fuels which included: RP-1, RJ-5, hydrazine, monomethyl-hydrazine, and methane. The common oxidizer was liquid oxygen. Oxygen, the candidate Mode 1 fuels, and hydrogen were evaluated as thrust chamber coolants. Oxygen, methane, and hydrogen were found to be the most viable cooling candidates. Water, lithium, and sodium-potassium were also evaluated as auxiliary coolant systems. Water proved to be the best of these, but the system was heavier than those systems which cooled with the engine propellants. Engine weight and envelope parametric data were established for candidate Mode 1, Mode 2, and dual-fuel engines. Delivered engine performance data were also calculated for all candidate Mode 1 and dual-fuel engines.

  16. Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects.

    Science.gov (United States)

    Guan, Ningzi; Zhuge, Xin; Li, Jianghua; Shin, Hyun-Dong; Wu, Jing; Shi, Zhongping; Liu, Long

    2015-01-01

    Propionibacteria are actinobacteria consisting of two principal groups: cutaneous and dairy. Cutaneous propionibacteria are considered primary pathogens to humans, whereas dairy propionibacteria are widely used in the food and pharmaceutical industries. Increasing attention has been focused on improving the performance of dairy propionibacteria for the production of industrially important chemicals, and significant advances have been made through strain engineering and process optimization in the production of flavor compounds, nutraceuticals, and antimicrobial compounds. In addition, genome sequencing of several propionibacteria species has been completed, deepening understanding of the metabolic and physiological features of these organisms. However, the metabolic engineering of propionibacteria still faces several challenges owing to the lack of efficient genome manipulation tools and the existence of various types of strong restriction-modification systems. The emergence of systems and synthetic biology provides new opportunities to overcome these bottlenecks. In this review, we first introduce the major species of propionibacteria and their properties and provide an overview of their functions and applications. We then discuss advances in the genome sequencing and metabolic engineering of these bacteria. Finally, we discuss systems and synthetic biology approaches for engineering propionibacteria as efficient and robust cell factories for the production of industrially important chemicals.

  17. Thin film subsurface environments; Advanced X-ray spectroscopies and a novel Bayesian inference modeling algorithm

    Science.gov (United States)

    Church, Jonathan R.

    New condensed matter metrologies are being used to probe ever smaller length scales. In support of the diverse field of materials research synchrotron based spectroscopies provide sub-micron spatial resolutions and a breadth of photon wavelengths for scientific studies. For electronic materials the thinnest layers in a complementary metal-oxide-semiconductor (CMOS) device have been reduced to just a few nanometers. This raises concerns for layer uniformity, complete surface coverage, and interfacial quality. Deposition processes like chemical vapor deposition (CVD) and atomic layer deposition (ALD) have been shown to deposit the needed high-quality films for the requisite thicknesses. However, new materials beget new chemistries and, unfortunately, unwanted side-reactions and by-products. CVD/ALD tools and chemical precursors provided by our collaborators at Air Liquide utilized these new chemistries and films were deposited for which novel spectroscopic characterization methods were used. The second portion of the thesis focuses on fading and decomposing paint pigments in iconic artworks. Efforts have been directed towards understanding the micro-environments causing degradation. Hard X-ray photoelectron spectroscopy (HAXPES) and variable kinetic energy X-ray photoelectron spectroscopy (VKE-XPS) are advanced XPS techniques capable of elucidating both chemical environments and electronic band structures in sub-surface regions of electronic materials. HAXPES has been used to study the electronic band structure in a typical CMOS structure; it will be shown that unexpected band alignments are associated with the presence of electronic charges near a buried interface. Additionally, a computational modeling algorithm, Bayes-Sim, was developed to reconstruct compositional depth profiles (CDP) using VKE-XPS data sets; a subset algorithm also reconstructs CDP from angle-resolved XPS data. Reconstructed CDP produced by Bayes-Sim were most strongly correlated to the real

  18. The NSF-Supported ADVANCE Initiative at the University of Michigan Aimed at Successful Recruitment and Retention of Women Faculty in Science and Engineering

    Science.gov (United States)

    Mukasa, S. B.; Committee, S.

    2004-12-01

    The University of Michigan obtained funding from the NSF ADVANCE Program for 2001-2006 to devise and implement strategies to improve representation and climate for its tenure-track women faculty in the natural sciences departments and the College of Engineering. In addition to increased representation and an improved campus environment for women faculty in science and engineering, the initiative aims to positively affect - through exposure to role models - the expectations and attitudes of the many women and men who are graduate and undergraduate students in these fields who make a sizeable pool from which future faculty are going to be drawn. This initiative was launched with a campus-wide survey to pinpoint problem areas, followed by the appointment of a committee of senior faculty now known as "Science and Technology Recruiting to Improve Diversity and Excellence" or STRIDE to provide information and advice about practices that will maximize the likelihood that well-qualified female and minority candidates for faculty positions will be identified, and, if selected for offers, recruited, retained, and promoted at the University of Michigan. The principal activities of STRIDE have so far included (i) helping in the development of an easy-to-navigate website with information about the ADVANCE project (URL: http://www.umich.edu/~advproj/index.html); (ii) development of a data-based PowerPoint presentation about non-conscious bias and the low numbers of women faculty in science and engineering; (iii) producing a handbook that offers guidelines for improving recruitment of women and minorities; and (iv) giving presentations in a variety of formats and providing advice to department chairs and other recruitment leaders on search committee composition and search practices. More recently, STRIDE has expanded its scope to include facilitation of departmental climate studies and informal discussions with women faculty about the importance of networking and receiving career

  19. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  20. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, Brian [Univ. of Pittsburgh, PA (United States)

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.