WorldWideScience

Sample records for advanced electrorefiner design

  1. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, Ting-shu; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner is one piece of the process equipment for the Integral Fast Reactor (IFR) program. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  2. Structural evaluation in the design of electrorefiner

    International Nuclear Information System (INIS)

    Wu, T.S.; Blomquist, C.A.; Herceg, J.E.

    1995-01-01

    The electrorefiner (ER) is one piece of the process equipment for the Integral Fast Reactor (IFR) program. The ER's principal function is to perform the pyrochemical and electrochemical refining of spent and experimental fuel elements. Its principal components include a primary vessel, a heater assembly, a support-structure assembly, a cover assembly, four electrode assemblies, four elevator and rotator assemblies, and a cover-gas system. In addition, there are various miscellaneous tools and fixtures. The electrorefiner is to be installed within an existing enclosed cell. Design requirements dictate that all equipment within the cell should not be anchored. To assess the integrity of the electrorefiner during operational and seismic loads, extensive structural analyses have been performed. This paper presents some of the major structural evaluations for the electrorefiner and its auxiliary equipment. Results show that the design code requirements are satisfied, and the integrity of the electrorefiner will not be jeopardized during operational and seismic loadings

  3. Advanced Electrorefining Process at KAERI

    International Nuclear Information System (INIS)

    Hansoo Lee; Jong Hyun Lee; Sung Bin Park; Yoon Sang Lee; Eung Ho Kim; Sung Won Park

    2008-01-01

    In order to enhance the throughput of a pyro-processing in which electrochemical processes are mostly engaged, the design of a continuous concept is required. The graphite cathode in the electro-refiner enables the uranium deposit on the cathodes to be stripped off spontaneously, resulting in a continuous reaction. The collected uranium deposits at the bottom of the inner cone of the reactor are transferred by a conveyor. The residuals in the anode basket after the uranium is depleted are noble metals. These are also collected at the bottom of the outer shell of the reactor, and conveyed from the reactor for a further treatment. This work addresses the design of the electro-refiner for a continuous operation. The behavior of particles such as uranium dendrites or noble metals was analyzed to achieve the proper operating conditions. The operating conditions for the cathode processor in which molten salt is distilled were also investigated. (authors)

  4. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  5. Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    International Nuclear Information System (INIS)

    Kim, K. R.; Lee, H. S.; Hwang, I. S.

    2010-12-01

    The objective of this project is to develop multi-dimensional computational models in order to improve the operation of uranium electrorefiners currently used in pyroprocessing technology. These 2-D (US) and 3-D (ROK) mathematical models are based on the fundamental physical and chemical properties of the electrorefiner processes. The validated models by compiled and evaluated experimental data could provide better information for developing advanced electrorefiners for uranium recovery. The research results in this period are as follows: - Successfully assessed a common computational platform for the modeling work and identify spatial characterization requirements. - Successfully developed a 3-D electro-fluid dynamic electrorefiner model. - Successfully validated and benchmarked the two multi-dimensional models with compiled experimental data sets

  6. Proposed high throughput electrorefining treatment for spent N- Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1996-01-01

    A high-throughput electrorefining process is being adapted to treat spent N-Reactor fuel for ultimate disposal in a geologic repository. Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the type of fragmentation necessary to provide fuel segments suitable for this process. Based on these tests, a conceptual design was produced of a plant-scale electrorefiner. In this design, the diameter of an electrode assembly is about 1.07 m (42 in.). Three of these assemblies in an electrorefiner would accommodate a 3-metric-ton batch of N-Reactor fuel that would be processed at a rate of 42 kg of uranium per hour

  7. Experimental observations to the electrical field for electrorefining of spent nuclear fuel in the Mark-IV electrorefiner

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Experimental results from the pilot scale electrorefiner (Mark-IV ER) treating spent nuclear fuel are reported in this article. The electrorefining processes were carried out in a LiCl-KCl-UCl 3 electrolyte. It has been noted that spool of molten cadmium below the electrolyte plays an important role in the electrorefining operations. In addition, formations of electrical shorting path between anode baskets and the electrorefiner vessel were observed, which lessened the uranium dissolution process from anode baskets, however appeared to improve the morphology of cathode deposit. The FIDAP simulation code was used to calculate the electrical potential field distributions and the potential gradient near the cathode. The effect of the electrical shorting between anode baskets and electrorefiner vessel on the morphology of cathode products is discussed

  8. Mixing time study to select suitable stirrer for electrorefiner. Contributed Paper RD-03

    International Nuclear Information System (INIS)

    Agarwal, Sourabh; Mythili, M; Joseph, Joby; Nandakumar, V.; Muralidharan, B.; Padmakumar, G.; Rajan, K.K.

    2014-01-01

    Pyro-processing is an alternative to conventional methods of aqueous reprocessing of nuclear fuels. Electrorefining is an important process step in pyro-processing, carried out in a high temperature molten salt bath in an Electrorefiner. The recovery of actinides from the spent fuels has to be high. One of the methods to achieve this is to ensure proper mixing of the molten salt in the electrorefiner. The optimum design of the stirrer should ensure efficient mixing with minimum mixing time. Studies have been carried out in an engineering scale model of the electrorefiner to study the mixing phenomena. This paper brings outs the series of experiments conducted on an ambient temperature electrorefiner to select a suitable stirrer. (author)

  9. IFR electrorefining process

    International Nuclear Information System (INIS)

    Kim, S. B.

    1997-01-01

    A metallic fuel alloy, which is a key element of the IFR fuel cycle, permits the use of pyrochemical processing of the spent fuel. Electrorefining with molten salt electrolytes is a key step in the pyroprocess because the actinides are recovered, separated from the fission products present in the spent fuel in this operation and then recycled for use as fuel. Chemical and electrochemical aspects of the electrorefining method is to be described. (author)

  10. R and D status of oxide electro-refining reprocessing technology

    International Nuclear Information System (INIS)

    Myochin, Munetaka

    2005-01-01

    The oxide electro-refining pyrochemical reprocessing is excellent in the resistivity against nuclear material diversion and in the suitability for oxide fuel cycle and has an excellent affinity for the technology of fuel production using the vibropac method. The oxide electro-refining pyrochemical reprocessing system has therefore been examined as a part of studies of commercialization of FBR cycle. This report outlines the examination results of fundamental data acquired for the system design. (M.H.)

