WorldWideScience

Sample records for advanced emr techniques

  1. The Next Generation EMR.

    Science.gov (United States)

    Keshavjee, Karim; Mirza, Kashif; Martin, Ken

    2015-01-01

    Electronic medical/health record (EMR) usage in North America has increased significantly in the last half decade. But there is widespread dissatisfaction with the technologies that are currently available in the market place. Our hypothesis is that EMR vendors and the market place alone cannot solve the issue of poor technology. We propose an architecture for the next generation of electronic records that solves current concerns of end users and addresses the needs of additional stakeholders, including health system funders, patients, researchers and guideline implementers. By including additional stakeholders, we believe that additional resources, competencies and functionality can be unleashed to solve the larger problems of the current generation of EMRs. The architecture also addresses future requirements that are likely to arise from technological developments such as mobile apps and PHRs and from innovations in medicine, including genomics, artificial intelligence and personalized medicine. The paper makes a call to action for informatics researchers to play a greater role in R&D on EMRs. PMID:25676975

  2. Advanced analytical techniques

    International Nuclear Information System (INIS)

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  3. Digital Fourier analysis advanced techniques

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to advanced digital Fourier analysis for advanced undergraduate and graduate students. Assuming knowledge of the Fast Fourier Transform, this book covers advanced topics including the Hilbert transform, cepstrum analysis, and the two-dimensional Fourier transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Advanced Techniques" includes practice problems and thorough Appendices. As a central feature, the book includes interactive applets (available online) that mirror the illustrations. These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. The applet source code in Visual Basic is provided online, enabling advanced students to tweak and change the programs for more sophisticated results. A complete, intuitive guide, "Digital Fourier Analysis - Advanced Techniques" is an essential reference for students in science and engineering.

  4. Advanced enrichment techniques

    International Nuclear Information System (INIS)

    BNFL is in a unique position in that it has commercial experience of diffusion enrichment, and of centrifuge enrichment through its associate company Urenco. In addition BNFL is developing laser enrichment techniques as part of a UK development programme in this area. The paper describes the development programme which led to the introduction of competitive centrifuge enrichment technology by Urenco and discusses the areas where improvements have and will continue to be made in the centrifuge process. It also describes the laser development programme currently being undertaken in the UK. The paper concludes by discussing the relative merits of the various methods of uranium enrichment, with particular reference to the enrichment market likely to obtain over the rest of the century. (author)

  5. Advanced Wavefront Control Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Brase, J M; Avicola, K; Thompson, C A; Kartz, M W; Winters, S; Hartley, R; Wihelmsen, J; Dowla, F V; Carrano, C J; Bauman, B J; Pennington, D M; Lande, D; Sawvel, R M; Silva, D A; Cooke, J B; Brown, C G

    2001-02-21

    this project, work was performed in four areas (1) advanced modeling tools for deformable mirrors (2) low-order wavefront correctors with Alvarez lenses, (3) a direct phase measuring heterdyne wavefront sensor, and (4) high-spatial-frequency wavefront control using spatial light modulators.

  6. Advanced qualification techniques

    International Nuclear Information System (INIS)

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structured-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883D, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SSC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments

  7. Advanced qualification techniques

    International Nuclear Information System (INIS)

    This paper demonstrates use of the Qualified Manufacturers List (QML) methodology to qualify commercial and military microelectronics for use in space applications. QML ''builds in'' the hardness of product through statistical process control (SPC) of technology parameters relevant to the radiation response, test structure to integrated circuit (IC) correlations, and techniques for extrapolating laboratory test results to low-dose-rate space scenarios. Each of these elements is demonstrated and shown to be a cost-effective alternative to expensive end-of-line IC testing. Several examples of test structure-to-IC correlations are provided and recent work on complications arising from transistor scaling and geometry is discussed. The use of a 10-keV x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-kev x-ray wafer-level test system to support SPC and establish ''process capability'' is illustrated and a comparison of 10-keV x-ray and Co60 gamma irradiations is provided for a wide range of CMOS technologies. The x-ray tester is shown to be cost-effective and its use in lot acceptance/qualification is recommended. Finally, a comparison is provided between MIL-STD-883, Test Method 1019.4, which governs the testing of packaged semiconductor microcircuits in the DoD, and ESA/SCC Basic Specification No. 22900, Europe's Total Dose Steady-State Irradiation Test Method. Test Method 1019.4 focuses on conservative estimates of MOS hardness for space and tactical applications, while Basic Specification 22900 focuses on improved simulation of low-dose-rate space environments

  8. GPU Pro advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2010-01-01

    This book covers essential tools and techniques for programming the graphics processing unit. Brought to you by Wolfgang Engel and the same team of editors who made the ShaderX series a success, this volume covers advanced rendering techniques, engine design, GPGPU techniques, related mathematical techniques, and game postmortems. A special emphasis is placed on handheld programming to account for the increased importance of graphics on mobile devices, especially the iPhone and iPod touch.Example programs and source code can be downloaded from the book's CRC Press web page. 

  9. Review of advanced imaging techniques

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2012-01-01

    Full Text Available Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies" at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy. This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques.

  10. Perspectives on electronic medical records adoption: electronic medical records (EMR in outcomes research

    Directory of Open Access Journals (Sweden)

    Dan Belletti

    2010-04-01

    Full Text Available Dan Belletti1, Christopher Zacker1, C Daniel Mullins21Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 2University of Maryland School of Pharmacy, Baltimore, MD, USAAbstract: Health information technology (HIT is engineered to promote improved quality and efficiency of care, and reduce medical errors. Healthcare organizations have made significant investments in HIT tools and the electronic medical record (EMR is a major technological advance. The Department of Veterans Affairs was one of the first large healthcare systems to fully implement EMR. The Veterans Health Information System and Technology Architecture (VistA began by providing an interface to review and update a patient’s medical record with its computerized patient record system. However, since the implementation of the VistA system there has not been an overall substantial adoption of EMR in the ambulatory or inpatient setting. In fact, only 23.9% of physicians were using EMRs in their office-based practices in 2005. A sample from the American Medical Association revealed that EMRs were available in an office setting to 17% of physicians in late 2007 and early 2008. Of these, 17% of physicians with EMR, only 4% were considered to be fully functional EMR systems. With the exception of some large aggregate EMR databases the slow adoption of EMR has limited its use in outcomes research. This paper reviews the literature and presents the current status of and forces influencing the adoption of EMR in the office-based practice, and identifies the benefits, limitations, and overall value of EMR in the conduct of outcomes research in the US.Keywords: electronic medical records, health information technology, medical errors

  11. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  12. Advanced Nanomeasuring Techniques for Surface Characterization

    OpenAIRE

    Salah H. R. Ali

    2012-01-01

    Advanced precise and accurate nanomeasurement techniques play an important role to improve the function and quality of surface characterization. There are two basic approaches, the hard measuring techniques and the soft computing measuring techniques. The advanced soft measuring techniques include coordinate measuring machines, roundness testing facilities, surface roughness, interferometric methods, confocal optical microscopy, scanning probe microscopy, and computed tomography at the level ...

  13. Spatially-oriented EMR for Dental Surgery

    OpenAIRE

    Wu, Min; Koenig, Lisa; Lynch, John; Wirtz, Thomas

    2006-01-01

    As digital dental images become widely available, a new Electronic MR system (EMR) will be critical for the success of applying new technology to dental care. This project is designed an image-based and spatially-oriented EMR for dental surgery. A new panoramic image-based annotation model will be developed, which will complement dental charting precisely locating specific spatial findings for each patient. A spatially-oriented, multilayered data model for dental EMR will be developed using G...

  14. Semantics driven approach for knowledge acquisition from EMRs.

    Science.gov (United States)

    Perera, Sujan; Henson, Cory; Thirunarayan, Krishnaprasad; Sheth, Amit; Nair, Suhas

    2014-03-01

    Semantic computing technologies have matured to be applicable to many critical domains such as national security, life sciences, and health care. However, the key to their success is the availability of a rich domain knowledge base. The creation and refinement of domain knowledge bases pose difficult challenges. The existing knowledge bases in the health care domain are rich in taxonomic relationships, but they lack nontaxonomic (domain) relationships. In this paper, we describe a semiautomatic technique for enriching existing domain knowledge bases with causal relationships gleaned from Electronic Medical Records (EMR) data. We determine missing causal relationships between domain concepts by validating domain knowledge against EMR data sources and leveraging semantic-based techniques to derive plausible relationships that can rectify knowledge gaps. Our evaluation demonstrates that semantic techniques can be employed to improve the efficiency of knowledge acquisition. PMID:24058038

  15. Review of advanced imaging techniques

    OpenAIRE

    Yu Chen; Chia-Pin Liang; Yang Liu; Fischer, Andrew H.; Parwani, Anil V.; Liron Pantanowitz

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These...

  16. Advances in Procedural Techniques - Antegrade

    OpenAIRE

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrogra...

  17. Advanced Metamorphic Techniques in Computer Viruses

    OpenAIRE

    Beaucamps, Philippe

    2007-01-01

    Nowadays viruses use polymorphic techniques to mutate their code on each replication, thus evading detection by antiviruses. However detection by emulation can defeat simple polymorphism: thus metamorphic techniques are used which thoroughly change the viral code, even after decryption. We briefly detail this evolution of virus protection techniques against detection and then study the MetaPHOR virus, today's most advanced metamorphic virus.

  18. Advanced Spectroscopy Technique for Biomedicine

    Science.gov (United States)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  19. Advances of the IBIC technique

    International Nuclear Information System (INIS)

    The ion beam induced charge (IBIC) technique has been used for a wide variety of analytical applications in the study of semiconductor materials. This paper briefly reviews these uses and identifies those areas which require further development in order to facilitate the more widespread use of the IBIC method. Progress towards implementing these improvements is discussed. 14 refs., 1 fig

  20. Advances phase-lock techniques

    CERN Document Server

    Crawford, James A

    2008-01-01

    From cellphones to micrprocessors, to GPS navigation, phase-lock techniques are utilized in most all modern electronic devices. This high-level book takes a systems-level perspective, rather than circuit-level, which differentiates it from other books in the field.

  1. Graph partitioning advance clustering technique

    CERN Document Server

    Madhulatha, T Soni

    2012-01-01

    Clustering is a common technique for statistical data analysis, Clustering is the process of grouping the data into classes or clusters so that objects within a cluster have high similarity in comparison to one another, but are very dissimilar to objects in other clusters. Dissimilarities are assessed based on the attribute values describing the objects. Often, distance measures are used. Clustering is an unsupervised learning technique, where interesting patterns and structures can be found directly from very large data sets with little or none of the background knowledge. This paper also considers the partitioning of m-dimensional lattice graphs using Fiedler's approach, which requires the determination of the eigenvector belonging to the second smallest Eigenvalue of the Laplacian with K-means partitioning algorithm.

  2. Advanced atomic force microscopy techniques

    OpenAIRE

    Thilo Glatzel; Hendrik Hölscher; Thomas Schimmel; Baykara, Mehmet Z; Schwarz, Udo D.; Ricardo Garcia

    2012-01-01

    Although its conceptual approach is as simple as the technique used in record players already introduced in the 19th century, the invention of the atomic force microscope (AFM) in 1986 by Binnig, Quate, and Gerber was a milestone for nanotechnology. The scanning tunneling microscope (STM), introduced some years earlier, had already achieved atomic resolution, but is limited to conductive surfaces. Since its operational principle is based on the detection of the forces acting between tip and s...

  3. GPU PRO 3 Advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2012-01-01

    GPU Pro3, the third volume in the GPU Pro book series, offers practical tips and techniques for creating real-time graphics that are useful to beginners and seasoned game and graphics programmers alike. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Wessam Bahnassi, and Sebastien St-Laurent have once again brought together a high-quality collection of cutting-edge techniques for advanced GPU programming. With contributions by more than 50 experts, GPU Pro3: Advanced Rendering Techniques covers battle-tested tips and tricks for creating interesting geometry, realistic sha

  4. GPU Pro 4 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2013-01-01

    GPU Pro4: Advanced Rendering Techniques presents ready-to-use ideas and procedures that can help solve many of your day-to-day graphics programming challenges. Focusing on interactive media and games, the book covers up-to-date methods producing real-time graphics. Section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Sebastien St-Laurent have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book begins with discussions on the abi

  5. GPU Pro 5 advanced rendering techniques

    CERN Document Server

    Engel, Wolfgang

    2014-01-01

    In GPU Pro5: Advanced Rendering Techniques, section editors Wolfgang Engel, Christopher Oat, Carsten Dachsbacher, Michal Valient, Wessam Bahnassi, and Marius Bjorge have once again assembled a high-quality collection of cutting-edge techniques for advanced graphics processing unit (GPU) programming. Divided into six sections, the book covers rendering, lighting, effects in image space, mobile devices, 3D engine design, and compute. It explores rasterization of liquids, ray tracing of art assets that would otherwise be used in a rasterized engine, physically based area lights, volumetric light

  6. International acceptability of advanced safeguarding techniques

    International Nuclear Information System (INIS)

    There are active development programs now under way to significantly enhance the effectiveness of international safeguarding. Advanced safeguarding techniques now under development include new material accounting methods utilizing nondestructive assay techniques, more reliable surveillance instrumentation, tamper-resistant and tamper-indicating seals, new means of utilizing continuous human inspection, and systems that incorporate both passive and active use-denial technologies. Before these new safeguarding techniques are utilized, however, they must be acceptable to the international community. This will unquestionably result in a compromise between what is technically feasible and what is politically acceptable. This report highlights many of the elements common to advanced safeguarding techniques that impact directly upon international acceptability. The concept of acceptability is viewed from the perspective of three different groups: (1) those States seeking upgraded safeguards, (2) those States having safeguards imposed upon them, and (3) the International Atomic Energy Agency. In general, a more conducive climate exists today for the acceptance of advanced safeguarding techniques than at any period in the past; but the differences between advanced safeguards and those safeguards being employed today are so large that considerable opposition to their implementation can be expected

  7. Recent advances in optical encryption techniques

    OpenAIRE

    YAN Aimin; HU Zhijuan; POON Tingchung

    2015-01-01

    Optical techniques have shown great potential in information security.This paper reviews the most recent technological and application advances of optical encryption of 2-D and 3-D objects.The main optical encryption techniques and encryption algorithms are summarized and illustrated in detail.Challenges and developments,which are the subject of the contributions to this focus paper,are also discussed,and prospects are predicted.

  8. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state

    OpenAIRE

    Elbaz, Yael; Steiner-Mordoch, Sonia; Danieli, Tsafi; Schuldiner, Shimon

    2004-01-01

    EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Δμ̃H+-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the...

  9. Fundamentals and advanced techniques in derivatives hedging

    CERN Document Server

    Bouchard, Bruno

    2016-01-01

    This book covers the theory of derivatives pricing and hedging as well as techniques used in mathematical finance. The authors use a top-down approach, starting with fundamentals before moving to applications, and present theoretical developments alongside various exercises, providing many examples of practical interest. A large spectrum of concepts and mathematical tools that are usually found in separate monographs are presented here. In addition to the no-arbitrage theory in full generality, this book also explores models and practical hedging and pricing issues. Fundamentals and Advanced Techniques in Derivatives Hedging further introduces advanced methods in probability and analysis, including Malliavin calculus and the theory of viscosity solutions, as well as the recent theory of stochastic targets and its use in risk management, making it the first textbook covering this topic. Graduate students in applied mathematics with an understanding of probability theory and stochastic calculus will find this b...

  10. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    as establishing the applicability of the proposed technique, the treatability tests also provide essential site-specific design parameters required for the full scale system, namely; oxidant demand, delivery method, kinetics etc. Drawing up field studies and laboratory data, this poster will discus the importance...... advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  11. Advanced magnetic resonance spectroscopy techniques and applications

    OpenAIRE

    Cao, Peng; 曹鹏

    2013-01-01

    Magnetic resonance (MR) is a well-known non-invasive technique that provides spectra (by MR spectroscopy, MRS) and images (by magnetic resonance imaging, MRI) of the examined tissue with detailed metabolic, structural, and functional information. This doctoral work is focused on advanced methodologies and applications of MRS for probing cellular and molecular changes in vivo. A single-voxel diffusion-weighted (DW) MRS method was first developed for monitoring the size changes of intramyocellu...

  12. Advanced Techniques of Industrial Robot Programming

    OpenAIRE

    Cheng, Frank Shaopeng

    2010-01-01

    Creating accurate robot points is an important task in robot programming. This chapter discussed the advanced techniques used in creating robot points for improving robot operation flexibility and reducing robot production downtime. The theory of robotics shows that an industrial robot system represents a robot point in both Cartesian coordinates and proper joint values. The concepts and procedures of designing accurate robot user tool frame UT[k] and robot user frame UF[i] are essential in t...

  13. ARDENT to develop advanced dosimetric techniques

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Earlier this week, the EU-supported Marie Curie training network ARDENT kicked off at a meeting held at CERN. The overall aim of the project is the development of advanced instrumentation for radiation dosimetry. The applications range from radiation measurements around particle accelerators, onboard commercial flights and in space, to the characterization of radioactive waste and medicine, where accurate dosimetry is of vital importance.   The ARDENT (Advanced Radiation Dosimetry European Network Training) project is both a research and a training programme, which aims at developing new dosimetric techniques while providing 15 Early-Stage Researchers (ESR) with state-of-the-art training. The project, coordinated by CERN, is funded by the European Union with a contribution of about 3.9 million euros over four years. The ARDENT initiative will focus on three main technologies: gas detectors, in particular Gas Electron Multipliers (GEM) and Tissue Equivalent Proportional Counters (TEPC); solid stat...

  14. Advanced flow MRI: emerging techniques and applications.

    Science.gov (United States)

    Markl, M; Schnell, S; Wu, C; Bollache, E; Jarvis, K; Barker, A J; Robinson, J D; Rigsby, C K

    2016-08-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  15. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  16. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  17. SU-E-I-97: Smart Auto-Planning Framework in An EMR Environment (SAFEE)

    International Nuclear Information System (INIS)

    Purpose: Our Radiation Oncology Department uses clinical practice guidelines for patient treatment, including normal tissue sparing and other dosimetric constraints. These practice guidelines were adapted from national guidelines, clinical trials, literature reviews, and practitioner's own experience. Modern treatment planning systems (TPS) have the capability of incorporating these practice guidelines to automatically create radiation therapy treatment plans with little human intervention. We are developing a software infrastructure to integrate clinical practice guidelines and radiation oncology electronic medical record (EMR) system into radiation therapy treatment planning system (TPS) for auto planning. Methods: Our Smart Auto-Planning Framework in an EMR environment (SAFEE) uses a software pipeline framework to integrate practice guidelines,EMR, and TPS together. The SAFEE system starts with retrieving diagnosis information and physician's prescription from the EMR system. After approval of contouring, SAFEE will automatically create plans according to our guidelines. Based on clinical objectives, SAFEE will automatically select treatment delivery techniques (such as, 3DRT/IMRT/VMAT) and optimize plans. When necessary, SAFEE will create multiple treatment plans with different combinations of parameters. SAFEE's pipeline structure makes it very flexible to integrate various techniques, such as, Model-Base Segmentation (MBS) and plan optimization algorithms, e.g., Multi-Criteria Optimization (MCO). In addition, SAFEE uses machine learning, data mining techniques, and an integrated database to create clinical knowledgebase and then answer clinical questions, such as, how to score plan quality or how volume overlap affects physicians' decision in beam and treatment technique selection. Results: In our institution, we use Varian Aria EMR system and RayStation TPS from RaySearch, whose ScriptService API allows control by external programs. These applications are

  18. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state

    Science.gov (United States)

    Elbaz, Yael; Steiner-Mordoch, Sonia; Danieli, Tsafi; Schuldiner, Shimon

    2004-01-01

    EmrE is a small multidrug transporter from Escherichia coli that provides a unique model for the study of polytopic membrane proteins. Here, we show its synthesis in a cell-free system in a fully functional form. The detergent-solubilized protein binds substrates with high affinity and, when reconstituted into proteoliposomes, transports substrate in a Δμ̃H+-dependent fashion. Here, we used the cell-free system to study the oligomeric properties of EmrE. EmrE functions as an oligomer, but the size of the functional oligomer has not been established unequivocally. Coexpression of two plasmids in the cell-free system allowed demonstration of functional complementation and pull-down experiments confirmed that the basic functional unit is the dimer. An additional interaction between dimers has been detected by using crosslinking between unique Cys residues. This finding implies the existence of a dimer of dimers. PMID:14755055

  19. IMAGE AUTHENTICATION TECHNIQUES AND ADVANCES SURVEY

    Directory of Open Access Journals (Sweden)

    Derroll David

    2015-10-01

    Full Text Available With the advanced technologies in the area of Engineering the World has become a smaller place and communication is in our finger tips. The multimedia sharing traffic through electronic media has increased tremendously in the recent years with the higher use of social networking sites. The statistics of amount of images uploaded in the internet per day is very huge. Digital Image security has become vulnerable due to increase transmission over non-secure channel and needs protection. Digital Images play a crucial role in medical and military images etc. and any tampering of them is a serious issue. Several approaches are introduced to authenticate multimedia images. These approaches can be categorized into fragile and semi-fragile watermarking, conventional cryptography and digital signatures based on the image content. The aim of this paper is to provide a comparative study and also a survey of emerging techniques for image authentication. The important requirements for an efficient image authentication system design are discussed along with the classification of image authentication into tamper detection, localization and reconstruction and robustness against image processing operation. Furthermore, the concept of image content based authentication is enlightened.

  20. Labview advanced programming techniques, second edition

    CERN Document Server

    Bitter, Rick; Nawrocki, Matt

    2006-01-01

    Whether seeking deeper knowledge of LabVIEW®'s capabilities or striving to build enhanced VIs, professionals know they will find everything they need in LabVIEW: Advanced Programming Techniques. Now accompanied by LabVIEW 2011, this classic second edition, focusing on LabVIEW 8.0, delves deeply into the classic features that continue to make LabVIEW one of the most popular and widely used graphical programming environments across the engineering community. The authors review the front panel controls, the Standard State Machine template, drivers, the instrument I/O assistant, error handling functions, hyperthreading, and Express VIs. It covers the introduction of the Shared Variables function in LabVIEW 8.0 and explores the LabVIEW project view. The chapter on ActiveX includes discussion of the Microsoft™ .NET® framework and new examples of programming in LabVIEW using .NET. Numerous illustrations and step-by-step explanations provide hands-on guidance. Reviewing LabVIEW 8.0 and accompanied by the latest s...

  1. Physician buy-in for EMRs.

    Science.gov (United States)

    Yackanicz, Lori; Kerr, Richard; Levick, Donald

    2010-01-01

    Implementing an EMR in an ambulatory practice requires intense workflow analysis, introduction of new technologies and significant cultural change for the physicians and physician champion. This paper will relate the experience at Lehigh Valley Health Network in the implementation of an ambulatory EMR and with the physician champions that were selected to assist the effort. The choice of a physician champion involves political considerations, variation in leadership and communication styles, and a cornucopia of personalities. Physician leadership has been shown to be a critical success factor for any successful technology implementation. An effective physician champion can help develop and promote a clear vision of an improved future, enlist the support of the physicians and staff, drive the process changes needs and manage the cultural change required. The experience with various types of physician champions will be discussed, including, the "reluctant leader", the "techie leader", the "whiny leader", and the "mature leader". Experiences with each type have resulted in a valuable, "lessons learned" summary. LVHN is a tertiary academic community medical center consisting of 950 beds and over 450 employed physicians. LVHN has been named to the Health and Hospital Network's 100 Top Wired and 25 Most Wireless Hospitals. PMID:20397333

  2. Perspectives on electronic medical records adoption: electronic medical records (EMR) in outcomes research

    OpenAIRE

    Dan Belletti; Christopher Zacker; C Daniel Mullins

    2010-01-01

    Dan Belletti1, Christopher Zacker1, C Daniel Mullins21Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA; 2University of Maryland School of Pharmacy, Baltimore, MD, USAAbstract: Health information technology (HIT) is engineered to promote improved quality and efficiency of care, and reduce medical errors. Healthcare organizations have made significant investments in HIT tools and the electronic medical record (EMR) is a major technological advance. The Department of Veterans Affairs ...

  3. Tolerance of Listeria monocytogenes to Quaternary Ammonium Sanitizers Is Mediated by a Novel Efflux Pump Encoded by emrE.

    Science.gov (United States)

    Kovacevic, Jovana; Ziegler, Jennifer; Wałecka-Zacharska, Ewa; Reimer, Aleisha; Kitts, David D; Gilmour, Matthew W

    2016-02-01

    A novel genomic island (LGI1) was discovered in Listeria monocytogenes isolates responsible for the deadliest listeriosis outbreak in Canada, in 2008. To investigate the functional role of LGI1, the outbreak strain 08-5578 was exposed to food chain-relevant stresses, and the expression of 16 LGI1 genes was measured. LGI1 genes with putative efflux (L. monocytogenes emrE [emrELm]), regulatory (lmo1851), and adhesion (sel1) functions were deleted, and the mutants were exposed to acid (HCl), cold (4°C), salt (10 to 20% NaCl), and quaternary ammonium-based sanitizers (QACs). Deletion of lmo1851 had no effect on the L. monocytogenes stress response, and deletion of sel1 did not influence Caco-2 and HeLa cell adherence/invasion, whereas deletion of emrE resulted in increased susceptibility to QACs (P monocytogenes to QACs via emrELm. Since QACs are commonly used in the food industry, there is a concern that L. monocytogenes strains possessing emrE will have an increased ability to survive this stress and thus to persist in food processing environments. PMID:26590290

  4. Bringing Advanced Computational Techniques to Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  5. Advances in China's Oil Reservoir Description Technique

    Institute of Scientific and Technical Information of China (English)

    Mu Longxin; Huang Shiyan; Jia Ailin; Rong Jiashu

    1997-01-01

    @@ Oil reservoir description in China has undergone rapid development in recent years. Extensive research carried out at various oilfields and petroleum universities has resulted in the formulation of comprehensive oil reservoir description techniques and methods uniquely suited to the various development phases of China's continental facies. The new techniques have the following characteristics:

  6. Recent Advances in Beam Diagnostic Techniques

    Science.gov (United States)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  7. Advanced Measurement Techniques for Spray Investigations

    OpenAIRE

    Bodoc, V.; Laurent, C; Biscos, Y.; Lavergne, G.

    2009-01-01

    International audience The objective of this paper is to present recent advances at Onera in the spray diagnostic and simulation fields. In the context of the reduction of engine pollutant emissions, the optimization of fuel spray injection represents phenomena of great fundamental and practical interest and is an important feature in the design of new prototypes of turbojet injection devices. The physics of spray formation, transport, evaporation and combustion are not completely understo...

  8. Advanced MRI techniques of the fetal brain

    International Nuclear Information System (INIS)

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.)

  9. Design study of a bar-type EMR device

    KAUST Repository

    Sun, Jian

    2012-05-01

    It is well known that extraordinary magnetoresistance (EMR) depends on the geometric parameters of the EMR device and the locations of the electrodes. In this paper, the performance of a bar-type EMR device is simulated with respect to the device geometry and electrode locations. The performance is evaluated with regards to the output sensitivity of the device, rather than the often analyzed EMR ratio, since it is more relevant than the EMR ratio for potential applications ranging from read heads to smart biomedical sensors. The results obtained with the finite element method show the dependence of the output sensitivity on the device geometry the placements of the electric contacts as well as the strength of the applied magnetic field in different configurations and allow finding the optimum parameters. Within the studied range of -1 to 1 T both IVVI and VIIV configurations show very similar behavior. For EMR sensors of high sensitivity, the results suggest that a simple two-contact device would provide the best performance replacing the conventional four-contact design. © 2012 IEEE.

  10. Advanced numerical techniques in core simulations

    International Nuclear Information System (INIS)

    The whole core simulations are one of the most CPU intensive calculations in reactor physics design and analyses. For a designer it is imperative to perform these calculations with good accuracy and in least time possible to try out various options. It is important for the code developers to use techniques involving minimum approximations and to use most recent numerical methods applied in tandem with huge computing power available today. In the presented paper, some of these methods are discussed. (author)

  11. Transport modeling and advanced computer techniques

    International Nuclear Information System (INIS)

    A workshop was held at the University of Texas in June 1988 to consider the current state of transport codes and whether improved user interfaces would make the codes more usable and accessible to the fusion community. Also considered was the possibility that a software standard could be devised to ease the exchange of routines between groups. It was noted that two of the major obstacles to exchanging routines now are the variety of geometrical representation and choices of units. While the workshop formulated no standards, it was generally agreed that good software engineering would aid in the exchange of routines, and that a continued exchange of ideas between groups would be worthwhile. It seems that before we begin to discuss software standards we should review the current state of computer technology --- both hardware and software to see what influence recent advances might have on our software goals. This is done in this paper

  12. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  13. Advance crew procedures development techniques: Procedures generation program requirements document

    Science.gov (United States)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.

    1974-01-01

    The Procedures Generation Program (PGP) is described as an automated crew procedures generation and performance monitoring system. Computer software requirements to be implemented in PGP for the Advanced Crew Procedures Development Techniques are outlined.

  14. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin (eds.)

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  15. Advances in the Application of Electrical Techniques for Site Remediation

    International Nuclear Information System (INIS)

    Electrical techniques in site remediation have advanced over the past 10–15 years as a result of the experience gained in their application to various types of waste and sites. The main advances have been in equipment design and construction combined with improvement in the understanding of the vitrification process. An overview is given of the advances together with an account of an application to a particular remediation problem. (author)

  16. Advanced analysis techniques for uranium assay

    International Nuclear Information System (INIS)

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

  17. Advanced nuclear techniques for health and environment

    International Nuclear Information System (INIS)

    Full text: Particle accelerators were developed seventy years ago to investigate nuclear and atomic structure. Nuclear reactors were developed fifty years ago with the promise of producing low cost energy and for military purposes. In the last three decades, we have witnessed a major shift towards the use of high energy ions from accelerators and high quality neutron beams from reactors in the analysis of materials composition and structure for a broad range of scientific applications. Electrostatic accelerators have evolved into specialised tools for accelerator mass spectrometry (AMS) and ion beam analysis techniques. AMS is the technique of choice for the analysis of carbon-14 and other long-lived radionuclides in oceanography, hydrology, paleoclimatology and other environmental applications where isotope sensitivities of one part in 1015 are required. AMS is also applied in toxicology to study human exposure to chemicals and biomolecules at atto mole levels. Synchrotron accelerators fitted with insertion devices like wigglers and ondulators have revived interest in the field of hard x-rays microprobes. Recent developments are based on the use of Fresnel zone plates and tapered glass capillaries producing photon fluxes of 1010 photons per sec per μm2 that allow minimum detection limits below 10-15 g, an ideal microanalytical tool for biology and materials studies. Finally, high-flux neutrons produced by modern research reactors have unique properties for characterising the structure of matter in condensed states. In particular, small angle neutron scattering with cold neutrons is a versatile technique to determine microstructural features with dimensions in the range 10 to 1000 angstroms in biological, environmental and industrial samples. In conclusion, ions, synchrotron radiation and neutron beams are increasingly used to probe materials structure and composition on the microscopic scale, each with their own range of applications, advantages and disadvantages

  18. Recent advances in DNA sequencing techniques

    Science.gov (United States)

    Singh, Rama Shankar

    2013-06-01

    Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

  19. Advances in DUS Test Technique for Coconut

    Institute of Scientific and Technical Information of China (English)

    Ling GAO; Li XU; Difa LlU; Rulian ZHANG

    2014-01-01

    As great progress has been made in the field of protection of new plant varieties, more attention is paid to the standardization of DUS (Distinctness, Unifor-mity, and Stability) test procedure. For further studies of tropical plants as their im-portance in agriculture and germplasm, protection of coconut becomes more signifi-cant and thus DUS test technique of coconut is needed. ln this essay, we analyzed the status quo of the DUS test guidelines by lnternational Union for the Protection of New Varieties of Plants (UPOV proj.3) and national DUS test guidelines in Chi-na, and provided some suggestions or promotions for improving the guidelines of DUS test in coconut.

  20. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  1. Diagnostics of nonlocal plasmas: advanced techniques

    Science.gov (United States)

    Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir

    2014-10-01

    This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.

  2. Factors impacting providers' perceptions regarding a midwestern university-based EMR.

    Science.gov (United States)

    Whitten, Pamela; Buis, Lorraine; Mackert, Michael

    2007-08-01

    The potential for Information Technology (IT) to enhance the healthcare provision has long been recognized. One application of IT in healthcare, Electronic Medical Records (EMR) systems, has generated particular interest. Technical and structural barriers are often analyzed to understand EMR deployment. This study sought to examine cultural barriers to better explain the potential success and failure of EMRs. Successful EMR implementations are of interest to telemedicine researchers as they provide an IT infrastructure on which many telemedicine applications can be built. This investigation sought to understand the role and impact of individual and organizational issues on perceptions regarding EMRs by providers now employing an EMR system at Michigan State University (MSU). A 144-item survey was administered to 41 participants and descriptive statistics were employed for data analyses. Data indicated that providers reported mixed results regarding perceptions of EMRs at MSU. More than 45% of the respondents reported that they consider the MSU EMR system a bad choice. Yet, these same providers reported high levels of satisfaction across multiple aspects of system usability. Demographic variables did not emerge as highly correlated with perceptions of the EMR system at MSU. However, positive perceptions about EMRs in general were highly correlated with positive perceptions of the EMR system at MSU. Because results indicate that perceptions of the impacts of EMRs in general are more often correlated with perceptions of a specific EMR implementation than demographic variables, health organizations should focus their energies on EMR education and training. PMID:17848107

  3. Innovative Tools Advance Revolutionary Weld Technique

    Science.gov (United States)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe

  4. Advanced cement solidification technique for spent resins

    International Nuclear Information System (INIS)

    In the past 40 years, the nuclear facilities of China Institute of Atomic Energy (CIAE) produced an amount of radioactive organic resins, a kind of problematic stream in nuclear industry. As these facilities were stepping into decommissioning, the treatment of the spent organic resins was put on the agenda. The various routes for spent resin treatment such as incineration, advanced oxidation, cement immobilization, etc, were considered. Each method has its advantages and disadvantages when applied in the treatment of spent resins. Since the quantities of the spent organic resins were relatively small and an experience with variety of cementation processes existed in CIAE, predominately for immobilization of the evaporated concentrates, the option of direct encapsulation of the spent organic resins into cementitious materials was adopted in 2003, as a preferred method from the point of view of saving the on the cost of the disposal. In order to realize the end goal, the main work consisted of: the survey of the source terms; cementitious material formula investigation; and the process development. This work, which was undertaken in the following years, is addressed as follows. Source terms of the spent resins in CIAE were to be made clear firstly. The results showed that a total of 24-29 m3 of spent resins was generated and accumulated in the past 40 years. Spent resin arose from two research reactors (heavy water reactor and light water reactor), and from the waste management plant. The amount of the spent resins from the heavy water reactor was 1m3 or so, but its radioactive concentration was high to ∼108-∼109Bq/m3. Two kinds of cements, ASC and OPC cement were selected next, as the solidifying matrix to be investigated. A mixture surface response approach was employed to design experiment and interpret data. In comparison, ASC was superior to OPC cement and it displayed preferable performances to encapsulate spent resins. The optimum formulation is:1) resin

  5. Study and Implementation of Advanced Neuroergonomic Techniques

    Directory of Open Access Journals (Sweden)

    B.F.Momin

    2012-08-01

    Full Text Available Research in the area of neuroergonomics has blossomed in recent years with the emergence of noninvasive techniques for monitoring human brain function that can be used to study various aspects of human behavior in relation to technology and work, including mental workload, visual attention, working memory, motor control, human-automation interaction, and adaptive automation. Consequently, this interdisciplinary field is concerned with investigations of the neural bases of human perception,cognition, and performance in relation to systems and technologies in the real world -- for example, in the use of computers and various other machines at home or in the workplace, and in operating vehiclessuch as aircraft, cars, trains, and ships. We will look at recent trends in functional magnetic resonance imaging (fMRI, with a special focus on the questions that have been addressed. This focus is particularly important for functional neuroimaging, whose contributions will be measured by the depth of the questions asked. The ever-increasing understanding of the brain and behavior at work in the real world, the development of theoretical underpinnings, and the relentless spread of facilitative technology in the West and abroad are inexorably broadening the substrates for this interdisciplinary area of research and practice. Neuroergonomics blends neuroscience and ergonomics to the mutual benefit of both fields, and extends the study of brain structure and function beyond the contrived laboratory settings often used in neuropsychological, psychophysical, cognitive science, and other neurosciencerelated fields. Neuroergonomics is providing rich observations of the brain and behavior at work, at home, in transportation, and in other everyday environments in human operators who see, hear, feel, attend, remember, decide, plan, act, move, or manipulate objects among other people and technology in diverse,real-world settings. The neuroergonomics approach is

  6. Advanced time-correlated single photon counting techniques

    CERN Document Server

    Becker, Wolfgang

    2005-01-01

    Time-correlated single photon counting (TCSPC) is a remarkable technique for recording low-level light signals with extremely high precision and picosecond-time resolution. TCSPC has developed from an intrinsically time-consuming and one-dimensional technique into a fast, multi-dimensional technique to record light signals. So this reference and text describes how advanced TCSPC techniques work and demonstrates their application to time-resolved laser scanning microscopy, single molecule spectroscopy, photon correlation experiments, and diffuse optical tomography of biological tissue. It gives practical hints about constructing suitable optical systems, choosing and using detectors, detector safety, preamplifiers, and using the control features and optimising the operating conditions of TCSPC devices. Advanced TCSPC Techniques is an indispensable tool for everyone in research and development who is confronted with the task of recording low-intensity light signals in the picosecond and nanosecond range.

  7. [Advanced online search techniques and dedicated search engines for physicians].

    Science.gov (United States)

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines. PMID:18357673

  8. Thin film characterisation by advanced X-ray diffraction techniques

    International Nuclear Information System (INIS)

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  9. A Survey of Advanced Microwave Frequency Measurement Techniques

    Directory of Open Access Journals (Sweden)

    Anand Swaroop Khare

    2012-06-01

    Full Text Available Microwaves are radio waves with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz and 300 GHz. The science of photonics includes the generation, emission, modulation, signal processing, switching, transmission, amplification, detection and sensing of light. Microwave photonics has been introduced for achieving ultra broadband signal processing. Instantaneous Frequency Measurement (IFM receivers play an important role in electronic warfare. Technologies used for signal processing, include conventional direct Radio Frequency (RF techniques, digital techniques, intermediate frequency (IF techniques and photonic techniques. Direct RF techniques suffer an increased loss, high dispersion, and unwanted radiation problems in high frequencies. The systems that use traditional RF techniques can be bulky and often lack the agility required to perform advanced signal processing in rapidly changing environments. In this paper we discussed a survey of Microwave Frequency Measurement Techniques. The microwaves techniques are categorized based upon different approaches. This paper provides the major advancement in the Microwave Frequency MeasurementTechniques research; using these approaches the features and categories in the surveyed existing work.

  10. Camtasia Studio 8 advanced editing and publishing techniques

    CERN Document Server

    Dixon, Claire Broadley

    2013-01-01

    A practical guide packed with examples that will show you how to implement the different features of Camtasia Studio 8 and create professional looking projects.If you are familiar with Camtasia Studio and you want to experiment with more advanced techniques, then this is the guide you have been looking for!

  11. Advanced of X-ray fluorescence logging technique in China

    International Nuclear Information System (INIS)

    The paper discuses principle of X-ray fluorescence logging, and introduces advanced of X-ray fluorescence logging technique in China. By 2009, third generation XRF logging instrument has been developed in China, and good logging result has been obtained in Lala copper mine. (authors)

  12. EMRs and Clinical IS Implementation in Hospitals: A Statewide Survey

    Science.gov (United States)

    Jaana, Mirou; Ward, Marcia M.; Bahensky, James A.

    2012-01-01

    Purpose: Present an overview of clinical information systems (IS) in hospitals and analyze the level of electronic medical records (EMR) implementation in relation to clinical IS capabilities and organizational characteristics. Methods: We developed a survey instrument measuring clinical IS implementation and classified clinical IS across 5 EMR…

  13. An Advanced Time Averaging Modelling Technique for Power Electronic Circuits

    Science.gov (United States)

    Jankuloski, Goce

    For stable and efficient performance of power converters, a good mathematical model is needed. This thesis presents a new modelling technique for DC/DC and DC/AC Pulse Width Modulated (PWM) converters. The new model is more accurate than the existing modelling techniques such as State Space Averaging (SSA) and Discrete Time Modelling. Unlike the SSA model, the new modelling technique, the Advanced Time Averaging Model (ATAM) includes the averaging dynamics of the converter's output. In addition to offering enhanced model accuracy, application of linearization techniques to the ATAM enables the use of conventional linear control design tools. A controller design application demonstrates that a controller designed based on the ATAM outperforms one designed using the ubiquitous SSA model. Unlike the SSA model, ATAM for DC/AC augments the system's dynamics with the dynamics needed for subcycle fundamental contribution (SFC) calculation. This allows for controller design that is based on an exact model.

  14. Nuclear techniques in the development of advanced ceramic technologies

    International Nuclear Information System (INIS)

    The importance of research, development and application of advanced materials is well understood by all developed and most developing countries. Amongst advanced materials, ceramics play a prominent role due to their specific chemical and physical properties. According to performance and importance, advanced ceramics can be classified as structural ceramics (mechanical function) and the so-called functional ceramics. In the latter class of materials, special electrical, chemical, thermal, magnetic and optical properties are of interest. The most valuable materials are multifunctional, for example, when structural ceramics combine beneficial mechanical properties with thermal and chemical sensitivity. Multifunctionality is characteristic of many composite materials (organic/inorganic composite). Additionally, properties of material can be changed by reducing its dimension (thin films, nanocrystalline ceramics). Nuclear techniques, found important applications in research and development of advanced ceramics. The use of neutron techniques has increased dramatically in recent years due to the development of advanced neutron sources, instrumentation and improved data analysis. Typical neutron techniques are neutron diffraction, neutron radiography, small angle neutron scattering and very small angle neutron scattering. Neutrons can penetrate deeply into most materials thus sampling their bulk properties. In determination of the crystal structure of HTSC, YBa2 Cu2O7, XRD located the heavy metal atoms, but failed in finding many of the oxygen atoms, while the neutron diffraction located all atoms equally well in the crystal structure. Neutron diffraction is also unique for the determination of the magnetic structure of materials since the neutrons themselves have a magnetic moment. Application of small angle neutron scattering for the determination of the size of hydrocarbon aggregates within the zeolite channels is illustrated. (author)

  15. Neural engineering from advanced biomaterials to 3D fabrication techniques

    CERN Document Server

    Kaplan, David

    2016-01-01

    This book covers the principles of advanced 3D fabrication techniques, stem cells and biomaterials for neural engineering. Renowned contributors cover topics such as neural tissue regeneration, peripheral and central nervous system repair, brain-machine interfaces and in vitro nervous system modeling. Within these areas, focus remains on exciting and emerging technologies such as highly developed neuroprostheses and the communication channels between the brain and prostheses, enabling technologies that are beneficial for development of therapeutic interventions, advanced fabrication techniques such as 3D bioprinting, photolithography, microfluidics, and subtractive fabrication, and the engineering of implantable neural grafts. There is a strong focus on stem cells and 3D bioprinting technologies throughout the book, including working with embryonic, fetal, neonatal, and adult stem cells and a variety of sophisticated 3D bioprinting methods for neural engineering applications. There is also a strong focus on b...

  16. Recent Advances in Wireless Indoor Localization Techniques and System

    Directory of Open Access Journals (Sweden)

    Zahid Farid

    2013-01-01

    Full Text Available The advances in localization based technologies and the increasing importance of ubiquitous computing and context-dependent information have led to a growing business interest in location-based applications and services. Today, most application requirements are locating or real-time tracking of physical belongings inside buildings accurately; thus, the demand for indoor localization services has become a key prerequisite in some markets. Moreover, indoor localization technologies address the inadequacy of global positioning system inside a closed environment, like buildings. Based on this, though, this paper aims to provide the reader with a review of the recent advances in wireless indoor localization techniques and system to deliver a better understanding of state-of-the-art technologies and motivate new research efforts in this promising field. For this purpose, existing wireless localization position system and location estimation schemes are reviewed, as we also compare the related techniques and systems along with a conclusion and future trends.

