WorldWideScience

Sample records for advanced energy management

  1. Decision support tools for advanced energy management

    International Nuclear Information System (INIS)

    Marik, Karel; Schindler, Zdenek; Stluka, Petr

    2008-01-01

    Rising fuel costs boost energy prices, which is a driving force for improving efficiency of operation of any energy generation facility. This paper focuses on enhancing the operation of distributed integrated energy systems (IES), system that bring together all forms of cooling, heating and power (CCHP) technologies. Described methodology can be applied in power generation and district heating companies, as well as in small-scale systems that supply multiple types of utilities to consumers in industrial, commercial, residential and governmental spheres. Dispatching of such system in an optimal way needs to assess large number of production and purchasing schemes in conditions of continually changing market and variable utility demands influenced by many external factors, very often by weather conditions. The paper describes a combination of forecasting and optimization methods that supports effective decisions in IES system management. The forecaster generates the future most probable utility demand several hours or days ahead, derived from the past energy consumer behaviour. The optimizer generates economically most efficient operating schedule for the IES system that matches these forecasted energy demands and respects expected purchased energy prices. (author)

  2. Advanced Energy Storage Management in Distribution Network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Ceylan, Oguzhan [ORNL; Xiao, Bailu [ORNL; Starke, Michael R [ORNL; Ollis, T Ben [ORNL; King, Daniel J [ORNL; Irminger, Philip [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  3. An advanced real time energy management system for microgrids

    International Nuclear Information System (INIS)

    Elsied, Moataz; Oukaour, Amrane; Youssef, Tarek; Gualous, Hamid; Mohammed, Osama

    2016-01-01

    This paper presents an advanced Real-Time Energy Management System (RT-EMS) for Microgrid (MG) systems. The proposed strategy of RT-EMS capitalizes on the power of Genetic Algorithms (GAs) to minimize the energy cost and carbon dioxide emissions while maximizing the power of the available renewable energy resources. MATLAB-dSPACE Real-Time Interface Libraries (MLIB/MTRACE) are used as new tools to run the optimization code in Real-Time Operation (RTO). The communication system is developed based on ZigBee communication network which is designed to work in harsh radio environment where the control system is developed based on Advanced Lead-Lag Compensator (ALLC) which its parameters are tuned online to achieve fast convergence and good tracking response. The proposed RT-EMS along with its control and communication systems is experimentally tested to validate the results obtained from the optimization algorithm in a real MG testbed. The simulation and experimental results using real-world data highlight the effectiveness of the proposed RT-EMS for MGs applications. - Highlights: • Real-time energy management system of a typical MG is developed, and analyzed. • RT-EMS considered the nonlinear cost function and emission constraints. • MLIB/MTRACE libraries in dSPACE are used as new tools to run the optimization code. • The communication system is developed based on a Zigbee communication network. • Control system parameters are tuned online to achieve good tracking response.

  4. Masters Study in Advanced Energy and Fuels Management

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Kanchan [Southern Illinois Univ., Carbondale, IL (United States)

    2014-12-08

    There are currently three key drivers for the US energy sector a) increasing energy demand and b) environmental stewardship in energy production for sustainability and c) general public and governmental desire for domestic resources. These drivers are also true for energy nation globally. As a result, this sector is rapidly diversifying to alternate sources that would supplement or replace fossil fuels. These changes have created a need for a highly trained workforce with a the understanding of both conventional and emerging energy resources and technology to lead and facilitate the reinvention of the US energy production, rational deployment of alternate energy technologies based on scientific and business criteria while invigorating the overall economy. In addition, the current trends focus on the the need of Science, Technology, Engineering and Math (STEM) graduate education to move beyond academia and be more responsive to the workforce needs of businesses and the industry. The SIUC PSM in Advanced Energy and Fuels Management (AEFM) program was developed in response to the industries stated need for employees who combine technical competencies and workforce skills similar to all PSM degree programs. The SIUC AEFM program was designed to provide the STEM graduates with advanced technical training in energy resources and technology while simultaneously equipping them with the business management skills required by professional employers in the energy sector. Technical training include core skills in energy resources, technology and management for both conventional and emerging energy technologies. Business skills training include financial, personnel and project management. A capstone internship is also built into the program to train students such that they are acclimatized to the real world scenarios in research laboratories, in energy companies and in government agencies. The current curriculum in the SIUC AEFM will help fill the need for training both recent

  5. Wireless Sensor Network for Advanced Energy Management Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  6. Trends in Energy Management Technology - Part 4: Review ofAdvanced Applications in Energy Management, Control, and InformationSystems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2003-08-01

    In this article, the fourth in a series, we provide a review of advanced applications in Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the Federal sector. The first article [1] covered enabling technologies for emerging energy management systems. The second article [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. The third article [3] evaluated several products that exemplify the current state of practice in EMCIS. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of articles provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  7. CISM Advanced School on Crashworthiness : Energy Management and Occupant Protection

    CERN Document Server

    2001-01-01

    From the fundamentals of impact mechanics and biomechanics to modern analysis and design techniques in impact energy management and occupant protection this book provides an overview of the application of nonlinear finite elements, conceptual modeling and multibody procedures, impact biomechanics, injury mechanisms, occupant mathematical modeling, and human surrogates in crashworthiness.

  8. Biomass supply management for advanced energy: applications in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, J W [Joint Institute for Energy and Environment, Knoxville, TN (United States); Perlack, R D [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1995-12-01

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  9. Biomass supply management for advanced energy: applications in developing countries

    International Nuclear Information System (INIS)

    Ranney, J.W.; Perlack, R.D.

    1995-01-01

    Advanced biomass energy systems, including new biomass resource enhancement technologies, should be developed only where compelling situations for investors or communities exist to economically do so. These situations, or minimum viable operating conditions, are assessed from a pragmatic perspective. They are determined by specific circumstances and divergent interests that take time to define and integrate. Customized solutions are necessary and can change quickly with geography and market circumstances New technologies offer more options but are not necessarily the best. The example of energy crop technology is used to demonstrate the interdependencies that exist between new resource enhancement technology and biomass energy systems operations. The ability to genetically increase the energy density of energy crops is compared to other enhancement measures such as increasing the number of tonnes grown per hectare-year, reducing costs per tonne and improving other characteristics. Issues that need to be considered include significant knowledge gaps, lack of commitments in R and D, specificity of conversion system requirements, handling capabilities and opportunity costs. Broader biomass procurement strategies, which may be more important than resource enhancement technologies, are discussed. Biomass cost-supply is utilized as a strong analytical feature to evaluate the effectiveness of biomass procurement strategies and new biomass production technologies. Some past experiences are reviewed. Cost-supply is assessed from the perspective of the whole biomass energy system to expose the interdependencies between production operations, conversion scale and technologies, and community markets and service. Investment limits, for example, may be as important a determinant as the cost-efficiency of a new technology, which, in turn, affects biomass cost-supply-quality requirements. The cost of new technologies can then be compared to the changed performance of the overall

  10. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    Science.gov (United States)

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  11. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Science.gov (United States)

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  12. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    Directory of Open Access Journals (Sweden)

    Vangelis Marinakis

    2018-02-01

    Full Text Available The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems, energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  13. Energy Storage System Control for Energy Management in Advanced Aeronautic Applications

    Directory of Open Access Journals (Sweden)

    A. Cavallo

    2017-01-01

    Full Text Available In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator to generator mode (i.e., when the battery pumps energy on the high-voltage bus is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.

  14. Advanced concepts for waste management and nuclear energy production in the EURATOM 5. framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejon, J.

    2002-01-01

    This paper summarises the objectives of the research projects on partitioning and transmutation (P and T) of long-lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM 5. Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long-lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing high-temperature reactors (HTRs) commercially for energy production. Finally, the European Commissions proposal fora New Framework Programme (2002-2006) is briefly outlined. (authors)

  15. Advanced concepts for waste management and nuclear energy production in the EURATOM fifth framework programme

    International Nuclear Information System (INIS)

    Hugon, M.; Bhatnagar, V.P.; Martin Bermejo, J.

    2001-01-01

    This paper summarises the objectives of the research projects on Partitioning and Transmutation (P and T) of long lived radionuclides in nuclear waste and advanced systems for nuclear energy production in the key action on nuclear fission of the EURATOM Fifth Framework Programme (FP5) (1998-2002). As these FP5 projects cover the main aspects of P and T, they should provide a basis for evaluating the practicability, on an industrial scale, of P and T for reducing the amount of long lived radionuclides to be disposed of. Concerning advanced concepts, a cluster of projects is addressing the key technical issues to be solved before implementing High Temperature Reactors (HTRs) commercially for energy production. Finally, the European Commission(tm)s proposal for a New Framework Programme (2002-2006) is briefly outlined. (author)

  16. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  17. Management of advanced melanoma

    International Nuclear Information System (INIS)

    Nathanson, L.

    1986-01-01

    This book presents papers on the subject of management of advanced melanoma. The topics covered are: non-investigational cytotoxic agents; high-dosage chemotherapy in antologous bone marrow transplantation; Radiotherapy of melanomas; hyperthermia; ureal melanoma; surgical treatment of recurrent a metastatic melanoma; role of interferons in management of melanoma and molecular genetics of melanoma

  18. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  19. Advanced Distribution Management System

    OpenAIRE

    Avazov, Artur; Sobinova, Lubov Anatolievna

    2016-01-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  20. Advanced Distribution Management System

    Science.gov (United States)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  1. Advanced Distribution Management System

    Directory of Open Access Journals (Sweden)

    Avazov Artur R.

    2016-01-01

    Full Text Available This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  2. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Monthly Report - November 2013

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-17

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge

  3. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  4. Integrated energy and advanced thermal management system for hybrid electric vehicles

    NARCIS (Netherlands)

    Wei, C.

    2017-01-01

    Hybrid electric vehicles (HEVs) featuring a fuel source engine and an energy storage source battery play an important role in improving fuel efficiency compared with its conventional counterparts. In view of the drawbacks of the existing research neglecting the thermal aspects when it comes to

  5. Advanced alarm management system

    International Nuclear Information System (INIS)

    Easter, J.R.

    1995-01-01

    The Westinghouse Advanced Alarm Management System (AWARE) is one of the Man-Machine Design Interfaces (MMI) which has great flexibility with regard to hardware type and configuration, alarm system concept, plant scope, engineering scope and installation. The AWARE System provides the capability to better manage the quantity prioritization and presentation of real-time process alarm messages in the control room. The messages are specific, precise and dynamic. The AWARE System can provide a large reduction in the number of messages that the control room staff must address at any one time, thus making the alarm message system a useful tool for the operators during situations that normally produce a high volume of messages as well as improving the clarity of the presentation of process abnormalities during small disturbances. The operating staff is now provided with the basis for a better understanding of the current plant state and for taking the appropriate control actions. (2 refs., 3 figs.)

  6. Guide to energy management

    International Nuclear Information System (INIS)

    2006-03-01

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  7. Advanced energy efficient windows

    DEFF Research Database (Denmark)

    Thomsen, Kirsten Engelund

    2007-01-01

    Windows should be paid special attention as they contribute a significant part of the total heat-loss coefficient of the building. Contrary to other parts of the thermal envelope the windows are not only heat loosers, but may gain heat in the day-time. Therefore there are possibilities for large...... energy savings. In terms of energy, windows occupy a special position compared with other thermal envelope structures due to their many functions: 1) windows let daylight into the building and provide occupants with visual contact with their surroundings 2) windows protect against the outdoor climate 3......) windows transmit solar energy that may contribute to a reduction of energy consumption, but which may also lead to unpleasant overheating. In the following paragraphs the current use of windows is reviewed with an emphasis on energy, while special products like solar protection glazing and security...

  8. Advances in energy research

    CERN Document Server

    Acosta, Morena J

    2013-01-01

    This book presents a comprehensive review of energy research studies from authors around the globe, including recent research in new technologies associated with the construction of nuclear power plants; oil disperse systems study using nuclear magnetic resonance relaxometry (NMRR); low energy consumption for cooling and heating systems; experimental investigation of the performance of a ground-source heat pump system for buildings heating and cooling; sustainable development of bioenergy from agricultural wastes and the environment; hazard identification and parametric analysis of toxic pollutants dispersion from large liquid hydrocarbon fuel-tank fires; maintenance benchmarking in petrochemicals plants by means of a multicriteria model; wind energy development innovation; power, people and pollution; nature and technology of geothermal energy and clean sustainable energy for the benefit of humanity and the environment; and soil thermal properties and the effects of groundwater on closed loops.

  9. Ohio Advanced Energy Manufacturing Center

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote

  10. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  11. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  12. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  13. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization, DMS Integration of Distributed Energy Resources and Microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ravindra [Argonne National Lab. (ANL), Argonne, IL (United States); Reilly, James T. [Reilly Associates, Pittston, PA (United States); Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States); Lu, Xiaonan [Argonne National Lab. (ANL), Argonne, IL (United States); Kang, Ning [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    Deregulation of the electric utility industry, environmental concerns associated with traditional fossil fuel-based power plants, volatility of electric energy costs, Federal and State regulatory support of “green” energy, and rapid technological developments all support the growth of Distributed Energy Resources (DERs) in electric utility systems and ensure an important role for DERs in the smart grid and other aspects of modern utilities. DERs include distributed generation (DG) systems, such as renewables; controllable loads (also known as demand response); and energy storage systems. This report describes the role of aggregators of DERs in providing optimal services to distribution networks, through DER monitoring and control systems—collectively referred to as a Distributed Energy Resource Management System (DERMS)—and microgrids in various configurations.

  15. Advances in Knowledge Management

    DEFF Research Database (Denmark)

    Razmerita, Liana; Phillips-Wren, Gloria; Jain, Lakhmi C.

    2016-01-01

    This chapter briefly overviews the evolution of KM from a historical perspective and discusses core concepts associated with the management of knowledge, projects and networks. We introduce theoretical perspectives that are used in the KM literature, discuss the concept of a networked-centric col......This chapter briefly overviews the evolution of KM from a historical perspective and discusses core concepts associated with the management of knowledge, projects and networks. We introduce theoretical perspectives that are used in the KM literature, discuss the concept of a networked......-centric collaborative organization, and present future technologies in KM including the management of knowledge using social media and intelligent techniques....

  16. Advances in energy deposition theory

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    In light of the fields of radiation protection and dosimetric problems in medicine, advances in the area of microscopic target related studies are discussed. Energy deposition is discussed with emphasis upon track structures of electrons and heavy charged particles and track computer calculations

  17. Advances in management engineering

    CERN Document Server

    2017-01-01

    This book deals with research in open challenges in Management Engineering in the 21st century, as well as selected opportunities and solutions to remedy them. Management Engineering is an emerging field that extends the analytical methods used in traditional Industrial Engineering and Industrial Organization to address the economic, behavioral and social dimensions of companies and their environments. Management Engineering extends its domain beyond the firm and the market to encompass the modeling and policy design of physical landscapes populated by social agents. The developments of the 21st century have made it necessary to adopt an integrative and global view of the different methodologies and tools that facilitate managers’ decision-making processes, ranging from the strategic to the operational level. This book equips readers with precisely these urgently needed resources.

  18. Advanced dementia pain management protocols.

    Science.gov (United States)

    Montoro-Lorite, Mercedes; Canalias-Reverter, Montserrat

    Pain management in advanced dementia is complex because of neurological deficits present in these patients, and nurses are directly responsible for providing interventions for the evaluation, management and relief of pain for people suffering from this health problem. In order to facilitate and help decision-makers, pain experts recommend the use of standardized protocols to guide pain management, but in Spain, comprehensive pain management protocols have not yet been developed for advanced dementia. This article reflects the need for an integrated management of pain in advanced dementia. From the review and analysis of the most current and relevant studies in the literature, we performed an approximation of the scales for the determination of pain in these patients, with the observational scale PAINAD being the most recommended for the hospital setting. In addition, we provide an overview for comprehensive management of pain in advanced dementia through the conceptual framework «a hierarchy of pain assessment techniques by McCaffery and Pasero» for the development and implementation of standardized protocols, including a four-phase cyclical process (evaluation, planning/performance, revaluation and recording), which can facilitate the correct management of pain in these patients. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  19. Advanced Micro Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and Power Quality at DoD Installations

    Science.gov (United States)

    2016-10-28

    Energy Consumption P ∝ V2 E ∝ V2 P ∝ V2 E ∝ usage Incandescent Water Heater Computer E ∝ usage P constant On/Off Usage Fixed time Temperature Gallons per...circuits. We observe that the 208V energy consumption is more affected from the human occupancy than the 480V. This is derived from the fact that the...days of the week or the month of the year shows a human pattern consumption other than weather conditions correlation. On the other hand, the 480 V

  20. Advanced medium-voltage bidirectional dc-dc conversion systems for future electric energy delivery and management systems

    Science.gov (United States)

    Fan, Haifeng

    2011-12-01

    The distributed renewable energy generation and utilization are constantly growing, and are expected to be integrated with the conventional grid. The growing pressure for innovative solutions will demand power electronics to take an even larger role in future electric energy delivery and management systems, since power electronics are required for the conversion and control of electric energy by most dispersed generation systems Furthermore, power electronics systems can provide additional intelligent energy management, grid stability and power quality capabilities. Medium-voltage isolated dc-dc converter will become one of the key interfaces for grid components with moderate power ratings. To address the demand of medium voltage (MV) and high power capability for future electric energy delivery and management systems, the power electronics community and industry have been reacting in two different ways: developing semiconductor technology or directly connecting devices in series/parallel to reach higher nominal voltages and currents while maintaining conventional converter topologies; and by developing new converter topologies with traditional semiconductor technology, known as multilevel converters or modular converters. The modular approach uses the well-known, mature, and cheaper power semiconductor devices by adopting new converter topologies. The main advantages of the modular approach include: significant improvement in reliability by introducing desired level of redundancy; standardization of components leading to reduction in manufacturing cost and time; power systems can be easily reconfigured to support varying input-output specifications; and possibly higher efficiency and power density of the overall system. Input-series output-parallel (ISOP) modular configuration is a good choice to realize MV to low voltage (LV) conversion for utility application. However, challenges still remain. First of all, for the high-frequency MV utility application, the low

  1. Economic aspects of advanced energy technologies

    International Nuclear Information System (INIS)

    Ramakumar, R.; Rodriguez, A.P.; Venkata, S.S.

    1993-01-01

    Advanced energy technologies span a wide variety of resources, techniques, and end-user requirements. Economic considerations are major factors that shape their harnessing and utilization. A discussion of the basic factors in the economic arena is presented, with particular emphasis on renewable energy technologies--photovoltaics, solar-thermal, wind-electric conversion, biomass utilization, hydro, and tidal and wave energy systems. The following are essential to determine appropriate energy system topologies: proper resource-need matching with an eye on the quality of energy requirements, integrated use of several resources and technologies, and a comprehensive consideration which includes prospecting, collection, conversion, transportation, distribution, storage and reconversion, end use, and subsequent waste management aspects. A few case studies are included to apprise the reader of the status of some of the key technologies and systems

  2. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Management System: A Duke Energy Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Giraldez, Julieta [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gruchalla, Kenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Harris, Tom [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baggu, Murali [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gantz, Jesse [GE Grid Solutions, Fairfield, CT (United States); Boardman, Ethan [GE Grid Solutions, Fairfield, CT (United States)

    2016-11-01

    Duke Energy, Alstom Grid, and the National Renewable Energy Laboratory teamed up to better understand the impacts of solar photovoltaics (PV) on distribution system operations. The core goal of the project is to compare the operational - specifically, voltage regulation - impacts of three classes of PV inverter operations: 1.) Active power only (Baseline); 2.) Local inverter control (e.g., PF...not equal...1, Q(V), etc.); and 3.) Integrated volt-VAR control (centralized through the distribution management system). These comparisons were made using multiple approaches, each of which represents an important research-and-development effort on its own: a) Quasi-steady-state time-series modeling for approximately 1 year of operations using the Alstom eTerra (DOTS) system as a simulation engine, augmented by Python scripting for scenario and time-series control and using external models for an advanced inverter; b) Power-hardware-in-the-loop (PHIL) testing of a 500-kVA-class advanced inverter and traditional voltage regulating equipment. This PHIL testing used cosimulation to link full-scale feeder simulation using DOTS in real time to hardware testing; c) Advanced visualization to provide improved insights into time-series results and other PV operational impacts; and d) Cost-benefit analysis to compare the financial and business-model impacts of each integration approach.

  3. Nanocarbons for advanced energy storage

    CERN Document Server

    Feng, Xinliang

    2015-01-01

    This first volume in the series on nanocarbons for advanced applications presents the latest achievements in the design, synthesis, characterization, and applications of these materials for electrochemical energy storage. The highly renowned series and volume editor, Xinliang Feng, has put together an internationally acclaimed expert team who covers nanocarbons such as carbon nanotubes, fullerenes, graphenes, and porous carbons. The first two parts focus on nanocarbon-based anode and cathode materials for lithium ion batteries, while the third part deals with carbon material-based supercapacit

  4. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  5. Energy Management. Special. Magazine for energy supply and energy management

    International Nuclear Information System (INIS)

    Van Mil, R.

    2000-05-01

    The special Energy Management was issued in cooperation with many participating businesses in the Netherlands which provided articles on recent developments and new services and products with respect to the liberalized energy market in the Netherlands and Europe

  6. ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPED) - Fifth Quarterly Project Report - FY14 Q1

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-13

    Technology has been developed that enables monitoring of individual cells in high - capacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high -capacity battery management system at Yardney Technical Products; (10) demonstrat ed operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge

  7. Advanced Energy Projects FY 1990 research summaries

    International Nuclear Information System (INIS)

    1990-09-01

    This report serves as a guide to prepare proposals and provides summaries of the research projects active in FY 1990, sponsored by the Office of Basic Energy Sciences Division of Advanced Energy Projects, Department of Energy. (JF)

  8. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  9. Advanced gadolinia core and Toshiba advanced reactor management system

    International Nuclear Information System (INIS)

    Miyamoto, Toshiki; Yoshioka, Ritsuo; Ebisuya, Mitsuo

    1988-01-01

    At the Hamaoka Nuclear Power Station, Unit No. 3, advanced core design and core management technology have been adopted, significantly improving plant availability, operability and reliability. The outstanding technologies are the advanced gadolinia core (AGC) which utilizes gadolinium for the axial power distribution control, and Toshiba advanced reactor management system (TARMS) which uses a three-dimensional core physics simulator to calculate the power distribution. Presented here are the effects of these advanced technologies as observed during field testing. (author)

  10. Proceedings of the Recycling Council of Ontario's energy from waste forum : is there a role for advanced thermal technologies in effective waste management?

    International Nuclear Information System (INIS)

    2006-01-01

    The lack of landfill capacity in Ontario and the threat of United States border closures to Canadian waste exportation has led to an increased interest in the viability of advanced thermal technologies for the management of waste residuals. Rising energy costs have also led governments and industries to examine the cost benefits of producing energy from waste (EFW) and using waste as a fuel replacement. This forum was held by the Recycling Council of Ontario to investigate the environmental and economic impacts of investing in EFW technologies. The forum was divided into 4 focus areas: (1) a comparison of the environmental and economic implications of landfilling and EFW technology; (2) an overview of facilities currently operating in Europe which included a policy and regulation background and an outline of technologies used; (3) an overview of EFW technologies currently used in Canada; (4) and an outline of municipal and privately-owned EFW pilot plants and proposed facilities in Ontario. Descriptions of facilities were provided, as well as a history of the policy decisions and processes needed to include EFW as a waste management tool. Issues concerning public consultation practices and the impact of EFW on waste diversion activities were reviewed, and a descriptions of EFW technologies were provided. Eleven presentations were given at the forum, 3 of which were catalogued separately for inclusion in this database. refs., tabs., figs

  11. Energy management manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Pueblo of Laguna lies in the Grants Uranium Belt. The Grants belt is the source of more than half of all uranium produced in the US. Currently the Pueblo has development agreements with Conoco and Anaconda. Only the Anaconda leasehold has been developed - an open pit mine and 2 underground mines. The Pueblo has several areas of concern in managing mineral development. These include monitoring and enforcing performance standards, and taxing severance of uranium from the land. Constraints on tribal regulation of energy development are discussed in Chapter 1. Energy management program needs of the Pueblo of Laguna are discussed in Chapter 2. Chapter three contains the energy management plan to be used by the Pueblo as it formulates and implements an energy development and management strategy. (DMC)

  12. Municipal energy managers

    International Nuclear Information System (INIS)

    2004-01-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  13. Data management system advanced development

    Science.gov (United States)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  14. Energy manager's handbook

    Energy Technology Data Exchange (ETDEWEB)

    Payne, G A

    1977-01-01

    The handbook provides sufficient guidance on the principles involved for readers to tailor a program to meet their own requirement. The following chapters are included: Energy Conservation; Management of Energy; Delivery, Storage, and Handling of Fuels; Boilers; Furnaces; Heat Distribution and Utilization; Industrial Space Heating; Electricity; Services; and Road Transport. (MCW)

  15. Energy management manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The Jacarilla reservation lies on the San Juan Basin in New Mexico, with vast oil and gas deposits, actively developed since the late 1950s. Constraints on Tribal regulation of energy development are discussed in Section I. Section II describes the relationship between Federal agencies and the Tribe; identifies energy management problems; recommends management activities to address the problems; and points out skill requirements. The Tribe has now adopted a formal statement of goals and objectives for its minerals management program and details of the program are described in Section III. Information on the legal analysis of oil and gas development on the land of the Tribe is given in the appendix. (MCW)

  16. Smart energy management system

    Science.gov (United States)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  17. Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach

    International Nuclear Information System (INIS)

    Mayyas, Abdel Ra'ouf; Kumar, Sushil; Pisu, Pierluigi; Rios, Jacqueline; Jethani, Puneet

    2017-01-01

    implementation of VHiL, a comparative study between Rule Based (RB) energy management strategy (EMS) and Equivalent Consumption Minimization Strategy (ECMS) to Control Parallel Through-The-Road Hybrid Electric Vehicle (PTTR-HEV) is performed. The study shows that the actual fuel efficiency of the tested vehicle under both control strategies can be used in order to evaluate the effectiveness of energy conversion efficiency of the powertrain system. The fuel consumption of hybridized powertrain is compared with the conventional powertrain equipped in an actual vehicle to help comprehend the degree of efficiency attained by the hybridization. This process is developed in order to enable effective tuning/validation of advanced energy management strategies utilized in hybrid electric powertrain through an evaluation of a complete real chassis system subject to electric hybridization. The VHiL is considered as new evolution for the utilization of vehicle test bed as a predictive mechatronic platform for the development of energy efficient electrified propulsion systems and thus reduce cost and time.

  18. Stargate: Energy Management Techniques

    OpenAIRE

    Vijay Raghunathan; Mani Srivastava; Trevor Pering; Roy Want

    2004-01-01

    This poster presents techniques for energy efficient operation of the Stargate wireless platform. In addition to conventional power management techniques such as dynamic voltage and scaling and processor shutdown, the Stargate features several mechanisms for energy efficient operation of the communication subsystem, such as support for hierarchical radios, Bluetooth based remote wakeup, mote based wakeup, etc. Finally, design optimizations including the use of power gating, and provision for ...

  19. Nanoscale Advances in Catalysis and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yimin; Somorjai, Gabor A.

    2010-05-12

    In this perspective, we present an overview of nanoscience applications in catalysis, energy conversion, and energy conservation technologies. We discuss how novel physical and chemical properties of nanomaterials can be applied and engineered to meet the advanced material requirements in the new generation of chemical and energy conversion devices. We highlight some of the latest advances in these nanotechnologies and provide an outlook at the major challenges for further developments.

  20. DEM - distribution energy management

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A; Kekkonen, V; Koreneff, G [VTT Energy, Espoo (Finland); and others

    1998-08-01

    The electricity market was de-regulated in Finland at the end of 1995 and the customers can now freely choose their power suppliers. The national grid and local distribution network operators are now separated from the energy business. The network operators transmit the electric power to the customers on equal terms regardless from whom the power is purchased. The Finnish national grid is owned by one company Finnish Power Grid PLC (Fingrid). The major shareholders of Fingrid are the state of Finland, two major power companies and institutional investors. In addition there are about 100 local distribution utilities operating the local 110 kV, 20 kV and 0.4 kV networks. The distribution utilities are mostly owned by the municipalities and towns. In each network one energy supplier is always responsible for the hourly energy balance in the network (a `host`) and it also has the obligation to provide public energy prices accessible to any customer in the network`s area. The Finnish regulating authorities nominate such a supplier who has a dominant market share in the network`s area as the supplier responsible for the network`s energy balance. A regulating authority, called the Electricity Market Centre, ensures that the market is operating properly. The transmission prices and public energy prices are under the Electricity Market Centre`s control. For domestic and other small customers the cost of hourly metering (ca. 1000 US$) would be prohibitive and therefore the use of conventional energy metering and load models is under consideration by the authorities. Small customer trade with the load models (instead of the hourly energy recording) is scheduled to start in the first half of 1998. In this presentation, the problems of energy management from the standpoint of the energy trading and distributing companies in the new situation are first discussed. The topics covered are: the hourly load data management, the forecasting and estimation of hourly energy demands

  1. Fossil energy waste management. Technology status report

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  2. Advanced Energy Validated Photovoltaic Inverter Technology at NREL | Energy

    Science.gov (United States)

    Inverter Technology at NREL Advanced Energy Industries-NREL's first partner at the Energy Systems Integration Facility (ESIF)-validated its advanced photovoltaic (PV) inverter technology using the ESIF's computer screen in a laboratory, with power inverter hardware in the background Photo by Dennis Schroeder

  3. Energy management in municipal heritage

    International Nuclear Information System (INIS)

    2004-01-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  4. Center for Advanced Energy Studies Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kostelnik

    2005-09-01

    The world is facing critical energy-related challenges regarding world and national energy demands, advanced science and energy technology delivery, nuclear engineering educational shortfalls, and adequately trained technical staff. Resolution of these issues is important for the United States to ensure a secure and affordable energy supply, which is essential for maintaining U.S. national security, continued economic prosperity, and future sustainable development. One way that the U.S. Department of Energy (DOE) is addressing these challenges is by tasking the Battelle Energy Alliance, LLC (BEA) with developing the Center for Advanced Energy Studies (CAES) at the Idaho National Laboratory (INL). By 2015, CAES will be a self-sustaining, world-class, academic and research institution where the INL; DOE; Idaho, regional, and other national universities; and the international community will cooperate to conduct critical energy-related research, classroom instruction, technical training, policy conceptualization, public dialogue, and other events.

  5. Advanced Energy Retrofit Guide Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  6. Advanced Energy Retrofit Guide Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-19

    The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energy’s Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  7. Energy Management in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Dario Bruneo

    2012-09-01

    Full Text Available The Smart Grid vision imposes a new approach towards energy supply that is more affordable, reliable and sustainable. The core of this new vision is the use of advanced technology to monitor power system dynamics in real time and identify system in stability. In order to implement strategic vision for energy management, it is possible to identify three main areas of investigation such as smart generation, smart grid and smart customer. Focusing on the latter topic, in this paper we present an application specifically designed to monitor an industrial site with particular attention to power consumption. This solution is a real time analysis tool, able to produce useful results to have a strategic approach in the energy market and to provide statistic analysis useful for the future choices of the industrial company. The application is based on a three layers architecture. The technological layer uses a Wireless Sensor Network (WSN to acquire data from the electrical substations. The middleware layer faces the integration problems by processing the raw data. The application layer manages the data acquired from the sensors. This WSN based architecture represents an interesting example of a low cost and non-invasive monitoring application to keep the energy consumption of an industrial site under control. Some of the added value features of the proposed solution are the routing network protocol, selected in order to have an high availability of the WSN, and the use of the WhereX middleware, able to easily implement integration among the different architectural parts.

  8. Energy management in Lucknow city

    International Nuclear Information System (INIS)

    Zia, Hina; Devadas, V.

    2007-01-01

    In this paper, an attempt is made to prepare an energy management model for Lucknow city along with policy recommendations for optimal energy utilization and management. At the outset, the authors have reviewed the related literature on energy management in the urban system. The entire collected literature is divided into the following sections, such as, energy resource assessment, energy consumption, energy and economy, energy and environment, energy and transportation, forecasting the energy demand and supply, alternate energy sources and technologies, energy conservation and demand-side management and energy management measures in India, and are reviewed thoroughly and presented. Subsequently, an attempt is made to establish the importance of energy in urban development by using Systems concept. Lucknow city has been chosen for investigation in this study. A detailed methodology is developed for organizing the survey at the grassroots level to evolve feasible strategies for optimal energy management in the study area. An attempt is further made to assess the available energy resource in the city, and the energy consumption by source wise in the city and estimating the energy gap in the year 2011. The paper concludes with preparation of a detailed energy management model for Lucknow city to reduce the expected energy gap for the year 2011. The recommendations are made for supply augmentation, demand-side management and policy measures to be taken by the government authorities

  9. Guidelines for education in energy management

    Directory of Open Access Journals (Sweden)

    Morales, C. M.

    2014-01-01

    Full Text Available Although educating for energy management is nowadays recognized as an important topic, the process of training is far from the ideal. One of the main shortcomings identified in the research is related to procedures selection, aside from the consensus of academic authorities of its inter-disciplinary character. This article aims to highlight the guidelines for education in energy management, as well as to advance the workshops for its implementation. The results of the research are only a part of a Ph D studied completed by the writer. The effectiveness of the proposal was appraised experimentally and subjected to specialists’ valuation. Key words: education in energy management, guidelines, environmental education.

  10. Harmonics and energy management

    International Nuclear Information System (INIS)

    Andresen, M.

    1993-01-01

    To summarize what this paper has presented: Voltage and current non-sinusoidal wave shapes exist in our power system. These harmonics result from the prolific use of non-linear loads. The use of these types of loads is increasing dramatically, partly due to the push to implement energy management techniques involving harmonic generating equipment. Harmonic analysis can identify specific harmonics, their frequency, magnitude, and phase shift referenced to the fundamental. Harmonic distortion forces the use of true RMS multimeters for measurement accuracy. High levels of neutral current and N-G voltages are now possible. Transformers may overheat and fail even though they are below rated capacity. Low power factors due to harmonics cannot be corrected by the installation of capacitors, and knowledge of the fundamental VARs or the displacement power factor is needed to use capacitors alone for power factor correction. The harmonic related problems presented are by no means an exhaustive list. Many other concerns arise when harmonics are involved in the power system. The critical issue behind these problems is that many of the devices being recommended from an energy management point of view are contributing to the harmonic levels, and thus to the potential for harmonic problems. We can no longer live in the sinusoidal mentality if we are to be effective in saving energy and reducing costs

  11. Advanced Energy Efficient Roof System

    Energy Technology Data Exchange (ETDEWEB)

    Jane Davidson

    2008-09-30

    Energy consumption in buildings represents 40 percent of primary U.S. energy consumption, split almost equally between residential (22%) and commercial (18%) buildings.1 Space heating (31%) and cooling (12%) account for approximately 9 quadrillion Btu. Improvements in the building envelope can have a significant impact on reducing energy consumption. Thermal losses (or gains) from the roof make up 14 percent of the building component energy load. Infiltration through the building envelope, including the roof, accounts for an additional 28 percent of the heating loads and 16 percent of the cooling loads. These figures provide a strong incentive to develop and implement more energy efficient roof systems. The roof is perhaps the most challenging component of the building envelope to change for many reasons. The engineered roof truss, which has been around since 1956, is relatively low cost and is the industry standard. The roof has multiple functions. A typical wood frame home lasts a long time. Building codes vary across the country. Customer and trade acceptance of new building products and materials may impede market penetration. The energy savings of a new roof system must be balanced with other requirements such as first and life-cycle costs, durability, appearance, and ease of construction. Conventional residential roof construction utilizes closely spaced roof trusses supporting a layer of sheathing and roofing materials. Gypsum board is typically attached to the lower chord of the trusses forming the finished ceiling for the occupied space. Often in warmer climates, the HVAC system and ducts are placed in the unconditioned and otherwise unusable attic. High temperature differentials and leaky ducts result in thermal losses. Penetrations through the ceilings are notoriously difficult to seal and lead to moisture and air infiltration. These issues all contribute to greater energy use and have led builders to consider construction of a conditioned attic. The

  12. Recent BWR fuel management reactor physics advances

    International Nuclear Information System (INIS)

    Crowther, R.L.; Congdon, S.P.; Crawford, B.W.; Kang, C.M.; Martin, C.L.; Reese, A.P.; Savoia, P.J.; Specker, S.R.; Welchly, R.