  11. Continuous process electrorefiner

    Science.gov (United States)

    Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL

    2006-08-29

    A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.

  12. Fuel conditioning facility electrorefiner volume calibration

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.

    1995-01-01

    In one of the electrometallurgical process steps of the Fuel Conditioning Facility (FCF), die in-process nuclear material is dissolved in the electrorefiner tank in an upper layer of a mixture of liquid LiCl-KCl salt and a lower layer of liquid cadmium. The electrorefiner tank, as most process tanks, is not a smooth right-circular cylinder for which a single linear volume calibration curve could be fitted over the whole height of the tank. Rather, the tank contains many internal components, which cause systematic deviations from a single linear function. The nominal operating temperature of the electrorefiner is 500 degrees C although the salt and cadmium are introduced at 410 degrees C. The operating materials and temperatures preclude multiple calibration runs at operating conditions. In order to maximize the calibration information, multiple calibration runs were performed with water at room temperature. These data allow identification of calibration segments, and preliminary estimation of the calibration function and calibration uncertainties. The final calibration function is based on a combination of data from die water calibrations and the measurements made during the filling of the electrorefiner with salt and cadmium for operation

  13. Electrorefining open-quotes Nclose quotes reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.

    1995-01-01

    Principles of purifying of uranium metal by electrorefining are reviewed. Metal reactor fuel after irradiation is a form of impure uranium. Dissolution and deposition electrorefining processes were developed for spent metal fuel under the Integral Fast Reactor Program. Application of these processes to the conditioning of spent N-reactor fuel slugs is examined

  14. Design study on advanced nuclear fuel recycle system. Conceptual design study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kasai, Y.; Kakehi, I.; Moro, T.; Higashi, T.; Tobe, K.; Kawamura, F.; Yonezawa, S.; Yoshiuji, T.

    1998-10-01

    Advanced recycle system engineering group of OEC (Oarai Engineering Center) has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Minimum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1) A design concept of the advanced nuclear fuel recycle system, that is a module type recycles system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studies. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2) Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3) A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system. (author)

  15. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim Davies; Shelly X Li

    2007-09-01

    Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire

  16. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    International Nuclear Information System (INIS)

    Kim Davies; Shelly X Li

    2007-01-01

    Pyrochemical processing plays an important role in development of proliferation-resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ∼2 grams of LiCl/KCl salt electrolyte with a low concentration (∼1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver

  17. Partitioning of actinides and fission products using molten salt electrorefining process

    International Nuclear Information System (INIS)

    Barbero, Jose A.; Wiesztort, Andres; Azcona, Alejandra; Bollini, Edgardo; Forchetti, Alberto; Orce, Alan

    1999-01-01

    Electrorefining is the key step of pyrometallurgical processing for separating actinides from fission products. In this work, the electrorefining process is carried out in a electrorefining cell that contains molten salts (49% LiCl- 51% KCL) floating on a liquid cadmium. The cell is operated under an inert atmosphere at 500 degree C. In this work we describe in detail the construction of the cell and the way of operation

  18. Six-kilogram-scale electrorefining of plutonium metal

    International Nuclear Information System (INIS)

    Mullins, L.J.; Morgan, A.N.; Apgar, S.A. III; Christensen, D.C.

    1982-09-01

    The electrorefining of metallic plutonium scrap to produce high purity metal has been an established procedure at Los Alamos since 1964. This is a batch process and was limited to 4-kg plutonium because of criticality safety considerations. Improvements in critical mass measurements have permitted us to develop a process for 6-kg plutonium. The 6-kg process is now operational. The increased size of the process, together with other improvements which have been made, makes plutonium electrorefining the principal industrial tool for processing and purifying metallic plutonium scrap

  19. Salt separation of uranium deposits generated from electrorefining in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  20. Salt separation of uranium deposits generated from electrorefining in pyro process

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Jeong, J. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Electrorefining is a key step in a pyro processing. Electrorefining process is generally composed of two recovery steps- deposit of uranium onto a solid cathode(electrorefining) and then the recovery of the remaining uranium and TRU(TransUranic) elements simultaneously by a liquid cadmium cathode(electrowinning). The uranium ingot is prepared from the deposits after the salt separation. In this study, the sequential operation of the liquid salt separation? distillation of the residual salt was attempted for the achievement of high throughput performance in the salt separation. The effects of deposit size and packing density were also investigated with steel chips, steel chips, and uranium dendrites. The apparent evaporation rate decreased with the increasing packing density or the increasing size of deposits due to the hindrance of the vapor transport by the deposits. It was found that the packing density and the geometry of deposit crucible are important design parameters for the salt separation system. Base on the results of the study, an engineering scale salt distiller was developed and installed in the argon cell. The salt distiller is a batch-type, and the process capacity to about 50 kg U-deposits/day. The design of the salt distiller is based on the remote operation by Master Slave Manipulator (MSM) and a hoist. The salt distiller is composed of two large blocks of the distillation tower and the crucible loading system for the transportation to maintenance room via the Large Transfer Lock (LTL)

  1. Design study of advanced nuclear fuel recycle system. Conceptual study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kakehi, I.; Shirai, N.; Hatano, M.; Kajitani, M.; Yonezawa, S.; Kawai, T.; Kawamura, F.; Tobe, K.; Takahashi, K.