  17. Knowledge based systems advanced concepts, techniques and applications

    CERN Document Server

    1997-01-01

    The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under unc

  18. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohammadi Ardehali

    2014-01-01

    Full Text Available Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection.   Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor.   Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days.   Conclusion:  Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages.

  19. 美国电子病历应用分级模型EMR Adoption Model简介%Brief Introduction to EMR Adoption Model of America

    Institute of Scientific and Technical Information of China (English)

    舒婷; 梁铭会

    2011-01-01

    In this article, the author introduces the content and implementation of EMR Adoption Model that developedby US HIMSS Analytics since 2005. There are altogether eight levels in EMR Adoption Model, from level zero to seven.This American Model sets a very important example for the investigation and evaluation of EMR adoption in Chinesehospitals.%介绍了HIMSS Analytics自2005年起开发的电子病历应用分级模型EMR Adoption Model的主要内容,以及在美国和加拿大两国的实际应用情况.EMR Adoption Model-分为8个级别,从O级到7级.美国的电子病历应用分级模型对我国的电子病历应用分级考察来说,起到了很好的借鉴作用.

  20. Advanced Experimental Techniques for RF and DC Breakdown Research

    CERN Document Server

    Kovermann, J W; Descoeudres, A; Lefèvre, T; Wuensch, W

    2008-01-01

    Advanced experimental techniques are being developed to analyze RF and DC breakdown events. First measurements with a specially built spectrometer have been made with a DC spark setup [1] at CERN and will soon be installed in the CLIC 30GHz accelerating structure test stand to allow comparison between DC and RF breakdown phenomena. This spectrometer is able to measure the light intensity development during a breakdown in narrow wavelength bands in the visible and near infrared range. This will give information about the important aspects of the breakdown including chemical elements, temperature, plasma parameters and possibly precursors of a breakdown.

  1. Creating motion graphics with After Effects essential and advanced techniques

    CERN Document Server

    Meyer, Chris

    2010-01-01

    * 5th Edition of best-selling After Effects book by renowned authors Trish and Chris Meyer covers the important updates in After Effects CS4 and CS5 * Covers both essential and advanced techniques, from basic layer manipulation and animation through keying, motion tracking, and color management * Companion DVD is packed with project files for version CS5, source materials, and nearly 200 pages of bonus chapters Trish and Chris Meyer share over 17 years of hard-earned, real-world film and video production experience inside this critically acclaimed text. More than a step-by-step review of th

  2. Testing aspects of advanced coherent electron cooling technique

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  3. Advanced detection techniques for educational experiments in cosmic ray physics

    International Nuclear Information System (INIS)

    In this paper we describe several detection techniques that can be employed to study cosmic ray properties and carry out training activities at high school and undergraduate level. Some of the proposed devices and instrumentation are inherited from professional research experiments, while others were especially developed and marketed for educational cosmic ray experiments. The educational impact of experiments in cosmic ray physics in high-school or undergraduate curricula will be exploited through various examples, going from simple experiments carried out with small Geiger counters or scintillation devices to more advanced detection instrumentation which can offer starting points for not trivial research work. (authors)

  4. Advanced experimental and numerical techniques for cavitation erosion prediction

    CERN Document Server

    Chahine, Georges; Franc, Jean-Pierre; Karimi, Ayat

    2014-01-01

    This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion, a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss), and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion (Gr...

  5. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  6. Advanced analytical techniques for boiling water reactor chemistry control

    International Nuclear Information System (INIS)

    The analytical techniques applied can be divided into 5 classes: OFF-LINE (discontinuous, central lab), AT-LINE (discontinuous, analysis near loop), ON-LINE (continuous, analysis in bypass). In all cases pressure and temperature of the water sample are reduced. In a strict sense only IN-LINE (continuous, flow disturbance) and NON-INVASIVE (continuous, no flow disturbance) techniques are suitable for direct process control; - the ultimate goal. An overview of the analytical techniques tested in the pilot loop is given. Apart from process and overall water quality control, standard for BWR operation, the main emphasis is on water impurity characterization (crud particles, hot filtration, organic carbon); on stress corrosion crackling control for materials (corrosion potential, oxygen concentration) and on the characterization of the oxide layer on austenites (impedance spectroscopy, IR-reflection). The above mentioned examples of advanced analytical techniques have the potential of in-line or non-invasive application. They are different stages of development and are described in more detail. 28 refs, 1 fig., 5 tabs

  7. Pitfalls and Security Measures for the Mobile EMR System in Medical Facilities

    OpenAIRE

    Yeo, Kiho; Lee, Keehyuck; Kim, Jong-Min; Kim, Tae-Hun; Choi, Yong-Hoon; Jeong, Woo-Jin; Hwang, Hee; Baek, Rong Min; Yoo, Sooyoung

    2012-01-01

    Objectives The goal of this paper is to examine the security measures that should be reviewed by medical facilities that are trying to implement mobile Electronic Medical Record (EMR) systems designed for hospitals. Methods The study of the security requirements for a mobile EMR system is divided into legal considerations and sectional security investigations. Legal considerations were examined with regard to remote medical services, patients' personal information and EMR, medical devices, th...

  8. Attitudes of academic-based and community-based physicians regarding EMR use during outpatient encounters.

    OpenAIRE

    Penrod, L. E.; Gadd, C. S.

    2001-01-01

    Physician satisfaction with EMR implementations has been reported in a number of recent studies. Most of these have reported on implementation of an EMR in a uniform practice setting rather than comparing satisfaction with implementation between settings. Our objectives in this study were to: 1) compare and contrast the attitudes of academic-based and community-based primary care physicians toward EMR use 6 months after implementation, and 2) investigate some of the factors influencing their ...

  9. Evaluation of a commercial electronic medical record (EMR) by primary care physicians 5 years after implementation.

    Science.gov (United States)

    Kaelber, David; Greco, Peter; Cebul, Randall D

    2005-01-01

    Electronic medical records (EMRs) are gaining increasing prominence in the delivery of healthcare, although the focus is primarily on deploying EMRs. Relatively little research has studied the post-implementation of commercial EMRs. Here we present the results of a web-based survey of all the primary care clinicians in our university affiliated, tertiary care health system. The survey evaluated primary care clinician demographics, usage, and ideas for enhancement of the EpicCare EMR, five year after its initial deployment throughout our healthcare system. PMID:16779289

  10. EMR2 Receptor Ligation Modulates Cytokine Secretion Profiles and Cell Survival of Lipopolysaccharide-treated Neutrophils

    Directory of Open Access Journals (Sweden)

    Tzu-Ying Chenee

    2011-10-01

    Full Text Available Background: Epidermal growth factor (EGF-like module-containing mucin-like hormonereceptor-like 2 (EMR2 is an adhesion G protein-coupled receptor previouslyshown to potentiate neutrophil responses to a number of inflammatory stimuli. EMR2 activation promotes neutrophil adhesion and migration, and augments production of reactive oxygen species and degranulation. In this study,we examined the effect of EMR2 ligation by its specific antibody on thecytokine expression profile and cell survival of lipopolysaccharide (LPS-treated neutrophils.Methods: Neutrophils were treated with LPS in the absence or presence of the antiEMR2 mAb, 2A1. Cell apoptosis was determined by flow cytometry analysisusing annexin-V and propidium iodide staining. Cell supernatants were collected for the detection of cytokine secretion by enzyme-linked immunosorbent assay.Results: We confirmed the specific priming effect of EMR2 on the response of neutrophils to formyl-Met-Leu-Phe by measuring the production of reactiveoxygen species. Furthermore, we showed that EMR2 ligation suppressesLPS-induced neutrophil survival. In addition, we demonstrated that ligationof EMR2 changes the secretion profiles of multiple cytokines, includinginterleukin (IL-6, IL-8, and monocyte chemotactic protein-1. Finally, higherlevels of EMR2 were detected on neutrophils of liver cirrhosis patients andwere correlated to a pro-apoptotic phenotype.Conclusion: Collectively, the present data indicate a functional role for EMR2 in themodulation of neutrophil activation during inflammation.

  11. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Bogdan; Haskal, Ziv J., E-mail: ziv2@mac.com [University of Maryland School of Medicine, Division of Vascular and Interventional Radiology (United States)

    2012-08-15

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

  12. Advanced techniques using the plant as indicator of irrigation management

    Directory of Open Access Journals (Sweden)

    Barbara dos Santos Esteves

    2015-05-01

    Full Text Available The methodologies which are considered the most promising for irrigation management are those based on the analysis of the water status of the plants themselves. This justifies the study and improvement of indicators based on automatic and continuous measures to enable real-time monitoring data, as indices from sap flow, dendrometry and leaf turgor pressure techniques. The aim of this paper is to analyze such methodologies in order to demonstrate their principles, advantages and challenges. In conclusion, the methodologies analyzed still have many technological advances and challenges before being presented to the final user. The future research should work these tools for elaboration of technical indexes that allow their simplification, on the instrumental point of view, and the interpretation of their results.

  13. An atypical meningioma demystified and advanced magnetic resonance imaging techniques

    Directory of Open Access Journals (Sweden)

    Despoina Voultsinou

    2014-01-01

    Full Text Available A 40-year-old male presented with visuospatial processing disturbances. Family history was free. Conventional and advanced magnetic resonance imaging (MRI studies were performed. On T2 and fluid attenuation inversion recovery images, an increased signal intensity extra-axial lesion was demonstrated. Post-contrast scans depicted homogeneous intense contrast medium enhancement. T2FNx01 star sequence was negative for hemorrhagic or calcification foci. Diffusion-weighted imaging findings were indicative of malignant behavior and magnetic resonance venography confirmed superior sagittal sinus infiltration. Increased cerebral blood volume values were observed and peri-lesional oedema on perfusion-weighted imaging was also demonstrated. The signal intensity-time curve depicted the characteristic meningioma pattern. Spectroscopy showed increased choline and alanine levels, but decreased N-acetyl-aspartate levels. Conventional MRI is adequate for typical types of meningiomas. However, the more atypical ones, in which even the histopathologic specimen may demonstrate characteristics of typical meningioma, could be easier diagnosed with advanced MRI techniques.

  14. Multiple advanced surgical techniques to treat acquired seminal duct obstruction

    Directory of Open Access Journals (Sweden)

    Hong-Tao Jiang

    2014-12-01

    Full Text Available The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months. Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12 semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml−1 of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51, and the patency rate and natural pregnancy rate were 89.4% (42/47 and 38.1% (16/42, respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved.

  15. Advances in the Rising Bubble Technique for discharge measurement

    Science.gov (United States)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  16. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  17. Advanced remote decontamination techniques reduce costs and radiation doses

    International Nuclear Information System (INIS)

    A highly contaminated cell in the Pacific Northwest Laboratory's (PNL) 324 Building Radiochemical Engineering Facilities was recently decontaminated using a series of remote and contact techniques. The approach used in decontaminating the cell was very successful: It resulted in an 87% lower radiation dose to workers and a cost saving of 39% compared with a hands-on procedure used in another cell 2 yr earlier. Eight cycles of remote decontamination, combining use of an alkaline cleaner foam spray and pressurized water rinse, preceded manned entry. Initial radiation readings in cell C, averaging 50 rad/h, were first reduced to 2 and $1033/m2 of cell surface area. This paper is part of a larger effort sponsored by the U.S. Department of Energy's Surplus Facilities Management Program to clean out six radioactive cells and to dismantle PNL's pilot-scale radioactive liquid-fed ceramic melter. In this program, numerous other advanced techniques are being developed and are proving valuable, particularly in lowering radiation doses

  18. A review of hemorheology: Measuring techniques and recent advances

    Science.gov (United States)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  19. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  20. Analysis of the structure and function of EMRE in a yeast expression system.

    Science.gov (United States)

    Yamamoto, Takenori; Yamagoshi, Ryohei; Harada, Kazuki; Kawano, Mayu; Minami, Naoki; Ido, Yusuke; Kuwahara, Kana; Fujita, Atsushi; Ozono, Mizune; Watanabe, Akira; Yamada, Akiko; Terada, Hiroshi; Shinohara, Yasuo

    2016-06-01

    The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel, and this complex is believed to consist of a pore-forming subunit, MCU, and its regulatory subunits. As yeast cells lack orthologues of the mammalian proteins, the yeast expression system for the mammalian calcium uniporter subunits is useful for investigating their functions. We here established a yeast expression system for the native-form mouse MCU and 4 other subunits. This expression system enabled us to precisely reconstitute the properties of the mammalian MCU complex in yeast mitochondria. Using this expression system, we analyzed the essential MCU regulator (EMRE), which is a key subunit for Ca(2+) uptake but whose functions and structure remain unclear. The topology of EMRE was revealed: its N- and C-termini projected into the matrix and the inter membrane space, respectively. The expression of EMRE alone was insufficient for Ca(2+) uptake; and co-expression of MCU with EMRE was necessary. EMRE was independent of the protein levels of other subunits, indicating that EMRE was not a protein-stabilizing factor. Deletion of acidic amino acids conserved in EMRE did not significantly affect Ca(2+) uptake; thus, EMRE did not have basic properties of ion channels such as ion-selectivity filtration and ion concentration. Meanwhile, EMRE closely interacted with the MCU on both sides of the inner membrane, and this interaction was essential for Ca(2+) uptake. This close interaction suggested that EMRE might be a structural factor for opening of the MCU-forming pore. PMID:27001609

  1. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    Science.gov (United States)

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  2. Development of advanced strain diagnostic techniques for reactor environments.

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  3. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  4. Hybrid inverse lithography techniques for advanced hierarchical memories

    Science.gov (United States)

    Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

    2014-03-01

    Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to

  5. Advanced techniques in actinide spectroscopy (ATAS 2014). Abstract book

    International Nuclear Information System (INIS)

    In 2012, The Institute of Resource Ecology at the Helmholtz-Zentrum Dresden Rossendorf organized the first international workshop of Advanced Techniques in Actinide Spectroscopy (ATAS). A very positive feedback and the wish for a continuation of the workshop were communicated from several participants to the scientific committee during the workshop and beyond. Today, the ATAS workshop has been obviously established as an international forum for the exchange of progress and new experiences on advanced spectroscopic techniques for international actinide and lanthanide research. In comparison to already established workshops and conferences on the field of radioecology, one main focus of ATAS is to generate synergistic effects and to improve the scientific discussion between spectroscopic experimentalists and theoreticians. The exchange of ideas in particular between experimental and theoretical applications in spectroscopy and the presentation of new analytical techniques are of special interest for many research institutions working on the improvement of transport models of toxic elements in the environment and the food chain as well as on reprocessing technologies of nuclear and non-nuclear waste. Spectroscopic studies in combination with theoretical modelling comprise the exploration of molecular mechanisms of complexation processes in aqueous or organic phases and of sorption reactions of the contaminants on mineral surfaces to obtain better process understanding on a molecular level. As a consequence, predictions of contaminant's migration behaviour will become more reliable and precise. This can improve the monitoring and removal of hazardous elements from the environment and hence, will assist strategies for remediation technologies and risk assessment. Particular emphasis is placed on the results of the first inter-laboratory Round-Robin test on actinide spectroscopy (RRT). The main goal of RRT is the comprehensive molecular analysis of the actinide complex

  6. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    Louis J. Durlofsky; Khalid Aziz

    2004-08-20

    Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow

  7. Catalytic Methods in Asymmetric Synthesis Advanced Materials, Techniques, and Applications

    CERN Document Server

    Gruttadauria, Michelangelo

    2011-01-01

    This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milesto

  8. Weldability and joining techniques for advanced fossil energy system alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

    1998-05-01

    The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

  9. Work-related psychosocial hazards among emergency medical responders (EMRS in Mansoura city

    Directory of Open Access Journals (Sweden)

    Eman Omar Khashaba

    2014-01-01

    Full Text Available Purpose: This research was done to assess levels of psychosocial stress and related hazards [(burnout, depression, and posttraumatic stress disorder (PTSD] among emergency medical responders (EMRs. Materials and Methods: A comparative cross-sectional study was conducted upon (140 EMRs and a comparative group composed of (140 nonemergency workers. The groups studied were subjected to semistructured questionnaire including demographic data, survey for job stressors, Maslach burn out inventory (MBI, Beck depression inventory (BDI, and Davidson Trauma scale for PTSD. Results: The most severe acute stressors among EMRs were dealing with traumatic events (88.57%, followed by dealing with serious accidents (87.8% and young victims (87.14%. Chronic stressors were more commonly reported among EMRs with statistically significant differences (P 0.05. There was increased risk of PTSD for those who had higher stress levels from death of colleagues [odds ratio (OR [95% confidence interval (CI] = 2.2 (0.7-7.6, exposure to verbal or physical assault OR (95% CI = 1.6 (0.5-4.4 and dealing with psychiatric OR (95% CI 1.4 (0.53.7 (P > 0.05 Conclusion: EMRs group had more frequent exposure to both acute and chronic work-related stressors than comparative group. Also, EMRs had higher levels of EE, DP, and PTSD compared with comparative group. EMRs are in need for stress management program for prevention these of stress related hazards on health and work performance.

  10. Investigation of joining techniques for advanced austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, C.D.; Qiao, C.Y.P.; Kikuchi, Y.; Shi, C.; Gill, T.P.S.

    1991-05-01

    Modified Alloys 316 and 800H, designed for high temperature service, have been developed at Oak Ridge National Laboratory. Assessment of the weldability of the advanced austenitic alloys has been conducted at the University of Tennessee. Four aspects of weldability of the advanced austenitic alloys were included in the investigation.

  11. Evaluation of Electronic Medical Record (EMR at large urban primary care sexual health centre.

    Directory of Open Access Journals (Sweden)

    Christopher K Fairley

    Full Text Available OBJECTIVE: Despite substantial investment in Electronic Medical Record (EMR systems there has been little research to evaluate them. Our aim was to evaluate changes in efficiency and quality of services after the introduction of a purpose built EMR system, and to assess its acceptability by the doctors, nurses and patients using it. METHODS: We compared a nine month period before and after the introduction of an EMR system in a large sexual health service, audited a sample of records in both periods and undertook anonymous surveys of both staff and patients. RESULTS: There were 9,752 doctor consultations (in 5,512 consulting hours in the Paper Medical Record (PMR period and 9,145 doctor consultations (in 5,176 consulting hours in the EMR period eligible for inclusion in the analysis. There were 5% more consultations per hour seen by doctors in the EMR period compared to the PMR period (rate ratio = 1.05; 95% confidence interval, 1.02, 1.08 after adjusting for type of consultation. The qualitative evaluation of 300 records for each period showed no difference in quality (P>0.17. A survey of clinicians demonstrated that doctors and nurses preferred the EMR system (P<0.01 and a patient survey in each period showed no difference in satisfaction of their care (97% for PMR, 95% for EMR, P = 0.61. CONCLUSION: The introduction of an integrated EMR improved efficiency while maintaining the quality of the patient record. The EMR was popular with staff and was not associated with a decline in patient satisfaction in the clinical care provided.

  12. Work-related psychosocial hazards among emergency medical responders (EMRS) in Mansoura city

    OpenAIRE

    Eman Omar Khashaba; Mona Abdel Fattah El-Sherif; Adel Al-Wehedy Ibrahim; Mostafa Ahmed Neatmatallah

    2014-01-01

    Purpose: This research was done to assess levels of psychosocial stress and related hazards [(burnout, depression, and posttraumatic stress disorder (PTSD)] among emergency medical responders (EMRs). Materials and Methods: A comparative cross-sectional study was conducted upon (140) EMRs and a comparative group composed of (140) nonemergency workers. The groups studied were subjected to semistructured questionnaire including demographic data, survey for job stressors, Maslach burn out invento...

  13. Validation of a nurses' views on electronic medical record systems (EMR) questionnaire in Turkish health system.

    Science.gov (United States)

    Top, Mehmet; Yilmaz, Ali; Karabulut, Erdem; Otieno, Ochieng George; Saylam, Melahat; Bakır, Sevgi; Top, Sümbül

    2015-06-01

    Using of EMR in health services and organizations is steadily increasing for quality improvement, cost effectiveness and performance development. However, no validated national and international instruments (scale, questionnaire, index, and inventory) have assessed the effectiveness, satisfaction, health care savings, patient safety and cost minimization of electronic medical and health systems from the viewpoint and perceptions of nurses in Turkish health services. The perceptions of health care professionals especially physicians and nurses can contribute important information that may predict their acceptance of EMR and desired mode of use for EMR, evaluation performance of EMR thus guiding EMR implementation in hospitals. This article is a report of validation of the instrument to measure nurses' views on the use, quality and user satisfaction with EMR in Turkish health system. Items in the questionnaire were designed and obtained following O.G. Otieno, H. Toyama, M. Asonuma, M. Kanai-Pak, K. Naitoh's questionnaire about Use, Quality and User Satisfaction with EMR systems. Reliability and validity were examined and investigated in terms of responses from 487 nurses from one education hospital in Ankara, Turkey. This study was planned and conducted at a university hospital. The validation process was based on construct validity in this study. The response rate was 74.92%. Cronbach's alphas of three factors (use, quality and satisfaction of EMR) ranged from 0.78 to 0.94. Goodness-of-fit indices from the confirmatory factor analysis showed a reasonable model fit. Results of confirmatory factor analysis showed that χ2 statistic indicated significant result (p < 0.001) and model fit was acceptable according to relative χ2 statistic (χ2/df = 2.8 < 5). Further validation of the instrument could yield positive results in health systems in the different countries. Also further validation and reliability studies could be planned on physicians and other

  14. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko;

    2013-01-01

    optical shared memory supercomputer interconnect system switch fabric. In particular, we investigate the resilience of the aforementioned advanced modulation formats to the nonlinearities of semiconductor optical amplifiers, used as ON/OFF gates in the supercomputer optical switch fabric under study. In...

  15. Advancements in picosecond resolution time interval measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, L. [Tektronix, Inc., Beaverton, OR (United States)

    1994-12-31

    New, efficient measurement techniques are used to adequately characterize the actual performance of the new generation of programmable equivalent time sequential sampling oscilloscopes. These instruments provide new time interval measurement capabilities with increased repeatability and accuracy. Subpicosecond repeatability for risetime measurements of fast step generators (20 ps transition time) has been observed. A typical timebase related peak error of 3ps for short time interval measurements (up to tens of ns) has been shown. A brief introduction on the horizontal timebase error sources is followed by the description of the automated measurement techniques. Finally actual measurement results are shown using the described techniques.

  16. Advances in application and research of sterile insect irradiation techniques

    International Nuclear Information System (INIS)

    The sterile insect irradiation techniques have developed rapidly and achieved many results in the world in recent years. In practice, it has become one of the important measures to area-wide integrated pest management.Here the sterile insect irradiation techniques were reviewed, including their strategy, mechanism and quality control. How to break through the constraints in the practical application of the sterile insects was also discussed in this paper

  17. Optimisation techniques for advanced process supervision and control

    OpenAIRE

    Abu-el-zeet, Z.H.

    2000-01-01

    This thesis is concerned with the use and development of optimisation techniques for process supervision and control. Two major areas related to optimisation are combined namely model predictive control and dynamic data reconciliation. A model predictive control scheme is implemented and used to simulate the control of a coal gasification plant. Static as well as dynamic data reconciliation techniques are developed and used in conjunction with steady-state optimisation and model predictive co...

  18. DATA ANALYSIS TECHNIQUES IN SERVICE QUALITY LITERATURE: ESSENTIALS AND ADVANCES

    OpenAIRE

    Mohammed naved Khan

    2013-01-01

    Academic and business researchers have for long debated on the most appropriate data analysis techniques that can be employed in conducting empirical researches in the domain of services marketing. On the basis of an exhaustive review of literature, the present paper attempts to provide a concise and schematic portrayal of generally followed data analysis techniques in the field of services quality literature. Collectively, the extant literature suggests that there is a growing trend among re...

  19. Advancement of neutron radiography technique in JRR-3M

    International Nuclear Information System (INIS)

    The JRR-3M thermal neutron radiography facility (JRR-3M TNRF) was completed in the JRR-3M of the Japan Atomic Energy Research Institute in 1991 and has been utilized as research tools for various kinds of research fields such as thermal hydraulic researches, agricultural researches, medical researches, archaeological researches and so on. High performance of the JRR-3M TNRF such as high neutron flux, high collimator ratio and wide radiographing field has enabled advanced researches and stimulated developments of advanced neutron radiography (NR) systems for higher spatial resolution and for higher temporal resolution. Static NR systems using neutron imaging plates or cooled CCD camera with high spatial resolution, a real-time NR system using a silicon intensifier target tube camera and a high-frame-rate NR system using a combination of an image intensifier and a high speed digital video camera with high temporal resolution have been developed to fill the requirements from researchers. (author)

  20. Advances in oriental document analysis and recognition techniques

    CERN Document Server

    Lee, Seong-Whan

    1999-01-01

    In recent years, rapid progress has been made in computer processing of oriental languages, and the research developments in this area have resulted in tremendous changes in handwriting processing, printed oriental character recognition, document analysis and recognition, automatic input methodologies for oriental languages, etc. Advances in computer processing of oriental languages can also be seen in multimedia computing and the World Wide Web. Many of the results in those domains are presented in this book.

  1. Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis

    OpenAIRE

    Gildea, T.J.; Bell, C. William

    1980-01-01

    The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung c...

  2. Recent Advances in Wireless Indoor Localization Techniques and System

    OpenAIRE

    Farid, Zahid; Nordin, Rosdiadee; Ismail, Mahamod

    2013-01-01

    The advances in localization based technologies and the increasing importance of ubiquitous computing and context-dependent information have led to a growing business interest in location-based applications and services. Today, most application requirements are locating or real-time tracking of physical belongings inside buildings accurately; thus, the demand for indoor localization services has become a key prerequisite in some markets. Moreover, indoor localization technologies address the ...

  3. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barker, Alan M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Albright, Austin P [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoegh, Kyle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Khazanovich, Lev [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  4. Advanced characterization techniques for thin film solar cells

    CERN Document Server

    Rau, Uwe; Kirchartz, Thomas

    2011-01-01

    Written by scientists from leading institutes in Germany, USA and Spain who use these techniques as the core of their scientific work and who have a precise idea of what is relevant for photovoltaic devices, this text contains concise and comprehensive lecture-like chapters on specific research methods.They focus on emerging, specialized techniques that are new to the field of photovoltaics yet have a proven relevance. However, since new methods need to be judged according to their implications for photovoltaic devices, a clear introductory chapter describes the basic physics of thin-film

  5. Advances in enantioselective separations using electromigration capillary techniques.

    Science.gov (United States)

    Preinerstorfer, Beatrix; Lämmerhofer, Michael; Lindner, Wolfgang

    2009-01-01

    The most recent literature dealing with enantioselective separations and stereoselective analyses of chiral entities including especially pharmaceuticals, phytochemicals, biochemicals, agrochemicals, fine chemicals and specific test compounds by electromigration techniques such as CE, MEKC, MEEKC, CEC and microchip CE is reviewed. The review covers literature from 2007 until mid-2008, i.e. studies that were published after the appearance of the latest review article on that topic in Electrophoresis by Gübitz and Schmid (see Electrophoresis 2007, 28, 114). Particular attention is given to the description of new chiral selector systems, studies on separation mechanisms and applications in the above-specified electromigration techniques. PMID:19107703

  6. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  7. Benefits of advanced software techniques for mission planning systems

    Science.gov (United States)

    Gasquet, A.; Parrod, Y.; Desaintvincent, A.

    1994-01-01

    The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

  8. DATA ANALYSIS TECHNIQUES IN SERVICE QUALITY LITERATURE: ESSENTIALS AND ADVANCES

    Directory of Open Access Journals (Sweden)

    Mohammed naved Khan

    2013-05-01

    Full Text Available Academic and business researchers have for long debated on the most appropriate data analysis techniques that can be employed in conducting empirical researches in the domain of services marketing. On the basis of an exhaustive review of literature, the present paper attempts to provide a concise and schematic portrayal of generally followed data analysis techniques in the field of services quality literature. Collectively, the extant literature suggests that there is a growing trend among researchers to rely on higher order multivariate techniques viz. confirmatory factor analysis, structural equation modeling etc. to generate and analyze complex models, while at times ignoring very basic and yet powerful procedures such as mean, t-Test, ANOVA and correlation. The marked shift in orientation of researchers towards using sophisticated analytical techniques can largely beattributed to the competition within the community of researchers in social sciences in general and those working in the area of service quality in particular as also growing demands of reviewers ofjournals. From a pragmatic viewpoint, it is expected that the paper will serve as a useful source of information and provide deeper insights to academic researchers, consultants, and practitionersinterested in modelling patterns of service quality and arriving at optimal solutions to increasingly complex management problems.

  9. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    Science.gov (United States)

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  10. Single Molecule Techniques for Advanced in situ Hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Hollars, C W; Stubbs, L; Carlson, K; Lu, X; Wehri, E

    2003-02-03

    One of the most significant achievements of modern science is completion of the human genome sequence, completed in the year 2000. Despite this monumental accomplishment, researchers have only begun to understand the relationships between this three-billion-nucleotide genetic code and the regulation and control of gene and protein expression within each of the millions of different types of highly specialized cells. Several methodologies have been developed for the analysis of gene and protein expression in situ, yet despite these advancements, the pace of such analyses is extremely limited. Because information regarding the precise timing and location of gene expression is a crucial component in the discovery of new pharmacological agents for the treatment of disease, there is an enormous incentive to develop technologies that accelerate the analytical process. Here we report on the use of plasmon resonant particles as advanced probes for in situ hybridization. These probes are used for the detection of low levels of gene-probe response and demonstrate a detection method that enables precise, simultaneous localization within a cell of the points of expression of multiple genes or proteins in a single sample.

  11. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter

    2007-01-01

    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  12. Characterization of PTFE Using Advanced Thermal Analysis Techniques

    Science.gov (United States)

    Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

    2010-10-01

    Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

  13. Similarity search and data mining techniques for advanced database systems.

    OpenAIRE

    Pryakhin, Alexey

    2006-01-01

    Modern automated methods for measurement, collection, and analysis of data in industry and science are providing more and more data with drastically increasing structure complexity. On the one hand, this growing complexity is justified by the need for a richer and more precise description of real-world objects, on the other hand it is justified by the rapid progress in measurement and analysis techniques that allow the user a versatile exploration of objects. In order to manage the huge volum...

  14. Advanced computer graphics techniques as applied to the nuclear industry

    International Nuclear Information System (INIS)

    Computer graphics is a rapidly advancing technological area in computer science. This is being motivated by increased hardware capability coupled with reduced hardware costs. This paper will cover six topics in computer graphics, with examples forecasting how each of these capabilities could be used in the nuclear industry. These topics are: (1) Image Realism with Surfaces and Transparency; (2) Computer Graphics Motion; (3) Graphics Resolution Issues and Examples; (4) Iconic Interaction; (5) Graphic Workstations; and (6) Data Fusion - illustrating data coming from numerous sources, for display through high dimensional, greater than 3-D, graphics. All topics will be discussed using extensive examples with slides, video tapes, and movies. Illustrations have been omitted from the paper due to the complexity of color reproduction. 11 refs., 2 figs., 3 tabs

  15. Advanced materials and techniques for fiber-optic sensing

    International Nuclear Information System (INIS)

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  16. Advanced materials and techniques for fibre-optic sensing

    International Nuclear Information System (INIS)

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  17. Advanced materials and techniques for fibre-optic sensing

    Science.gov (United States)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  18. Advances in Computational Techniques to Study GPCR-Ligand Recognition.

    Science.gov (United States)

    Ciancetta, Antonella; Sabbadin, Davide; Federico, Stephanie; Spalluto, Giampiero; Moro, Stefano

    2015-12-01

    G-protein-coupled receptors (GPCRs) are among the most intensely investigated drug targets. The recent revolutions in protein engineering and molecular modeling algorithms have overturned the research paradigm in the GPCR field. While the numerous ligand-bound X-ray structures determined have provided invaluable insights into GPCR structure and function, the development of algorithms exploiting graphics processing units (GPUs) has made the simulation of GPCRs in explicit lipid-water environments feasible within reasonable computation times. In this review we present a survey of the recent advances in structure-based drug design approaches with a particular emphasis on the elucidation of the ligand recognition process in class A GPCRs by means of membrane molecular dynamics (MD) simulations. PMID:26538318

  19. Contributions to the course and workshop on basic and advanced fusion plasmas diagnostic techniques

    International Nuclear Information System (INIS)

    Three papers read at the Course and workshop on basic and advanced fusion plasmas diagnostic techniques held in Varenna from 3 to 13 September 1986 and prepared by searchers of Fusion Department of ENEA are reported

  20. Advanced CFD and radiotracer techniques - a complementary technology - for industrial multiphase applications

    International Nuclear Information System (INIS)

    This paper gives an overview of the advances in development and use of computational fluid dynamics (CFD) models and codes for industrial, particularly multiphase processing applications. Experimental needs for validation and improvement of CFD models and soft wares are highlighted. Integration of advanced CFD modelling with radioisotopes or tracer techniques as a complementary technology for future research and industrial applications is discussed. (author)

  1. Handbook of microwave component measurements with advanced VNA techniques

    CERN Document Server

    Dunsmore, Joel P

    2012-01-01

    This book provides state-of-the-art coverage for making measurements on RF and Microwave Components, both active and passive. A perfect reference for R&D and Test Engineers, with topics ranging from the best practices for basic measurements, to an in-depth analysis of errors, correction methods, and uncertainty analysis, this book provides everything you need to understand microwave measurements. With primary focus on active and passive measurements using a Vector Network Analyzer, these techniques and analysis are equally applicable to measurements made with Spectrum Analyzers or Noise Figure

  2. Advances in PEM fuel cells with CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Robalinho, Eric; Cunha, Edgar Ferrari da; Zararya, Ahmed; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], Email: eric@ipen.br; Cekinski, Efrain [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2010-07-01

    This paper presents some applications of computational fluid dynamics techniques in the optimization of Proton Exchange Membrane Fuel Cell (PEMFC) designs. The results concern: modeling of gas distribution channels, the study for both porous anode and cathode and the three-dimensional modeling of a partial geometry layer containing catalytic Gas Diffusion Layers (GDL) and membrane. Numerical results of the simulations of graphite plates flow channels, using ethanol as fuel, are also presented. Some experimental results are compared to the corresponding numerical ones for several cases, demonstrating the importance and usefulness of this computational tool. (author)

  3. Advanced terahertz techniques for quality control and counterfeit detection

    Science.gov (United States)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  4. Performance assessment of EMR systems based on post-relational database.

    Science.gov (United States)

    Yu, Hai-Yan; Li, Jing-Song; Zhang, Xiao-Guang; Tian, Yu; Suzuki, Muneou; Araki, Kenji

    2012-08-01

    Post-relational databases provide high performance and are currently widely used in American hospitals. As few hospital information systems (HIS) in either China or Japan are based on post-relational databases, here we introduce a new-generation electronic medical records (EMR) system called Hygeia, which was developed with the post-relational database Caché and the latest platform Ensemble. Utilizing the benefits of a post-relational database, Hygeia is equipped with an "integration" feature that allows all the system users to access data-with a fast response time-anywhere and at anytime. Performance tests of databases in EMR systems were implemented in both China and Japan. First, a comparison test was conducted between a post-relational database, Caché, and a relational database, Oracle, embedded in the EMR systems of a medium-sized first-class hospital in China. Second, a user terminal test was done on the EMR system Izanami, which is based on the identical database Caché and operates efficiently at the Miyazaki University Hospital in Japan. The results proved that the post-relational database Caché works faster than the relational database Oracle and showed perfect performance in the real-time EMR system. PMID:21503741

  5. Inward open characterization of EmrD transporter with molecular dynamics simulation.

    Science.gov (United States)

    Tan, Xianwei; Wang, Boxiong

    2016-06-10

    EmrD is a member of the multidrug resistance exporter family. Up to now, little is known about the structural dynamics that underline the function of the EmrD protein in inward-facing open state and how the EmrD transits from an occluded state to an inward open state. For the first time the article applied the AT simulation to investigate the membrane transporter protein EmrD, and described the dynamic features of the whole protein, the domain, the helices, and the amino acid residues during an inward-open process from its occluded state. The gradual inward-open process is different from the current model of rigid-body domain motion in alternating-access mechanism. Simulation results show that the EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. In addition, it is observed that the helices exposed to the surrounding membrane show a higher level of flexibility than the other regions, and the protonated E227 plays a key role in the transition from the occluded to the open state. PMID:27055595

  6. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities...... and research carried out at the facility are presented in the article. Since 2004 several antenna test facility comparison campaigns were carried out between a number of European antenna measurement facilities. The first campaigns laid the foundation for the later comparisons in providing experience...... and showing the capabilities of each participating facility. A special campaign was carried out with the aim of establishing a reference radiation pattern for the DTU-ESA VAST-12 antenna. The on-ground calibration of the MIRAS space radiometer for ESA's SMOS mission was carried out at the DTU...

  7. Advanced Laser Techniques for Filler-Induced Complications

    DEFF Research Database (Denmark)

    Cassuto, D.; Marangoni, O.; Santis, G. De;

    2009-01-01

    BACKGROUND The increasing use of injectable fillers has been increasing the occurrence of disfiguring anaerobic infection or granulomas. This study presents two types of laser-assisted evacuation of filler material and inflammatory and necrotic tissue that were used to treat disfiguring facial...... nodules after different types of gel fillers. MATERIALS AND METHODS Infectious lesions after hydrogels were drained using a lithium triborate laser at 532 nm, with subsequent removal of infected gel and pus (laser assisted evacuation). Granuloma after gels containing microparticles were treated using...... an 808-nm diode laser using intralesional laser technique. The latter melted and liquefied the organic and synthetic components of the granulomas, facilitating subsequent evacuation. Both lasers had an easily controllable thin laser beam, which enabled the physician to control tissue damage and minimize...

  8. Advanced Infusion Techniques with 3-D Printed Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Nuttall, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elliott, Amy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-10

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanning and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is

  9. Advanced Manufacturing Techniques Demonstrated for Fabricating Developmental Hardware

    Science.gov (United States)

    Redding, Chip

    2004-01-01

    NASA Glenn Research Center's Engineering Development Division has been working in support of innovative gas turbine engine systems under development by Glenn's Combustion Branch. These one-of-a-kind components require operation under extreme conditions. High-temperature ceramics were chosen for fabrication was because of the hostile operating environment. During the designing process, it became apparent that traditional machining techniques would not be adequate to produce the small, intricate features for the conceptual design, which was to be produced by stacking over a dozen thin layers with many small features that would then be aligned and bonded together into a one-piece unit. Instead of using traditional machining, we produced computer models in Pro/ENGINEER (Parametric Technology Corporation (PTC), Needham, MA) to the specifications of the research engineer. The computer models were exported in stereolithography standard (STL) format and used to produce full-size rapid prototype polymer models. These semi-opaque plastic models were used for visualization and design verification. The computer models also were exported in International Graphics Exchange Specification (IGES) format and sent to Glenn's Thermal/Fluids Design & Analysis Branch and Applied Structural Mechanics Branch for profiling heat transfer and mechanical strength analysis.

  10. Advanced knowledge engineering techniques with applications to electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-C.; Marathe, H.; Ma, T.-K.; Rosenwald, G.

    1997-12-31

    This chapter starts with a brief overview of the state-of-the-art of expert system applications to electric power systems. Several knowledge engineering techniques that were motivated by power system applications are reviewed: (1) identification of relations among rules or chains of rules, (2) estimation of the worst case processing time of rule-based systems, and (3) the equivalence class method for validation and verification of rule-based systems. The first issue, relation checking, is considered the most practical among the three and, therefore, the subject is discussed extensively in this chapter. A general relation checking algorithm developed at the University of Washington is described. A representation of rule-based systems in the attribute space is proposed. This representation is used to define several relations among rules. The relations defined are cause-effect, mutual exclusion, redundancy, conflict, subsumption and implication. A relation between a rule and a chain of rules is either complete, i.e. the relation holds for all instantiations of the rules, or partial, i.e. the relation holds only for some instantiations of the rules. An algorithm to detect relations between a new rule (to be added to the rule base) and rules in the rule base is developed. Example applications of this algorithm to rule-based systems are provided. (Author)

  11. Simulation of an advanced techniques of ion propulsion Rocket system

    Science.gov (United States)

    Bakkiyaraj, R.

    2016-07-01

    The ion propulsion rocket system is expected to become popular with the development of Deuterium,Argon gas and Hexagonal shape Magneto hydrodynamic(MHD) techniques because of the stimulation indirectly generated the power from ionization chamber,design of thrust range is 1.2 N with 40 KW of electric power and high efficiency.The proposed work is the study of MHD power generation through ionization level of Deuterium gas and combination of two gaseous ions(Deuterium gas ions + Argon gas ions) at acceleration stage.IPR consists of three parts 1.Hexagonal shape MHD based power generator through ionization chamber 2.ion accelerator 3.Exhaust of Nozzle.Initially the required energy around 1312 KJ/mol is carrying out the purpose of deuterium gas which is changed to ionization level.The ionized Deuterium gas comes out from RF ionization chamber to nozzle through MHD generator with enhanced velocity then after voltage is generated across the two pairs of electrode in MHD.it will produce thrust value with the help of mixing of Deuterium ion and Argon ion at acceleration position.The simulation of the IPR system has been carried out by MATLAB.By comparing the simulation results with the theoretical and previous results,if reaches that the proposed method is achieved of thrust value with 40KW power for simulating the IPR system.

  12. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    Science.gov (United States)

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  13. Structural level characterization of base oils using advanced analytical techniques

    KAUST Repository

    Hourani, Nadim

    2015-05-21

    Base oils, blended for finished lubricant formulations, are classified by the American Petroleum Institute into five groups, viz., groups I-V. Groups I-III consist of petroleum based hydrocarbons whereas groups IV and V are made of synthetic polymers. In the present study, five base oil samples belonging to groups I and III were extensively characterized using high performance liquid chromatography (HPLC), comprehensive two-dimensional gas chromatography (GC×GC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) equipped with atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) sources. First, the capabilities and limitations of each analytical technique were evaluated, and then the availed information was combined to reveal compositional details on the base oil samples studied. HPLC showed the overwhelming presence of saturated over aromatic compounds in all five base oils. A similar trend was further corroborated using GC×GC, which yielded semiquantitative information on the compound classes present in the samples and provided further details on the carbon number distributions within these classes. In addition to chromatography methods, FT-ICR MS supplemented the compositional information on the base oil samples by resolving the aromatics compounds into alkyl- and naphtheno-subtituted families. APCI proved more effective for the ionization of the highly saturated base oil components compared to APPI. Furthermore, for the detailed information on hydrocarbon molecules FT-ICR MS revealed the presence of saturated and aromatic sulfur species in all base oil samples. The results presented herein offer a unique perspective into the detailed molecular structure of base oils typically used to formulate lubricants. © 2015 American Chemical Society.

  14. Advances in high-resolution imaging – techniques for three-dimensional imaging of cellular structures

    OpenAIRE

    Lidke, Diane S.; Lidke, Keith A.

    2012-01-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below th...

  15. Management of metastatic malignant thymoma with advanced radiation and chemotherapy techniques: report of a rare case

    OpenAIRE

    D’Andrea, Mark A; Reddy, G. Kesava

    2015-01-01

    Malignant thymomas are rare epithelial neoplasms of the anterior superior mediastinum that are typically invasive in nature and have a higher risk of relapse that may ultimately lead to death. Here we report a case of an advanced malignant thymoma that was successfully treated with neoadjuvant chemotherapy followed by surgical resection and subsequently with advanced and novel radiation therapy techniques. A 65-year-old male was diagnosed with a stage IV malignant thymoma with multiple metast...