    1982-01-01

    Improvements in BWR fuel management have been under development to reduce uranium and separative work (SWU) requirements and reduce fuel cycle costs, while also maintaining maximal capacity factors and high fuel reliability. Improved reactor physics methods are playing an increasingly important role in making such advances feasible. The improved design, process computer and analysis methods both increase knowledge of the thermal margins which are available to implement fuel management advance, and improve the capability to reliably and efficiently analyze and design for fuel management advances. Gamma scan measurements of the power distributions of advanced fuel assembly and advanced reactor core designs, and improved in-core instruments also are important contributors to improving 3-d predictive methods and to increasing thermal margins. This paper is an overview of the recent advances in BWR reactor physics fuel management methods, coupled with fuel management and core design advances. The reactor physics measurements which are required to confirm the predictions of performance fo fuel management advances also are summarized

  13. Microsoft System Center Configuration Manager advanced deployment

    CERN Document Server

    Coupland, Martyn

    2014-01-01

    If you are an experienced Configuration Manager administrator looking to advance your career or get more from your current environment, then this book is ideal for you. Prior experience of deploying and managing a Configuration Manager site would be helpful in following the examples throughout this book.

  14. Advanced Fibre Based Energy Storage

    Science.gov (United States)

    Reid, Daniel Oliver

    New energy storage devices are required to enable future technologies. With the rise of wearable consumer and medical devices, a suitable flexible and wearable means of storing electrical energy is required. Fibre-based devices present a possible method of achieving this aim. Fibres are inherently more flexible than their bulk counterparts, and as such can be employed to form the electrodes of flexible batteries and capacitors. They also present a facile possibility for incorporation into many fabrics and clothes, further boosting their potential for use in wearable devices. Electrically conducting fibres were produced from a dispersion of carbon nanomaterials in a room temperature ionic liquid. Coagulation of this dispersion was achieved through manual injection into aqueous solutions of xanthan gum. The limitations of this method are highlighted by very low ultimate tensile strengths of these fibres, in the order of 3 MPa, with high variation within all of the fibres. Fibres were also produced via scrolling of bi-component films containing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and poly(vinyl alcohol) (PVA). Chemical treatments were employed to impart water compatibility to these fibres, and their electrochemical, physical and electrical properties were analysed. Fibres were wet spun from two PEDOT:PSS sources, in several fibre diameters. The effect of chemical treatments on the fibres were investigated and compared. Short 5 min treatment times with dimethyl sulfoxide (DMSO) on 20 mum fibres produced from Clevios PH1000 were found to produce the best overall treatment. Up to a six-fold increase in electrical conductivity resulted, reaching 800 S cm-1, with up to 40 % increase in specific capacitance and no loss of mechanical strength (55 F g-1 and 150 MPa recorded). A wet spinning system to produce PEDOT:PSS fibres containing functionalised graphenes and carbon nanotubes, as well as birnessite nanotubes was subsequently developed

  15. 50% Advanced Energy Design Guides: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  16. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  17. Advanced energy projects FY 1992 research summaries

    International Nuclear Information System (INIS)

    1992-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are beyond the scope of ongoing applied research or technology development programs. The Division provides a mechanism for converting basic research findings to applications that eventually could impact the Nation's energy economy. Technical topics include physical, chemical, materials, engineering, and biotechnologies. Projects can involve interdisciplinary approaches to solve energy-related problems. Projects are supported for a finite period of time, which is typically three years. Annual funding levels for projects are usually about $300,000 but can vary from approximately $50,000 to $500,000. It is expected that, following AEP support, each concept will be sufficiently developed and promising to attract further funding from other sources in order to realize its full potential. There were 39 research projects in the Division of Advanced Energy Projects during Fiscal Year 1992 (October 1, 1991 -- September 30, 1992). The abstracts of those projects are provided to introduce the overall program in Advanced Energy Projects. Further information on a specific project may be obtained by contacting the principal investigator, who is listed below the project title. Projects completed during FY 1992 are indicated

  18. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States)

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  19. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  20. Industrial energy management; Betriebliches Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, D.

    2007-07-01

    Effective and successful energy and facility management uses a holistic view in which the life cycles of plants and buildings are considered, plus efficient controlling and reporting. The challenge is not in short-term cost reduction but in ensuring long-term effects. This requires management strategies which make use of synergy effects by means of interdisciplinary measures. Main topics: management of energy utilization, energy conversion and energy supply. (GL)

  1. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  2. Contemporary management of advanced laryngeal cancer.

    Science.gov (United States)

    Britt, Christopher J; Gourin, Christine G

    2017-10-01

    The treatment of advanced laryngeal cancer has undergone a paradigm shift in recent years, with an increase in chemoradiation for organ preservation and a decrease in primary surgery. This review will summarize the contemporary management of advanced laryngeal cancer and discuss treatment-related toxicity and strategies to improve outcomes. NA.

  3. Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-05

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection. While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  4. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  5. Management of Advanced Laryngeal Cancer

    Directory of Open Access Journals (Sweden)

    Patrick Sheahan

    2014-04-01

    Full Text Available Squamous cell carcinoma of the larynx continues to be the commonest head and neck cancer in many Western countries. The larynx plays a key role for many essential functions, including breathing, voice production, airway protection, and swallowing. The goals of laryngeal cancer treatment are thus to provide best possible oncologic control, while optimizing functional outcomes. In recent decades, the treatment paradigm for advanced laryngeal cancer has shifted from one of primary surgery (total laryngectomy as gold standard, toward non-surgical organ-preserving treatment using radiotherapy or chemoradiotherapy. However, concerns have emerged regarding functional outcomes after chemoradiotherapy, as well as possible decreased overall survival in patients with laryngeal cancer. The purpose of the present review is to review surgical and non-surgical options for treatment of advanced laryngeal cancer, as well as the evidence supporting each of these.

  6. Advances in energy and environment. Vol. 1: Energy

    International Nuclear Information System (INIS)

    El-Sharkawy, A.L.; Kummler, R.H.

    1996-01-01

    The 5th conference of energy and environment was held on 3-6 June 1996 in Cairo. The specialists discussed the effects of advances in energy and environment. The applications of solar energy, heat transfer, thermal application, storage and bio-conversion, fuels, energy and development. Studies were discussed at the meeting and more than 1000 papers were presented. This first volume covers papers presented on the following topics: solar thermal, heat transfer and thermal applications, storage and bio-conversion, refrigeration and iar conditioning, combustion, fuels and engines, energy and development. tabs., figs

  7. Performance Enhancements for Advanced Database Management Systems

    OpenAIRE

    Helmer, Sven

    2000-01-01

    New applications have emerged, demanding database management systems with enhanced functionality. However, high performance is a necessary precondition for the acceptance of such systems by end users. In this context we developed, implemented, and tested algorithms and index structures for improving the performance of advanced database management systems. We focused on index structures and join algorithms for set-valued attributes.

  8. Advanced Interval Management: A Benefit Analysis

    Science.gov (United States)

    Timer, Sebastian; Peters, Mark

    2016-01-01

    This document is the final report for the NASA Langley Research Center (LaRC)- sponsored task order 'Possible Benefits for Advanced Interval Management Operations.' Under this research project, Architecture Technology Corporation performed an analysis to determine the maximum potential benefit to be gained if specific Advanced Interval Management (AIM) operations were implemented in the National Airspace System (NAS). The motivation for this research is to guide NASA decision-making on which Interval Management (IM) applications offer the most potential benefit and warrant further research.

  9. Municipal energy managers; Responsables energie municipaux

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    On 1 and 2 July, municipal energy managers from all over Europe met in Stuttgart, Germany. On these two days, more the 150 participants form 22 countries listened to presentations, took part in excursions to cutting-edge energy conservation projects in Stuttgart and, above all, participated in a broad array of workshops presented by experts firmly grounded in local practice. 27 experts drawn from 11 European countries showcased their projects and imparted their experience. The event has been accompanied by an exhibition of companies and service providers offering energy-conservation products and planning services. The first workshop dealt with energy management in Europe and examples from different active municipalities; the second one with energy management in Germany and best practice in the leading cities; the third one with non-municipal and European projects. (A.L.B.)

  10. Energy Management Curriculum Starter Kit

    Energy Technology Data Exchange (ETDEWEB)

    Turner, W.C.

    1987-02-01

    The Energy Management Curriculum Starter Kit was designed to help engineering educators develop and teach energy management courses. Montana State University and Oklahoma State University courses are embodied in the model curriculum given. The curricula offered at many other universities throughout the United States are also presented. The kit was designed specifically to train engineering students to be good energy managers. Courses at both the undergraduate and postgraduate level are presented.

  11. Federal Energy Management Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-05

    Brochure offers an overview of the Federal Energy Management Program (FEMP), which provides agencies and organizations with the information, tools, and assistance they need to achieve their energy-related requirements and goals through specialized initiatives.

  12. Advanced reactors and future energy market needs

    International Nuclear Information System (INIS)

    Paillere, Henri; )

    2017-01-01

    Based on the results of a very well-attended international workshop on 'Advanced Reactor Systems and Future Energy Market Needs' that took place in April 2017, the NEA has embarked on a two-year study with the objective of analysing evolving energy market needs and requirements, as well as examining how well reactor technologies under development today will fit into tomorrow's low-carbon world. The NEA Expert Group on Advanced Reactor Systems and Future Energy Market Needs (ARFEM) held its first meeting on 5-6 July 2017 with experts from Canada, France, Italy, Japan, Korea, Poland, Romania, Russia and the United Kingdom. The outcome of the study will provide much needed insight into how well nuclear can fulfil its role as a key low-carbon technology, and help identify challenges related to new operational, regulatory or market requirements

  13. Advanced energy utilization MHD power generation

    International Nuclear Information System (INIS)

    2008-01-01

    The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)

  14. Exploring the energy benefits of advanced water metering

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hans, Liesel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piscopo, Kate [Univ. of California, Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-01

    Recent improvements to advanced water metering and communications technologies have the potential to improve the management of water resources and utility infrastructure, benefiting both utilities and ratepayers. The highly granular, near-real-time data and opportunity for automated control provided by these advanced systems may yield operational benefits similar to those afforded by similar technologies in the energy sector. While significant progress has been made in quantifying the water-related benefits of these technologies, the research on quantifying the energy benefits of improved water metering is underdeveloped. Some studies have quantified the embedded energy in water in California, however these findings are based on data more than a decade old, and unanimously assert that more research is needed to further explore how topography, climate, water source, and other factors impact their findings. In this report, we show how water-related advanced metering systems may present a broader and more significant set of energy-related benefits. We review the open literature of water-related advanced metering technologies and their applications, discuss common themes with a series of water and energy experts, and perform a preliminary scoping analysis of advanced water metering deployment and use in California. We find that the open literature provides very little discussion of the energy savings potential of advanced water metering, despite the substantial energy necessary for water’s extraction, conveyance, treatment, distribution, and eventual end use. We also find that water AMI has the potential to provide water-energy co-efficiencies through improved water systems management, with benefits including improved customer education, automated leak detection, water measurement and verification, optimized system operation, and inherent water and energy conservation. Our findings also suggest that the adoption of these technologies in the water sector has been slow

  15. Advanced energy projects FY 1994 research summaries

    International Nuclear Information System (INIS)

    1994-09-01

    The Division of Advanced Energy Projects (AEP) provides support to explore the feasibility of novel, energy-related concepts that evolve from advances in basic research. These concepts are typically at an early stage of scientific definition and, therefore, are premature for consideration by applied research or technology development programs. The AEP also supports high-risk, exploratory concepts that do not readily fit into a program area but could have several applications that may span scientific disciplines or technical areas. Projects supported by the Division arise from unsolicited ideas and concepts submitted by researchers. The portfolio of projects is dynamic and reflects the broad role of the Department in supporting research and development for improving the Nation's energy outlook. FY 1994 projects include the following topical areas: novel materials for energy technology; renewable and biodegradable materials; exploring uses of new scientific discoveries; alternate pathways to energy efficiency; alternative energy sources; and innovative approaches to waste treatment and reduction. Summaries are given for 66 projects

  16. New energy technologies 4. Energy management and energy efficiency

    International Nuclear Information System (INIS)

    Sabonnadiere, J.C.; Caire, R.; Raison, B.; Quenard, D.; Verneau, G.; Zissis, G.

    2007-01-01

    This forth tome of the new energy technologies handbook is devoted to energy management and to the improvement of energy efficiency. The energy management by decentralized generation insertion and network-driven load control, analyzes the insertion and management means of small power generation in distribution networks and the means for load management by the network with the aim of saving energy and limiting peak loads. The second part, devoted to energy efficiency presents in a detailed way the technologies allowing an optimal management of energy in buildings and leading to the implementation of positive energy buildings. A special chapter treats of energy saving using new lighting technologies in the private and public sectors. Content: 1 - decentralized power generation - impacts and solutions: threat or opportunity; deregulation; emerging generation means; impact of decentralized generation on power networks; elements of solution; 2 - mastery of energy demand - loads control by the network: stakes of loads control; choice of loads to be controlled; communication needs; measurements and controls for loads control; model and algorithm needs for loads control. A better energy efficiency: 3 - towards positive energy buildings: key data for Europe; how to convert fossil energy consuming buildings into low-energy consuming and even energy generating buildings; the Minergie brand; the PassivHaus or 'passive house' label; the zero-energy house/zero-energy home (ZEH); the zero-energy building (ZEB); the positive energy house; comparison between the three Minergie/PassivHaus/ZEH types of houses; beyond the positive energy building; 4 - light sources and lighting systems - from technology to energy saving: lighting yesterday and today; light sources and energy conversion; energy saving in the domain of lighting: study of some type-cases; what future for light sources. (J.S.)

  17. Management of patients with advanced prostate cancer

    DEFF Research Database (Denmark)

    Gillessen, S; Omlin, A; Attard, G

    2015-01-01

    The first St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) Expert Panel identified and reviewed the available evidence for the ten most important areas of controversy in advanced prostate cancer (APC) management. The successful registration of several drugs for castration......-resistant prostate cancer and the recent studies of chemo-hormonal therapy in men with castration-naïve prostate cancer have led to considerable uncertainty as to the best treatment choices, sequence of treatment options and appropriate patient selection. Management recommendations based on expert opinion...

  18. How Symmetrical Assumptions Advance Strategic Management Research

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Hallberg, Hallberg

    2014-01-01

    We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...

  19. Advanced energy projects: FY 1987 research summaries

    International Nuclear Information System (INIS)

    1987-09-01

    This report contains brief summaries of all projects active in the Division of Advanced Energy Projects during Fiscal Year 1987 (October 1, 1986-September 30, 1987). The intent of this compilation is to provide a convenient means for quickly acquainting an interested reader with the program in Advanced Energy Projects. More detailed information on research activities in a particular project may be obtained by contacting directly the principal investigator. Some projects will have reached the end of their contract periods by the time this book appears, and will, therefore, no longer be active. Those cases in which work was completed in FY '87 are indicated by the footnote: Project completed. The annual funding level of each project is shown

  20. Energy management systems in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lush, D. M.

    1979-07-01

    An investigation is made of the range of possibilities available from three types of systems (automatic control devices, building envelope, and the occupants) in buildings. The following subjects are discussed: general (buildings, design and personnel); new buildings (envelope, designers, energy and load calculations, plant design, general design parameters); existing buildings (conservation measures, general energy management, air conditioned buildings, industrial buildings); man and motivation (general, energy management and documentation, maintenance, motivation); automatic energy management systems (thermostatic controls, optimized plant start up, air conditioned and industrial buildings, building automatic systems). (MCW)

  1. Advances in urethral stricture management

    Science.gov (United States)

    Gallegos, Maxx A.; Santucci, Richard A.

    2016-01-01

    Urethral stricture/stenosis is a narrowing of the urethral lumen. These conditions greatly impact the health and quality of life of patients. Management of urethral strictures/stenosis is complex and requires careful evaluation. The treatment options for urethral stricture vary in their success rates. Urethral dilation and internal urethrotomy are the most commonly performed procedures but carry the lowest chance for long-term success (0–9%). Urethroplasty has a much higher chance of success (85–90%) and is considered the gold-standard treatment. The most common urethroplasty techniques are excision and primary anastomosis and graft onlay urethroplasty. Anastomotic urethroplasty and graft urethroplasty have similar long-term success rates, although long-term data have yet to confirm equal efficacy. Anastomotic urethroplasty may have higher rates of sexual dysfunction. Posterior urethral stenosis is typically caused by previous urologic surgery. It is treated endoscopically with radial incisions. The use of mitomycin C may decrease recurrence. An exciting area of research is tissue engineering and scar modulation to augment stricture treatment. These include the use of acellular matrices or tissue-engineered buccal mucosa to produce grafting material for urethroplasty. Other experimental strategies aim to prevent scar formation altogether. PMID:28105329

  2. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, B.

    2013-07-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

  3. Intelligent energy management; Intelligentes Energiemanagement

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Carsten [Siemens AG, Nuernberg (Germany). Bereich Sales and Marketing; Kunzmann, Geo [Siemens AG, Nuernberg (Germany). Bereich Business Development

    2010-03-15

    As energy is getting shorter and increasingly expensive while consumption is increasing and legal regulations are getting stricter, intelligent energy management is becoming more necessary than ever. The autors propose an integrated strategy of ''identification - evaluation - saving''. They present a scalable energy management software that works also with existing hardware and helps to develop even savings potentials that are not identifiable at first glance. (orig.)

  4. Energy management in multi-commodity smart energy systems with a greedy approach

    NARCIS (Netherlands)

    Shi, H.; Blaauwbroek, N.; Nguyen, H.P.; Kamphuis, I.G.

    2016-01-01

    Along with the development of Smart Energy System (SES), the advancing popularity of hybrid energy appliances, such as micro-combined heat and power (CHP) and electric heaters, requires an overall energy management strategy to optimize the energy using while guaranteeing energy supply for both the

  5. Energy Consumption Management in Design

    NARCIS (Netherlands)

    Smit, Jaap

    1997-01-01

    A survey of the basic issues in low power design is presented, including techniques for the analysis of energy consumption in the early design phase of analog and digital circuits. The concept of energy complexity will be introduced in conjunction with techniques for parameterized energy management.

  6. Advanced Inverter Functions and Communication Protocols for Distribution Management

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Adarsh; Palmintier, Bryan; Baggu, Murali

    2016-05-05

    This paper aims at identifying the advanced features required by distribution management systems (DMS) service providers to bring inverter-connected distributed energy resources into use as an intelligent grid resource. This work explores the standard functions needed in the future DMS for enterprise integration of distributed energy resources (DER). The important DMS functionalities such as DER management in aggregate groups, including the discovery of capabilities, status monitoring, and dispatch of real and reactive power are addressed in this paper. It is intended to provide the industry with a point of reference for DER integration with other utility applications and to provide guidance to research and standards development organizations.

  7. Inventory management with advance capacity information

    NARCIS (Netherlands)

    Jaksic, M.; Fransoo, J.C.; Tan, T.; Kok, de A.G.; Rusjan, B.

    2008-01-01

    One of the important aspects of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced, if a company is able to obtain advance capacity information (ACI) on future supply/production capacity availability from its supplier. We address a

  8. Inventory management with advance capacity information

    NARCIS (Netherlands)

    Jaksic, M.; Fransoo, J.C.; Tan, T.; Kok, de A.G.; Rusjan, B.

    2011-01-01

    An important aspect of supply chain management is dealing with demand and supply uncertainty. The uncertainty of future supply can be reduced if a company is able to obtain advance capacity information (ACI) about future supply/production capacity availability from its supplier. We address a

  9. Surgical management of advanced ocular adnexal amyloidosis.

    Science.gov (United States)

    Patrinely, J R; Koch, D D

    1992-06-01

    Ocular adnexal amyloidosis is characterized by amyloid deposition within the deep connective tissue layers of the eyelids, conjunctiva, and anterior orbit. Management of advanced cases has traditionally been unsatisfactory, with either no surgery offered because of fear of hemorrhage or an en bloc resection performed of the entire involved area. We present two cases of advanced periorbital amyloidosis successfully managed by preserving the anatomic planes of the eyelids and meticulously debulking the deposits with a spooned curette. Lax eyelid tendons and aponeuroses were simultaneously repaired, and no sacrifice of eyelid tissues was necessary. One patient remained asymptomatic for 2 years after surgery before developing early reaccumulation in the lower eyelids. The other patient required additional eyelid debulking and ptosis revision 8 months after surgery, but was in stable condition at follow-up 2 years after surgery. This technique offers safe, easily repeatable, nondestructive treatment for advanced periocular amyloidosis.

  10. PROJECT APPROACH TO ENERGY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Інга Борисівна СЕМКО

    2016-02-01

    Full Text Available Project management is widely used around the world as a tool to improve business performance. Correct implementation of the program of implementation of energy efficiency is accompanied by the adoption of an appropriate legislative framework, support programs, the approval of market-based instruments. Currently, it is paying enough attention to the effective application of market-based instruments, although most of the activities in the field of energy efficiency from the economic side are quite profitable. The authors suggested the use of the methodology of project management to the management of energy-saving measures, new approaches to the place and role of project management in the hierarchy of guidance. As a result, this innovation can improve the competitiveness of enterprises. The conclusions that the energy-saving project management allows you to get the best results for their implementation by reducing the time, resources, risk reduction.

  11. Energy managers worldwide

    Energy Technology Data Exchange (ETDEWEB)

    King, P

    1979-12-01

    An association of individuals having skills in a range of disciplines and having recent experience in the energy field could form to develop a British energy conservation equipment packager that would take advantage of a wide-open international market. There is evidence of business opportunities to deal with both individuals and countries in the energy-saving field and, although critics claim that British industry is lagging behind its foreign counterparts, British expertise and a record of energy efficiency is evident. Opportunities for an energy equipment package are suggested in American and Japanese apartment house water and space heating, direct firing of process steam and hot water, and waste heat recovery. The package concept would bring together a fragmented industry of equipment manufacturers and consultants. (DCK)

  12. Advanced Energy Industries, Inc. SEGIS developments.

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  13. Licensed bases management for advanced nuclear plants

    International Nuclear Information System (INIS)

    O'Connell, J.; Rumble, E.; Rodwell, E.

    2001-01-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  14. Licensed bases management for advanced nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, J [Duke Engineering and Services, Marlborough, MA (United States); Rumble, E; Rodwell, E [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  15. Licensed bases management for advanced nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, J. [Duke Engineering and Services, Marlborough, MA (United States); Rumble, E.; Rodwell, E. [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Prospective Advanced Nuclear Plant (ANP) owners must have high confidence that the integrity of the licensed bases (LB) of a plant will be effectively maintained over its life cycle. Currently, licensing engineers use text retrieval systems, database managers, and checklists to access, update, and maintain vast and disparate licensing information libraries. This paper describes the demonstration of a ''twin-engine'' approach that integrates a program from the emerging class of concept searching tools with a modern Product Data Management System (PDMS) to enhance the management of LB information for an example ANP design. (author)

  16. Energy planning and management plan

    International Nuclear Information System (INIS)

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration's final draft and environmental impact statement, and Energy Planning and Management Program

  17. Energy efficiency and energy management: an abundance

    International Nuclear Information System (INIS)

    Coullet-Demaiziere, Corinne; Barthet, Marie-Claire; Tourneur, Jean-Claude; Mirguet, Olivier

    2015-01-01

    As France has just published a decree on the energy audit for large companies, and has thus been among the first countries to comply with an article of the European directive on energy efficiency, a set of articles discusses various aspects of these issues of energy efficiency and energy management. A first one presents this mandatory energy audit as a tool for a better energy efficiency, and illustrates the relationship between this commitment and the ISO 50001 standard for French large companies. A second article outlines the tools and standards of application of this energy audit in different legal texts. A third one comments the introduction of four new European arrangements on the labelling of products (indication of energy performance by retailers, objective of reduction of energy consumption, information displayed on site and on-line for various household appliances, current legislation). The next article comments the new German legislation on renewable energies which implements environmental requirements higher than European objectives, and tries to boost the carbon market. The presence of the ISO 50001 certification in the German law is also briefly addressed. Then, an article proposes an overview of a bill project, opinions of experts, and way to go for the new arrangement for energy saving certificates (CEE, certificat d'economie d'energie) launched by the French ministry of Ecology, and which aims at a 700 TWh saving. The content of each article of the bill project is presented and explained, and the relationship between certificate application and some standards is highlighted. The last article comments the decision of the European Court of Justice on the compatibility of Flemish Green Certificates with the European law

  18. Advanced Analysis Methods in High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  19. Energy managing of outsourcing principle

    International Nuclear Information System (INIS)

    Uran, Vedran

    2004-01-01

    Outsourcing means ownership or rent, management and user transmission of one type of operation of a certain company whose core-business is not that to another company bearing that business as the core one. That kind of operation and management relationship among certain activities in this work paper is described between companies of public, services and industrial sector and outsourcing company for energy supply. Benefits and barriers of outsourcing company for energy supply in Croatia are discussed. (Author)

  20. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  1. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  2. Nanoporous metals for advanced energy technologies

    CERN Document Server

    Ding, Yi

    2016-01-01

    This book covers the state-of-the-art research in nanoporous metals for potential applications in advanced energy fields, including proton exchange membrane fuel cells, Li batteries (Li ion, Li-S, and Li-O2), and supercapacitors. The related structural design and performance of nanoporous metals as well as possible mechanisms and challenges are fully addressed. The formation mechanisms of nanoporous metals during dealloying, the microstructures of nanoporous metals and characterization methods, as well as miscrostructural regulation of nanoporous metals through alloy design of precursors and surface diffusion control are also covered in detail. This is an ideal book for researchers, engineers, graduate students, and government/industry officers who are in charge of R&D investments and strategy related to energy technologies.

  3. Energy Theft in the Advanced Metering Infrastructure

    Science.gov (United States)

    McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick

    Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.

  4. Energy price risk management

    International Nuclear Information System (INIS)

    Evans, J.W.G.

    1998-01-01

    While long term, fixed price contracts for fuel procurement and export of excess power may lock in the economics of a CHP plant, these do not necessarily give the best pricing opportunities that may exist during the life of those contracts. A more prudent approach may be to vary the length of the contracts and markets are now developing in gas and electricity to assist in the management of such a portfolio. (Author)

  5. Future of energy managers groups

    Energy Technology Data Exchange (ETDEWEB)

    Henshaw, T.

    1979-07-01

    The objectives of the Energy Managers Groups, formed to provide a regular opportunity for industry and commerce to exchange views and experiences on energy conservation matters are discussed. Group procedure, liaison and cooperation, government support, and options for the future are discussed. (MCW)

  6. Advanced energy projects FY 1997 research summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The mission of the Advanced Energy Projects (AEP) program is to explore the scientific feasibility of novel energy-related concepts that are high risk, in terms of scientific feasibility, yet have a realistic potential for a high technological payoff. The concepts supported by the AEP are typically at an early stage of scientific development. They often arise from advances in basic research and are premature for consideration by applied research or technology development programs. Some are based on discoveries of new scientific phenomena or involve exploratory ideas that span multiple scientific and technical disciplines which do not fit into an existing DOE program area. In all cases, the objective is to support evaluation of the scientific or technical feasibility of the novel concepts involved. Following AEP support, it is expected that each concept will be sufficiently developed to attract further funding from other sources to realize its full potential. Projects that involve evolutionary research or technology development and demonstration are not supported by AEP. Furthermore, research projects more appropriate for another existing DOE research program are not encouraged. There were 65 projects in the AEP research portfolio during Fiscal Year 1997. Eigheen projects were initiated during that fiscal year. This document consists of short summaries of projects active in FY 1997. Further information of a specific project may be obtained by contacting the principal investigator.

  7. Scalable Multi-group Key Management for Advanced Metering Infrastructure

    OpenAIRE

    Benmalek , Mourad; Challal , Yacine; Bouabdallah , Abdelmadjid

    2015-01-01

    International audience; Advanced Metering Infrastructure (AMI) is composed of systems and networks to incorporate changes for modernizing the electricity grid, reduce peak loads, and meet energy efficiency targets. AMI is a privileged target for security attacks with potentially great damage against infrastructures and privacy. For this reason, Key Management has been identified as one of the most challenging topics in AMI development. In this paper, we propose a new Scalable multi-group key ...

  8. Energy management does save money

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, A

    1989-07-01

    A brief article reviews the importance of various types of control systems in conserving energy in industry. A wide range of examples is quoted including expert systems, oxygen trim systems and building energy management systems. The examples are chosen to span a wide range of industrial sectors with particular mention of the food and drink industry. The importance of energy efficiency in combatting the growing concern over environmental issues and the greenhouse effect is also stressed. (UK).

  9. Energy management: the big picture

    International Nuclear Information System (INIS)

    Vesma, Vilnis.

    1997-01-01

    Since the recent dramatic fall in energy prices may have come to an end, energy managers will have to turn to a range of non-price cost reduction techniques. A framework to aid this process is provided. It rests on ten categories of activity. These are: obtaining a refund; negotiating cheaper tariffs; modifying patterns of demand; inspection and maintenance; operating practices; training awareness and motivation; waste avoidance; retrofit technology; modifying plant and equipment; energy-efficient design. (UK)

  10. Advanced technologies applied to work management

    International Nuclear Information System (INIS)

    Aldrich, L.R.

    1993-01-01

    Commonwealth Edison Company subscribes to the dose optimization principle and has implemented reasonable efforts to maintain exposures to radiation as far below dose limits as practical consistent with the state of technology, the economics of improvements in relation to the state of technology and the economics of improvements in relation to the benefits to the public health and safety. In an effort to lower collective exposures, Commonwealth Edison Company has focused on improving performance in four key areas which have proven to contribute to lower personnel exposures - Management Controls, Work practices, Source Term Reduction and Technological Advancements. This paper focuses on the advanced technologies that the Commonwealth Edison Company has employed in the areas of work planning, work performance and work monitoring to manage our occupational dose control

  11. Advanced water chemistry management in power plants

    International Nuclear Information System (INIS)

    Regis, V.; Sigon, F.

    1995-01-01

    Advanced water management based on low external impact cycle chemistry technologies and processes, effective on-line water control and monitoring, has been verified to improve water utilization and to reduce plant liquid supply and discharge. Simulations have been performed to optimize system configurations and performances, with reference to a 4 x 320 MWe/once-through boiler/AVT/river cooled power plant, to assess the effectiveness of membrane separation technologies allowing waste water reuse, to enhance water management system design and to compare these solutions on a cost/benefit analysis. 6 refs., 3 figs., 3 tabs

  12. Management of Patients with Advanced Prostate Cancer

    DEFF Research Database (Denmark)

    Gillessen, Silke; Attard, Gerhardt; Beer, Tomasz M

    2018-01-01

    some of these topics. OBJECTIVE: To present the report of APCCC 2017. DESIGN, SETTING, AND PARTICIPANTS: Ten important areas of controversy in APC management were identified: high-risk localised and locally advanced prostate cancer; "oligometastatic" prostate cancer; castration-naïve and castration...... literature review or meta-analysis. The outcomes of the voting had varying degrees of support, as reflected in the wording of this article, as well as in the detailed voting results recorded in Supplementary data. CONCLUSIONS: The presented expert voting results can be used for support in areas of management...

  13. Advances in radioactive waste management from an international perspective

    International Nuclear Information System (INIS)

    Nash, K.E.; Simmons, G.R.

    1998-01-01

    Nuclear generated electricity, is an important world energy source, currently providing 17% of the world electricity supply. Nuclear energy can be a significant part of the solution to national and international environmental problems such as air pollution and climate change. The main basis for this is the absence of polluting gas emissions namely, NO x , SO x and CO 2 . Nuclear power is considered by most people in the industry to be a sustainable energy source. Many studies have shown that the environmental externality costs of nuclear power production are low compared to other forms of energy generation. For many years the industry has invested its resources in developing comprehensive and permanent waste management solutions and has included all back end costs into its pricing structure. In this respect the industry has been a leader in sustainable development and full cost accounting, well before these reached their current prominence. A comprehensive solution to the problem of nuclear waste, especially related to high level waste has not yet been reached. Critics of nuclear power use this fact to argue that nuclear power is not a sustainable energy source. The purpose of this paper is to examine the extent to which advances in radioactive waste management have been made, and what advances remain to be made, to position nuclear power to meet the energy supply and environment challenges ahead. (author)

  14. Guide to energy management; Veiledning for energiledelse

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    A systematic and practical guide to energy management. Energy management signifies here a methodology concerning how an organisation continuously can work on improving all aspects of energy efficiency and energy consumption. Focus is on how energy management can be implemented in the companies already existing environment management systems. Useful recommendations and examples are provided (ml)

  15. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  16. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  17. Advances of energy drivers at Osaka

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Nakai, Sadao; Yamanaka, Chiyoe.

    1979-01-01

    The energy driver development at the Institute of Laser Engineering (ILE), Osaka University, comprises three fields; glass, laser, carbon dioxide laser, and relativistic electron beam. The development of reliable glass lasers has been the main program at ILE. The GEKKO 12 module program was carried out in the fiscal years from 1977 to 1979 in order to develop various laser components and subsystems which are necessary to construct a 20 kJ GEKKO 12 glass laser. The measured gain coefficient of the 200 mm disk amplifier was 0.10/cm corresponding to the αD product of 4.0. The expected peak output power of the system was 2 TW at 0.1 ns and 0.9 kJ at 1 ns. The recent advances in coating techniques will enable to operate this system over 1.3 kJ per beam at 3 ns. Carbon dioxide lasers have been developed as efficient high energy lasers to study the wave length scaling of implosion process. The design and construction of the 10 kJ LEKKO 8 laser system are in progress. Relativistic electron beam machines, being the most cost-effective driver, have been studied to control pulsed power and to investigate electron beam plasma interaction. As the future plans of ILE, the construction of a 100 kJ energy driver from 1958 to 1987 for scientific break-even experiments is considered. (Kato, T.)

  18. Advanced thermal management technologies for defense electronics

    Science.gov (United States)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  19. Information management systems improve advanced plant design

    International Nuclear Information System (INIS)

    Turk, R.S.; Serafin, S.A.; Leckley, J.B.

    1994-01-01

    Computer-aided engineering tools are proving invaluable in both the design and operation of nuclear power plants. ABB Combustion Engineering's Advanced Light Water Reactor (ALWR) features a computerized Information Management System (IMS) as an integral part of the design. The System 80+IMS represents the most powerful information management tool for Nuclear Power Plants commercially available today. Developed by Duke Power Company specifically for use by nuclear power plant owner operators, the IMS consists of appropriate hardware and software to manage and control information flow for all plant related work or tasks in a systematic, consistent, coordinated and informative manner. A significant feature of this IMS is that it is primarily based on plant data. The principal design tool, PASCE (Plant Application and Systems from Combustion Engineering), is comprised of intelligent databases that describe the design and from which accurate plant drawings are created. Additionally the IMS includes, at its hub, a relational database management system and an associated document management system. The data-based approach and applications associated with the IMS were developed, and have proven highly effective, for plant modifications, configuration management, and operations and maintenance applications at Duke Power Company's operating nuclear plants. This paper presents its major features and benefits. 4 refs

  20. Advance simulation capability for environmental management (ASCEM) - 59065

    International Nuclear Information System (INIS)

    Dixon, Paul; Keating, Elizabeth; Moulton, David; Williamson, Mark; Collazo, Yvette; Gerdes, Kurt; Freshley, Mark; Gorton, Ian; Meza, Juan

    2012-01-01

    The United States Department Energy (DOE) Office of Environmental Management (EM) determined that uniform application of advanced modeling in the subsurface could help reduce the cost and risks associated with its environmental cleanup mission. In response to this determination, the EM Office of Technology Innovation and Development (OTID), Groundwater and Soil Remediation (GW and S) began the program Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for integrating data and scientific understanding to enable prediction of contaminant fate and transport in natural and engineered systems. This initiative supports the reduction of uncertainties and risks associated with EM?s environmental cleanup and closure programs through better understanding and quantifying the subsurface flow and contaminant transport behavior in complex geological systems. This involves the long-term performance of engineered components, including cementitious materials in nuclear waste disposal facilities that may be sources for future contamination of the subsurface. This paper describes the ASCEM tools and approach and the ASCEM programmatic accomplishments completed in 2010 including recent advances and technology transfer. The US Department of Energy Office of Environmental Management has begun development of an Advanced Simulation Capability for Environmental Management, (ASCEM). This program will provide predictions of the end states of contaminated areas allowing for cost and risk reduction of EM remedial activities. ASCEM will provide the tools and approaches necessary to standardize risk and performance assessments across the DOE complex. Through its Phase One demonstration, the ASCEM team has shown value to the EM community in the areas of High Performance Computing, Data Management, Visualization, and Uncertainty Quantification. In 2012, ASCEM will provide an initial limited release of a community code for

  1. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  2. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  3. Management accounting for advanced technological environments.