    1996-12-01

    For the purpose of developing the future nuclear fuel recycle system, the design study of the advanced nuclear fuel recycle system is being conducted. This report describes intermediate accomplishments in the conceptual system study of the advanced nuclear fuel recycle system. Fundamental concepts of this system is the recycle system using molten salt which intend to break through the conventional concepts of purex and pellet fuel system. Contents of studies in this period are as follows, 1)feasibility study of the process by Cd-cathode for nitride fuel, 2)application study for the molten salt of low melting point (AlCl3+organic salt), 3)research for decladding (advantage of decladding by heat treatment), 4)behavior of FPs in electrorefining (behavior of iodine and volatile FP chlorides, FPs behavior in chlorination), 5)criticality analysis in electrorefiner, 6)drawing of off-gas flow diagram, 7)drawing of process machinery concept (cathode processor, vibration packing), 8)evaluation for the amounts of the high level radioactive wastes, 9)quality of the recycle fuels (FPs contamination of recycle fuel), 10)conceptual study of in-cell handling system, 11)meaning of the advanced nuclear fuel recycle system. The conceptual system study will be completed in describing concepts of the system and discussing issues for the developments. (author)

  2. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  3. A model for recovery of scrap monolithic uranium molybdenum fuel by electrorefining

    Science.gov (United States)

    Van Kleeck, Melissa A.

    The goal of the Reduced Enrichment for Research and Test Reactors program (RERTR) is toreduce enrichment at research and test reactors, thereby decreasing proliferation risk at these facilities. A new fuel to accomplish this goal is being manufactured experimentally at the Y12 National Security Complex. This new fuel will require its own waste management procedure,namely for the recovery of scrap from its manufacture. The new fuel is a monolithic uraniummolybdenum alloy clad in zirconium. Feasibility tests were conducted in the Planar Electrode Electrorefiner using scrap U-8Mo fuel alloy. These tests proved that a uranium product could be recovered free of molybdenum from this scrap fuel by electrorefining. Tests were also conducted using U-10Mo Zr clad fuel, which confirmed that product could be recovered from a clad version of this scrap fuel at an engineering scale, though analytical results are pending for the behavior of Zr in the electrorefiner. A model was constructed for the simulation of electrorefining the scrap material produced in the manufacture of this fuel. The model was implemented on two platforms, Microsoft Excel and MatLab. Correlations, used in the model, were developed experimentally, describing area specific resistance behavior at each electrode. Experiments validating the model were conducted using scrap of U-10Mo Zr clad fuel in the Planar Electrode Electrorefiner. The results of model simulations on both platforms were compared to experimental results for the same fuel, salt and electrorefiner compositions and dimensions for two trials. In general, the model demonstrated behavior similar to experimental data but additional refinements are needed to improve its accuracy. These refinements consist of a function for surface area at anode and cathode based on charge passed. Several approximations were made in the model concerning areas of electrodes which should be replaced by a more accurate function describing these areas.

  4. Development of metallic uranium recovery technology from uranium oxide by Li reduction and electrorefining

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu; Kawabe, Akihiro; Yuda, Ryouichi; Usami, Tsuyoshi; Fujita, Reiko; Nakamura, Hitoshi; Yahata, Hidetsugu

    2002-01-01

    The purpose of the study is to develop technology for pre-treatment of oxide fuel reprocessing through pyroprocess. In the pre-treatment process, it is necessary to reduce actinide oxide to metallic form. This paper outlines some experimental results of uranium oxide reduction and recovery of refined metallic uranium in electrorefining. Both uranium oxide granules and pellets were used for the experiments. Uranium oxide granules was completely reduced by lithium in several hours at 650degC. Reduced uranium pellets by about 70% provided a simulation of partial reduction for the process flow design. Almost all adherent residues of Li and Li 2 O were successfully washed out with fresh LiCl salt. During electrorefining, metallic uranium deposited on the iron cathode as expected. The recovery efficiencies of metallic uranium from reduced uranium oxide granules and from pellets were about 90% and 50%, respectively. The mass balance data provided the technical bases of Li reduction and refining process flow for design. (author)

  5. Estimation of zirconium in various process streams in molten salt electrorefining process

    International Nuclear Information System (INIS)

    Suganthi, S.; Vandarkuzhali, S.; Venkatesh, P.; Prabhakara Reddy, B.; Nagarajan, K.

    2012-01-01

    Molten salt electrorefining process is a non-aqueous pyrochemical process suitable for reprocessing spent metallic fuel. In this process the spent fuel is taken at the anode and the fuel elements are selectively electrotransported to a suitable cathode (either a solid steel cathode or liquid cadmium cathode) using molten LiCl-KCI as electrolyte. We have demonstrated electrorefining of UZr alloy at engineering scale level. 1 Kg U-6%Zr alloy was taken at the anode and pure uranium was recovered at a steel cathode using molten LiCIKCI-5%UCI 3 as electrolyte at 773 K. In this paper we present the method of dissolution, sample preparation and estimation of zirconium in various process streams in the electrorefining experiments carried out in our laboratory

  6. Salt evaporation behaviors of uranium deposits from an electrorefiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Sung Chan Hwang; Young Ho Kang; Hansoo Lee; Eung Ho Kim; Seong-Won Park; Jong Hyeon Lee

    2010-01-01

    From an electrorefining process, uranium deposits were recovered at the solid cathode of an electrorefining system. The uranium deposits from the electrorefiner contained about 30-40 wt% salts. In order to recover pure uranium and transform it into metal ingots, these salts have to be removed. A salt distiller was adapted for a salt evaporation. A batch operation for the salt removal was carried out by a heating and a vacuum evaporation. The operational conditions were a 700-1,000 deg C hold temperature and less than a 1 Torr under Argon atmosphere, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the pressure and the holding temperature for the salt distillation. The removal efficiencies of the salts were obtained with regard to the operational conditions. The experimental results of the salt evaporations were evaluated by using the Hertz-Langmuir relation. The effective evaporation coefficients of this relation were obtained with regards to the vacuum pressures and the hold temperatures. The higher the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (author)

  7. Simulation of electrorefining process using time-dependent multi-component electrochemical model: REFIN

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Gi; Hwang, Il Soon [Seoul National Univ., Seoul (Korea, Republic of)

    1999-10-01

    REFIN model is applied to analyze a series of experiments that had been conducted by Tomczuk, et al. at Argonne National Laboratory (ANL) in the U.S.A.. Predicted results from REFIN model for the electrorefining experiment are compared with the published experimental results. It is demonstrated that REFIN model can predict faradic current of each element and electrochemical potential as a function of time over the entire campaign of the electrorefining experiment. The elemental concentration changes agree with the experimental results well. Elemental concentration changes during an open-circuit equilibration period are revealed to suggest that the electrorefining process could not be adequately described by the equilibrium model often applied for an electrode surface. Surface potential drop is changed according to equilibrium potential of chemical species with high activity in liquid metal.