  16. Mac OS X Snow Leopard for Power Users Advanced Capabilities and Techniques

    CERN Document Server

    Granneman, Scott

    2010-01-01

    Mac OS X Snow Leopard for Power Users: Advanced Capabilities and Techniques is for Mac OS X users who want to go beyond the obvious, the standard, and the easy. If want to dig deeper into Mac OS X and maximize your skills and productivity using the world's slickest and most elegant operating system, then this is the book for you. Written by Scott Granneman, an experienced teacher, developer, and consultant, Mac OS X for Power Users helps you push Mac OS X to the max, unveiling advanced techniques and options that you may have not known even existed. Create custom workflows and apps with Automa

  17. Frontier of Advanced Accelerator Applications and Medical Treatments Using Nuclear Techniques. Abstract

    International Nuclear Information System (INIS)

    To address the challenges of research-based practice, developing advanced accelerator applications, and medical treatments using nuclear tecniqoes, researchers from Rajamakala University of Technology Lanna, Office of Atoms for Peace, and Chiang Mai University have joined in hosting this conference. Nuclear medicine, amedical specialty, diagnoses and treats diseases in a safe and painless way. Nuclear techniques can determine medical information that may otherwise be unavailable, require surgery, or necessitate more expensive and invasive diagnostic tests. Advance in nuclear techniques also offer the potential to detect abnormalities at earlier stages, leasding to earlier treatment and a more successful prognosis.

  18. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    OpenAIRE

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cel...

  19. Advanced signal processing techniques for interference removal in Satellite Navigation Systems

    OpenAIRE

    Musumeci, Luciano

    2014-01-01

    This thesis investigates the use of innovative interference detection and mitigation techniques for GNSS based applications. The main purpose of this thesis is the development of advanced signal processing techniques outperforming current interference mitigation algorithms already implemented in off-the-shelf GNSS receivers. State-of-the-art interference countermeasures already investigated in literature, which process the signal at the ADC output, provide interference components suppression ...

  20. Characterization techniques for semiconductors and nanostructures: a review of recent advances

    Science.gov (United States)

    Acher, Olivier

    2015-01-01

    Optical spectroscopy techniques are widely used for the characterization of semiconductors and nanostructures. Confocal Raman microscopy is useful to retrieve chemical and molecular information at the ultimate submicrometer resolution of optical microscopy. Fast imaging capabilities, 3D confocal ability, and multiple excitation wavelengths, have increased the power of the technique while making it simpler to use for material scientists. Recently, the development of the Tip Enhanced Raman Spectroscopy (TERS) has opened the way to the use of Raman information at nanoscale, by combining the resolution of scanning probe microscopy and chemical selectivity of Raman spectroscopy. Significant advances have been reported in the field of profiling the atomic composition of multilayers, using the Glow Discharge Optical Emission Spectroscopy technique, including real-time determination of etched depth by interferometry. This allows the construction of precise atomic profiles of sophisticated multilayers with a few nm resolution. Ellipsometry is another widely used technique to determine the profile of multilayers, and recent development have provided enhanced spatial resolution useful for the investigation of patterned materials. In addition to the advances of the different characterization techniques, the capability to observe the same regions at micrometer scale at different stages of material elaboration, or with different instrument, is becoming a critical issue. Several advances have been made to allow precise re-localization and co-localization of observation with different complementary characterization techniques.

  1. PREFACE: E-MRS 2012 Spring Meeting, Symposium M: More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics

    Science.gov (United States)

    Wenger, Christian; Fompeyrine, Jean; Vallée, Christophe; Locquet, Jean-Pierre

    2012-12-01

    More than Moore explores a new area of Silicon based microelectronics, which reaches beyond the boundaries of conventional semiconductor applications. Creating new functionality to semiconductor circuits, More than Moore focuses on motivating new technological possibilities. In the past decades, the main stream of microelectronics progresses was mainly powered by Moore's law, with two focused development arenas, namely, IC miniaturization down to nano scale, and SoC based system integration. While the microelectronics community continues to invent new solutions around the world to keep Moore's law alive, there is increasing momentum for the development of 'More than Moore' technologies which are based on silicon technologies but do not simply scale with Moore's law. Typical examples are RF, Power/HV, Passives, Sensor/Actuator/MEMS or Bio-chips. The More than Moore strategy is driven by the increasing social needs for high level heterogeneous system integration including non-digital functions, the necessity to speed up innovative product creation and to broaden the product portfolio of wafer fabs, and the limiting cost and time factors of advanced SoC development. It is believed that More than Moore will add value to society on top of and beyond advanced CMOS with fast increasing marketing potentials. Important key challenges for the realization of the 'More than Moore' strategy are: perspective materials for future THz devices materials systems for embedded sensors and actuators perspective materials for epitaxial approaches material systems for embedded innovative memory technologies development of new materials with customized characteristics The Hot topics covered by the symposium M (More than Moore: Novel materials approaches for functionalized Silicon based Microelectronics) at E-MRS 2012 Spring Meeting, 14-18 May 2012 have been: development of functional ceramics thin films New dielectric materials for advanced microelectronics bio- and CMOS compatible

  2. Laser rapid prototyping techniques for fabrication of advanced implants and scaffolds for tissue engineering

    Institute of Scientific and Technical Information of China (English)

    Popov; V.; K.

    2005-01-01

    Rapid prototyping (RP) techniques become more and more extensively used instrument for numerous biomedical applications ranging from 3-D biomodels design to fabrication of custom-designed implants and scaffolds for tissue engineering. In this paper we present the results of our development of advanced Laser Stereolithography (LS) and new Surface Selective Laser Sintering (SSLS) methodologies for these purposes.……

  3. Laser rapid prototyping techniques for fabrication of advanced implants and scaffolds for tissue engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Rapid prototyping (RP) techniques become more and more extensively used instrument for numerous biomedical applications ranging from 3-D biomodels design to fabrication of custom-designed implants and scaffolds for tissue engineering. In this paper we present the results of our development of advanced Laser Stereolithography (LS) and new Surface Selective Laser Sintering (SSLS) methodologies for these purposes.

  4. Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    International Nuclear Information System (INIS)

    We describe an advanced gamma-ray spectrometer that is currently in development. It will obtain a sensitivity of -4ph/cm-2-sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

  5. Proceedings of the OECD/CSNI specialist meeting on advanced instrumentation and measurement techniques

    International Nuclear Information System (INIS)

    In the last few years, tremendous advances in the local instrumentation technology for two-phase flow have been accomplished by the applications of new sensor techniques, optical or beam methods and electronic technology. The detailed measurements gave new insight to the true nature of local mechanisms of interfacial transfer between phases, interfacial structure and two-phase flow turbulent transfers. These new developments indicate that more accurate and reliable two-phase flow models can be obtained, if focused experiments are designed and performed by utilizing this advanced instrumentation. The purpose of this Specialist Meeting on Advanced Instrumentation and Measurement Techniques was to review the recent instrumentation developments and the relation between thermal-hydraulic codes and instrumentation capabilities. Four specific objectives were identified for this meeting: bring together international experts on instrumentation, experiments, and modeling; review recent developments in multiphase flow instrumentation; discuss the relation between modeling needs and instrumentation capabilities, and discuss future directions for instrumentation development, modeling, and experiments

  6. The role of the electronic medical record (EMR in care delivery development in developing countries: a systematic review

    Directory of Open Access Journals (Sweden)

    Faustine Williams

    2008-07-01

    Conclusions The potential of EMR systems to transform medical care practice has been recognised over the past decades, including the enhancement of healthcare delivery and facilitation of decisionmaking processes. Some benefits of an EMR system include accurate medication lists, legible notes and prescriptions and immediately available charts. In spite of challenges facing the developing world such as lack of human expertise and financial resource, most studies have shown how feasible it could be with support from developed nations to design and implement an EMR system that fits into this environment.

  7. Tibial crest fracture correction after tibial tuberosity advancement (TTA using a modified TTA technique

    Directory of Open Access Journals (Sweden)

    Tiago Carmagnani Prada

    2015-06-01

    Full Text Available Corrective osteotomies are challenging techniques that require specialized training and acquisition of specific materials. Nevertheless, they have been increasingly studied and used in clinical routine in the world. Several variations on the model and the application technique have been developed and refined in search of the improvement of surgical techniques and development of implants more affordable to purchase. The tibial tuberosity advancement (TTA consists on stabilization of tibial plateau perpendicular to the patellar tendon through the tibial tuberosity advancement. Our goal is to report a surgical complication of fracture of the tibial crest after TTA procedure. A dog with a confirmed diagnosis of rupture of the cranial cruciate ligament (CCLR was operated using conventional technique of TTA. After 3 days of surgery, the same animal had a fracture of the proximal tibial crest. The animal was sent back to surgery and was used a variation of TTA technique, with autologous iliac wing and three cortical screws. This variation of the technique was able to replace the original technique successfully.

  8. Review of Adaptive Cell Selection Techniques in LTE-Advanced Heterogeneous Networks

    OpenAIRE

    Gadam, M. A.; Ahmed, Maryam Abdulazeez; Ng, Chee Kyun; Nordin, Nor Kamariah; Sali, Aduwati; Hashim, Fazirulhisyam

    2016-01-01

    Poor cell selection is the main challenge in Picocell (PeNB) deployment in Long Term Evolution- (LTE-) Advanced heterogeneous networks (HetNets) because it results in load imbalance and intercell interference. A selection technique based on cell range extension (CRE) has been proposed for LTE-Advanced HetNets to extend the coverage of PeNBs for load balancing. However, poor CRE bias setting in cell selection inhibits the attainment of desired cell splitting gains. By contrast, a cell selectio...

  9. Development of advanced techniques for life management and inspection of advanced heavy water reactor (AWHR) coolant channel components

    International Nuclear Information System (INIS)

    Operating life of pressure tubes of Pressurized Heavy Water Reactor (PHWR) is limited due to the presence of various issues associated with the material like hydrogen pick up, delayed hydride cracking, axial elongation and increase in diameter due to irradiation creep and growth. Periodic monitoring of the health of the pressure tube under in-situ conditions is essential to ensure the safe operation of the reactor. New designs of reactor call for innovative design philosophy, modification in fabrication route of pressure tube, development of reactor specific tools, both analytical and hardware for assessing the fitness for service of the pressure tube. Feedback from existing reactors has enhanced the understanding about life limiting parameters. This paper gives an insight into the life limiting issues associated with pressure tube and the efforts pursued for development of life management techniques for coolant channel of Advanced Heavy Water Reactor (AHWR) designed in India. The tools and techniques for in-situ property/hydrogen measurement, pulsed eddy current technique for zirconium alloy in-homogeneity characterization, horizontal shear wave EMAT system for dissimilar metal weld inspection, sliver sampling of vertical channel etc. are elaborated in the paper. (author)

  10. EMRS Spring Meeting 2014 Symposium D: Phonons and fluctuations in low dimensional structures

    Science.gov (United States)

    2014-11-01

    The E-MRS 2014 Spring meeting, held from 26-30th May 2014 in Lille included the Symposium D entitled ''Phonons and Fluctuations in Low Dimensional Structures'', the first edition of its kind. The symposium was organised in response to the increasing interest in the study of phonons in the context of advances in condensed matter physics, electronics, experimental methods and theory and, in particular, the transfer of energy across atomic interfaces and the propagation of energy in the nm-scale. Steering heat by light or vice versa and examining nano-scale energy conversion (as in thermoelectricity and harvesting e.g. in biological systems) are two aspects that share the underlying science of energy processes across atomic interfaces and energy propagation in the nanoscale and or in confined systems. The nanometer scale defies several of the bulk relationships as confinement of electrons and phonons, locality and non-equilibrium become increasingly important. The propagation of phonons as energy carriers impacts not only heat transfer, but also the very concept and handling of temperature in non-equilibrium and highly localised conditions. Much of the needed progress depends on the materials studied and this symposium targeted the interface material aspects as well as the emerging concepts to advance in this field. The symposium had its origins in a series of meetings and seminars including: (1) the first Phonon Engineering Workshop, funded by Catalan Institute for Research and Advanced Studies (ICREA), the then MICINN, the CNRS, VTT, and several EU projects, held in Saint Feliu de Guixols (Girona, Spain) from 24th to 27th of May 2010 with 65 participants from Europe, the USA and Japan; (2) the first Phonons and Fluctuations workshop, held in Paris on 8th and 9th November 2010, supported by French, Spanish and Finnish national projects and EU projects, attended by about 50 researchers; (3) the second Phonon and Fluctuations workshop, held in Paris on 8th and 9th

  11. Data Analysis of EMR in Distributed Database with Respect to Today's E -Health Apps

    Directory of Open Access Journals (Sweden)

    Onkar S Kemkar

    2012-06-01

    Full Text Available Comparative effectiveness research has been an ongoing effort to identify best-practices for health care. A doctor’s EHR in the office is supposed to be able to connect with outside sources of patient data, other clinicians using the same or different EMRs. Of most urgency, though, is the desire to connect a clinician with the local hospital. And, of all of the integrations, this one is the most difficult.This paper focuses on the use of data from an electronic medical record (EMR within a health care organization. It discusses how health provider extracts data from multiple sources in a near real-time fashion. Here also we discuss how national patient identity number can be used for healthcare transaction, how health data can be made protected by using the HIPPA concepts, how we can maintain the security of the patient data.

  12. Development of the staffing evaluation technique for mental tasks of the advanced main control room

    International Nuclear Information System (INIS)

    The key goals of staffing and qualifications review element are to ensure that the right numbers of people with the appropriate skills and abilities are available to support plant operations and events. If the staffing level is too few, excessive stress that caused human errors possibly will be placed on the operators. Accordingly, this study developed a staffing evaluation technique based on CPM-GOMS for the mental tasks such as operations in the advanced main control room. A within-subject experiment was designed to examine the validity of the staffing evaluation technique. The results indicated the performance of evaluated staffing level via the staffing evaluation technique was significantly higher than that of non-evaluated staffing level; thus, validity of the staffing evaluation technique can be accepted. Finally, the implications for managerial practice on the findings of this study were discussed. (author)

  13. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  14. Localization and monitoring of spent fuel containers applying electromagnetic reflection measurement (EMR). Final report

    International Nuclear Information System (INIS)

    The direct final disposal of spent nuclear fuels involves the emplacement in containers, e.g. Pollux casks, and their permanent disposal in drifts. The IAEA requires surveillance measures for this concept. By the BGR the electromagnetic reflection method (EMR, underground radar) has been suggested for surveillance. It was tested for its suitability in the Asse salt mine on a rock-up of Pollux casks. (DG)

  15. Ferromagnetic clustering and ordering in manganese deficient LaMnO3: An EMR probe

    International Nuclear Information System (INIS)

    Electron magnetic resonance (EMR) properties of LaMn1-xO3 (x=0, 0.02 and 0.06) are studied in the range 115-600K. It is shown that above 200K either ferromagnetic clusters or long-range ferromagnetic correlation present in all samples, and that LaMn0.94O3 is ferromagnetic below 113.4+/-1.5K

  16. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Science.gov (United States)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  17. Ultra-realistic imaging advanced techniques in analogue and digital colour holography

    CERN Document Server

    Bjelkhagen, Hans

    2013-01-01

    Ultra-high resolution holograms are now finding commercial and industrial applications in such areas as holographic maps, 3D medical imaging, and consumer devices. Ultra-Realistic Imaging: Advanced Techniques in Analogue and Digital Colour Holography brings together a comprehensive discussion of key methods that enable holography to be used as a technique of ultra-realistic imaging.After a historical review of progress in holography, the book: Discusses CW recording lasers, pulsed holography lasers, and reviews optical designs for many of the principal laser types with emphasis on attaining th

  18. Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI

    OpenAIRE

    van der Geest, Rob J; Garg, Pankaj

    2016-01-01

    Purpose of the Review Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and ...

  19. Advanced energy sources and conversion techniques. Proceedings of a seminar. Volume 1. [35 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1958-11-01

    The Seminar was organized as a series of tutorial presentations and round table discussions on a technical level to implement the following: (a) to identify and explore present and projected needs for energy sources and conversion techniques for military applications; (b) to exchange information on current and planned efforts in these fields; (c) to examine the effect of anticipated scientific and technological advances on these efforts; and (d) to present suggested programs aimed at satisfying the military needs for energy sources and conversion techniques. Volume I contains all of the unclassified papers presented at the Seminar. (W.D.M.)

  20. Frontiers of Optical Spectroscopy Investigating Extreme Physical Conditions with Advanced Optical Techniques

    CERN Document Server

    Bartolo, Baldassare

    2005-01-01

    Advanced spectroscopic techniques allow the probing of very small systems and very fast phenomena, conditions that can be considered "extreme" at the present status of our experimentation and knowledge. Quantum dots, nanocrystals and single molecules are examples of the former and events on the femtosecond scale examples of the latter. The purpose of this book is to examine the realm of phenomena of such extreme type and the techniques that permit their investigations. Each author has developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion. The formal lectures are complemented by additional seminars.

  1. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    Science.gov (United States)

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

  2. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  3. Influence of semiconductor/metal interface geometry in an EMR sensor

    KAUST Repository

    Sun, Jian

    2013-02-01

    The extraordinary magnetoresistance (EMR) is well known to be strongly dependent on geometric parameters. While the influence of the aspect ratios of the metal and semiconductor areas has been thoroughly investigated, the geometry of the semiconductor/metal interface has been neglected so far. However, from a fabrication point of view, this part plays a crucial role. In this paper, the performance of a bar-type hybrid EMR sensor is investigated by means of finite element method and experiments with respect to the hybrid interface geometry. A 3-D model has been developed, which simulates the EMR effect in case of fields in different directions. The semiconductor/metal interface has been investigated in terms of different layer thicknesses and overlaps. The results show that those parameters can cause a change in the output sensitivity of 2%-10%. In order to maintain a high sensitivity and keep the fabrication relatively simple and at low cost, a device with a thin metal shunt having a large overlap on the top of the semiconductor bar would provide the best solution. © 2001-2012 IEEE.

  4. POC-scale testing of an advanced fine coal dewatering equipment/technique

    Energy Technology Data Exchange (ETDEWEB)

    Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  5. Urethral advancement technique for repair of distal penile hypospadias: A revisit

    Directory of Open Access Journals (Sweden)

    Awad Mohamed

    2006-01-01

    Full Text Available Background: Numerous ingenious methods have been described to repair hypospadias with variable results. The anterior urethral advancement technique reported by Chang[1] to repair distal hypospadias has shown encouraging results. We have reevaluated this technique with some modifications to improve its results. Materials and Methods: This study was done on 72 patients, 19 cases with glanular hypospadias, 20 cases with coronal hypospadias, 22 cases of subcoronal hypospadias,and 11 cases with anterior penile hypospadias in the period between September 1999 and October 2003. The patients′ age ranged from two years to twenty five years (median age 5.6 years. All the patients were operated using Chang′s technique with our modifications. Results: There were no major complications in any of our patients, no postoperative fistulae or urethral stricture. Three patients had meatal stenosis and preputial edema occurred in 83.3% in non-circumcised patients. Conclusion: Modifications of the anterior advancement technique has produced excellent Results. It is easy to do and learn and also offers good cosmetic and functional results.

  6. Advanced post-irradiation examination techniques for water reactor fuel. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    The purpose of the meeting was to provide and overview of the status of post-irradiation examination (PIE) techniques for water cooled reactor fuel assemblies and their components with emphasis given to advanced PIE techniques applied to high burnup fuel. Papers presented at the meeting described progress obtained in non-destructive (e.g. dimensional measurements, oxide layer thickness measurements, gamma scanning and tomography, neutron and X-ray radiography, etc.) and destructive PIE techniques (e.g. microstructural studies, elemental and isotopic analysis, measurement of physical and mechanical properties, etc.) used for investigation of water reactor fuel. Recent practice in high burnup fuel investigation revealed the importance of advanced PIE techniques, such as 3-D tomography, secondary ion mass spectrometry, laser flash, high resolution transmission and scanning electron microscopy, image analysis in microstructural studies, for understanding mechanisms of fuel behaviour under irradiation. Importance and needs for in-pile irradiation of samples and rodlets in instrumented rigs were also discussed. This TECDOC contains 20 individual papers presented at the meeting; each of the papers has been indexed separately

  7. Advanced field-solver techniques for RC extraction of integrated circuits

    CERN Document Server

    Yu, Wenjian

    2014-01-01

    Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...

  8. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    Science.gov (United States)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  9. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    Science.gov (United States)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  10. Recent advances in fuel fabrication techniques and prospects for the nineties

    International Nuclear Information System (INIS)

    Advanced Nuclear Fuels Corporation's approach and experience with the application of a flexible, just-in-time manufacturing philosophy to the production of customized nuclear fuel is described. Automation approaches to improve productivity are described. The transfer of technology across product lines is discussed as well as the challenges presented by a multiple product fabrication facility which produces a wide variety of BWR and PWR designs. This paper also describes the method of managing vendor quality control programs in support of standardization and clarity of documentation. Process simplification and the ensuing experience are discussed. Prospects for fabrication process advancements in the nineties are given with emphasis on the benefits of dry conversion of UF6 to UO2 powder, and increased use of automated and computerized inspection techniques. (author)

  11. Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage

    International Nuclear Information System (INIS)

    The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs

  12. Impact of advanced MRI techniques for the diagnosis of dementia: comparison with PET

    DEFF Research Database (Denmark)

    Steffensen, Elena; Prakash, Vineet; Vestergård, Karsten;

    investigated with an advanced 3T MRI protocol including 3D pseudocontinuous arterial spin labeling (PC ASL) sequence for CBF measurement and DTI sequence used for tractography. Fifteen of the patients have also undergone 18-FDG PET examination. A reference data set from 30 healthy volunteers was used for......Introduction: The use of high magnetic fields in combination with fast algorithms for computer-based postprocessing has moved advanced MRI techniques into clinical practice. MRI provides in analogy with PET physiological information in addition to more traditional morphological images. Evaluation...... of cerebral blood flow (CBF) and also of white matter damage may be used to support the diagnosis and characterization of dementia and is of special important interest for the detection of changes in the early stages of the disease. Purpose: To investigate whether perfusion MRI with CBF maps combined...

  13. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A

    1987-01-01

    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  14. Advanced Techniques in Web Intelligence-2 Web User Browsing Behaviour and Preference Analysis

    CERN Document Server

    Palade, Vasile; Jain, Lakhmi

    2013-01-01

    This research volume focuses on analyzing the web user browsing behaviour and preferences in traditional web-based environments, social  networks and web 2.0 applications,  by using advanced  techniques in data acquisition, data processing, pattern extraction and  cognitive science for modeling the human actions.  The book is directed to  graduate students, researchers/scientists and engineers  interested in updating their knowledge with the recent trends in web user analysis, for developing the next generation of web-based systems and applications.

  15. [Recent advances in the techniques of protein-protein interaction study].

    Science.gov (United States)

    Wang, Ming-Qiang; Wu, Jin-Xia; Zhang, Yu-Hong; Han, Ning; Bian, Hong-Wu; Zhu, Mu-Yuan

    2013-11-01

    Protein-protein interactions play key roles in the development of organisms and the response to biotic and abiotic stresses. Several wet-lab methods have been developed to study this challenging area,including yeast two-hybrid system, tandem affinity purification, Co-immunoprecipitation, GST Pull-down, bimolecular fluorescence complementation, fluorescence resonance energy transfer and surface plasmon resonance analysis. In this review, we discuss theoretical principles and relative advantages and disvantages of these techniques,with an emphasis on recent advances to compensate for limitations. PMID:24579310

  16. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  17. The search for neuroimaging biomarkers of Alzheimer's disease with advanced MRI techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tie-Qiang (Karolinska Huddinge - Medical Physics, Stockholm (Sweden)), email: tieqiang.li@karolinska.se; Wahlund, Lars-Olof (Dept. of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm (Sweden))

    2011-02-15

    The aim of this review is to examine the recent literature on using advanced magnetic resonance imaging (MRI) techniques for finding neuroimaging biomarkers that are sensitive to the detection of risks for Alzheimer's disease (AD). Since structural MRI techniques, such as brain structural volumetry and voxel based morphometry (VBM), have been widely used for AD studies and extensively reviewed, we will only briefly touch on the topics of volumetry and morphometry. The focus of the current review is about the more recent developments in the search for AD neuroimaging biomarkers with functional MRI (fMRI), resting-state functional connectivity MRI (fcMRI), diffusion tensor imaging (DTI), arterial spin-labeling (ASL), and magnetic resonance spectroscopy (MRS)

  18. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    International Nuclear Information System (INIS)

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  19. Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gerald J. Keeler; Masako Morishita

    2006-12-31

    The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

  20. Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques

    Science.gov (United States)

    Gannon, Paul Edward

    High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects. Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC systems.

  1. Advanced condition monitoring techniques and plant life extension studies at EBR-2

    International Nuclear Information System (INIS)

    Numerous advanced techniques have been evaluated and tested at EBR-2 as part of a plant-life extension program for detection of degradation and other abnormalities in plant systems. Two techniques have been determined to be of considerable assistance in planning for the extended-life operation of EBR-2. The first, a computer-based pattern-recognition system (System State Analyzer or SSA) is used for surveillance of the primary system instrumentation, primary sodium pumps and plant heat balances. This surveillance has indicated that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals and can be used to provide derived signal values to replace signals from failed sensors. The second technique, also a computer-based pattern-recognition system (Sequential Probability Ratio Test or SPRT) is used to validate signals and to detect incipient failures in sensors and components or systems. It is being used on the failed fuel detection system and is experimentally used on the primary coolant pumps. Both techniques are described and experience with their operation presented

  2. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    Science.gov (United States)

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  3. Managing large energy and mineral resources (EMR) projects in challenging environments

    Science.gov (United States)

    Chanmeka, Arpamart

    The viability of energy mineral resources (EMR) construction projects is contingent upon the state of the world economic climate. Oil sands projects in Alberta, Canada exemplify large EMR projects that are highly sensitive to fluctuations in the world market. Alberta EMR projects are constrained by high fixed production costs and are also widely recognized as one of the most challenging construction projects to successfully deliver due to impacts from extreme weather conditions, remote locations and issues with labor availability amongst others. As indicated in many studies, these hardships strain the industry's ability to execute work efficiently, resulting in declining productivity and mounting cost and schedule overruns. Therefore, to enhance the competitiveness of Alberta EMR projects, project teams are targeting effective management strategies to enhance project performance and productivity by countering the uniquely challenging environment in Alberta. The main purpose of this research is to develop industry wide benchmarking tailored to the specific constraints and challenges of Alberta. Results support quantitative assessments and identify the root causes of project performance and ineffective field productivity problems in the heavy industry sector capital projects. Customized metrics produced from the data collected through a web-based survey instrument were used to quantitatively assess project performance in the following dimensions: cost, schedule, change, rework, safety, engineering and construction productivity and construction practices. The system enables the industry to measure project performance more accurately, get meaningful comparisons, while establishing credible norms specific to Alberta projects. Data analysis to identify the root cause of performance problems was conducted. The analysis of Alberta projects substantiated lessons of previous studies to create an improved awareness of the abilities of Alberta-based companies to manage their

  4. A Journey into the Hidden Lives of Electronic Medical Records (EMRs)

    DEFF Research Database (Denmark)

    Boulus-Rødje, Nina

    Drawing upon a three and a half year long research project, this dissertation examines the adaptation process of an electronic medical record (EMR) in a primary healthcare setting, with emphasis on methodological reflections on doing action research with a community partner. This dissertation thus...... Systems (IS), I analyze how health care practitioners adapt technology to their situated work practices. Investigating the factors promoting the adaptation process showed that reflective activities were essential for constructing emergent work practices. I therefore provide a conceptualization of the...

  5. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    Directory of Open Access Journals (Sweden)

    Alexander Hexemer

    2015-01-01

    Full Text Available The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS, new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.

  6. Advanced single-wafer sequential multiprocessing techniques for semiconductor device fabrication

    International Nuclear Information System (INIS)

    Single-wafer integrated in-situ multiprocessing (SWIM) is recognized as the future trend for advanced microelectronics production in flexible fast turn- around computer-integrated semiconductor manufacturing environments. The SWIM equipment technology and processing methodology offer enhanced equipment utilization, improved process reproducibility and yield, and reduced chip manufacturing cost. They also provide significant capabilities for fabrication of new and improved device structures. This paper describes the SWIM techniques and presents a novel single-wafer advanced vacuum multiprocessing technology developed based on the use of multiple process energy/activation sources (lamp heating and remote microwave plasma) for multilayer epitaxial and polycrystalline semiconductor as well as dielectric film processing. Based on this technology, multilayer in-situ-doped homoepitaxial silicon and heteroepitaxial strained layer Si/GexSi1-x/Si structures have been grown and characterized. The process control and the ultimate interfacial abruptness of the layer-to-layer transition widths in the device structures prepared by this technology will challenge the MBE techniques in multilayer epitaxial growth applications

  7. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    Science.gov (United States)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  8. The development of advanced instrumentation and control technology -The development of digital monitoring technique-

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Jong Sun; Lee, Byung Sun; Han, Sang Joon; Shin, Yong Chul; Kim, Yung Baek; Kim, Dong Hoon; Oh, Yang Kyoon; Suh, Yung; Choi, Chan Duk; Kang, Byung Hun; Hong, Hyung Pyo; Shin, Jee Tae; Moon, Kwon Kee; Lee, Soon Sung; Kim, Sung Hoh; Koo, In Soo; Kim, Dong Wan; Huh, Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A study has been performed for the advanced DSP technology for digital nuclear I and C systems and its prototype, and for the monitoring and diagnosing techniques for the highly-pressurized components in NSSS. In the DSP part, the DSP requirements for NPPs have been induced for the performance of the DSP systems and the functional analysis for Reactor Coolant System (RCS) has been performed as the embodied target system. Total quantities of the I and C signals, signal types, and signal functions were also investigated in Ulchin NPP units 3 and 4. From these basis, the prototype facility was configured for performance validation and algorithm implementation. In order to develop the methods of DSP techniques and algorithms, the current signal validation methods have been studied and analyzed. In the analysis for the communication networks in NPP, the basic technique for the configuration of communication networks and the important considerations for applying to NPPs have been reviewed. Test and experimental facilities have been set up in order to carry out the required tests during research activities on the monitoring techniques for abnormal conditions. Studies were concentrated on methods how to acquire vibration signals from the mechanical structures and equipment including rotating machinery and reactor, and analyses for the characteristics of the signals. Fuzzy logic was evaluated as a good technique to improve the reliability of the monitoring and diagnosing algorithm through the application of the theory such as the automatic pattern recognition algorithm of the vibration spectrum, the alarm detection and diagnosis for collisions of loose parts. 71 figs, 32 tabs, 64 refs. (Author).

  9. Advancement on techniques for the separation and maintenance of the red imported fire ant colonies

    Institute of Scientific and Technical Information of China (English)

    JIAN CHEN

    2007-01-01

    Advancement has recently been made on the techniques for separating andmaintaining colonies of red imported fire ants, Solenopsis invicta Buren. A new brood rescuemethod significantly improved the efficiency in separating colony from mound soil.Furthermore, a new method was developed to separate brood from the colony using fire antrepellants. Finally, a cost-effective method was developed to coat containers with dilutedFluon(R) (AGC Chemicals America, Inc, Moorestown, NJ, USA), an aqueouspolytetrafluoroethylene, to prevent housed ants from escaping a container. Usually theoriginal Fluon(R) solution is directly applied to the wall of the containers. Reduced concentrations of Fluon(R) were found to be equally effective in preventing ant escape. The use ofdiluted Fluon(R) solutions to coat the containers was recommended because of environmentaland cost-saving benefits. Application of these new techniques can significantly reduce labor,cost and environmental contamination. This review paper collates all the new techniques inone reference which readers can use as a manual.

  10. Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors

    International Nuclear Information System (INIS)

    According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ∼0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator

  11. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    Science.gov (United States)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  12. Advanced experimental techniques for measuring oscillator strengths of vacuum ultraviolet lines

    International Nuclear Information System (INIS)

    Advanced experimental techniques for measuring oscillator strengths of atomic and ionic transitions in the vacuum ultraviolet (VUV) are described. A VUV time-resolved laser-induced-fluorescence experiment for radiative lifetime measurements on atoms and ions in a beam is operational. Recent work on VUV transitions of Si I and B I is described. These lifetimes provide the essential absolute normalization for converting relative oscillator strengths to absolute transition probabilities. Emission measurements of branching fractions at VUV and longer wavelengths are proposed. A large echelle spectrograph equipped with a CCD detector array will be used. This experiment will provide the sensitivity, resolving power, and data handling capability required for extensive high quality emission branching fraction measurements. We further propose to use absorption measurements on hollow cathode discharges to determine relative absorption oscillator strengths. A demonstration of a new technique for absorption spectroscopy on glow discharges is reported. The new technique provides the sensitivity, dynamic range, and data handling capability required for extensive high quality absorption measurements. Relative absorption and emission oscillator strengths will be least-square adjusted using the bowtie method and normalized with accurate radiative lifetimes. (orig.)

  13. Application of advanced radiographic imaging techniques for characterizing low level nuclear waste

    International Nuclear Information System (INIS)

    BIR is currently investigating the use of two advanced x-ray imaging techniques for characterizing containers of solidified nuclear waste. These techniques, digital radiography (DR) and computed tomography (CT), are performed by computerized imaging systems that can automatically inspect containers using a set of imaging parameters chosen by the operator. Both inspection techniques can be performed by the same imaging system. The inspection result is a computer image, or series of images, that can be manipulated by the operator to show a wide variety of features within the inspected object. For the inspections performed so far, we have used the ACTIS CT/DR system that BIR designed and built for NASA's Marshall Space Flight Center. The inspections are being performed as part of a continuing Phase I/Phase II SBIR program for the U.S. Department of Energy. This paper discusses inspections performed on three types of waste containers: (1) a simulated waste drum imaged in Phase 1; (2) 55 gallon drums of assorted waste items supplied by the DOE'S EG and G Rocky Flats plant and by Westinghouse Hanford; and (3) several containers of glass used for solidifying radioactive substances, supplied by the DOE'S Westinghouse Savannah River site. The Phase II work also includes investigating dual energy CT imaging and designing a mechanically simplified ACTIS system and mobile trailer specifically for waste inspection. (author)

  14. Power Control Technique for Efficient Call Admission Control in Advanced Wirless Networks

    Directory of Open Access Journals (Sweden)

    Ch. Sreenivasa Rao

    2012-06-01

    Full Text Available In 4G networks, call admission control techniques have been proposed to provide Quality of Service (QoS in a network by restricting the access to network resources. Power control is essential in call admission control in order to provide fair access to all users, improve battery lifetime and system performance. But the existing call admission control algorithms rarely consider the power controlling techniques in the handoff process for different traffic classes. In this paper, we propose to develop a power controlled call admission control scheme for handoff in the advanced wireless networks. The incoming call measures the initial interference on it and then the base station starts transmitting the packets to the new call. The new call is rejected when the interference reaches a threshold value.Whenever an existing call meets the power constraint, the transmit power is decremented based on thetraffic class and incoming call obtains this information by monitoring the interference received on it. Theconvergence of the power control algorithm is checked and the power levels of all incoming calls areadjusted. From our simulation results we prove that this power control technique provides efficienthandoff in the 4G networks by increasing the throughput and reducing the delay of the existing users.

  15. Benefits and Risks of Electronic Medical Record (EMR): An Interpretive Analysis of Healthcare Consumers' Perceptions of an Evolving Health Information Systems Technology

    Science.gov (United States)

    Thompson, Chester D.

    2013-01-01

    The purpose of this study is to explore healthcare consumers' perceptions of their Electronic Medical Records (EMRs). Although there have been numerous studies regarding EMRs, there have been minimal, if any, research that explores healthcare consumers' awareness of this technology and the social implications that result. As consumers' health…

  16. Study and development of advanced control techniques for nuclear reactors and robots

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, C.

    1989-08-01

    This report studies and develops some aspects of the optimal control theory with the objective of evaluating benefits that the nuclear industry could obtain by applying advanced control techniques. First, the basic relationship between optimal control theory and closed-loop control design has been identified. As a result of this work, new algorithms have been developed for feedback implementations. The applicability of these new algorithms to problems such as state estimation, filtering, model update, and model decoupling has been studied. In addition, new alternatives to control design that are not based on optimal control theory have been developed. A broad range of application examples has been presented for several physical systems, including pressurized water nuclear reactors, boiling water nuclear reactors, steam generators, and robotics. 22 refs., 26 figs.

  17. Study and development of advanced control techniques for nuclear reactors and robots

    International Nuclear Information System (INIS)

    This report studies and develops some aspects of the optimal control theory with the objective of evaluating benefits that the nuclear industry could obtain by applying advanced control techniques. First, the basic relationship between optimal control theory and closed-loop control design has been identified. As a result of this work, new algorithms have been developed for feedback implementations. The applicability of these new algorithms to problems such as state estimation, filtering, model update, and model decoupling has been studied. In addition, new alternatives to control design that are not based on optimal control theory have been developed. A broad range of application examples has been presented for several physical systems, including pressurized water nuclear reactors, boiling water nuclear reactors, steam generators, and robotics. 22 refs., 26 figs

  18. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Qin Ling; Leung, Kwok Sui (eds.) [Chinese Univ. of Hong Kong (China). Dept. of Orthopaedics and Traumatology; Genant, H.K. [California Univ., San Francisco, CA (United States); Griffith, J.F. [Chinese Univ. of Hong Kong (China). Dept. of Radiology and Organ Imaging

    2007-07-01

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  19. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    International Nuclear Information System (INIS)

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  20. USE OF DATA MINING TECHNIQUES IN ADVANCE DECISION MAKING PROCESSES IN A LOCAL FIRM

    Directory of Open Access Journals (Sweden)

    Onur Doğan

    2015-12-01

    Full Text Available In today’s competitive world, organizations need to make the right decisions to prolong their existence. Using non-scientific methods and making emotional decisions gave way to the use of scientific methods in the decision making process in this competitive area. Within this scope, many decision support models are still being developed in order to assist the decision makers and owners of organizations. It is easy to collect massive amount of data for organizations, but generally the problem is using this data to achieve economic advances. There is a critical need for specialization and automation to transform the data into the knowledge in big data sets. Data mining techniques are capable of providing description, estimation, prediction, classification, clustering, and association. Recently, many data mining techniques have been developed in order to find hidden patterns and relations in big data sets. It is important to obtain new correlations, patterns, and trends, which are understandable and useful to the decision makers. There have been many researches and applications focusing on different data mining techniques and methodologies.In this study, we aim to obtain understandable and applicable results from a large volume of record set that belong to a firm, which is active in the meat processing industry, by using data mining techniques. In the application part, firstly, data cleaning and data integration, which are the first steps of data mining process, are performed on the data in the database. With the aid of data cleaning and data integration, the data set was obtained, which is suitable for data mining. Then, various association rule algorithms were applied to this data set. This analysis revealed that finding unexplored patterns in the set of data would be beneficial for the decision makers of the firm. Finally, many association rules are obtained, which are useful for decision makers of the local firm. 

  1. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    Science.gov (United States)

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival. PMID:23339016

  2. Advancements in sensing and perception using structured lighting techniques :an LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr. (.; .); Carlson, Jeffrey J.

    2005-09-01

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous

  3. Advanced Personnel Vetting Techniques in Critical Multi-Tennant Hosted Computing Environments

    Directory of Open Access Journals (Sweden)

    Farhan Hyder Sahito

    2013-06-01

    Full Text Available The emergence of cloud computing presents a strategic direction for critical infrastructures and promises to have far-reaching effects on their systems and networks to deliver better outcomes to the nations at a lower cost. However, when considering cloud computing, government entities must address a host of security issues (such as malicious insiders beyond those of service cost and flexibility. The scope and objective of this paper is to analyze, evaluate and investigate the insider threat in cloud security in sensitive infrastructures as well as to propose two proactive socio-technical solutions for securing commercial and governmental cloud infrastructures. Firstly, it proposes actionable framework, techniques and practices in order to ensure that such disruptions through human threats are infrequent, of minimal duration, manageable, and cause the least damage possible. Secondly, it aims for extreme security measures to analyze and evaluate human threats related assessment methods for employee screening in certain high-risk situations using cognitive analysis technology, in particular functional Magnetic Resonance Imaging (fMRI. The significance of this research is also to counter human rights and ethical dilemmas by presenting a set of ethical and professional guidelines. The main objective of this work is to analyze related risks, identify countermeasures and present recommendations to develop a security awareness culture that will allow cloud providers to utilize effectively the benefits of this advanced techniques without sacrificing system security.

  4. Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, D. D.; Lvov, S. N.

    2000-03-31

    This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

  5. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.; Frei, H.; Park, J.Y.

    2009-07-23

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  6. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    International Nuclear Information System (INIS)

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  7. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  8. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    International Nuclear Information System (INIS)

    The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

  9. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    Science.gov (United States)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  10. UTILIZATION OF FORMALIN EMBALMED SPECIMENS UNDER ECO-FRIENDLY CONDITIONS BY ADVANCED PLASTINATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    R. Menaka

    2015-06-01

    Full Text Available Preparation of anatomical models and teaching aids is a challenging task in the medical, veterinary and paramedical sciences as like as life form. The successful preservation of conventional methods by embalmed cadavers/ corpse’s are routinely practiced for educational/research purposes. The existing form of preservation technique is not promising to meet the current challenges in the teaching and learning of human/veterinary anatomy. The embalming fluid causes potential health hazards with continuous exposure of formalin fumes. The study was conducted on dissected cadaverous embalmed specimens by using advanced plastination technique. The 10% formalin fixed and preserved specimens of buffalo head and horse limb were subjected to dehydration, impregnation and hardening with clearing, dehydrating and curing agents. Plastination methodology consists of slowly replacing tissue fluids, lipids with a dehydrating agent and replaced with polymer under force impregnation. In these processes, water and lipids in biological tissues are replaced by curable polymers. The yielded specimens are pleasant to handle, non toxic, pliable, dried and don’t smell or decay. These plastinates are well utilized in routine practical demonstrations of gross anatomical observations in institutional teaching as well as learning. The plastinated specimens are today’s milestone in medical education and become an ideal teaching tool not only in anatomy but also in pathology, obstetrics, radiology and surgery. Hence, any methodology or technique that would decrease the level of exposure to formaldehyde should be explored. Plastinates offer this excellent alternative as it lowers the risk of undue exposure to formaldehyde with higher health and safety regulations in our country.

  11. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    Science.gov (United States)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  12. The Automated Alert System for the Hospital Infection Control and the Safety of Medical Staff Based on EMR Data.

    Science.gov (United States)

    Jo, Eunmi

    2016-01-01

    This report is about planning, developing, and implementing the automated alert system for the Hospital infection control and the safety of medical staffs about information on patients exposed to infection based on EMR Data in a tertiary hospital in Korea. PMID:27332375

  13. Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage.

    Science.gov (United States)

    Guo, Lifeng; Yau, Wei-Chuen

    2015-02-01

    Searchable encryption is an important cryptographic primitive that enables privacy-preserving keyword search on encrypted electronic medical records (EMRs) in cloud storage. Efficiency of such searchable encryption in a medical cloud storage system is very crucial as it involves client platforms such as smartphones or tablets that only have constrained computing power and resources. In this paper, we propose an efficient secure-channel free public key encryption with keyword search (SCF-PEKS) scheme that is proven secure in the standard model. We show that our SCF-PEKS scheme is not only secure against chosen keyword and ciphertext attacks (IND-SCF-CKCA), but also secure against keyword guessing attacks (IND-KGA). Furthermore, our proposed scheme is more efficient than other recent SCF-PEKS schemes in the literature. PMID:25634700

  14. Implementing and Integrating a Clinically-Driven Electronic Medical Record (EMR for Radiation Oncology in a Large Medical Enterprise

    Directory of Open Access Journals (Sweden)

    John Paxton Kirkpatrick

    2013-04-01

    Full Text Available Purpose/Objective: While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality or productivity.Methodology: In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes.Results: Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes and treatment summaries; the latter includes treatment plans, daily therapy records and quality assurance reports. To manage the former, we utilized the enterprise-wide system , which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems. The ability to access both systems simultaneously from a single workstation (WS was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality or confidentiality

  15. Advanced Surveillance, Diagnostic and Prognostic Techniques in Monitoring Structures, Systems and Components in Nuclear Power Plants

    International Nuclear Information System (INIS)

    during LTO. It should be pointed out here that LTO has different meanings in different countries. For example, in the United States of America, LTO refers to operation beyond the original 40 year licence period. That is, a nuclear plant in the USA can add 20 years to its licensed length of operation, extending the plant life to 60, 80, or more years in 20 year increments. In other countries such as Japan, LTO refers to operations beyond 30 years; while advanced gas cooled reactors (AGRs) in the United Kingdom may extend their licensed life by five years at a time beyond the original 30 years of licensed length. One may divide the SSCs of a nuclear plant into two general classes: those that are active components, such as pumps, motors, turbogenerators, valves, compressors, sensors and actuators, and those that are passive components, such as the reactor vessel, piping, reactor internals, containment structure, cables and the like. For active components (e.g. rotating machinery), there are plenty of SDP techniques, with the exception of prognostics, that are proven and routinely used. The advances in this area have occurred in the ability to see the degradation more quickly and more clearly through the use of high resolution data and improved data processing and visualization techniques. The same is not true for passive components. For passive components, periodic in-service inspections (ISIs) are implemented in accordance with ageing management plans, using non-destructive examination (NDE) techniques, such as eddy current testing and ultrasonic wave measurements. These measurements are defined in numerous codes and standards that have been available and used for years, not only in the nuclear industry but also in aerospace and other fields. While effective, the NDE techniques do not normally provide in situ, continuous on-line, or remote testing capabilities

  16. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    International Nuclear Information System (INIS)

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  17. The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Jianning Wu

    2015-01-01

    Full Text Available The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.