    Science.gov (United States)

    Kaplan, R S

    1989-08-25

    Management accounting systems designed decades ago no longer provide timely, relevant information for companies in today's highly competitive environment. New operational control and performance measurement systems are recognizing the importance of direct measurement of quality, manufacturing lead times, flexibility, and customer responsiveness, as well as more accurate measures of the actual costs of consumed resources. Activity-based cost systems can assign the costs of indirect and support resources to the specific products and activities that benefit from these resources. Both operational control and activity-based systems represent new opportunities for improved managerial information in complex, technologically advanced environments.

  4. Intelligent energy management control for independent microgrid

    Indian Academy of Sciences (India)

    Energy management control; multi-agent system; microgrid; energy forecast; hybrid power ... power to the local load most of the time in this energy management strategy. ... Electrical and Electronics Engineering Department, PSG College of ...

  5. Recent advances in managing differentiated thyroid cancer.

    Science.gov (United States)

    Lamartina, Livia; Grani, Giorgio; Durante, Cosimo; Filetti, Sebastiano

    2018-01-01

    The main clinical challenge in the management of thyroid cancer is to avoid over-treatment and over-diagnosis in patients with lower-risk disease while promptly identifying those patients with more advanced or high-risk disease requiring aggressive treatment. In recent years, novel clinical and molecular data have emerged, allowing the development of new staging systems, predictive and prognostic tools, and treatment approaches. There has been a notable shift toward more conservative management of low- and intermediate-risk patients, characterized by less extensive surgery, more selective use of radioisotopes (for both diagnostic and therapeutic purposes), and less intensive follow-up. Furthermore, the histologic classification; tumor, node, and metastasis (TNM) staging; and American Thyroid Association risk stratification systems have been refined, and this has increased the number of patients in the low- and intermediate-risk categories. There is now a need for new, prospective data to clarify how these changing practices will impact long-term outcomes of patients with thyroid cancer, and new follow-up strategies and biomarkers are still under investigation. On the other hand, patients with more advanced or high-risk disease have a broader portfolio of options in terms of treatments and therapeutic agents, including multitarget tyrosine kinase inhibitors, more selective BRAF or MEK inhibitors, combination therapies, and immunotherapy.

  6. Advanced energy system with nuclear reactors as an energy source

    International Nuclear Information System (INIS)

    Kato, Y.; Ishizuka, T.; Nikitin, K.

    2007-01-01

    recovery system is also applicable to a fast reactor (FR) with a supercritical CO 2 gas turbine that achieves higher cycle efficiency than conventional sodium cooled FRs with steam turbines. The FR will eliminate problems of conventional FRs related to safety, plant maintenance, and construction costs. The FR consumes efficiently trans-uranium elements (TRU) produced in light water reactors as fuel and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. An Advanced Energy System (AES) with nuclear reactors as an energy source has been proposed which supply electricity and heat to cities. The AES has three objectives: 1. Save energy resources and reduce green house gas emissions, attaining total energy utilization efficiency higher than 85% through waste heat recovery and utilization. 2. Foster a recycling society that produces methane and methanol for fuel cells from waste products of cities and farms. 3. Consume TRU produced in LWRs as fuel for FRs, and reduce long-lived radioactive wastes or environmental loads of long term geological disposal. References 1. Y. Kato, T. Nitawaki and K. Fujima, 'Zero Waste Heat Release Nuclear Cogeneration System, 'Proc. 2003 Intl. Congress on Advanced Nuclear Power Plants (ICAPP'03), Cordoba, Spain, May 4-7, 2003, Paper 3313. 2. Y. Kato, T. Nitawaki and Y. Muto, 'Medium Temperature Carbon Dioxide Gas Turbine Reactor, 'Nucl. Eng. Design, 230, pp. 195-207 (2004). 3. H. N. Tran and Y. Kato, 'New 2 37Np Burning Strategy in a Supercritical CO 2 Cooled Fast Reactor Core Attaining Zero Burnup Reactivity Loss,' Proc. American Nuclear Society's Topical Meeting on Reactor Physics (PHYSOR 2006), Vancouver, British Columbia, Canada, September 10-14, 2006

  7. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  8. Towards sustainable energy planning and management

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Sperling, Karl

    2014-01-01

    Rising energy costs, anthropogenic climate change, and fossil fuel depletion calls for a concerted effort within energy planning to ensure a sustainable energy future. This article presents an overview of global energy trends focusing on energy costs, energy use and carbon dioxide emissions....... Secondly, a review of contemporary work is presented focusing on national energy pathways with cases from Ireland, Denmark and Jordan, spatial issues within sustainable energy planning and policy means to advance a sustainable energy future....

  9. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  10. Advancing clean energy technology in Canada

    International Nuclear Information System (INIS)

    Munro, G.

    2011-01-01

    This paper discusses the development of clean energy technology in Canada. Energy is a major source of Canadian prosperity. Energy means more to Canada than any other industrialized country. It is the only OECD country with growing oil production. Canada is a stable and secure energy supplier and a major consumer. Promoting clean energy is a priority to make progress in multiple areas.

  11. Energy requirement assessed by doubly-labeled water method in patients with advanced amyotrophic lateral sclerosis managed by tracheotomy positive pressure ventilation.

    Science.gov (United States)

    Ichihara, Noriko; Namba, Kazuyoshi; Ishikawa-Takata, Kazuko; Sekine, Kazunori; Takase, Mitsunori; Kamada, Yuko; Fujii, Seigo

    2012-10-01

    This study aimed to clarify the energy requirement in patients with amyotrophic lateral sclerosis (ALS) undergoing tracheostomy positive pressure ventilation with tracheostomy. Total energy expenditure (TEE) was measured in 10 hospitalized bedridden ALS patients using the doubly-labeled water (DLW) method. The mean TEE/day and TEE/fat- free mass estimated by DLW method were 934 ± 201 kcal/day and 34.8 ± 5.5 kcal/kg/day, respectively. The mean TEE/resting metabolic rate (RMR) was 0.85 when RMR was estimated by the Harris-Benedict equation, 0.91 by Dietary Reference Intake (DRI), and 0.97 by Ganpule's equation using fat-free mass (FFM). The ratios of TEE to measured RMR were 1.05, 1.15 and 1.23 in three patients. In conclusion, multiplying measured RMR by 1.1 to 1.2 is considered to be appropriate to estimate energy need. However, because it is difficult to measure RMR directly in a clinical setting, an appropriate equation for estimating RMR for ALS patient should be developed.

  12. Advances in the management of orbital fractures.

    Science.gov (United States)

    Nguyen, P N; Sullivan, P

    1992-01-01

    Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.

  13. ATF [Advanced Toroidal Facility] data management

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1988-01-01

    Data management for the Advanced Toroidal Facility (ATF), a stellarator located at Oak Ridge National Laboratory (ORNL), is provided by DMG, a locally developed, VAX-based software system. DMG is a data storage and retrieval software system that provides the user interface to ATF raw and analyzed data. Data are described in terms of data models and data types and are organized as signals into files, which are internally documented. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. Extensibility features include compatibility with ATF as it moves from pulsed to steady-state operation and capability for use of the DMG system with experiments other than ATF. DMG is implemented as a run-time library of routines available as a shareable image. General-purpose and specialized data acquisition and analysis applications have been developed using the DMG system. This paper describes the DMG system and the interfaces to it. 4 refs., 2 figs

  14. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  15. Advances in the management of diabetic neuropathy.

    Science.gov (United States)

    Várkonyi, Tamás; Körei, Anna; Putz, Zsuzsanna; Martos, Tímea; Keresztes, Katalin; Lengyel, Csaba; Nyiraty, Szabolcs; Stirban, Alin; Jermendy, György; Kempler, Péter

    2017-10-01

    The authors review current advances in the therapy of diabetic neuropathy. The role of glycemic control and management of cardiovascular risk factors in the prevention and treatment of neuropathic complications are discussed. As further options of pathogenetically oriented treatment, recent knowledge on benfotiamine and alpha-lipoic acid is comprehensively reviewed. Alpha-lipoic acid is a powerful antioxidant and clinical trials have proven its efficacy in ameliorating neuropathic signs and symptoms. Benfotiamine acts via the activation of transketolase and thereby inhibits alternative pathways triggered by uncontrolled glucose influx in the cells comprising polyol, hexosamine, protein-kinase-C pathways and formation of advanced glycation end products. Beyond additional forms of causal treatment, choices of symptomatic treatment will be summarized. The latter is mostly represented by the anticonvulsive agents pregabalin and gabapentin as well as duloxetine widely acknowledged as antidepressant. Finally, non-pharmacological therapeutic alternatives are summarized. The authors conclude that combination therapy should be more often suggested to our patients; especially the combination of pathogenetic and symptomatic agents.

  16. Management of pain in advanced disease.

    Science.gov (United States)

    Harris, Dylan G

    2014-06-01

    Pain is common in advanced malignancy but also prevalent in other non-malignant life-limiting diseases such as advanced heart disease; end stage renal failure and multiple sclerosis. Patients with renal or liver impairment need specific consideration, as most analgesics rely on either or both for their metabolism and excretion. Recent evidence-based guidelines and the systematic reviews that have informed their recommendations. The principles of the WHO (World Health Organisation) analgesic ladder are commonly endorsed as a structured approach to the management of pain. For neuropathic pain, the efficacy of different agents is similar and choice of drug more guided by side effects, drug interactions and cost. Evidence supporting the WHO analgesic ladder is disputed and alternatives suggested, but no overwhelming evidence for an alternative approach exists to date. Alternative approaches to the WHO analgesic ladder, new analgesic agents, e.g. rapid onset oral/intranasal fentanyl. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Locally advanced rectal cancer: management challenges

    Directory of Open Access Journals (Sweden)

    Kokelaar RF

    2016-10-01

    Full Text Available RF Kokelaar, MD Evans, M Davies, DA Harris, J Beynon Department of Colorectal Surgery, Singleton Hospital, Swansea, UK Abstract: Between 5% and 10% of patients with rectal cancer present with locally advanced rectal cancer (LARC, and 10% of rectal cancers recur after surgery, of which half are limited to locoregional disease only (locally recurrent rectal cancer. Exenterative surgery offers the best long-term outcomes for patients with LARC and locally recurrent rectal cancer so long as a complete (R0 resection is achieved. Accurate preoperative multimodal staging is crucial in assessing the potential operability of advanced rectal tumors, and resectability may be enhanced with neoadjuvant therapies. Unfortunately, surgical options are limited when the tumor involves the lateral pelvic sidewall or high sacrum due to the technical challenges of achieving histological clearance, and must be balanced against the high morbidity associated with resection of the bony pelvis and significant lymphovascular structures. This group of patients is usually treated palliatively and subsequently survival is poor, which has led surgeons to seek innovative new solutions, as well as revisit previously discarded radical approaches. A small number of centers are pioneering new techniques for resection of beyond-total mesorectal excision tumors, including en bloc resections of the sciatic notch and composite resections of the first two sacral vertebrae. Despite limited experience, these new techniques offer the potential for radical treatment of previously inoperable tumors. This narrative review sets out the challenges facing the management of LARCs and discusses evolving management options. Keywords: rectal cancer, exenteration, pelvic sidewall, sacrectomy

  18. Energy manager design for microgrids

    International Nuclear Information System (INIS)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatch decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency

  19. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  20. On the safety performance of the advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Li Shounan

    1999-01-01

    Some features on the safety performances of the Advanced Nuclear Energy Systems are discussed. The advantages and some peculiar problems on the safety of Advanced Nuclear Energy Systems with subcritical nuclear reactor driven by external neutron sources are also pointed out in comparison with conventional nuclear reactors

  1. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    McEntee, Jarlath [Ocean Renewable Power Company, Portland, ME (United States); Polagye, Brian [Ocean Renewable Power Company, Portland, ME (United States); Fabien, Brian [Ocean Renewable Power Company, Portland, ME (United States); Thomson, Jim [Ocean Renewable Power Company, Portland, ME (United States); Kilcher, Levi [Ocean Renewable Power Company, Portland, ME (United States); Marnagh, Cian [Ocean Renewable Power Company, Portland, ME (United States); Donegan, James [Ocean Renewable Power Company, Portland, ME (United States)

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated with implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at

  2. Which advances and place for photovoltaic energy?

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    While the European governments wish to raise to 20% the share of energy generated from clean sources, the solar energy appears as an excellent complement to the wind/hydraulic alternative. Today limited to 0.09% of the energy production capacity in Europe (with respect to 3.8% and 20% for the wind and hydro energies, respectively), the solar energy is a developing sector thanks to strong financial incentives. However, only important technological progresses would make solar energy a major energy source. Among the possible innovations, the development of efficient organic or plastic solar cells is one of the most promising way. Short paper. (J.S.)

  3. Management of intestinal obstruction in advanced malignancy

    Directory of Open Access Journals (Sweden)

    Henry John Murray Ferguson

    2015-09-01

    Full Text Available Patients with incurable, advanced abdominal or pelvic malignancy often present to acute surgical departments with symptoms and signs of intestinal obstruction. It is rare for bowel strangulation to occur in these presentations, and spontaneous resolution often occurs, so the luxury of time should be afforded while decisions are made regarding surgery. Cross-sectional imaging is valuable in determining the underlying mechanism and pathology. The majority of these patients will not be suitable for an operation, and will be best managed in conjunction with a palliative medicine team. Surgeons require a good working knowledge of the mechanisms of action of anti-emetics, anti-secretories and analgesics to tailor early management to individual patients, while decisions regarding potential surgery are made. Deciding if and when to perform operative intervention in this group is complex, and fraught with both technical and emotional challenges. Surgery in this group is highly morbid, with no current evidence available concerning quality of life following surgery. The limited evidence concerning operative strategy suggests that resection and primary anastomosis results in improved survival, over bypass or stoma formation. Realistic prognostication and involvement of the patient, care-givers and the multidisciplinary team in treatment decisions is mandatory if optimum outcomes are to be achieved.

  4. Study on Government Management Mechanism of Energy ...

    African Journals Online (AJOL)

    of energy conservation and emission reduction, and propose legal guarantees, management innovation, technology innovation, service system construction and upgrading of industrial structure are the critical factors to energy conservation and emission reduction management mechanism's performance. Then discuss the ...

  5. Bringing Advanced Computational Techniques to Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  6. Design of energy management indicator.

    Directory of Open Access Journals (Sweden)

    Ernesto Tomás Dalmau García

    2010-10-01

    Full Text Available This work has as a main goal to demostrate the viability of the energy management indicator, that will be a part of the Balanced Scorecard in the organization and the own process of calculation allows to obtain a Balanced Scorecard of energy management. It describes the executive order of the actions that have to be done to reach to the mentioned indicator, based on the selection of the selected period of time; the types of power carriers, the weight of each carrier in the structure of the consumption and the activities where they are used. With these elements several tools are used to reach to the expected results, as the bar charts, comparative tables and indices of power intensity. The indices of energy intensity are recommended as comparative elements for the contribution to the operativity and information level, meaning that not always is necessary to tie them , if not, in some cases, may be other selected indicators that may result as qualitatives type, The Cuban enterprise system uses the model Control of Consumption and Catchment Demand of fuels and lubricants (CDA 002 of the Ministry of Economy and Planning (MEP that is used in the work and it is recommended for the organizations who apply it. The study and application of this method were made in the Company of Raw materials Recovery in an experimental form.

  7. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  8. Smart Energy Management for Households

    Directory of Open Access Journals (Sweden)

    Sonja van Dam

    2013-06-01

    Full Text Available The aim of the research presented in this thesis was to infer design-related insights and guidelines to improve the use and effectiveness of home energy management systems (HEMS. This was done through an empirical evaluation of the longitudinal effectiveness of these devices and an exploration of factors that influence their use and effectiveness. Three case studies executed with three different HEMS in households, a life cycle assessment (LCA on those three HEMS, as well as a reflection on the challenges of both researching and implementing HEMS in existing housing gave a comprehensive picture of the opportunities and barriers for HEMS. The research revealed five typical use patterns that emerged amongst households. It also revealed average energy savings of 7.8%, which however decreased in the follow-up that was conducted, and factors that may influence the use and effectiveness of HEMS. Nonetheless, the LCA calculations divulged that the HEMS can achieve net energy savings when taking their embedded energy into account. Problem statement The goal of reducing the energy consumption of existing housing formed the basis for this research. There are many facets to this energy consumption, including the characteristics of the house, its appliances, and the behaviours of its inhabitants. Because of this complexity, addressing only one of these facets is not effective in substantially reducing the overall energy consumption of households. This called for an interdisciplinary approach, merging the domains of design for sustainability, sustainable housing transformation and environmental psychology. In this thesis, HEMS were chosen as the intervention to address the various elements that contribute to household energy consumption, thereby functioning as a pivot. By giving feedback and/or helping manage consumption they can assist households in changing their behaviour and help save energy. However, in analysing literature on HEMS, four critique points

  9. Advanced Energy Projects: FY 1993, Research summaries

    International Nuclear Information System (INIS)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included

  10. Advanced Energy Projects: FY 1993, Research summaries

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    AEP has been supporting research on novel materials for energy technology, renewable and biodegradable materials, new uses for scientific discoveries, alternate pathways to energy efficiency, alternative energy sources, innovative approaches to waste treatment and reduction, etc. The summaries are grouped according to projects active in FY 1993, Phase I SBIR projects, and Phase II SBIR projects. Investigator and institutional indexes are included.

  11. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  12. Systems approach in energy management

    International Nuclear Information System (INIS)

    Dutta-Choudhury, K.

    1993-01-01

    Several years ago when the author was working in the chemicals division of a paper company in Instrumentation and Controls, one experience had a lasting impact on his work approach which is systems approach. The maintenance manager told the author that a very important piece of boiler instrument of the power plant had broken down and delivery of the replacement needed to be expedited. The instrument was ordered over the phone in another city. The purchase order was personally delivered at the supplier's office and arrangements were made so the instrument was put on the next flight. A week later the maintenance manager indicated that the particular instrument still had not arrived in the plant and he could not run the power plant. Thus the company incurred substantial losses. Further inquiries showed that the instrument did indeed arrive at the plant stores on time. But, in the absence of any instructions thereon, the instrument was not delivered to the power plant. The sense of urgency was lost in the existing delivery process. In other words, the process or system failed. The whole process from requisitioning to delivery of ordered items was analyzed and corrective procedures were incorporated to prevent future repetitions. This brings up the subject of systems approach in engineering management in general and energy management in particular. This involves defining an objective and designing a system for an effective way of getting there

  13. Advanced Dark Energy Physics Telescope (ADEPT). Final Report

    International Nuclear Information System (INIS)

    Bennett, Charles L.

    2009-01-01

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for ∼10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z ∼ 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan Digital

  14. Advanced Management Communication: An Elective Course in Corporate Communication.

    Science.gov (United States)

    Argenti, Paul A.

    1986-01-01

    Proposes a college-level elective course in advanced management communication that would teach future managers how to communicate with shareholders, the media, financial analysts, and the labor force. (SRT)

  15. Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

  16. Recovery Act. Advanced Load Identification and Management for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yi [Eaton Corporation, Menomonee Falls, WI (United States); Casey, Patrick [Eaton Corporation, Menomonee Falls, WI (United States); Du, Liang [Eaton Corporation, Menomonee Falls, WI (United States); He, Dawei [Eaton Corporation, Menomonee Falls, WI (United States)

    2014-02-12

    , in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.

  17. Advancing the management of childhood epilepsies.

    Science.gov (United States)

    Cross, J Helen; Kluger, Gerhard; Lagae, Lieven

    2013-07-01

    Childhood epilepsies comprise a heterogeneous group of disorders and syndromes that vary in terms of severity, prognosis and treatment requirements. Effective management requires early, accurate recognition and diagnosis, and a holistic approach that addresses each individual's medical and psychosocial needs within the context of their overall health status and quality of life. With increasing understanding of underlying aetiologies, new approaches to management and treatment are emerging. For example, genetic testing is beginning to provide a tool to aid differential diagnosis and a means of predicting predisposition to particular types of epilepsy. Despite the availability of an increasing number of antiepileptic drugs (AEDs)--due not only to the development of new AEDs, but also to changes in regulatory requirements that have facilitated clinical development--seizure control and tolerability continue to be suboptimal in many patients, and there is therefore a continuing need for new treatment strategies. Surgery and other non-pharmacological treatments (e.g. vagus nerve stimulation, ketogenic diet) are already relatively well established in paediatric epilepsy. New pharmacological treatments include generational advances on existing AEDs and AEDs with novel modes of action, and non-AED pharmacological interventions, such as immunomodulation. Emerging technologies include novel approaches allowing the delivery of medicinal agents to specific areas of the brain, and 'closed-loop' experimental devices employing algorithms that allow treatment (e.g., electrical stimulation) to be targeted both spatially and temporally. Although in early stages of development, cell-based approaches (e.g., focal targeting of adenosine augmentation) and gene therapy may also provide new treatment choices in the future. Copyright © 2013 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Energy management in a commercial organization

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, C. W.

    1979-07-01

    Implementation of energy management programs by the Debenhams Group, operators of a chain of department stores in England, Scotland, and Wales, is discussed. How the systems relate to building operations is considered in the following subjects: group activities and energy costs; energy management; information base; standards action; lighting and energy; new store design; development (control of services). (MCW)

  19. Management of unresectable, locally advanced pancreatic adenocarcinoma.

    Science.gov (United States)

    Salgado, M; Arévalo, S; Hernando, O; Martínez, A; Yaya, R; Hidalgo, M

    2018-02-01

    The diagnosis of unresectable locally advanced pancreatic adenocarcinoma (LAPC) requires confirmation, through imaging tests, of the unfeasibility of achieving a complete surgical resection, in the absence of metastatic spread. The increase in overall survival (OS), together with an appropriate symptom management is the therapeutic target in LAPC, maintaining an acceptable quality of life and, if possible, increasing the time until the appearance of metastasis. Chemoradiation (CRT) improves OS compared to best support treatment or radiotherapy (RT) but with greater toxicity. No significant increase in OS has been achieved with CRT when compared to chemotherapy (QT) alone in patients without disease progression after four months of treatment with QT. However, a significantly better local control, that is, a significant increase in the time to disease progression was associated with this approach. The greater effectiveness of the schemes FOLFIRINOX and gemcitabine (Gem) + Nab-paclitaxel compared to gemcitabine alone, has been extrapolated from metastatic disease to LAPC, representing a possible alternative for patients with good performance status (ECOG 0-1). In the absence of randomized clinical trials, Gem is the standard treatment in LAPC. If disease control is achieved after 4-6 cycles of QT, the use of CRT for consolidation can be considered an option vs QT treatment maintenance. Capecitabine has a better toxicity profile and effectiveness compared to gemcitabine as a radiosensitizer. After local progression, and without evidence of metastases, treatment with RT or CRT, in selected patients, can support to maintain the regional disease control.

  20. Natural language processing and advanced information management

    Science.gov (United States)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  1. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  2. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  3. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  4. Development of the Advanced Nuclear Safety Information Management (ANSIM) System

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jae Min; Ko, Young Cheol; Song, Tai Gil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Korea has become a technically independent nuclear country and has grown into an exporter of nuclear technologies. Thus, nuclear facilities are increasing in significance at KAERI (Korea Atomic Energy Research Institute), and it is time to address the nuclear safety. The importance of nuclear safety cannot be overemphasized. Therefore, a management system is needed urgently to manage the safety of nuclear facilities and to enhance the efficiency of nuclear information. We have established ISP (Information Strategy Planning) for the Integrated Information System of nuclear facility and safety management. The purpose of this paper is to develop a management system for nuclear safety. Therefore, we developed the Advanced Nuclear Safety Information Management system (hereinafter referred to as the 'ANSIM system'). The ANSIM system has been designed and implemented to computerize nuclear safety information for standardization, integration, and sharing in real-time. Figure 1 shows the main home page of the ANSIM system. In this paper, we describe the design requirements, contents, configurations, and utilizations of the ANSIM system

  5. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  6. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  7. The Consortium for Advancing Renewable Energy Technology (CARET)

    Science.gov (United States)

    Gordon, E. M.; Henderson, D. O.; Buffinger, D. R.; Fuller, C. W.; Uribe, R. M.

    1998-01-01

    The Consortium for Advancing Renewable Energy (CARET) is a research and education program which uses the theme of renewable energy to build a minority scientist pipeline. CARET is also a consortium of four universities and NASA Lewis Research Center working together to promote science education and research to minority students using the theme of renewable energy. The consortium membership includes the HBCUs (Historically Black Colleges and Universities), Fisk, Wilberforce and Central State Universities as well as Kent State University and NASA Lewis Research Center. The various stages of this pipeline provide participating students experiences with a different emphasis. Some emphasize building enthusiasm for the classroom study of science and technology while others emphasize the nature of research in these disciplines. Still others focus on relating a practical application to science and technology. And, of great importance to the success of the program are the interfaces between the various stages. Successfully managing these transitions is a requirement for producing trained scientists, engineers and technologists. Presentations describing the CARET program have been given at this year's HBCU Research Conference at the Ohio Aerospace Institute and as a seminar in the Solar Circle Seminar series of the Photovoltaic and Space Environments Branch at NASA Lewis Research Center. In this report, we will describe the many positive achievements toward the fulfillment of the goals and outcomes of our program. We will begin with a description of the interactions among the consortium members and end with a description of the activities of each of the member institutions .

  8. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  9. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  10. 2017 Publications Demonstrate Advancements in Wind Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-17

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deployment activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.

  11. Blazing the energy trail: The Municipal Energy Management Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Urban Consortium Energy Task Force pioneers energy and environmental solutions for US cities and counties. When local officials participate in the task force, they open the door to many resources for their communities. The US is entering a period of renewed interest in energy management. Improvements in municipal energy management allow communities to free up energy operating funds to meet other needs. These improvements can even keep energy dollars in the community through the purchase of services and products used to save energy. With this idea in mind, the US Department of Energy Municipal Energy Management Program has funded more than 250 projects that demonstrate innovative energy technologies and management tools in cities and counties through the Urban Consortium Energy Task Force (UCETF). UCETF helps the US Department of Energy foster municipal energy management through networks with cities and urbanized counties and through links with three national associations of local governments. UCETF provides funding for projects that demonstrate innovative and realistic technologies, strategies, and methods that help urban America become more energy efficient and environmentally responsible. The task force provides technical support to local jurisdictions selected for projects. UCETF also shares information about successful energy management projects with cities and counties throughout the country via technical reports and project papers. The descriptions included here capsulize a sample of UCETF`s demonstration projects around the country.

  12. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  13. Modeling Innovations Advance Wind Energy Industry

    Science.gov (United States)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  14. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Brent W. Dixon; Steven J. Piet

    2004-01-01

    tripling market share by 2100 from the current 8.4% to 25%, equivalent to continuing the average market growth of last 50 years for an additional 100 years. Five primary spent fuel management strategies are assessed against each of the energy futures to determine the number of geological repositories needed and how the first repository would be used. The geological repository site at Yucca Mountain, Nevada, has the physical potential to accommodate all the spent fuel that will be generated by the current fleet of domestic commercial nuclear reactors, even with license extensions. If new nuclear plants are built in the future as replacements or additions, the United States will need to adopt spent fuel treatment to extend the life of the repository. Should a significant number of new nuclear plants be built, advanced fuel recycling will be needed to fully manage the spent fuel within a single repository. The analysis also considers the timeframe for most efficient implementation of new spent fuel management strategies. The mix of unprocessed spent fuel and processed high level waste in Yucca Mountain varies with each future and strategy. Either recycling must start before there is too much unprocessed waste emplaced or unprocessed waste will have to be retrieved later with corresponding costs. For each case, the latest date to implement reprocessing without subsequent retrieval is determined

  15. Advances in solar thermal energy in Uruguay

    International Nuclear Information System (INIS)

    Franco Noceto, P.

    2012-01-01

    This article is about the law 18585 which declared de solar thermal energy as national interest. This law establishes the obligation to incorporate solar heating systems in health care centers, hotels and sports clubs.

  16. ADVANCES IN ZERO ENERGY TRANSPORTATION SYSTEMS

    OpenAIRE

    Ahmad, Othman

    2017-01-01

    Hyperloop mass transportation systems are activelydeveloped at the moment. They represent the forefront development of the ZeroEnergy Transportation systems where air drag is minimized by travelling in avacuum and friction is reduced by non-contact bearings. Hyperloop supportersare confident that the cost of their transportation systems would be lowcompared to existing transportation systems because of the low loss andtherefore low energy consumption as well as other cost-saving techniquesdoc...

  17. Power and Energy Architecture for Army Advanced Energy Initiative

    National Research Council Canada - National Science Library

    Shaffer, Edward C; Massie, Darrell D; Cross, James B

    2006-01-01

    ... technologies for the Army. The current P&E architecture is an amalgam of independent programs, which traditionally have been developed in stovepipe organizations, and often as an afterthought to the development of other advanced technologies...

  18. Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA)

    National Research Council Canada - National Science Library

    Johnson, W. N; Dermer, C; Kroeger, R. A; Kurfess, J. D; Gehrels, N; Grindlay, J; Leising, M. D; Prince, T; Purcell, W; Ryan, J; Tumer, T

    1995-01-01

    We present a space mission concept for a low energy gamma-ray telescope, ATHENA, which is under investigation as the next major advance in gamma-ray spectroscopy following the current COMPTON Gamma...

  19. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  20. Towards an energy management maturity model

    International Nuclear Information System (INIS)

    Antunes, Pedro; Carreira, Paulo; Mira da Silva, Miguel

    2014-01-01

    Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001. - Highlights: • Real-world energy management activities are not aligned with the literature. • An Energy Management Maturity Model is proposed to overcome this alignment gap. • The completeness and relevance of proposed model are validated

  1. Energy management and vehicle synthesis

    Science.gov (United States)

    Czysz, P.; Murthy, S. N. B.

    The major drivers in the development of launch vehicles for the twenty-first century are reduction in cost of vehicles and operations, continuous reusability, mission abort capability with vehicle recovery, and readiness. One approach to the design of such vehicles is to emphasize energy management and propulsion as being the principal means of improvements given the available industrial capability and the required freedom in selecting configuration concept geometries. A methodology has been developed for the rational synthesis of vehicles based on the setting up and utilization of available data and projections, and a reference vehicle. The application of the methodology is illustrated for a single stage to orbit (SSTO) with various limits for the use of airbreathing propulsion.

  2. Policy Pathways: Energy Management Programmes for Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The IEA Policy Pathway publications provide details on how to implement specific recommendations drawn from the IEA 25 Energy Efficiency Policy Recommendations. This Policy Pathway, jointly produced by the International Energy Agency and the Institute for Industrial Productivity, develops the critical steps for policy makers implementing energy management programmes for industry. Optimising energy use in industry is essential to improve industrial competitiveness and achieve wider societal goals such as energy security, economic recovery and development, climate change mitigation and environmental protection.While there is significant potential to decrease energy consumption in this sector, opportunities to improve energy efficiency are still under-exploited. Energy management programmes have shown to be instrumental in addressing many of the barriers that inhibit wide-scale uptake of energy management in industry. The Policy Pathway builds on lessons learned from country experiences and provides actionable guidance on how to plan and design, implement, evaluate and monitor energy management programmes for industry.

  3. The Managing Epilepsy Well Network:: Advancing Epilepsy Self-Management.

    Science.gov (United States)

    Sajatovic, Martha; Jobst, Barbara C; Shegog, Ross; Bamps, Yvan A; Begley, Charles E; Fraser, Robert T; Johnson, Erica K; Pandey, Dilip K; Quarells, Rakale C; Scal, Peter; Spruill, Tanya M; Thompson, Nancy J; Kobau, Rosemarie

    2017-03-01

    Epilepsy, a complex spectrum of disorders, affects about 2.9 million people in the U.S. Similar to other chronic disorders, people with epilepsy face challenges related to management of the disorder, its treatment, co-occurring depression, disability, social disadvantages, and stigma. Two national conferences on public health and epilepsy (1997, 2003) and a 2012 IOM report on the public health dimensions of epilepsy highlighted important knowledge gaps and emphasized the need for evidence-based, scalable epilepsy self-management programs. The Centers for Disease Control and Prevention translated recommendations on self-management research and dissemination into an applied research program through the Prevention Research Centers Managing Epilepsy Well (MEW) Network. MEW Network objectives are to advance epilepsy self-management research by developing effective interventions that can be broadly disseminated for use in people's homes, healthcare providers' offices, or in community settings. The aim of this report is to provide an update on the MEW Network research pipeline, which spans efficacy, effectiveness, and dissemination. Many of the interventions use e-health strategies to eliminate barriers to care (e.g., lack of transportation, functional limitations, and stigma). Strengths of this mature research network are the culture of collaboration, community-based partnerships, e-health methods, and its portfolio of prevention activities, which range from efficacy studies engaging hard-to-reach groups, to initiatives focused on provider training and knowledge translation. The MEW Network works with organizations across the country to expand its capacity, help leverage funding and other resources, and enhance the development, dissemination, and sustainability of MEW Network programs and tools. Guided by national initiatives targeting chronic disease or epilepsy burden since 2007, the MEW Network has been responsible for more than 43 scientific journal articles, two

  4. MANAGEMENT AND SURVIVAL IN ADVANCED PROSTATE ...

    African Journals Online (AJOL)

    hi-tech

    2000-05-05

    May 5, 2000 ... Patients: Fifty nine patients with advanced cancer of prostate (extra prostatic locally advanced and metastatic ... Conclusion: Survival in the undifferentiated and poorly differentiated prostrate cancer. Gleasons grades 4 and 5 .... with its pulsatile release from the hypothalamus and desensitises the pituitary ...

  5. Five paradox on energy system management

    International Nuclear Information System (INIS)

    Frisch, J.R.

    1995-01-01

    Five paradox are detailed on energy management: internationalization of energy questions but always regional management is present, short term problems must be solved but without forgetting long term problems in environment, the third paradox is : we have time but we are in a hurry, we have reserves but ten, twenty or thirty years are necessary to adapt our energy system; the fourth paradox is : we cannot manage energy by managing only energy, for example : finances system development and environment importance. The last and fifth paradox is : the market, yes, but state too, as regulative force

  6. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  7. Smart and usable home energy management systems

    NARCIS (Netherlands)

    Van Dam, S.S.

    2009-01-01

    This paper reviews research into Home Energy Management Systems (HEMS). These are intermediary products that can visualize, manage, and/or monitor the energy use of other products or whole households. HEMS have lately received increasing attention for their possible role in conserving energy within

  8. Performance of a transmutation advanced device for sustainable energy application

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C.; Rosales, J.; Garcia, L. [Instituto Superior de Tecnologias y Ciencias Aplicadas (INSTEC), La Habana (Cuba); Perez-Navarro, A.; Escriva, A. [Universidad Politecnica de Valencia, Valencia (Spain). Inst. de Ingenieria Energetica; Abanades, A. [Universidad Politecnica de Madrid (Spain). Grupo de Modelizacion de Sistemas Termoenergeticos

    2009-07-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  9. Performance of a transmutation advanced device for sustainable energy application

    International Nuclear Information System (INIS)

    Garcia, C.; Rosales, J.; Garcia, L.; Perez-Navarro, A.; Escriva, A.; Abanades, A.

    2009-01-01

    Preliminary studies have been performed to design a device for nuclear waste transmutation and hydrogen generation based on a gas cooled pebble bed accelerator driven system, TADSEA (transmutation advanced device for sustainable energy application). In previous studies we have addressed the viability of an ADS Transmutation device that uses as fuel wastes from the existing LWR power plants, encapsulated in graphite in the form of pebble beds, being cooled by helium which enables high temperatures, in the order of 1200 K, to facilitate hydrogen generation from water either by high temperature electrolysis or by thermo chemical cycles. To design this device several configurations were studied, including several reactors thickness, to achieve the desired parameters, the transmutation of nuclear waste and the production of 100 MW. of thermal power. In this paper we are presenting new studies performed on deep burn in-core fuel management strategy for LWR waste. We analyze the fuel cycle on TADSEA device based on driver and transmutation fuel that were proposed for the General Atomic design of a gas turbine-modular helium reactor. We compare the transmutation results of the three fuel management strategies, using driven and transmutation, and standard LWR spend fuel, and present several parameters that describe the neutron performance of TADSEA nuclear core as the fuel and moderator temperature reactivity coefficients and transmutation chain. (author)

  10. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  11. Stochastic energy balancing in substation energy management

    Directory of Open Access Journals (Sweden)

    Hassan Shirzeh

    2015-12-01

    Full Text Available In the current research, a smart grid is considered as a network of distributed interacting nodes represented by renewable energy sources, storage and loads. The source nodes become active or inactive in a stochastic manner due to the intermittent nature of natural resources such as wind and solar irradiance. Prediction and stochastic modelling of electrical energy flow is a critical task in such a network in order to achieve load levelling and/or peak shaving in order to minimise the fluctuation between off-peak and peak energy demand. An effective approach is proposed to model and administer the behaviour of source nodes in this grid through a scheduling strategy control algorithm using the historical data collected from the system. The stochastic model predicts future power consumption/injection to determine the power required for storage components. The stochastic models developed based on the Box-Jenkins method predict the most efficient state of the electrical energy flow between a distribution network and nodes and minimises the peak demand and off-peak consumption of acquiring electrical energy from the main grid. The performance of the models is validated against the autoregressive moving average (ARIMA and the Markov chain models used in previous work. The results demonstrate that the proposed method outperforms both the ARIMA and the Markov chain model in terms of forecast accuracy. Results are presented, the strengths and limitations of the approach are discussed, and possible future work is described.