  8. Effects of operating conditions on molten-salt electrorefining for zirconium recovery from irradiated Zircaloy-4 cladding of pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaeyeong, E-mail: d486916@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Choi, Sungyeol [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Sohn, Sungjune [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Kwang-Rag [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Hwang, Il Soon [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-08-15

    Highlights: • Computational simulation on electrorefining of irradiated Zircaloy-4 cladding. • Composition of irradiated Zircaloy-4 cladding of pressurized water reactor. • Redox behavior of elements in irradiated Zircaloy cladding during electrorefining. • Effect of electrorefining operating conditions on decontamination factor. - Abstract: To reduce the final waste volume from used nuclear fuel assembly, it is significant to decontaminate irradiated cladding. Electrorefining in high temperature molten salt could be one of volume decontamination processes for the cladding. This study examines the effect of operating conditions on decontamination factor in electrorefining of irradiated Zircaloy-4 cladding of pressurized water reactor. One-dimensional time-dependent electrochemical reaction code, REFIN, was utilized for simulating irradiated cladding electrorefining. Composition of irradiated Zircaloy was estimated based on ORIGEN-2 and other literatures. Co and U were considered in electrorefining simulation with major elements of Zircaloy-4 to represent activation products and actinides penetrating into the cladding respectively. Total 240 cases of electrorefining are simulated including 8 diffusion boundary layer thicknesses, 10 concentrations of contaminated molten salt and 3 termination conditions. Decontamination factors for each case were evaluated and it is revealed that the radioactivity of Co-60 in recovered zirconium on cathode could decrease below the clearance level when initial concentration of chlorides except ZrCl{sub 4} is lower than 1 × 10{sup −11} weight fraction if electrorefining is finished before anode potential reaches −1.8 V (vs. Cl{sub 2}/Cl{sup −})

  9. Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977

    International Nuclear Information System (INIS)

    Mullins, L.J.; Morgan, A.N.

    1981-12-01

    This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed

  10. Modelling the effect of temperature and free acid, silver, copper and lead concentrations on silver electrorefining electrolyte conductivity

    OpenAIRE

    Aji, Arif T.; Kalliomäki, Taina; Wilson, Benjamin P.; Aromaa, Jari; Lundström, Mari

    2016-01-01

    Conductivity is one of the key physico-chemical properties of electrolyte in silver electrorefining since it affects the energy consumption of the process. As electrorefining process development trends towards high current density operation, having electrolytes with high conductivities will greatly reduce the energy consumption of the process. This study outlines investigations into silver electrorefining electrolyte conductivity as a function of silver, free acid, copper and lead concentrati...

  11. Cadmium release from a reprocessing electrorefiner falling over

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Charles W., E-mail: Charles.solbrig@inl.gov [Batelle Energy Alliance, Idaho National Laboratory, PO Box 2528, Idaho Falls, ID 83404 (United States); Pope, Chad L. [Batelle Energy Alliance, Idaho National Laboratory, PO Box 2528, Idaho Falls, ID 83404 (United States)

    2013-02-15

    Highlights: ► We model an accident in a nuclear fuel processing facility caused by an earthquake. ► The earthquake causes the argon cell to breach and the electrorefiner to tip over. ► Cadmium is spilled and a cathode falls on the cadmium and starts to burn. ► Cadmium can be transported to people in the building, the site, and the public. ► The results show negligible doses to all persons except in one low probability case. -- Abstract: The possible biological consequences of a release of cadmium due to a design basis earthquake in the Idaho Nuclear Laboratory's nuclear fuel reprocessing cell are evaluated. The facility is designed to withstand the design basis earthquake except for some non-seismically qualified feedthroughs. The earthquake is hypothesized to breach these feedthroughs (allowing air into the argon atmosphere processing cell) and cause the MK-IV electrorefiner (ER) in the cell to tip over or split and spill its contents of fission product laden salt and cadmium. In addition, the uranium dendrite product cathode is assumed to fall on the cadmium and burn. The heat from the burning cathode results in release of cadmium vapor into the cell atmosphere. Ingestion and inhalation of a sufficient concentration of cadmium for a critical time period can cause irreversible health effects or death. The release of the small quantity of fission products, analyzed elsewhere, results in negligible doses. Analysis reported here shows there is no danger to the general public by the cadmium release or to on-site workers except in one low probability case. This one case requires a fivefold failure where the safety exhaust system fails just after the 4% oxygen concentration combustion limit in the cell is reached. Failure of the SES allows oscillatory inflow and outflow (and hence cadmium outflow) from the cell due to gravity. The dose to a worker in the basement exceeds the mortality limit in this one event if the worker does not leave the basement.

  12. Cadmium release from a reprocessing electrorefiner falling over

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Pope, Chad L.