  18. Advance Technique for Online Payment Security in E-Commerce : “Double Verification”

    Directory of Open Access Journals (Sweden)

    Shilpa

    2013-06-01

    Full Text Available In E-Commerce various parties involve in E-Payment for buying and selling purpose of goods/services. An Internet E-Commerce Payment Gateway is a critical component for online transaction and that should provide trust to customer that transaction is secure and reliable in all security aspect. There are various vulnerabilities in the present Online Payment system. There is a Man-in-the-Browserattack which is an internet threat/ Trojan horse that can modify web pages and infects web browser and it can also alter transaction content or can add some more data in content. The Trojan can bedownloaded or delivered invisibly through Web exploits. This attack is invisible from customer as well as host web application. A MitB attack can take place whether we use SSL, PKI, two or three-factorSecurity solution. I proposed a advanced technique called “Double Verification” which can detect these MitB attacks while transaction and ensure us secure online transaction over the internet.

  19. Classification of human colonic tissues using FTIR spectra and advanced statistical techniques

    Science.gov (United States)

    Zwielly, A.; Argov, S.; Salman, A.; Bogomolny, E.; Mordechai, S.

    2010-04-01

    One of the major public health hazards is colon cancer. There is a great necessity to develop new methods for early detection of cancer. If colon cancer is detected and treated early, cure rate of more than 90% can be achieved. In this study we used FTIR microscopy (MSP), which has shown a good potential in the last 20 years in the fields of medical diagnostic and early detection of abnormal tissues. Large database of FTIR microscopic spectra was acquired from 230 human colonic biopsies. Five different subgroups were included in our database, normal and cancer tissues as well as three stages of benign colonic polyps, namely, mild, moderate and severe polyps which are precursors of carcinoma. In this study we applied advanced mathematical and statistical techniques including principal component analysis (PCA) and linear discriminant analysis (LDA), on human colonic FTIR spectra in order to differentiate among the mentioned subgroups' tissues. Good classification accuracy between normal, polyps and cancer groups was achieved with approximately 85% success rate. Our results showed that there is a great potential of developing FTIR-micro spectroscopy as a simple, reagent-free viable tool for early detection of colon cancer in particular the early stages of premalignancy among the benign colonic polyps.

  20. Applying advanced imaging techniques to a murine model of orthotopic osteosarcoma

    Directory of Open Access Journals (Sweden)

    Matthew Lawrence Broadhead

    2015-08-01

    Full Text Available IntroductionReliable animal models are required to evaluate novel treatments for osteosarcoma. In this study, the aim was to implement advanced imaging techniques in a murine model of orthotopic osteosarcoma to improve disease modeling and the assessment of primary and metastatic disease.Materials and methodsIntra-tibial injection of luciferase-tagged OPGR80 murine osteosarcoma cells was performed in Balb/c nude mice. Treatment agent (pigment epithelium-derived factor; PEDF was delivered to the peritoneal cavity. Primary tumors and metastases were evaluated by in vivo bioluminescent assays, micro-computed tomography, [18F]-Fluoride-PET and [18F]-FDG-PET. Results[18F]-Fluoride-PET was more sensitive than [18F]-FDG-PET for detecting early disease. Both [18F]-Fluoride-PET and [18F]-FDG-PET showed progressive disease in the model, with 4-fold and 2-fold increases in SUV (p<0.05 by the study endpoint, respectively. In vivo bioluminescent assay showed that systemically delivered PEDF inhibited growth of primary osteosarcoma.DiscussionApplication of [18F]-Fluoride-PET and [18F]-FDG-PET to an established murine model of orthotopic osteosarcoma has improved the assessment of disease. The use of targeted imaging should prove beneficial for the evaluation of new approaches to osteosarcoma therapy.

  1. OECD/CSNI specialist meeting on advanced instrumentation and measurements techniques: summary and conclusions

    International Nuclear Information System (INIS)

    This specialist meeting on Advanced Instrumentation and Measurements Techniques was held in Santa Barbara (USA) in 1997 and attracted some 70 participants in ten technical sessions and a session of the round table discussions, with a total of 41 papers. It was intended to bring together the international experts in multi-phase flow instrumentation, experiment and modeling to review the state-of-the-art of the two-phase flow instrumentation methods and to discuss the relation between modeling needs and instrumentation capabilities. The following topics were included: Modeling needs and future direction for improved constitutive relations, interfacial area transport equation, and multi-dimensional two-fluid model formulation; local instrumentation developments for void fraction, interfacial area, phase velocities, turbulence, entrainment, particle size, thermal non-equilibrium, shear stress, nucleation, condensation and boiling; global instrumentation developments for void fraction, mass flow, two-phase level, non-condensable concentration, flow regimes, low flow and break flow; relation between modeling needs and instrumentation capabilities, future directions for experiments focused on modeling needs and for instrumentation developments

  2. Dynamic Beamforming for Three-Dimensional MIMO Technique in LTE-Advanced Networks

    Directory of Open Access Journals (Sweden)

    Yan Li

    2013-01-01

    Full Text Available MIMO system with large number of antennas, referred to as large MIMO or massive MIMO, has drawn increased attention as they enable significant throughput and coverage improvement in LTE-Advanced networks. However, deploying huge number of antennas in both transmitters and receivers was a great challenge in the past few years. Three-dimensional MIMO (3D MIMO is introduced as a promising technique in massive MIMO networks to enhance the cellular performance by deploying antenna elements in both horizontal and vertical dimensions. Radio propagation of user equipments (UE is considered only in horizontal domain by applying 2D beamforming. In this paper, a dynamic beamforming algorithm is proposed where vertical domain of antenna is fully considered and beamforming vector can be obtained according to UEs’ horizontal and vertical directions. Compared with the conventional 2D beamforming algorithm, throughput of cell edge UEs and cell center UEs can be improved by the proposed algorithm. System level simulation is performed to evaluate the proposed algorithm. In addition, the impacts of downtilt and intersite distance (ISD on spectral efficiency and cell coverage are explored.

  3. The development of optical microscopy techniques for the advancement of single-particle studies

    Energy Technology Data Exchange (ETDEWEB)

    Marchuk, Kyle [Iowa State Univ., Ames, IA (United States)

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to

  4. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats

    OpenAIRE

    Maneesh Mailankot; Anil P Kunnath; Jayalekshmi, H; Bhargav Koduru; Rohith Valsalan

    2009-01-01

    INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10–12 weeks old) were exposed to RF-EMR from an active GSM (...

  5. Advanced Sensing and Control Techniques to Facilitate Semi-Autonomous Decommissioning

    International Nuclear Information System (INIS)

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology

  6. Sophistication Techniques of Fourth Generations in Neoteric Mobile LTE and LTE-Advanced

    Directory of Open Access Journals (Sweden)

    A. Z. Yonis

    2015-05-01

    Full Text Available Long Term Evolution (LTE-Advanced is a preliminary mobile communication standard formally submitted as a candidate for 4G systems to the ITU-T. LTE-A is being standardized by the 3rd Generation Partnership Project (3GPP as a major enhancement of the 3GPP Long Term Evolution (LTE-Release 8 standard, which proved to be sufficient to satisfy market‟s demand. The 3GPP group has been working on different aspects to improve LTE performance, where the purpose of the framework provided by LTE-Advanced, includes higher order MIMO, carrier aggregation (carriers with multiple components, peak data rate, and mobility. This paper presents a study on LTE evolution toward LTE-Advanced in terms of LTE enabling technologies (Orthogonal Frequency Division Multiplexing (OFDM and Multiple-Input Multiple-Output (MIMO, and also focuses on LTE- Advanced technologies MIMO enhancements for LTE-Advanced, Coordinated Multi Point transmission (CoMP.

  7. Transaction-neutral implanted data collection interface as EMR driver: a model for emerging distributed medical technologies.

    Science.gov (United States)

    Lorence, Daniel; Sivaramakrishnan, Anusha; Richards, Michael

    2010-08-01

    Electronic Medical Record (EMR) and Electronic Health Record (EHR) adoption continues to lag across the US. Cost, inconsistent formats, and concerns about control of patient information are among the most common reasons for non-adoption in physician practice settings. The emergence of wearable and implanted mobile technologies, employed in distributed environments, promises a fundamentally different information infrastructure, which could serve to minimize existing adoption resistance. Proposed here is one technology model for overcoming adoption inconsistency and high organization-specific implementation costs, using seamless, patient controlled data collection. While the conceptual applications employed in this technology set are provided by way of illustration, they may also serve as a transformative model for emerging EMR/EHR requirements. PMID:20703915

  8. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    threshold as water-soluble free AA, with an average concentration of 22 ± 9 ng m-3 (N=13). Following microwave-assisted gas phase hydrolysis, the total AA concentration in the forest environment increased significantly (70 ± 35 ng m-3) and additional compounds (methionine, isoleucine) were detected above the reporting threshold. The ability to quantify AA in aerosol samples without derivatization reduces time consuming preparation procedures while providing the advancement of selective mass determination that eliminates potential interferences associated with traditional fluorescence detection. This step forward in precise mass determination with the use of internal standardization, improves the confidence of compound identification. With the increasing focus on WSOC (including ON) characterization in the atmospheric science community, native detection by LC-MS (Q-TOF) will play a central role in determining the most direct approach to quantify an increasing fraction of the co-extracted polar organic compounds. Method application for further characterization of atmospheric ON will be discussed. Reference: Samy, S., Robinson, J., and M.D. Hays. "An Advanced LC-MS (Q-TOF) Technique for the Detection of Amino Acids in Atmospheric Aerosols", Analytical Bioanalytical Chemistry, 2011, DOI: 10.1007/s00216-011-5238-2

  9. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  10. Radio frequency electromagnetic radiation (RF-EMR from GSM (0.9/1.8GHz mobile phones induces oxidative stress and reduces sperm motility in rats

    Directory of Open Access Journals (Sweden)

    Maneesh Mailankot

    2009-06-01

    Full Text Available INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10-12 weeks old were exposed to RF-EMR from an active GSM (0.9/1.8 GHz mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.

  11. The role of the electronic medical record (EMR) in care delivery development in developing countries: a systematic review

    OpenAIRE

    Faustine Williams; Suzanne Boren

    2008-01-01

    Objective Most countries in Europe and the USA are increasingly using an electronic medical record (EMR) to help improve healthcare quality. Unfortunately, most developing countries face many challenges ranging from epidemics and civil wars to disasters: they also lack a robust healthcare infrastructure in the form of information and communications technology (ICT) to ensure continuity of patient health which many research studies consider a lifesaving resource. The aim of this systematic rev...

  12. Ferromagnetic ordering in LaMn1-x O3 manganites: EMR probing

    International Nuclear Information System (INIS)

    Electron magnetic resonance (EMR) was employed to study magnetic properties of self-doped LaMn1-x O3 (x=0, 0.02 and 0.06) manganites in interval 120-600 K. Resonance spectra evidence that x=0 and 0.02 samples show antiferromagnetic (AFM) ground state at low temperatures, while x=0.06 one demonstrates ferromagnetic (FM)-like ground state. Spectra of the parent compound reveal some FM entities within the AFM matrix. Self-doping leads to a sharp increase of low-temperature double-integrated intensity of resonance signals pointing out progressive growth of ferromagnetic component. Paramagnetic (PM) state g-factor gradually changes from 1.91±0.01 to 1.98 with increasing x from 0 to 0.06. The results obtained show that vacancies at Mn-sites induce FM state through creation of Mn4+ ions in Mn3+ host and reinforcement of double-exchange (DE) interaction

  13. Surgery for Locally Advanced T4 Rectal Cancer: Strategies and Techniques.

    Science.gov (United States)

    Helewa, Ramzi M; Park, Jason

    2016-06-01

    Locally advanced T4 rectal cancer represents a complex clinical condition that requires a well thought-out treatment plan and expertise from multiple specialists. Paramount in the management of patients with locally advanced rectal cancer are accurate preoperative staging, appropriate application of neoadjuvant and adjuvant treatments, and, above all, the provision of high-quality, complete surgical resection in potentially curable cases. Despite the advanced nature of this disease, extended and multivisceral resections with clear margins have been shown to result in good oncological outcomes and offer patients a real chance of cure. In this article, we describe the assessment, classification, and multimodality treatment of primary locally advanced T4 rectal cancer, with a focus on surgical planning, approaches, and outcomes. PMID:27247535

  14. Refinement of a thrombectomy technique to treat acute ischemic stroke: Technical note on microcatheter advance during retrieving self expandable stent

    International Nuclear Information System (INIS)

    Temporary stenting and thrombectomy by use of the Solitaire stent (ev3, Irvine, CA, USA) has shown prompt and successful recanalization of the acutely occluded major cerebral artery. However, even if rarely reported, inadvertent stent detachment may occur as an innate drawback and full deployment of the stent was considered to increase the risk. In our patients, the Solitaire stent did not fully unfold to prevent inadvertent detachment. Before retrieval of the stent, the tip of the microcatheter was advanced forward carefully under fluoroscopic observation until it met the presumed thrombus segment and a subtle sense of resistance was felt in the fingers guiding the stent. After retrieval, complete recanalization was achieved, and the thrombus was trapped between the tip of the microcatheter and the stent strut. We present 2 cases of successful thrombi captures by advancing a microcatheter during Solitaire stent retrieval, and we suggest that advancing the microcatheter can be a useful refinement to the thrombectomy technique for acute ischemic stroke

  15. ADVANCES OF BASIC MOLECULAR BIOLOGY TECHNIQUES: POTENTIAL TO APPLY IN PLANT VIROID DETECTION IN SRI LANKA

    Directory of Open Access Journals (Sweden)

    Yapa M.A.M. Wijerathna

    2012-12-01

    Full Text Available Viroids are the smallest pathogens of plants. They are the cause of serious diseases on economic plants worldwide. Prevention and detection of the pathogens are the best method to reduce the economic loss from viroid infection. During last decade, genetics and molecular biology techniques have gained an increasing presence in plant pathology research. The purpose of this review is to highlight the most upgrade molecular biology techniques that have been used and studied recently. Most relevant published reports and hand skilled techniques have presented here with emphasis on suitable Viroid detection technique should be used for Sri Lanka.

  16. Necip Fazıl Kısakürek’in Yunus Emre Adlı Tiyatro Eseri Üzerine Bir İnceleme
    A Study About Yunus Emre, A Theatre Work Written By Necip Fazıl Kısakürek

    OpenAIRE

    Turan GÜLER

    2012-01-01

    Yunus Emre who lived between the XII- XIV centuries is one of the prominent figures of Islamic thought history. The effect of him has endured in different fields until today, and now he is handled in a play (theatre work ya da presentation). Necip Fazıl Kısakürek who attaches great importance to theatre in all literary genre in his play, Yunus Emre, appointed Yunus Emre as the protagonist of the play. In this work, Necip Fazıl Kısakürek's play “Yunus Emre” is going to be analyzed in respect t...

  17. A standard data set for performance analysis of advanced IR image processing techniques

    NARCIS (Netherlands)

    Weiss, A.R.; Adomeit, U.; Chevalier, P.; Landeau, S.; Bijl, P.; Champagnat, F.; Dijk, J.; Göhler, B.; Landini, S.; Reynolds, J.P.; Smith, L.N.

    2012-01-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance model

  18. FINAL REPORT. ADVANCED SENSING AND CONTROL TECHNIQUES TO FACILITATE SEMI-AUTONOMOUS DECOMMISSIONING

    Science.gov (United States)

    This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulatormobile work cell is underway. This cell is supported and enha...

  19. ADVANCED SENSING AND CONTROL TECHNIQUES TO FACILITATE SEMI-AUTONOMOUS DECOMMISSIONING

    Science.gov (United States)

    This research is intended to advance the technology of semiautonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is proposed. This cell is supported and enhan...

  20. Advance Appropriations: A Needless and Confusing Education Budget Technique. Federal Education Budget Project

    Science.gov (United States)

    Delisle, Jason

    2007-01-01

    This report argues that advance appropriations serve no functional purpose for schools, but they create a loss of transparency, comparability, and simplicity in federal education budgeting. It allocates spending before future budgets have been established. The approach was originally used to skirt spending limits and budget procedures in place…

  1. Recent advances in microscopic techniques for visualizing leukocytes in vivo [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Rohit Jain

    2016-05-01

    Full Text Available Leukocytes are inherently motile and interactive cells. Recent advances in intravital microscopy approaches have enabled a new vista of their behavior within intact tissues in real time. This brief review summarizes the developments enabling the tracking of immune responses in vivo.

  2. Proceedings of the national conference on advanced communication and computing techniques

    International Nuclear Information System (INIS)

    The objective of the conference was to take stock of technological innovation aimed at the improvement and development of humanity. The main areas discussed in the conference were: advanced computer architecture, next generation networking, optical wireless communication, wireless networking, embedded systems etc. Papers relevant to INIS are indexed separately

  3. Readiness of Shiraz teaching hospitals to implement Electronic Medical Record (EMR

    Directory of Open Access Journals (Sweden)

    Ali Garavand

    2016-07-01

    Full Text Available Introduction: Due to the importance of Electronic Medical Record (EMR in the quality of health care services, checking the readiness of hospitals to implement it is a vital step to define success or failure of the Electronic Medical Record in the first place. The aim of this study was to evaluate the readiness of Shiraz teaching hospitals to implement Electronic Medical Record. Method: This study was a cross-sectional descriptive study done in 2015. The study population included Health Information Management (HIM staff of Shiraz teaching hospitals. Five hospitals from a total of 14 hospitals were selected as Single-stage cluster sampling with a population of 79 health information management staff. Data collection was performed by using a validated questionnaire. The questionnaire consisted of three main dimensions including technical, organizational and legal requirements. For data analysis, SPSS software version 16 and one way Analysis of Variance (ANOVA for comparisons between five hospitals were used. Results:The results showed that Shiraz teaching hospitals have high readiness (3.66 out of 5 to implement Electronic Medical Record. Shiraz teaching hospitals are better prepared in terms of legal requirements. Also, a significant difference was not observed among the hospitals in any of the technical, organizational and legal aspects (P > 0.05. Conclusion: Due to the importance of the technical, organizational and legal aspects in the implementation of Electronic Medical Record, it is recommended that the authorities consider these aspects in implementation of Electronic Medical Record. Also, according to the high readiness of Shiraz teaching hospitals to implement Electronic Medical Record, it is recommended that authorities should take necessary measures, including financial support in order to run it.

  4. New views of the human NK cell immunological synapse: recent advances enabled by super- and high- resolution imaging techniques

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2013-01-01

    Full Text Available Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm. In addition, new techniques for single molecule imaging are being added to the cell biologist’s arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse’s relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super resolution microscopy and high resolution total internal reflection microscopy and Förster resonance energy transfer.

  5. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    Science.gov (United States)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  6. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to use selective laser melting (SLM, an additive manufacturing technique) to manufacture a hot fire-capable, water-cooled spool...

  7. Low-Cost Manufacturing Technique for Advanced Regenerative Cooling for In-Space Cryogenic Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the proposed effort is to demonstrate feasibility of using selective laser melting (SLM, an emerging manufacturing technique) to manufacture a subscale...

  8. NMR an ever-advancing spectroscopic technique; La RMN, une spectroscopie en constant progres

    Energy Technology Data Exchange (ETDEWEB)

    Desvaux, H.; Berthault, P. [CEA Saclay, Direction des Sciences de la Matiere, 91 - Gif-sur-Yvette (France)

    2008-07-01

    The CEA, spearheaded by the Saclay centre, has fostered the development of a strong nuclear magnetic resonance research culture aimed at constantly embracing new fields of application for this matter-focused analytical technique. (authors)

  9. Advances in insect population control by the sterile-male technique

    International Nuclear Information System (INIS)

    The sterile male technique has been successfully used in the control or eradication of at least eight species of insects in experimental or field trials. In view of the importance of the method the IAEA convened a Panel of experts in July 1964 to review the progress made in research on the application of the technique and to suggest future actions. The findings of the Panel are published in this Technical Report. 52 refs, 10 figs, 10 tabs

  10. ADVANCES OF BASIC MOLECULAR BIOLOGY TECHNIQUES: POTENTIAL TO APPLY IN PLANT VIROID DETECTION IN SRI LANKA

    OpenAIRE

    Yapa M.A.M. Wijerathna

    2012-01-01

    Viroids are the smallest pathogens of plants. They are the cause of serious diseases on economic plants worldwide. Prevention and detection of the pathogens are the best method to reduce the economic loss from viroid infection. During last decade, genetics and molecular biology techniques have gained an increasing presence in plant pathology research. The purpose of this review is to highlight the most upgrade molecular biology techniques that have been used and studied recently. Most relevan...

  11. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  12. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H2O2 removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities

  13. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  14. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  15. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  16. Advances in spinal cord stimulation - enhancement of efficacy, improved surgical technique and a new indication

    OpenAIRE

    Lind, Göran

    2012-01-01

    Introduction and aim: Spinal cord stimulation (SCS) has been used for treatment of otherwise therapy-resistant chronic neuropathic pain for about four decades. However, 30-40 % of the patients do not benefit from SCS, despite careful case selection and technical advances. In search of ways to improve the outcome mechanisms underlying the pain relieving effect of SCS have been extensively explored. Experimental findings suggest a possibility to enhance the effect of SCS by conco...

  17. Automated welding of appendages on empty clad tubes: an advanced technique

    International Nuclear Information System (INIS)

    Several developments have been carried out at Atomic Fuels Division related to fabrication of PHWR fuel assemblies. This paper describes the salient features of an automated welding equipment and its design. Special attention was given to ensure integration of equipment in the existing assembly lines with ease. Detailed drawings are made using Autocad-12 and isometric view of the assembly was prepared. The equipment design is a significant step in the advancement of PHWR fuel assembly fabrication

  18. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    OpenAIRE

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and opt...

  19. Debridement arthroplasty for advanced primary osteoarthritis of the elbow. Results of a new technique used for 29 elbows.

    Science.gov (United States)

    Tsuge, K; Mizuseki, T

    1994-07-01

    We report the technique and results of a new method of debridement arthroplasty for advanced primary osteoarthritis of the elbow. Triceps and the periosteum of the olecranon are reflected towards the ulnar side and the joint is opened by dividing the radial collateral ligament. Osteophytes are removed, the olecranon and coronoid fossae are deepened and the fibrosed anterior joint capsule is excised. The degenerative changes are always more advanced on the radial side, with erosion of the capitellum, and it is usually necessary to remodel the head of the radius. In 29 elbows reviewed at a mean of 64 months, the average gain of range of motion was 34 degrees, with good pain relief and improved grip in most patients. Two elbows required reoperation but there were no other serious complications. PMID:8027156

  20. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    Energy Technology Data Exchange (ETDEWEB)

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  1. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes 1) Development of a technique for radiation tissue and cell culture, 2) Database construction for radiation response in plants and radiation effects, 3) Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: mass culture of the adventitious roots of mountain ginseng (Panax ginseng C. A. Meyer) roots using rare earth elements in bioreactor: characterization of a transcription factor EoP gene from centipedegrass and the transcription regulation of LexA from Synechocystis sp PCC6803 and E. coli: identification of gamma-ray induced hydrogenase synthesis in hox gene transformed E. coli: transformation and the selection of the EoP transgene from Arabidopsis, rice and lettuce: Identification of the maysin and maysin derivatives in centipedegrass: characterization of gamma-ray induced color change in Taxus cuspidata: verification of the expression of antioxidant proteins (POD, APX and CAT) to gamma-ray in Arabidopsis: comparison of the response of the expression level to gamma-ray or H2O2 in Arabidopsis; verification of the responses and effects to gamma-ray from plants (analysis of NPQ and ROS levels): the development method for rapidly enhancing maysin content of centipede grass; establishment of mass culture system for red beet

  2. Comparison of advanced optical imaging techniques with current otolaryngology diagnostics for improved middle ear assessment (Conference Presentation)

    Science.gov (United States)

    Nolan, Ryan M.; Shelton, Ryan L.; Monroy, Guillermo L.; Spillman, Darold R.; Novak, Michael A.; Boppart, Stephen A.

    2016-02-01

    Otolaryngologists utilize a variety of diagnostic techniques to assess middle ear health. Tympanometry, audiometry, and otoacoustic emissions examine the mobility of the tympanic membrane (eardrum) and ossicles using ear canal pressure and auditory tone delivery and detection. Laser Doppler vibrometry provides non-contact vibrational measurement, and acoustic reflectometry is used to assess middle ear effusion using sonar. These technologies and techniques have advanced the field beyond the use of the standard otoscope, a simple tissue magnifier, yet the need for direct visualization of middle ear disease for superior detection, assessment, and management remains. In this study, we evaluated the use of portable optical coherence tomography (OCT) and pneumatic low-coherence interferometry (LCI) systems with handheld probe delivery to standard tympanometry, audiometry, otoacoustic emissions, laser Doppler vibrometry, and acoustic reflectometry. Comparison of these advanced optical imaging techniques and current diagnostics was conducted with a case study subject with a history of unilateral eardrum trauma. OCT and pneumatic LCI provide novel dynamic spatiotemporal structural data of the middle ear, such as the thickness of the eardrum and quantitative detection of underlying disease pathology, which could allow for more accurate diagnosis and more appropriate management than currently possible.

  3. Advances in the use of the RNA interference technique in Hemiptera

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Xiao-Ping Wang; Man-Qun Wang; Wei-Hua Ma; Hong-Xia Hua

    2013-01-01

    RNA interference(RNAi)suppresses the expression of target genes by posttranscriptional regulation.Because double-stranded RNA(dsRNA)mediated gene silencing is a conserved mechanism in many eukaryotes,RNAi has become a valuable tool for unveiling gene function in many model insects.Recent research has also shown that RNAi can also be effective in the downregulation of target genes in Hemiptera.In this review,we discuss the use of the RNAi technique in gene functional analysis in hemipterans,highlighting the methods of dsRNA uptake by these insects and discuss the knock-down efficiency of these techniques.Although the RNAi technique has disadvantages,our primary goal here is to determine whether it can be exploited further in the discovery of new gene functions,and as a pest control strategy,in some important Hemipteran pests.

  4. Visualization of delamination in composite materials utilizing advanced X-ray imaging techniques

    International Nuclear Information System (INIS)

    This work is focused on the development of instrumental radiographic methods for detection of delaminations in layered carbon fibre reinforced plastic composites used in the aerospace industry. The main limitation of current visualisation techniques is a very limited possibility to image so-called closed delaminations in which delaminated layers are in contact practically with no physical gap. In this contribution we report the development of innovative methods for closed delamination detection using an X-ray phase contrast technique for which the distance between delamination surfaces is not relevant. The approach is based on the energetic sensitivity of phase-enhanced radiography. Based on the applied methodology, we can distinguish both closed and open delamination. Further we have demonstrated the possibility to visualise open delaminations characterised by a physical gap between delaminated layers. This delamination type was successfully identified and visualized utilizing a high resolution and computed tomography table-top technique based on proper beam-hardening effect correction

  5. Proceedings of the national seminar on advanced construction techniques and geotechnical engineering

    International Nuclear Information System (INIS)

    The objective of this seminar is to emphasize the need for developing modern construction materials in the era of technology. It also provides a forum for National Research Scholars, Construction Specialists and Professionals, Planners, Faculty, PG and UG Students to discuss and evolve solutions for various difficulties faced during construction. Theme of seminar includes Geotechnical site Investigation, Ground improvement Techniques, Soil Dynamics, Geotechnical Earthquake Engineering, Geo- Environmental Engineering, Self Compacting Concrete, Geopolymer Concrete and Concrete Technology, Cost Effective Construction Techniques, Limit state performance state approach Elastic and Elasto-plastic behavior and Reduction of Corrosion in concrete using Chemical admixtures. Paper relevant to INIS are indexed separately

  6. U P1, an example for advanced techniques applied to high level activity dismantling

    International Nuclear Information System (INIS)

    The U P1 plant on the CEA Marcoule site was dedicated to the processing of spend fuels from the G1, G2 and G3 plutonium-producing reactors. This plant represents 20.000 m2 of workshops housing about 1000 hot cells. In 1998, a huge program for the dismantling and cleaning-up of the UP1 plant was launched. CEA has developed new techniques to face the complexity of the dismantling operations. These techniques include immersive virtual reality, laser cutting, a specific manipulator arm called MAESTRO and remote handling. (A.C.)

  7. Optical diagnostics of gas-dynamic flows using advanced laser measurement techniques

    Science.gov (United States)

    Gross, K. P.

    1985-01-01

    Using laser-induced fluorescence to probe nitrogen flows seeded with small amounts of nitric oxide, simultaneous measurements of all three thermodynamic scalar quantities temperature, density, and pressure, were demonstrated in a supersonic turbulent boundary layer. Instrumental uncertainty is 1% for temperature and 2% for density and pressure, making the techniques suitable for measurements of turbulent fluctuations. This technology is currently being transferred to an experimental program designed to use these optical techniques in conjunction with traditional methods to make measurements in turbulent flowfields that were not possible before. A detailed descritpion of the research progress and pertinent results are presented.

  8. Advances on the clinical applications of the image fusion techniques in coronary heart disease

    International Nuclear Information System (INIS)

    The diagnosis of coronary heart disease increasingly depends on referring and combining the information from a variety of imaging techniques. The fusion imaging of the anatomy and function provides a convenient 'one stop' examination which improves the existing imaging examination process. The development of the image fusion techniques, such as SPECT/coronary angiography, SPECT/CT, especially PET/CT, has shown a larger value in the diagnosis, risk stratification, clinical treatment guidance and efficacy prognosis of coronary heart disease than a single imaging examination, while the more complete data of the image and the quantitative analysis provide more useful information for the clinic. (authors)

  9. Advances in laparoscopic urologic surgery techniques [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Haidar M. Abdul-Muhsin

    2016-04-01

    Full Text Available The last two decades witnessed the inception and exponential implementation of key technological advancements in laparoscopic urology. While some of these technologies thrived and became part of daily practice, others are still hindered by major challenges. This review was conducted through a comprehensive literature search in order to highlight some of the most promising technologies in laparoscopic visualization, augmented reality, and insufflation. Additionally, this review will provide an update regarding the current status of single-site and natural orifice surgery in urology.

  10. Principles and techniques in the design of ADMS+. [advanced data-base management system

    Science.gov (United States)

    Roussopoulos, Nick; Kang, Hyunchul

    1986-01-01

    'ADMS+/-' is an advanced data base management system whose architecture integrates the ADSM+ mainframe data base system with a large number of work station data base systems, designated ADMS-; no communications exist between these work stations. The use of this system radically decreases the response time of locally processed queries, since the work station runs in a single-user mode, and no dynamic security checking is required for the downloaded portion of the data base. The deferred update strategy used reduces overhead due to update synchronization in message traffic.

  11. Gas-phase advanced oxidation as an integrated air pollution control technique

    OpenAIRE

    Getachew A. Adnew; Carl Meusinger; Nicolai Bork; Michael Gallus; Mildrid Kyte; Thomas Rosenørn; Johnson, Matthew S.; Vitalijs Rodins

    2016-01-01

    Gas-phase advanced oxidation (GPAO) is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO s...

  12. Advanced Cu chemical displacement technique for SiO2-based electrochemical metallization ReRAM application

    OpenAIRE

    Chin, Fun-Tat; Lin, Yu-Hsien; You, Hsin-Chiang; Yang, Wen-Luh; Lin, Li-Min; Hsiao, Yu-Ping; Ko, Chum-Min; Chao, Tien-Sheng

    2014-01-01

    This study investigates an advanced copper (Cu) chemical displacement technique (CDT) with varying the chemical displacement time for fabricating Cu/SiO2-stacked resistive random-access memory (ReRAM). Compared with other Cu deposition methods, this CDT easily controls the interface of the Cu-insulator, the switching layer thickness, and the immunity of the Cu etching process, assisting the 1-transistor-1-ReRAM (1T-1R) structure and system-on-chip integration. The modulated shape of the Cu-Si...

  13. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    Science.gov (United States)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  14. Transplant related ocular surface disorders: Advanced techniques for ocular surface rehabilitation after ocular complications secondary to hematopoietic stem cell transplantation.

    Science.gov (United States)

    Stahl, Erin D; Mahomed, Faheem; Hans, Amneet K; Dalal, Jignesh D

    2016-05-01

    HSCT has been linked to the development of an assortment of ocular surface complications with the potential to lead to permanent visual impairment if left untreated or if not treated early in the course of disease. Strategies for therapy include maintenance of lubrication and tear preservation, prevention of evaporation, decreasing inflammation, and providing epithelial support. The ultimate aim of treatment is to prevent permanent ocular sequelae through prompt ophthalmology consultation and the use of advanced techniques for ocular surface rehabilitation. We describe several rehabilitation options of ocular surface complications occurring secondarily during the post-HSCT course. PMID:26869458

  15. Advanced signal processing techniques for acoustic detection of sodium/water reaction

    International Nuclear Information System (INIS)

    In this paper results of development of a neural network technique for processing of acoustic background noise and injection noise of various media (argon, water steam, hydrogen) at test rigs and industrial steam generator are presented. (author). 3 refs, 9 figs, 3 tabs

  16. Using Essential Oils to Teach Advanced-Level Organic Chemistry Separation Techniques and Spectroscopy

    Science.gov (United States)

    Bott, Tina M.; Wan, Hayley

    2013-01-01

    Students sometimes have difficulty grasping the importance of when and how basic distillation techniques, column chromatography, TLC, and basic spectroscopy (IR and NMR) can be used to identify unknown compounds within a mixture. This two-part experiment uses mixtures of pleasant-smelling, readily available terpenoid compounds as unknowns to…

  17. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells; FINAL

    International Nuclear Information System (INIS)

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented

  18. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    Energy Technology Data Exchange (ETDEWEB)

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  19. An advanced test technique to quantify thermomechanical fatigue damage accumulation in composite materials

    Science.gov (United States)

    Castelli, Michael G.

    1993-01-01

    A mechanical test technique was developed to assist in quantifying the accumulation of damage in composite materials during thermomechanical fatigue (TMF) cycling. This was accomplished by incorporating definitive elastic mechanical property measurements into an ongoing load-controlled TMF test without disturbing the test specimen or significantly altering the test conditions. The technique allows two fundamental composite properties consisting of the isothermal elastic static moduli and the macroscopic coefficient of thermal expansion (CTE) to be measured and collected as functions of the TMF cycles. The specific implementation was incorporated into the commonly employed idealized in-phase and out-of-phase TMF cycles. However, the techniques discussed could be easily implemented into any form of load-controlled TMF mission cycle. By quantifying the degradations of these properties, tremendous insights are gained concerning the progression of macroscopic composite damage and often times the progression of damage within a given constituent. This information should also be useful for the characterization and essential for the verification of analytical damage modeling methodologies. Several examples utilizing this test technique are given for three different fiber lay-ups of titanium metal matrix composites.

  20. A standard data set for performance analysis of advanced IR image processing techniques

    Science.gov (United States)

    Weiß, A. Robert; Adomeit, Uwe; Chevalier, Philippe; Landeau, Stéphane; Bijl, Piet; Champagnat, Frédéric; Dijk, Judith; Göhler, Benjamin; Landini, Stefano; Reynolds, Joseph P.; Smith, Leslie N.

    2012-06-01

    Modern IR cameras are increasingly equipped with built-in advanced (often non-linear) image and signal processing algorithms (like fusion, super-resolution, dynamic range compression etc.) which can tremendously influence performance characteristics. Traditional approaches to range performance modeling are of limited use for these types of equipment. Several groups have tried to overcome this problem by producing a variety of imagery to assess the impact of advanced signal and image processing. Mostly, this data was taken from classified targets and/ or using classified imager and is thus not suitable for comparison studies between different groups from government, industry and universities. To ameliorate this situation, NATO SET-140 has undertaken a systematic measurement campaign at the DGA technical proving ground in Angers, France, to produce an openly distributable data set suitable for the assessment of fusion, super-resolution, local contrast enhancement, dynamic range compression and image-based NUC algorithm performance. The imagery was recorded for different target / background settings, camera and/or object movements and temperature contrasts. MWIR, LWIR and Dual-band cameras were used for recording and were also thoroughly characterized in the lab. We present a selection of the data set together with examples of their use in the assessment of super-resolution and contrast enhancement algorithms.

  1. Technical feasibility of advanced separation; Faisabilite technique de la separation poussee

    Energy Technology Data Exchange (ETDEWEB)

    Rostaing, Ch

    2004-07-01

    Advanced separation aims at reducing the amount and toxicity of high-level and long lived radioactive wastes. The Purex process has been retained as a reference way for the recovery of the most radio-toxic elements: neptunium, technetium and iodine. Complementary solvent extraction processes have to be developed for the separation of americium, curium and cesium from the high activity effluent of the spent fuel reprocessing treatment. Researches have been carried out with the aim of demonstrating the scientifical and technical feasibility of advanced separation of minor actinides and long lived fission products from spent fuels. The scientifical feasibility was demonstrated at the end of 2001. The technical feasibility works started in the beginning of 2002. Many results have been obtained which are presented and summarized in this document: approach followed, processes retained for the technical feasibility (An/Ln and Am/Cm separation), processes retained for further validation at the new shielded Purex installation, technical feasibility of Purex adaptation to Np separation, technical feasibility of Diamex (first step: (An+Ln)/other fission products) separation), technical feasibility of Sanex process (second step: An(III)/Ln(III) separation), technical feasibility of Am(III)/Cm(III) separation, cesium separation, iodine separation, technical-economical evaluation, conclusions and perspectives, facilities and apparatuses used for the experiments. (J.S.)

  2. Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor

    Science.gov (United States)

    Gorti, Sridhar; Holmes, Richard; O'Dell, John; McKechnie, Timothy; Shchetkovskiy, Anatoliy

    2013-01-01

    Rhenium, with its high melting temperature, excellent elevated temperature properties, and lack of a ductile-to-brittle transition temperature (DBTT), is ideally suited for the hot gas components of the ACM (Attitude Control Motor), and other high-temperature applications. However, the high cost of rhenium makes fabricating these components using conventional fabrication techniques prohibitive. Therefore, near-net-shape forming techniques were investigated for producing cost-effective rhenium and rhenium alloy components for the ACM and other propulsion applications. During this investigation, electrochemical forming (EL-Form ) techniques were evaluated for producing the hot gas components. The investigation focused on demonstrating that EL-Form processing techniques could be used to produce the ACM flow distributor. Once the EL-Form processing techniques were established, a representative rhenium flow distributor was fabricated, and samples were harvested for material properties testing at both room and elevated temperatures. As a lower cost and lighter weight alternative to an all-rhenium component, rhenium- coated graphite and carbon-carbon were also evaluated. The rhenium-coated components were thermal-cycle tested to verify that they could withstand the expected thermal loads during service. High-temperature electroforming is based on electrochemical deposition of compact layers of metals onto a mandrel of the desired shape. Mandrels used for electro-deposition of near-net shaped parts are generally fabricated from high-density graphite. The graphite mandrel is easily machined and does not react with the molten electrolyte. For near-net shape components, the inner surface of the electroformed part replicates the polished graphite mandrel. During processing, the mandrel itself becomes the cathode, and scrap or refined refractory metal is the anode. Refractory metal atoms from the anode material are ionized in the molten electrolytic solution, and are deposited

  3. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    Science.gov (United States)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  4. Completely Colorblind: Advances in Gray Techniques and Applications to Planets Near and Far

    CERN Document Server

    Robinson, Tyler D

    2015-01-01

    Gray models, which replace spectrally-resolved opacities with a wavelength independent mean opacity, are currently seeing wide and diverse application. In this brief review, we discuss both the history of gray techniques as well as recent applications of gray models, with an emphasis on planetary atmospheres. Methods and results for generating mean opacities are summarized. We present examples where gray radiative transfer tools are incorporated into three-dimensional atmospheric circulation models. Gray techniques are also useful for problems in comparative climatology, and we inter-compare results from several generalized gray models as applied to the computation of convective fluxes in planetary atmospheres. Finally, we provide examples where future progress can be made in the development of gray models.

  5. Turbine blade wear and damage. An overview of advanced characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Schlobohm, Jochen; Li, Yinan; Kaestner, Markus; Poesch, Andreas; Reithmeier, Eduard [Hannover Univ. (Germany). Inst. fuer Mess- und Regelungstechnik; Bruchwald, Oliver; Frackowiak, Wojciech; Reimche, Wilfried; Maier, Hans Juergen [Hannover Univ. (Germany). Inst. fuer Werkstoffkunde

    2016-07-01

    This paper gives an overview of four measurement techniques that allow to extensively characterize the status of a worn turbine blade. In addition to the measurement of geometry and surface properties, the condition of the two protective coatings needs to be monitored. Fringe projection was used to detect and quantify geometric variances. The technique was improved using newly developed algorithms like inverse fringe projection. A Michelson interferometer was employed to further analyze areas with geometric defects and characterize the surface morphology of the blade. Pulsed high frequency induction thermography enabled the scanning of the blade for small cracks at or close to the surface. High frequency eddy current testing was used to determine the protective layers status and their thickness.

  6. Impact localization for a composite plate using the spatial focusing properties of advanced signal processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyunjo; Cho, Sungjong [Wonkwang Univ., Iksan (Korea, Republic of)

    2012-12-15

    A structural health monitoring technique for locating impact position in a composite plate is presented in this paper. The method employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the spatial focusing efficiency of both approaches at the impact position and its surroundings through impact experiments. The imaging results of impact localization show that the impact location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring knowledge of anisotropic material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testing of plate like structures.

  7. Advanced design technique of human-machine interfaces for PLC control of complex systems

    Directory of Open Access Journals (Sweden)

    Árpád-István Sütő

    2008-05-01

    Full Text Available Touchscreen operator panels proved to be a convenient succesor for clasical operator panels for implementing human-machine interfaces (HMIs in programmable logic controllers (PLC systems. The paper introduces a new technique for HMIs design in such systems, based on the idea of touchscreens replication. This redundancy allow actions which are not possible within the menus and sub-menus of a single touchscreen. Its strenght is revealed especially in complex systems, where operators can easily be overwhelmed by the huge amount of process information. The technique was applied on a mill tube rolling installation. The results also proved an increase of system security and zero downtime for HMI maintenance activities.

  8. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  9. Advanced approaches to high precision MEMS metrology based on interferometric,confocal,and tactile techniques

    Institute of Scientific and Technical Information of China (English)

    Peter Lehmenn

    2008-01-01

    Geometrical features of micro-systems can be determined by either tactile or optical profiling techniques,which show different non-linear transfer characteristics.This has to be considered especially,if the instrumcnts operate close to their physical limitations.Depending on the specific measuring task either point-wise or areal optical measurement may be advantageous.Hence,examples for boIh approaches are discussed.Furthermore,systematic effects,which are related to the measuring principle have to be taken into account,e.g.if sharp edges or slopes ale present on the measuring object.As it is shown,for white-light interferometry these difficulties can be solved by a two-wavelength technique.

  10. Quantifying interspecific variation in dispersal ability of noctuid moths using an advanced tethered flight technique

    OpenAIRE

    Jones, Hayley B. C.; Lim, Ka S.; Bell, James R.; Hill, Jane K.; Chapman, Jason W.

    2015-01-01

    Abstract Dispersal plays a crucial role in many aspects of species' life histories, yet is often difficult to measure directly. This is particularly true for many insects, especially nocturnal species (e.g. moths) that cannot be easily observed under natural field conditions. Consequently, over the past five decades, laboratory tethered flight techniques have been developed as a means of measuring insect flight duration and speed. However, these previous designs have tended to focus on single...