  12. Advancement of DOE's EnergyPlus Building Energy Simulation Payment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Lixing [Florida Solar Energy Center, Cocoa, FL (United States); Shirey, Don [Florida Solar Energy Center, Cocoa, FL (United States); Raustad, Richard [Florida Solar Energy Center, Cocoa, FL (United States); Nigusse, Bereket [Florida Solar Energy Center, Cocoa, FL (United States); Sharma, Chandan [Florida Solar Energy Center, Cocoa, FL (United States); Lawrie, Linda [DHL Consulting, Bonn (Germany); Strand, Rick [Univ. of Illinois, Champaign, IL (United States); Pedersen, Curt [COPA, Panama City (Panama); Fisher, Dan [Oklahoma State Univ., Stillwater, OK (United States); Lee, Edwin [Oklahoma State Univ., Stillwater, OK (United States); Witte, Mike [GARD Analytics, Arlington Heights, IL (United States); Glazer, Jason [GARD Analytics, Arlington Heights, IL (United States); Barnaby, Chip [Wrightsoft, Lexington, MA (United States)

    2011-09-30

    EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced

  13. High-energy diffraction microscopy at the advanced photon source

    DEFF Research Database (Denmark)

    Lienert, U.; Li, S. F.; Hefferan, C. M.

    2011-01-01

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ...

  14. Super Energy Savings Performance Contracts: Federal Energy Management Program (FEMP) Program Overview (revision)

    International Nuclear Information System (INIS)

    Pitchford, P.

    2001-01-01

    This four-page publication describes the U.S. Department of Energy's (DOE's) streamlined energy savings performance contracting, or ''Super ESPC,'' process, which is managed by DOE's Federal Energy Management Program (FEMP). Under a Super ESPC, a qualifying energy service company (ESCO) from the private sector pays for energy efficiency improvements or advanced renewable energy technologies (e.g., photovoltaic systems, wind turbines, or geothermal heat pumps, among others) for a facility of a government agency. The ESCO is then repaid over time from the agency's resulting energy cost savings. Delivery orders under these contracts specify the level of performance (energy savings) and the repayment schedule; the contract term can be up to 25 years, although many Super ESPCs are for about 10 years or less

  15. Comprehensive energy management eco routing & velocity profiles

    CERN Document Server

    Brandstätter, Bernhard

    2017-01-01

    The book discusses the emerging topic of comprehensive energy management in electric vehicles from the viewpoint of academia and from the industrial perspective. It provides a seamless coverage of all relevant systems and control algorithms for comprehensive energy management, their integration on a multi-core system and their reliability assurance (validation and test). Relevant European projects contributing to the evolvement of comprehensive energy management in fully electric vehicles are also included.

  16. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Yiran Wang

    2015-05-01

    Full Text Available Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials. These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples.

  17. Energy management in municipal heritage; Management de l'energie dans le patrimoine municipal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  18. Energy management in municipal heritage; Management de l'energie dans le patrimoine municipal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Energie-Cites has organized a week dedicated to the practices of energy consumption management in the municipalities and to network practices for energy efficiency. Practical presentations and site visits provided the participants with many methodological elements on energy policy, electricity demand management, optimising the design of municipal buildings, energy efficiency, integrated logistics for use of biomass energy, methods of energy consumption monitoring, legal framework for energy efficiency. (A.L.B.)

  19. Advanced Offshore Wind Energy - Atlantic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Kempton, Willett

    2015-11-04

    This project developed relationships among the lead institution, U of Delaware, wind industry participants from 11 companies, and two other universities in the region. The participating regional universities were University of Maryland and Old Dominion University. Research was carried out in six major areas: Analysis and documentation of extreme oceanic wind events & their impact on design parameters, calibration of corrosivity estimates measured on a coastal turbine, measurment and modeling of tower structures, measurement and modeling of the tribology of major drive components, and gearbox conditioning monitoring using acoustic sensors. The project also had several educational goals, including establishing a course in wind energy and training graduate students. Going beyond these goals, three new courses were developed, a graduate certificate program in wind power was developed and approved, and an exchange program in wind energy was established with Danish Technical University. Related to the installation of a Gamesa G90 turbine on campus and a Gamesa-UD research program established in part due to this award, several additional research projects have been carried out based on mutual industry-university interests, and funded by turbine revenues. This award and the Gamesa partnership have jointly led to seven graduate students receiving full safety and climb training, to become “research climbers” as part of their wind power training, and contributing to on-turbine research. As a result of the educational program, already six graduate students have taken jobs in the US wind industry.

  20. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  1. Novel Battery Management System with Distributed Wireless and Fiber Optic Sensors for Early Detection and Suppression of Thermal Runaway in Large Battery Packs, FY13 Q4 Report, ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPE

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zumstein, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kovotsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puglia, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobley, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osswald, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolf, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaschmitter, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eaves, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-10-08

    Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling

  2. Energy conservation prospects through electric load management

    Energy Technology Data Exchange (ETDEWEB)

    El-Shirbeeny, E H.T.

    1984-04-01

    In this paper, concepts of electric load management are discussed for effective energy conservation. It is shown that the conservation program must be comprehensive to provide solutions to the problems facing the electric consumer, the electric utility and the society by reducing the rate of growth of energy consumption and power system peak demand requirements. The impact of energy management programs on electric energy conservation is examined, with emphasis on efficiency, storage, cogeneration and controls with computers.

  3. Energy conservation: its planning and management

    International Nuclear Information System (INIS)

    Nanda, K.S.; Patra, K.C.

    1995-01-01

    Energy conservation, its planning and management and the development of renewable energy systems of proven design are very worthy challenges for all. Energy education at various levels is most important particularly in the development of renewable energy technology. 2 refs., 3 tabs

  4. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  5. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  6. Recent advances in statistical energy analysis

    Science.gov (United States)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  7. Sustainable-energy managment practices in an energy economy

    Science.gov (United States)

    Darkwa, K.

    2001-10-01

    The economic survival of any nation depends upon its ability to produce and manage sufficient supplies of low-cost safe energy. The world's consumption of fossil fuel resources currently increasing at 3% per annum is found to be unsustainable. Projections of this trend show that mankind will exhaust all known reserves in the second half of the coming century. Governments, industrialists, commercial organizations, public sector departments and the general public have now become aware of the urgent requirements for the efficient management of resources and energy-consuming activities. Most organizations in the materials, manufacturing and retail sectors and in the service industries have also created energy management departments, or have employed consultants, to monitor energy consumption and to reduce wastage. Conversely, any sustained attempt to reduce rates of energy consumption even by as little as 0.1% per annum ensures relatively an eternal future supply as well as reduction on environmental and ecological effect. Thus, there is no long- term solution to energy flow problem other than systematic and effective energy management and the continuous application of the techniques of energy management. Essential energy management strategies in support of a sustainable energy- economy are discussed.

  8. Principles of light energy management

    Science.gov (United States)

    Davis, N.

    1994-01-01

    Six methods used to minimize excess energy effects associated with lighting systems for plant growth chambers are reviewed in this report. The energy associated with wall transmission and chamber operating equipment and the experimental requirements, such as fresh air and internal equipment, are not considered here. Only the energy associated with providing and removing the energy for lighting is considered.

  9. challenges in management of warfarin anti-coagulation in advanced

    African Journals Online (AJOL)

    2013-07-01

    Jul 1, 2013 ... ADVANCED HIV/AIDS PATIENTS WITH VENOUS THROMBOTIC EVENTS – A. CASE SERIES ... Objective: To describe clinical presentations and challenges in the management of. VTE in ..... Performance outcomes of a ...

  10. Advancing Sustainable Materials Management: Facts and Figures Report

    Science.gov (United States)

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  11. Radioactive waste management and advanced nuclear fuel cycle technologies

    International Nuclear Information System (INIS)

    2007-01-01

    In 2007 ENEA's Department of Nuclear Fusion and Fission, and Related Technologies acted according to national policy and the role assigned to ENEA FPN by Law 257/2003 regarding radioactive waste management and advanced nuclear fuel cycle technologies

  12. Advanced and controlled drug delivery systems in clinical disease management

    NARCIS (Netherlands)

    Brouwers, JRBJ

    1996-01-01

    Advanced and controlled drug delivery systems are important for clinical disease management. In this review the most important new systems which have reached clinical application are highlighted. Microbiologically controlled drug delivery is important for gastrointestinal diseases like ulcerative

  13. Barriers to Professional Advancement among Female Managers.

    Science.gov (United States)

    O'Leary, Virginia E.

    It appears that there is nothing inherently associated with femaleness which should preclude the ascendence of women into management positions. However, barriers do exist and they stem from such factors as societal sex-role stereotypes, attitudes toward women in management, attitudes toward female competence, and the prevalence of the male…

  14. Advances in Serials Management. Volume 6.

    Science.gov (United States)

    Hepfer, Cindy, Ed.; Gammon, Julia, Ed.; Malinowski, Teresa, Ed.

    In order to further discussion and support constructive change, this volume presents the following eight papers on various dimensions of serials management: (1) "CD-ROMs, Surveys, and Sales: The OSA [Optical Society of America] Experience" (Frank E. Harris and Alan Tourtlotte); (2) "Management and Integration of Electronic Journals into the…

  15. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  16. Advanced Interval Management (IM) Concepts of Operations

    Science.gov (United States)

    Barmore, Bryan E.; Ahmad, Nash'at N.; Underwood, Matthew C.

    2014-01-01

    This document provides a high-level description of several advanced IM operations that NASA is considering for future research and development. It covers two versions of IM-CSPO and IM with Wake Mitigation. These are preliminary descriptions to support an initial benefits analysis

  17. Advanced Radio Resource Management for IMT

    DEFF Research Database (Denmark)

    Monserrat, Jose M.; Sroka, Pawel; Auer, Gunther

    The race towards IMT-Advanced was recently started by ITU-R who distributed a Circular Letter asking for the submission of new technology proposals. The European Celtic project WINNER+ is bridging together experts from industry, academia and government all around Europe to devise this next fourth...

  18. Responding to high energy prices: energy management services

    International Nuclear Information System (INIS)

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  19. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  20. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  1. New technology and possible advances in energy storage

    International Nuclear Information System (INIS)

    Baker, John

    2008-01-01

    Energy storage technologies may be electrical or thermal. Electrical energy stores have an electrical input and output to connect them to the system of which they form part, while thermal stores have a thermal input and output. The principal electrical energy storage technologies described are electrochemical systems (batteries and flow cells), kinetic energy storage (flywheels) and potential energy storage, in the form of pumped hydro and compressed air. Complementary thermal storage technologies include those based on the sensible and latent heat capacity of materials, which include bulk and smaller-capacity hot and cold water storage systems, ice storage, phase change materials and specific bespoke thermal storage media. For the majority of the storage technologies considered here, the potential for fundamental step changes in performance is limited. For electrochemical systems, basic chemistry suggests that lithium-based technologies represent the pinnacle of cell development. This means that the greatest potential for technological advances probably lies in the incremental development of existing technologies, facilitated by advances in materials science, engineering, processing and fabrication. These considerations are applicable to both electrical and thermal storage. Such incremental developments in the core storage technologies are likely to be complemented and supported by advances in systems integration and engineering. Future energy storage technologies may be expected to offer improved energy and power densities, although, in practice, gains in reliability, longevity, cycle life expectancy and cost may be more significant than increases in energy/powerdensity per se

  2. Research challenges for energy data management (panel)

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Lehner, Wolfgang

    2013-01-01

    This panel paper aims at initiating discussion at the Second International Workshop on Energy Data Management (EnDM 2013) about the important research challenges within Energy Data Management. The authors are the panel organizers, extra panelists will be recruited before the workshop...

  3. Savings impact of a corporate energy manager

    International Nuclear Information System (INIS)

    Sikorski, B.D.; O'Donnell, B.A.

    1999-01-01

    This paper discusses the cost savings impact of employing an energy manager with a 16,000-employee corporation. The corporation, Canada's second largest airline, is currently operating nearly 3,000,000 ft 2 of mixed-use facilities spread across the country, with an annual energy budget for ground facilities of over Cdn $4,000,000. This paper outlines the methodology used by the energy manager to deploy an energy management program over a two-year period between April 1995 and May 1997. The paper examines the successes and the lessons learned during the period and summarizes the costs and benefits of the program. The energy manager position was responsible for developing an energy history database with more than 100 active accounts and for monitoring and verifying energy savings. The energy manager implemented many relatively low-cost energy conservation measures, as well as some capital projects, during the first two years of the program. In total, these measures provided energy cost savings of $210,000 per year, or 5% of the total budget. In each case, technologies installed as part of the energy retrofit projects provided not only cost savings but also better control, reduced maintenance, and improved working conditions for employees

  4. Energy Management Systems to Reduce Electrical Energy Consumption

    OpenAIRE

    Oriti, Giovanna

    2015-01-01

    EXECUTIVE SUMMARY An energy management system comprises an electrical energy storage element such as a battery, renewable electrical energy sources such as solar and wind, a digital signal processing controller and a solid state power converter to interface the elements together. This hardware demonstration in the lab at the Naval Postgraduate School will focus on solid state power conversion methods to improve the reliability and efficiency of electrical energy consumption by Navy facilit...

  5. Economics, modeling, planning and management of energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; Khan, A.M.; Furlan, G.

    1989-01-01

    The Workshop attended by 89 participants from 40 countries aimed to provide participants with an overview of global and regional issues and to familiarize them with analytical tools and modeling techniques appropriate for the analysis and planning of national energy systems. Emphasis was placed on energy-economy-interaction, modelling for balancing energy demand and supply, technical-economic evaluation of energy supply alternatives and energy demand management. This volume presents some of the lectures delivered at the Workshop. The material has been organized in five parts under the headings General Review of Current Energy Trends, Energy and Technology Menu, Basic Analytical Approaches, Energy Modeling and Planning, and Energy Management and Policy. A separate abstract was prepared for each of the lectures presented. Refs, figs and tabs

  6. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  7. Evaluation of Advanced Data Centre Power Management Strategies

    NARCIS (Netherlands)

    Postema, Björn F.; Haverkort, Boudewijn R.

    2018-01-01

    In recent work, we proposed a new specification language for power management strategies as an extension to our AnyLogic-based simulation framework for the trade-off analysis of power and performance in data centres. In this paper, we study the quality of such advanced power management strategies

  8. Energy management of a large estate

    Energy Technology Data Exchange (ETDEWEB)

    Oughton, R J

    1986-01-01

    The paper outlines energy management of the Property Services Agency (PSA) estate, which has been pursued since 1972. PSA's current expenditure on energy in buildings is Pound 235M per annum (1983-1984), and while energy management has been in operation the aggregate annual saving achieved across the civil and armed services estate is estimated at 33%. The development of energy management is described; the initial organisation concentrated on the existing estate. An Energy Database was generated for the whole of the civil estate and routine monitoring and targetting of consumption was instituted. Regional Energy Conservation Officers were appointed with responsibilities for energy management of defined areas of the estate and a headquarters group was set up to direct the campaign and determine policy. The funding of all energy efficiency applications depends on a favourable value analysis. The calculations used in establishing investment priorities were based on CIBSE (Chartered Institution of Building Services Engineers) methods. This was quickly followed by the introduction of design techniques to promote energy efficiency in new building work. The use of Design Energy Targets is a prominent feature. Over the period to date an in-house training programme in energy conservation has been established for technical staff involved in building design and operation and for general staff. An expanding range of in-house publications on energy efficiency is also available.

  9. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  10. In-House Energy Management Program Plan

    International Nuclear Information System (INIS)

    1991-01-01

    DOE facilities are required to develop a documented energy management program encompassing owned and leased facilities and vehicles and equipment. The program includes an Energy Management Plan consistent with the requirements of the DOE ten-year In-House Energy Management Plan, an ECP specifying actions associated with the sudden disruption in the supply of critical fuels, an Energy Management Committee comprised of WIPP employees, and reporting criteria for quarterly energy consumption reporting to DOE Headquarters. The In-House Energy Management Program will include an implementation plan, a budget, and an interaction and coordination plan. The goal of this program is to sensitize the WIPP employees to the energy consequences of their actions and to motivate them to use energy more efficiently. To achieve this goal, the program is designed to both improve energy conservation at the WIPP through the direct efforts of every employee, and to encourage employees to take the lead in conserving energy at home, on the road, and in the community

  11. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  12. French programs for advanced waste management options

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M [CEA-DRN (France); Schapira, J P [CNRS-IN2P3 (France); Mouney, H [EDF-DE (France)

    1997-11-01

    Several organisms (CEA, CNRS, EdF, etc.) are cooperating in France on Accelerator-Driven Systems (ADS). The major motivation is the investigation of innovative options for the radioactive waste management. The paper describes the ongoing activities and future directions of this cooperative effort in the field of ADS. 11 refs, 3 figs.

  13. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    Science.gov (United States)

    2013-05-01

    reduced greenhouse gas (GHG) emissions; 2. Increased energy efficiency; and 3. Increased energy surety. This demonstration will also directly impact ...megawatt (MW), as well as a gas-fired cogeneration plant in excess of 7 MW. In the future, additional solar PV, fuel cells and advanced energy storage... Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations May 2013 Report Documentation Page Form

  14. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  15. Energy and environmental consciousness. Differences between advanced and developing countries

    International Nuclear Information System (INIS)

    Takeshita, Takashi

    1999-01-01

    The purpose of the present study is to understand how much differences there are between advanced countries and developing countries in terms of environmental and energy consciousness. We are experiencing now a big dilemma of the human desire to continue to exist and, at the same time, to develop the economy against the worsening of the Earth's environmental conditions. Understanding international differences of environmental and energy consciousness is a short way to solve this dilemma. The results of the present study were that peoples from advanced countries feel that science and technology are sometimes unreliable, while those from developing countries, are willing to rely upon them. However regardless of the country, people share the same consciousness about Earth's environment. In both, advanced and developing countries, people are reluctant to give up living comforts, unless this leads to a higher standard of living. Based on this result, the author would like to conduct another survey concerning the consciousness of future lifestyle. (author)

  16. Photon energy tunability of advanced photon source undulators

    International Nuclear Information System (INIS)

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices

  17. Business Management in the advanced information society

    Science.gov (United States)

    Saeki, Akio

    This is a record of the commemorative lecture at the fifth anniversary of the establishment of the JICST Tohoku Branch Office. Lecturer explains about business management in the information age. "Management" originally means sensing and coping with changes. Thus, the business has to get information as quickly as possible and take the best possible measure for the new issues. As it is definitely important for the business to make an appropriate prediction, information including unknown facts is very valuable. Technological prediction is particulary indispensable for the business. It is available, to some extent, by looking back the steps of technological development in the past. As the characteristics of information age, lecturer explains that there will be less information gap in the world, due to the development of telecommunication technology.

  18. Management of advanced hair loss patterns.

    Science.gov (United States)

    Beehner, Michael L

    2013-08-01

    This article covers how to manage patients with extensive hair loss in whom complete, dense coverage is not possible. In addition to discussing planning a transplant pattern for already bald men, I discuss a conservative approach for recognizing and transplanting younger patients who have telltale warning signs that may evolve to extensive hair loss. For both groups, a variant of a frontal forelock-type pattern is usually the best course to follow. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. System and method for advanced power management

    Science.gov (United States)

    Atcitty, Stanley [Albuquerque, NM; Symons, Philip C [Surprise, AZ; Butler, Paul C [Albuquerque, NM; Corey, Garth P [Albuquerque, NM

    2009-07-28

    A power management system is provided that includes a power supply means comprising a plurality of power supply strings, a testing means operably connected to said plurality of power supply strings for evaluating performance characteristics of said plurality of power supply strings, and a control means for monitoring power requirements and comprising a switching means for controlling switching of said plurality of power supply strings to said testing means.

  20. Securing a Home Energy Managing Platform

    DEFF Research Database (Denmark)

    Mikkelsen, Søren Aagaard; Jacobsen, Rune Hylsberg

    2016-01-01

    Energy management in households gets increasingly more attention in the struggle to integrate more sustainable energy sources. Especially in the electrical system, smart grid towards a better utilisation of the energy production and distribution infrastructure. The Home Energy Management System...... (HEMS) is a critical infrastructure component in this endeavour. Its main goal is to enable energy services utilising smart devices in the households based on the interest of the residential consumers and external actors. With the role of being both an essential link in the communication infrastructure...... for balancing the electrical grid and a surveillance unit in private homes, security and privacy become essential to address. In this chapter, we identify and address potential threats Home Energy Management Platform (HEMP) developers should consider in the progress of designing architecture, selecting hardware...

  1. Advances in Integrated Vehicle Thermal Management and Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2017-10-01

    Full Text Available With the increasing demands for vehicle dynamic performance, economy, safety and comfort, and with ever stricter laws concerning energy conservation and emissions, vehicle power systems are becoming much more complex. To pursue high efficiency and light weight in automobile design, the power system and its vehicle integrated thermal management (VITM system have attracted widespread attention as the major components of modern vehicle technology. Regarding the internal combustion engine vehicle (ICEV, its integrated thermal management (ITM mainly contains internal combustion engine (ICE cooling, turbo-charged cooling, exhaust gas recirculation (EGR cooling, lubrication cooling and air conditioning (AC or heat pump (HP. As for electric vehicles (EVs, the ITM mainly includes battery cooling/preheating, electric machines (EM cooling and AC or HP. With the rational effective and comprehensive control over the mentioned dynamic devices and thermal components, the modern VITM can realize collaborative optimization of multiple thermodynamic processes from the aspect of system integration. Furthermore, the computer-aided calculation and numerical simulation have been the significant design methods, especially for complex VITM. The 1D programming can correlate multi-thermal components and the 3D simulating can develop structuralized and modularized design. Additionally, co-simulations can virtualize simulation of various thermo-hydraulic behaviors under the vehicle transient operational conditions. This article reviews relevant researching work and current advances in the ever broadening field of modern vehicle thermal management (VTM. Based on the systematic summaries of the design methods and applications of ITM, future tasks and proposals are presented. This article aims to promote innovation of ITM, strengthen the precise control and the performance predictable ability, furthermore, to enhance the level of research and development (R&D.

  2. Advanced Simulation Capability for Environmental Management (ASCEM): Early Site Demonstration

    International Nuclear Information System (INIS)

    Meza, Juan; Hubbard, Susan; Freshley, Mark D.; Gorton, Ian; Moulton, David; Denham, Miles E.

    2011-01-01

    The U.S. Department of Energy Office of Environmental Management, Technology Innovation and Development (EM-32), is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high performance computing tool will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. As part of the initial development process, a series of demonstrations were defined to test ASCEM components and provide feedback to developers, engage end users in applications, and lead to an outcome that would benefit the sites. The demonstration was implemented for a sub-region of the Savannah River Site General Separations Area that includes the F-Area Seepage Basins. The physical domain included the unsaturated and saturated zones in the vicinity of the seepage basins and Fourmile Branch, using an unstructured mesh fit to the hydrostratigraphy and topography of the site. The calculations modeled variably saturated flow and the resulting flow field was used in simulations of the advection of non-reactive species and the reactive-transport of uranium. As part of the demonstrations, a new set of data management, visualization, and uncertainty quantification tools were developed to analyze simulation results and existing site data. These new tools can be used to provide summary statistics, including information on which simulation parameters were most important in the prediction of uncertainty and to visualize the relationships between model input and output.

  3. Advanced Simulation Capability for Environmental Management: Development and Demonstrations - 12532

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.; Freedman, Vicky; Gorton, Ian [Pacific Northwest National Laboratory, MSIN K9-33, P.O. Box 999, Richland, WA 99352 (United States); Hubbard, Susan S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50B-4230, Berkeley, CA 94720 (United States); Moulton, J. David; Dixon, Paul [Los Alamos National Laboratory, MS B284, P.O. Box 1663, Los Alamos, NM 87544 (United States)

    2012-07-01

    The U.S. Department of Energy Office of Environmental Management (EM), Technology Innovation and Development is supporting development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific tool and approach for understanding and predicting contaminant fate and transport in natural and engineered systems. The modular and open source high-performance computing tool facilitates integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. The ASCEM project continues to make significant progress in development of capabilities, which are organized into Platform and Integrated Tool-sets and a High-Performance Computing Multi-process Simulator. The Platform capabilities target a level of functionality to allow end-to-end model development, starting with definition of the conceptual model and management of data for model input. The High-Performance Computing capabilities target increased functionality of process model representations, tool-sets for interaction with Platform, and verification and model confidence testing. The new capabilities are demonstrated through working groups, including one focused on the Hanford Site Deep Vadose Zone. The ASCEM program focused on planning during the first year and executing a prototype tool-set for an early demonstration of individual components. Subsequently, ASCEM has focused on developing and demonstrating an integrated set of capabilities, making progress toward a version of the capabilities that can be used to engage end users. Demonstration of capabilities continues to be implemented through working groups. Three different working groups, one focused on EM problems in the deep vadose zone, another investigating attenuation mechanisms for metals and radionuclides, and a third focusing on waste tank performance assessment, continue to make progress. The project

  4. Energy management and cooperation in microgrids

    Science.gov (United States)

    Rahbar, Katayoun

    Microgrids are key components of future smart power grids, which integrate distributed renewable energy generators to efficiently serve the load demand locally. However, random and intermittent characteristics of renewable energy generations may hinder the reliable operation of microgrids. This thesis is thus devoted to investigating new strategies for microgrids to optimally manage their energy consumption, energy storage system (ESS) and cooperation in real time to achieve the reliable and cost-effective operation. This thesis starts with a single microgrid system. The optimal energy scheduling and ESS management policy is derived to minimize the energy cost of the microgrid resulting from drawing conventional energy from the main grid under both the off-line and online setups, where the renewable energy generation/load demand are assumed to be non-causally known and causally known at the microgrid, respectively. The proposed online algorithm is designed based on the optimal off-line solution and works under arbitrary (even unknown) realizations of future renewable energy generation/load demand. Therefore, it is more practically applicable as compared to solutions based on conventional techniques such as dynamic programming and stochastic programming that require the prior knowledge of renewable energy generation and load demand realizations/distributions. Next, for a group of microgrids that cooperate in energy management, we study efficient methods for sharing energy among them for both fully and partially cooperative scenarios, where microgrids are of common interests and self-interested, respectively. For the fully cooperative energy management, the off-line optimization problem is first formulated and optimally solved, where a distributed algorithm is proposed to minimize the total (sum) energy cost of microgrids. Inspired by the results obtained from the off-line optimization, efficient online algorithms are proposed for the real-time energy management

  5. Risk management of non-renewable energy systems

    CERN Document Server

    Verma, Ajit Kumar; Muruva, Hari Prasad

    2015-01-01

    This book describes the basic concepts of risk and reliability with detailed descriptions of the different levels of probabilistic safety assessment of nuclear power plants (both internal and external). The book also maximizes readers insights into time dependent risk analysis through several case studies, whilst risk management with respect to non renewable energy sources is also explained. With several advanced reactors utilizing the concept of passive systems, the reliability estimation of these systems are explained in detail with the book providing a reliability estimation of components through mechanistic model approach. This book is useful for advanced undergraduate and post graduate students in nuclear engineering, aerospace engineering, industrial engineering, reliability and safety engineering, systems engineering and applied probability and statistics. This book is also suitable for one-semester graduate courses on risk management of non renewable energy systems in all conventional engineering bran...

  6. Risk management and energy systems

    International Nuclear Information System (INIS)

    Carlevaro, F.; Romerio, F.

    1992-01-01

    In five sessions the following topics were dealt with: risk problems, risk analysis and evaluation tools, risks in industrial societies, risks of energy production, technological risks, ethics and political-social consensus. figs., tabs., refs

  7. Principles of light energy management

    Energy Technology Data Exchange (ETDEWEB)

    Davis, N. [Growth Chambers, Chagrin Falls, OH (United States)

    1994-12-31

    A review is presented on methods to minimize the effects of excess energy associated with lighting systems for plant growth. Information on lamp efficiencies and methods for separating and collecting unwanted heat is included.

  8. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  9. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  10. Management of projects for energy efficiency

    Directory of Open Access Journals (Sweden)

    Vuković Miodrag M.

    2014-01-01

    Full Text Available In an effort to lower operating costs and improve competitiveness, many organizations today are preparing projects in the field of energy saving. On the other hand, companies that provide energy services and implement these projects, need to build competences in this area to well manage the projects which are subject to energy savings and by this to justify the confidence of investors. This paper presents research that shows the most important factors for the development of local capacity in project management in the field of energy efficiency.

  11. Energy management in buildings using photovoltaics

    CERN Document Server

    Papadopoulou, Elena

    2012-01-01

    Although fossil fuels remain the primary global energy source, developing and expanding economies are creating an ever-widening gap between supply and demand. Efficient energy management offers a cost-effective opportunity for both industrialized and developing nations to limit the enormous financial and environmental costs associated with burning fossil fuels. The implication of photovoltaic systems in particular presents the potential for clean and sustainable electrical energy to be generated from an unrestricted source. Energy Management in Buildings Using Photovoltaics demonstrates how ad

  12. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Policies for advancing energy efficiency and renewable energy use in Brazil

    International Nuclear Information System (INIS)

    Geller, Howard; Schaeffer, Roberto; Szklo, Alexandre; Tolmasquim, Mauricio

    2004-01-01

    This article first reviews energy trends and energy policy objectives in Brazil. It then proposes and analyzes 12 policy options for advancing energy efficiency and renewable energy use. The policies are analyzed as a group with respect to their impacts on total energy supply and demand as well as CO 2 emissions. It is determined that the policies would provide a broad range of benefits for Brazil including reducing investment requirements in the energy sector, cutting energy imports, lowering CO 2 emissions, and providing social benefits. (Author)

  14. Advances in the management of intracerebral hemorrhage.

    Science.gov (United States)

    Kuramatsu, J B; Huttner, H B; Schwab, S

    2013-09-01

    Intracerebral hemorrhage (ICH) is one of the most detrimental sub-types of stroke and accounts for 10-15% of all strokes Qureshi et al. (Lancet 373(9675):1632-1644, 2009). ICH has an incidence of 10-30 cases per 100,000 people/year which is increasing and expected to double by the year 2050 Qureshi et al. (N Engl J Med 344 (19):1450-1460, 2001). Mortality rates still remain poor (30-50%) and functional dependency after ICH is high (~75%) van Asch et al. (Lancet Neurol 9 (2):167-176, 2010). Up to now, all randomized controlled trials investigating treatment approaches in ICH have failed to document improvements on clinical endpoints Mayer et al. (N Engl J Med 358 (20):2127-2137, 2008); Brouwers and Goldstein (Neurotherapeutics 9 (1):87-98, 2012). Only a specialized treatment of severely injured patients at dedicated neuro intensive care units [NICU] has been shown to be beneficial Qureshi et al. (Lancet 373(9675):1632-1644, 2009); Suarez et al. (Crit Care Med 32 (11):2311-2317, 2004). Currently, ongoing trials are investigating aggressive blood pressure lowering, hemostatic therapies, different operative strategies, intraventricular thrombolysis as well as neuroprotective approaches, and brain edema therapies. This review will summarize advanced treatment strategies and novel approaches which are currently under investigation.

  15. Energy resource management for energy-intensive manufacturing industries

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  16. Rapid prototyping of energy management charging strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ciulavu, Oana [Hella Electronics Romania, Timisoara (Romania); Starkmuth, Timo; Jesolowitz, Reinhard [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2010-07-01

    This paper presents an approach to develop charging strategies to support a vehicle energy management aiming for the reduction of CO{sub 2} emissions and decreased fuel consumption by using the Hardware-in-the-loop (HIL) environment. (orig.)

  17. Advanced Energy Saving and its Applications in Industry

    CERN Document Server

    Matsuda, Kazuo; Fushimi, Chihiro; Tsutsumi, Atsushi; Kishimoto, Akira

    2013-01-01

    The conventional approach for energy saving in a process system is to maximize heat recovery without changing any process conditions by using pinch technology. “Self-heat recuperation technology” was developed to achieve further energy saving in the process system by eliminating the necessity for any external heat input, such as firing or imported steam. Advanced Energy Saving and its Applications in Industry introduces the concept of self-heat recuperation and the application of such technology to a wide range of processes from heavy chemical complexes to other processes such as drying and gas separation processes, which require heating and cooling during operation.   Conventional energy saving items in a utility system are applied and implemented based on a single site approach, however, when looking at heavy chemical complexes, it was apparent that the low-grade heat discharged as waste from a refinery could also be used in an adjacent petrochemical plant. There could therefore be a large energy savin...

  18. Advances in the management of follicular lymphoma.

    Science.gov (United States)

    Seiler, Till M; Hiddemann, Wolfgang

    2012-11-01

    Antibody-based therapy has revolutionized treatment strategies in follicular lymphoma. This review focuses on current standards and recent innovations in the management of the disease. Understanding the mechanism of action of antibodies led to the development of next generation CD20 antibodies, antibodies targeting other molecules and bispecific antibodies. With obinutuzumab, a promising next generation of CD20 antibodies has entered phase III of clinical trials. The bispecific T-cell engager blinatumomab combines targeted therapy with immunologic activation of T cells exerting cytotoxic activity on the target cells. Apart from antibodies, small molecules targeting key pathways in lymphoma have shown promising activity in vitro and are currently in clinical development. A wealth of new substances has entered various stages of clinical trials and has yet to show superiority over rituximab-based immunochemotherapy. Intelligent therapeutic regimens containing these drugs have to be developed. Large randomized trials comparing promising treatment options are urgently needed.

  19. Emergency management of ureteral stones: Recent advances

    Directory of Open Access Journals (Sweden)

    Luis Osorio

    2008-01-01

    Full Text Available Most ureteral stones can be observed with reasonable expectation of uneventful stone passage. When an active ureteral stone treatment is warranted, the best procedure to choose is dependent on several factors, besides stone size and location, including operators′ experience, patients′ preference, available equipment and related costs. Placement of double-J stent or nephrostomy tube represents the classical procedures performed in a renal colic due to acute ureteral obstruction when the conservative drug therapy does not resolve the symptoms. These maneuvers are usually followed by ureteroscopy or extracorporeal shockwave lithotripsy, which currently represent the mainstay of treatment for ureteral stones. In this review paper a literature search was performed to identify reports dealing with emergency management of renal colic due to ureteral stones. The main aspects related to this debated issue are analyzed and the advantages and disadvantages of each treatment option are carefully discussed.

  20. Emergency management of ureteral stones: Recent advances.

    Science.gov (United States)

    Osorio, Luis; Lima, Estêvão; Autorino, Riccardo; Marcelo, Filinto

    2008-10-01

    Most ureteral stones can be observed with reasonable expectation of uneventful stone passage. When an active ureteral stone treatment is warranted, the best procedure to choose is dependent on several factors, besides stone size and location, including operators' experience, patients' preference, available equipment and related costs. Placement of double-J stent or nephrostomy tube represents the classical procedures performed in a renal colic due to acute ureteral obstruction when the conservative drug therapy does not resolve the symptoms. These maneuvers are usually followed by ureteroscopy or extracorporeal shockwave lithotripsy, which currently represent the mainstay of treatment for ureteral stones. In this review paper a literature search was performed to identify reports dealing with emergency management of renal colic due to ureteral stones. The main aspects related to this debated issue are analyzed and the advantages and disadvantages of each treatment option are carefully discussed.

  1. Solutions for environmental reporting and energy management

    International Nuclear Information System (INIS)

    Suhonen, T.