    2013-01-01

    Highlights: ► We model an accident in a nuclear fuel processing facility caused by an earthquake. ► The earthquake causes the argon cell to breach and the electrorefiner to tip over. ► Cadmium is spilled and a cathode falls on the cadmium and starts to burn. ► Cadmium can be transported to people in the building, the site, and the public. ► The results show negligible doses to all persons except in one low probability case. -- Abstract: The possible biological consequences of a release of cadmium due to a design basis earthquake in the Idaho Nuclear Laboratory's nuclear fuel reprocessing cell are evaluated. The facility is designed to withstand the design basis earthquake except for some non-seismically qualified feedthroughs. The earthquake is hypothesized to breach these feedthroughs (allowing air into the argon atmosphere processing cell) and cause the MK-IV electrorefiner (ER) in the cell to tip over or split and spill its contents of fission product laden salt and cadmium. In addition, the uranium dendrite product cathode is assumed to fall on the cadmium and burn. The heat from the burning cathode results in release of cadmium vapor into the cell atmosphere. Ingestion and inhalation of a sufficient concentration of cadmium for a critical time period can cause irreversible health effects or death. The release of the small quantity of fission products, analyzed elsewhere, results in negligible doses. Analysis reported here shows there is no danger to the general public by the cadmium release or to on-site workers except in one low probability case. This one case requires a fivefold failure where the safety exhaust system fails just after the 4% oxygen concentration combustion limit in the cell is reached. Failure of the SES allows oscillatory inflow and outflow (and hence cadmium outflow) from the cell due to gravity. The dose to a worker in the basement exceeds the mortality limit in this one event if the worker does not leave the basement

  13. Experimental observations on electrorefining spent nuclear fuel in molten LiCl-KCl/liquid cadmium system

    International Nuclear Information System (INIS)

    Johnson, T. A.; Laug, D. V.; Li, S. X.; Sofu, T.

    1999-01-01

    Argonne National Laboratory (ANL) is currently performing a demonstration program for the Department of Energy (DOE) which processes spent nuclear fuel from the Experimental Breeder Reactor (EBR-II). One of the key steps in this demonstration program is electrorefining of the spent fuel in a molten LiCl-KCl/liquid cadmium system using a pilot scale electrorefiner (Mk-IV ER). This article summarizes experimental observations and engineering aspects for electrorefining spent fuel in the molten LiCl-KCl/liquid cadmium system. It was found that the liquid cadmium pool acted as an intermediate electrode during the electrorefining process in the ER. The cadmium level was gradually decreased due to its high vapor pressure and vaporization rate at the ER operational temperature. The low cadmium level caused the anode assembly momentarily to touch the ER vessel hardware, which generated a periodic current change at the salt/cathode interface and improved uranium recovery efficiency for the process. The primary current distributions calculated by numerical simulations were used in interpreting the experimental results

  14. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    International Nuclear Information System (INIS)

    Simpson, M.F.; Kim, K.-R.

    2010-01-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  15. Retrieving Historical Electrorefining Data

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Meagan Daniella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-18

    Pyrochemical Operations began at Los Alamos National Laboratory (LANL) during 1962 (1). Electrorefining (ER) has been implemented as a routine process since the 1980’s. The process data that went through the ER operation was recorded but had never been logged in an online database. Without a database new staff members are hindered in their work by the lack of information. To combat the issue a database in Access was created to collect the historical data. The years from 2000 onward were entered and queries were created to analyze trends. These trends will aid engineering and operations staff to reach optimal performance for the startup of the new lines.

  16. Isotope investigation of anodic slime movements in copper electrorefining baths

    International Nuclear Information System (INIS)

    Urbanski, T.; Kohman, L.; Strzelecki, M.; Chojecki, M.; Kaczynska, R.; Wieclaw, B.

    1975-01-01

    A method was developed and introduced for monitoring the movement of silver-containing anodic slimes in copper electrorefining baths. Radioactive 111 Ag was used as tracer and copper plates labelled with the tracer were inserted into the anodes. During electrorefining the slime produced was continuously marked by the tracer. The activity of 111 Ag was measured at various points inside the bath by sampling and continuously registered with the aid of integrators. It was found that more than 99 percent of the slime slipped to the bottom of the bath close to the anode surface and did not migrate even at highest electrolyte flow rates. Small quantities of suspended slime contained an insignificant concentration of silver and should not be a source of cathode contamination. (author)

  17. Recovery of UO[sub 2]/PuO[sub 2] in IFR electrorefining process

    Science.gov (United States)

    Tomczuk, Z.; Miller, W.E.

    1994-10-18

    A process is described for converting PuO[sub 2] and UO[sub 2] present in an electrorefiner to the chlorides, by contacting the PuO[sub 2] and UO[sub 2] with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO[sub 2] and PuO[sub 2] to metals while converting Li metal to Li[sub 2]O. Li[sub 2]O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O[sub 2] out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li[sub 2]O to disassociate to O[sub 2] and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl[sub 2].

  18. Zr-rich layers electrodeposited onto stainless steel cladding during the electrorefining of EBR-II fuel

    International Nuclear Information System (INIS)

    Keiser, D.D. Jr.; Mariani, R.D.

    1999-01-01

    Argonne National Laboratory is developing an electrometallurgical treatment for spent nuclear fuels. The initial demonstration of this process is being conducted on U-Zr alloy fuel elements irradiated in the experimental breeder reactor II (EBR-II). We report the first metallographic characterization of cladding hull remains for the electrometallurgical treatment of spent metallic fuel. During the electrorefining process, Zr-rich layers, with some U, deposit on all exposed surfaces of irradiated cladding segments (hulls) that originally contained the fuel alloy that was being treated. In some cases, not only was residual Zr (and U) found inside the cladding hulls, but a Zr-rind was also observed near the interior cladding hull surface. The Zr-rind was originally formed during the fuel casting process on the fuel slug. The observation of Zr deposits on all exposed cladding surfaces is explained with thermodynamic principles, when two conditions are met. These conditions are partial oxidation of Zr and the presence of residual uranium in the hulls when the electrorefining experiment is terminated. Comparisons are made between the structure of the initial irradiated fuel before electrorefining and the morphology of the material remaining in the cladding hulls after electrorefining. (orig.)