  11. Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques

    OpenAIRE

    Rhouta, Benaïssa; Kaddami, H.; Elbarqy, J.; Amjoud, M'Barek; Daoudi, Lahcen; Maury, Francis; Senocq, François; Maazouz, Abderrahim; GERARD, Jean-François

    2008-01-01

    The composition of Rhassoul clay is controversial regarding the nature of the puremineral clay fraction which is claimed to be stevensite rather than saponite. In this study, the raw and mineral fractions were characterized using various techniques including Fourier transform infrared spectroscopy and magic angle spinning nuclear magnetic resonance (MAS NMR). The isolated fine clay mineral fraction contained a larger amount of Al (>1 wt.%) than that reported for other stevensite occurrences. ...

  12. Advancements in non-destructive control of efficiency of electrochemical repair techniques

    OpenAIRE

    Martínez Sierra, Isabel

    2009-01-01

    [EN] The main electrochemical techniques used for reducing corrosion on reinforced structures are cathodic protection (CP), electrochemical chloride extraction (ECE) and realkalisation (ER). Traditionally, for controlling the efficiency of CP, standard methods based in the depolarisation of rebar are used, with inconvenience of requiring the interruption of the protection current even for several hours. Concerning ECE and ER, the usual methods involve extraction and chemical analysis (chlorid...

  13. Magnetic resonance enterography in Crohn’s disease: Standard and advanced techniques

    OpenAIRE

    Kayhan, Arda; Oommen, Jacob; Dahi, Farid; Oto, Aytekin

    2010-01-01

    Crohn’s disease (CD) is a chronic autoimmune disorder that affects mainly young people. The clinical management is based on the Crohn’s Disease Activity Index and especially on biologic parameters with or without additional endoscopic and imaging procedures, such as barium and computed tomography examinations. Recently, magnetic resonance (MR) imaging has been a promising diagnostic radiologic technique with lack of ionizing radiation, enabling superior tissue contrast resolution due to new p...

  14. Comparison of advanced irradiation techniques with photons for benign intracranial tumours

    International Nuclear Information System (INIS)

    Background and purpose: The potential benefits and limitations of different radiation techniques (stereotactic arc therapy (SRS/T), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT), Cyberknife and intensity-modulated multiple arc therapy (AMOA)) have been assessed using comparative treatment planning methods on twelve patients presenting with 'benign' brain tumours. Materials and methods: Plans for five acoustic neurinomas, five meningiomas and two pituitary adenomas were computed to generate dose distributions for all modalities using a common CT dataset to delineate planning target volume and organs at risk. Results: HT, AMOA and IMRT resulted superior to SRS/T and Cyberknife for target coverage. For the first group V 95% ranged from 98% to 100%, minimum dose ranged from 91% to 96% and standard deviation from 0.84% to 1.67%. For organs at risk all techniques respected planning objectives with a tendency of Cyberknife and SRS/T to better spare the brain stem and the healthy brain tissue (e.g., V 20Gy of 2.0% and 2.3%, respectively, compared to 3.1-5.0% for the other techniques). AMOA is in general preferable to IMRT for all OARs. Conformity index (CI95) was better for HT and Cyberknife (both 1.8) and less for AMOA and IMRT (3.9 and 3.0, respectively). Conclusion: All techniques provided good OAR sparing and primarily differed in target coverage indices. For the class of tumours investigated in this report, HT, AMOA and IMRT had better target coverage with HT providing the best combination of indeces. Between AMOA and IMRT, target coverage was comparable and, considering organs at risk, AMOA was slightly preferable

  15. Advanced CMOS IC Design Techniques for Optimizing the Baseband Analog Front-End of Mobile Phones

    OpenAIRE

    NERI, FILIPPO MARIA

    2012-01-01

    Summary Nowadays, the desire to always be connectable by a communication device is larger than ever, thus growing the needs for the development of circuits that will make the dream of this Global Village a reality. Mobility, while remaining reachable at all the time, is possible with the use of wireless communications that have the common characteristic of having a limited power source in the battery. This pushes to improve the circuit techniques to increase the portable electronic device ...

  16. Possibilities for Advanced Encoding Techniques at Signal Transmission in the Optical Transmission Medium

    OpenAIRE

    Filip Čertík; Rastislav Róka

    2016-01-01

    This paper presents a possible simulation of negative effects in the optical transmission medium and an analysis for the utilization of different signal processing techniques at the optical signal transmission. An attention is focused on the high data rate signal transmission in the optical fiber influenced by linear and nonlinear environmental effects presented by the prepared simulation model. The analysis includes possible utilization of OOK, BPSK, DBPSK, BFSK, QPSK, DQPSK, 8PSK, and 16QAM...

  17. UTILIZATION OF FORMALIN EMBALMED SPECIMENS UNDER ECO-FRIENDLY CONDITIONS BY ADVANCED PLASTINATION TECHNIQUE

    OpenAIRE

    R. Menaka; Chaurasia, S.

    2015-01-01

    Preparation of anatomical models and teaching aids is a challenging task in the medical, veterinary and paramedical sciences as like as life form. The successful preservation of conventional methods by embalmed cadavers/ corpse’s are routinely practiced for educational/research purposes. The existing form of preservation technique is not promising to meet the current challenges in the teaching and learning of human/veterinary anatomy. The embalming fluid causes potential health hazards with c...

  18. Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete

    International Nuclear Information System (INIS)

    A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.

  19. Multi-band effective mass approximations advanced mathematical models and numerical techniques

    CERN Document Server

    Koprucki, Thomas

    2014-01-01

    This book addresses several mathematical models from the most relevant class of kp-Schrödinger systems. Both mathematical models and state-of-the-art numerical methods for adequately solving the arising systems of differential equations are presented. The operational principle of modern semiconductor nano structures, such as quantum wells, quantum wires or quantum dots, relies on quantum mechanical effects. The goal of numerical simulations using quantum mechanical models in the development of semiconductor nano structures is threefold: First they are needed for a deeper understanding of experimental data and of the operational principle. Secondly, they allow us to predict and optimize in advance the qualitative and quantitative properties of new devices in order to minimize the number of prototypes needed. Semiconductor nano structures are embedded as an active region in semiconductor devices. Thirdly and finally, the results of quantum mechanical simulations of semiconductor nano structures can be used wit...

  20. Current applications of advanced cross-sectional imaging techniques in evaluating the painful arthroplasty

    International Nuclear Information System (INIS)

    Patients with a painful arthroplasty can present a clinical diagnostic dilemma. Aspirates are often negative for infection and alignment of the prosthesis on conventional radiographs is usually satisfactory. These patients can have a myriad of soft tissue as well as osseous pathologies, which may be clinically unsuspected or radiographically occult. The ability of advanced cross-sectional imaging to diagnose osseous and soft tissue injuries has been well documented, but applications to arthroplasty imaging are often limited by regional metallic artifacts. Adjustment of standard imaging parameters can make CT and MR imaging useful adjuncts in imaging the painful arthroplasty, especially in the setting of normal radiographs. Ultrasound can be used to evaluate the periprosthetic soft tissues and provide a real-time method of evaluating the dynamic relationship of the periprosthetic soft tissues to the arthroplasty components, and it also can be used as a guide for diagnostic and therapeutic interventions. (orig.)

  1. A graphical simulator for teaching basic and advanced MR imaging techniques

    DEFF Research Database (Denmark)

    Hanson, Lars G

    2007-01-01

    for radiologists, radiographers, and technical staff alike, but it is notoriously challenging to explain spin dynamics by using traditional teaching tools. The author developed a freely available graphical simulator based on the Bloch equations to aid in the teaching of topics ranging from precession...... and relaxation to advanced concepts such as stimulated echoes, spin tagging, and k-space-methods. A graphical user interface provides the user with a three-dimensional view of spin isochromates that can be manipulated by selecting radiofrequency pulses and gradient events. Even complicated sequences can...... be visualized in an intuitive way. The cross-platform software is primarily designed for use in lectures, but is also useful for self studies and student assignments. Movies available at http://radiographics.rsnajnls.org/cgi/content/full/e27/DC1 ....

  2. Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques

    Directory of Open Access Journals (Sweden)

    D'Arcy Ryan CN

    2010-01-01

    Full Text Available Abstract In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43% - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome. Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis.

  3. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  4. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268

  5. Advances in head and neck fine-needle aspiration and ultrasound technique for the pathologist.

    Science.gov (United States)

    Jakowski, Joseph D; DiNardo, Laurence J

    2015-07-01

    The success of fine-needle aspiration (FNA) biopsy in the evaluation of head and neck (H&N) masses has already been established. Herein we outline the most recent advancement for the pathologist who performs traditional palpation-guided FNA (PGFNA) in the H&N while also incorporating ultrasound-guided FNA (UGFNA) into their practice. We provide an overview of the educational and training opportunities in H&N ultrasound and UGFNA with emphasis on the advantages and limitations for the pathologist. Throughout are useful clinical and technical pearls, many of which may also interest those who practice PGFNA, including local anesthesia use and FNA procedures in pediatric patients. PMID:25677264

  6. Application of Advanced Process Control techniques to a pusher type reheating furnace

    Science.gov (United States)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  7. Cepstrum Analysis: An Advanced Technique in Vibration Analysis of Defects in Rotating Machinery

    Directory of Open Access Journals (Sweden)

    M. Satyam

    1994-01-01

    Full Text Available Conventional frequency analysis in machinery vibration is not adequate to find out accurately defects in gears, bearings, and blades where sidebands and harmonics are present. Also such an approach is dependent on the transmission path. On the other hand, cepstrum analysis accurately identifies harmonics and sideband families and is a better technique available for fault diagnosis in gears, bearings, and turbine blades of ships and submarines. Cepstrum represents the global power content of a whole family of harmonics and sidebands when more than one family of sidebands are presents at the same time. Also it is insensitive to the transmission path effects since source and transmission path effects are additive and can be separated in cepstrum. The concept, underlying theory and the measurement and analysis involved for using the technique are briefly outlined. Two cases were taken to demonstrate advantage of cepstrum technique over the spectrum analysis. An LP compressor was chosen to study the transmission path effects and a marine gearbox having two sets of sideband families was studied to diagnose the problematic sideband and its severity.

  8. High-sensitivity measurements for low-level TRU wastes using advanced passive neutron techniques

    International Nuclear Information System (INIS)

    In recent years, both passive- and active-neutron nondestructive assay (NDA) systems have been used to measure the uranium and plutonium content in 200-ell drums. Because of the heterogeneity of the wastes, representative sampling is not possible and NDA methods are preferred over destructive analysis. Active-neutron assay systems are used to measure the fissile isotopes such as 235U, 23Pu, and 241Pu; the isotopic ratios are used to infer the total plutonium content and thus the specific disintegration rate. The active systems include 14-MeV-neutron (DT) generators with delayed-neutron counting, (D,T) generators with the differential die-away technique, and 252Cf delayed-neutron shufflers. Passive assay systems (for example, segmented gamma-ray scanners)5 have used gamma-ray sessions, while others (for example, passive drum counters) used passive-neutron signals. We have developed a new passive-neutron measurement technique to improve the accuracy and sensitivity of the NDA of plutonium scrap and waste. This new 200-ell-drum assay system combines the classical NDA method of counting passive-neutron totals and coincidences from plutonium with the new features of ''add-a-source'' (AS) and multiplicity counting to improve the accuracy of matrix corrections and statistical techniques that improve the low-level detectability limits. This paper describes the improvements we have made in passive-neutron assay systems and compares the accuracies and detectability limits of passive- and active-neutron assay systems

  9. Advanced sensing and control techniques to facilitate semi-autonomous decommissioning. 1998 annual progress report

    International Nuclear Information System (INIS)

    'This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D and D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enhanced by computer vision, virtual reality and advanced robotics technology. This report summarizes work after approximately 1.5 years of a 3-year project. The autonomous, non-contact creation of a virtual environment from an existing, real environment (virtualization) is an integral part of the workcell functionality. This requires that the virtual world be geometrically correct. To this end, the authors have encountered severe sensitivity in quadric estimation. As a result, alternative procedures for geometric rendering, iterative correction approaches, new calibration methods and associated hardware, and calibration quality examination software have been developed. Following geometric rendering, the authors have focused on improving the color and texture recognition components of the system. In particular, the authors have moved beyond first-order illumination modeling to include higher order diffuse effects. This allows us to combine the surface geometric information, obtained from the laser projection and surface recognition components of the system, with a stereo camera image. Low-level controllers for Puma 560 robotic arms were designed and implemented using QNX. The resulting QNX/PC based low-level robot control system is called QRobot. A high-level trajectory generator and application programming interface (API) as well as a new, flexible robot control API was required. Force/torque sensors and interface hardware have been identified and ordered. A simple 3-D OpenGL-based graphical Puma 560 robot simulator was developed and interfaced with ARCL and RCCL to assist in the development of robot motion programs.'

  10. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL; Poore III, Willis P. [ORNL; Muhlheim, Michael David [ORNL

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  11. The choice of optimal radiotherapy technique for locally advanced maxillary carcinoma using 3d treatment planning system

    Directory of Open Access Journals (Sweden)

    Mileusnić Dušan

    2004-01-01

    Full Text Available Aim. To compare the isodose distribution of three radiotherapy techniques for locally advanced maxillary sinus carcinoma and analyze the potential of three-dimensional (3D conformal radiotherapy planning in order to determine the optimal technique for target dose delivery, and spare uninvolved healthy tissue structures. Methods. Computed tomography (CT scans of fourteen patients with T3-T4, N0, M0 maxillary sinus carcinoma were acquired and transferred to 3D treatment planning system (3D-TPS. The target volume and uninvolved dose limiting structures were contoured on axial CT slices throughout the volume of interest combining three variants of treatment plans (techniques for each patient: 1. A conventional two-dimensional (2D treatment plan with classically shaped one anterior two lateral opposite fields and two types of 3D conformal radiotherapy plans were compared for each patient. 2. Three-dimensional standard (3D-S plan one anterior + two lateral opposite coplanar fields, which outlines were shaped with multileaf collimator (MLC according to geometric information based on 3D reconstruction of target volume and organs at risk as seen in the beam eye's view (BEV projection. 3. Three-dimensional non-standard (3D-NS plan: one anterior + two lateral noncoplanar fields, which outlines were shaped in the same manner as in 3D-S plans. The planning parameters for target volumes and the degree of neurooptic structures and parotid glands protection were evaluated for all three techniques. Comparison of plans and treatment techniques was assessed by isodose distribution, dose statistics and dose-volume histograms. Results. The most enhanced conformity of the dose delivered to the target volume was achieved with 3D-NS technique, and significant differences were found comparing 3D-NS vs. 2D (Dmax: p<0,05 Daver: p<0,01; Dmin: p<0,05; V90: p<0,05, and V95: p<0,01, as well as 3D-NS vs. 3D-S technique (Dmin: p<0,05; V90: p<0,05, and V95: p<0,01, while there

  12. Electron magnetic resonance (EMR) study of CaMn1-xRuxO3 perovskites: an inhomogeneous ground state induced by Ru-doping

    International Nuclear Information System (INIS)

    X-band EMR measurements of polycrystalline CaMn1-xRuxO3 (x=0/0.40) samples were done at 120≤T≤400 K aiming to study the effect of Ru-induced magnetic ordering. High-temperature EMR spectra of pristine CaMnO3 show a Lorentzian-like line with ΔHpp∼160 mT and g=1.995±0.005, whose intensity diminishes, zeroing at Neel temperature TN=120 K. EMR evidences that Ru-doping modifies both paramagnetic and antiferromagnetic states, and creates an inhomogeneous phase separated ferro- and antiferromagnetic ground states at x>0.06

  13. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    Directory of Open Access Journals (Sweden)

    D. Pollard

    2015-11-01

    Full Text Available A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  14. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    Science.gov (United States)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  15. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  16. Advanced network programming principles and techniques : network application programming with Java

    CERN Document Server

    Ciubotaru, Bogdan

    2013-01-01

    Answering the need for an accessible overview of the field, this text/reference presents a manageable introduction to both the theoretical and practical aspects of computer networks and network programming. Clearly structured and easy to follow, the book describes cutting-edge developments in network architectures, communication protocols, and programming techniques and models, supported by code examples for hands-on practice with creating network-based applications. Features: presents detailed coverage of network architectures; gently introduces the reader to the basic ideas underpinning comp

  17. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem. A...... pseudo code based algorithm is suggested to deal with the equality constraints of the problem for accelerating the optimization process. The simulation results show that the proposed PSO methods are capable of obtaining higher quality solutions efficiently in wind-thermal coordination problems....

  18. Advanced Fabrication Techniques for Precisely Controlled Micro and Nano Scale Environments for Complex Tissue Regeneration and Biomedical Applications

    Science.gov (United States)

    Holmes, Benjamin

    As modern medicine advances, it is still very challenging to cure joint defects due to their poor inherent regenerative capacity, complex stratified architecture, and disparate biomechanical properties. The current clinical standard for catastrophic or late stage joint degradation is a total joint implant, where the damaged joint is completely excised and replaced with a metallic or artificial joint. However, these procedures still only lasts for 10-15 years, and there are hosts of recovery complications which can occur. Thus, these studies have sought to employ advanced biomaterials and scaffold fabricated techniques to effectively regrow joint tissue, instead of merely replacing it with artificial materials. We can hypothesize here that the inclusion of biomimetic and bioactive nanomaterials with highly functional electrospun and 3D printed scaffold can improve physical characteristics (mechanical strength, surface interactions and nanotexture) enhance cellular growth and direct stem cell differentiation for bone, cartilage and vascular growth as well as cancer metastasis modeling. Nanomaterial inclusion and controlled 3D printed features effectively increased nano surface roughness, Young's Modulus and provided effective flow paths for simulated arterial blood. All of the approaches explored proved highly effective for increasing cell growth, as a result of increasing micro-complexity and nanomaterial incorporation. Additionally, chondrogenic and osteogenic differentiation, cell migration, cell to cell interaction and vascular formation were enhanced. Finally, growth-factor(gf)-loaded polymer nanospheres greatly improved vascular cell behavior, and provided a highly bioactive scaffold for mesenchymal stem cell (MSC) and human umbilical vein endothelial cell (HUVEC) co-culture and bone formation. In conclusion, electrospinning and 3D printing when combined effectively with biomimetic and bioactive nanomaterials (i.e. carbon nanomaterials, collagen, nHA, polymer

  19. BELdART: Organization of a quality assurance audit for photon and electron beams based on alanine/EMR dosimetry

    International Nuclear Information System (INIS)

    The Belgian dosimetry audit in radiotherapy (BELdART) project was set up by the Federal Agency of Nuclear Control (FANC) to verify, on a national base, the compliance of the dose stated by the center with the measured dose. The visitation encompasses a basic mechanical test and a dosimetric verification of the dose measured in reference and non-reference conditions, including irregular fields with MLC. Absorbed dose to water is measured with alanine/ EMR dosimetry. The number of monitor units (MU) to deliver 4 Gy at the detector is calculated by the participating centre according to the clinical procedure. Dose measurements are traceable to the water calorimeter standard at PTB and in addition alanine/EMR dosimetry is compared at regular intervals against ionometry as part of the auditing performed by the Belgian Hospital Physicist Association (BHPA). The audit started in feb. 2009 and all photon beams and two electron beams per linac in clinical use will be audited within a period of three years

  20. EMR-related problems at the interface between the crystal field Hamiltonians and the zero-field splitting Hamiltonians

    Directory of Open Access Journals (Sweden)

    Rudowicz Czesław

    2015-07-01

    Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.

  1. Advanced trap spectroscopy using the glow rate technique based on bleaching of color centers

    International Nuclear Information System (INIS)

    The glow rate technique (GRT) is the extension of the known heating rate method to the full glow curve. The GRT like the fractional glow technique (FGT) offers a procedure for evaluation of the mean activation energy as a function of temperature in the case of arbitrary thermostimulated relaxation kinetics represented by trap distribution function. The experimental procedure involves at least two subsequent measurements of thermostimulated recombination kinetics at different heating rates. The extension of the GRT to the direct measurements of thermostimulated bleaching of the radiation-induced color centers is presented. The experimental procedure involves measurements of the decay of radiation-induced absorption spectra of color centers in preliminary irradiated materials during linear heating. Procedure for evaluation of the trap energy and frequency factor spectrum is considered in the paper. Results of the application of GRT for analysis of the parameters of thermostimulated decay of color centers are presented in the case of decay of the radiation-induced defects in LiBaF3 crystals irradiated by X-rays. It is shown that decay of F-type centers occurs in two steps, the activation energy slightly decreasing from 0.660±0.003 eV in the first step (300-370 K) to 0.615±0.003 eV (400-480 K) in the second step

  2. Advanced dust control techniques in cement industry electrostatic precipitator - a case study

    International Nuclear Information System (INIS)

    The case study deal with the current day problem of pollution by industrial zones in Pakistan with emphasis on the cement Industry which has been proved to be the second revenue generating hub after textile sector of the Pakistan. A pilot study into the identification and available removal Techniques of particulates from the exhaust of a cement plant clinker cooler was carried out. The objective of this work was to study the performance of the each technique in detail in the removal of a particulate with a wide range of sizes, under different operational conditions and to compare the results for collection efficiency with predictions by available theoretical models. A brief and comprehensive discussion regarding design, construction and bottlenecks of each tool has been discussed to fully ascertain it's scope and usability. First part of the study identifies the various pollutants being emitted from the chimney of a specific cement plant in Pakistan and while last portion deals with the ways to curtail these pollutants. (author)

  3. Nondestructive Advanced Indentation Technique: The Application Study Industrial Structure to Nanomaterial

    International Nuclear Information System (INIS)

    The continuous indentation techniques are one of the most effective methods to nondestructively estimate mechanical properties. There are many applications in various dimensions of materials from macro-scale, through micro-scale, even to nano-scale range. The macro-range technology of kgf-load level is now focused on the evaluation of tensile properties and residual stress of bulk materials, for example, used in conventional load-bearing structures and in-use pipelines. The technology and the apparatus were successfully developed by a domestic research group. The micro-range technology of gf-load level can be applied to investigate some property-gradient materials such as weldment. Because it has better spatial resolution than the macro-range technology. The nano-range technology (called nanoindentation technique) of mgf-load level is basically used to evaluate hardness and modulus of micro- and nano-materials. Moreover, many researches are going on to measure tensile properties and residual stress. The nanoindentation technology is easy to be applied to the various fields, such as semiconductor devices, multiphase materials, and biomaterials, though other methods are too difficult to be applied due to dimensional or environmental limitations. On the basis of these accomplishments, the international and the domestic standards are being established

  4. The Synergy Between Total Scattering and Advanced Simulation Techniques: Quantifying Geopolymer Gel Evolution

    Energy Technology Data Exchange (ETDEWEB)

    White, Claire [Los Alamos National Laboratory; Bloomer, Breaunnah E. [Los Alamos National Laboratory; Provis, John L. [The University of Melbourne; Henson, Neil J. [Los Alamos National Laboratory; Page, Katharine L. [Los Alamos National Laboratory

    2012-05-16

    With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.

  5. Advance of the upsetting technology theory and technique in a hydraulic press

    International Nuclear Information System (INIS)

    The tension stress theory of a rigid-plastic mechanical model when the ratio of height to diameter (HID) larger than 1 and the shearing stress theory if a hydrostatic stress mechanical model when HID less than 1 are advanced for the problem of upsetting a cylinder between common flat platens. The former breaks the saying described in traditional engineering plastic mechanics that there always exist three-dimensional compressive stresses in the interior of an upsetting body. The latter perfectly interprets the problem that there often present the flaws with meat pie in the heavy forgings. The new theory of flat platen upsetting has been testified by the qualitative physical simulation, the quantitative numerical simulation, the generalized slip-line solution, the mechanical slab method and the dissecting test in production. Two new mechanical model for upsetting a square body and the new technology and its mechanical principal of upsetting between the cone-shaped platens are further proposed on the basis of the new theory

  6. Advanced MRI techniques of the fetal brain; Zukunftsweisende MRT-Techniken des fetalen Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, V.; Dittrich, E.; Berger-Kulemann, V.; Kasprian, G.; Kollndorfer, K.; Prayer, D. [Medizinische Universitaet Wien, Abteilung fuer Neuroradiologie und Muskuloskelettale Radiologie, Universitaetsklinik fuer Radiodiagnostik, Wien (Austria)

    2013-02-15

    Evaluation of the normal and pathological fetal brain. Magnetic resonance imaging (MRI). Advanced MRI of the fetal brain. Diffusion tensor imaging (DTI) is used in clinical practice, all other methods are used at a research level. Serving as standard methods in the future. Combined structural and functional data for all gestational ages will allow more specific insight into the developmental processes of the fetal brain. This gain of information will help provide a common understanding of complex spatial and temporal procedures of early morphological features and their impact on cognitive and sensory abilities. (orig.) [German] Evaluierung des gesunden bzw. pathologischen fetalen Gehirns. Die Magnetresonanztomographie. Zukunftsweisende Techniken in der MRT-Bildgebung des fetalen Gehirns. Die Diffusionstensorbildgebung (DTI) befindet sich bereits in der klinischen Anwendung, alle anderen Methoden sind bisher noch als experimentell zu werten. Auf dem Weg zur Etablierung als Standardverfahren. Eine kombinierte Verarbeitung funktioneller und struktureller Daten, modelliert fuer jede Schwangerschaftswoche, wird es zukuenftig ermoeglichen, anhand dieser fusionierten Informationen einen praezisen Einblick in den Entwicklungsprozess des Gehirns zu erlangen. Diese Erkenntnisse und Ergebnisse werden entscheidend zur Klaerung des zeitlichen Verlaufs und des komplexen Aufbaus frueher morphologischer Auffaelligkeiten beitragen sowie deren Einfluss auf kognitive und sensorische Faehigkeiten aufzeigen. (orig.)

  7. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  8. EMR studies of La1-x CaxMnO3 (x=0.1; 0.9) manganites with canted antiferromagnetic ground states

    International Nuclear Information System (INIS)

    X-band electron magnetic resonance (EMR) spectra were recorded at the temperature range of 115=0.9Ca0.1MnO3 and polycrystalline La0.1Ca0.9MnO3 manganites, having a mixed magnetic structure in the ground state, which comprises canted antiferromagnetic matrix and nanometer-scale ferromagnetic clusters. A model of the magneto-impurity states for excess holes and electrons, which emerge in the considered compounds due to A-site cation substitution, was used for modeling their paramagnetic susceptibility and spin dynamics measured by means of EMR

  9. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    Science.gov (United States)

    Misra, N. L.

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium-plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium-thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript.

  10. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    Science.gov (United States)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  11. Application and development of advanced Lorentz microscopy techniques for the study of magnetic nanostructures

    Science.gov (United States)

    Beacham, Robert J.

    This PhD project presents an investigation into the development of magnetic imaging methods in the TEM and their application in imaging narrow domain walls in multilayer magnetic structures. Lorentz microscopy techniques are limited in quantitative magnetic imaging as this generally requires using scanning imaging modes which limits the capability of imaging dynamic processes. The first imaging method developed in this study is a phase gradient technique with the aim of producing quantitative magnetic contrast proportional to the magnetic induction of the sample whilst maintaining a live imaging mode. This method uses a specifically engineered, semi-electron-transparent graded wedge aperture to controllably perturb intensity in the back focal plane. The results of this study found that this method could produce magnetic contrast proportional to the sample induction, however the required gradient of the wedge aperture made this contrast close to the noise level with large associated errors. In the second part of this study we investigated the development of a technique aimed at gaining sub-microsecond temporal resolution within TEMs based on streak imaging. We are using ramped pulsed magnetic fields, applied across nanowire samples to both induce magnetic behaviour and detect the electron beam across the detector with respect to time. We are coupling this with a novel pixelated detector on the TEM in the form of a Medipix/Timepix chip capable of microsecond exposure times without adding noise. Running this detector in integral mode and allowing for practical limitations such as experiment time and aperture stability, the resultant streak images were taken in Fresnel, Foucault and low angle diffraction imaging modes. We found that while this method is theoretically viable, the limiting factor was the contrast of the magnetic signal in the streak and therefore the total image counts. Domain walls (DWs) in synthetic antiferromagnetically (SAF) coupled films patterned

  12. Advanced techniques for the surveillance of light water reactors using microprocessor based systems

    International Nuclear Information System (INIS)

    Monitoring systems are based on complex and high-technology methods and - in the past - needed the full skill of well-trained engineers. A new generation of microprocessor based systems is presented which improve the reliability and quality of the techniques and relieve the efforts and number of the staff needed. The systems are stand-alone systems with automatic routines of calibration, measurement and defined evaluation procedures, with an improved data storage of the relevant measuring parameters and with special analysis software, which can be used by interactive access of the experts. An overview of the monitoring systems of KWU is given and the principal features are explained on two examples. (author)

  13. Residence time distribution measurements in an Advanced Pressurized Fluidized Bed Gasifier (APFBG) using radiotracer technique

    International Nuclear Information System (INIS)

    Residence time distributions (RTDs) of coal were measured at different operating conditions in a pressurized fluidized bed gasifier using radiotracer technique. Two different tracers i.e. coal labeled with gold-198 and lanthanum-140 were used as tracers. The comparison of the results obtained with the two tracers indicated that lanthanum-140 was suitable tracer for tracing coal phase in the gasifier. From the measured RTD curves, mean residence times were determined and measured data was simulated using tanks-in-series model. The simulation of data indicated that the gasifier behaved as a well-mixed reactor with minor bypassing. The results of the study were used to modify/optimize the design of the gasifier. (author)

  14. Recent advances in the smoothed-particle hydrodynamics technique: Building the code SPHYNX

    CERN Document Server

    Cabezon, Ruben M; Figueira, Joana

    2016-01-01

    A novel computational hydrocode oriented to Astrophysical applications is described, discussed and validated in the following pages. The code, called SPHYNX, is of Newtonian type and grounded on the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. The distinctive features of the code are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume elements which provides a better partition of the unity. The ensuing hydrodynamic code conserves mass, linear and angular momentum, energy, entropy and preserves kernel normalization even in strong shocks. By a careful choice of the index of the sinc kernel and the number of neighbors in the SPH summations, there is a substantial improvement in the estimation of gradients. Additionally, the new volume elements reduce the so-called tensile instability. Both features help to suppress much of t...

  15. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    Science.gov (United States)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  16. Recent Advancements and Techniques in Manufacture of Solar Cells: Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    B. Naga Venkata Sai Ganesh,

    2013-03-01

    Full Text Available The major problem faced by the society is power crisis. All the non-renewable resources like fossil fuelsnecessary for producing power are being used excessively, which might result a day in future where, the world might godark due to lack of power producing resources. Usage of renewable resources like solar energy can be a solution to thisproblem. Solar cells invented to overcome this problem show rigidity in their structure which is a drawback. Inorganicsolar cells are rigid and can be mounted only on rooftops. Hence only upper surface of buildings are utilized. In this paperwe bring out a new era or solar cells- organic solar cells, which are flexible. These organic solar cells offer the bestsolution for the above problem for a tradeoff of efficiency. This paper briefs the manufacturing technique of solar cellsfrom plastic i.e. ,organic polymers, their architecture, the working process of solar energy production from the organicsolar cells with their ease of usage

  17. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  18. Research Advances on Marine Ecological Effect and Repairing Techniques of Coastal Mangrove Wetland

    Institute of Scientific and Technical Information of China (English)

    Na; LI; Pimao; CHEN; Peipei; QIAO; Chuanxin; QIN

    2014-01-01

    Coastal mangrove wetland is one of the areas whose global ecological environmental conditions have severely changed. Its ecosystem is vulnerable to damaged. The international community has paid attention to conservation and wisely use of mangrove wetland. This paper describes five parts of coastal mangrove wetland at home and abroad,including seawater’s purification effect of nitrogen and phosphorus,seawater’s adsorption of heavy metals,the functions of carbon sequestration and climate regulation,implant restoration techniques and the status of protection and management. And research trends of coastal mangrove wetland were proposed,in order to provide reference for the restoration and protection of China’s coastal mangrove wetland.

  19. Recent advances in knowledge-based paradigms and applications enhanced applications using hybrid artificial intelligence techniques

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This book presents carefully selected contributions devoted to the modern perspective of AI research and innovation. This collection covers several areas of applications and motivates new research directions. The theme across all chapters combines several domains of AI research , Computational Intelligence and Machine Intelligence including an introduction to  the recent research and models. Each of the subsequent chapters reveals leading edge research and innovative solution that employ AI techniques with an applied perspective. The problems include classification of spatial images, early smoke detection in outdoor space from video images, emergent segmentation from image analysis, intensity modification in images, multi-agent modeling and analysis of stress. They all are novel pieces of work and demonstrate how AI research contributes to solutions for difficult real world problems that benefit the research community, industry and society.

  20. Online monitoring of zirconium alloy components of pressurised heavy water reactors by advanced NDE techniques

    International Nuclear Information System (INIS)

    A brief overview of the international and national scenario on quality management of zircaloy components, used in PHWRs has been presented. The work carried out at IGCAR on the development of intelligent Eddy current imaging scheme for quantitative defect characterisation and the use of ultrasonic velocity measurements for detection of intermetallics has been highlighted. The results of acoustic emission and thermographic studies during end cap welding of nuclear fuel elements carried out as part of the DST project have been presented. AE analysis could clearly reveal the formation of defects during the welding stage itself. Thus AE is one of the most suited technique for online monitoring of end cap welding. In case of thermal imaging, good welds were characterised by uniform isothermal widths and symmetrical isothermal patterns while bad welds were characterised by uneven isothermal widths and patterns. Thermography helped in the location of weld defects

  1. Detecting river sediments to assess hazardous materials at volcanic lake using advanced remote sensing techniques

    Science.gov (United States)

    Saepuloh, Asep; Fitrianingtyas, Chintya

    2016-05-01

    The Toba Caldera formed from large depression of Quaternary volcanism is a remarkable feature at the Earth surface. The last Toba super eruptions were recorded around 73 ka and produced the Youngest Toba Tuff about 2,800 km3. Since then, there is no record of significant volcanic seismicity at Toba Volcanic Complex (TVC). However, the hydrothermal activities are still on going as presented by the existence of hot springs and alteration zones at the northwest caldera. The hydrothermal fluids probably containing some chemical compositions mixed with surficial water pollutant and contaminated the Toba Lake. Therefore, an environmental issues related to the existence of chemical composition and degradation of water clearness in the lake had been raised in the local community. The pollutant sources are debatable between natural and anthropogenic influences because some human activities grow rapidly at and around the lake such as hotels, tourisms, husbandry, aquaculture, as well as urbanization. Therefore, obtaining correct information about the source materials floating at the surface of the Toba Lake is crucial for environmental and hazard mitigation purposes. Overcoming the problem, we presented this paper to assess the source possibility of floating materials at Toba Lake, especially from natural sources such as hydrothermal activities of TVC and river stream sediments. The Spectral Angle Mapper (SAM) techniques using atmospherically corrected of Landsat-8 and colour composite of Polarimetric Synthetic Aperture Radar (PolSAR) were used to map the distribution of floating materials. The seven ground truth points were used to confirm the correctness of proposed method. Based on the SAM and PolSAR techniques, we could detect the interface of hydrothermal fluid at the lake surfaces. Various distributions of stream sediment were also detected from the river mouth to the lake. The influence possibilities of the upwelling process from the bottom floor of Toba Lake were also

  2. Technical Needs for Prototypic Prognostic Technique Demonstration for Advanced Small Modular Reactor Passive Components

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M.; Coble, Jamie B.; Hirt, Evelyn H.; Ramuhalli, Pradeep; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-05-17

    This report identifies a number of requirements for prognostics health management of passive systems in AdvSMRs, documents technical gaps in establishing a prototypical prognostic methodology for this purpose, and describes a preliminary research plan for addressing these technical gaps. AdvSMRs span multiple concepts; therefore a technology- and design-neutral approach is taken, with the focus being on characteristics that are likely to be common to all or several AdvSMR concepts. An evaluation of available literature is used to identify proposed concepts for AdvSMRs along with likely operational characteristics. Available operating experience of advanced reactors is used in identifying passive components that may be subject to degradation, materials likely to be used for these components, and potential modes of degradation of these components. This information helps in assessing measurement needs for PHM systems, as well as defining functional requirements of PHM systems. An assessment of current state-of-the-art approaches to measurements, sensors and instrumentation, diagnostics and prognostics is also documented. This state-of-the-art evaluation, combined with the requirements, may be used to identify technical gaps and research needs in the development, evaluation, and deployment of PHM systems for AdvSMRs. A preliminary research plan to address high-priority research needs for the deployment of PHM systems to AdvSMRs is described, with the objective being the demonstration of prototypic prognostics technology for passive components in AdvSMRs. Greater efficiency in achieving this objective can be gained through judicious selection of materials and degradation modes that are relevant to proposed AdvSMR concepts, and for which significant knowledge already exists. These selections were made based on multiple constraints including the analysis performed in this document, ready access to laboratory-scale facilities for materials testing and measurement, and

  3. Techniques and Outcome of Surgery for Locally Advanced and Local Recurrent Rectal Cancer.

    Science.gov (United States)

    Renehan, A G

    2016-02-01

    Locally advanced primary rectal cancer is variably defined, but generally refers to T3 and T4 tumours. Radical surgery is the mainstay of treatment for these tumours but there is a high-risk for local recurrence. National Institute for Health and Care Excellence (2011) guidelines recommend that patients with these tumours be considered for preoperative chemoradiotherapy and this is the starting point for any discussion, as it is standard care. However, there are many refinements of this pathway and these are the subject of this overview. In surgical terms, there are two broad settings: (i) patients with tumours contained within the mesorectal envelope, or in the lower rectum, limited to invading the sphincter muscles (namely some T2 and most T3 tumours); and (ii) patients with tumours directly invading or adherent to pelvic organs or structures, mainly T4 tumours - here referred to as primary rectal cancer beyond total mesorectal excision (PRC-bTME). Major surgical resection using the principles of TME is the mainstay of treatment for the former. Where anal sphincter sacrifice is indicated for low rectal cancers, variations of abdominoperineal resection - referred to as tailored excision - including the extralevator abdominoperineal excision (ELAPE), are required. There is debate whether or not plastic reconstruction or mesh repair is required after these surgical procedures. To achieve cure in PRC-bTME tumours, most patients require extended multivisceral exenterative surgery, carried out within specialist multidisciplinary centres. The surgical principles governing the treatment of recurrent rectal cancer (RRC) parallel those for PRC-bTME, but typically only half of these patients are suitable for this type of major surgery. Peri-operative morbidity and mortality are considerable after surgery for PRC-bTME and RRC, but unacceptable levels of variation in clinical practice and outcome exist globally. To address this, there are now major efforts to standardise

  4. Advanced techniques for rationalization of the construction of Montalto di Castro nuclear power plant

    International Nuclear Information System (INIS)

    The paper describes the steps taken at the Alto Lazio (Montalto di Castro) nuclear power plant construction site in order to rationalize construction methods and work control systems. They consist mainly of: (a) using models for studying construction sequences and for identifying in advance any modifications that may have to be made in the design; (b) using pre-assembling and prefabrication for civil structures and plant components; and (c) using computerized management and work control procedures. As regards the first of the above measures, models of the more complex civil engineering structures were developed. This made it possible to foresee interferences between reinforcing bars and embedments, thus avoiding delays during the construction phase. As regards the second type of measures, large scale prefabrication and/or pre-assembling was planned and carried out for the following elements: reinforcing bar assemblies of walls, floor slabs and particularly complex and heavy structures; metal structures such as the primary steel container, fuel pool and drywell liners, the dome of the shield building, as well as wholly prefabricated reinforced concrete elements and assemblies of mechanical components. Lastly, computerized systems were devised for rational management of quality and work progress control. It was thus possible to determine the work status in real time and hence to adopt any corrective action necessary. The results of these measures applied in Montalto were positive, in spite of initial difficulties deriving from the fact that prefabrication (and/or pre-assembling) was introduced when work was already under way, so that both the design and the site organization had to be adapted. In addition to reducing construction time, prefabrication also meant a great step forward as regards safety and quality, thanks to better working conditions and ease of control. (author). 4 figs, 1 tab

  5. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    Science.gov (United States)

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements. PMID:27250375

  6. Advanced dosimetry techniques for accurate verification of non-standard beams

    International Nuclear Information System (INIS)

    The purpose of this work is to apply established reference dosimetry techniques for the verification of various nonstandard field deliveries. A cylindrical polymethyl methacrylate (PMMA) phantom filled with water was constructed in the center of which absorbed dose to water was measured. Two candidate plan-class specific reference (pcsr) fields for (i) linear accelerator (a Varian (registered) Clinac 6 EX linear accelerator)-based and (ii) TomoTherapy-based typical head and neck IMRT deliveries were planned. The absorbed dose to water in each pcsr field normalized to that in a reference 10x10 cm2 field was measured using: (i) Gafchromic EBT films, a diamond detector, and a guarded liquid-filled ionization chamber for the linac-based IMRT delivery and (ii) a PTW microLion chamber for the TomoTherapy (registered)-based IMRT delivery. Based on the new dosimetry formalism, pcsr correction factors kQpcsr,Qfpcsr,fref were measured for five air-filled ionization chambers (Exradin A12, NE2571, Exradin A1SL, Exradin A14 and PinPoint (registered) 31006) in fully rotated and collapsed deliveries for the linac-based IMRT delivery and only in a fully rotated delivery for the TomoTherapy (registered)-based IMRT delivery. For each ionization chamber, the expected correction factor kQpcsr,Qfpcsr,fref in idealized (gradient-free) conditions was also determined. Details of calculating the expected theoretical correction factor have been published elsewhere. For the linac-based IMRT delivery, the correction factor kQpcsr,Qfpcsr,fref in the fully rotated delivery was the same (0.9955-0.9986) within the measurement uncertainty of 0.3 %. However, the measured correction factor is systematically lower than that in ideal conditions. This suggests that the dose distribution of the pcsr field is not perfectly uniform over the measurement region. In the collapsed delivery, the correction factor is more chamber-type dependent (0.9960- 1.0048). This is attributed to the effect of systematic

  7. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives.

    Science.gov (United States)

    Khan, Junaid; Alexander, Amit; Ajazuddin; Saraf, Swarnlata; Saraf, Shailendra

    2013-05-28

    The phyto-phospholipid complexation technique has emerged as one of the leading methods of improving bioavailability of phytopharmaceuticals having poor competency of solubilizing and crossing the biological membranes. Several plant actives in spite having potent in vitro pharmacological activities have failed to demonstrate similar in vivo response. Such plant actives have been made more effective systemically by incorporating them with dietary phospholipids forming new cellular structures which are amphipathic in nature. In the last few years phospholipids have been extensively explored for improved bioavailability and efficacy of plant drugs. Further, it is also much relevant to mention that phospholipids show unique compatibility with biological membranes and have inherent hepatoprotective activity. Different methods have been adopted to formulate phospholipid complexes of plant extractives utilizing varying solvent systems, molar ratios of drug/phospholipids and different drying techniques. Some methods of formulating such drug-phospholipid complexes have been patented as well. However, the stability of phyto-phospholipid complexes is still a matter of concern which needs attention. But still a number of products exploiting this technique are under clinical trials and some of them are now in market. The current review highlights key findings of recent years with our own viewpoints which can give the new directions to this strategy and also includes advancements in the technical aspects of phyto-phospholipid formulations which have been done in the recent past with future challenges. PMID:23474031

  8. Utilizing advanced polymerization techniques for simplifying polymer grafting from silica colloidal crystal substrates

    Science.gov (United States)

    Yerneni, Charu K.