    2004-01-01

    Especially two areas of energy applications - environmental reporting and energy management - are emphasized due to the current EU legislation and opening energy markets. Emissions reporting is driven by several EU directives and international agreements, like Emissions Trading Scheme. The directives guide implementation of the emission information management and reporting procedures, but requirements and differences defined by the local authorities are challenging both for the system supplier and for the energy producer. Energy management of industrial energy production (CHP) is an application, which offers real-time tools for forecasting mill's energy need and optimizing the energy balance between a mill's own production, purchases and consumption. This can bring significant reductions in mill energy costs and consumption. For these applications, the exact and well-managed information is needed. Data is retrieved from plant historians and event databases, ERP's and external sources. Calculation applications generate characteristic values (KPI's), which are used for monitoring operation, improving plant availability and boosting performance. Common office tools, like MS Excel, are the most convenient tools for reporting and processing information. Integration tools are needed to combine data from several sources to a single channel, handling messaging between applications and distributing information. (author)

  2. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    International Nuclear Information System (INIS)

    Pitchford, P.; Brown, T.

    2001-01-01

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels

  3. Smart Home Energy Management Based on Zigbee

    OpenAIRE

    E.Mallikarjuna

    2015-01-01

    Today organizations use IEEE 802.15&Zigbee to effectively deliver solutions for a variety of areas including consumer electronic device control, energy management and efficiency home and commercial building automation as well as industrial plant management. The smart home energy network has gained widespread attentions due to its flexible integrati- ion into everyday life. This next generation green home system transparently unifies various home appliances smart sensors &wireless communicati...

  4. Monitoring systems and energy management

    International Nuclear Information System (INIS)

    Roldan Oliva, J. J.

    2011-01-01

    The current situation in the general economic framework as well as the environmental context that surrounds us, has meant that increasingly more companies and institutions concerned with the control and expenditure of resources used. Among these, as an element common to any industry, building or installation, are energy resources, respondents more strongly every year. (Author)

  5. Advanced communication skills: conflict management and persuasion.

    Science.gov (United States)

    Ang, Marigene

    2002-11-01

    There is an increasing need in the medical school curriculum to adequately prepare students for professionalism in the workplace. This senior seminar is a four-week course designed to develop fluency in handling conflict and negotiation as well as understanding the elements of persuasive communication. Students used the Meyers-Brigg Personality Inventory as a paradigm for understanding different communication styles. The class was piloted in October and November 2001 and consisted of four modules. In module one, each student was given the Meyers-Brigg Personality Inventory to take. Discussions and exercises provided insight into the student's own communication style as well as styles the individual student might find more problematic. The second module consisted of four sessions focusing on conflict management and negotiating skills. Students were given strategies for dealing with conflict as well as specific approaches for communicating with "difficult" patients. In the subsequent sessions, students had a chance to further incorporate these strategies by (1) discussing in a small-group setting a conflict situation that they had either witnessed or experienced in order to systematically evaluate how to incorporate conflict-management approaches into their particular communication style. (2) Role-playing four conflict situations students' were likely to encounter in their professional lives. Role-plays were videotaped and individual feedback was given immediately after the role-play by the observing students, the patient-actor, and the evaluator, who had been trained to give specific feedback on the conflict strategies. (3) Watching specific videotaped role-plays as a class allowed students to see and give feedback on particularly effective strategies that their colleagues used. The third module was devoted to giving bad news and ways that different people prefer to receive bad news, using the MBTI personality types as examples. The final module outlined the

  6. Energy management оf industrial enterprise

    Directory of Open Access Journals (Sweden)

    Lyaskovskaya E.A.

    2017-01-01

    Full Text Available In the intensifying condition of economic situation and increasing competitiveness in domestic and foreign markets, the most important way to develop competitive ability of an industrial company is to reduce energy costs in the production process. Insufficient level of the efficiency of energy resources usage affects an industrial company’s performance indicators and its investment attractiveness. A promising way of solving this matter is to develop and implement a strategy of rational energy consumption, which is aimed at the realization of company’s potential to optimize the consumption of electric energy by using internal and external resources in order to minimize energy costs. The strategy of rational energy consumption defines how an industrial company acquires electric energy and uses it to sustain the production. While developing and implementing the strategy, one should use a systemic and complex way and consider the following: peculiarities of electric energy and power as products; the structure of electric energy market and the possibilities of its consumers; peculiarities of price-formation on electric energy market; technical and technological, organizational and administrative, social and economic parameters of a company, characteristic features of its resource potential and production processes; the results of company’s energy efficiency audit and energy problems; company’s reserves that can increase its energy efficiency. An integral strategy of energy consumption includes a strategy for energy preservation and efficiency and a strategy for energy costs management. Both strategies are interrelated and serve for one purpose, which is minimizing the energy costs. This division helps simplify the analysis, search for alternatives and realization of energy management on operative, tactical and strategic levels, considering the regional and industry-specific peculiarities of an industrial company, its financial performance and

  7. 1995 Department of Energy Records Management Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. Issues addressed by the RMG may result in recommendations for DOE-wide initiatives. Proposed DOE-wide initiatives shall be, provided in writing by the RMG Steering Committee to the DOE Records Management Committee and to DOE`s Office of ERM Policy, Records, and Reports Management for appropriate action. The membership of the RMG is composed of personnel engaged in Records Management from DOE Headquarters, Field sites, contractors, and other organizations, as appropriate. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Development of advanced JGIS considering qualify management and project management

    International Nuclear Information System (INIS)

    Kawachi, Susumu; Ohi, Takao; Kawamura, Makoto; Ishihara, Yoshinao; Ebina, Takanori

    2008-03-01

    A system for managing and integrating the technical information of R and D was developed (JGIS: JAEA Geological Disposal Information Integration System). The subjects are to improve the usability as the system and the usability to record the information and the data in order to display the function of the system sufficiently and in order to enable the practical use of the system. In this study the aims are to display the function of JGIS and to enable the researchers as the users to recognize the significance of using JGIS. We built the conceptual design in order to implement the function of quality management and project management to JGIS. We considered that researchers could access the portal site of the research projects which were set as the WBS (Work Breakdown Structure) items and could confirm which WBS item the research project belonged to in the whole plan. We also considered that the research projects could be managed by using the conformity assessment sheets which were adopted for the quality management. The appendix contains the example of application of real projects to JGIS and the user's manual of JGIS (Example of a study of potential impact of natural phenomena). We demonstrated that researchers could confirm which WBS item the research project related to in JGIS and could manage the quality of the research projects by using the conformity assessment sheets in JGIS. (author)

  9. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  10. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  11. Management of development of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Inić Branimir P.

    2014-01-01

    Full Text Available The aim of the paper: 'Management of development of renewable energy sources is to point out the possible solutions for neutralizing the threat of energy shortages. The paper outlines major short and long term energy problems facing humanity. The increase of world human population is, inevitably, accompanied by higher energy consumption. Reserves decrease of nonrenewable energy sources like oil, gas, and coal is a major threat to maintaining current living conditions, and thus requires solutions in order to neutralize the threat. This is why the management of development of renewable energy sources is an imperative for Serbia. The paper emphasizes the use of solar energy, because the annual average of solar radiation in Serbia is about 40% higher than the European average, however, the actual use of the sun's energy to generate electricity in Serbia is far behind the countries of the European Union. Solar energy is clean, renewable, and the fact that 4.2 kilowatt-hours are received daily per square meter averaged over the entire surface of the planet, makes it an almost unused energy source, Compared to EU countries, the price of non-renewable derived energy is, on average, higher in Serbia. Taking this into consideration, the use of solar energy, as an unused resource, imposes itself as indispensable.

  12. 1994 Department of Energy Records Management Conference

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Department of Energy (DOE) Records Management Group (RMG) provides a forum for DOE and its contractor personnel to review and discuss subjects, issues, and concerns of common interest. This forum will include the exchange of information, and interpretation of requirements, and a dialog to aid in cost-effective management of the DOE Records Management program. This report contains the contributions from this forum.

  13. Energy Management; La maitrise de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Yves [Commissariat General du Plan, Paris (France)

    2000-02-02

    Struck by the first oil shock, France engaged itself since 1974 on a nuclear course associated to a policy of energy management. Twenty years later one can ascertain that the rates of energy savings has strongly declined since 1986 and that the energy consumption per point of national income has even increased after 1991. The evaluation conducted by the group presided by Yves Martin has found out that there is an important field of profitable economies, clearing at the same time the ways of improving the tools used. An ensemble of general operations able to give a new impetus to energy management policy is revealed. The document contains two sections, - The evaluation device and - Constants and improvement proposals. The latter presents: - the global approach; - evaluation of tools and the improvement ways; - aids to decision; - actions on offer of energy saving equipment; - aids for investment; - transports; - renewable energies. The reports concludes with the following general recommendations: - curving the fossil energy short-sighting by embodying in the price of this energy, by means of fiscal measures, the externalities and future costs which are not taken into account; - encouraging R and D aiming at an increased energy efficiency of equipment; - assist the energy users to get the necessary information in order to optimize their investments and behavior; - revise the electricity pricing and policy of rural electrification in order to avoid an unfair competition in zones of low population density and isles non-connected to metropolitan grid; - endowing the administration with an organization enabling the integration of energy management within the fiscal and sectorial policies with high impact upon the energy consumption (transports, dwellings, urbanism); - giving to ADEME the necessary stability of its means for accomplishing its mission. Finally, the report points out the tasks of the authorities implied: - The inter-ministerial agency for evaluation of

  14. Cognitive Simulation Driven Domestic Heating Energy Management

    NARCIS (Netherlands)

    Thilakarathne, D.J.; Treur, J.

    2016-01-01

    Energy management for domestic heating is a non trivial research challenge, especially given the dynamics associated to indoor and outdoor air temperatures, required comfortable temperature set points over time, parameters of the heating source and system, and energy loss rate and capacity of a

  15. Energy Management Dynamic Control Topology In MANET

    Science.gov (United States)

    Madhusudan, G.; Kumar, TNR

    2017-08-01

    Topology management via per-node transmission power adjustment has been shown effective in extending network lifetime. The existing algorithms constructs static topologies which fail to take the residual energy of network nodes, and cannot balance energy consumption efficiently. To address this problem, a Light Weighted Distributed Topology Control algorithm EMDCT(Energy Management Dynamic Control Topology ) is proposed in this paper. Based on the link metric of the network, both the energy consumption rate level and residual energy levels at the two end nodes are considered. EMDCT generates a Dynamic Topology that changes with the variation of node energy without the aid of location information, each node determines its transmission power according to local network information, which reduces the overhead complexity of EMDCT greatly. The experiment results show that EMDCT preserves network connectivity and manitains minimum-cost property of the network also it can extend network lifetime more remarkably.

  16. Energy Management of Smart Distribution Systems

    Science.gov (United States)

    Ansari, Bananeh

    Electric power distribution systems interface the end-users of electricity with the power grid. Traditional distribution systems are operated in a centralized fashion with the distribution system owner or operator being the only decision maker. The management and control architecture of distribution systems needs to gradually transform to accommodate the emerging smart grid technologies, distributed energy resources, and active electricity end-users or prosumers. The content of this document concerns with developing multi-task multi-objective energy management schemes for: 1) commercial/large residential prosumers, and 2) distribution system operator of a smart distribution system. The first part of this document describes a method of distributed energy management of multiple commercial/ large residential prosumers. These prosumers not only consume electricity, but also generate electricity using their roof-top solar photovoltaics systems. When photovoltaics generation is larger than local consumption, excess electricity will be fed into the distribution system, creating a voltage rise along the feeder. Distribution system operator cannot tolerate a significant voltage rise. ES can help the prosumers manage their electricity exchanges with the distribution system such that minimal voltage fluctuation occurs. The proposed distributed energy management scheme sizes and schedules each prosumer's ES to reduce the electricity bill and mitigate voltage rise along the feeder. The second part of this document focuses on emergency energy management and resilience assessment of a distribution system. The developed emergency energy management system uses available resources and redundancy to restore the distribution system's functionality fully or partially. The success of the restoration maneuver depends on how resilient the distribution system is. Engineering resilience terminology is used to evaluate the resilience of distribution system. The proposed emergency energy

  17. Power Management for Energy Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive...... penetration of renewable, fossil-free energy sources such as solar and wind power. To facilitate such intermittent power producers, we must not only control the production of electricity, but also the consumption, in an ecient and exible manner. By enabling the use of thermal energy storage in supermarkets...... of temperature dependent efficiencies in the refrigeration cycle. -Nonlinear economic MPC with uncertain predictions and the implementation of very simple predictors that use entirely historical data of, e.g., electricity prices and outdoor temperatures. Economic MPC for wind turbines, including -Optimal steady...

  18. Trends in Energy Management Technology - Part 3: State of Practiceof Energy Management, Control, and Information Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Gaymond; Webster, Tom

    2004-02-01

    In this report, the third in a series, we provide an evaluation of several products that exemplify the current state of practice of Energy Management, Control, and Information Systems (EMCIS). The available features for these products are summarized and analyzed with regard to emerging trends in EMCIS and potential benefits to the federal sector. The first report [1] covered enabling technologies for emerging energy management systems. The second report [2] serves as a basic reference for building control system (BCS) networking fundamentals and includes an assessment of current approaches to open communications. Part 4 of this series will discuss applications software from a user's perspective. It is important for energy managers in the Federal sector to have a high level of knowledge and understanding of these complex energy management systems. This series of reports provides energy practitioners with some basic informational and educational tools to help make decisions relative to energy management systems design, specification, procurement, and energy savings potential.

  19. Smart Distribution Boxes, Complete Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    Platise, Uros

    2010-09-15

    Present households demand side management implementations are turning conventional appliances into smart ones to support auto demand (AutoDR) response function. Present concept features a direct link between the power meters and appliances. In this paper new concept and example of implementation of a so-called Smart Distribution Box (SmartDB) is represented for complete energy and power management. SmartDBs, as an intermediate layer, are extending smart grid power meter functionality to support AutoDR with fast and guaranteed response times, distributed power sources, and besides provide full control over energy management and extra safety functions to the consumers.

  20. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  1. Advanced information processing system: Input/output network management software

    Science.gov (United States)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  2. The importance of advancing technology to America's energy goals

    International Nuclear Information System (INIS)

    Greene, D.L.; Boudreaux, P.R.; Dean, D.J.; Fulkerson, W.; Gaddis, A.L.; Graham, R.L.; Graves, R.L.; Hopson, J.L.; Hughes, P.; Lapsa, M.V.; Mason, T.E.; Standaert, R.F.; Wilbanks, T.J.; Zucker, A.

    2010-01-01

    A wide range of energy technologies appears to be needed for the United States to meet its energy goals. A method is developed that relates the uncertainty of technological progress in eleven technology areas to the achievement of CO 2 mitigation and reduced oil dependence. We conclude that to be confident of meeting both energy goals, each technology area must have a much better than 50/50 probability of success, that carbon capture and sequestration, biomass, battery electric or fuel cell vehicles, advanced fossil liquids, and energy efficiency technologies for buildings appear to be almost essential, and that the success of each one of the 11 technologies is important. These inferences are robust to moderate variations in assumptions.

  3. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  4. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  5. Advances in energy systems and technology v.5

    CERN Document Server

    Auer, Peter L

    1986-01-01

    Advances in Energy Systems and Technology: Volume 5 present articles that provides a critical review of specific topics within the general field of energy. It discusses the fuel cells for electric utility power generation. It addresses the classification of fuel cell technologies. Some of the topics covered in the book are the major components of the fuel cell; the phosphoric acid fuel cells; molten carbonate fuel cells; solid oxide fuel cells; electric utility fuel cell systems; and the integration within fuel cell power plants. The analysis of the solar ponds is covered. The operational

  6. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  7. Durability and damage tolerance of advanced wind energy turbines

    Energy Technology Data Exchange (ETDEWEB)

    Blom, A F; Gustavsson, A I

    1986-01-01

    This paper contains a critical review of the state of the art fatigue design and analysis of advanced wind energy conversion systems (WECS). Special emphasis is placed on the work in progress and carried out within the past few years in Sweden. However, the treatment is general in character and aims to identify areas where more work is needed in order to ensure a safe fatigue life assessment of WECS.

  8. Energy materials. Advances in characterization, modelling and application

    International Nuclear Information System (INIS)

    Andersen, N.H.; Eldrup, M.; Hansen, N.; Juul Jensen, D.; Nielsen, E.M.; Nielsen, S.F.; Soerensen, B.F.; Pedersen, A.S.; Vegge, T.; West, S.S.

    2008-01-01

    Energy-related topics in the modern world and energy research programmes cover the range from basic research to applications and structural length scales from micro to macro. Materials research and development is a central part of the energy area as break-throughs in many technologies depend on a successful development and validation of new or advanced materials. The Symposium is organized by the Materials Research Department at Risoe DTU - National Laboratory for Sustainable Energy. The Department concentrates on energy problems combining basic and applied materials research with special focus on the key topics: wind, fusion, superconductors and hydrogen. The symposium is based on these key topics and focus on characterization of materials for energy applying neutron, X-ray and electron diffraction. Of special interest is research carried out at large facilities such as reactors and synchrotrons, supplemented by other experimental techniques and modelling on different length scales that underpins experiments. The Proceedings contain 15 key note presentations and 30 contributed presentations, covering the abovementioned key topics relevant for the energy materials. The contributions clearly show the importance of materials research when developing sustainable energy technologies and also that many challenges remain to be approached. (BA)

  9. Agent based energy management systems

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, Martin

    2012-07-01

    In liberalized, regulated energy markets, the different participants - namely producers and consumers of energy, transmission and distribution system operators as well as regulatory authorities - have partly divergent and partly convergent interests. Loads, power plants and grid operators try to maximize their own benefit in this highly complex environment accepting to act detrimentally to others. Although the relationship between the participants is mostly competitive, there are some fundamental shared interests, e.g. voltage stability, a constant system frequency or efficient energy production, transmission and distribution, which are endangered e.g. by increased injection of volatile sources in low and medium voltage grids, displacement of stabilizing bulk generation and the slowly progressing extension of the electric grid. There is a global consensus, that the resulting challenges can efficiently be faced using information and communication technologies to coordinate grid utilization and operation. The basic idea is to benefit from unused reserves by participating in deployment of system services e.g. reactive power supply to keep the voltage within certain bounds. The coordination can best be done by the grid operator. All activities of that kind are summarized under the umbrella term ''Smart Grid''. To simultaneously model the behavior and interests of different types of market participants and their convergent and divergent interests, multi-agent systems are used. They offer a perfectly fitting framework for this sort of game theory and can easily be adapted to all kinds of new challenges of electricity markets. In this work, multi-agent systems are used to either cooperatively or competitively solve problems in distribution and transmission systems. Therefore, conventional algorithms have to be modified to converge into multiple local optima using only small pieces of the entire system information. It is clearly stated, that personal

  10. Energy efficient thermal management of data centers

    CERN Document Server

    Kumar, Pramod

    2012-01-01

    Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed. This book also: Provides in-depth treatment of energy efficiency ideas based on  fundamental heat transfer, fluid mechanics, thermodynamics, controls, and computer science Focus...

  11. Tree crops: Advances in insects and disease management

    Science.gov (United States)

    Advances in next-generation sequencing have enabled genome sequencing to be fast and affordable. Thus today researchers and industries can address new methods in pest and pathogen management. Biological control of insect pests that occur in large areas, such as forests and farming systems of fruit t...

  12. 28 RECENT ADVANCES IN THE MANAGEMENT OF CEREBRO ...

    African Journals Online (AJOL)

    drclement

    have been falling dramatically in recent decades in developed nations, ... 1 December, 2007. Recent Advances In The Management Of Cerebro-Vascular Accident. 29 unlikely to be related to the changing risk factor levels over time. Stroke Types. Stroke is caused .... CADASIL, which stands for cerebral autosomal dominant ...

  13. The ATF [Advanced Toroidal Facility] Data Management System: [Final report

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Data Management System (DMG) is a VAX-based software system that provides unified data access for ATF data acquisition and analysis. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. This paper describes the layered architecture of the system design, the system implementation, use, and the data file structure. 3 refs., 1 fig

  14. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  15. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  16. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    International Nuclear Information System (INIS)

    Dixon, B.W.; Piet, S.J.

    2004-01-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected

  17. Towards Efficient Energy Management: Defining HEMS, AMI and Smart Grid Objectives

    DEFF Research Database (Denmark)

    Rossello Busquet, Ana; Kardaras, Georgios; Soler, José

    2011-01-01

    electricity in the grid will also help to reduce the increase of energy consumption in the future. In order to reduce energy consumption in home environments, researches have been designing Home Energy Management Systems (HEMS). In addition, Advanced Metering Infrastructure (AMI) and smart grids are also...... being developed to distribute and produce electricity efficiently. This paper presents the high level goals and requirements of HEMS. Additionally, it gives an overview of Advanced Metering Infrastructure benefits and smart grids objectives....

  18. Power management for energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gybel Hovgaard, T.

    2013-02-15

    In this thesis, we consider the control of two different industrial applications that belong at either end of the electricity grid; a power consumer in the form of a commercial refrigeration system, and wind turbines for power production. Our primary studies deal with economic model predictive control of a commercial multi-zone refrigeration system, consisting of several cooling units that share a common compressor, and is used to cool multiple areas or rooms, e.g., in supermarkets. For control of the commercial refrigeration application as well as the wind turbine application, we propose an economic optimizing model predictive controller, economic MPC. Our investigations are primarily concerned with: 1) modeling of the applications to suit the chosen control framework; 2) formulating the MPC controller laws to overcome challenges introduced by the industrial applications, and defining economic objectives that reect the real physics of the systems as well as our control objectives; 3) solving the involved, non-trivial optimization problems eciently in real-time; 4) demonstrating the feasibility and potential of the proposed methods by extensive simulation and comparison with existing control methods and evaluation of data from systems in actual operation. We demonstrate, i.a., substantial cost savings, on the order of 30 %, compared to a standard thermostat-based supermarket refrigeration system and show how our methods exhibit sophisticated demand response to real-time variations in electricity prices. Violations of the temperature ranges can be kept at a very low frequency of occurrence inspite of the presence of uncertainty. For the power output from wind turbines, ramp rates, as low a 3 % of the rated power per minute, can be effectively ensured with the use of energy storage and we show how the active use of rotor inertia as an additional energy storage can reduce the needed storage capacity by up to 30 % without reducing the power output. (Author)

  19. Advanced chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Maeda, Katsuji; Kobayashi, Yasuhiro; Nagasawa, Katsumi

    2000-01-01

    Chemistry control in a boiling water reactor (BWR) plant has a close relationship with radiation field buildup, fuel reliability, integrity of plant components and materials, performance of the water treatment systems and radioactive waste generation. Chemistry management in BWR plants has become more important in order to maintain and enhance plant reliability. Adequate chemistry control and management are also essential to establish, maintain, and enhance plant availability. For these reasons, we have developed the advanced chemistry management system for nuclear power plants in order to effectively collect and evaluate a large number of plant operating and chemistry data. (author)

  20. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Coordinated Energy Management in Heterogeneous Processors

    Directory of Open Access Journals (Sweden)

    Indrani Paul

    2014-01-01

    Full Text Available This paper examines energy management in a heterogeneous processor consisting of an integrated CPU–GPU for high-performance computing (HPC applications. Energy management for HPC applications is challenged by their uncompromising performance requirements and complicated by the need for coordinating energy management across distinct core types – a new and less understood problem. We examine the intra-node CPU–GPU frequency sensitivity of HPC applications on tightly coupled CPU–GPU architectures as the first step in understanding power and performance optimization for a heterogeneous multi-node HPC system. The insights from this analysis form the basis of a coordinated energy management scheme, called DynaCo, for integrated CPU–GPU architectures. We implement DynaCo on a modern heterogeneous processor and compare its performance to a state-of-the-art power- and performance-management algorithm. DynaCo improves measured average energy-delay squared (ED2 product by up to 30% with less than 2% average performance loss across several exascale and other HPC workloads.

  2. Managing environmental aspects resulting from energy consumption

    International Nuclear Information System (INIS)

    2001-01-01

    Human health and environmental impacts of fossil fuel energy consumptions are examined and the ongoing effort to align energy management plans with sustainable development strategies and environmental management systems is described. Human health impacts are manifested in mortality rates, hospital admissions, visits to emergency rooms and physicians' offices, reduced physical performance, increase in the use of medications, impaired pulmonary function and a variety of lesser (or less perceptible) effects. Environmental impacts are demonstrated through climatic change, increase in greenhouse gas emissions, increase in smog, acid rain, and soil, groundwater and surface water contamination. The importance of commitment, integrated planning, measurement and evaluation, periodic review and improvement and documentation in aligning energy and environmental management plans are highlighted, along with the need for behavioral and operational changes, the creation of employee awareness and training, and the adoption of green procurement and life cycle costing. Adoption of the ISO 14000 approach to managing energy consumption is also seen as an important step in the direction of integrated energy and environmental management and sustainable development

  3. Design and Implementation of a Microgrid Energy Management System

    Directory of Open Access Journals (Sweden)

    Eun-Kyu Lee

    2016-11-01

    Full Text Available A microgrid is characterized by the integration of distributed energy resources and controllable loads in a power distribution network. Such integration introduces new, unique challenges to microgrid management that have never been exposed to traditional power systems. To accommodate these challenges, it is necessary to redesign a conventional Energy Management System (EMS so that it can cope with intrinsic characteristics of microgrids. While many projects have shown excellent research outcomes, they have either tackled portions of the characteristics or validated their EMSs only via simulations. This paper proposes a Microgrid Platform (MP, an advanced EMS for efficient microgrid operations. We design the MP by taking into consideration (i all the functional requirements of a microgrid EMS (i.e., optimization, forecast, human–machine interface, and data analysis and (ii engineering challenges (i.e., interoperability, extensibility, and flexibility. Moreover, a prototype system is developed and deployed in two smart grid testbeds: UCLA Smart Grid Energy Research Center and Korea Institute of Energy Research. We then conduct experiments to verify the feasibility of the MP design in real-world settings. Our testbeds and experiments demonstrate that the MP is able to communicate with various energy devices and to perform an energy management task efficiently.

  4. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    Science.gov (United States)

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. China's rural energy system and management

    International Nuclear Information System (INIS)

    Catania, Peter

    1999-01-01

    The issues related to rural energy development and the corresponding escalating economic activities have given rise to a complex, interrelationship among societal, economics, energy, environment and rural policies. With 7% of the world's farm land to produce food for 23% of the world's population, combined with the increasing energy demands for modernised farming has resulted in a dynamic rural energy policy for China. This paper discusses the characteristics of a rural society, outlines the relationship for rural energy supply and demand management, and discusses the interrelationship between energy and the environment utilisation. An illustration of the diffusion of biomass as a success story highlights some of the policies related to self-building, self-managing and self-using. Also discussed in this paper are the results of the integrated rural energy-policy, that is, the social benefits to farmers and the decrease of energy consumption per unit of output. Emerging nations must undertake a comprehensive analysis and synthesis of their respective rural energy developments and the corresponding interrelationships between technology, economics and the environment. (Author)

  6. Methods for Distributed Optimal Energy Management

    DEFF Research Database (Denmark)

    Brehm, Robert

    The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast to convent......The presented research deals with the fundamental underlying methods and concepts of how the growing number of distributed generation units based on renewable energy resources and distributed storage devices can be most efficiently integrated into the existing utility grid. In contrast...... to conventional centralised optimal energy flow management systems, here-in, focus is set on how optimal energy management can be achieved in a decentralised distributed architecture such as a multi-agent system. Distributed optimisation methods are introduced, targeting optimisation of energy flow in virtual......-consumption of renewable energy resources in low voltage grids. It can be shown that this method prevents mutual discharging of batteries and prevents peak loads, a supervisory control instance can dictate the level of autarchy from the utility grid. Further it is shown that the problem of optimal energy flow management...

  7. Sustainable development in Pemex: energy management

    International Nuclear Information System (INIS)

    Hernandez, C.E.R.

    2002-01-01

    In this paper, the author reviewed the energy management activities, over the last two years, of Petroleos Mexicanos, also known as Pemex. These activities generated substantial savings. A brief overview of Pemex was provided. The State Oil Company of Mexico, Pemex occupies the third rank of the world oil producers, and is in seventh place in terms of proven reserves. The gas production has earned the company the ninth spot, and it is in tenth place as far as its refining capacity is concerned. Pemex has annual revenues of 50, 000 million American dollars and operates in excess of 1,000 facilities. The energy management program implemented covered an experts network, training, campaigns, and information and monitoring system. Each of the components of the energy management system were reviewed. Linking each facility, the experts network was created to enhance the efficient use of energy. The Energy Saving and Environmental Protection campaign was held over the period 1999-2000 and involved the participation of 209 work sites. For its part, the Energy Efficient Use and Savings campaign took place in 2000-2001, involving 205 work sites. Both resulted in substantial savings. An internal carbon dioxide trading system was also implemented to improve air quality, and was designed to provide a cap and trade carbon dioxide emissions. The next phase involved the implementation of an information and monitoring system, which defined an Energy Consumption Index used in monthly reports. The next steps in the process were briefly outlined. 5 figs

  8. Energy management in the Canadian airline industry

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The purpose of this report was to outline the current status of the Canadian airline industry's energy performance and to outline energy management programs undertaken within the industry. The study also provides an aviation energy management information base developed through a comprehensive computer bibliographical review. A survey of the industry was undertaken, the results of which are incorporated in this report. The Canadian airline industry has recognized the importance of energy management and considerable measures have been introduced to become more energy efficient. The largest single contributor to improved productivity is the acquisition of energy efficient aircraft. Larger airlines in particular have implemented a number of conservation techniques to reduce fuel consumption. However, both large and small airlines would further benefit through incorporating techniques and programs described in the annotated bibliography in this study. Rising fuel prices and economic uncertainties will be contributing factors to a smaller average annual growth in fuel consumption during the 1980s. The lower consumption levels will also be a result of continuing energy conservation awareness, new technology improvements, and improvements in air traffic control. 98 refs., 4 figs., 6 tabs.

  9. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  10. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  11. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  12. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  13. Managing public perceptions about atomic energy in India

    International Nuclear Information System (INIS)

    Shankar, Ravi; Malhotra, S.K.

    2009-01-01

    Dr. Homi Jehangir Bhabha, in his presidential address at the first International Conference on the Peaceful Uses of Atomic Energy in Geneva in August 1955 had said 'Acquisition by man of the knowledge of how to release and use atomic energy must be recognized as the third epoch of human history'. Indeed during the last six decades, Atomic Energy has touched practically all aspects of human life and has registered its presence in almost every part of the globe. In India too, the Department of Atomic Energy set up in 1954, has been successfully pursuing a programme with a mandate to generate electricity, produce radioisotopes and develop radiation technologies with application in the areas of healthcare, food security, industry, water management, environment, R and D etc. Besides, DAE is also engaged in developing advanced technologies such as lasers, accelerator, robotics, fast computing and biosciences

  14. Supply side energy management for sustainable energy ( development in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M.A.; Harijan, K.; Memon, M.

    2005-01-01

    Pakistan is an energy deficient country. Indigenous reserves of oil and gas are limited and the country heavily depends on imported energy. The indigenous coal is of poor quality. Environmental pollution and greenhouse gas emissions from energy use are becoming significant environmental issues in the country. Sustainability is regarded as a major consideration for both urban and rural development in Pakistan. People in the country have been exploiting the natural resources with no consideration to the effects-both short term (environmental) and long term (resource crunch). The urban areas of the country depend to a large extent on commercial energy sources. The rural areas use non-commercial sources like firewood, agricultural wastes and animal dung. Even this is decreasing over the years, with the villagers wanting to adopt the ready to use sophisticated technology. The debate now is to identify a suitable via media. The option that fills this gap aptly is the renewable energy source. This paper analyses the supply side management of energy resources in relation to sustainable energy development. The present study shows that for achieving long-term environmental sustainable development, renewable energy is the major option that could meet the growing energy needs in Pakistan. (author)

  15. Methods for studying fuel management in advanced gas cooled reactors

    International Nuclear Information System (INIS)

    Buckler, A.N.; Griggs, C.F.; Tyror, J.G.

    1971-07-01

    The methods used for studying fuel and absorber management problems in AGRs are described. The basis of the method is the use of ARGOSY lattice data in reactor calculations performed at successive time steps. These reactor calculations may be quite crude but for advanced design calculations a detailed channel-by-channel representation of the whole core is required. The main emphasis of the paper is in describing such an advanced approach - the ODYSSEUS-6 code. This code evaluates reactor power distributions as a function of time and uses the information to select refuelling moves and determine controller positions. (author)

  16. Organizational determinants of energy-conservation management

    Energy Technology Data Exchange (ETDEWEB)

    Selmer, J. (Hong Kong Baptist Coll., Kowloon (Hong Kong). Dept. of Management)

    1994-10-01

    Energy-conservation activities require new functional and technical activities in all participating organizations and the prospects of effectively managing such activities are contingent upon the specific organizational setting. Based on a previous large-scale investigation in which we identified five organizational archetypes, in-depth longitudinal case studies were undertaken of five organizations in Sweden during 5 years, each organization representing a different archetype. The five organizations have distinct organizational prerequisites and separate basic motivations to engage and succeed in energy-conservation management. Implications for government policy and managerial action are discussed in detail. (author)

  17. Increasing efficiency through integrated energy data management

    International Nuclear Information System (INIS)

    Brack, M.

    2002-01-01

    This article discusses how improved management of energy data can bring about the increase in efficiency that is necessary for an electricity enterprise operating in a liberalised electricity market. The relevant technical and business processes involved for a typical power distribution utility are described. The present situation is reviewed and the various physical, data-logistics and commercial 'domains' involved are examined. Possible solutions for energy data logistics and integrated data management are discussed from the points of view of the operating utility, the power supplier and those responsible for balancing out supply and demand

  18. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  19. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  20. Energy Smart Management of Scientific Data

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow; Rotem, Dron; Tsao, Shih-Chiang

    2009-04-12

    Scientific data centers comprised of high-powered computing equipment and large capacity disk storage systems consume considerable amount of energy. Dynamic power management techniques (DPM) are commonly used for saving energy in disk systems. These involve powering down disks that exhibit long idle periods and placing them in standby mode. A file request from a disk in standby mode will incur both energy and performance penalties as it takes energy (and time) to spin up the disk before it can serve a file. For this reason, DPM has to make decisions as to when to transition the disk into standby mode such that the energy saved is greater than the energy needed to spin it up again and the performance penalty is tolerable. The length of the idle period until the DPM decides to power down a disk is called idlenessthreshold. In this paper, we study both analytically and experimentally dynamic power management techniques that save energy subject to performance constraints on file access costs. Based on observed workloads of scientific applications and disk characteristics, we provide a methodology for determining file assignment to disks and computing idleness thresholds that result in significant improvements to the energy saved by existing DPMsolutions while meeting response time constraints. We validate our methods with simulations that use traces taken from scientific applications.

  1. The peculiar economics of federal energy management

    International Nuclear Information System (INIS)

    Canes, Michael E.

    2016-01-01

    US federal agency energy managers face different constraints than do comparable private sector managers. They are faced with energy consumption goals mandated via legislation or directed via Presidential Executive Order that encourage if not compel them to invest more in energy efficiency or renewables than would be cost effective from a private sector perspective. To make such investments, they also are provided access to private capital that is additional to their agency budgets. The encouragement to invest beyond what is cost effective may be a source of waste in some instances, and the financing mechanisms appear more expensive than necessary. A rough estimate of the magnitude of the waste is offered, as well as a mechanism to reduce the costs of agency access to capital. - Highlights: •Legislative and regulatory initiatives that constrain federal agency energy investments. •Economic calculus facing a federal agency energy manager. •Magnitude of federal energy investments and of possible waste. •Financing mechanisms and how their costs might be reduced.

  2. 78 FR 9446 - Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc...

    Science.gov (United States)

    2013-02-08

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advance Nanotech, Inc., Advanced ID Corp., Aeon Holdings, Inc. (n/k/a BCM Energy Partners, Inc.), ANTS Software, Inc., Beauty Brands Group, Inc... current and accurate information concerning the securities of Advanced Nanotech, Inc. because it has not...

  3. Benchmarking and energy management schemes in SMEs

    Energy Technology Data Exchange (ETDEWEB)

    Huenges Wajer, Boudewijn [SenterNovem (Netherlands); Helgerud, Hans Even [New Energy Performance AS (Norway); Lackner, Petra [Austrian Energy Agency (Austria)

    2007-07-01

    Many companies are reluctant to focus on energy management or to invest in energy efficiency measures. Nevertheless, there are many good examples proving that the right approach to implementing energy efficiency can very well be combined with the business-priorities of most companies. SMEs in particular can benefit from a facilitated European approach because they normally have a lack of resources and time to invest in energy efficiency. In the EU supported pilot project BESS, 60 SMEs from 11 European countries of the food and drink industries successfully tested a package of interactive instruments which offers such a facilitated approach. A number of pilot companies show a profit increase of 3 up to 10 %. The package includes a user-friendly and web based E-learning scheme for implementing energy management as well as a benchmarking module for company specific comparison of energy performance indicators. Moreover, it has several practical and tested tools to support the cycle of continuous improvement of energy efficiency in the company such as checklists, sector specific measure lists, templates for auditing and energy conservation plans. An important feature and also a key trigger for companies is the possibility for SMEs to benchmark anonymously their energy situation against others of the same sector. SMEs can participate in a unique web based benchmarking system to interactively benchmark in a way which fully guarantees confidentiality and safety of company data. Furthermore, the available data can contribute to a bottom-up approach to support the objectives of (national) monitoring and targeting and thereby also contributing to the EU Energy Efficiency and Energy Services Directive. A follow up project to expand the number of participating SMEs of various sectors is currently being developed.