  19. Salt Removal from the Uranium Deposits of Electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  20. Salt Removal from the Uranium Deposits of Electrorefiner

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Cho, C. H.; Choi, S. Y.; Lee, H. S.; Kim, J. G.

    2010-01-01

    Electrorefining is a key step in pyroprocessing. The electrorefining process is generally composed of two recovery steps. The deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The solid cathode processing is necessary to separate the salt from the cathode since the uranium deposit in a solid cathode contains electrolyte salt. In the liquid cathode, cadmium metal should be removed to recover actinide product. A physical separation process, such as distillation separation, is more attractive than a chemical or dissolution process because physical processes generate much less secondary process. Distillation process was employed for the cathode processing due to the advantages of minimal generation of secondary waste, compact unit process, simple and low cost equipment. The basis for vacuum distillation separation is the difference in vapor pressures between salt and uranium. A solid cathode deposit is heated in a heating region and salt vaporizes, while non volatile uranium remains behind. It is very important to increase the throughput of the salt separation system due to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites. The evaporation rate of the LiCl-KCl eutectic salt in vacuum distiller is not so high to come up with the generation capacity of uranium dendrites in electro-refiner. Therefore, wide evaporation area or high distillation temperature is necessary for the successful salt separation. In this study, the solid-liquid separation was proposed prior to distillation of salt and a feasibility of the separation of the liquid salt by a metallic wire mesh (sieve) was tested for the reduction of the burden of the following vacuum distillation process

  1. LiCl-KCl-UCl3 Salt production and Transfer for the Uranium Electrorefining

    International Nuclear Information System (INIS)

    Woo, Moon Sik; Kang, Hee Suk; Lee, Han Soo

    2009-01-01

    A pyrometallurgical partitioning technology to recover uranium from an uranium-TRU mixture which is the product material of electroreduction system is being developed at KAERI since 1997. In the process, the reactor of an electrorefiner consists of the electrodes and the molten chloride salt which is LiCl-KCl-UCl 3 . The role of uranium chloride salt (UCl 3 ) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . The apparatus for producing UCl 3 consists of a chlorine gas generator, a chlorinator, and a off-gas wet scrubber. The temperature of the reactants are maintained at about 600 .deg. C . After the reaction is completed, the product salt is transferred from the vessel to the electrorefiner by a transfer system

  2. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  3. A study of the morphological aspects of the indium electrorefining process

    Directory of Open Access Journals (Sweden)

    PERICA PAUNOVIC

    2001-12-01

    Full Text Available The cathodic deposition of In was performed under conditions suitable for electrorefining purposes. The main goal of the study was: i to determine the possibilities for In ultrapurification through multiple electrorefining with controlled parameters and ii to study the regularities of the morphology of the In deposit as influenced by the electrodeposition conditions. Without application of special high purity techniques, it was possible to obtain an In purity level of 99.997 %, by repeating the refining procedure in a set of modular electrolysis cells with forced electrolyte circulation and applying modified current regimes. Irregular (non planparallel migration of indium from the anode to the cathode and vice versa, as well as dendrite formation at the edges of the electrode prevented further repetition necessary for the achievment of higher purification levels. This provoked the need to study the morphology of the In-deposits. The phenomena and some regularities of In nucleation and grain growth, as influenced by the applied overpotential and quantity of current passed through the cell, were studied. Electrodeposition was performed onto a stationary Pt-electrode from a mixed sulfate–chloride solution. SEM with magnification up to 1000 × was used to identify the morphology of the deposits. Granular grains were dominant at overpotentials of 85 and 110 mV, while at 160 and 185 mV, needle-like and nonbranched dendrites were visible. The deposit became less compact as its thickness advanced. The apparent thickness of the In layer increased from 20–25 to 320–380 mm when the amount of charge was increased from 1 to 10 mA h cm-2.

  4. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany); Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Fanghänel, Th. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany)

    2016-04-15

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An–Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An–Al alloys using a LiCl–KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions. - Highlights: • Recovery of actinides was shown by electrorefining of U/Pu–Zr alloys in LiCl–KCl. • Constant current density of 20 mA/cm{sup 2} is applied. • Most of the actinides were dissolved avoiding zirconium co-dissolution. • Deterioration of the deposit quality by a small amount of co-deposited Zr is not observed.

  5. Color center formation in plutonium electrorefining residues

    International Nuclear Information System (INIS)

    Morris, D.E.; Eller, P.G.; Hobart, D.E.; Eastman, M.P.; McCurry, L.E.

    1989-01-01

    Plutonium electrorefining residues containing Pu(III) in KCl exhibit dramatic reversible, light-induced color changes. Similar color changes were observed in Ln-doped (Ln = La, Nd, Gd, and Lu) and undoped KCl samples which were subjected to intense gamma irradiation. Diffuse reflectance electronic and electron paramagnetic resonance spectroscopies were used to show conclusively that Pu(III) is present in both the bleached and unbleached plutonium-bearing residues and the spectacular color changes are the result of color center formation and alternation by visible light. (orig.)

  6. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was

  7. Simulated real-time process monitoring of a molten salt electrorefiner

    International Nuclear Information System (INIS)

    Rappleye, Devin; Simpson, Michael; Cumberland, Riley; McNelis, David; Yim, Man-Sung

    2014-01-01

    Highlights: • An alternative approach to safeguarding and monitoring pyroprocessing is proposed. • Possible signals to be used to monitor an electrorefiner are identified. • An inverse model was developed to determine deposition rates at the cathode. • The sensitivity of certain parameters in the inverse model are presented. - Abstract: An alternative approach to monitoring the pyrochemical process (pyroprocessing) for spent nuclear fuel treatment is proposed and examined. This approach relies on modeling and the real-time analysis of process readings. Using an electrorefiner model, named ERAD, cathode potential and cell current were identified as useful process readings. To provide a real-time analysis of these two process readings, an inverse model was developed based on fundamental electrochemical relations. The model was applied to the following operating modes: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. Using the cell current and cathode potential, the model predicted which species were depositing and their rates. The deposition rates predicted by the inverse model compared favorably to those calculated by ERAD

  8. Summary of beryllium electrorefining technology developed by KBI Division of Cabot Berylco Inc

    International Nuclear Information System (INIS)

    Pistole, C.O.