    Polyacrylamide has been well established as a biocompatible material when Polyacrylamide gel electrophoresis (PAGE) came into existence in the 1960s. Under aqueous buffer conditions it becomes non-adsorptive to proteins and due to its molecular level pore forming nature could be used in size based biomolecule separations. Since then considerable research has been done to explore the non-adsorptive nature of polyacrylamide on a platform or substrate. Attempts were made to grow polyacrylamide chains from silica as a substrate which can then be used in various protein separation techniques. Based on an ionic polymerization method which was used for gel casting in PAGE, polymers were grown on silica gel. Though considerable thickness could be achieved, polymerization was not just confined to the surface. Therefore a rigid polymer brush layer could not be achieved. Atom transfer radical polymerization (ATRP) method showed the solution to this problem. Polymer brush layers with acceptable thickness could now be achieved for growing polyacrylamide from silica gel. Yet it still suffered from several disadvantages such as the need of an inert atmosphere for polymerization and limited thickness. Many developments have taken place in the past decade which led to improvements in substrate and polymerization methods. This research used non porous sub-micron silica as the substrate and AGET ATRP (Activator generated electron transfer atom transfer radical polymerization) for surface grafting polyacrylamide. Non porous submicron silica has been shown to be a better stationary phase substrate for protein separations than conventional substrates. AGET ATRP enables polymerization to be performed under ambient conditions and in water based solutions which gives thicknesses much higher than conventional ATRP. Data from various analytical techniques showed that within the experimental range the polymerization is linear and has decent control. This means silica nanoparticles coated with

  9. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    Science.gov (United States)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  10. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    Science.gov (United States)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  11. Advanced Digitization Techniques in Retrieval of Mechanism and Machine Science Resources

    Science.gov (United States)

    Lovasz, E.-Ch.; Gruescu, C. M.; Ciupe, V.; Carabas, I.; Margineanu, D.; Maniu, I.; Dehelean, N.

    The European project thinkMOTION works on the purpose of retrieving all-times content regarding mechanisms and machine science by means of creating a digital library, accessible to a broad public through the portal Europeana. DMG-Lib is intended to display the development in the field, from its very beginning up to now days. There is a large range of significant objects available, physically very heterogeneous and needing all to be digitized. The paper presents the workflow, the equipments and specific techniques used in digitization of documents featuring very different characteristics (size, texture, color, degree of preservation, resolution and so on). Once the workflow established on very detailed steps, the development of the workstation is treated. Special equipments designed and assembled at Universitatea "Politehnica" Timisoara are presented. A large series of software applications, including original programs, work for digitization itself, processing of images, management of files, automatic optoelectronic control of capture, storage of information in different stages of processing. An illustrating example is explained, showing the steps followed in order to obtain a clear, high-resolution image from an old original document (very valuable as a historical proof but very poor in quality regarding clarity, contrast and resolution).

  12. Technique and outcomes of isolated limb infusion for locally advanced malignant melanoma - A radiological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chun, J.-Y., E-mail: drjyc78@gmail.com [Department of Radiology, St George' s Hospital, London (United Kingdom); Hussain, M.; Powell, B. [Plastic Surgery, St George' s Hospital, London (United Kingdom); Belli, A.-M. [Department of Radiology, St George' s Hospital, London (United Kingdom)

    2011-12-15

    Aim: Isolated limb infusion (ILI) is a novel, minimally invasive technique for delivering high-dose regional chemotherapy in patients with recurrent and in-transit melanoma. The aim of this study was to review our single-centre experience in treating eleven patients. We emphasize the role of radiologists in setting up this service, including pre-treatment workup and placement of vascular catheters. Materials and methods: A retrospective analysis of 11 patients who underwent 12 procedures between 2005 and 2009 was performed. Pre-procedural staging computed tomography (CT), CT angiography, and duplex studies were performed. All patients received a cytotoxic combination of melphalan and actinomycin-D via radiologically placed arterial and venous catheters in the affected limb under mild hyperthermic conditions. The outcome measures include response rates, limb toxicity, complications, and survival. Results: All patients were female with a mean age of 72 years. Three patients had American Joint Committee on Cancer (AJCC) stage IIIB melanoma, seven had stage IIIC melanoma, and one had a stage IIIB Merkel cell tumour. Complete response was seen in five patients (46%), partial response in four (36%), and progressive disease in two (18%). One patient developed grade 4 toxicity requiring a fasciotomy and another experienced systemic toxicity. Conclusion: These outcomes are comparable to previous studies and shows that ILI is effective in locoregional control of unresectable melanoma. It is a relatively safe procedure but not without risk. Our experience shows the importance of radiological input to ensure safe and effective delivery of services.

  13. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    International Nuclear Information System (INIS)

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the development of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements

  14. Ultra-sensitive trace element analysis of environmental samples using advanced TRXRF techniques

    International Nuclear Information System (INIS)

    X-ray fluorescence analysis is a widely adopted technique for measuring elemental concentrations in a variety of sample species. The particular advantages compared to other methods are simplicity in instrumentation, rapidity of measurement and the high degree of automation attainable. In trace element analysis, however, the sensitivity of conventional x-ray fluorescence analysis is often insufficient. The paper describes a new type of energy-dispersive equipment which reveals ultimate performance with respect to detection limits and which thus considerably extends the applicability of XRF analysis. The essential feature of the system is the utilization of multiple total reflection (TR) of the exciting x-ray beam from polished quartz glass surfaces. Since the refractive index is slightly smaller than 1, total reflection occurs if the radiation strikes the surface at angles of less than 5'. The grazing incident beam from a fine-structure x-ray tube is twice reflected and follows a zigzag path before it is directed to the sample prepared as a thin film on the third quartz glass surface. The direct beam and scattered radiation are eliminated by diaphragms. In this way, a further reduction of the background in the fluorescence spectrum is achieved compared to a previously published version with single reflection of the exciting beam. The performance of the instrument leads to detection limits for aqueous solutions below 10-11 g or 0.1 ppB, respectively, for at least 20 elements

  15. Strength of plasma sprayed turbine-blade coatings using an advanced spallation technique

    International Nuclear Information System (INIS)

    We present an application of the spall technique for studying the strength, homogeneity, and adhesion of plasma sprayed coatings on a metal substrate. We used a flyer plate impact and a pulsed high-power proton beam to generate short, intense pressure pulses. To study adhesion it is necessary to provide a spall fracture at the interface. This was realized due to the bell-shaped power profile in the ion beam cross section. As a result, the spall fracture inside the samples occurred in tests with the ion beam, at different distances from the surface, including the interface between the coating and the substrate. Using a line-imaging laser-Doppler velocimeter, we were able to measure the free surface velocity histories for a range of load parameters in each experiment. The results of the measurements demonstrate the great influence of annealing on the homogeneity and strength of the coating and a lesser influence of the substrate temperature at coating on the adhesion. [copyright] 2001 American Institute of Physics

  16. The SALUT Project: Study of Advanced Laser Techniques for the Uncovering of Polychromed Works of Art

    Science.gov (United States)

    van der Snickt, G.; De Boeck, A.; Keutgens, K.; Anthierens, D.

    In order to find out whether the existing laser systems can be employed to remove superimposed layers of paint on secco wall paintings in a selective way, laser tests were carried out on three types of prepared samples simulating three stratigraphies that are frequently encountered in practice. OM, EPMA, colorimetry, μRaman, and FT-IR were used to evaluate the results. It was found that Q-switched Nd:YAG lasers emitting at 1,064nm could be employed to remove unwanted layers of oil paint and limewash, but the treatment of large areas requires implementation of a computer-controlled X-Y-Z station in order to control the parameters. However, the applicability of this technique will remain limited as ablation at the established optimum parameters implied a discoloration of the pigments cinnabar, yellow ochre, and burnt sienna. Moreover, it was observed that no ablation took place when the limewash thickness exceeds 25 μm. Unwanted layers of acrylic could be removed in an efficient way with an excimer laser emitting at 193 nm.

  17. Advanced examination techniques applied to the qualification of critical welds for the ITER correction coils

    CERN Document Server

    Sgobba, Stefano; Libeyre, Paul; Marcinek, Dawid Jaroslaw; Piguiet, Aline; Cécillon, Alexandre

    2015-01-01

    The ITER correction coils (CCs) consist of three sets of six coils located in between the toroidal (TF) and poloidal field (PF) magnets. The CCs rely on a Cable-in-Conduit Conductor (CICC), whose supercritical cooling at 4.5 K is provided by helium inlets and outlets. The assembly of the nozzles to the stainless steel conductor conduit includes fillet welds requiring full penetration through the thickness of the nozzle. Static and cyclic stresses have to be sustained by the inlet welds during operation. The entire volume of helium inlet and outlet welds, that are submitted to the most stringent quality levels of imperfections according to standards in force, is virtually uninspectable with sufficient resolution by conventional or computed radiography or by Ultrasonic Testing. On the other hand, X-ray computed tomography (CT) was successfully applied to inspect the full weld volume of several dozens of helium inlet qualification samples. The extensive use of CT techniques allowed a significant progress in the ...

  18. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques

    KAUST Repository

    Shi, Yumeng

    2014-10-20

    In recent years there have been many breakthroughs in two-dimensional (2D) nanomaterials, among which the transition metal dichalcogenides (TMDs) attract significant attention owing to their unusual properties associated with their strictly defined dimensionalities. TMD materials with a generalized formula of MX2, where M is a transition metal and X is a chalcogen, represent a diverse and largely untapped source of 2D systems. Semiconducting TMD monolayers such as MoS2, MoSe2, WSe2 and WS2 have been demonstrated to be feasible for future electronics and optoelectronics. The exotic electronic properties and high specific surface areas of 2D TMDs offer unlimited potential in various fields including sensing, catalysis, and energy storage applications. Very recently, the chemical vapour deposition technique (CVD) has shown great promise to generate high-quality TMD layers with a scalable size, controllable thickness and excellent electronic properties. Wafer-scale deposition of mono to few layer TMD films has been obtained. Despite the initial success in the CVD synthesis of TMDs, substantial research studies on extending the methodology open up a new way for substitution doping, formation of monolayer alloys and producing TMD stacking structures or superlattices. In this tutorial review, we will introduce the latest development of the synthesis of monolayer TMDs by CVD approaches.

  19. Atomic resolution holography using advanced reconstruction techniques for two-dimensional detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marko, M; Szakal, A; Cser, L [Neutron Spectroscopy Department, Research Institute for Solid State Physics and Optics, PO Box 49, H-1525 Budapest (Hungary); Krexner, G [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Schefer, J, E-mail: marko@szfki.h [Laboratory for Neutron Scattering (LNS), Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2010-06-15

    Atomic resolution holography is based on two concepts. Either the emitter of the radiation used is embedded in the sample (internal source concept) or, on account of the optical reciprocity law, the detector forms part of the sample (internal detector concept). In many cases, holographic objects (atoms and nuclei) simultaneously adopt the roles of both source and detector. Thus, the recorded image contains a mixture of both inside source and inside detector holograms. When reconstructing one type of hologram, the presence of the other hologram causes serious distortions. In the present work, we propose a new method, the so-called double reconstruction (DR), which not only suppresses the mutual distortions but also exploits the information content of the measured hologram more effectively. This novel approach also decreases the level of distortion arising from diffraction and statistical noise. The efficiency of the DR technique is significantly enhanced by employing two-dimensional (2D) area detectors. The power of the method is illustrated here by applying it to a real measurement on a palladium-hydrogen sample.

  20. Advanced techniques in dynamic infrared imaging research and application for cancer patients

    International Nuclear Information System (INIS)

    Infrared Imaging for biomedical applications is a non-invasive technique employed to visualize the distribution of infrared radiance coming from the subject under study, either in a static or a dynamic mode. The main difference is that while with the static method basal situations are studied, in the dynamic approach a sequence of thermograms, using thermal stimuli applied onto the patient are acquired, following the temperature evolution throughout the time. Since tumors possess abnormal metabolic activity, a structure and a vascular distribution essentially different from healthy tissue, and a lack of response to homeostatic signals, thermal stresses enhance even more their presence. For this reason, a completely non-invasive system, referred to as Enhancement and Stimulation System (ESS) was constructed, capable of imparting a cool or hot convective air flow onto the surface to examine and permitting to include in the study the time-course of the thermal stress application. In this work, the design of the Dynamic Infrared Imaging-ESS prototype, its characterization and optimization will be presented. In addition, examples of biomedical interest employing small animals will be shown as well. (author)

  1. Some advances in the instrumental retrospective dosimetry techniques with tooth enamel and quartz

    International Nuclear Information System (INIS)

    Some aspects of retrospective dosimetry with tooth enamel and quartz have been considered. Firstly, the experimental and theoretical investigation had been carried out concerning influence of secondary electron equilibrium on the absorbed dose in enamel under the laboratory irradiation. The irradiation had been made with photons of energy 1,25 MeV, 662 and 100 keV. It is demonstrated that the influence of secondary electron equilibrium on the absorbed dose in enamel does not exceed few percent. Secondly, some of paramagnetic centers of enamel different from CO2- ones have been researched by using of the thermo activation technique. The enamel for this experiment had been carefully purified from organic components and then irradiated following annealed to consecutively increasing temperature. It was established that at least four of EPR centers of enamel possess radiation sensitivity and could be used for dosimetry purposes. Thirsty, it was performed a thorough investigation of the influence of different stages in quartz separation and purification with respect to obtaining of samples for TL-dosimetry. The optimal procedure has been developed

  2. Seismic response analysis of NAGRA-Net stations using advanced geophysical techniques

    Science.gov (United States)

    Poggi, Valerio; Edwards, Benjamin; Dal Moro, Giancarlo; Keller, Lorenz; Fäh, Donat

    2015-04-01

    In cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra), the Swiss Seismological Service (SED) has recently completed the installation of ten new seismological observation stations, three of them including a co-located borehole sensor. The ultimate goal of the project is to densify the existing Swiss Digital Seismic Network (SDSNet) in northern Switzerland, in order to improve the detection of very-low magnitude events and to improve the accuracy of future location solutions. This is strategic for unbiased monitoring of micro seismicity at the locations of proposed nuclear waste repositories. To further improve the quality and usability of the recordings, a seismic characterization of the area surrounding the installation area was performed at each site. The investigation consisted of a preliminary geological and geotechnical study, followed by a seismic site response analysis by means of state-of-the-art geophysical techniques. For the borehole stations, in particular, the characterization was performed by combining different types of active seismic methods (P-S refraction tomography, surface wave analysis, Vertical Seismic Profiling - VSP) with ambient vibration based approaches (wavelet decomposition, H/V spectral ratio, polarization analysis, three-component f-k analysis). The results of all analyses converged to the definition of a mean velocity profile for the site, which was later used for the computation of engineering parameters (travel time average velocity and quarter-wavelength parameters) and the analytical SH-wave transfer function. Empirical site-amplification functions are automatically determined for any station connected to the Swiss seismic networks. They are determined based on building statistical models of systematic site-specific effects in recordings of small earthquakes when compared to the Swiss stochastic ground-motion model. Computed site response is validated through comparison with these empirical

  3. Advances in the regionalization approach: geostatistical techniques for estimating flood quantiles

    Science.gov (United States)

    Chiarello, Valentina; Caporali, Enrica; Matthies, Hermann G.

    2015-04-01

    The knowledge of peak flow discharges and associated floods is of primary importance in engineering practice for planning of water resources and risk assessment. Streamflow characteristics are usually estimated starting from measurements of river discharges at stream gauging stations. However, the lack of observations at site of interest as well as the measurement inaccuracies, bring inevitably to the necessity of developing predictive models. Regional analysis is a classical approach to estimate river flow characteristics at sites where little or no data exists. Specific techniques are needed to regionalize the hydrological variables over the considered area. Top-kriging or topological kriging, is a kriging interpolation procedure that takes into account the geometric organization and structure of hydrographic network, the catchment area and the nested nature of catchments. The continuous processes in space defined for the point variables are represented by a variogram. In Top-kriging, the measurements are not point values but are defined over a non-zero catchment area. Top-kriging is applied here over the geographical space of Tuscany Region, in Central Italy. The analysis is carried out on the discharge data of 57 consistent runoff gauges, recorded from 1923 to 2014. Top-kriging give also an estimation of the prediction uncertainty in addition to the prediction itself. The results are validated using a cross-validation procedure implemented in the package rtop of the open source statistical environment R The results are compared through different error measurement methods. Top-kriging seems to perform better in nested catchments and larger scale catchments but no for headwater or where there is a high variability for neighbouring catchments.

  4. Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique

    Science.gov (United States)

    Sazegaran, Hamid; Kiani-Rashid, Ali-Reza; Khaki, Jalil Vahdati

    2016-04-01

    Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness.

  5. Therapeutic efficacy of a hybrid mandibular advancement device in the management of obstructive sleep apnea assessed with acoustic reflection technique

    Directory of Open Access Journals (Sweden)

    S S Agarwal

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA is one of the most common forms of sleep-disordered breathing. Various treatment modalities include behavior modification therapy, nasal continuous positive airway pressure (CPAP, oral appliance therapy, and various surgical modalities. Oral appliances are noninvasive and recommended treatment modality for snoring, mild to moderate OSA cases and severe OSA cases when patient is not compliant to CPAP therapy and unwilling for surgery. Acoustic reflection technique (ART is a relatively new modality for three-dimensional assessment of airway caliber in various clinical situations. The accuracy and reproducibility of acoustic rhinometry and acoustic pharyngometry assessment are comparable to computerized tomography and magnetic resonance imaging. This case report highlights the therapeutic efficacy of an innovative customized acrylic hybrid mandibular advancement device in the management of polysomnography diagnosed OSA cases, and the treatment results were assessed by ART.

  6. Advanced analytical techniques for the extraction and characterization of plant-derived essential oils by gas chromatography with mass spectrometry.

    Science.gov (United States)

    Waseem, Rabia; Low, Kah Hin

    2015-02-01

    In recent years, essential oils have received a growing interest because of the positive health effects of their novel characteristics such as antibacterial, antifungal, and antioxidant activities. For the extraction of plant-derived essential oils, there is the need of advanced analytical techniques and innovative methodologies. An exhaustive study of hydrodistillation, supercritical fluid extraction, ultrasound- and microwave-assisted extraction, solid-phase microextraction, pressurized liquid extraction, pressurized hot water extraction, liquid-liquid extraction, liquid-phase microextraction, matrix solid-phase dispersion, and gas chromatography (one- and two-dimensional) hyphenated with mass spectrometry for the extraction through various plant species and analysis of essential oils has been provided in this review. Essential oils are composed of mainly terpenes and terpenoids with low-molecular-weight aromatic and aliphatic constituents that are particularly important for public health. PMID:25403494

  7. Advanced x-ray spectrometric techniques for characterization of nuclear materials: An overview of recent laboratory activities

    Energy Technology Data Exchange (ETDEWEB)

    Misra, N.L., E-mail: nlmisra@barc.gov.in

    2014-11-01

    Advancements in x-ray spectrometric techniques at different stages have made this technique suitable for characterization of nuclear materials with respect to trace/major element determinations and compositional uniformity studies. The two important features of total reflection x-ray fluorescence spectrometry: 1) requirement of very small amount of sample in ng level 2) multielement analytical capability, in addition to other features, make this technique very much suitable to nuclear materials characterization as most of the nuclear materials are radioactive and the radioactive waste generated and radiation hazards to the operator are minimum when such low amount of sample is used. Similarly advanced features of energy dispersive x-ray fluorescence e.g. better geometry for high flux, reduction in background due to application of radiation filters have made the measurements of samples sealed inside thin alkathene/PVC covers possible with good sensitivity. This approach avoids putting the instrument inside a glove box for measuring radioactive samples and makes the operation/maintenance of the instrument and analysis of the samples possible in easy and fast manner. This approach has been used for major element determinations in mixed uranium–plutonium samples. Similarly μ-XRF with brilliant and micro-focused excitation sources can be used for compositional uniformity study of reactor fuel pellets. A μ-XRF study using synchrotron light source has been made to assess the compositional uniformity of mixed uranium–thorium oxide pellets produced by different processes. This approach is simple as it does not involve any sample preparation and is non-destructive. A brief summary of such activities carried out in our laboratory in past as well as ongoing and planned for the future have been discussed in the present manuscript. - Highlights: • Advantages of TXRF characterization of nuclear materials are described. • The sample amount required/analytical radioactive

  8. Whole Body Computed Tomography with Advanced Imaging Techniques: A Research Tool for Measuring Body Composition in Dogs

    Directory of Open Access Journals (Sweden)

    Dharma Purushothaman

    2013-01-01

    Full Text Available The use of computed tomography (CT to evaluate obesity in canines is limited. Traditional CT image analysis is cumbersome and uses prediction equations that require manual calculations. In order to overcome this, our study investigated the use of advanced image analysis software programs to determine body composition in dogs with an application to canine obesity research. Beagles and greyhounds were chosen for their differences in morphology and propensity to obesity. Whole body CT scans with regular intervals were performed on six beagles and six greyhounds that were subjected to a 28-day weight-gain protocol. The CT images obtained at days 0 and 28 were analyzed using software programs OsiriX, ImageJ, and AutoCAT. The CT scanning technique was able to differentiate bone, lean, and fat tissue in dogs and proved sensitive enough to detect increases in both lean and fat during weight gain over a short period. A significant difference in lean : fat ratio was observed between the two breeds on both days 0 and 28 (P<0.01. Therefore, CT and advanced image analysis proved useful in the current study for the estimation of body composition in dogs and has the potential to be used in canine obesity research.

  9. Development of Advanced Monitoring System with Reactor Neutrino Detection Technique for Verification of Reactor Operations

    International Nuclear Information System (INIS)

    Recently, technique of Gadolinium-loaded liquid scintillator (Gd-LS) for reactor neutrino oscillation experiments has attracted attention as a monitor of reactor operation and ''nuclear Gain (GA)'' for IAEA safeguards. When the thermal operation power is known, it is, in principle, possible to non-destructively measure the ratio of Pu/U in reactor fuel under operation from the reactor neutrino flux. An experimental program led by Lawrence Livermore National Laboratory and Sandia National Laboratories in USA has already demonstrated feasibility of the reactor monitoring by neutrinos at San Onofre Nuclear Power Station, and the Pu monitoring by neutrino detection is recognized as a candidate of novel technology to detect undeclared operation of reactor. However, further R and D studies of detector design and materials are still necessary to realize compact and mobile detector for practical use of neutrino detector. Considering the neutrino interaction cross-section and compact detector size, the detector must be set at a short distance (a few tens of meters) from reactor core to accumulate enough statistics for monitoring. In addition, although previous reactor neutrino experiments were performed at underground to reduce cosmic ray muon background, feasibility of the measurement at ground level is required for the monitor considering limited access to the reactor site. Therefore, the detector must be designed to be able to reduce external backgrounds extremely without huge shields at ground level, eg. cosmic ray muons and fast neutrons. We constructed a 0.76 ton Gd-LS detector, and carried out a reactor neutrino measurement at the experimental fast reactor JOYO in 2007. The neutrino detector was set up at 24.3m away from the reactor core at the ground level, and we understood the property of the main background; the cosmic-ray induced fast neutron, well. Based on the experience, we are constructing a new detector for the next experiment. The detector is a Gd

  10. Determination of long-lived radionuclides at ultratrace level using advanced mass spectrometric techniques

    International Nuclear Information System (INIS)

    Determination of long-lived radionuclides at sub-fg concentration level is a challenging task in analytical chemistry. Inductively coupled plasma mass spectrometry (ICP-MS) with its ability to provide the sensitive and fast multielemental analysis is one of the most suitable method for the measurements of long lived radionuclides in the trace and ultra trace concentration range. In present the Ph.D. study a variety of procedures have been developed permitting the sub fg ml-1 determination of long-lived radionuclides (e.g. U, Th, Pu) as well as 226Ra (T1/2 = 1600 y) and 90Sr (T1/2= 28.1 y) in different samples. In order to avoid isobaric interferences, to increase the sensitivity, precision and accuracy of the methods the application of different techniques: pre-concentration of the sample, off-line separation on the crown resin, measurements under cold plasma conditions, using microconcentric nebulizers (e.g DIHEN, DS-5) or the application of LA-ICP-MS for sample introduction have been studied. The limits of detection for different radionuclides was significantly improved in comparison to the ones reported in the literature, and, depending on the method applied, was varied from 10-15 to 10-18 g ml-1 concentration range. In addition to the analysis of long lived radionuclides, some other elements, that can present potential interest to the analyzed sample, were measured within the framework of the present study. Laser ablation inductively coupled plasma mass spectrometry (LAICP- MS) was used to produce images of element distribution in 20μm m thin sections of human brain tissue. The sample surface was scanned (raster area ∝80 mm2) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50μm, and laser power density 3x109 W cm-2) in a cooled laser ablation chamber developed for these measurements. Cross sections of human brain samples - hippocampus as well as brain tissues infected and non-infected with Glioblastoma Multiforme (tumor cells) were

  11. Characterization of nanostructures in the live cell plasma membrane utilizing advanced single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    lipid-lipid or protein-lipid interactions, protein-protein interactions play of mayor role for the regulation of cell metabolism and function. In this thesis I further characterized the interaction between human CD4, the major co-receptor in T cell activation, and human Lck, the protein tyrosine kinase essential for early T cell signaling using an ultra-sensitive fluorescence-based method. Interaction dynamics were studied in detail by performing photobleaching experiments and single molecule brightness analysis. This enabled a combined mobility and stoichiometry analysis of Lck-molecules interacting with the captured CD4 protein. In the last part of my thesis I present a single molecule fluorescence study using a variant of an oxidized phospholipid - which is known to induce apoptosis - to probe the structure of the cellular plasmamembrane. The cells were illuminated using a recently introduced technique which utilizes a highly inclined and laminated optical sheet (HILO) to reduce background signal arising from intracellular fluorophores or from cellular autofluorescence. Our data demonstrate the relevance of plasma membrane properties for uptake of oxidized phospholipids, and indicate a novel indirect mechanism for the control of endocytosis. (author)

  12. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF

  13. Conceptual design study and evaluation of an advanced treatment process applying a submerged combustion technique for spent solvents

    International Nuclear Information System (INIS)

    An advanced treatment process based on a submerged combustion technique was proposed for spent solvents and the distillation residues containing transuranium (TRU) nuclides. A conceptual design study and the preliminary cost estimation of the treatment facility applying the process were conducted. Based on the results of the study, the process evaluation on the technical features, such as safety, volume reduction of TRU waste and economics was carried out. The key requirements for practical use were also summarized. It was shown that the process had the features as follows: the simplified treatment and solidification steps will not generate secondary aqueous wastes, the volume of TRU solid waste will be reduced less than one tenth of that of a reference technique (pyrolysis process), and the facility construction cost is less than 1 % of the total construction cost of a future large scale reprocessing plant. As for the low level wastes of calcium phosphate, it was shown that the further removal of β · γ nuclides with TRU nuclides from the wastes would be required for the safety in interim storage and transportation and for the load of shielding. (author)

  14. Post-operative irradiation techniques for advanced larynx and hypopharynx cancer: a dosimetric comparison using anthropomorphic phantoms

    International Nuclear Information System (INIS)

    of irradiation avoid field overlap at the spinal cord; however, the CC technique inherently allows less margin for intrafractional set-up errors. The latter has a more homogeneous dose distribution across the matchline and allows comprehensive irradiation of the tissues about the junction of the supraclavicular and lateral fields which are typically at risk for failure in the setting of advanced disease

  15. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    Science.gov (United States)

    Sakurai, Kenji

    2010-12-01

    measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki

  16. Advanced quadrature sets and acceleration and preconditioning techniques for the discrete ordinates method in parallel computing environments

    Science.gov (United States)

    Longoni, Gianluca

    In the nuclear science and engineering field, radiation transport calculations play a key-role in the design and optimization of nuclear devices. The linear Boltzmann equation describes the angular, energy and spatial variations of the particle or radiation distribution. The discrete ordinates method (S N) is the most widely used technique for solving the linear Boltzmann equation. However, for realistic problems, the memory and computing time require the use of supercomputers. This research is devoted to the development of new formulations for the SN method, especially for highly angular dependent problems, in parallel environments. The present research work addresses two main issues affecting the accuracy and performance of SN transport theory methods: quadrature sets and acceleration techniques. New advanced quadrature techniques which allow for large numbers of angles with a capability for local angular refinement have been developed. These techniques have been integrated into the 3-D SN PENTRAN (Parallel Environment Neutral-particle TRANsport) code and applied to highly angular dependent problems, such as CT-Scan devices, that are widely used to obtain detailed 3-D images for industrial/medical applications. In addition, the accurate simulation of core physics and shielding problems with strong heterogeneities and transport effects requires the numerical solution of the transport equation. In general, the convergence rate of the solution methods for the transport equation is reduced for large problems with optically thick regions and scattering ratios approaching unity. To remedy this situation, new acceleration algorithms based on the Even-Parity Simplified SN (EP-SSN) method have been developed. A new stand-alone code system, PENSSn (Parallel Environment Neutral-particle Simplified SN), has been developed based on the EP-SSN method. The code is designed for parallel computing environments with spatial, angular and hybrid (spatial/angular) domain

  17. Advancements in artificial heart valve disks using nano-sized thin films deposited by CVD and sol-gel techniques

    International Nuclear Information System (INIS)

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although, PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti- coagulation drugs on a regular basis in order to minimise the formation of thrombosis. However, the anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, namely, strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and the coefficient of friction values were obtained from the pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also, in this paper we report the preparation of free standing nanocrystalline diamond films (FSND) using the time-modulated chemical vapor deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO/sub 2/) coatings. The as-grown nc-TiO/sub 2/ coatings were characterized for microstructure using SEM and XRD analysis. (author)

  18. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    Science.gov (United States)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  19. Interval colon cancer in a Lynch syndrome patient under annual colonoscopic surveillance: a case for advanced imaging techniques?

    Directory of Open Access Journals (Sweden)

    Oxentenko Amy S

    2012-05-01

    Full Text Available Abstract Background Lynch syndrome confers increased risk for various malignancies, including colorectal cancer. Colonoscopic surveillance programs have led to reduced incidence of colorectal cancer and reduced mortality from colorectal cancer. Colonoscopy every 1–2 years beginning at age 20–25, or 10 years earlier than the first diagnosis of colorectal cancer in a family, with annual colonoscopy after age 40, is the recommended management for mutation carriers. Screening programs have reduced colon cancer mortality, but interval cancers may occur. Case presentation We describe a 48-year-old woman with Lynch syndrome who was found to have an adenoma with invasive colorectal cancer within one year after a normal colonoscopy. Conclusion Our patient illustrates two current concepts about Lynch syndrome: 1 adenomas are the cancer precursor and 2 such adenomas may be “aggressive,” in the sense that the adenoma progresses more readily and more rapidly to carcinoma in this setting compared to usual colorectal adenomas. Our patient’s resected tumor invaded only into submucosa and all lymph nodes were negative; in that sense, she represents a success for annual colonoscopic surveillance. Still, this case does raise the question of whether advanced imaging techniques are advisable for surveillance colonoscopy in these high-risk patients.

  20. Word程序操作与应用之高级技巧%Advanced Techniques for Word Operation and Application

    Institute of Scientific and Technical Information of China (English)

    杨业辉

    2012-01-01

    图书馆实现办公自动化是衡量其实现现代化管理程度的标准之一。在图书馆办公自动化系统中,Word操作系统因其界面更直观,操作更简捷、文档更具有安全性而成为办公一族新的首选工具软件。文章介绍使用Word程序操作与应用的高级技巧,有助于提高办公效率和办公质量,使行政工作跨进科学管理和科学决策的新时代。%Office automation is one of the most important criteria to measure the management level of a modem library. Among office automation systems in libraries, Microsoft Office Word becomes the favorite tool software of the office clan , as its more intuitive interface, more simple operating, more secure document. This paper will introduce advanced techniques of Word operation and application to people,which can help us to improve the efficiency and quality of the office businesses. It provides a new method to make the management and decision more scientific in the everyday clerical work.

  1. Advancement of gamma-spectroscopic measuring systems of BfS and adaptation of measuring and evaluation techniques to the requirements of emergency response. Final report

    International Nuclear Information System (INIS)

    The final report on advancement of gamma-spectroscopic measuring systems of BfS and adaptation of measuring and evaluation techniques to the requirements of emergency response covers the following issues: results of literature search, calculation of geometric factors, calibration for the helicopter, combination of geometric factors and calibration, measuring flights, detection limit and performance optimization, identification of activities in the air volume.

  2. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  3. A feasibility and optimization study to determine cooling time and burnup of advanced test reactor fuels using a nondestructive technique

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Jorge [Univ. of Utah, Salt Lake City, UT (United States)

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  4. The Effect of Treating Sessile Polyp of Alimental Tract through EMR%内镜黏膜切除术(EMR)治疗消化道无蒂息肉的疗效

    Institute of Scientific and Technical Information of China (English)

    肖琳; 杨坚

    2012-01-01

    目的 总结评价消化内镜黏膜切除术(EMR) 治疗消化道无蒂息肉的疗效.方法 收集分析我院93 例患者,124 个位点的食管胃及结直肠无蒂息肉临床资料,采用消化内镜下黏膜切除术治疗,并对所有切除标本进行病理学检查,术后1、3、6、12 个月和长期胃镜、结肠镜随访复查.结果 所有患者(100% )完整切除,术后1 年复查中未发现残留息肉组织,3 例切除时已经恶变患者术后3 年随访未发现复发和转移病灶,4 例患者术后瘢痕脱落后出血经内镜下止血后出血停止,未发现穿孔和其它并发症发生.结论 消化内镜下黏膜切除术是治疗消化道无蒂息肉的安全和有效的方法.

  5. Measurement of film thickness and void fraction in stratified horizontal gas-liquid flow using an advanced ultrasonic technique

    International Nuclear Information System (INIS)

    The main objective of this work is to present the development and assembling of a new ultrasonic system for the dynamic measurements of liquid film thickness, void fraction and liquid speed of air-water two-phase flow in a horizontal circular pipe test section by using an advanced time averaging ultrasonic technique. Together we present the experimental results of the system tests and its performance on different static and dynamic conditions of stratified air-water flow. In a stratified air-water flow through the horizontal circular pipe, one part of ultrasound pulse discharged from an emitter-receiver transducer, placed at bottom of tube, will be transmitted through the water and then reflected back to the same transducer from air-water or tube wall-water interfaces. These signals can be acquired by an oscilloscope over a period of time, stored on a computer and then plotted as the waveforms. The transit time of a pulse is calculated and converted to the distance between the interfaces, as the sound velocity in water is known at a given temperature. In this way it is possible to determine both water film thickness and void fraction. Other parameters could be deduced too as the wall thickness and the inner diameter of pipe. To determine the liquid speed a pair of ultrasonic transducers were placed respectively upstream and downstream outside tube wall on the same side. The difference in the transit time between the pair of the transducers can be measured and is used to calculate the water speed in the tube. (author)

  6. HUMAN AND THE VIEW OF HUMANITY OF YUNUS EMRE AND MESSAGES TODAY / YUNUS EMRE’NİN İNSANA, İNSANLIĞA BAKISI VE GÜNÜMÜZE MESAJLARI

    Directory of Open Access Journals (Sweden)

    Dr. İsmet SANLI

    2009-04-01

    Full Text Available Yunus Emre, the representatives of the Turkishliterature of mysticism. Knowledge of Islamic beliefs andself-fed style in the poem has said, assets, knowledge,love, morality, and people have argued about thephilosophical views. In this study, Yunus Emre who onthe importance of standing with the meanings "human","humanity" and "human value" concepts in poetry andthese concepts for the people of today will try to identifythe message.

  7. Electron magnetic resonance (EMR) study of electron-hole asymmetry in La1-x Ca x MnO3 manganites (x=0.2,0.8)

    International Nuclear Information System (INIS)

    X-band EMR measurements on powdered samples of single-crystalline La0.8Ca0.2MnO3 and polycrystalline La0.2Ca0.8MnO3 manganites were carried out at 120T500 K aiming to study the effect of the electron-hole doping asymmetry in La1-x Ca x MnO3 system. In the paramagnetic (PM) state both compounds differ in the nature of short-range magnetic orderings observed-clusters of double-exchange coupled Mn3+-Mn4+ ions and magneto-impurity-like clusters in the La0.8Ca0.2MnO3 and La0.2Ca0.8MnO3 compounds, respectively. Ferromagnetic ground state of La0.8Ca0.2MnO3 is characterized by the coexistence of orbitally ordered Mn3+ subsystem and Mn4+ with band-like carriers one, which are responsible for the multiline EMR spectra. Charge-ordered antiferromagnetic ground state of La0.2Ca0.8MnO3 causes a sharp decrease in intensity and then vanishing of the EMR signal observed in the PM region

  8. In-service materials support for safety critical applications – A case study of a high strength Ti-alloy using advanced experimental and modelling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rugg, D. [Rolls-Royce plc, Derby (United Kingdom); Britton, T.B., E-mail: b.britton@imperial.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Gong, J.; Wilkinson, A.J.; Bagot, P.A.J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2014-04-01

    This paper introduces motivations and suitability for using advanced characterisation techniques to study industrially relevant materials, such as titanium alloys for the aerospace industry. These advanced research tools each provide unique information in fundamental research, and by designing appropriate datum studies and modelling support they can be combined with powerful effect to tackle ‘real world’ engineering issues. We demonstrate the use of orientation-corrected nanoindentation, micro-cantilever bend testing and 3D atom probe tomography to investigate a high strength, dual phase engineering alloy (Ti–6Al–4V) with a surface gradient of interstitials.

  9. Laparoscopic total pelvic exenteration using transanal minimal invasive surgery technique with en bloc bilateral lymph node dissection for advanced rectal cancer.

    Science.gov (United States)

    Hayashi, Kengo; Kotake, Masanori; Kakiuchi, Daiki; Yamada, Sho; Hada, Masahiro; Kato, Yosuke; Hiranuma, Chikashi; Oyama, Kaeko; Hara, Takuo

    2016-12-01

    A 59-year-old man presenting with fecal occult blood visited our hospital. He was diagnosed with advanced lower rectal cancer, which was contiguous with the prostate and the left seminal vesicle. There were no metastatic lesions with lymph nodes or other organs. We performed laparoscopic total pelvic exenteration (LTPE) using transanal minimal invasive surgery technique with bilateral en bloc lateral lymph node dissection for advanced primary rectal cancer after neoadjuvant chemoradiotherapy. The total operative time was 760 min, and the estimated blood loss was 200 ml. LTPE is not well established technically, but it has many advantages including good visibility of the surgical field, less blood loss, and smaller wounds. A laparoscopic approach may be an appropriate choice for treating locally advanced lower rectal cancer, which requires TPE. PMID:27460130

  10. Low Frequency EPR and EMR Point Spectroscopy and Imaging of a Surface.

    Science.gov (United States)

    Switala, Lauren E; Ryan, William J; Hoffman, Merlin; Brown, Wyatt; Hornak, Joseph P

    2016-05-01

    Low frequency electron paramagnetic resonance (LFEPR) spectrometers operating between 100 and 500 MHz typically have large-volume magnets that accommodate large samples. LFEPR spectroscopy with a 2.9 mm diameter surface coil was used to record point spectra and image the spatial distribution of the spin probe 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and electrophotographic toner in printed letters on a flat surface. The location of the surface coil was fixed on the desired location when a spectrum was recorded. The magnetic field of the spectrometer was fixed on the location of the signal and the sample was scanned under the surface coil in parallel trajectories to produce an image of the signal in the letters "LFEPR". We speculate on the utility of this technique to study flat objects such as paintings and illuminated manuscripts with cultural heritage significance. PMID:26706135

  11. A new primary cleft lip repair technique tailored for Asian patients that combines three surgical concepts: Comparison with rotation--advancement and straight-line methods.

    Science.gov (United States)

    Funayama, Emi; Yamamoto, Yuhei; Furukawa, Hiroshi; Murao, Naoki; Shichinohe, Ryuji; Hayashi, Toshihiko; Oyama, Akihiko

    2016-01-01

    Various techniques have been described for unilateral cleft lip repair. These may be broadly classified into three types of procedure/concept: the straight-line method (SL; Rose-Thompson effect); rotation-advancement (RA; upper-lip Z-plasty); and the triangular flap method (TA; lower-lip Z-plasty). Based on these procedures, cleft lip repair has evolved in recent decades. The cleft lip repair method in our institution has also undergone several changes. However, we have found that further modifications are needed for Asian patients who have wider philtral dimples and columns than Caucasians, while following the principles of the original techniques mentioned above. Here, we have incorporated the advantages of each procedure and propose a refined hybrid operating technique, seeking a more appropriate procedure for Asian patients. To evaluate our new technique, a comparison study was performed to evaluate RA, SL, and our technique. We have used our new technique to treat 137 consecutive cleft lip cases of all types and degrees of severity, with or without a cleft palate, since 2009. In the time since we adopted the hybrid technique, we have observed improved esthetics of the repaired lip. Our technique demonstrated higher glance impression average scores than RA/SL. PMID:26653337

  12. High speed control of electro-mechanical transduction Advanced Drive Techniques for Optimized Step-and-Settle Response of MEMS Micromirrors

    CERN Document Server

    Imboden, Matthias; Pollock, Corey; Lowell, Evan; Akbulut, Mehmet; Morrison, Jessica; Stark, Thomas; Bifano, Thomas G; Bishop, David J

    2015-01-01

    Micro/Nano Electro Mechanical Systems (MEMS/NEMS) provide the engineer with a powerful set of solutions to a wide variety of technical challenges. However, because they are mechanical systems, response times can be a limitation. In some situations, advanced engineered drive techniques can improve response times by as much as a thousand, significantly opening up the application space for MEMS/NEMS solutions.

  13. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    International Nuclear Information System (INIS)

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: proton PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician

  14. Techniques to Assess and Mitigate the Environmental Risk Posed by use of Airguns: Recent Advances from Academic Research Programs

    Science.gov (United States)

    Miller, P. J.; Tyack, P. L.; Johnson, M. P.; Madsen, P. T.; King, R.

    2006-05-01

    There is considerable uncertainty about the ways in which marine mammals might react to noise, the biological significance of reactions, and the effectiveness of planning and real-time mitigation techniques. A planning tool commonly used to assess environmental risk of acoustic activities uses simulations to predict acoustic exposures received by animals, and translates exposure to response using a dose-response function to yield an estimate of the undesired impact on a population. Recent advances show promise to convert this planning tool into a real-time mitigation tool, using Bayesian statistical methods. In this approach, being developed for use by the British Navy, the environmental risk simulation is updated continuously during field operations. The distribution of exposure, set initially based on animal density, is updated in real-time using animal sensing data or environmental data known to correlate with the absence or presence of marine mammals. This conditional probability of animal presence should therefore be more accurate than prior probabilities used during planning, which enables a more accurate and quantitative assessment of both the impact of activities and reduction of impact via mitigation decisions. Two key areas of uncertainty in addition to animal presence/absence are 1.) how biologically-relevant behaviours are affected by exposure to noise, and 2.) whether animals avoid loud noise sources, which is the basis of ramp-up as a mitigation tool. With support from MMS and industry partners, we assessed foraging behaviour and avoidance movements of 8 tagged sperm whales in the Gulf of Mexico during experimental exposure to airguns. The whale that was approached most closely prolonged a surface resting bout hours longer than typical, but resumed foraging immediately after the airguns ceased, suggesting avoidance of deep diving necessary for foraging near active airguns. Behavioral indices of foraging rate (echolocation buzzes produced during prey

  15. Mechanical evaluation of six techniques for stable fixation of the sagittal split osteotomy after counterclockwise mandibular advancement

    DEFF Research Database (Denmark)

    De Oliveira, Leandro Benetti; Reis, Jose Mauricio Nunes; Spin-Neto, Rubens; Gabrielli, Marisa Aparecida Cabrini; Oguz, Yener; Pereira-Filho, Valfrido Antonio

    2016-01-01

    We have evaluated the resistance to displacement of six stable methods of fixation of a sagittal split ramus osteotomy (SSRO) in the mandibular advancement with counterclockwise rotation. We tested 60 synthetic hemimandibles in six groups of 10 each: Group I - fixation with a straight four-hole 2...