  4. Some advances in medical applications of low energy accelerators

    Science.gov (United States)

    Valković, V.; Moschini, G.

    1991-05-01

    Medical applications of low energy accelerators include: the use of nuclear analytical methods and procedures for laboratory studies and routine measurements; material productions and modifications to meet special requirements; radioisotope productions and their applications in radiopharmaceuticals as well as in positron emission tomography; and radiotherapy with ions, based on improved understanding of the interaction of charged particles with living tissue. Some of the recent advances in these fields are critically summarized. The plan for an improved charged particle facility in a hospital environment dedicated to applications in biology and medicine is presented.

  5. A Novel Prosumer-Based Energy Sharing and Management (PESM) Approach for Cooperative Demand Side Management (DSM) in Smart Grid

    OpenAIRE

    Sohail Razzaq; Rehman Zafar; Naveed Ahmed Khan; Asif Raza Butt; Anzar Mahmood

    2016-01-01

    Increasing population and modern lifestyle have raised energy demands globally. Demand Side Management (DSM) is one important tool used to manage energy demands. It employs an advanced power infrastructure along with bi-directional information flow among utilities and users in order to achieve a balanced load curve and minimize demand-supply mismatch. Traditionally, this involves shifting the electricity demand from peak hours to other times of the day in an optimized manner. Multiple users e...

  6. Balancing energy strategies in electricity portfolio management

    International Nuclear Information System (INIS)

    Moeller, Christoph; Rachev, Svetlozar T.; Fabozzi, Frank J.

    2011-01-01

    Traditional management of electricity portfolios is focused on the day-ahead market and futures of longer maturity. Within limits, market participants can however also resort to the balancing energy market to close their positions. In this paper, we determine strategic positions in the balancing energy market and identify corresponding economic incentives in an analysis of the German balancing energy demand. We find that those strategies allow an economically optimal starting point for real-time balancing and create a marketplace for flexible capacity that is more open than alternative marketplaces. The strategies we proffer in this paper we believe will contribute to an effective functioning of the electricity market. (author)

  7. Management Strategies in Advanced Uterine Leiomyosarcoma: Focus on Trabectedin

    Directory of Open Access Journals (Sweden)

    Frédéric Amant

    2015-01-01

    Full Text Available The treatment of advanced uterine leiomyosarcomas (U-LMS represents a considerable challenge. Radiological diagnosis prior to hysterectomy is difficult, with the diagnosis frequently made postoperatively. Whilst a total abdominal hysterectomy is the cornerstone of management of early disease, the role of routine adjuvant pelvic radiotherapy and adjuvant chemotherapy is less clear, since they may improve local tumor control in high risk patients but are not associated with an overall survival benefit. For recurrent or disseminated U-LMS, cytotoxic chemotherapy remains the mainstay of treatment. There have been few active chemotherapy drugs approved for advanced disease, although newer drugs such as trabectedin with its pleiotropic mechanism of actions represent an important addition to the standard front-line systemic therapy with doxorubicin and ifosfamide. In this review, we outline the therapeutic potential and in particular the emerging evidence-based strategy of therapy with trabectedin in patients with advanced U-LMS.

  8. Conceptual Architecture of Building Energy Management Open Source Software (BEMOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Khamphanchai, Warodom; Saha, Avijit; Rathinavel, Kruthika; Kuzlu, Murat; Pipattanasomporn, Manisa; Rahman, Saifur; Akyol, Bora A.; Haack, Jereme N.

    2014-12-01

    The objective of this paper is to present a conceptual architecture of a Building Energy Management Open Source Software (BEMOSS) platform. The proposed BEMOSS platform is expected to improve sensing and control of equipment in small- and medium-sized buildings, reduce energy consumption and help implement demand response (DR). It aims to offer: scalability, robustness, plug and play, open protocol, interoperability, cost-effectiveness, as well as local and remote monitoring. In this paper, four essential layers of BEMOSS software architecture -- namely User Interface, Application and Data Management, Operating System and Framework, and Connectivity layers -- are presented. A laboratory test bed to demonstrate the functionality of BEMOSS located at the Advanced Research Institute of Virginia Tech is also briefly described.

  9. Advanced information technology for training and emergency management

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1989-01-01

    Modern information technology provides many possibilities for improving both the safety and the availability of nuclear installations. A Nordic research programme was started in 1977, in which several organizations in Denmark, Finland, Norway and Sweden has been participating. The work has on a general level been addressing control rooms, human reliability and information technology for nuclear power plants. The research has had impact on the development of the control room solutions and the training simulators in Finland and also in the other Nordic countries. The present phase of the Nordic cooperation is investigating the use of advanced information technology in emergency management. The paper gives a brief introduction to the use of advance information technology for training and emergency management, which is based on the experience from the Nordic projects and other similar application projects in Finland. The paper includes also references to results from several of the projects. (author)

  10. Regulatory Risk Management of Advanced Nuclear Power Plants

    International Nuclear Information System (INIS)

    George, Glenn R.

    2002-01-01

    Regulatory risk reflects both the likelihood of adverse outcomes during regulatory interactions and the severity of those outcomes. In the arena of advanced nuclear power plant licensing and construction, such adverse outcomes may include, for example, required design changes and construction delays. These, in turn, could significantly affect the economics of the plant and the generation portfolio in which it will operate. In this paper, the author addresses these issues through the lens of risk management. The paper considers various tools and techniques of regulatory risk management, including design diversity and hedging strategies. The effectiveness of alternate approaches is weighed and recommendations are made in several regulatory contexts. (author)

  11. Advanced safety management systems for maintenance of pipeline integrity

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.

    2005-01-01

    One of the duties of the pipeline's operator is to introduce means for protection of human safety and the environment. This should be reflected in preparation of comprehensive Risk Management System with its key element Activity Programme for Management of Pipeline Integrity. In the paper such programme has been described taking into account law regulations and practical activities undertaken in technologically advanced countries (mainly USA and EU), where such solutions are implemented in routine operations. Possible solutions of realization of all elements of the programme, as well as information on utilization of computer aided support have been also included. (authors)

  12. Online energy management for hybrid electric vehicles

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Koot, M.W.T.; Bosch, P.P.J. van den; Kok, D.B.

    2008-01-01

    Hybrid electric vehicles (HEVs) are equipped with multiple power sources for improving the efficiency and performance of their power supply system. An energy management (EM) strategy is needed to optimize the internal power flows and satisfy the driver's power demand. To achieve maximum fuel profits

  13. Cooperative technology development: An approach to advancing energy technology

    International Nuclear Information System (INIS)

    Stern, T.

    1989-09-01

    Technology development requires an enormous financial investment over a long period of time. Scarce national and corporate resources, the result of highly competitive markets, decreased profit margins, wide currency fluctuations, and growing debt, often preclude continuous development of energy technology by single entities, i.e., corporations, institutions, or nations. Although the energy needs of the developed world are generally being met by existing institutions, it is becoming increasingly clear that existing capital formation and technology transfer structures have failed to aid developing nations in meeting their growing electricity needs. This paper will describe a method for meeting the electricity needs of the developing world through technology transfer and international cooperative technology development. The role of nuclear power and the advanced passive plant design will be discussed. (author)

  14. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  15. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  16. Energy aspects of solid waste management: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  17. Photovoltaic Energy Harvester with Power Management System

    Directory of Open Access Journals (Sweden)

    M. Ferri

    2010-01-01

    Full Text Available We present a photovoltaic energy harvester, realized in 0.35-μm CMOS technology. The proposed system collects light energy from the environment, by means of 2-mm2 on-chip integrated microsolar cells, and accumulates it in an external capacitor. While the capacitor is charging, the load is disconnected. When the energy in the external capacitor is enough to operate the load for a predefined time slot, the load is connected to the capacitor by a power management circuit. The choice of the value of the capacitance determines the operating time slot for the load. The proposed solution is suitable for discrete-time-regime applications, such as sensor network nodes, or, in general, systems that require power supply periodically for short time slots. The power management circuit includes a charge pump, a comparator, a level shifter, and a linear voltage regulator. The whole system has been extensively simulated, integrated, and experimentally characterized.

  18. Advancing solar energy forecasting through the underlying physics

    Science.gov (United States)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  19. Advanced model for fast assessment of piezoelectric micro energy harvesters

    Directory of Open Access Journals (Sweden)

    Raffaele eArdito

    2016-04-01

    Full Text Available The purpose of this work is to present recent advances in modelling and design of piezoelectric energy harvesters, in the framework of Micro-Electro-Mechanical Systems (MEMS. More specifically, the case of inertial energy harvesting is considered, in the sense that the kinetic energy due to environmental vibration is transformed into electrical energy by means of piezoelectric transduction. The execution of numerical analyses is greatly important in order to predict the actual behaviour of MEMS devices and to carry out the optimization process. In the common practice, the results are obtained by means of burdensome 3D Finite Element Analyses (FEA.The case of beams could be treated by applying 1D models, which can enormously reduce the computational burden with obvious benefits in the case of repeated analyses. Unfortunately, the presence of piezoelectric coupling may entail some serious issues in view of its intrinsically three-dimensional behaviour. In this paper, a refined, yet simple, model is proposed with the objective of retaining the Euler-Bernoulli beam model, with the inclusion of effects connected to the actual three-dimensional shape of the device. The proposed model is adopted to evaluate the performances of realistic harvesters, both in the case of harmonic excitation and for impulsive loads.

  20. Development of the Advanced Energy Design Guide for K-12 Schools -- 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Torcellini, P.

    2013-02-01

    This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-K12) (ASHRAE et al. 2011a). The AEDG-K12 provides recommendations for achieving 50% whole-building energy savings in K-12 schools over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-K12 was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE).

  1. Advanced Reactor Systems and Future Energy Market Needs

    International Nuclear Information System (INIS)

    Magwood, W.; Keppler, J.H.; Paillere, Henri; ); Gogan, K.; Ben Naceur, K.; Baritaud, M.; ); Shropshire, D.; ); Wilmshurst, N.; Janssens, A.; Janes, J.; Urdal, H.; Finan, A.; Cubbage, A.; Stoltz, M.; Toni, J. de; Wasylyk, A.; Ivens, R.; Paramonov, D.; Franceschini, F.; Mundy, Th.; Kuran, S.; Edwards, L.; Kamide, H.; Hwang, I.; Hittner, D.; ); Levesque, C.; LeBlanc, D.; Redmond, E.; Rayment, F.; Faudon, V.; Finan, A.; Gauche, F.

    2017-04-01

    It is clear that future nuclear systems will operate in an environment that will be very different from the electricity systems that accompanied the fast deployment of nuclear power plants in the 1970's and 1980's. As countries fulfil their commitment to de-carbonise their energy systems, low-carbon sources of electricity and in particular variable renewables, will take large shares of the overall generation capacities. This is challenging since in most cases, the timescale for nuclear technology development is far greater than the speed at which markets and policy/regulation frameworks can change. Nuclear energy, which in OECD countries is still the largest source of low-carbon electricity, has a major role to play as a low-carbon dispatchable technology. In its 2 degree scenarios, the International Energy Agency (IEA) projects that nuclear capacity globally could reach over 900 GW by 2050, with a share of electricity generation rising from less than 11% today to about 16%. Nuclear energy could also play a role in the decarbonization of the heat sector, by targeting non-electric applications. The workshop discussed how energy systems are evolving towards low-carbon systems, what the future of energy market needs are, the changing regulatory framework from both the point of view of safety requirements and environmental constraints, and how reactor developers are taking these into account in their designs. In terms of technology, the scope covered all advanced reactor systems under development today, including evolutionary light water reactors (LWRs), small modular reactors (SMRs) - whether LWR technology-based or not, and Generation IV (Gen IV) systems. This document brings together the available presentations (slides) of the workshop

  2. Rechargeable dual-metal-ion batteries for advanced energy storage.

    Science.gov (United States)

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  3. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  4. Management alternatives of energy wood thinning stands

    International Nuclear Information System (INIS)

    Heikkilae, Jani; Siren, Matti; Aeijaelae, Olli

    2007-01-01

    Energy wood thinning has become a feasible treatment alternative of young stands in Finland. Energy wood thinnings have been carried out mainly in stands where precommercial thinning has been neglected and the harvesting conditions for industrial wood thinning are difficult. Despite of its positive effects on harvesting costs and on renewable energy potential, whole-tree harvesting has been constantly criticized for causing growth loss. In this paper, the profitability of energy wood thinning was studied in 20 Scots pine-dominated stands where energy wood thinning was carried out. The growth of the stands after thinning was predicted with the help of Motti-stand simulator. Entire rotation time of the stands was simulated with different management alternatives. The intensity of first thinning and recovery level of logging residues varied between alternatives. In order to attain acceptable harvesting conditions, industrial wood thinning had to be delayed. The effect of energy wood thinning on subsequent stem wood growth was almost the same as in conventional thinning. Whole-tree harvesting for energy proved to be profitable alternative if the stumpage price is around 3EUR m -3 , the interest rate is 3% or 5% and the removal of pulpwood is less than 20 m 3 ha -1 . If the harvestable pulpwood yield is over 20 m 3 ha -1 , integrated harvesting of industrial and energy wood or delayed industrial wood harvesting becomes more profitable. (author)

  5. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings.

    Science.gov (United States)

    Mahapatra, Chinmaya; Moharana, Akshaya Kumar; Leung, Victor C M

    2017-12-05

    Around the globe, innovation with integrating information and communication technologies (ICT) with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS) is proposed which is based on neural network based Q -learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q -learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  6. Energy Management in Smart Cities Based on Internet of Things: Peak Demand Reduction and Energy Savings

    Directory of Open Access Journals (Sweden)

    Chinmaya Mahapatra

    2017-12-01

    Full Text Available Around the globe, innovation with integrating information and communication technologies (ICT with physical infrastructure is a top priority for governments in pursuing smart, green living to improve energy efficiency, protect the environment, improve the quality of life, and bolster economy competitiveness. Cities today faces multifarious challenges, among which energy efficiency of homes and residential dwellings is a key requirement. Achieving it successfully with the help of intelligent sensors and contextual systems would help build smart cities of the future. In a Smart home environment Home Energy Management plays a critical role in finding a suitable and reliable solution to curtail the peak demand and achieve energy conservation. In this paper, a new method named as Home Energy Management as a Service (HEMaaS is proposed which is based on neural network based Q-learning algorithm. Although several attempts have been made in the past to address similar problems, the models developed do not cater to maximize the user convenience and robustness of the system. In this paper, authors have proposed an advanced Neural Fitted Q-learning method which is self-learning and adaptive. The proposed method provides an agile, flexible and energy efficient decision making system for home energy management. A typical Canadian residential dwelling model has been used in this paper to test the proposed method. Based on analysis, it was found that the proposed method offers a fast and viable solution to reduce the demand and conserve energy during peak period. It also helps reducing the carbon footprint of residential dwellings. Once adopted, city blocks with significant residential dwellings can significantly reduce the total energy consumption by reducing or shifting their energy demand during peak period. This would definitely help local power distribution companies to optimize their resources and keep the tariff low due to curtailment of peak demand.

  7. Structural integrity analyses: can we manage the advances?

    International Nuclear Information System (INIS)

    Sauve, R.

    2006-01-01

    Engineering has been one of a number of disciplines in which significant advances in analysis procedures has taken place in the last two decades. In particular, advances in computer technology and engineering software have revolutionized the assessment of component structural integrity for a wide range of applications. A significant development in computational mechanics directly related to computer technology that has had a profound impact on the field of structural integrity is the finite element method. The finite element method has re-defined and expanded the role of structural integrity assessments by providing comprehensive modelling capabilities to engineers involved in design and failure analyses. As computer processing speeds and capacity have increased, so has the role of computer modelling in assessments of component structural integrity. With new product development cycles shrinking, the role of initial testing is being reduced in favour of computer modelling and simulation to assess component life and durability. For ageing structures, the evaluation of remaining life and the impact of degraded structural integrity becomes tractable with the modern advances in computational methods. The areas of structural integrity that have derived great benefit from the advances in numerical techniques include stress analysis, fracture mechanics, dynamics, heat transfer, structural reliability, probabilistic methods and continuum mechanics in general. One of the salient features of the current methods is the ability to handle large complex steady state or transient dynamic problems that exhibit highly non-linear behaviour. With the ever-increasing usage of these advanced methods, the question is posed: Can we manage the advances? Better still are we managing the advances? As with all technological advances that enter mainstream use, comes the need for education, training and certification in the application of these methods, improved quality assurance procedures and

  8. A Study on intensifying efficiency for international collaborative development of Advanced Nuclear Energy Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Dohee; Park, Seongwon; Chang, Moonhee

    2013-08-15

    All the countries of the world are promoting the use of atomic energy to provide against high oil prices, climatic changes, and energy security initiative. A domestic and foreign environment for nuclear energy is changing rapidly and 13 leading countries including Korea are trying to develop advanced technologies on Gen IV nuclear energy system through Gen IV International Forum (GIF). To enhance the effectiveness of the future nuclear energy system development plan, a strategic approach is necessary for GIF program and the connection process with the 4th Nuclear Energy Promotion Program and Nuclear Energy R and D Medium and Long Term 5 year Plan for 2012 ∼ 2016 needs to be prepared. This study was to analyze the global nuclear trends of 2012 and the status of GIF program which is international cooperation activities. Also we examined the domestic R and D status of future nuclear energy systems for developing core technology and commercialization of Gen-IV nuclear energy system. A successful performance of this project enables the effective national cooperation with GIF and promotes the public acceptance by suggesting the technical alternatives for the nuclear safety and the spent fuel management.

  9. Swiss Energy Perspectives 2035 - Management summary

    International Nuclear Information System (INIS)

    2007-01-01

    This management summary issued by the Swiss Federal Office of Energy (SFOE) summarises the Swiss Energy Perspectives 2035 - a five-part synthesis report published in 2007. The report presents no prognoses but provides an 'if-then' overview of a set of four scenarios that examined ways in which Swiss energy demands could be met by the year 2035. National and international boundary conditions taken into account are reviewed and the four scenarios are introduced and briefly described. These include the reference scenario 'Business as Usual', 'Increased Co-operation' between politics and business, 'New Priorities' with goals set to reduce energy consumption and CO 2 emissions and 'On the Way to a 2000-Watt Society'. Risks posed and chances provided are discussed, as are the options for taking action

  10. Energy and environmental management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.K. (Energy Auditing Agency Ltd., Milton Keynes (United Kingdom))

    1993-01-01

    The threat of global warming, environmental instability and the possible use of green or carbon taxes on fossil fuels has increased the need for energy efficiency. Energy Conservation is now recognised as one of the easiest and most cost-effective ways of limiting or reducing CO[sub 2] emissions. Large UK companies are now assessing how much CO[sub 2] they dissipate to the environment and reviewing strategies to reduce this either in response to consumer demand or as a corporate policy decision. Computer-based information systems already exist to monitor and report on fluctuations in energy consumption. These are called Monitoring and Targeting (M and T) systems. This paper explains what M and T systems are and how they are being extended to cover reporting on corporate fuel-based CO[sub 2] emissions to help provide an integrated energy and environmental-management information system. (author).

  11. Safe management of nuclear energy. A key towards sustainable development

    International Nuclear Information System (INIS)

    Dreimanis, Andrejs

    2011-01-01

    Management of nuclear risks - crucial factor for acceptance of novel nuclear projects. We propose an interdisciplinary approach to societal optimization of nuclear energy management. As the keystones we choose: self-organization concept, 2) the principle of the requisite variety. A primary source of growth of internal variety - information and knowledge. Comprehensive knowledge management and informational support firstly is needed in: Technical issues: a) nuclear energy indicators of safety and reliability, b) extensive research and development of advanced technologies, c) multilateral cooperation in common projects; Societal issues: a) general nuclear awareness, b) risk management, engagement in decision-making, personnel education and training, staff renascence, c) public education, stakeholder involvement. There is shown: public education and social learning - efficient self-organization mechanisms, thereby forming a learning and knowledge-creating community. Such an acquired and created knowledge could facilitate solution of key socio-technical issues of nuclear safety as a) public acceptance, in particular, of siting of novel nuclear power plant and radioactive waste disposal objects, b) promotion of adequate perception of risk, equity and trust factors, and c) elevation of safety level of nuclear facilities and adequate management of nuclear risks. The importance of multi-level confidence building at global, regional and national levels is emphasized. (author)

  12. Energy Data Management (EDM) in a liberalised energy market

    International Nuclear Information System (INIS)

    Ulbricht, R.

    2004-01-01

    This article discusses the role of Energy Data Management (EDM) in a liberalised Swiss energy market in the light of increasing international dynamics in this area. The requirements placed on such EDM systems are reviewed and the changes necessary in the structures and processes of electricity supply organisations are discussed. A possible design for future software systems is presented. Such systems have to be flexible enough to cover various structural possibilities as Swiss legislation on the subject has not yet been passed. The handling of data on energy-flow balances when third-party power is transferred in shared mains systems is discussed and scheduling aspects of power generation and transmission are looked at. The billing of power to customers with a free choice of supplier is looked at, as is the situation involving utilities that supply not only electricity but gas, district heating and water too

  13. Advanced methods of microscope control using μManager software.

    Science.gov (United States)

    Edelstein, Arthur D; Tsuchida, Mark A; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D; Stuurman, Nico

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  14. The development of an advanced information management system

    International Nuclear Information System (INIS)

    Kim, Seung Hwan

    2005-01-01

    Performing a PSA requires a lot of data to analyze, to evaluate the risk, to trace the process of results and to verify the results. KAERI is developing a PSA information database system, AIMS (Advanced Information Management System for PSA). The objective of AIMS development is to integrate and computerize all the distributed information of a PSA into a system and to enhance the accessibility to PSA information for all PSA related activities. We designed the PSA information database system for the following purposes: integrated PSA information management software, sensitivity analysis, quality assurance, anchor to another reliability database. The AIMS consists of a PSA Information database, Information browsing (searching) modules, and PSA automatic quantification manager modules

  15. Advances in battery manufacturing, service, and management systems

    CERN Document Server

    Zhou, Shiyu; Han, Yehui

    2016-01-01

    This book brings together experts in the field to highlight the cutting edge research advances in BM2S2 and to promote an innovative integrated research framework responding to the challenges. There are three major parts included in this book: manufacturing, service, and management. The first part focuses on battery manufacturing systems, including modeling, analysis, design and control, as well as economic and risk analyses. The second part focuses on information technology’s impact on service systems, such as data-driven reliability modeling, failure prognosis, and service decision making methodologies for battery services. The third part addresses battery management systems (BMS) for control and optimization of battery cells, opera ions, and hybrid storage systems to ensure overall performance and safety, as well as EV management.

  16. Advanced methods of microscope control using μManager software

    Directory of Open Access Journals (Sweden)

    Arthur D Edelstein

    2014-07-01

    Full Text Available µManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, µManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced µManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging.

  17. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  18. The development of an advanced information management system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Performing a PSA requires a lot of data to analyze, to evaluate the risk, to trace the process of results and to verify the results. KAERI is developing a PSA information database system, AIMS (Advanced Information Management System for PSA). The objective of AIMS development is to integrate and computerize all the distributed information of a PSA into a system and to enhance the accessibility to PSA information for all PSA related activities. We designed the PSA information database system for the following purposes: integrated PSA information management software, sensitivity analysis, quality assurance, anchor to another reliability database. The AIMS consists of a PSA Information database, Information browsing (searching) modules, and PSA automatic quantification manager modules.

  19. Integrated Management of Residential Energy Resources

    Directory of Open Access Journals (Sweden)

    Antunes C. H.

    2012-10-01

    Full Text Available The increasing deployment of distributed generation systems based on renewables in the residential sector, the development of information and communication technologies and the expected evolution of traditional power systems towards smart grids are inducing changes in the passive role of end-users, namely with stimuli to change residential demand patterns. The residential user should be able to make decisions and efficiently manage his energy resources by taking advantages from his flexibility in load usage with the aim to minimize the electricity bill without depreciating the quality of energy services provided. The aim of this paper is characterizing electricity consumption in the residential sector and categorizing the different loads according to their typical usage, working cycles, technical constraints and possible degree of control. This categorization of end-use loads contributes to ascertain the availability of controllable loads to be managed as well as the different direct management actions that can be implemented. The ability to implement different management actions over diverse end-use load will increase the responsiveness of demand and potentially raises the willingness of end-users to accept such activities. The impacts on the aggregated national demand of large-scale dissemination of management systems that would help the end-user to make decisions regarding electricity consumption are predicted using a simulator that generates the aggregated residential sector electricity consumption under variable prices.

  20. Project management for economical nuclear energy

    International Nuclear Information System (INIS)

    Majerle, P.P.

    2005-01-01

    The price of electricity is significantly influenced by the cost of the initial generation asset. The cost of the initial nuclear generation asset is significantly influenced by the design and construction duration. Negative variations in the cost and duration of actual design and construction have historically impacted the early relative economics of nuclear power generation. Successful management of plant design information will mitigate the risks of the design and construction of future nuclear plants. Information management tools that can model the integrated delivery of large complex projects enable the project owners to accurately evaluate project progress, as well as the economic impact of regulatory, political, or market activities not anticipated in the project execution plan. Significant differences exist in the electrical energy markets, project delivery models, and fuel availability between continents and countries. However, each market and project delivery model is challenged by the need to produce economical electrical energy. The information management system presented in this paper provides a means to capture in a single integrated computerized database the design information developed during plant design, procurement, and construction and to allow this information to be updated and retrieved in real time by all project participants. Utilization of the information management system described herein will enable diverse project teams to rapidly and reliably input, share, and retrieve power plant information, thereby supporting project management's goal to make good on its commitment to the economic promise of tomorrow's nuclear electrical power generation by achieving cost-effective construction. (authors)

  1. The Development of Cloud Energy Management

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2015-05-01

    Full Text Available The energy management service (EMS has been utilized for saving energy since 1982 by managing the energy usage of site or facilities through the microprocessor, computer, Ethernet, internet, and wireless sensor network. The development and represented function groups of EMS are illustrated in the supplementary file of this paper. Along with this tendency, a cloud EMS, named the intelligent energy management network (iEN, was launched by Chunghwa Telecom in 2011 and tested during a pilot run from 2012 to 2013. The cloud EMS integrated three service modes together, including infrastructure as a service (IaaS, platform as a service (PaaS, and software as a service (SaaS. This cloud EMS could reduce the facility cost and enable a continuously improved service for energy conservation. From the literature review, 32 selected EMS cases of whole site and single facility were chosen for calculating the energy savings and payback rate. According to the literature, the average energy savings by applying EMS are 11.6% and 21.4% for the whole site and single facility, respectively. The iEN was applied on 55 demo sites with the similar scale, the same kind of machines and approaching conditions. The testing sites include a factory, a complex building, and a residual building, 12 lighting systems and 8 air conditioning systems. According to the testing results, the average energy savings by applying iEN are 10% and 23.5% for the whole site and single facility, respectively. Comparing with the reported EMS cases, it was found that the energy savings by adopting the cloud EMS were only 70%–80% compared with those using the traditional EMS. Although the cloud EMS presented less energy savings, it revolutionized the traditional EMS by its innovative business model. Compared with the averaged 1.7 years payback period of the traditional EMS, more than 70% of the cloud EMS cases could pay back immediately for the service fees and without the equipment investment.

  2. Advancing Drug Discovery through Enhanced Free Energy Calculations.

    Science.gov (United States)

    Abel, Robert; Wang, Lingle; Harder, Edward D; Berne, B J; Friesner, Richard A

    2017-07-18

    A principal goal of drug discovery project is to design molecules that can tightly and selectively bind to the target protein receptor. Accurate prediction of protein-ligand binding free energies is therefore of central importance in computational chemistry and computer aided drug design. Multiple recent improvements in computing power, classical force field accuracy, enhanced sampling methods, and simulation setup have enabled accurate and reliable calculations of protein-ligands binding free energies, and position free energy calculations to play a guiding role in small molecule drug discovery. In this Account, we outline the relevant methodological advances, including the REST2 (Replica Exchange with Solute Temperting) enhanced sampling, the incorporation of REST2 sampling with convential FEP (Free Energy Perturbation) through FEP/REST, the OPLS3 force field, and the advanced simulation setup that constitute our FEP+ approach, followed by the presentation of extensive comparisons with experiment, demonstrating sufficient accuracy in potency prediction (better than 1 kcal/mol) to substantially impact lead optimization campaigns. The limitations of the current FEP+ implementation and best practices in drug discovery applications are also discussed followed by the future methodology development plans to address those limitations. We then report results from a recent drug discovery project, in which several thousand FEP+ calculations were successfully deployed to simultaneously optimize potency, selectivity, and solubility, illustrating the power of the approach to solve challenging drug design problems. The capabilities of free energy calculations to accurately predict potency and selectivity have led to the advance of ongoing drug discovery projects, in challenging situations where alternative approaches would have great difficulties. The ability to effectively carry out projects evaluating tens of thousands, or hundreds of thousands, of proposed drug candidates

  3. NATO Advanced Study Institute on Magnetic Resonance : Introduction, Advanced Topics and Applications to Fossil Energy

    CERN Document Server

    Fraissard, Jacques

    1984-01-01

    This volume contains the lectures presented at an Advanced Study Institute on "Magnetic Resonance Techniques in Fossil Energy Problems," which was held at the village of Maleme, Crete, in July of 1983. As of this writing, a different popular attitude prevails from that when the ASI was proposed as far as how critical the world energy picture is. In the popular press, a panglossian attitude (the "petroleum glut" of the 80's) has replaced the jeremiads of the 70's ( a catastrophic "energy crisis"). Yet, there are certain important constants: (a) for the foreseeable future, fossil energy sources (petroleum, coal, oil shale, etc. ) will continue to be of paramount importance; and (b) science and technology of the highest order are needed to extend the fossil ener~y resource base and to utilize it in a cost-effective manner that is also environmentally acceptable. It is precisely this second item that this volume addresses. The volume introduces the phenomenology of magnetic resonance ~n a unified and detailed man...

  4. Balancing energy and environment: The effect and perspective of management instruments in China

    International Nuclear Information System (INIS)

    Fang, Yiping; Zeng, Yong

    2007-01-01

    The rapid growth of Chinese economy has tremendously stimulated the expansion of energy consumption. The structure of energy consumption in China is featured with the coal domination. Air pollution is becoming increasingly severe. As a result, we are confronted with the extremely arduous task to balance energy consumption and environmental protection. In order to coordinate the relationship between energy consumption and environmental protection in a strategic way, this paper analyzes comprehensively the instruments, effects and perspectives of energy-related environmental management. Meanwhile, this paper illustrates the barriers and challenges facing the energy and energy-related environmental management in China, and suggests a priority strategy of management instrument, mainly composed of energy-saving, optimization of energy structure, promulgation of environmental standards, advance in environmental technologies, internalization of environmental costs, establishment of a public benefit fund and adoption of a Renewable Portfolio System. (author)

  5. Energy management under policy and technology uncertainty

    International Nuclear Information System (INIS)

    Tylock, Steven M.; Seager, Thomas P.; Snell, Jeff; Bennett, Erin R.; Sweet, Don

    2012-01-01

    Energy managers in public agencies are subject to multiple and sometimes conflicting policy objectives regarding cost, environmental, and security concerns associated with alternative energy technologies. Making infrastructure investment decisions requires balancing different distributions of risks and benefits that are far from clear. For example, managers at permanent Army installations must incorporate Congressional legislative objectives, executive orders, Department of Defense directives, state laws and regulations, local restrictions, and multiple stakeholder concerns when undertaking new energy initiatives. Moreover, uncertainty with regard to alternative energy technologies is typically much greater than that associated with traditional technologies, both because the technologies themselves are continuously evolving and because the intermittent nature of many renewable technologies makes a certain level of uncertainty irreducible. This paper describes a novel stochastic multi-attribute analytic approach that allows users to explore different priorities or weighting schemes in combination with uncertainties related to technology performance. To illustrate the utility of this approach for understanding conflicting policy or stakeholder perspectives, prioritizing the need for more information, and making investment decisions, we apply this approach to an energy technology decision problem representative of a permanent military base. Highlights: ► Incorporate disparate criteria with uncertain performance. ► Analyze decisions with contrasting stakeholder positions. ► Interactively compare alternatives based on uncertain weighting. ► User friendly multi-criteria decision analysis (MCDA) tool.

  6. Energy management information systems : achieving improved energy efficiency : a handbook for managers, engineers and operational staff

    Energy Technology Data Exchange (ETDEWEB)

    Hooke, J.H.; Landry, B.J.; Hart, D. [Natural Resources Canada, Ottawa, ON (Canada). Office of Energy Efficiency

    2004-07-01

    There are many opportunities for industrial and commercial facilities to improve energy efficiency by minimizing waste through process optimization. Large energy users can effectively reduce energy costs, improve profits and reduce greenhouse gas emissions by using computing and control equipment. This book covers all aspects of an Energy Management Information System (EMIS) including metering, data collection, data analysis, reporting and cost benefit analyses. EMIS provides relevant information to businesses that enables them to improve energy performance. EMIS deliverables include early detection of poor performance, support for decision making and effective energy reporting. EMIS also features data storage, calculation of effective targets for energy use and comparative energy consumption. Computer systems can be used to improve business performance in terms of finance, personnel, sales, resource planning, maintenance, process control, design and training. In the 1980s, the Canadian Industry Program for Energy Conservation (CIPEC) developed 2 versions of an energy accounting manual to help industrial, commercial and institutional sectors implement energy-accounting systems. The manual was revised in 1989 and is a useful energy management tool for business and other organizations. The EMIS examples described in this booklet reflect that energy is a variable operating cost, not a fixed overhead charge. 8 tabs., 38 figs.

  7. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  8. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River National Lab. (SRNL), Aiken, SC (United States); Freedman, V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Agarwal, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bott, Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, X. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gorton, I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Murray, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meyer, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rockhold, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, A. [LBNL; Steefel, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waichler, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for

  9. Energy efficiency through integrated environmental management.

    Science.gov (United States)

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented.

  10. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  11. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  12. New directions in federal energy management

    International Nuclear Information System (INIS)

    Ginsberg, M.

    1993-01-01

    The fuel embargo of 1973, followed by the oil disruption of 1979 heightened national security concerns over the availability and price of foreign oil to sustain all sectors of the U.S. economy. As a result of our growing dependence on foreign oil and diminishing resources at home, the Federal government has worked since 1974 to identify and implement a variety of measures to reduce energy consumption in Federal buildings and operations. Federal energy expenditures peaked at almost $14 billion in 1982 but has now been reduced to approximately $10 billion a year. However, much more needs to be done. Since the 1973 oil embargo, a series of legislative initiatives and Presidential authorities established the Federal Energy Management Program (FEMP) and then expanded it to address a broad range of energy-related issues affecting the Federal sector. Administered by the U.S. Department of Energy, FEMP coordinates the design and implementation of energy-saving programs for Federal buildings and operations. This includes working with other Federal agencies through interagency committees to interpret and implement Federal policy, to provide technical assistance to other Federal agencies, and to collect and report Federal energy consumption data to Congress. In addition, with the passage of the Clean Air Act Amendments of 1990, concerns over global climate change and a range of man-made and natural pollutants, environmental issues now play a critical role in our nation's energy policy. As a major consumer of energy, the Federal sector can serve as an important model for other sectors of the economy as a result of some of the innovative and cost-effective measures planned or currently underway. My talk today will focus on the Federal government's plans to ensure the energy efficient design and operation of Federal facilities, with an emphasis on life-cycle cost analyses

  13. Manage your energy, not your time.

    Science.gov (United States)

    Schwartz, Tony

    2007-10-01

    As the demands of the workplace keep rising, many people respond by putting in ever longer hours, which inevitably leads to burnout that costs both the organization and the employee. Meanwhile, people take for granted what fuels their capacity to work--their energy. Increasing that capacity is the best way to get more done faster and better. Time is a finite resource, but energy is different. It has four wellsprings--the body, emotions, mind, and spirit--and in each, it can be systematically expanded and renewed. In this article, Schwartz, founder of the Energy Project, describes how to establish rituals that will build energy in the four key dimensions. For instance, harnessing the body's ultradian rhythms by taking intermittent breaks restores physical energy. Rejecting the role of a victim and instead viewing events through three hopeful lenses defuses energy-draining negative emotions. Avoiding the constant distractions that technology has introduced increases mental energy. And participating in activities that give you a sense of meaning and purpose boosts the energy of the spirit. The new workday rituals succeed only if leaders support their adoption, but when that happens, the results can be powerful. A group of Wachovia Bank employees who went through an energy management program outperformed a control group on important financial metrics like loans generated, and they reported substantially improved customer relationships, productivity, and personal satisfaction. These findings corroborated anecdotal evidence gathered about the effectiveness of this approach at other companies, including Ernst & Young, Sony, and Deutsche Bank. When organizations invest in all dimensions of their employees' lives, individuals respond by bringing all their energy wholeheartedly to work -and both companies and their people grow in value.