    1983-01-01

    Proprietary beryllium electrorefining technology has been purchased from the KBI Division of Cabot Berylco Inc. by Rockwell International, Rocky Flats Plant, as part of a DOE beryllium option study. This technology has been reviewed and is summarized. 12 figures, 7 tables

  9. First principles study of the thermodynamic and kinetic properties of U in an electrorefining system using molybdenum cathode and LiCl-KCl eutectic molten salt

    International Nuclear Information System (INIS)

    Kwon, Choah; Kang, Joonhee; Kang, Woojong; Kwak, Dohyun; Han, Byungchan

    2016-01-01

    Using first principles density functional theory (DFT) calculations we obtain thermodynamic and kinetic properties of U in an electrorefining process for spent nuclear fuels using a LiCl-KCl eutectic molten salt and Mo as a cathode. The thermodynamic stability of electrodeposited U from the molten salt onto the Mo(110) surface electrode is evaluated by activity coefficients as function of surface coverages of U and Cl. Additionally, ab-initio molecular dynamic simulations combined with the Stokes-Einstein-Sutherland relation enables us to calculate the viscosity of the LiCl-KCl eutectic molten salt. Our results well agree with previously reported experimental data endorsing the credibility. Based on our atomic-level mechanical understanding we propose that an accurate computational model system incorporating the electrochemical conditions of the electrorefining process essential for the purpose of establishing thermodynamic and kinetic database of U, otherwise critical deviations are inevitable. More interestingly, the effect of coadsorption of Cl with U on the Mo(110) surface plays a key role in stabilizing electrodeposited U on the cathode. Our approach can be useful for validating published experimental database and for identifying key factors guiding a rational design of highly efficient electrorefining system for spent nuclear fuels, and thus reducing high-level radioactive nuclear wastes.

  10. Separation of actinides from irradiated An–Zr based fuel by electrorefining on solid aluminium cathodes in molten LiCl–KCl

    Energy Technology Data Exchange (ETDEWEB)

    Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Murakami, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Claux, B.; Meier, R.; Malmbeck, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Tsukada, T. [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-04-15

    Highlights: • Electrorefining process in molten LiCl-KCl using solid Al electrodes was demonstrated. • High separation factors of actinides over lanthanides were achieved. • Efficient recovery of actinides from irradiated nuclear fuel was achieved. • Uniform, dense and well adhered deposits were obtained and characterised. • Kinetic parameters of actinide–aluminium alloy formation were evaluated. - Abstract: An electrorefining process for metallic spent nuclear fuel treatment is being investigated in ITU. Solid aluminium cathodes are used for homogeneous recovery of all actinides within the process carried out in molten LiCl–KCl eutectic salt at a temperature of 500 °C. As the selectivity, efficiency and performance of solid Al has been already shown using un-irradiated An–Zr alloy based test fuels, the present work was focused on laboratory-scale demonstration of the process using irradiated METAPHIX-1 fuel composed of U{sub 67}–Pu{sub 19}–Zr{sub 10}–MA{sub 2}–RE{sub 2} (wt.%, MA = Np, Am, Cm, RE = Nd, Ce, Gd, Y). Different electrorefining techniques, conditions and cathode geometries were used during the experiment yielding evaluation of separation factors, kinetic parameters of actinide–aluminium alloy formation, process efficiency and macro-structure characterisation of the deposits. The results confirmed an excellent separation and very high efficiency of the electrorefining process using solid Al cathodes.

  11. Salt stripping: a pyrochemical approach to the recovery of plutonium electrorefining salt residues

    International Nuclear Information System (INIS)

    Christensen, D.C.; Mullins, L.J.

    1982-10-01

    A pyrochemical process has been developed to take the salt residue from the plutonium electrorefining process and strip the plutonium from it. The process, called salt stripping, uses calcium as a reducing/coalescing agent. In a one-day operation, greater than 95% of the plutonium can be recovered as a metallic button. As much as 88% of the residue is either reused as metal or discarded as a clean salt. A thin layer of black salts, which makes up the bulk of the unrecovered Pu, is a by-product of the initial reductions. A number of black salts can be collected together and re-reduced in a second step. Greater than 88% of this plutonium can be successfully recovered in this second stage with the resulting residues being discardable. The processing time, number of processor hours, and the volume of secondary residues are greatly reduced over the classical aqueous recovery methods. In addition, the product metal is of sufficient quality to be fed directly to the electrorefining process for purification. 8 figures, 7 tables

  12. Study on a Salt Evaporation of the Uranium Deposits from an Electro-refiner

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Gyu Hwan Oh; Jong Hyeon Lee; Sung Chan Hwang; Young Ho Kang; Han Soo Lee; Eung Ho Kim; Seong Won Park

    2008-01-01

    Uranium metal is electrodeposited onto a solid cathode during the electrorefining process. Uranium deposits from an electro-refiner contain about 30∼40 wt% salts. In order to recover pure uranium and transform it into metal ingots, the salts have to be removed. A salt distiller is adapted for a salt evaporation. A batch operation for the salt removal is carried out by a heating and vacuum evaporation. It is operated at 700 ∼ 1000 deg. C and less than 1 Torr, respectively. The behaviors of the salt evaporations were investigated by focusing on the effects of the vacuum pressure and the holding temperature on the salt distillation. The salt removal efficiencies were obtained with regards to the operational conditions. The Hertz-Langmuir relation was applied to the experimental results of the salt evaporations. The effective evaporation coefficients of the relation were obtained with regards to the operational conditions. The lower the vacuum pressure and the higher the holding temperature were, the higher the removal efficiencies of the salts were. (authors)

  13. Development of system analysis code for pyrochemical process using molten salt electrorefining

    International Nuclear Information System (INIS)

    Tozawa, K.; Matsumoto, T.; Kakehi, I.