  16. Necip Fazıl Kısakürek’in Yunus Emre Adlı Tiyatro Eseri Üzerine Bir İnceleme A Study About Yunus Emre, A Theatre Work Written By Necip Fazıl Kısakürek

    Directory of Open Access Journals (Sweden)

    Turan GÜLER

    2012-09-01

    Full Text Available Yunus Emre who lived between the XII- XIV centuries is one of the prominent figures of Islamic thought history. The effect of him has endured in different fields until today, and now he is handled in a play (theatre work ya da presentation. Necip Fazıl Kısakürek who attaches great importance to theatre in all literary genre in his play, Yunus Emre, appointed Yunus Emre as the protagonist of the play. In this work, Necip Fazıl Kısakürek's play “Yunus Emre” is going to be analyzed in respect to its structural components such as identity analysis, subject, plot, personality analysis, and place and scene analysis. The tale- based life of Yunus Emre who has a prominent place in Turkish-Islamic history is pictured in this monument. In this table, on one hand Yunus Emre's adventure beginning with his coming to Anatolia is told, and on the other hand his mystical travel that he experienced by means of his poems is narrated. In the play, references are made to some social and political events that took place at time of Yunus Emre in Anatolia. Issues such as Mongol attacks and Mongol domination in Anatolia, the last situation of State of the Seljuks, the conflicts among the Principalities, the despair of the public, the various roles that the sects undertook during that chaos also take place in that play. In our survey, beside the structural elements, also such kind of thematic cases are mentioned. In this way, the sophisticated identity of Yunus Emre is aimed to be manifested. Ultimately, an important matter for yunus Emre, „Great Jihad‟ that is to say self-discipline, which is also the main subject of the thesis is pointed out. Yunus Emre, XIII.-XIV. Yüzyıllarda yaşayan, Türk – İslam düşünce tarihinin önemli isimlerinden biridir. Şiirleri aracılığı ile yayılma imkânı bulan düşüncelerinin etkisi günümüze kadar farklı alanlarda sürmüş olan Yunus Emre, bu defa bir tiyatro oyunu içinde ele alınmıştır. Edebi t

  17. A fluorescent micro capsule manufacture of magnetic particle testing for advanced inspection technique of heat exchanger tube

    International Nuclear Information System (INIS)

    Fine magnetic particles having UV fluorescence are commonly used in magnetic crack detection technique. Stress corrosion cracking sometimes happens in nuclear power plants. To apply this technique to maintain the heat exchanger tubes, it is desired that these particles has performance to be collected with ease. To collect these fine magnetic particles from millimeter size crack depth, a chemosynthesis technique to produce the micro capsules successfully produced hundreds micron sized capsules containing the fine magnetic particles. The synthesized micro capsules indicated the collective sensitivity for lines of magnetic force. (author)

  18. Echolocation calls and morphology in the Mehelyi’s (Rhinolophus mehelyi and mediterranean (<em>R. euryale horseshoe bats: implications for resource partitioning

    Directory of Open Access Journals (Sweden)

    Egoitz Salsamendi

    2006-03-01

    Full Text Available Abstract Rhinolophus euryale and <em>R. mehelyi are morphologically very similar species and their distributions overlap extensively in the Mediterranean basin. We modelled their foraging behaviour using echolocation calls and wing morphology and, assuming niche segregation occurs between the two species, we explored how it is shaped by these factors. Resting frequency of echolocation calls was recorded and weight, forearm length, wing loading, aspect ratio and wing tip shape index were measured. <em>R. mehelyi showed a significantly higher resting frequency than <em>R. euryale, but differences are deemed insufficient for dietary niche segregation. Weight and forearm length were significantly larger in <em>R. mehelyi. The higher values of aspect ratio and wing loading and a lower value of wing tip shape index in <em>R. melehyi restrict its flight manoeuvrability and agility. Therefore, the flight ability of <em>R. mehelyi may decrease as habitat complexity increases. Thus, the principal mechanism for resource partitioning seems to be based on differing habitat use arising from differences in wing morphology. Riassunto Ecolocalizzazione e morfologia nei rinolofi di Mehely (Rhinolophus mehelyi e euriale (<em>R. euryale: implicazioni nella segregazione delle risorse trofiche. Rhinolophus euryale e <em>R. mehelyi sono specie morfologicamente molto simili, la cui distribuzione risulta largamente coincidente in area mediterranea. Il comportamento di foraggiamento delle due specie è stato analizzato in funzione delle caratteristiche dei segnali di ecolocalizzazione e della morfologia alare, ed è stata valutata l’incidenza di questi fattori nell’ipotesi di una segregazione delle nicchie. È stata rilevata la frequenza a riposo dei segnali ultrasonori, così come il peso, la lunghezza dell’avambraccio, il carico alare, e due

  19. Robotic-assisted laparoscopic prostatectomy: An update on functional and oncologic outcomes, techniques, and advancements in technology.

    Science.gov (United States)

    Ramirez, Daniel; Zargar, Homayoun; Caputo, Peter; Kaouk, Jihad H

    2015-12-01

    The robotic platform has revolutionized the management of prostate cancer over the last 15 years. Several techniques have been developed to improve functional and oncologic outcomes, including meticulous apical and posterior dissection, nerve sparing techniques, bladder neck and urethral length sparing, and anastomotic reconstruction. Future developments involving novel single-site, robotic technology will undoubtedly further the field of minimally invasive urology. These topics are reviewed within this article. PMID:26369794

  20. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    OpenAIRE

    Sy, Amy

    2013-01-01

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrate...

  1. Comparison of advanced cutting techniques on hardox 500 steel material and the effect of structural properties of the material

    OpenAIRE

    L. Dahil; İ. Dahil; A. Karabulut

    2014-01-01

    Purpose of this study is to determine the most advantageous cutting method for a better competition chance. By presenting high hardness, high strength and superior toughness Hardox 500 steel. This sample was cut by plasma, laser, wire erosion and abrasive water jet (AWJ) methods from advanced cutting technologies. By taking micro structure photos of surface of the sample cut by different cutting methods, effects of different cutting methods on metallurgical structure of material were compared.

  2. Advancement flaps are enough in most cases as onco plastic technique for breast cancer even with central or periareolar localisation

    International Nuclear Information System (INIS)

    I have read with great interest khafagy et all s article in ENC1 2012:24:91-6 This small series needs explanations for following questions: 1- Thirteen cases with N0 have been operated by a complete axillary dissection. Would it be better to undertake sentinel lymph node biopsy (SLNB) in these cases? 2- The patients with periareolar tumor localization (half of the patients) underwent needlessly a pedicled flap operation instead of an advancement flap or simple rotation flap. They are simple and therefore less time-consuming onco plastic procedures. They do not require whole nippleareola complex excision. Therefore, advancement flaps or periareolar mastopexy [1] were more reasonable. 3- Ten patients with N2 represent locally advanced cancer of breast (Stage III). They should be treated by primary chemotherapy instead of surgery first. It needs explanation. 4- Four cases with N+ have not been given adjuvant chemotherapy. It should be explained. 5- The rates of good cosmetic results were the same for both patients and doctors. But in the literature, the rates of health professionals are nearly always lower than patients [2], It needs explanation. 6- The condition of contralateral breasts has not been presented. Is not there some cases requiring contralateral mastoplasty, reduction or any other cosmetic procedure? Kind regards.

  3. Investigations on the magnetic field coupling of automotive high voltage systems to determine relevant parameters for an EMR-optimized designing

    Science.gov (United States)

    Krause, David; John, Werner; Weigel, Robert

    2016-03-01

    The implementation of electrical drive trains in modern vehicles is a new challenge for EMC development. This contribution depicts a variety of investigations on magnetic field coupling of automotive high-voltage (HV) systems in order to fulfil the requirements of an EMR-optimized designing. The theoretical background is discussed within the scope of current analysis, including the determination of current paths and spectral behaviour. It furthermore presents models of shielded HV cables with particular focus on the magnetic shielding efficiency. Derived findings are validated by experimental measurements of a state-of-the-art demonstrator on system level. Finally EMC design rules are discussed in the context of minimized magnetic fields.

  4. Keeping it real--building an ROI model for an ambulatory EMR initiative that the physician practices espouse.

    Science.gov (United States)

    Mullen, Rńee; Donnelly, John T

    2006-01-01

    The ambulatory electronic medical record initiative at Magic Valley Regional Medical Center (MVRMC) in South Central Idaho underwent a rigorous product evaluation process that resulted in one of the market-leading EMR products being selected for implementation. MVRMC includes four business entities, including a 213-bed regional hospital and a 19-practice management services organization. Early in the process, the organization viewed buy-in from its physicians as a critical success factor. The physicians had been integral to product selection, and it was equally important for them to trust the economic model for its acquisition-especially because it was likely that they would be asked to put "some skin in the game." To make this initiative economically feasible, MVRMC received a grant from Agency for Healthcare Research and Quality based on the potential impact of the endeavor on healthcare delivery in the region. However, because the functional analysis did not result in the selection of the least expensive product, the AHRQ grant would only help defray the startup expenses, but not ongoing support and maintenance expenses after implementation; these costs would be borne by anticipated increases in the practice's revenue or reduction in its operating expenses. The ROI model would need to explain how each practice, from the single physician specialist to an almost 20-physician family practice, could pay for the desirable outcomes discussed during the selection phase of the project. The physicians, who had participated in technology initiatives in the past, were skeptical that cost-justifying an IT system was realistic, even though they recognized the potential benefits it could have on the quality and consistency of the care. Because some process standardization within and between practices would be needed to use electronic charting effectively, it was important that the ROI model did not outweigh the benefits of an as-yet untested operational workflow that

  5. Economic Assessment of Opportunities for Managed Aquifer Recharge Techniques in Spain Using an Advanced Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Enrique Fernández Escalante

    2014-07-01

    Full Text Available This paper investigates the economic aspects of Managed Aquifer Recharge (MAR techniques considered in the DINA-MAR (Depth Investigation of New Areas for Managed Aquifer Recharge in Spain project. This project firstly identified the areas with potential for MAR for the whole of the Iberian Peninsula and Balearic Islands of Spain using characteristics derived from 23 GIS layers of physiographic features, spanning geology, topography, land use, water sources and including existing MAR sites. The work involved evaluations for 24 different types (techniques of MAR projects, over this whole area accounting for the physiographic features that favor each technique. The scores for each feature for each type of technique were set based on practical considerations and scores were accumulated for each location. A weighting was assigned to each feature by “training” the integrated score for each technique across all the features with the existing MAR sites overlay, so that opportunities for each technique could be more reliably predicted. It was found that there were opportunities for MAR for 16% of the area evaluated and that the additional storage capacity of aquifers in these areas was more than 2.5 times the total storage capacity of all existing surface water dams in Spain. The second part of this work, which is considered internationally unique, was to use this GIS methodology to evaluate the economics of the various MAR techniques across the region. This involved determining an economic index related to key physiographic features and applying this as an additional GIS overlay. Again this was trained by use of economic information for each of the existing MAR sites for which economic data and supply or storage volume were available. Two simpler methods were also used for comparison. Finally, the mean costs of MAR facilities and construction projects were determined based on the origin of the water. Maps of potential sites for Managed Aquifer

  6. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors

    International Nuclear Information System (INIS)

    White matter tractography based on diffusion tensor imaging has become a well-accepted non-invasive tool for exploring the white matter architecture of the human brain in vivo. There exist two main key obstacles for reconstructing white matter fibers: firstly, the implementation and application of a suitable tracking algorithm, which is capable of reconstructing anatomically complex fascicular pathways correctly, as, e.g., areas of fiber crossing or branching; secondly, the definition of an appropriate tracking seed area for starting the reconstruction process. Large intersubject, anatomical variations make it difficult to define tracking seed areas based on reliable anatomical landmarks. An accurate definition of seed regions for the reconstruction of a specific neuronal pathway becomes even more challenging in patients suffering from space occupying pathological processes as, e.g., tumors due to the displacement of the tissue and the distortion of anatomical landmarks around the lesion. To resolve the first problem, an advanced tracking algorithm, called advanced fast marching, was applied in this study. The second challenge was overcome by combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) in order to perform fMRI-guided accurate definition of appropriate seed areas for the DTI fiber tracking. In addition, the performance of the tasks was controlled by a MR-compatible power device. Application of this combined approach to eight healthy volunteers and exemplary to three tumor patients showed that it is feasible to accurately reconstruct relevant fiber tracts belonging to a specific functional system. fMRI-guided advanced DTI fiber tracking has the potential to provide accurate anatomical and functional information for a more informed therapeutic decision making. (orig.)

  7. Response to Letter to Editor: Advancement flaps are enough in most cases as onco plastic technique for breast cancer even with central or periareolar localization

    International Nuclear Information System (INIS)

    (1)Thirteen cases with N0 have been operated by a complete axillary dissection. Would it be better to undertake sentinel lymph node biopsy (SLNB) in these cases? Answer: Our treatment guidelines do not include SLNB, although it is very much acceptable, but our breast cancer patients are not candidates for such technique. However, previous studies at NCI found an incidence of LN metastasis in T1 tumors of about 70%. (2) The patients with periareolar tumor localization (half of the patients) underwent needlessly a pedicled flap operation instead of an advancement flap or simple rotation flap. They are simple and therefore less time-consuming oncoplastic procedures. They do not require whole mpple areola complex. Therefore, advancement flaps or periareolar mastopexy (1) was more reasonable. Answer: We believe that the proposed technique (advancement flaps) will result in nipple areola complex shift and bad cosmetic outcome, that is why our described technique, although the number of cases is limited, will allow for centralization of the NAC and better cosmcsis. (3) Ten patients with N2 represent locally advanced cancer of breast (Stage III). They should be treated primarily by systemic therapy instead of surgery first. It needs explanation. Answer: Now, in our treatment protocols, patients with advanced disease, or nodal disease would receive CT primarily N2 regarding the number of lymph nodes. (4) Four cases with N+ have not been given adjuvant chemotherapy. It should be explained. Answer: They refused to receive CT. (5) The rates of good cosmetic results were the same for both patients and doctors. But in the literature, the rates of health professionals are nearly always lower than patients (2) . It needs explanation. Answer: We do not think it needs explanation. This is a subjective way for analysis of cosmetic appearance. Moreover, according to the literature, patient expectations usually lead to a lower acceptance than surgeons. (6) The condition of

  8. 昆虫触角感受器电位的研究进展%Research Advances in the Electroantennogram(EAG) Technique of Insects

    Institute of Scientific and Technical Information of China (English)

    陶瑞松

    2012-01-01

    The research advances and limitations of the EAG technique in insect chemical communication were introduced, which provided a theoretical basis for resolving the problems of related experiments and laid foundation for revealing the relationships between insect antenna and behavior.%介绍了昆虫化学通讯中触角感受器电位的研究进展及其局限性,对解决相关试验中遇到的问题具有一定的参考价值,以期为揭示触角感受器与行为反应之间的关系奠定基础.

  9. Advanced eddy current technique for measurement of annular gap between pressure tube and calandria tube in Indian Pressurized Heavy Water Reactors (PHWRs)

    International Nuclear Information System (INIS)

    In Indian Pressurised Heavy Water Reactors (PHWRs), the PT (pressure tube) is designed to be nominally concentric with the encircling CT (calandria tube). Due to various factors PT becomes eccentric with respect to CT over the life of reactor. If this becomes excessive, hot PT will come in contact with cold CT. Such a cold spot could act as potential location for initiating blister formation and premature failure of PT. Hence it is important to periodically measure annular gap between PT and CT. An advanced eddy current technique has been successfully developed and incorporated in BARCIS (BARC Channel Inspection System) for measurement of PT-CT gap. (author). 4 refs., 3 figs

  10. Using simple instrumentation to solve complex analytical problems: advanced AAS atomizers for volatile compounds and analyte trapping techniques

    Czech Academy of Sciences Publication Activity Database

    Dědina, Jiří; de Moraes, D. P.; Dessuy, M. B.; Kratzer, Jan; Řezáčová, Olga; Svoboda, Milan; Matoušek, Tomáš; de Moraes Flores, E. M.; Vale, M. G. R.

    2010. s. 59. [Rio Symposium on Atomic Spectrometry /11./. 24.10.2010-29.10.2010, Mar del Plata] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : AAS * volatile compounds * analyte trapping techniques Subject RIV: CB - Analytical Chemistry, Separation http://www.11thriosymposium.com.ar/index.htm

  11. Advanced decision support techniques in combination with smart card and local operating network technologies for intelligent energy management in buildings

    NARCIS (Netherlands)

    Kolokotsa, D.; Kalaitzakis, K.; Stavrakakis, G.; Sutherland, G.; Santamouris, M.; Soultanidis, S.; Moumtzis, P.; Brunet, J.; Guillaumin, P.; Pelegrini, L.; Romiti, G.; Bakker, L.G.

    1998-01-01

    The purpose of the present paper is to present recent developments of integrated building energy manaeement system combining intelligent decision making systems and smart card technology using Local Operating Network (LON) techniques applying mainly to existing buildings and to new buildings with mi

  12. On the advance of non-invasive techniques implementation for monitoring moisture distribution in cultural heritage: a case study

    Science.gov (United States)

    Inmaculada Martínez Garrido, María; Gómez Heras, Miguel; Fort González, Rafael; Valles Iriso, Javier; José Varas Muriel, María

    2015-04-01

    This work presents a case study developed in San Juan Bautista church in Talamanca de Jarama (12th -16th Century), which have been selected as an example of a historical church with a complex construction with subsequent combination of architectural styles and building techniques and materials. These materials have a differential behavior under the influence of external climatic conditions and constructive facts. Many decay processes related to humidity are affecting the building's walls and also have influence in the environmental dynamics inside the building. A methodology for monitoring moisture distribution on stone and masonry walls and floors was performed with different non-invasive techniques as thermal imaging, wireless sensor networks (WSN), portable moisture meter, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), in order to the evaluate the effectiveness of these techniques for the knowledge of moisture distribution inside the walls and the humidity origin. North and south oriented sections, both on walls and floors, were evaluated and also a general inspection in the church was carried out with different non-invasive techniques. This methodology implies different monitoring stages for a complete knowledge of the implication of outdoors and indoors conditions on the moisture distribution. Each technique is evaluated according to its effectiveness in the detection of decay processes and maintenance costs. Research funded by Geomateriales (S2013/MIT-2914) and Deterioration of stone materials in the interior of historic buildings as a result induced variation of its microclimate (CGL2011-27902) projects. The cooperation received from the Complutense University of Madrid's Research Group Alteración y Conservación de los Materiales Pétreos del Patrimonio (ref. 921349), the Laboratory Network in Science and Technology for Heritage Conservation (RedLabPat, CEI Moncloa) and the Diocese of Alcalá is gratefully acknowledged. MI Mart

  13. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    Science.gov (United States)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  14. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  15. Advanced Spectroscopic Synchrotron Techniques to Unravel the Intrinsic Properties of Dilute Magnetic Oxides: The Case of Co:ZnO

    International Nuclear Information System (INIS)

    The use of synchrotron-based spectroscopy has revolutionized the way we look at matter. X-ray absorption spectroscopy (XAS) using linear and circular polarized light offers a powerful toolbox of element-specific structural, electronic, and magnetic probes that is especially well suited for complex materials containing several elements. We use the specific example of Zn1-xCoxO (Co:ZnO) to demonstrate the usefulness of combining these XAS techniques to unravel its intrinsic properties. We are able to demonstrate, that as long as phase separation or excessive defect formation is absent Co:ZnO is paramagnetic and we can establish independent quality indicators based on XAS. Samples which show long-range magnetic order fail to meet the quality indicators and complementary experimental techniques such as x-ray diffraction and transmission electron microscopy indeed prove phase separation. By deconvoluting the XAS spectra, the characteristic spectral features of the phase separated materials are derived.

  16. Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: the case of Co:ZnO

    International Nuclear Information System (INIS)

    The use of synchrotron-based spectroscopy has revolutionized the way we look at matter. X-ray absorption spectroscopy (XAS) using linear and circular polarized light offers a powerful toolbox of element-specific structural, electronic and magnetic probes that is especially well suited for complex materials containing several elements. We use the specific example of Zn1-xCoxO (Co:ZnO) to demonstrate the usefulness of combining these XAS techniques to unravel its intrinsic properties. We demonstrate that as long as phase separation or excessive defect formation is absent, Co:ZnO is paramagnetic. We can establish quantitative thresholds based on four reliable quality indicators using XAS; samples that show ferromagnet-like behaviour fail to meet these quality indicators, and complementary experimental techniques indeed prove phase separation. Careful analysis of XAS spectra is shown to provide quantitative information on the presence and type of dilute secondary phases in a highly sensitive, non-destructive manner.

  17. A Study on Advanced Ultrasonic Technique for Thermal Fatigue Crack Detection of Thermal Stratification Pipeline in NPPs

    International Nuclear Information System (INIS)

    Ultrasonic inspection techniques are widely used to ensure the reliable operation and lifetime extension of nuclear power plants. Thermal stratification typically occurs in the surge line or the main feed water lines in nuclear power plants. Thermal stratification is a flow condition in which hotter fluid flows over a colder region of fluid in pipeline. Since a change in temperature causes a change in the density of the pipe wall, these thermal conditions might lead to increased overall bending stresses in pipelines. In addition, cyclic changes in stratification height cause thermal stress. This cycling can lead to thermal fatigue crack initiation and crack growth. If thermal fatigue crack grows continuously, the leakage of water or steam will occur and this may cause serious problems on reactor cooling system. Therefore, these cracks must be detected before the crack growth reaches for leakage. In this study, an ultrasonic technique was employed for evaluation of thermal fatigue cracks due to thermal stratification in pipelines of nuclear power plants. The angle beam ultrasonic techniques(time-of-flight diffraction(TOFD) and shadow effect method) were used to detect thermal fatigue cracks which grow from the inner surface of the pipeline. The angle beam ultrasonic technique is usually used for the detection of cracks on the inside of the structures. When ultrasonic waves generated from the angle probe encounters a crack, ultrasonic waves of the shear modes are reflect or transmit from the crack wall. Also ultrasonic waves generated from the angle probe shear modes are diffracted from the tip of the crack, and the shear wave is reflected from the corner of the crack

  18. The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

    Energy Technology Data Exchange (ETDEWEB)

    Puderbach, Michael; Eichinger, Monika [German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg (Germany)

    2010-06-15

    Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy. (orig.)

  19. The role of advanced imaging techniques in cystic fibrosis follow-up: is there a place for MRI?

    International Nuclear Information System (INIS)

    Cystic fibrosis (CF) lung disease is caused by mutations in the CFTR-gene and remains one of the most frequent lethal inherited diseases in the Caucasian population. Given the progress in CF therapy and the consecutive improvement in prognosis, monitoring of disease progression and effectiveness of therapeutic interventions with repeated imaging of the CF lung plays an increasingly important role. So far, the chest radiograph has been the most widely used imaging modality to monitor morphological changes in the CF lung. CT is the gold standard for assessment of morphological changes of airways and lung parenchyma. Considering the necessity of life-long repeated imaging studies, the cumulative radiation doses reached with CT is problematic for CF patients. A sensitive, non-invasive and quantitative technique without radiation exposure is warranted for monitoring of disease activity. In previous studies, MRI proved to be comparable to CT regarding the detection of morphological changes in the CF lung without using ionising radiation. Furthermore, MRI was shown to be superior to CT regarding assessment of functional changes of the lung. This review presents the typical morphological and functional MR imaging findings with respect to MR-based follow-up of CF lung disease. MRI offers a variety of techniques for morphological and functional imaging of the CF lung. Using this radiation free technique short- and long-term follow-up studies are possible enabling an individualised guidance of the therapy. (orig.)

  20. Framework for the mapping of the monthly average daily solar radiation using an advanced case-based reasoning and a geostatistical technique.

    Science.gov (United States)

    Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon

    2014-04-15

    For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation. PMID:24635702

  1. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    Science.gov (United States)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  2. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key step in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).

  3. Study of the composition of biologically active fractions from plant extracts by advanced techniques of HPLC and UHPLC/MS

    OpenAIRE

    Casetta, Cristina

    2013-01-01

    L'analyse d'extraits de plantes a augmenté d'importance soit pour la recherche des nouvelles molécules pharmaceutiques que pour le contrôle qualité des médicaments. En analytique, la récente tendance est de réduire les temps d’analyse afin d’augmenter la productivité, mais pour les analyses des plantes, les nouvelles techniques (hautes températures, particules sub-2µm ou particules superficiellement poreuses sub-3µm) sont utiles plutôt pour augmenter l’efficacité chromatographique et la sépar...

  4. Time-correlated single photon counting: an advancing technique in a plate reader for assay development and high throughput screening

    Science.gov (United States)

    Näther, Dirk U.; Fenske, Roger; Hurteaux, Reynald; Majno, Sandra; Smith, S. Desmond

    2006-10-01

    A new plate reader (Nanotaurus) has been developed by Edinburgh Instruments that has the principle design features of a confocal microscope and utilises the technique of Time Correlated Single Photon Counting for data acquisition. The advantages of Fluorescence Lifetime Measurements in the nanosecond time scale and analysis methods to recover lifetime parameters are discussed based on experimental data. First working assays using changes of lifetime parameters are presented that clearly demonstrate the advantages of the new instrument for biochemical assays and show strong promise for cell-based assays, by utilising the independence of lifetime parameters from sample volume and concentration.

  5. 机载激光成像技术新进展%New advances in airborne laser imaging techniques

    Institute of Scientific and Technical Information of China (English)

    羊毅; 丁全心; 张春风

    2011-01-01

    The latest development of airborne laser imaging techniques was introduced.The optimum design of airborne micropulse laser imaging was theoretically studied and analyzed in the application of long-range target detection and recognition.The advantages of photon-counting detector arrays followed by multichannel timing receivers for high resolution topographic mapping were discussed.Practical technology issues were considered such as detector and/or receiver dead times and their impact on signal detection and ranging accuracy and resolution.As a new measurement technique, micropulse laser imaging increases the surface sampling rate by over three orders of magnitude.For long-range target detection, compared with the capabilities of conventional high SNR airborne altimeters, significantly more compact and power efficient instruments can be constructed by the use of photon-counting techniques.It is shown that single-photon-counting laser imaging technique will find a wide application in long-range target recognition and precision guidance etc.%详细介绍了机载微脉冲激光成像技术的最新研究进展,并以机载远程目标探测与识别为应用背景,对机载微脉冲激光成像原理进行了理论研究,对比分析了在高分辨率成像系统中采用多通道计数器的单光子探测阵列的优点,着重分析了单光子探测和/或接收器死时间及其对信号探测、测距精度、距离分辨率的影响等关键技术.研究结果表明:与传统的高信噪比激光成像技术相比,微脉冲激光成像技术可以将目标回波采样率提高3个数量级,显著提高了垂直分辨率,降低了系统复杂性,在远距离目标识别、精确制导等领域有着广泛的应用前景.

  6. Improved structural characterization of the Earth's crust at the German Continental Deep Drilling Site using advanced seismic imaging techniques

    Science.gov (United States)

    Hloušek, F.; Hellwig, O.; Buske, S.

    2015-10-01

    This paper describes the principles of three novel seismic imaging techniques and their application to two deep seismic reflection data sets from the vicinity of the German Continental Deep Drilling Site (KTB). These imaging techniques are based on Kirchhoff prestack depth migration and use an inherent restriction of the migration operator to focus the wavefield to its actual reflection point. For Fresnel volume migration, the emergent angle at the receivers is estimated and then used to propagate the wavefield back into the subsurface along which the Fresnel volume is determined. The migration operator is restricted to this volume, thereby focusing the image to the part of the isochrone which physically contributes to the reflection. For coherency migration, the coherency of the wavefield at neighboring traces is calculated and used as a weighting factor within the migration integral, leading to a comparable focusing to the reflection point. For coherency-based Fresnel volume migration, both approaches are combined, resulting in an even more focused seismic image with significantly increased image quality. We applied these methods to two seismic data sets from the area around the KTB: a survey with standard split-spread geometry (KTB8502) and a sparse data set with a small number of source points in combination with short receiver lines (INSTRUCT93). The focusing approaches yield major improvements in the final images for both data sets. Incoherent noise and migration artifacts are reduced and the visibility of crustal structures is strongly enhanced, allowing for an improved geologic and tectonic characterization.

  7. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    Science.gov (United States)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  8. Helical tomotherapy: an innovative radiotherapy technique for the treatment of locally advanced oropharynx and inoperable oral cavity carcinoma

    International Nuclear Information System (INIS)

    To report our initial clinical experience of helical tomotherapy (HT) in the treatment of locally advanced oropharynx and inoperable oral cavity cancer. Between February 2008 and January 2011, 24 consecutive patients, 15 with oropharyngeal cancer and 9 with oral cavity cancer were treated with exclusive radiotherapy or concomitant chemoradiotherapy. Simultaneous integrated boost (SIB) in 30 fractions scheme was prescribed to all patients, using Helical Tomotherapy. Doses administered to primary tumor, oropharynx/oral cavity and positive lymph-nodes and negative lymph-nodes were 66–67.5 Gy, 60–63 Gy and 54 Gy, respectively. Complete response rate for the oropharynx and the oral cavity group was 86.7% and 77.8%, respectively. The 1 and 2-year Overall Survival (OS) and Disease Free Survival (DFS) rate for the oropharynx group was 92.9%, 85.1%, 92.9% and 77.4% respectively. For the oral cavity group, 1 and 2-year OS and DFS rates were 55.6%, 55.6%, 75% and 75%, respectively. No patient developed grade ≥3 mucositis, dysphagia or dermatitis. The maximum late-toxicity grade observed was 2, for all the variables examined. HT appears to achieve encouraging clinical outcomes in terms of response, survival and toxicity rates

  9. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: Application to Anabaena Sensory Rhodopsin

    Science.gov (United States)

    Ward, Meaghan E.; Brown, Leonid S.; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors.

  10. Monitoring Cultural Heritage Sites with Advanced Multi-Temporal InSAR Technique: The Case Study of the Summer Palace

    Directory of Open Access Journals (Sweden)

    Panpan Tang

    2016-05-01

    Full Text Available Cultural heritage sites are rare and irreplaceable wealth of human civilization. The majority of them are becoming unstable due to a combination of human and natural disturbances. High-precision, efficient deformation monitoring facilitates the early recognition of potential risks and enables preventive diagnosis of heritage sites. In this study, an advanced Multi-Temporal Interferometric Synthetic Aperture Radar (MTInSAR approach was developed by jointly analyzing Persistent Scatterers (PSs and Distributed Scatterers (DSs using high-resolution SAR images. Taking the World Heritage Site of Summer Palace in Beijing as the experimental site, deformation resulting from PSs/DSs showed that overall the site was generally stable except for specific areas and/or monuments. Urbanization (construction and demolition triggered new subsidence in the vicinity of East and South Gate of the site. Slight to moderate (mm/cm-level instabilities of ruins and monuments on Longevity Hill were detected, perhaps due to a combination of destructive anthropogenic activities and long-term natural decay. Subsidence was also detected along the Kunming Lakeside and was probably attributable to variation of the groundwater level, excessive visitor numbers as well as lack of maintenance. This study presents the potential of the MTInSAR approach for the monitoring and conservation of cultural heritage sites.

  11. Advanced performance and scalability of Si nanowire field-effect transistors analyzed using noise spectroscopy and gamma radiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Vitusevich, S. A., E-mail: s.vitusevich@fz-juelich.de; Pud, S.; Offenhäusser, A. [Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich (Germany); Petrychuk, M. V. [Radiophysics Faculty, Shevchenko National University, Kiev (Ukraine); Danilchenko, B. A. [Institute of Physics, NASU, Kiev (Ukraine)

    2013-11-28

    High-quality Si nanowire field effect transistors (FETs) were fabricated using thermal nanoimprint and chemical wet etching technologies. FET structures of different lengths demonstrate high carrier mobility with values of about 750 cm{sup 2}/Vs and low volume densities of active traps in the dielectric layers of 5 × 10{sup 17} cm{sup −3} eV{sup −1}. We investigated the transport properties of these n-type channel structures using low-frequency noise spectroscopy before and after gamma radiation treatment. Before gamma irradiation, FET structures with lengths of less than 4 μm exhibited noise from contact regions with 1/(L{sup 2}) dependence for the relative 1/f noise. After gamma radiation, the spectra reflected the priority of channel noise with 1/L dependence for all samples. The transport characteristics show that the fabricated nanowire FETs improved scalability, decreased parameter scattering, and increased stability after treatment. The results demonstrate that these nanowire FETs are promising for nanoelectronic and biosensor applications due to the cost-efficient technology and advanced performance of FETs with improved stability and reliability.

  12. 炼厂固废处理技术进展%Advances on Treating Technique for Solid Waste in Refinery

    Institute of Scientific and Technical Information of China (English)

    张一; 丛晓强; 姜毅; 王海燕

    2012-01-01

    石油炼制工业产生的固体废物主要来自于生产工艺本身以及污水处理设施,成分复杂,应对其进行无害化处理或综合利用。本文主要介绍了对于炼厂固废中废碱渣、废白土以及废催化剂处理技术的研究及应用进展,并提出了今后的发展方向和建议。%Solid waste from refinery, produced mostly in production process and sewage treatment facilities, was one of major wastes. They should be treated harmlessly or utilized comprehensively. The advanced treatment technology of solid wastes which included waste alkaline residue, waste clay and waste catalyst was summarized. In addition, the development trend and suggestion were put forward.

  13. Advanced solid-state NMR techniques for characterization of membrane protein structure and dynamics: application to Anabaena Sensory Rhodopsin.

    Science.gov (United States)

    Ward, Meaghan E; Brown, Leonid S; Ladizhansky, Vladimir

    2015-04-01

    Studies of the structure, dynamics, and function of membrane proteins (MPs) have long been considered one of the main applications of solid-state NMR (SSNMR). Advances in instrumentation, and the plethora of new SSNMR methodologies developed over the past decade have resulted in a number of high-resolution structures and structural models of both bitopic and polytopic α-helical MPs. The necessity to retain lipids in the sample, the high proportion of one type of secondary structure, differential dynamics, and the possibility of local disorder in the loop regions all create challenges for structure determination. In this Perspective article we describe our recent efforts directed at determining the structure and functional dynamics of Anabaena Sensory Rhodopsin, a heptahelical transmembrane (7TM) protein. We review some of the established and emerging methods which can be utilized for SSNMR-based structure determination, with a particular focus on those used for ASR, a bacterial protein which shares its 7TM architecture with G-protein coupled receptors. PMID:25637099

  14. Advances in the understanding of early Huntington's disease using the functional imaging techniques of PET and SPET

    International Nuclear Information System (INIS)

    The functional imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPET) have been used to study regional brain function in Huntington's disease (HD) in vivo. Reduced striatal glucose metabolism and dopamine receptor binding are evident in all symptomatic HD patients and in ∼50% of asymptomatic adult mutation carriers. These characteristics correlate with clinical measures of disease severity. Reduced cortical glucose metabolism and dopamine receptor binding, together with reduced striatal and cortical opioid receptor binding, have also been demonstrated in symptomatic patients with HD. Repeat PET measures of striatal function have been used to monitor the progression of this disease objectively. In the future, functional imaging will provide a valuable way of assessing the efficacy of both fetal striatal cell implants and putative neuroprotective agents, such as nerve growth factors. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Investigation of flow behaviour of coat/ash particles in an advanced pressurised fluidized bed gasifier (APFBG) using radiotracer technique

    International Nuclear Information System (INIS)

    Knowledge of Residence Time Distribution (RTD), Mean Residence Time (MRT) and degree of backmixing of solid phase is important for efficient operation of the coal gasifier. Radiotracer technique was used for measure RTD of coal/ash particles in a pilot-scale gasifier and obtain the values of MRT and backmixing. Lanthanum 140 labeled coal (100 g) was used as a tracer. The tracer was instantaneously injected into the coal feed line and monitored at ash and gas outlets of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tank-in-series model. The simulation RTD data indicated good degree of mixing with minor bypassing/short-circulating of coal particles. The results of the investigation were found useful for scale-up of the gasification process. (author)

  16. The advanced technique of on-line D2O leakage monitoring using FT-IR in CANDU NPP

    International Nuclear Information System (INIS)

    In a CANDU reactor, it is necessary to monitor the leakage of D2O that serves as a moderator and a coolant. The present monitoring systems at Wolsong-1 is dispersive infrared spectrometer. However, owing to the problems, such as low sensitivity and degradation of the equipment, it is needed to develop a new instrumental method for the monitoring of D2O leakage. This demand made us to carry out a series of experiments to test the possibility of FT-IR as a new monitoring method for the D2O leakage. Our experimental results show that the D2O on-line monitoring using FT-IR gives the precision of ±5.1 ppm that is an improved value of dispersive infrared spectrometer by about 50 %. Therefore, it is worthwhile to develop the FT-IR method as a future technique for the D2O leakage monitoring system

  17. Investigation on development of advanced materials by solvothermal technique; Sorubo thermal hanno riyo senshin zairyo kaihatsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Solvothermal reaction is reaction under high temperature and high pressure, which is expected to fabricate new functional materials. In this study, the materials are classified into two fields, i.e., inorganic materials, metals and their composites and organic materials and their composites. The current status of R and D of production and processing technology in each field is surveyed and the prospect of it is discussed. For the inorganic materials, metals and their composites, it is explained that very fine metal oxide particles, complex oxides, single crystals, whiskers, compounds with layer structure, metastable compounds, ion conductors and catalysts with high ability could be produced only by controlling the solvothermal reactions in atomic order. For the organic materials and their composites, surveyed results of the solvothermal technique using non-aqueous solutions are mainly provided. The necessity of a national project for researches on the solvothermal reactions is proposed from the viewpoint of resource, environment and energy. 777 refs., 38 figs., 26 tabs.

  18. Visual and efficient immunosensor technique for advancing biomedical applications of quantum dots on Salmonella detection and isolation

    Science.gov (United States)

    Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong

    2016-02-01

    It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here

  19. Electron back scattered diffraction - an advanced technique for study of microtexture and orientation relationships in titanium alloys

    International Nuclear Information System (INIS)

    Many commonly used engineering materials exhibit solid-state phase transformations, which are successfully utilized to obtain microstructures that exhibit the best material performance, by appropriate design of thermo mechanical treatments. During such transformations, the product and parent phases frequently obey specific crystallographic Orientation Relationships (OR), study of which is useful to understand the mechanism of phase transformation and also tailor the microstructure for better properties. Selected Area Diffraction (SAD) analysis in Transmission Electron Microscopy has been traditionally used for study of OR. However, with the advent of SEM-OIM (Orientation Imaging Microscopy) using Electron Back Scattered Diffracted (EBSD) technique, it has been possible to study the orientation of the grains in a microscopic region, with a good spatial and angular resolution. The automation in EBSD has enabled a rapid analysis of a statistically large amount of data for identification of phases and their orientation. The governing OR can be arrived by comparing the orientations of neighboring parent and product grains in the region of interest, together with the nature of deviation from exact OR, if any. This technique has been successfully employed to study the OR between β and α phase in an α/β alloy of Ti-5TA-1.8Nb, which is illustrated in this paper. The alloy exhibited a transformed β structure, with colonies of lamellar α//β and grain boundary-α along the prior-β boundaries. The crystallographic orientation of a lamellae and the neighbouring fine β lamellae were studied and Burgers OR namely β(110)//α(001) and β(111)//α(11-20) was found to be obeyed. The α colonies within the common prior-β grain exhibited different orientations corresponding to different variants, dictated by 12 possible variants during β to α transformation. The grain boundary α was found to have an orientation that obeyed Burgers Orientation Relationship with both the

  20. Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer

    International Nuclear Information System (INIS)

    To define optimal keV settings for advanced monoenergetic (Mono+) dual-energy computed tomography (DECT) in patients with head and neck squamous cell carcinoma (SCC). DECT data of 44 patients (34 men, mean age 55.5 ± 16.0 years) with histopathologically confirmed SCC were reconstructed as 40, 55, 70 keV Mono + and M0.3 (30 % 80 kV) linearly blended series. Attenuation of tumour, sternocleidomastoid muscle, internal jugular vein, submandibular gland, and noise were measured. Three radiologists with >3 years of experience subjectively assessed image quality, lesion delineation, image sharpness, and noise. The highest lesion attenuation was shown for 40 keV series (248.1 ± 94.1 HU), followed by 55 keV (150.2 ± 55.5 HU; P = 0.001). Contrast-to-noise ratio (CNR) at 40 keV (19.09 ± 13.84) was significantly superior to all other reconstructions (55 keV, 10.25 ± 9.11; 70 keV, 7.68 ± 6.31; M0.3, 5.49 ± 3.28; all P < 0.005). Subjective image quality was highest for 55 keV images (4.53; κ = 0.38, P = 0.003), followed by 40 keV (4.14; κ = 0.43, P < 0.001) and 70 keV reconstructions (4.06; κ = 0.32, P = 0.005), all superior (P < 0.004) to linear blending M0.3 (3.81; κ = 0.280, P = 0.056). Mono + DECT at low keV levels significantly improves CNR and subjective image quality in patients with head and neck SCC, as tumour CNR peaks at 40 keV, and 55 keV images are preferred by observers. (orig.)

  1. Superior Hypogastric Nerve Block to Reduce Pain After Uterine Artery Embolization: Advanced Technique and Comparison to Epidural Anesthesia

    International Nuclear Information System (INIS)

    PurposeTo evaluate a modified superior hypogastric nerve block (SHNB) to reduce pain after uterine artery embolization (UAE) compared to epidural anesthesia.Materials and methodsIn this retrospective study, the amount of opiate drugs needed after UAE was compared between SHNB and epidural anesthesia. Eighty one consecutive women (mean age: 43.67 years) were in the SHNB group and 27 consecutive women (mean age: 43.48 years) treated earlier at the same institution in the epidural anesthesia group. UAE was performed from a unilateral femoral artery approach using a 4F catheter. 500–700 or 700–900 μm trisacryl gelatine microspheres were used as embolic agents. The SHNB was performed by advancing a 21G from the abdominal wall below the umbilicus to the anterior portion of the 5th vertebral body. For optimal guidance a cranio-caudal tilt of 5°–15° was used. On a lateral view the correct contrast distribution in front of the vertebral body is confirmed. Then 20 ml local anesthesia (ropivacain 0.75 %) is injected. In case of an asymmetric right–left distribution the needle was repositioned.ResultsAll SHNB were successful without severe complications. The mean time for the SHNB was 4 min 38 s (2 min 38 s–9 min 27 s). The needle was repositioned in average 0.87 times. The opiate dose for the SHNB group was 19.33 ± 22.17 mg which was significantly lower. The average time to receive an opiate drug after SHNB was 4 h 41 min.ConclusionThe SHNB is a safe and minimally time-consuming way to reduce pain after UAE especially within the first 4 h

  2. Assessment of an advanced monoenergetic reconstruction technique in dual-energy computed tomography of head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Moritz H.; Scholtz, Jan-Erik; Kraft, Johannes; Bauer, Ralf W.; Kaup, Moritz; Dewes, Patricia; Bucher, Andreas M.; Burck, Iris; Lehnert, Thomas; Kerl, J.M.; Vogl, Thomas J. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Wagenblast, Jens [University Hospital Frankfurt, Department of Otolaryngology, Head and Neck Surgery, Frankfurt am Main (Germany); Wichmann, Julian L. [University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt am Main (Germany); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2015-08-15

    To define optimal keV settings for advanced monoenergetic (Mono+) dual-energy computed tomography (DECT) in patients with head and neck squamous cell carcinoma (SCC). DECT data of 44 patients (34 men, mean age 55.5 ± 16.0 years) with histopathologically confirmed SCC were reconstructed as 40, 55, 70 keV Mono + and M0.3 (30 % 80 kV) linearly blended series. Attenuation of tumour, sternocleidomastoid muscle, internal jugular vein, submandibular gland, and noise were measured. Three radiologists with >3 years of experience subjectively assessed image quality, lesion delineation, image sharpness, and noise. The highest lesion attenuation was shown for 40 keV series (248.1 ± 94.1 HU), followed by 55 keV (150.2 ± 55.5 HU; P = 0.001). Contrast-to-noise ratio (CNR) at 40 keV (19.09 ± 13.84) was significantly superior to all other reconstructions (55 keV, 10.25 ± 9.11; 70 keV, 7.68 ± 6.31; M0.3, 5.49 ± 3.28; all P < 0.005). Subjective image quality was highest for 55 keV images (4.53; κ = 0.38, P = 0.003), followed by 40 keV (4.14; κ = 0.43, P < 0.001) and 70 keV reconstructions (4.06; κ = 0.32, P = 0.005), all superior (P < 0.004) to linear blending M0.3 (3.81; κ = 0.280, P = 0.056). Mono + DECT at low keV levels significantly improves CNR and subjective image quality in patients with head and neck SCC, as tumour CNR peaks at 40 keV, and 55 keV images are preferred by observers. (orig.)