  14. Home and Building Energy Management Systems | Grid Modernization | NREL

    Science.gov (United States)

    Home and Building Energy Management Systems Home and Building Energy Management Systems NREL researchers are developing tools to understand the impact of changes in home and building energy use and how researchers who received a record of invention for a home energy management system in a smart home laboratory

  15. Overview of an energy management process

    International Nuclear Information System (INIS)

    Chantraine, P.

    2004-01-01

    Invista is a global and vertically integrated fiber, resin and intermediates business which belonged to Dupont but is now a subsidiary of Koch Industries. A background of Invista and its former relationship with Dupont was presented. This presentation was based on goals and work done as Dupont Canada Inc., up to the end of 2003. Details of Invista's approach to climate change in Canada were provided along with the company's relationship with Natural Resources Canada. The historical position of Dupont Canada was reviewed in detail, including their commitment to voluntary approach; participation in the national process; their goal of 85 per cent reduction in greenhouse gas (GHG) by 2000; 93 per cent reduction in nitrous oxide emissions; energy efficiency goals; and continuing growth of the company. An outline and mission of the energy management team established in 1974 was presented, with details of the 1974 oil shortage, stabilization in the 1980s through to rises in electricity prices in the 1990s and concerns over climate change in recent years. Details of the team's operational procedures were presented. Results were presented in graph form and include: total energy use from 1972 to 2003 as well as cumulative energy conservation projects and resulting energy savings. Examples of activities and projects were provided, including details of energy performance contracting. It was concluded that in order to conserve energy, top management support was necessary, as well as passion and dedication in both leaders and teams. A broad scope for creativity in finding solutions within evolving constraints was also important, as was the nurturing of capability, capacity and recognition for results achieved. tabs., figs

  16. Energy management installation at North Middlesex Hospital.

    Science.gov (United States)

    Hart, V A

    1986-05-01

    The author is the Energy Conservation Officer for the Haringey Health Authority. The North Middlesex Hospital is an acute unit with approximately 700 beds. Currently, twenty-one outstations control the maternity/radio therapy tower complex plus the outpatients' department. Plans have been approved to extend the system and Phase 2 will cover pathology, administration, medical and surgical blocks together with x-ray and casualty blocks. Transmitton Ltd, as in Phase 1, will supply the hardware and contract management.

  17. Low Energy Reaction cell for advanced space power applications

    International Nuclear Information System (INIS)

    Miley, George H.; Rice, Eric

    2001-01-01

    Power units using Low Energy Reactions (LENRs) are under study as a radical new approach to power units that could potentially replace nuclear and chemical power sources for a number of space applications. These cells employ thin metallic films (order of 500 deg., using variously Ni, Pd and Ti) as cathodes with various electrolytes such as 0.5-1 molar lithium sulfate in light water. Power densities exceeding 10 W/cm3 in the thin-films have been achieved. An ultimate goal is to incorporate this thin-film technology into a 'tightly packed' cell design where the film material occupies ∼20% of the total cell volume. If this is achieved, overall power densities of ∼20 W/cm3 appear feasible, opening the way to a number of potential applications ranging from distributed power units in spacecraft to advanced propulsion

  18. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  19. Effect of advanced fuel cycles on waste management policies

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Haapalehto, T.

    2005-01-01

    The study aims at analysing a range of future fuel cycle options from the perspective of their impact on waste repository demand and specification. The study would focus on: Assessment of the characteristics of radioactive wastes arising from advanced nuclear fuel cycle options, repository performance analysis studies using source terms for waste arising from such advanced nuclear fuel cycles, identification of new options for waste management and disposal. Three families of fuel cycles having increasing recycling capabilities are assessed. Each cycle is composed of waste generating and management processes. Examples of waste generating processes are fuel factories (7 types) and reprocessing plants (7 types). Packaging and conditioning plants (7) and disposal facilities are examples of waste management processes. The characteristic of all these processes have been described and then total waste flows are summarised. In order to simplify the situation, three waste categories have been defined based on the IAEA definitions in order to emphasize the major effects of different types of waste. These categories are: short-life waste for surface or sub-surface disposal, long-life low heat producing waste for geological disposal, high-level waste for geological disposal. The feasibilities of the fuel cycles are compared in terms of economics, primary resource consumption and amount of waste generated. The effect of high-level waste composition for the repository performance is one of the tools in these comparisons. The results of this will be published as an NEA publication before the end of 2005. (authors)

  20. Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)

    Energy Technology Data Exchange (ETDEWEB)

    Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

    2013-09-01

    The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

  1. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  2. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  3. Sustainable energy management - a prerequisite for the realization Kyoto Protocol

    Directory of Open Access Journals (Sweden)

    Mirjana Golušin

    2012-07-01

    Full Text Available Energy management can be defined as the process of planning, directing, implementing and controlling the process of generation, transmission and energy consumption. Energy management is a kind of synthesis of phenomena and concepts of modern energy management (management, or the use of modern settings management in the energy sector. Furthermore, when outlining the basic settings for power management Modern management is based on the assumptions of sustainability and conservation of energy stability for present and future generations. Therefore, modern energy management can be seen as a kind of synthesis of three actuarial sciences: energy, sustainable development and management. Sustainable Energy Management is a unique new concept, idea and approach that require many changes in the traditional way of understanding and interpretation of energy management at all levels. Sustainable energy management concept can not therefore be construed as an adopted and defined the concept, but must be constantly modified and adjusted in accordance with changes in the three areas that define it, and in accordance with the specific country or region where applicable. Accordingly, sustainable energy management can be defined as the process of energy management that is based on fundamental principles of sustainable development.

  4. A Fuzzy-Based Building Energy Management System for Energy Efficiency

    Directory of Open Access Journals (Sweden)

    José L. Hernández

    2018-01-01

    Full Text Available Information and communication technologies (ICT offer immense potential to improve the energetic performance of buildings. Additionally, common building control systems are typically based on simple decision-making tools, which possess the ability to obtain controllable parameters for indoor temperatures. Nevertheless, the accuracy of such common building control systems is improvable with the integration of advanced decision-making techniques embedded into software and energy management tools. This paper presents the design of a building energy management system (BEMS, which is currently under development, and that makes use of artificial intelligence for the automated decision-making process required for optimal comfort of occupants and utilization of renewables for achieving energy-efficiency in buildings. The research falls under the scope of the H2020 project BREASER which implements fuzzy logic with the aim of governing the energy resources of a school in Turkey, which has been renovated with a ventilated façade with integrated renewable energy sources (RES. The BRESAER BEMS includes prediction techniques that increase the accuracy of common BEMS tools, and subsequent energy savings, while ensuring the indoor thermal comfort of the building occupants. In particular, weather forecast and simulation strategies are integrated into the functionalities of the overall system. By collecting the aforementioned information, the BEMS makes decisions according to a well-established selection of key performance indicators (KPIs with the objective of providing a quantitative comparable value to determine new actuation parameters.

  5. Hybrid electric vehicles energy management strategies

    CERN Document Server

    Onori, Simona; Rizzoni, Giorgio

    2016-01-01

    This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. In addition to the examples, simulation code is provided via a website, so that readers can work on the actua...

  6. Building Energy Management Open Source Software

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Saifur [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-08-25

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they are not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.

  7. Advances in Technology and Management : Proceedings of the 2012 International Conference on Technology and Management

    CERN Document Server

    2012-01-01

    This book Advances in Technology and Management contains 116 full length papers presented at the International Conference on Technology and Management, held on June 12-13, 2012, Jeju-Island, Korea. The goal of ICTAM 2012 is to bring together researchers working in many different areas of technology and management to foster international collaborations and exchange of new ideas.   This volume can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with technology. The second section of this volume consists of management.

  8. Advanced construction management for lunar base construction - Surface operations planner

    Science.gov (United States)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  9. Performance assessment of advanced engineering workstations for fuel management applications

    International Nuclear Information System (INIS)

    Turinsky, P.J.

    1989-07-01

    The purpose of this project was to assess the performance of an advanced engineering workstation [AEW] with regard to applications to incore fuel management for LWRs. The attributes of most interest to us that define an AEW are parallel computational hardware and graphics capabilities. The AEWs employed were super microcomputers manufactured by MASSCOMP, Inc. These computers utilize a 32-bit architecture, graphics co-processor, multi-CPUs [up to six] attached to common memory and multi-vector accelerators. 7 refs., 33 figs., 4 tabs

  10. Advanced fuels for plutonium management in pressurized water reactors

    International Nuclear Information System (INIS)

    Vasile, A.; Dufour, Ph.; Golfier, H.; Grouiller, J.P.; Guillet, J.L.; Poinot, Ch.; Youinou, G.; Zaetta, A.

    2003-01-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1 . More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate

  11. Managing complex, high risk projects a guide to basic and advanced project management

    CERN Document Server

    Marle, Franck

    2016-01-01

    Maximizing reader insights into project management and handling complexity-driven risks, this book explores propagation effects, non-linear consequences, loops, and the emergence of positive properties that may occur over the course of a project. This book presents an introduction to project management and analysis of traditional project management approaches and their limits regarding complexity. It also includes overviews of recent research works about project complexity modelling and management as well as project complexity-driven issues. Moreover, the authors propose their own new approaches, new methodologies and new tools which may be used by project managers and/or researchers and/or students in the management of their projects. These new elements include project complexity definitions and frameworks, multi-criteria approaches for project complexity measurement, advanced methodologies for project management (propagation studies to anticipate potential behaviour of the project, and clustering approaches...

  12. Advanced Energy Design Guide K-12: Next Generation of School Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Driven by energy efficiency advances and renewable energy cost reductions, zero energy buildings are popping up all around the country. Although zero energy represents a bold paradigm shift - from buildings that consume energy to buildings that produce enough energy to meet their energy needs on an annual basis - it isn't a sudden shift. Zero energy buildings are the result of steady, incremental progress by researchers and building professionals working together to improve building energy performance. ASHRAE is taking the lead by publishing - in partnership with the American Institute of Architects (AIA), the Illuminating Engineering Society (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE) - a new series of advanced energy design guides (AEDGs) focused on zero energy buildings. The recently completed Advanced Energy Design Guide for K-12 School Buildings: Achieving Zero Energy (K-12 ZE AEDG) is the first in this series.

  13. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  14. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.

    Science.gov (United States)

    Chen, Wenshuai; Yu, Haipeng; Lee, Sang-Young; Wei, Tong; Li, Jian; Fan, Zhuangjun

    2018-04-23

    Nanocellulose has emerged as a sustainable and promising nanomaterial owing to its unique structures, superb properties, and natural abundance. Here, we present a comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage. We begin with a brief introduction of the structural features of cellulose nanofibers within the cell walls of cellulose resources. We then focus on a variety of processes that have been explored to fabricate nanocellulose with various structures and surface chemical properties. Next, we highlight a number of energy storage systems that utilize nanocellulose-derived materials, including supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries. In this section, the main focus is on the integration of nanocellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nanocellulose to carbon materials and their functionalization by activation, heteroatom-doping, and hybridization with other active materials. Finally, we present our perspectives on several issues that need further exploration in this active research field in the future.

  15. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium

  16. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-01-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium. (author)

  17. Management of Heart Failure in Advancing CKD: Core Curriculum 2018.

    Science.gov (United States)

    House, Andrew A

    2018-02-23

    Heart failure and chronic kidney disease have increasing incidence and prevalence owing in part to the aging population and increasing rates of hypertension, diabetes, and other cardiovascular and kidney disease risk factors. The presence of one condition also has a strong influence on the other, leading to greater risks for hospitalization, morbidity, and death, as well as very high health care costs. Despite the frequent coexistence of heart failure and chronic kidney disease, many of the pivotal randomized trials that guide the management of heart failure have excluded patients with more advanced stages of chronic kidney disease. In this Core Curriculum article, management of a challenging, yet not unusual, case of heart failure with reduced ejection fraction in a patient with stage 4 chronic kidney disease provides an opportunity to review the relevant literature and highlight gaps in our knowledge. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicable to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).

  19. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs. The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  20. Advances in thermal-hydraulic studies of a transmutation advanced device for sustainable energy applications

    International Nuclear Information System (INIS)

    Fajardo, Laura Garcia; Castells, Facundo Alberto Escriva; Lira, Carlos Brayner de Olivera

    2013-01-01

    The Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) is a pebble-bed Accelerator Driven System (ADS) with a graphite-gas configuration, designed for nuclear waste trans- mutation and for obtaining heat at very high temperatures to produce hydrogen. In previous work, the TADSEA's nuclear core was considered as a porous medium performed with a CFD code and thermal-hydraulic studies of the nuclear core were presented. In this paper, the heat transfer from the fuel to the coolant was analyzed for three core states during normal operation. The heat transfer inside the spherical fuel elements was also studied. Three critical fuel elements groups were defined regarding their position inside the core. Results were compared with a realistic CFD model of the critical fuel elements groups. During the steady state, no critical elements reached the limit temperature of this type of fuel. (author)

  1. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  2. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  3. Energy-Based Facial Rejuvenation: Advances in Diagnosis and Treatment.

    Science.gov (United States)

    Britt, Christopher J; Marcus, Benjamin

    2017-01-01

    The market for nonsurgical, energy-based facial rejuvenation techniques has increased exponentially since lasers were first used for skin rejuvenation in 1983. Advances in this area have led to a wide range of products that require the modern facial plastic surgeon to have a large repertoire of knowledge. To serve as a guide for current trends in the development of technology, applications, and outcomes of laser and laser-related technology over the past 5 years. We performed a review of PubMed from January 1, 2011, to March 1, 2016, and focused on randomized clinical trials, meta-analyses, systematic reviews, and clinical practice guidelines including case control, case studies and case reports when necessary, and included 14 articles we deemed landmark articles before 2011. Three broad categories of technology are leading non-energy-based rejuvenation technology: lasers, light therapy, and non-laser-based thermal tightening devices. Laser light therapy has continued to diversify with the use of ablative and nonablative resurfacing technologies, fractionated lasers, and their combined use. Light therapy has developed for use in combination with other technologies or stand alone. Finally, thermally based nonlaser skin-tightening devices, such as radiofrequency (RF) and intense focused ultrasonography (IFUS), are evolving technologies that have changed rapidly over the past 5 years. Improvements in safety and efficacy for energy-based treatment have expanded the patient base considering these therapies viable options. With a wide variety of options, the modern facial plastic surgeon can have a frank discussion with the patient regarding nonsurgical techniques that were never before available. Many of these patients can now derive benefit from treatments requiring significantly less downtime than before while the clinician can augment the treatment to maximize benefit to fit the patient's time schedule.

  4. Embrace the Dark Side: Advancing the Dark Energy Survey

    Science.gov (United States)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  5. Management of advanced pancreatic cancer in daily clinical practice.

    Science.gov (United States)

    Giuliani, Jacopo; Piacentini, Paolo; Bonetti, Andrea

    2016-01-01

    The aim of this outcome study was to evaluate the management of advanced pancreatic cancer in a real-world clinical practice; few such experiences have been reported in the literature. A retrospective analysis was performed of all consecutive patients with advanced pancreatic ductal adenocarcinoma followed at our medical oncology unit between January 2003 and December 2013. We evaluated 78 patients, mostly with metastatic disease (64.1%). Median follow-up was 10.77 months, by which time 74 patients (94.9%) had died. Median overall survival was 8.29 months. Median age was 67 years. In univariate analysis, pain at onset (p = 0.020), ECOG performance status (p<0.001), stage (p = 0.047), first-line chemotherapy (p<0.001), second-line chemotherapy (p<0.001) and weight loss at diagnosis (p = 0.029) were factors that had an impact on overall survival. In multivariate analysis, the presence of pain at onset (p = 0.043), stage (p = 0.003) and second-line chemotherapy (p = 0.004) were confirmed as independent prognostic factors. Our data, derived from daily clinical practice, confirmed advanced pancreatic cancer as an aggressive malignant disease with a very short expected survival. Second-line treatment seems to provide an advantage in terms of overall survival in patients who showed a partial response as their best response to first-line treatment.

  6. Advanced Pulse Oximetry System for Remote Monitoring and Management

    Science.gov (United States)

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO2) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time. PMID:22933841

  7. Advances in asthma in 2016: Designing individualized approaches to management.

    Science.gov (United States)

    Anderson, William C; Apter, Andrea J; Dutmer, Cullen M; Searing, Daniel A; Szefler, Stanley J

    2017-09-01

    In this year's Advances in Asthma review, we discuss viral infections in asthmatic patients and potential therapeutic agents, the microbiome, novel genetic associations with asthma, air quality and climate effects on asthma, exposures during development and long-term sequelae of childhood asthma, patient-centered outcomes research, and precision medicine. In addition, we discuss application of biomarkers to precision medicine and new information on asthma medications. New evidence indicates that rhinovirus-triggered asthma exacerbations become more severe as the degree of sensitization to dust mite and mouse increase. The 2 biggest drivers of asthma severity are an allergy pathway starting with allergic sensitization and an environmental tobacco smoke pathway. In addition, allergic sensitization and blood eosinophils can be used to select medications for management of early asthma in young children. These current findings, among others covered in this review, represent significant steps toward addressing rapidly advancing areas of knowledge that have implications for asthma management. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Climate Leadership webinar on Integrating Energy and Climate Risk Management

    Science.gov (United States)

    Allergan, a multi-specialty healthcare company and pharmaceutical manufacturer, discusses how it manages climate and energy risks, how these areas are linked, and how energy and climate management strategies pervade critical business decisions.

  9. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  10. Operational management of offshore energy assets

    Science.gov (United States)

    Kolios, A. J.; Martinez Luengo, M.

    2016-02-01

    Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.

  11. Energy management in a microgrid with distributed energy resources

    International Nuclear Information System (INIS)

    Zhang, Linfeng; Gari, Nicolae; Hmurcik, Lawrence V.

    2014-01-01

    Highlights: • A performance metric is proposed with the consideration of price, environment effect, and service quality. • Models of a microgrid and a microgrid network are designed with distribute energy resources and storage. • Different cases in MG operation are discussed. - Abstract: A smart grid power system with renewable energy resources and distributed energy storage shows significant improvement in the power system’s emission reduction, reliability, efficiency, and security. A microgrid is a smart grid in a small scale which can be stand-alone or grid-tied. Multi microgrids form a network with energy management and operational planning through two-way power flow and communication. To comprehensively evaluate the performance of a microgrid, a performance metric is proposed with consideration of the electricity price, emission, and service quality, each of them is given a weighting factor. Thus, the performance metric is flexible according to the consumers’ preference. With the weighting factors set in this paper, this performance metric is further applied on microgrids operated as stand-alone, grid-tied, and networked. Each microgrid consists of a solar panel, a hydrogen fuel cell stack, an electrolyzer, a hydrogen storage tank, and a load. For a stand-alone system, the load prediction lowers down the daily electricity consumption about 5.7%, the quantity of H 2 stored fluctuates in a wide range, and overall performance indexes increase with the solar panel size. In a grid-tied MG, the load prediction has a significant effect on the daily consumed electricity which drops 25% in 4 days, some day-time loads are shifted to the night time, and the capacity of hydrogen tank is lower than that in a stand-alone MG. In a network with multiple MGs, the control of the power distribution strongly affects the MG’s performance. However, the overall performance index instead of any specific index increases with the MG’s power generated from renewable energy

  12. Dynamic management of integrated residential energy systems

    Science.gov (United States)

    Muratori, Matteo

    dissertation presents a bottom-up highly resolved model of a generic residential energy eco-system in the United States. The model is able to capture the entire energy footprint of an individual household, to include all appliances, space conditioning systems, in-home charging of plug-in electric vehicles, and any other energy needs, viewing residential and transportation energy needs as an integrated continuum. The residential energy eco-system model is based on a novel bottom-up approach that quantifies consumer energy use behavior. The incorporation of stochastic consumer behaviors allows capturing the electricity consumption of each residential specific end-use, providing an accurate estimation of the actual amount of available controllable resources, and for a better understanding of the potential of residential demand response programs. A dynamic energy management framework is then proposed to manage electricity consumption inside each residential energy eco-system. Objective of the dynamic energy management framework is to optimize the scheduling of all the controllable appliances and in-home charging of plug-in electric vehicles to minimize cost. Such an automated energy management framework is used to simulate residential demand response programs, and evaluate their impact on the electric power infrastructure. For instance, time-varying electricity pricing might lead to synchronization of the individual residential demands, creating pronounced rebound peaks in the aggregate demand that are higher and steeper than the original demand peaks that the time-varying electricity pricing structure intended to eliminate. The modeling tools developed in this study can serve as a virtual laboratory for investigating fundamental economic and policy-related questions regarding the interplay of individual consumers with energy use. The models developed allow for evaluating the impact of different energy policies, technology adoption, and electricity price structures on the total

  13. Smart EV Energy Management System to Support Grid Services

    Science.gov (United States)

    Wang, Bin

    Under smart grid scenarios, the advanced sensing and metering technologies have been applied to the legacy power grid to improve the system observability and the real-time situational awareness. Meanwhile, there is increasing amount of distributed energy resources (DERs), such as renewable generations, electric vehicles (EVs) and battery energy storage system (BESS), etc., being integrated into the power system. However, the integration of EVs, which can be modeled as controllable mobile energy devices, brings both challenges and opportunities to the grid planning and energy management, due to the intermittency of renewable generation, uncertainties of EV driver behaviors, etc. This dissertation aims to solve the real-time EV energy management problem in order to improve the overall grid efficiency, reliability and economics, using online and predictive optimization strategies. Most of the previous research on EV energy management strategies and algorithms are based on simplified models with unrealistic assumptions that the EV charging behaviors are perfectly known or following known distributions, such as the arriving time, leaving time and energy consumption values, etc. These approaches fail to obtain the optimal solutions in real-time because of the system uncertainties. Moreover, there is lack of data-driven strategy that performs online and predictive scheduling for EV charging behaviors under microgrid scenarios. Therefore, we develop an online predictive EV scheduling framework, considering uncertainties of renewable generation, building load and EV driver behaviors, etc., based on real-world data. A kernel-based estimator is developed to predict the charging session parameters in real-time with improved estimation accuracy. The efficacy of various optimization strategies that are supported by this framework, including valley-filling, cost reduction, event-based control, etc., has been demonstrated. In addition, the existing simulation-based approaches do

  14. Energy, economic, and environmental impacts of advanced industrial process innovations, 1976--1996

    International Nuclear Information System (INIS)

    Quinn, J.E.; Reed, J.E.

    1997-01-01

    The mission of the Office of Industrial Technologies (OIT), within the Office of Energy Efficiency and Renewable Energy, is to develop and deploy advanced energy efficiency, renewable energy, and pollution-prevention technologies, through partnerships with industry, government, and non-governmental organizations. OIT's objectives have evolved and broadened over nearly two decades, continually responding to a changing energy situation and shifting national priorities. Today, the key focus of the OIT programs is the Industries of the Future approach. This strategy of close collaboration with industry catalyzes and facilitates technology development and transfer efforts in seven manufacturing industries that together account for over 80% of the energy used and over 80% of the wastes produced by the manufacturing sector. In this approach senior level industry groups develop a future vision of their industry and a technology roadmap to attain the vision. DOE helps facilitate this process and partners with industry to identify and pursue an advanced technology R and D portfolio. The seven industries are aluminum, chemicals, forest products, glass, metalcasting, petroleum refining, and steel. In managing all its activities, OIT draws upon program support provided primarily by national Laboratories, universities, and private-sector research organizations throughout the country that have the diverse and specialized expertise needed to develop advanced industrial technologies. Approximately 78 industrial technologies developed with Office of Industrial Technology (OIT) support have successfully entered commercial markets. These technologies have saved a cumulative total of almost 900 trillion Btu, representing a new production cost savings of over $1.8 billion. These dollar savings represent the net total value of all energy saved by technologies developed with OIT support minus the net cost to industry of using the technologies (including capital costs, operating and

  15. Managing companies in an open energy market

    International Nuclear Information System (INIS)

    Kaeser, A.

    2006-01-01

    This article presents a comparison of management methods in the electricity supply industry in Germany and Switzerland and of the measures that can be taken in order to meet the new regulatory demands resulting from the opening of the electricity market. The development of legislation on the opening of the electricity market in Switzerland is briefly looked at and the situation to be found in many Swiss companies in the energy sector is looked at. The equivalent situation to be found in Germany is also reviewed as well as various prerequisites for the unbundling of the market, including the so-called 'revenue-cap' method. Quality-assurance in this area is also looked at, as are performance management and other controlling aspects. Also, transport lines and mains-usage are discussed, along with their appropriate regulation. An example is given of a system that allows computer access to the relevant data

  16. 4+D digital engineering for advanced nuclear energy systems

    International Nuclear Information System (INIS)

    Jeong, S. G.; Suh, K. Y.; Nam, S. K.

    2007-01-01

    Nuclear power plants (NPPs) require massive quantity of data during the design, construction, operation, maintenance and decommissioning stages because of their special features like size, cost, radioactivity, and so forth. The system engineering thus calls for a fully automated way of managing the information flow spanning their life cycle. In line with practice in disciplines of naval architecture, aerospace engineering, and automotive manufacturing, the paper proposes total digital systems engineering based on three-dimensional (3D) computer-aided design (CAD) models. The signature in the proposal lies with the four-plus-dimensional (4 + D) Technology T M, a critical know-how for digital management. The so-called OPIUM (Optimized Plant Integrated Ubiquitous Management) features a 4 + D Technology T M for nuclear energy systems engineering. The technology proposed in the 3D space and time plus cost coordinates, i.e. 4 + D, is the backbone of digital engineering in the nuclear systems design and management. Based on an integrated 3D configuration management system, OPIUM consists of solutions NOTUS (Nuclear Optimization Technique Ubiquitous System), VENUS (Virtual Engineering Nuclear Ubiquitous System), INUUS (Informatics Nuclear Utilities Ubiquitous System), JANUS (Junctional Analysis Numerical Ubiquitous System) and EURUS (Electronic Unit Research Ubiquitous System). These solutions will help initial simulation capability for NPPs to supply the crucial information. NOTUS contributes to reducing the construction cost of the NPPs by optimizing the component manufacturing procedure and the plant construction process. Planning and scheduling construction projects can thus benefit greatly by integrating traditional management techniques with digital process simulation visualization. The 3D visualization of construction processes and the resulting products intrinsically afford most of the advantages realized by incorporating a purely schedule level detail based the 4

  17. COMMUNITY BASED HOME ENERGY MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan Aziz

    2017-05-01

    Full Text Available In a Smart Grid (SG scenario, domestic consumers can gain cost reduction benefit by scheduling their Appliance Activation Time (AAT towards the slots of low charge. Minimization in cost is essential in Home Energy Management Systems (HEMS to induce consumers acceptance for power scheduling to accommodate for a Demand Response (DR at peak hours. Despite the fact that many algorithms address the power scheduling for HEMS, community based optimization has not been the focus. This paper presents an algorithm that targets the minimization of energy costs of whole community while keeping a low Peak to Average Ratio (PAR and smooth Power Usage Pattern (PUP. Objective of cost reduction is accomplished by finding most favorable AAT by Particle Swarm Optimization (PSO in conjunction with Inclined Block Rate (IBR approach and Circular Price Shift (CPS. Simulated numerical results demonstrate the effectiveness of CPS to assist the merger of PSO & IBR to enhance the reduction/stability of PAR and cost reduction.

  18. Energy management of DSL systems: Experimental findings

    KAUST Repository

    Guenach, Mamoun

    2013-12-01

    We present a measurement study of the energy consumption of an operator-side digital subscriber line (DSL) board under various conditions of data rate and power spectral density, with and without vectoring. The results highlight practical opportunities and challenges for optimizing rate-power-stability tradeoffs in DSL access systems, complementing simulation-based studies focused on energy reduction through spectral optimization. We validate models for line board consumption that can be tied with line driver consumption based on the aggregate transmit power of each line, and demonstrate that near-optimal rate-power-stability tradeoffs can be obtained through external line management of data rate, Signal-to-Noise-Ratio margin and power spectral density parameters. © 2013 IEEE.

  19. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  20. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  1. USA: energy policy and spent fuel and waste management

    International Nuclear Information System (INIS)

    Petroll, M.R.

    2001-01-01

    The new US administration under President Bush has shifted political weights in the country's energy policy. The policy pursued by the Clinton administration, which had been focused strongly on energy efficiency and environmental protection, will be revoked in a number of points, and the focus instead will now be on economics and continuity of supply, also against the backdrop of the current power supply crisis in California. However, it is more likely that fossil-fired generating capacity will be expanded or added than new nuclear generating capacity. As far as the policy of managing radioactive waste is concerned, no fast and fundamental changes are expected. Low-level waste arising in medicine, research, industry, and nuclear power plants will be stored in a number of shallow ground burial facilities also involving more than one federal state. The Yucca Mountain repository project will be advanced with a higher budget, and WIPP (Waste Isolation Plant) in the state of New Mexico has been in operation since 1998. Plans for the management of spent fuel elements include interim stores called ISFSIs (Independent Spent Fuel Storage Installations) both near and independent of nuclear power sites. Nineteen sites have been licensed, another eighteen are ready to be licensed. In addition, also international spent fuel and nuclear waste management approaches are being discussed in the United States which, inter alia, are meant to offer comprehensive solutions to countries running only a small number of nuclear power plants. (orig.) [de

  2. Cluman: Advanced cluster management for the large-scale infrastructures

    International Nuclear Information System (INIS)

    Babik, Marian; Fedorko, Ivan; Rodrigues, David

    2011-01-01

    The recent uptake of multi-core computing has produced a rapid growth of virtualisation and cloud computing services. With the increased use of the many-core processors this trend will likely accelerate and computing centres will be faced with the management of the tens of thousands of the virtual machines. Furthermore, these machines will likely be geographically distributed and need to be allocated on demand. In order to cope with such complexity we have designed and developed an advanced cluster management system that can execute administrative tasks targeting thousands of machines as well as provide an interactive high-density visualisation of the fabrics. The job management subsystem can perform complex tasks while following their progress and output and report aggregated information back to the system administrators. The visualisation subsystem can display tree maps of the infrastructure elements with data and monitoring information, thus providing a very detailed overview of the large clusters at a glance. The initial experience with development and testing of the system will be presented as well as an evaluation of its performance.

  3. The management of localized and locally advanced prostate cancer - 1995

    International Nuclear Information System (INIS)

    Forman, Jeffrey D.

    1995-01-01

    Purpose/Objectives: The intent of this course is to review the issues involved in the management of non-metastatic adenocarcinoma of the prostate. - The value of pre-treatment prognostic factors including stage, grade and PSA value will be presented, and their value in determining therapeutic strategies will be discussed. - Controversies involving the simulation process and treatment design will be presented. The value of CT scanning, Beams-Eye View, 3-D planning, intravesicle, intraurethral and rectal contrast will be presented. The significance of prostate and patient movement and strategies for dealing with them will be presented. - The management of low stage, low to intermediate grade prostate cancer will be discussed. The dose, volume and timing of irradiation will be discussed as will the role of neo-adjuvant hormonal therapy, neutron irradiation and brachy therapy. The current status of radical prostatectomy and cryotherapy will be summarized. - Treatment of locally advanced, poorly differentiated prostate cancer will be presented including a discussion of neo-adjuvant and adjuvant hormones, dose-escalation and neutron irradiation. - Strategies for post-radiation failures will be presented including data on cryotherapy, salvage prostatectomy and hormonal therapy (immediate, delayed and/or intermittent). New areas for investigation will be reviewed. - The management of patients post prostatectomy will be reviewed. Data on adjuvant radiation and therapeutic radiation for biochemical or clinically relapsed patients will be presented. This course hopes to present a realistic and pragmatic overview for treating patients with non-metastatic prostatic cancer

  4. Advances in the nutritional and pharmacological management of phenylketonuria

    Science.gov (United States)

    Ney, Denise M.; Blank, Robert D.; Hansen, Karen E.

    2014-01-01

    Structural Abstract Purpose of review The purpose is to discuss advances in the nutritional and pharmacological management of phenylketonuria (PKU). Recent findings Glycomacropeptide (GMP), a whey protein produced during cheese production, is a low-phe intact protein that represents a new dietary alternative to synthetic amino acids (AAs) for people with PKU. Skeletal fragility is a long-term complication of PKU that based on murine research, appears to result from both genetic and nutritional factors. Skeletal fragility in murine PKU is attenuated with the GMP diet, compared with an AA diet, allowing greater radial bone growth. Pharmacologic therapy with tetrahydrobiopterin (BH4), acting as a molecular chaperone for phenylalanine hydroxylase, increases tolerance to dietary phe in some individuals. Large neutral AAs (LNAA) inhibit phe transport across the intestinal mucosa and blood brain barrier; LNAA are most effective for individuals unable to comply with the low-phe diet. Summary Although a low-phe synthetic AA diet remains the mainstay of PKU management, new nutritional and pharmacological treatment options offer alternative approaches to maintain lifelong low phe concentrations. GMP medical foods provide an alternative to AA formula that may improve bone health, and BH4 permits some individuals with PKU to increase tolerance to dietary phe. Further research is needed to characterize the long-term efficacy of these new approaches for PKU management. PMID:24136088

  5. Technological Advances in Huanglongbing (HLB or Citrus Greening Disease Management

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Paudyal

    2015-12-01

    Full Text Available Huanglongbing (HLB, previously citrus greening disease, is the most destructive of citrus species causing major threat to the world citrus industry. The disease was reported from China in 1919 and now known to occur in more than 40 different countries of Asia, Africa, South and North America. Three species of gram negative bacterium namely Candidatus Liberibacter asiaticus, Candidatus Liberibacter africanus and Candidatus Liberibacter americanus are the casual organisms of HLB, respectively prevailing in the continent of Asia, Africa and South America. It is one of the most extensively researched subjects in citriculture world. HLB was detected in 2004 and 2005, respectively in San Paulo of Brazil and Florida of USA: the two leading citrus production hub of the world causing huge economic loss within 5 years of first detection. Since then research on HLB detection and management was further accelerated in American continents. This paper presents the scientific advancement made on detection, spread, economic losses caused by HLB in different parts of the world and controlling management strategies. Remarkable achievements have been made on HLB detection techniques including iodine test, qPCR and more recently in spectroscopy. While efforts are being made to develop resistance varieties using conventional and biotechnological tools management strategy which includes reduction of inoculums source, vector control and replant with disease-free planting materials still remains major option for HLB control. Citrus intercropping with guava have shown promising results for vector reduction.

  6. Advancements in the critical care management of status epilepticus.

    Science.gov (United States)

    Bauerschmidt, Andrew; Martin, Andrew; Claassen, Jan

    2017-04-01

    Status epilepticus has a high morbidity and mortality. There are little definitive data to guide management; however, new recent data continue to improve understanding of management options of status epilepticus. This review examines recent advancements regarding the critical care management of status epilepticus. Recent studies support the initial treatment of status epilepticus with early and aggressive benzodiazepine dosing. There remains a lack of prospective randomized controlled trials comparing different treatment regimens. Recent data support further study of intravenous lacosamide as an urgent-control therapy, and ketamine and clobazam for refractory status epilepticus. Recent data support the use of continuous EEG to help guide treatment for all patients with refractory status epilepticus and to better understand epileptic activity that falls on the ictal-interictal continuum. Recent data also improve our understanding of the relationship between periodic epileptic activity and brain injury. Many treatments are available for status epilepticus and there are much new data guiding the use of specific agents. However, there continues to be a lack of prospective data supporting specific regimens, particularly in cases of refractory status epilepticus.

  7. Advanced photon source low-energy undulator test line

    International Nuclear Information System (INIS)

    Milton, S.V.

    1997-01-01

    The injector system of the Advanced Photon Source (APS) consists of a linac capable of producing 450-MeV positrons or > 650-MeV electrons, a positron accumulator ring (PAR), and a booster synchrotron designed to accelerate particles to 7 GeV. There are long periods of time when these machines are not required for filling the main storage ring and instead can be used for synchrotron radiation research. We describe here an extension of the linac beam transport called the Low-Energy Undulator Test Line (LEUTL). The LEUTL will have a twofold purpose. The first is to fully characterize innovative, future generation undulators, some of which may prove difficult or impossible to measure by traditional techniques. These might include small-gap and superconducting undulators, very long undulators, undulators with designed-in internal focusing, and helical undulators. This technique also holds the promise of extending the magnetic measurement sensitivity beyond that presently attainable. This line will provide the capability to directly test undulators before their possible insertion into operating storage rings. A second use for the test line will be to investigate the generation of coherent radiation at wavelengths down to a few tens of nanometers

  8. Achieving Energy Efficient Ship Operations Under Third Party Management

    DEFF Research Database (Denmark)

    Taudal Poulsen, René; Sornn-Friese, Henrik

    2015-01-01

    Profitable energy saving measures are often not fully implemented in shipping, causing energy efficiency gaps. The paper identifies energy efficiency gaps in ship operations, and explores their causes. Lack of information on energy efficiency, lack of energy training at sea and onshore and lack...... of time to produce and provide reliable energy efficiency information cause energy efficiency gaps. The paper brings together the energy efficiency and ship management literatures, demonstrating how ship management models influence energy efficiency in ship operations. Achieving energy efficiency in ship...

  9. Observation on optimal transition from conventional energy with resource constraints to advanced energy with virtually unlimited resource, (2)

    International Nuclear Information System (INIS)

    Ohkubo, Hiroo; Suzuki, Atsuyuki; Kiyose, Ryohei

    1983-01-01

    This is an extension of the Suzuki model (base model) on optimal transition from resource-limited energy (oil) to advanced energy with virtually unlimited resource. The finite length of plant life, fuel cost, technological progress factor of advanced energy and the upper limit upon annual consumption rate of oil are taken into account for such an extension. The difference in optimal solutions obtained from extended and base models is shown by an application of the maximum principle. The implication of advanced energy R and D andenergy conservation effort is also discussed. (author)

  10. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  11. Co-Extrusion: Advanced Manufacturing for Energy Devices

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Corie Lynn [PARC, Palo Alto, CA (United States)

    2016-11-18

    The development of mass markets for large-format batteries, including electric vehicles (EVs) and grid support, depends on both cost reductions and performance enhancements to improve their economic viability. Palo Alto Research Center (PARC) has developed a multi-material, advanced manufacturing process called co-extrusion (CoEx) to remove multiple steps in a conventional battery coating process with the potential to simultaneously increase battery energy and power density. CoEx can revolutionize battery manufacturing across most chemistries, significantly lowering end-product cost and shifting the underlying economics to make EVs and other battery applications a reality. PARC’s scale-up of CoEx for electric vehicle (EV) batteries builds on a solid base of experience in applying CoEx to solar cell manufacturing, deposition of viscous ceramic pastes, and Li-ion battery chemistries. In the solar application, CoEx has been deployed commercially at production scale where multi-channel CoEx printheads are used to print viscous silver gridline pastes at full production speeds (>40 ft/min). This operational scale-up provided invaluable experience with the nuances of speed, yield, and maintenance inherent in taking a new technology to the factory floor. PARC has leveraged this experience, adapting the CoEx process for Lithium-ion (Li-ion) battery manufacturing. To date, PARC has worked with Li-ion battery materials and structured cathodes with high-density Li-ion regions and low-density conduction regions, documenting both energy and power performance. Modeling results for a CoEx cathode show a path towards a 10-20% improvement in capacity for an EV pouch cell. Experimentally, we have realized a co-extruded battery structure with a Lithium Nickel Manganese Cobalt (NMC) cathode at print speeds equivalent to conventional roll coating processes. The heterogeneous CoEx cathode enables improved capacity in thick electrodes at higher C-rates. The proof-of-principle coin cells

  12. BALANCED SCORECARD AS AN ADVANCED MANAGEMENT CONCEPT WITHIN THE INTEGRATED QUALITY MANAGEMENT MODEL

    Directory of Open Access Journals (Sweden)

    Stevan Zivojinovic

    2008-03-01

    Full Text Available The significance of >Integratedquality management< (IQM model, originating form St.Gallen-model, is reflected in the need for synergic application of new and advanced concepts of management theory and practise. Balanced score card (BSC within IQM model becomes a catalyst of business success for a modern organization by focusing on organizational variables-business strategy, organization structure and corporate culture. BSC is the leading system of performance tracking and strategy implementation, consistent with other management concepts and methods for managing process improvement. Through BSC, IQM processes' activities correlate with organization business results. BSC management processes enable integration of all decision-making levels, from institutional via strategic to operative, in the process starting from planing, i.e. formulating and implementation of strategy, to feed back by performance measurement and control.

  13. Management of patients with advanced prostate cancer: recommendations of the St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) 2015

    NARCIS (Netherlands)

    Gillessen, S.; Omlin, A.; Attard, G.; Bono, J.S. de; Efstathiou, E.; Fizazi, K.; Halabi, S.; Nelson, P.S.; Sartor, O.; Smith, M.R.; Soule, H.R.; Akaza, H.; Beer, T.M.; Beltran, H.; Chinnaiyan, A.M.; Daugaard, G.; Davis, I.D.; Santis, M. de; Drake, C.G.; Eeles, R.A.; Fanti, S.; Gleave, M.E.; Heidenreich, A.; Hussain, M.; James, N.D.; Lecouvet, F.E.; Logothetis, C.J.; Mastris, K.; Nilsson, S.; Oh, W.K.; Olmos, D.; Padhani, A.R.; Parker, C.; Rubin, M.A.; Schalken, J.A.; Scher, H.I.; Sella, A.; Shore, N.D.; Small, E.J.; Sternberg, C.N.; Suzuki, H; Sweeney, C.J.; Tannock, I.F.; Tombal, B.

    2015-01-01

    The first St Gallen Advanced Prostate Cancer Consensus Conference (APCCC) Expert Panel identified and reviewed the available evidence for the ten most important areas of controversy in advanced prostate cancer (APC) management. The successful registration of several drugs for castration-resistant

  14. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  15. The benefits of an advanced fast reactor fuel cycle for plutonium management

    International Nuclear Information System (INIS)

    Hannum, W.H.; McFarlane, H.F.; Wade, D.C.; Hill, R.N.

    1996-01-01

    The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium and long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a 'focus area' for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed

  16. Advanced techniques using the plant as indicator of irrigation management

    Directory of Open Access Journals (Sweden)

    Barbara dos Santos Esteves

    2015-05-01

    Full Text Available The methodologies which are considered the most promising for irrigation management are those based on the analysis of the water status of the plants themselves. This justifies the study and improvement of indicators based on automatic and continuous measures to enable real-time monitoring data, as indices from sap flow, dendrometry and leaf turgor pressure techniques. The aim of this paper is to analyze such methodologies in order to demonstrate their principles, advantages and challenges. In conclusion, the methodologies analyzed still have many technological advances and challenges before being presented to the final user. The future research should work these tools for elaboration of technical indexes that allow their simplification, on the instrumental point of view, and the interpretation of their results.

  17. Methods and Systems for Advanced Spaceport Information Management

    Science.gov (United States)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  18. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhui [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    This report describes the application functions for distribution management systems (DMS). The application functions are those surveyed by the IEEE Power and Energy Society’s Task Force on Distribution Management Systems. The description of each DMS application includes functional requirements and the key features and characteristics in current and future deployments, as well as a summary of the major benefits provided by each function to stakeholders — from customers to shareholders. Due consideration is paid to the fact that the realizable benefits of each function may differ by type of utility, whether investor-owned, cooperative, or municipal. This report is sufficient to define the functional requirements of each application for system procurement (request-for-proposal [RFP]) purposes and for developing preliminary high-level use cases for those functions. However, it should not be considered a design document that will enable a vendor or software developer to design and build actual DMS applications.

  19. Innovation management in renewable energy sector

    Science.gov (United States)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  20. Microgrids: Energy management by loss minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.K. [Electrical Engineering Dept., Jadavpur University & 20/2, Khanpur Road, Kolkata 700047 (India); Chowdhury, S.; Chowdhury, S.P. [Electrical Engineering Department, University of Cape Town & Private Bag X3, Menzies Building, Room-517, Rondebosch, Cape Town 7701 (India)

    2011-07-01

    Energy management is a techno-economic issue, which dictates, in the context of microgrids, how optimal investment in technology front could bring optimal power quality and reliability (PQR) of supply to the consumers. Investment in distributed energy resources (DERs), with their connection to the utility grid at optimal locations and with optimal sizes, saves energy in the form of line loss reduction. Line loss reduction is the indirect benefit to the microgrid owner who may recover it as an incentive from utility. The present paper focuses on planning of optimal siting and sizing of DERs based on minimization of line loss. Optimal siting is done, here, on the loss sensitivity index (LSI) method and optimal sizing by differential evolution (DE) algorithms, which is, again, compared with particle swarm optimization (PSO) technique. Studies are conducted on 6-bus and 14-bus radial networks under islanded mode of operation with electric demand profile. Islanding helps planning of DER capacity of microgrid, which is self-sufficient to cater its own consumers without utility's support.

  1. Embedded Systems for Smart Appliances and Energy Management

    CERN Document Server

    Neumann, Peter; Mahlknecht, Stefan

    2013-01-01

    This book provides a comprehensive introduction to embedded systems for smart appliances and energy management, bringing together for the first time a multidisciplinary blend of topics from embedded systems, information technology and power engineering.  Coverage includes challenges for future resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.   Provides a comprehensive, multidisciplinary introduction to embedded systems for smart appliances and energy management; Equips researchers and engineers with information required to succeed in designing energy management for smart appliances; Includes coverage of resource distribution grids, energy management in smart appliances, micro energy generation, demand response management, ultra-low power stand by, smart standby and communication networks in home and building automation.  

  2. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  3. Weldability and joining techniques for advanced fossil energy system alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  4. Radionuclide Emission Estimation for the Center for Advanced Energy Studies (CAES)

    International Nuclear Information System (INIS)

    Schrader, Bradley J.

    2010-01-01

    An Radiological Safety Analysis Computer Program (RSAC)-7 model dose assessment was performed to evaluate maximum Center for Advanced Energy Studies (CAES) boundary effective dose equivalent (EDE, in mrem/yr) for potential individual releases of radionuclides from the facility. The CAES is a public/private partnership between the State of Idaho and its academic research institutions, the federal government through the U.S. Department of Energy (DOE), and the Idaho National Laboratory (INL) managed by the Battelle Energy Alliance (BEA). CAES serves to advance energy security for our nation by expanding educational opportunities at Idaho universities in energy-related areas, creating new capabilities within its member institutions, and delivering technological innovations leading to technology-based economic development for the intermountain region. CAES has developed a strategic plan (INL/EXT-07-12950) based on the balanced scorecard approach. At the present time it is unknown exactly what processes will be used in the facility in support of this strategic plan. What is known is that the Idaho State University (ISU) Radioactive Materials License (Nuclear Regulatory Commission (NRC) license 11-27380-01) is the basis for handling radioactive material in the facility. The material in this license is shared between the ISU campus and the CAES facility. There currently are no agreements in place to limit the amount of radioactive material at the CAES facility or what is done to the material in the facility. The scope of this analysis is a summary look at the basis dose for each radionuclide included under the license at a distance of 100, 500, and 1,000 m. Inhalation, ingestion and ground surface dose was evaluated using the NRC design basis guidelines. The results can be used to determine a sum of the fractions approach to facility safety. This sum of the fractions allows a facility threshold value (TV) to be established and potential activities to be evaluated against

  5. Managing Interactions Between Carbon Pricing and Existing Energy Policies. Guidance for Policymakers

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Christina

    2013-07-01

    Carbon pricing can be a key policy tool to help countries move their energy sectors onto a cleaner development path. One important issue to consider when introducing carbon pricing is how it will integrate with other energy policies that also reduce greenhouse gas emissions, including policies to support low-carbon technologies (such as renewable energy) and energy efficiency programmes. Poor policy integration can undermine energy security and affordability, and affect the performance of renewable energy policies and energy markets. Climate objectives can also be undermined, through low and uncertain carbon prices and the risk of stop-start policy. Understanding how to manage policy interactions can improve the climate and energy policy package, reducing the trade-offs and advancing the synergies between energy and climate objectives. This will benefit the country in terms of a more effective and lower-cost low-carbon development path, as well as supporting a more energy-secure future.

  6. Energy management in fuel cell power trains

    International Nuclear Information System (INIS)

    Corbo, P.; Corcione, F.E.; Migliardini, F.; Veneri, O.

    2006-01-01

    In this paper, experimental results obtained on a small size fuel cell power train (1.8 kW) based on a 500 W proton exchange membrane (PEM) stack are reported and discussed with specific regard to energy management issues to be faced for attainment of the maximum propulsion system efficiency. The fuel cell system (FCS) was realized and characterized via investigating the effects of the main operative variables on efficiency. This resulted in an efficiency higher than 30% in a wide power range with a maximum of 38% at medium load. The efficiency of the overall fuel cell power train measured during both steady state and dynamic conditions (European R40 driving cycle) was about 30%. A discussion about the control strategy to direct the power flows is reported with reference to two different test procedures used in dynamic experiments, i.e., load levelled and load following

  7. EDF Energy Nuclear New Build: Lessons Learned in Knowledge Management

    International Nuclear Information System (INIS)

    Sachar, M.; Borlodan, G.

    2016-01-01

    Full text: EDF Energy Nuclear New Build (NNB) is building two EPR reactors at Hinkley Point C in Somerset in the United Kingdom that will provide reliable, low carbon electricity to meet approximately 7% of the UK’s electricity needs. The Hinkley Point C project is well advanced. It has achieved planning consent, design approval for the EPR reactor and a nuclear site license. There is a well-developed supply chain with identified preferred bidders who are already heavily involved in construction planning. Training for needed skills is underway and industrial agreements with trade unions are in place. NNB has the unique opportunity to set Knowledge Management behaviours, culture, and standards for the Hinkley Point C project from project inception instead of working to change them, such as on an operational site. (author

  8. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  9. [Qualitative research of self-management behavior in patients with advanced schistosomiasis].

    Science.gov (United States)

    Wang, Jian-ping; Wang, Xing-ju; Bao, Hui-hong; Zhang, Hong; Xu, Zheng-rong

    2013-10-01

    To explore the self-management behavior of patients with advanced schistosomiasis, so as to provide the evidence for improving clinical nursing. A total of 18 patients with advanced schistosomiasis were interviewed in depth by using a semi structured interview method. The results were analyzed with Miles and Huberman content analysis method. Most of the patients with advanced schistosomiasis had self-management control behavior and were cooperated with medical assistance because of their seriously illness. Based on data analysis, the symptom management, follow-up management, a healthy lifestyle, medication awareness, and emotional management were obtained. The patients with advanced schistosomiasis have self management control behavior. Health care workers should promote the patients, their families and social people to participate in the self-management behavior of advanced schistosomiasis patients.

  10. The role of business information management in advanced integrated environmental management systems

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2000-01-01

    investments in the individual company. Secondly, based on the above, to calculate and assess some typical quantifiable savings, e.g. on energy and raw materials, over a period of four years (after the implementation of the integrated environmental management system). In line with other similar investigations......, the study shows that the implementation of systematic and integrated environmental management systems results in significant savings. This supports the general, albeit rarely tested, hypothesis that it pays to be an environmentally responsible enterprise....

  11. Microgrid Controller and Advanced Distribution Management System Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Starke, Michael R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Herron, Andrew N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    A microgrid controller, which serves as the heart of a microgrid, is responsible for optimally managing the distributed energy resources, energy storage systems, and responsive demand and for ensuring the microgrid is being operated in an efficient, reliable, and resilient way. As the market for microgrids has blossomed in recently years, many vendors have released their own microgrid controllers to meet the various needs of different microgrid clients. However, due to the absence of a recognized standard for such controllers, vendor-supported microgrid controllers have a range of functionalities that are significantly different from each other in many respects. As a result the current state of the industry has been difficult to assess. To remedy this situation the authors conducted a survey of the functions of microgrid controllers developed by vendors and national laboratories. This report presents a clear indication of the state of the microgrid-controller industry based on analysis of the survey results. The results demonstrate that US Department of Energy funded research in microgrid controllers is unique and not competing with that of industry.

  12. Energy management in Japan. Consequences for RIs

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Japan is eager to host the ILC, the International Linear Collider Project. One of the issues in realizing such a large accelerator facility in Japan would be assuring a satisfactory supply of electrical power. As is well known, after the Tohoku - Pacific Ocean Earthquake in March 11, 2011, most Japanese nuclear power plants have been off-line. Prior to that, up to 30% of the demand on the electrical grid was supplied by nuclear power. While there is no prospect for resumption of reactor operations, a rapid increase of the generation capacity of fossil fuel plants has allowed Japanese industries and domestic life to survive without major disruption, thought it has worsened the trade imbalance. In any case, we must be realistic in preparing an energy management plan for our Research Institutes where large-scale energy consumers are. Already for many years laboratories such as TRISTAN, KEKB and J-PARC have scheduled their operations so that they could contract to draw minimal power during the summer cooling sea...

  13. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Griffith, Andrew

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  14. Energy management for cost reduction in the production. TEEM - Total Energy Efficiency Management; Energiemanagement zur Kostensenkung in der Produktion. TEEM - Total Energy Efficiency Management

    Energy Technology Data Exchange (ETDEWEB)

    Westkaemper, Engelbert; Verl, Alexander (eds.)

    2009-07-01

    Within the workshop of the Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Stuttgart, Federal Republic of Germany) at 6th October, 2009, in Stuttgart the following lectures were held: (1) Presentation of Fraunhofer Institute for Manufacturing Engineering and Automation IPA (Engelbert Westkaemper); (2) TEEM - Total Energy Efficiency Management - ''With energy management to an energy efficient production'' (Alexander Schloske); (3) DIN EN 16001 Introduction of an energy management system - utilization and advantages for companies (Sylvia Wahren); (4) Analysis of the energy efficiency with power flow - Support and implementation at factory planning and optimization of production (Klaus Erlach); (5) Total Energy Efficiency Management - Approaches at the company Kaercher in injection moulding for example (Axel Leschtar); (6) Modelling the embodied product energy (Shahin Rahimifard); (7) Acquisition of energy data in the production - Technologies and possibilities (Joachim Neher); (8) Active energy management by means of an ''energy control centre'' - Analysis of the real situation and upgrading measures in the production using coating plants as an example (Wolfgang Klein); (9) Visualisation and simulation of energy values in the digital factory (Carmen Constantinescu, Axel Bruns).

  15. Energy engenderment: An industrialized perspective assessing the importance of engaging women in residential energy consumption management

    International Nuclear Information System (INIS)

    Elnakat, Afamia; Gomez, Juan D.

    2015-01-01

    This study assesses gender role and participation in energy utilization at the residential household level in an advanced industrial country setting. Two hundred and twenty one (221) standardized surveys of single-family residential households in San Antonio, Texas – the seventh largest city in the United States of America – are collected and used as a test case. The objective is to highlight the role of women in improving household energy efficiency. By coupling the behavioral and analytical sciences, studies such as this one provide better insight for the effective deployment of targeted energy efficiency programs that can benefit both households and municipalities while reducing impact on environmental resources. Study conclusions highlight 80% higher per capita consumption in female dominant households versus male dominant households (p=0.000) driven by approximately double the gas consumption in female-headed households (p=0.002), and 54% more electric usage (p=0.004). The higher use in female dominant homes is examined through the socio-demographic impacts of education, income, vintage of home occupied and size of home occupied. The theoretical framework and test case presented in this study promote the need for market segmented energy efficiency initiatives that better engage women in energy demand-side management in industrialized populated cities. -- Highlights: •Role of women in energy consumption is understudied in industrial settings. •There is a significant impact from women on energy consumption in test case. •Higher per capita, per square foot, and gas consumption are indicated for women. •Women’s intrinsic role at household level can allow for better energy efficiency

  16. 77 FR 32994 - Bureau of Ocean Energy Management

    Science.gov (United States)

    2012-06-04

    ... managed by BOEM: oil and gas exploration and development; renewable energy; and marine minerals. BOEM is... development; (2) renewable energy; and (3) marine minerals. A Notice of Availability for the Draft PEIS was... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical...

  17. Environmental issues and waste management in energy and minerals production

    International Nuclear Information System (INIS)

    Yegulalp, T.M.; Kim, K.

    1992-01-01

    This book includes the following topics: water management in the minerals industry; management of radioactive wastes in the energy industry; the US high-level radioactive waste program; acid mine drainage; health risks from uranium mill tailings; alternate energy sources, such as hydrogen; superconductive magnetic energy storage; nuclear waste

  18. Federal Energy Efficiency through Utility Partnerships: Federal Energy Management Program (FEMP) Program Overview Fact Sheet

    International Nuclear Information System (INIS)

    Beattie, D.; Wolfson, M.

    2001-01-01

    This Utility Program Overview describes how the Federal Energy Management Program (FEMP) utility program assists Federal energy managers. The document identifies both a utility financing mechanism and FEMP technical assistance available to support agencies' implementation of energy and water efficiency methods and renewable energy projects

  19. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  20. Energy management and energy autonomy of French farms: status and perspectives of action for public authorities

    International Nuclear Information System (INIS)

    2005-01-01

    This report aims at giving the present state of knowledge about possible energy savings and renewable energy production in farms, and at proposing a hierarchy of actions and measures for a better energy management and energy autonomy in French farms. As far as knowledge is concerned, the authors discuss an assessment of agriculture energy consumption in France, analyse energy costs in farms, discuss the assessment of the global energy consumption by farms, and propose a first estimate of possible energy savings. Actions leading to energy savings or renewable energy production concern various aspects: the production system, agricultural techniques, crops, use of pure vegetal oil, biogas, solar heater, solar drying, buildings, greenhouses, biomass boilers, vegetal oil cogeneration, photovoltaic energy, wind energy. Key actions are identified which concern nitrogen management, wood energy, biogas, energy management, use of cereals for heating, and so on

  1. EDF advanced fuel management strategies for the next century

    International Nuclear Information System (INIS)

    Kocher, A.; Charmensat, P.; Larderet, M.

    1999-01-01

    The French nuclear fleet represents 57 PWRs in operation, accounting for 80 % of France's total electricity production. The performance achieved by EDF reactors, in terms of availability (82.6% in 1997) and good cost control, have allowed to improve the nuclear KWh cost by 2% since 1992. The implementation of longer fuel cycles on the 1300 MW reactors from 1996 has contributed to this improvement and, as competitiveness is one of the main challenges for EDF, improving core management strategies is still at the order of the day. With this aim, a thinking process has been initiated to evaluate the benefit brought by the use of a fuel assembly like ALLIANCE, the new fuel product developed by Framatome-Fragema and FCF (Framatome Cogema Fuels) in close cooperation with EDF. The considered product provides enhanced performance, particularly as regards discharge burnup (at least up to 70 GWd/t) and thermal-hydraulic and mechanical behaviour. Fuel management improvements rely on the expertise gained by Framatome through designing core management strategies in a wide range of operating conditions prevailing in nuclear reactors all over the world. It will however be taken into account the necessity for EDF to adopt a policy of stepwise change owing to the potential impact of a 'series effect' on its numerous units. The proposed paper will describe innovative fuel managements, achievable thanks to advanced fuel assembly performance, that are jointly investigated by EDF and Framatome. It includes the following optimization schemes: extending cycle length by using higher enrichments up to 5%, while keeping the same reload size (1/3 core for example for the 1300 MW reactors); decreasing reload size (from 1/3 to 1/4 core), while keeping the same cycle length, using more enriched (up to 5 %) fuel assemblies; reaching annual cycle, with maximization of fuel cycle cost optimization (1/5 core). Beyond such schemes, combinations of optimized loading patterns and neutronic features of

  2. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlyn C. Mousseau

    2011-10-01

    The Nuclear Energy Computational Fluid Dynamics Advanced Modeling and Simulation (NE-CAMS) system is being developed at the Idaho National Laboratory (INL) in collaboration with Bettis Laboratory, Sandia National Laboratory (SNL), Argonne National Laboratory (ANL), Utah State University (USU), and other interested parties with the objective of developing and implementing a comprehensive and readily accessible data and information management system for computational fluid dynamics (CFD) verification and validation (V&V) in support of nuclear energy systems design and safety analysis. The two key objectives of the NE-CAMS effort are to identify, collect, assess, store and maintain high resolution and high quality experimental data and related expert knowledge (metadata) for use in CFD V&V assessments specific to the nuclear energy field and to establish a working relationship with the U.S. Nuclear Regulatory Commission (NRC) to develop a CFD V&V database, including benchmark cases, that addresses and supports the associated NRC regulations and policies on the use of CFD analysis. In particular, the NE-CAMS system will support the Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program, which aims to develop and deploy advanced modeling and simulation methods and computational tools for reliable numerical simulation of nuclear reactor systems for design and safety analysis. Primary NE-CAMS Elements There are four primary elements of the NE-CAMS knowledge base designed to support computer modeling and simulation in the nuclear energy arena as listed below. Element 1. The database will contain experimental data that can be used for CFD validation that is relevant to nuclear reactor and plant processes, particularly those important to the nuclear industry and the NRC. Element 2. Qualification standards for data evaluation and classification will be incorporated and applied such that validation data sets will result in well

  3. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    Energy Technology Data Exchange (ETDEWEB)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  4. Advanced Onboard Energy Storage Solution for Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Balloon Programs at NASA are looking for a potential 100 day missions at mid-altitudes. These balloons would be powered by solar panels to take advantage of...

  5. Nea study on the impact of advanced fuel cycles on waste management policies

    International Nuclear Information System (INIS)

    Cavedon, J.M.

    2007-01-01

    This study was carried out by the ad hoc Expert Group on the Impact of Advanced Fuel Cycles on Waste Management Policies convened under the auspices of the NEA Committee for Technical and Economic Studies on Nuclear Energy Development and the Fuel Cycle (NDC); the Integrated Group on Safety Case from the Radioactive Waste Management Committee provided support in the field of waste repository issues; the Nuclear Science Committee Working Group on Flowsheet Studies also provided some input data. The full report on this study is published as the NEA Report number 5990 - OECD 2006 by OECD Publications - ISBN 92-64-02296-1. The following text is extracted from the Executive Summary of the report. (author)

  6. Technical Support Document: Development of the Advanced Energy Design Guide for K-12 Schools--30% Energy Savings

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Torcellini, P.; Long, N.

    2007-09-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for K-12 School Buildings (K-12 AEDG), a design guidance document intended to provide recommendations for achieving 30% energy savings in K-12 Schools over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The 30% energy savings target is the first step toward achieving net-zero energy schools; schools that, on an annual basis, draw from outside sources less or equal energy than they generate on site from renewable energy sources.

  7. Managing Your Energy: An ENERGY STAR(R) Guide for Identifying Energy Savings in Manufacturing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Angelini, Tana; Masanet, Eric

    2010-07-27

    In the United States, industry spends over $100 billion annually to power its manufacturing plants. Companies also spend on maintenance, capital outlay, and energy services. Improving energy efficiency is vital to reduce these costs and increase earnings. Many cost-effective opportunities to reduce energy consumption are available, and this Energy Guide discusses energy-efficiency practices and energy-efficient technologies that can be applied over a broad spectrum of companies. Strategies in the guide address hot water and steam, compressed air, pumps, motors, fans, lighting, refrigeration, and heating, ventilation, and air conditioning. This guide includes descriptions of expected energy and cost savings, based on real-world applications, typical payback periods, and references to more detailed information. The information in this Energy Guide is intended to help energy and plant managers achieve cost-effective energy reductions while maintaining product quality. Further research on the economics of all measures--as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  8. An international education agenda in nuclear energy and radioactive waste management for the 21st century

    International Nuclear Information System (INIS)

    Powell, R.R.; Wohlpart, A.; James, E.

    1992-01-01

    As many countries have turned to scientific and technological advancements for human well being and national security, there has emerged a pressing need to promote scientific and technological literacy in national work forces. One benefit of this literacy is scientifically informed decision making on issues related to energy conservation in general and nuclear energy in particular. Realizing the need for increased literacy relative to nuclear energy, the Office of Civilian Radioactive Waste Management (OCRWM) of the Department of Energy, U.S.A., the Organization of Economic Co-Operation and Development (OECD) and the Nuclear Energy Agency (NEA) sponsored an international conference on education in the field of radioactive waste management. This paper discusses recommendations made at the conference for developing education materials. Also described is a three-phase international plan for developing school curriculum materials relative to nuclear waste management

  9. Advancing data management and analysis in different scientific disciplines

    Science.gov (United States)

    Fischer, M.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Prabhune, A.; Rigoll, F.; Schwarz, K.; Streit, A.

    2017-10-01

    Over the past several years, rapid growth of data has affected many fields of science. This has often resulted in the need for overhauling or exchanging the tools and approaches in the disciplines’ data life cycles. However, this allows the application of new data analysis methods and facilitates improved data sharing. The project Large-Scale Data Management and Analysis (LSDMA) of the German Helmholtz Association has been addressing both specific and generic requirements in its data life cycle successfully since 2012. Its data scientists work together with researchers from the fields such as climatology, energy and neuroscience to improve the community-specific data life cycles, in several cases even all stages of the data life cycle, i.e. from data acquisition to data archival. LSDMA scientists also study methods and tools that are of importance to many communities, e.g. data repositories and authentication and authorization infrastructure.

  10. Advances in Energy Conservation of China Steel Industry

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2013-01-01

    Full Text Available The course, technical progresses, and achievements of energy conservation of China steel industry (CSI during 1980–2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011–2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years’ research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  11. Advances in energy conservation of China steel industry.

    Science.gov (United States)

    Sun, Wenqiang; Cai, Jiuju; Ye, Zhu

    2013-01-01

    The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980-2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011-2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  12. Energy efficiency public lighting management in the cities

    International Nuclear Information System (INIS)

    Radulovic, Dusko; Skok, Srdjan; Kirincic, Vedran

    2011-01-01

    Cities all around the world are faced with a rapid increase of urban population, and their crucial sustainable development issue becomes energy management. Moreover, the national energy management sector is slowly passing from government surveillance to the responsibility of local municipalities. The energy efficiency management in cities helps local governments to focus on important energy projects that have strong environmental aspects and financial feasibility. This paper analyzes the public lighting energy management in the Croatian city of Rijeka in order to determine the connection of the energy market liberalization and sustainable development in urban areas. Research results indicate a significant connection between investments in energy management of public lighting and its influence on lower emissions of carbon dioxide (CO 2 ).

  13. D5.4 – Energy management system

    DEFF Research Database (Denmark)

    Madsen, Per Printz; Andersen, Palle

    This report will focus on strategies for energy management as well at the building level and at the microgrid level. The designed energy management controller will manage energy flow such that generated power in the microgrid is mainly consumed by local consumers and the power trade between...... the microgrid and the grid is shrunk to minimum. Buildings’ role is to provide flexibility to the energy management controller so that this controller can use this flexibility to enhance the local use of the local produced energy and by that mean lower the energy bill for each house in the microgrid....... The Optimization of building loads are based on electricity price signal and shedding, shifting or rescheduling the power consumption pattern. The main shiftable loads are the HVAC systems. This system will be the primary controllable load for the energy management controller but also curtailable load and non...

  14. Children with protein energy malnutrition: management and out ...

    African Journals Online (AJOL)

    Children with protein energy malnutrition: management and out-come in a ... Sahel Medical Journal ... Demographic data, predisposing factors, clinical types of PEM, outcome of management and time of discharge or death were also extracted ...

  15. Key aspects to perform a project on energy management

    International Nuclear Information System (INIS)

    Bachini, R.

    1993-01-01

    A general overview on elements and organisms playing a key role to launch a new industrial project is given, taking as base case an energy management project. Likewise the problematic of training personnel involved in the project is analyzed. Energy management becomes crucial in industries where energy costs represent a big portion of the whole production cost. Main aspects to be analyzed are: - Adequate production procedures to be competitive - Environment protection regarding waste management - Maximization of safety at production installations. (Author)

  16. 2008 Federal Energy Management Program (FEMP) Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Tremper, C.

    2009-07-01

    This report assesses the market for Federal Energy Management Program (FEMP) services as it existed in FY 2008. It discusses Federal energy management goal progress in FY 2008, and examines the environment in which agencies implemented energy management projects over the last three years. The report also discusses some recent events that will increase the market for FEMP services, and outlines FEMP's major strategies to address these changes in FY 2009 and beyond.

  17. Research on Energy Management Strategy of Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Deng Tao

    2015-01-01

    Full Text Available To improve the fuel economy and reduce emissions of hybrid electric vehicles, energy management strategy has received high attention. In this paper, by analyzing the deficiency of existing energy management strategy for hybrid cars, it not only puts forward the minimal equivalent fuel consumption adaptive strategy, but also is the first time to consider the driving dynamics target simultaneously, and to explain the future development direction of China’s hybrid energy management strategy.

  18. Recent advances in multidisciplinary management of hepatocellular carcinoma

    Science.gov (United States)

    Gomaa, Asmaa I; Waked, Imam

    2015-01-01

    The incidence of hepatocellular carcinoma (HCC) is increasing, and it is currently the second leading cause of cancer-related death worldwide. Potentially curative treatment options for HCC include resection, transplantation, and percutaneous ablation, whereas palliative treatments include trans-arterial chemoembolization (TACE), radioembolization, and systemic treatments. Due to the diversity of available treatment options and patients’ presentations, a multidisciplinary team should decide clinical management of HCC, according to tumor characteristics and stage of liver disease. Potentially curative treatments are suitable for very-early- and early-stage HCC. However, the vast majority of HCC patients are diagnosed in later stages, where the tumor characteristics or progress of liver disease prevent curative interventions. For patients with intermediate-stage HCC, TACE and radioembolization improve survival and are being evaluated in addition to potentially curative therapies or with systemic targeted therapy. There is currently no effective systemic chemotherapy, immunologic, or hormonal therapy for HCC, and sorafenib is the only approved molecular-targeted treatment for advanced HCC. Other targeted agents are under investigation; trials comparing new agents in combination with sorafenib are ongoing. Combinations of systemic targeted therapies with local treatments are being evaluated for further improvements in HCC patient outcomes. This article provides an updated and comprehensive overview of the current standards and trends in the treatment of HCC. PMID:25866604

  19. Recent advances in surgical management of early lung cancer

    Directory of Open Access Journals (Sweden)

    Shun-Mao Yang

    2017-12-01

    Full Text Available The broad application of low-dose computed tomography screening has resulted in the detection of many more cases of early lung cancer than ever before in modern history. Recent advances in the management of early-stage non-small cell lung cancer have focused on making therapy less traumatic, enhancing recovery, and preserving lung function. In this review, we discuss several new modalities associated with minimally invasive surgery for lung cancer. Firstly, less lung parenchyma resection via sublobar resection has become an acceptable alternative to lobectomy in patients with tumors less than 2 cm in size or with poor cardiopulmonary reserve. Secondly, thoracoscopic surgery using a single-portal or needlescopic approach to decrease chest wall trauma is becoming common practice. Thirdly, less invasive anesthesia, using nonintubated techniques, is feasible and safe and is associated with fewer intubation- and ventilator-associated complications. Fourthly, preoperative or intraoperative image-guided localization is an effective modality for identifying small and deep nodules during thoracoscopic surgery. Keywords: Anesthesia, Lung cancer, Nonintubated, Surgery, Thoracoscopy, Video-assisted thoracoscopic surgery (VATS

  20. Advanced factory managing technology. Sentan kojo kanri gijuts

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, M [Daicel Chemical Industries, Ltd., Osaka (Japan)

    1994-04-05

    With respect to a managing technology of advanced factories in the Japanese chemical industry, this paper enumerates the following three examples to discuss the ways the future factory technologies should be: operation techniques and problems in a newest ethylene plant, operation supports and facility control in chemical factories, and CIM structuring in beer breweries. The paper describes the operation techniques in an ethylene plant that are broken down into the following: measures for safety and material diversification, environment preservation, means to minimize the required labor, adoption of multi-variables, non-interference control technology for ethylene-propylene columns, and operation techniques that have been introduced with such a new technique as an integrated instrumentation room equipped with a gas leakage detection system. Structuring of CIM in the cited beer brewery has followed the transition of IE-TQC-JIT-FMS-CIM. Although a beer brewery may give somewhat different image from an ordinary chemical plant, the beer brewing process resembles a chemical plant in that it operates reacting machines in batch multiple tanks, and uses instrumentations and controllers using sensors. The key point in the future development is an organic link between market fluctuation and production activities. 1 fig.