  3. Superior Hypogastric Nerve Block to Reduce Pain After Uterine Artery Embolization: Advanced Technique and Comparison to Epidural Anesthesia

    Energy Technology Data Exchange (ETDEWEB)

    Binkert, Christoph A., E-mail: christoph.binkert@ksw.ch [Kantonsspital Winterthur, Institute of Radiology and Nuclear Medicine (Switzerland); Hirzel, Florian C. [Kantonsspital Winterthur, Department of Gynecology (Switzerland); Gutzeit, Andreas; Zollikofer, Christoph L. [Kantonsspital Winterthur, Institute of Radiology and Nuclear Medicine (Switzerland); Hess, Thomas [Kantonsspital Winterthur, Department of Gynecology (Switzerland)

    2015-10-15

    PurposeTo evaluate a modified superior hypogastric nerve block (SHNB) to reduce pain after uterine artery embolization (UAE) compared to epidural anesthesia.Materials and methodsIn this retrospective study, the amount of opiate drugs needed after UAE was compared between SHNB and epidural anesthesia. Eighty one consecutive women (mean age: 43.67 years) were in the SHNB group and 27 consecutive women (mean age: 43.48 years) treated earlier at the same institution in the epidural anesthesia group. UAE was performed from a unilateral femoral artery approach using a 4F catheter. 500–700 or 700–900 μm trisacryl gelatine microspheres were used as embolic agents. The SHNB was performed by advancing a 21G from the abdominal wall below the umbilicus to the anterior portion of the 5th vertebral body. For optimal guidance a cranio-caudal tilt of 5°–15° was used. On a lateral view the correct contrast distribution in front of the vertebral body is confirmed. Then 20 ml local anesthesia (ropivacain 0.75 %) is injected. In case of an asymmetric right–left distribution the needle was repositioned.ResultsAll SHNB were successful without severe complications. The mean time for the SHNB was 4 min 38 s (2 min 38 s–9 min 27 s). The needle was repositioned in average 0.87 times. The opiate dose for the SHNB group was 19.33 ± 22.17 mg which was significantly lower. The average time to receive an opiate drug after SHNB was 4 h 41 min.ConclusionThe SHNB is a safe and minimally time-consuming way to reduce pain after UAE especially within the first 4 h.

  4. Advancements in Micrometeorological Technique for Monitoring CH4 Release from Remote Permafrost Regions: Principles, Emerging Research, and Latest Updates

    Science.gov (United States)

    Burba, George; Budishchev, Artem; Gioli, Beniamino; Haapanala, Sami; Helbig, Manuel; Losacco, Salvatore; Mammarella, Ivan; Moreaux, Virginie; Murphy, Patrick; Oechel, Walter; Peltola, Olli; Rinne, Janne; Sonnentag, Oliver; Sturtevant, Cove; Vesala, Timo; Zona, Donatella; Zulueta, Rommel

    2014-05-01

    Flux stations have been widely used to monitor release and uptake rates of CO2, CH4, H2O and other gases from various ecosystems for climate research for over 30 years. The stations provide accurate and continuous measurements of gas exchange at time scales ranging from 15 or 30 minutes to multiple years, and at spatial scales ranging from thousands m2 to multiple km2, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in gas release due to weather or man-triggered events (pressure changes, ice breakage and melts, ebullition events, etc.). They can also detect slow changes related to seasonal dynamics and man-triggered processes (seasonal freeze and thaw, long-term permafrost degradation, etc.). From 1980s to mid-2000s, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular researcher. In the past 3-5 years, due to significant efforts of global and regional flux networks and technological developments, the methodology became fairly standardized. Majority of current stations compute gas emission and uptake rates using eddy covariance method, as one of the most direct micrometeorological techniques. Over 600 such flux stations operate in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, airplanes, ships, etc.). With increasing atmospheric temperatures in the Arctic likely resulting in a higher rate of permafrost degradation, measurements of gas exchange dynamics become particularly important. The permafrost regions store a significant amount of organic materials under anaerobic conditions, leading to large CH4 production and accumulation in the upper layers of bedrock, soil and ice. These regions may become a significant potential source of global CH4 release under a warming climate over the following decades and centuries. Present measurements of CH4 release

  5. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: the case study of the city of Rome, Italy

    International Nuclear Information System (INIS)

    Monitoring of deformation phenomena affecting urban areas and man-made structures is of key relevance for the preservation of the artistic, archaeological and architectural heritage. The differential SAR interferometry (DInSAR) technique has already been demonstrated to be an effective tool for non-invasive deformation analyses over large areas by producing spatially dense deformation maps with centimetre to millimetre accuracy. Moreover, by exploiting long sequences of SAR data acquired by different sensors, the advanced DInSAR technique referred to as the small baseline subset (SBAS) approach allows providing long-term deformation time series, which are strategic for guaranteeing the monitoring of urban area displacements. In this work, we investigate the effectiveness of the two-scale multi-sensor SBAS-DInSAR approach to detect and monitor displacements affecting historical and artistic monuments. The presented results, achieved by applying the full resolution SBAS technique to a huge set of ERS-1/2 and ENVISAT data, spanning the 1992–2010 time interval and relevant to the city of Rome (Italy), show the capability of this approach to detect and analyse the temporal evolution of possible deformation phenomena affecting historical buildings and archaeological sites. Accordingly, our analysis demonstrates the effectiveness of the full resolution multi-sensor SBAS approach to operate as a surface deformation tool for supporting the study and conservation strategies of the historical, cultural and artistic heritage

  6. Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk. Planning study in esophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrian, K. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Dept. of Radiation Oncology; Marienhospital Herne (Germany). Dept. of Radiation Oncology; Bochum Univ., Herne (Germany). Universitaetsklinikum; Oechsner, M.; Kampfer, S.; Molls, M.; Geinitz, H. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Dept. of Radiation Oncology; Schuster, T. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Inst. of Medical Statistics and Epidemiology

    2013-04-15

    The goal of this work was to investigate the potential of advanced radiation techniques in dose escalation in the radiotherapy (RT) for the treatment of esophageal carcinoma. A total of 15 locally advanced esophageal cancer (LAEC) patients were selected for the present study. For all 15 patients, we created a 3D conformal RT plan (3D-45) with 45 Gy in fractions of 1.8 Gy to the planning target volume (PTV1), which we usually use to employ in the neoadjuvant treatment of LAEC. Additionally, a 3D boost (as in the primary RT of LAEC) was calculated with 9 Gy in fractions of 1.8 Gy to the boost volume (PTV2) (Dmean) to a total dose of 54 Gy (3D-54 Gy), which we routinely use for the definitive treatment of LAEC. Three plans with a simultaneous integrated boost (SIB) were then calculated for each patient: sliding window intensity-modulated radiotherapy (IMRT-SIB), volumetric modulated arc therapy (VMAT-SIB), and helical tomotherapy (HT-SIB). For the SIB plans, the requirement was that 95 % of the PTV1 receive {>=} 100 % of the prescription dose (45 Gy in fractions of 1.8 Gy, D95) and the PTV2 was dose escalated to 52.5 Gy in fractions of 2.1 Gy (D95). The median PTV2 dose for 3D-45, 3D-54, HT-SIB, VMAT-SIB, and IMRT-SIB was 45, 55, 54, 56, and 55 Gy, respectively. Therefore, the dose to PTV2 in the SIB plans was comparable to the 3D-54 plan. The lung dose in the SIB plans was in the range of the standard 3D-45, which is applied for neoadjuvant radiotherapy. The mean lung dose for the same plans was 13, 15, 12, 12, and 13 Gy, respectively. The V5 lung volumes were 71, 74, 79, 75, and 73 %, respectively. The V20 lung volumes were 20, 25, 16, 18, and 19 %, respectively. New treatment planning techniques enable higher doses to be delivered for neoadjuvant radiotherapy of LAEC without a significant increase in the delivered dose to the organs at risk. Clinical investigations are warranted to study the clinical safety and feasibility of applying higher doses through advanced

  7. Application of caudal septal advancement technique in nasal tip plasty%鼻中隔尾段前徙术在鼻尖成形中的应用

    Institute of Scientific and Technical Information of China (English)

    徐航

    2012-01-01

    Objective To build the steady framework of the nasal tip by using caudal septal advancement technique to obtain the permanent nasorostral configuration.Methods From Oct 2009 to Apr 2011,the caudal septal advancement technique was used to reconstruct the septum to make the septal anterior angel and the caudal septal margin reach the anticipated height and length of the tip,then medial crus and the vault of the lower lateral cartilage were sutured to the caudal septum to form the steady supporting structure of the nasal tip.Results 3-16 months follow-up in 26 cases showed that 2 cases appeared the staircase deformity in the junction of the bone and the cartilage in the dorsum,but the nasorostral configuration was good.3 cases whose tip and columella were deviated before the operation appeared the deviation again after 3 months but the nasorostral configuration was better than before.The other 21 cases were good.Conclusions It is a available method of using caudal septal advancement technique to form the steady nasorostral configuration.%目的 通过鼻中隔尾段前徙术,建立稳定的鼻尖支撑结构,以获得持久的鼻尖形态.方法 应用鼻中隔尾段前徙术重构鼻中隔,使鼻中隔前角及尾侧缘达到鼻尖预计的高度和长度;再将下外侧软骨穹窿、鼻翼内侧脚与鼻中隔尾侧缝合,从而形成稳定的鼻尖支撑结构.结果 26例受术者随访3~16个月,其中2例出现鼻背骨与软骨衔接处阶梯状改变,但鼻尖形态良好;3例原有鼻尖鼻小柱偏斜的患者,在3个月后出现再次偏斜,但较原先有一定改善;其余21例均鼻尖形态良好.结论 利用鼻中隔尾段前徙术可形成稳定的鼻尖形态,是一种有效的方法.

  8. Spinal Cord Segmentation by One Dimensional Normalized Template Matching: A Novel, Quantitative Technique to Analyze Advanced Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Cadotte, Adam; Cadotte, David W; Livne, Micha; Cohen-Adad, Julien; Fleet, David; Mikulis, David; Fehlings, Michael G

    2015-01-01

    Spinal cord segmentation is a developing area of research intended to aid the processing and interpretation of advanced magnetic resonance imaging (MRI). For example, high resolution three-dimensional volumes can be segmented to provide a measurement of spinal cord atrophy. Spinal cord segmentation is difficult due to the variety of MRI contrasts and the variation in human anatomy. In this study we propose a new method of spinal cord segmentation based on one-dimensional template matching and provide several metrics that can be used to compare with other segmentation methods. A set of ground-truth data from 10 subjects was manually-segmented by two different raters. These ground truth data formed the basis of the segmentation algorithm. A user was required to manually initialize the spinal cord center-line on new images, taking less than one minute. Template matching was used to segment the new cord and a refined center line was calculated based on multiple centroids within the segmentation. Arc distances down the spinal cord and cross-sectional areas were calculated. Inter-rater validation was performed by comparing two manual raters (n = 10). Semi-automatic validation was performed by comparing the two manual raters to the semi-automatic method (n = 10). Comparing the semi-automatic method to one of the raters yielded a Dice coefficient of 0.91 +/- 0.02 for ten subjects, a mean distance between spinal cord center lines of 0.32 +/- 0.08 mm, and a Hausdorff distance of 1.82 +/- 0.33 mm. The absolute variation in cross-sectional area was comparable for the semi-automatic method versus manual segmentation when compared to inter-rater manual segmentation. The results demonstrate that this novel segmentation method performs as well as a manual rater for most segmentation metrics. It offers a new approach to study spinal cord disease and to quantitatively track changes within the spinal cord in an individual case and across cohorts of subjects. PMID:26445367

  9. Advanced multivariate techniques to investigate vegetation-environmental complex of pine forests of moist temperate areas of Pakistan

    International Nuclear Information System (INIS)

    Forty one stands of conifer forests of moist temperate areas, covering the natural limits of this forest type, in northern Pakistan were investigated. Multivariate techniques including cluster analysis (Ward's agglomerative method and TWINSPAN a divisive method) as well as ordination DECORANA) were used to explore vegetation composition and structure of canopy trees and under storey (shrubs and herbs) vegetation and their relationship with the associated environmental factors. Classification of over storey trees derived by TWINSPAN and Ward's methods showed some similarities in groups. Among the topographic variables, only elevation was found to be significant (P < 0.01) while edaphic variables showed no significant difference in group means. For under storey vegetation some similarities were also recorded between TWINSPAN and Ward's method. Among environmental variables elevation (P < 0.001), aspect (P< 0.05), canopy cover (P < 0.001) and soil pH (P < 0.01) were found to be significant. In many cases relationship of axes in DCA stand ordination and environmental variables were also significantly correlated, however axis two of under storey ordination did not show any significant correlation with any environmental variables. Present study showed similarities between Ward's cluster analysis of tree vegetation and under storey vegetation data, despite a long history of anthropogenic disturbance in these areas. (author)

  10. Developments of new advanced techniques for use of a reactor in livestock studies and expansion of their utilization

    International Nuclear Information System (INIS)

    There remain many problems to be solved on the absorption, metabolisms, accumulations and functions of minor elements in domestic animals. Development of new techniques using reactor was attempted to produce more domestic animals and increase livestock products by resolving such problems. Prompt γ-ray analysis (PGA) was used to analyze biological samples in this study. Water added with sodium borate (100 ppm) was given to the sheep and the amounts of boron in their feces were determined by PGA. The amounts in the feces increased from the first day of the administration of boron water and reached the peak on the 8th day. The concentration was ranging in 34-340 ppm, whereas that of the control was in 34-40 ppm. Then, to examine the applicability of activable tracers; samarium (Sm), ytterbium (Yb) and lanthanum (La) as a marker, the food passing time through the digestive track was determined for calves according to activation analysis. Neutron irradiation of the feces sample from the calves was conducted by reactor JRR-3M. The measuring sensitivity was 0.1-1.0 μg for either of these elements. (M.N.)

  11. Advances in cloud-chamber techniques and measurements of W value in a tissue-equivalent gas

    International Nuclear Information System (INIS)

    A cloud chamber which can make visible individual ions in the tracks of low-energy electrons and α particles in available at Harwell. Work on the theory of droplet formation and growth has enabled a tissue-equivalent gas of lower density than previously possible to be used in the chamber. This has enabled even the closest ions in particle tracks to be individually resolved. Techniques have been developed to provide more accurate assessment of the gas and vapor pressures of the various components in the gas mixture. An x-ray set has been built to allow electrons produced from carbon-characteristic x rays (0.28 keV) to be studied. W values have been calculated and results of 35.9 +- 0.4 and 31.0 +- 0.6 eV (ion pair)ka have been obtained for electrons from carbon and aluminum x rays, respectively. Fano factors have been found to be in the region of 0.25 for carbon x rays and 0.4 for aluminum x rays. A 244Cm α source with suitable filtration has been used to study α-track segments at energies of 5.0, 3.5, and 1.1 MeV. W values of 32.5 +- 3.5, 30.2 +- 3.5, and 33.7 +- 3.5 eV (ion pair)ka, respectively, have been obtained

  12. Electromagnetic self-consistent field initialization and fluid advance techniques for hybrid-kinetic PWFA code Architect

    Science.gov (United States)

    Massimo, F.; Marocchino, A.; Rossi, A. R.

    2016-09-01

    The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.

  13. Advances in diagnostic techniques of toxoplasmosis%弓形虫病诊断方法研究进展

    Institute of Scientific and Technical Information of China (English)

    冯嘉轩; 赵永坤; 孟繁平; 吴泽民; 刘智; 李娜; 刘全

    2016-01-01

    Toxoplasmosis is a severe parasitic zoonosis caused byToxoplasma gondii, which poses a threat to human health. In this paper, the diagnostic techniques of toxoplasmosis and detection methods ofT. gondii were reviewed, including non-DNA-based diagnostic methods, serological assays, and molecular methods based on detection of parasite nucleic acid in hope of providing an insight into the development of novel diagnostic technologies and methods of toxoplasmosis.%弓形虫病是由弓形虫感染引起的一种严重的人兽共患寄生虫病,对人类健康造成极大威胁。本文对弓形虫病诊断技术,包括不依赖DNA检测诊断方法、血清学检测以及基于寄生虫核酸的分子生物学方法进行综述,为弓形虫病诊断技术和方法的发展提供新的思路。

  14. Conventional fascial technique versus mesh repair for advanced pelvic organ prolapse: Analysis of recurrences in treated and untreated compartments.

    Science.gov (United States)

    Damiani, G R; Riva, D; Pellegrino, A; Gaetani, M; Tafuri, S; Turoli, D; Croce, P; Loverro, G

    2016-04-01

    117 women with severe pelvic organ prolapse (POP; stage > 2) were enrolled to elucidate a 24-month outcome of POP surgery, using conventional or mesh repair with 3 techniques. 59 patients underwent conventional repair and 58 underwent mesh repair. Two types of mesh were used: a trocar-guided transobturator polypropylene (Avaulta, Bard Inc.) and a porcine dermis mesh (Pelvisoft, Bard Inc.). Women with recurrences, who underwent previous unsuccessful conventional repair, were randomised. Primary outcome was the evaluation of anatomic failures (prolapse stage > 1) in treated and untreated compartments. Anatomic failure was observed in 11 of 58 patients (19%; CI 8.9-29) in the mesh group and in 16 of 59 patients (27.1%; p value = 0.3) in the conventional group. 9 of 11 failures in the mesh group (15.5%; CI 6.2-24.8) were observed in the untreated compartment (de novo recurrences), 14.3% in Pelvisoft and 16.7% in Avaulta arm, while only 1 recurrence in the untreated compartment (1.7%) was observed in the conventional group (odds ratio 10.6, p = 0.03). PMID:26492359

  15. Tandem Native Mass-Spectrometry on Antibody-Drug Conjugates and Submillion da Antibody-Antigen Protein Assemblies on an Orbitrap EMR Equipped with a High-Mass Quadrupole Mass Selector

    NARCIS (Netherlands)

    Dyachenko, Andrey; Wang, Guanbo; Belov, Mike; Makarov, Alexander; De Jong, Rob N.; Van Den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2015-01-01

    Native mass spectrometry is emerging as a powerful tool for the characterization of intact antibodies and antibody-based therapeutics. Here, we demonstrate new possibilities provided by the implementation of a high mass quadrupole mass selector on the recently introduced Orbitrap Exactive EMR mass s

  16. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer – A planning study

    International Nuclear Information System (INIS)

    Purpose: To compare the dosimetric performance of three different treatment techniques – conformal radiotherapy (CRT), double arcs volumetric modulated arc therapy (RapidArc, RA) and Hybrid-RapidArc (H-RA) for locally-advanced non-small cell lung cancer (NSCLC). Material and methods: CRT, RA and H-RA plans were optimized for 24 stage III NSCLC patients. The target prescription dose was 60 Gy. CRT consisted of 5–7 coplanar fields, while RA comprised of two 204o arcs. H-RA referred to two 204o arcs plus 2 static fields, which accounted for approximately half of the total dose. The plans were optimized to fulfill the departmental plan acceptance criteria. Results: RA and H-RA yielded a 20% better conformity compared with CRT. Lung volume receiving >20 Gy (V20) and mean lung dose (MLD) were the lowest in H-RA (V20 1.7% and 2.1% lower, MLD 0.59 Gy and 0.41 Gy lower than CRT and RA respectively) without jeopardizing the low-dose lung volume (V5). H-RA plans gave the lowest mean maximum spinal cord dose (34.4 Gy, 3.9 Gy < CRT and 2.2 Gy < RA plans) and NTCP of lung. Higher average MU per fraction (addition 52.4 MU) was observed with a reduced treatment time compared with CRT plans. Conclusion: The H-RA technique was superior in dosimetric outcomes for treating locally-advanced NSCLC compared to CRT and RA.

  17. Advances in analytical spectrochemistry with ionized gases. I. Improved fundamental understanding through laser based techniques. II. Novel bioanalytical applications

    Science.gov (United States)

    Gamez, Gerardo

    Over the past several decades plasma spectrochemistry has become the workhorse for performing elemental analysis. Nevertheless, we are still far from fully understanding the fundamental mechanisms that affect and led to the production of the analytical signal. Thus, the first part of this study was focused on improving our knowledge of plasma fundamental processes. First, the effect of exposing an inductively coupled plasma to a mass spectrometer sampling interface was investigated. Our results show that the mass spectrometer sampler affects the plasma fundamental parameters in a way that changes with gas flow, forward r.f. power, and plasma torch-to-sampler distance. The findings help to better explain the plasma sampling process and have made clear that results from mass-spectrometry based plasma diagnostics are applicable to unperturbed plasmas only as a rough approximation. Second, and instrument was constructed to characterize the fundamental parameters of an analytical glow discharge by using Thomson and Rayleigh laser scattering. A continuous dc glow discharge source was studied and a set of corresponding numerical modeling experiments were performed. The resulting theory agrees qualitatively with the experimental findings; moreover, the theoretical and experimental techniques often provide complementary information. Finally, a temporally and spatially resolved map of the fundamental parameters of a dc glow discharge operated in pulsed mode was obtained. The results confirm previously proposed electron energy-transfer mechanisms at the beginning of the pulse. In contrast, the findings call into question other mechanisms involving plasma gas metastable formation proposed for the time period immediately after the end of the pulse. In the second part of the study an imaging radio frequency glow discharge instrument was developed to provide three-dimensional elemental analysis of solids. The newly developed instrument was then applied to the simultaneous

  18. What is the best choice for repair of distal penile hypospadias: The tubularized incised plate urethroplasty or anterior urethral advancement technique?

    Directory of Open Access Journals (Sweden)

    Awad Mohamed

    2007-01-01

    Full Text Available Background and Aim: Numerous ingenious methods have been introduced to repair hypospadias with variable results. We tried to evaluate the two techniques, tubularized incised plate urethroplasty (TIP and anterior urethral advancement (AUA for repair of distal hypospadias and choose the best method to treat the distal type of penile hypospadias with the least complications. Materials and Methods : A total of 140 boys with distal penile hypospadias were divided into two groups. Group A (68 patients was treated with TIP and Group B (72 patients was treated with AUA. All the patients had an average age of three years (2-19 with variable meatal sites coronal (44 sub coronal (53 and anterior penile hypospadias (43. There was no significant difference between both groups with respect to the age and meatal sites. Results: The fistula rate in Group A was 8.8% versus 1.3% in Group B. There was no urethral stricture in both procedures. Wound dehiscence did not occur in Group A versus one case in Group B (1.3%. In Group A, 26 cases (38.3% had mild glanular torsion and five (7.3% had moderate glanular torsion versus none in Group B postoperatively. No postoperative chordee or binding in Group A, versus four patients (5.5% in Group B. No significant difference was observed in both groups with respect to meatal stenosis (7.3% versus 5.5% respectively. There was a significant difference between both groups with regard to the operative time in favour of Group B. Good cosmetic appearance of the glans was achieved in both techniques. Conclusion: Both techniques can treat this anomaly with a high success rate but the modified AUA technique appears to be a good choice due to its simplicity, short operative time and less fistula rate with good cosmetic results.

  19. A Simplified Technique of Percutaneous Hepatic Artery Port-Catheter Insertion for the Treatment of Advanced Hepatocellular Carcinoma with Portal Vein Invasion

    International Nuclear Information System (INIS)

    We assessed the outcomes of a simplified technique for the percutaneous placement of a hepatic artery port-catheter system for chemotherapy infusion in advanced hepatocellular carcinoma with portal vein invasion. From February 2003 to February 2008, percutaneous hepatic artery port-catheter insertion was performed in 122 patients who had hepatocellular carcinoma with portal vein invasion. The arterial access route was the common femoral artery. The tip of the catheter was wedged into the right gastroepiploic artery without an additional fixation device. A side hole was positioned at the distal common hepatic artery to allow the delivery of chemotherapeutic agents into the hepatic arteries. Coil embolization was performed only to redistribute to the hepatic arteries or to prevent the inadvertent delivery of chemotherapeutic agents into extrahepatic arteries. The port chamber was created at either the supra-inguinal or infra-inguinal region. Technical success was achieved in all patients. Proper positioning of the side hole was checked before each scheduled chemotherapy session by port angiography. Catheter-related complications occurred in 19 patients (16%). Revision was achieved in 15 of 18 patients (83%). This simplified method demonstrates excellent technical feasibility, an acceptable range of complications, and is hence recommended for the management of advanced hepatocellular carcinoma with portal vein thrombosis

  20. EMR study of magnetic inhomogeneities in crystalline bulk and nanometer-sized La0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Electron magnetic resonance (EMR) was studied on crystalline bulk and nanometer-sized samples of the same La0.7Ca0.3MnO3 manganite compound aiming to compare their magnetic homogeneities. The results obtained show that single-crystalline bulk sample is less homogeneous than the nanocrystalline one. Except for higher homogeneity, the nanometer-sized sample also demonstrates a weaker magnetic anisotropy. As a result, well-pronounced coexistence of different magnetic phases (coexistence of ferromagnetic and paramagnetic resonance signals) is observed in the bulk sample, while it is absent in the nanocrystalline one. It is suggested that such strong difference is directly connected to the difference in structural state of the samples

  1. Applications of advanced electrochemical techniques in the study of microbial fuel cells and corrosion protection by polymer coatings

    Science.gov (United States)

    Manohar, Aswin Karthik

    The results of a detailed evaluation of the properties of the anode and the cathode of a mediator-less microbial fuel cell (MFC) and the factors determining the power output of the MFC using different electrochemical techniques are presented in Chapter 1. In the MFC under investigation, the biocatalyst - Shewanella oneidensis MR-1 - oxidizes the fuel and transfers the electrons directly into the anode which consists of graphite felt. Oxygen is reduced at the cathode which consists of Pt-plated graphite felt. A proton exchange membrane separates the anode and the cathode compartments. The electrolyte was a PIPES buffer solution and lactate was used as the fuel. Separate tests were performed with the buffer solution containing lactate and with the buffer solution with lactate and MR-1 as anolytes. Electrochemical Impedance Spectroscopy (EIS) carried out at the open-circuit potential (OCP) has been used to determine the electrochemical properties of the anode and the cathode at different anolyte conditions. Cell voltage (V) -- current (I) curves were recorded using a potentiodynamic sweep between the open-circuit cell voltage and the short- circuit cell voltage. Power (P)-V curves were constructed from the recorded V-I data and the cell voltage, Vmax, at which the maximum power could be obtained, was determined. P- time (t) curves were obtained by applying Vmax or using a resistor between the anode and the cathode that would result in a similar cell voltage. Cyclic voltammograms (CV) were recorded for the anode for the different anolytes. Finally, anodic polarization curves were obtained for the anode with different anolytes and a cathodic polarization curve was recorded for the cathode. The internal resistance (Rint) of the MFC has been determined as a function of the cell voltage V using EIS for the MFC described above and a MFC in which stainless steel (SS) balls had been added to the anode compartment. The experimental values of Rint of the MFCs studied here are

  2. Endoscopic mucosal resection in the upper gastrointestinal tract

    OpenAIRE

    Ahmadi, Anis; Draganov, Peter

    2008-01-01

    Endoscopic mucosal resection (EMR) is a technique used to locally excise lesions confined to the mucosa. Its main role is the treatment of advanced dysplasia and early gastrointestinal cancers. EMR was originally described as a therapy for early gastric cancer. Recently its use has expanded as a therapeutic option for ampullary masses, colorectal cancer, and large colorectal polyps. In the Western world, the predominant indication for EMR in the upper gastrointestinal tract is the staging and...

  3. AdvancED Flex 4

    CERN Document Server

    Tiwari, Shashank; Schulze, Charlie

    2010-01-01

    AdvancED Flex 4 makes advanced Flex 4 concepts and techniques easy. Ajax, RIA, Web 2.0, mashups, mobile applications, the most sophisticated web tools, and the coolest interactive web applications are all covered with practical, visually oriented recipes. * Completely updated for the new tools in Flex 4* Demonstrates how to use Flex 4 to create robust and scalable enterprise-grade Rich Internet Applications.* Teaches you to build high-performance web applications with interactivity that really engages your users.* What you'll learn Practiced beginners and intermediate users of Flex, especially

  4. Evaluating of scale-up methodologies of gas-solid spouted beds for coating TRISO nuclear fuel particles using advanced measurement techniques

    Science.gov (United States)

    Ali, Neven Y.

    The work focuses on implementing for the first time advanced non-invasive measurement techniques to evaluate the scale-up methodology of gas-solid spouted beds for hydrodynamics similarity that has been reported in the literature based on matching dimensionless groups and the new mechanistic scale up methodology that has been developed in our laboratory based on matching the radial profile of gas holdup since the gas dynamics dictate the hydrodynamics of the gas-solid spouted beds. These techniques are gamma-ray computed tomography (CT) to measure the cross-sectional distribution of the phases' holdups and their radial profiles along the bed height and radioactive particle tracking (RPT) to measure in three-dimension (3D) solids velocity and their turbulent parameters. The measured local parameters and the analysis of the results obtained in this work validate our new methodology of scale up of gas-solid spouted beds by comparing for the similarity the phases' holdups and the dimensionless solids velocities and their turbulent parameters that are non-dimensionalized using the minimum spouting superficial gas velocity. However, the scale-up methodology of gas-solid spouted beds that is based on matching dimensionless groups has not been validated for hydrodynamics similarity with respect to the local parameters such as phases' holdups and dimensionless solids velocities and their turbulent parameters. Unfortunately, this method was validated in the literature by only measuring the global parameters. Thus, this work confirms that validation of the scale-up methods of gas-solid spouted beds for hydrodynamics similarity should reside on measuring and analyzing the local hydrodynamics parameters.

  5. Anatomical character of pterygopalatine fossa and advancement of related technique%翼腭窝的解剖学特点及其相关技术进展

    Institute of Scientific and Technical Information of China (English)

    李鹏

    2012-01-01

    翼腭窝是位于眶尖后下方、颞下窝内侧的一个狭小骨性间隙,窝内有丰富的血管、重要的神经等结构通过,众多起源于口鼻腔、眶内、颅中窝、颞下窝和鼻旁窦的病变均可累及此窝.本文总结了近年来翼腭窝的解剖学及其相关临床诊疗技术的研究进展.%Pterygopalatine fossa is a narrow rift, posteroinferior to orbital apex and interior to infratemporal fossa. There are many important blood vessels and nerve tissues passed through the pterygopalatine fossa. Many diseases from oral and nasal cavity, orbital cavity, middle cranial fossa, infratemporal fossa and paranasal sinuses can involve pterygopalatine fossa. This article summaried the anatomical characters of pterygopalatine fossa and research advancements of related technique for diagnosis and treatment.

  6. Advanced Antenna Techniques and High Order Sectorization with Novel Network Tessellation for Enhancing Macro Cell Capacity in DC-HSDPA Network

    Directory of Open Access Journals (Sweden)

    Muhammad Usman Sheikh

    2013-10-01

    Full Text Available Mobile operators commonly use macro cells with traditional wide beam antennas for wider coverage in thecell, but future capacity demands cannot be achieved by using them only. It is required to achieve maximumpractical capacity from macro cells by employing higher order sectorization and by utilizing all possibleantenna solutions including smart antennas. This paper presents enhanced tessellation for 6-sector sitesand proposes novel layout for 12-sector sites. The main target of this paper is to compare the performanceof conventional wide beam antenna, switched beam smart antenna, adaptive beam antenna and differentnetwork layouts in terms of offering better received signal quality and user throughput. Splitting macro cellinto smaller micro or pico cells can improve the capacity of network, but this paper highlights theimportance of higher order sectorization and advance antenna techniques to attain high Signal toInterference plus Noise Ratio (SINR, along with improved network capacity. Monte Carlo simulations atsystem level were done for Dual Cell High Speed Downlink Packet Access (DC-HSDPA technology withmultiple (five users per Transmission Time Interval (TTI at different Intersite Distance (ISD. Theobtained results validate and estimate the gain of using smart antennas and higher order sectorization withproposed network layout.

  7. 苹果蠹蛾不育昆虫释放技术研究进展%Advances in the sterile insect technique for controlling codling moth

    Institute of Scientific and Technical Information of China (English)

    刘伟; 徐婧; 张润志

    2012-01-01

    The sterile insect technique ( SIT) involves the mass release of sterile insects to reduce fertility of wild populations of the same species. The codling moth is a major global pest of apple and pear crops that has invaded 71 countries and 5 continents. In this paper, advances in mass rearing, sterilization and the release of sterile insects for codling moth control are introduced, including artificial diet, population construction, rearing facilities and conditions, adult collection and quality control, long distance transport, sterilization source and equipment, radiation sensitivity, release method, marking and saturation rate. The effectiveness of SIT in countries that have used this technique is reviewed. The codling moth had now been found in Xinjiang, Gansu, Ningxia, Inner Mongolia, Heilongjiang, Jilin and poses a serious threat to China' s fruit industry. The introduction of SIT' s to China is therefore both timely and important.%不育昆虫释放技术(sterile insect technique,SIT)是一种环境友好、可作为大面积害虫综合治理(AW-IPM)的防治技术,是以压倒性比例释放不育昆虫来减少田间同种害虫繁殖量的害虫治理方法.苹果蠹蛾Cydia pomonella(L.)是世界重要的梨果类害虫,现已入侵世界5洲71国.本文综述了苹果蠹蛾大规模饲养技术、辐射不育技术、释放技术3个关键环节的研究与技术进展,主要包括:苹果蠹蛾人工饲料、实验种群建立、饲养设备与条件、收集和质量评估、长距离运输、辐射源与设备、辐射剂量与敏感性、释放方法、释放标记和释放量等,并介绍了各国采用SIT技术的应用效果.苹果蠹蛾在我国新疆、甘肃、宁夏、内蒙、黑龙江、吉林6个省区发现,对我国苹果产业安全生产构成严重威胁,我国很有必要引进并建立苹果蠹蛾SIT防治技术体系.

  8. Knowledge-driven multi-locus analysis reveals gene-gene interactions influencing HDL cholesterol level in two independent EMR-linked biobanks.

    Directory of Open Access Journals (Sweden)

    Stephen D Turner

    Full Text Available Genome-wide association studies (GWAS are routinely being used to examine the genetic contribution to complex human traits, such as high-density lipoprotein cholesterol (HDL-C. Although HDL-C levels are highly heritable (h(2∼0.7, the genetic determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this discrepancy may include rare variants, structural variants, gene-environment (GxE interactions, and gene-gene (GxG interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in the context of comprehensive electronic medical records (EMRs. Here we apply an EMR-based phenotyping approach, within the context of routine care, to replicate several known associations between HDL-C and previously characterized genetic variants: CETP (rs3764261, p = 1.22e-25, LIPC (rs11855284, p = 3.92e-14, LPL (rs12678919, p = 1.99e-7, and the APOA1/C3/A4/A5 locus (rs964184, p = 1.06e-5, all adjusted for age, gender, body mass index (BMI, and smoking status. By using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between LPL (which modulates the incorporation of triglyceride into HDL and ABCA1 (which modulates the incorporation of free cholesterol into HDL. These results demonstrate that gene-gene interactions modulate complex human traits, including HDL cholesterol.

  9. Advanced interpretation of ground motion using Persistent Scatterer Interferometry technique: the Alto Guadalentín Basin (Spain) case of study

    Science.gov (United States)

    Bonì, Roberta; Herrera, Gerardo; Meisina, Claudia; Notti, Davide; Zucca, Francesco; Bejar, Marta; González, Pablo; Palano, Mimmo; Tomás, Roberto; Fernandez, José; Fernández-Merodo, José; Mulas, Joaquín; Aragón, Ramón; Mora, Oscar

    2014-05-01

    Subsidence related to fluid withdrawal has occurred in numerous regions of the world. The phenomena is an important hazard closely related to the development of urban areas. The analysis of the deformations requires an extensive and continuous spatial and temporal monitoring to prevent the negative effects of such risks on structures and infrastructures. Deformation measurements are fundamental in order to identify the affected area extension, to evaluate the temporal evolution of deformation velocities and to identify the main control mechanisms. Differential SAR interferometry represents an advanced remote sensing tool, which can map displacements at very high spatial resolution. The Persistent Scatterer Interferometry (PSI) technique is a class of SAR interferometry that uses point-wise radar targets (PS) on the ground whose phase is not interested by temporal and geometrical decorrelation. This technique generates starting from a set of images two main products: the displacement rate along line of sight (LOS) of single PS; and the LOS displacement time series of individual PS. In this work SAR data with different spatio-temporal resolution were used to study the displacements that occur from 1992 to 2012 in the Alto Guadalentin Basin (southern Spain), where is located the city of Lorca The area is affected by the highest rate of subsidence measured in Europe (>10 cm/yr-1) related to long-term exploitation of the aquifer (González et al. 2011). The objectives of the work were 1) to analyse land subsidence evolution over a 20-year period with PSI technique; 2) to compare the spatial and temporal resolution of SAR data acquired by different sensors, 3) to investigate the causes that could explain this land motion. The SAR data have been obtained with ERS-1/2 & ENVISAT (1992-2007), ALOS PALSAR (2007-2010) and COSMO-SkyMed (2011-2012) images, processed with the Stable Point Network (SPN) technique. The PSI data obtained from different satellite from 1992 to 2012

  10. Evaluation of disinfection techniques in the treatment of advanced primary treated wastewater for Ciudad Juárez, México.

    Science.gov (United States)

    Carrasco, Leirad; Turner, Charles D

    2006-01-01

    The purpose of this study was to develop and evaluate the effectiveness of alternative disinfection techniques at the bench-scale level using wastewater from Ciudad Juarez, Mexico, as model feed. This paper presents findings on the effectiveness of UV radiation, peracetic acid (PAA), chlorine dioxide (ClO2), and hypochlorous acid (HOCl) as disinfectants for advanced primary treatment (APT) plant effluent. Wastewater samples for bench-scale testing were collected from an agua negra ("black water") ditch that is part of the combined sewer system in Ciudad Juarez. Bench-scale simulations of the APT process used in Ciudad Juarez were run using a jar test apparatus and aluminum sulfate [Al2(SO4)3] as the coagulant. Jar test effluent from the bench system was used for disinfection testing. The Mexican discharge quality standard for total coliforms is 10 000/100 mL. Ultraviolet radiation met this standard at a dose of 47.5 mW-s/cm2. Ultraviolet disinfection proved reliable and effective despite the presence of suspended solids, and UV dose effectiveness expressed as a total coliforms survival ratio was best explained by a linear regression model. The ClO2 dose ranged from 10 to 20 mg/L and was only effective under ambient temperature conditions found during the winter months; PAA disinfection never met Mexican standards. Chlorine disinfection was effective at a dose range of 8 to 10 mg/L on samples collected at low temperature conditions. Since the completion of this research, Ciudad Juarez has discontinued the use of chlorine disinfection because of its high cost and ineffectiveness. PMID:16553166

  11. Final Progress Report: Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fox-Rabinovitz, M; Cote, J

    2009-06-05

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.

  12. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  13. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{sub x} burners, advanced overfire systems, and digital control system.

  14. The state-of-the-art of the established conventional and advanced NDE-techniques and procedures for defect detection and sizing

    International Nuclear Information System (INIS)

    This document presents several non-destructive ultrasonic techniques used for the inspection of various welds. Some probes are described and acoustic holography is presented as well as the time-of-flight diffraction (TOFD) technique. The three phases of the Programme for the Inspection of Steel Components (PISC) are described and results of each phase are presented. Eventually, problems related to the examination of austenitic welds are described. Special techniques for the ultrasonic examination of these welds are then presented. (TEC)

  15. Advanced materials nanocharacterization

    Directory of Open Access Journals (Sweden)

    Lányi Stefan

    2011-01-01

    Full Text Available Abstract This special issue of Nanoscale Research Letters contains scientific contributions presented at the Symposium D "Multidimensional Electrical and Chemical Characterization at the Nanometer-scale of Organic and Inorganic Semiconductors" of the E-MRS Fall Meeting 2010, which was held in Warsaw, Poland from 13th to 17th September, 2010.

  16. Design and Development of a Security System of EMR in HIE-oriented%面向卫生信息交换的电子病历安全体系设计

    Institute of Scientific and Technical Information of China (English)

    周天舒; 朱兴骅; 李劲松

    2015-01-01

    针对区域医疗系统内海量数据的共享和交互性,结合目前信息安全技术的发展现状,提出面向卫生信息交换的电子病历安全体系构架,包括身份认证、权限控制、操作日志、数据加密四大模块。防止非法用户访问系统,保障系统的可用性和可控性,保留数据的修改痕迹并保证不可抵赖性,防止数据被截获或非法窃取,保证信息的机密性,构建完整的电子病历系统安全体系。%To meet the demand of big data sharing and communication in regional medical systems in a secure manner, we designed and developed a security system within HIE-oriented EMR, including identity authentication, privilege management, access log, and data encryption modules. The establish and deployment of the system could prevent access from the illegal users, keep EMR system accessibility while controllability, record the modification traces and make it undeniability, protect the medical data from intercepted by intruders, keep the data confidentiality from none stakeholders, and finally construct a complete security system in EMR.

  17. Advancing the healthy development of percutaneous lumbar endoscopic techniques%促进经皮腰椎内镜技术的健康发展

    Institute of Scientific and Technical Information of China (English)

    侯树勋; 李振宙

    2013-01-01

    With the development and evolution of percutaneous lumbar endoscopic techniques in recent 2 decades, more and more lumbar spine disorder can be solved with minimally invasive spine surgery, especially in lumbar disc herniation and chronic low back pain. A series of percutaneous endoscopic discectomy techinques have been established for different sorts of lumbar disc herniation, including YESS technique, far lateral approach transforaminal endoscopic discectomy, TESSYS technique, percutaneous foraminoplasty, interlaminar approach percutaneous endoscopic discectomy, interlaminar full endoscopic discectomy, etc. As to chronic low back pain, postolateral transforaminal endoscopic selective discectomy, thermal annuloplasty and dorsal endoscopic rhizotomy are developed to treat discogenic low back pain and lumbar zygopophyseal joint pain respectively. Although above-mentioned techniques need further evolution, rational application of these techniques can benefit most of the patients with lumbar disc herniation and chronic low back pain.

  18. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, second quarter 1994, April 1994--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NOx burners (LNB). During each test phase of the project, diagnostic, performance, long-term, and verification testing will be performed. These tests are used to quantify the NOx reductions of each technology and evaluate the effects of those reductions on other combustion parameters. Results are described.

  19. The use of slow strain rate technique for studying stress corrosion cracking of an advanced silver-bearing aluminum-lithium alloy

    International Nuclear Information System (INIS)

    In the present study, stress corrosion cracking (SCC) behavior of naturally aged advanced silver-bearing Al-Li alloy in NaCl solution was investigated using slow strain rate test (SSRT) method. The SSRT’s were conducted at different strain rates and applied potentials at room temperature. The results were discussed based on percent reductions in tensile elongation in a SCC-causing environment over those in air tended to express the SCC susceptbility of the alloy under study at T3. The SCC behavior of the alloy was also discussed based on the microstructural and fractographic examinations

  20. Demonstration of advanced combustion NO(sub X) control techniques for a wall-fired boiler. Project performance summary, Clean Coal Technology Demonstration Program

    International Nuclear Information System (INIS)

    The project represents a landmark assessment of the potential of low-NO(sub x) burners, advanced overtire air, and neural-network control systems to reduce NO(sub x) emissions within the bounds of acceptable dry-bottom, wall-fired boiler performance. Such boilers were targeted under the Clean Air Act Amendments of 1990 (CAAA). Testing provided valuable input to the Environmental Protection Agency ruling issued in March 1994, which set NO(sub x) emission limits for ''Group 1'' wall-fired boilers at 0.5 lb/10(sup 6) Btu to be met by January 1996. The resultant comprehensive database served to assist utilities in effectively implementing CAAA compliance. The project is part of the U.S. Department of Energy's Clean Coal Technology Demonstration Program established to address energy and environmental concerns related to coal use. Five nationally competed solicitations sought cost-shared partnerships with industry to accelerate commercialization of the most advanced coal-based power generation and pollution control technologies. The Program, valued at over$5 billion, has leveraged federal funding twofold through the resultant partnerships encompassing utilities, technology developers, state governments, and research organizations. This project was one of 16 selected in May 1988 from 55 proposals submitted in response to the Program's second solicitation. Southern Company Services, Inc. (SCS) conducted a comprehensive evaluation of the effects of Foster Wheeler Energy Corporation's (FWEC) advanced overfire air (AOFA), low-NO(sub x) burners (LNB), and LNB/AOFA on wall-fired boiler NO(sub x) emissions and other combustion parameters. SCS also evaluated the effectiveness of an advanced on-line optimization system, the Generic NO(sub x) Control Intelligent System (GNOCIS). Over a six-year period, SCS carried out testing at Georgia Power Company's 500-MWe Plant Hammond Unit 4 in Coosa, Georgia. Tests proceeded in a logical sequence using rigorous statistical analyses to