    2000-04-01

    This report describes accomplishment of development of a cathode processor calculation code to simulate the mass and heat transfer phenomena with the distillation process and development of an analytical model for cooling behavior of the pyrochemical process cell on personal computers. The pyrochemical process using molten salt electrorefining would introduce new technologies for new fuels of particle oxide, particle nitride and metallic fuels. The cathode processor calculation code with distillation process was developed. A code validation calculation has been conducted on the basic of the benchmark problem for natural convection in a square cavity. Results by using the present code agreed well for the velocity-temperature fields, the maximum velocity and its location with the benchmark solution published in a paper. The functions have been added to advance the reality in simulation and to increase the efficiency in utilization. The test run has been conducted using the code with the above modification for an axisymmetric enclosed vessel simulating a cathode processor, and the capability of the distillation process simulation with the code has been confirmed. An analytical model for cooling behavior of the pyrochemical process cell was developed. The analytical model was selected by comparing benchmark analysis with detailed analysis on engineering workstation. Flow and temperature distributions were confirmed by the result of steady state analysis. In the result of transient cooling analysis, an initial transient peak of temperature occurred at balanced heat condition in the steady-state analysis. Final gas temperature distribution was dependent on gas circulation flow in transient condition. Then there were different final gas temperature distributions on the basis of the result of steady-state analysis. This phenomenon has a potential for it's own metastable condition. Therefore it was necessary to design gas cooling flow pattern without cooling gas circulation

  14. Small-scale irradiated fuel electrorefining

    International Nuclear Information System (INIS)

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-01-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program

  15. Advanced safeguards research and development plan with an emphasis on its impact on nuclear power-plant design

    International Nuclear Information System (INIS)

    Tobin, S.J.; Demuth, S.F.; Miller, M.C.; Swinhoe, M.T.; Thomas, K.E.

    2007-01-01

    One tool for reducing the concern of nuclear proliferation is enhanced safeguards. Present safeguards have evolved over the past 40 years, and future safeguards will grow from this strong base to implement new technologies for improving our ability to quantify nuclear material. This paper will give an overview of the advanced technology research and development plan for safeguarding. One of the research facilities planned by the Department of Energy is the Advanced Fuel Cycle Facility (AFCF), to develop a novel nuclear fuel recycling program. Since the Advanced Fuel Cycle Facility will receive and reprocess spent fuel and will fabricate fast-reactor fuel, a wide breadth of safeguards technologies is involved. A fundamental concept in safeguards is material control and accounting (MCA). 4 topics concerning MCA and requiring further research have been identified: 1) measuring spent fuel, 2) measuring the plutonium content in the electro-refiner with pyro-processing, 3) measuring plutonium in the presence of other actinides, and 4) measuring neptunium and americium in the presence of other actinides. As for the long-term research and development plan for the AFCF, it will include improving MCA techniques as well as introducing new techniques that are not related to MCA, for example, enhanced containment and surveillance, or enhanced process monitoring. The top priority will stay quantifying the plutonium as accurately as possible and to reach this purpose 4 relevant technologies have been identified: 1) the microcalorimeter, 2) the passive neutron-albedo reactivity, 3) list-mode data acquisition, and 4) a liquid-scintillator multiplicity counter. Incorporating safeguards into the initial design of AFCF (safeguards by design) is a central concept. As the technology research and development plan for the Advanced Fuel Cycle Facility is examined, particular attention will be given to safeguards technologies that may affect the physical design of nuclear power plants

  16. Criticality safety evaluation of the fuel cycle facility electrorefiner

    International Nuclear Information System (INIS)

    Lell, R.M.; Mariani, R.D.; Fujita, E.K.; Benedict, R.W.; Turski, R.B.

    1993-01-01

    The integral Fast Reactor (IFR) being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal cooled reactors and a closed-loop fuel cycle. Some of the primary advantages are passive safety for the reactor and resistance to diversion for the heavy metal in the fuel cycle. in addition, the IFR pyroprocess recycles all the long-lived actinide activation products for casting into new fuel pins so that they may be burned in the reactor. A key component in the Fuel Cycle Facility (FCF) recycling process is the electrorefiner (ER) in which the actinides are separated from the fission products. In the process, the metal fuel is electrochemically dissolved into a high-temperature molten salt, and electrorefined uranium or uranium/plutonium products are deposited at cathodes. This report addresses the new and innovative aspects of the criticality analysis ensuing from processing metallic fuel, rather than metal oxide fuel, and from processing the spent fuel in batch operations. in particular, the criticality analysis employed a mechanistic approach as opposed to a probabilistic one. A probabilistic approach was unsuitable because of a lack of operational experience with some of the processes, rendering the estimation of accident event risk factors difficult. The criticality analysis also incorporated the uncertainties in heavy metal content attending the process items by defining normal operations envelopes (NOES) for key process parameters. The goal was to show that reasonable process uncertainties would be demonstrably safe toward criticality for continuous batch operations provided the key process parameters stayed within their NOES. Consequently the NOEs became the point of departure for accident events in the criticality analysis

  17. Bus bar electrical feedthrough for electrorefiner system

    Science.gov (United States)

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  18. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C.

  19. Making a Pellet-type LiCl-KCl-UCl3 salt for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Kim, I. T.; Kim, J. G.

    2013-01-01

    The role of uranium chloride salt (UCl3) is to stabilize the initial cell voltage between electrodes in the electrorefining reactor. The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl2 occurring in a Cd layer, followed by a process to produce UCl3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl2 The apparatus for producing UCl3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, and a off-gas and a dry scrubber. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The salt products is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to make pellet type salt. Making pellet type LiCl-KCl-UCl3 salt for electrorefining was carried out using the chlorinator, Cd distiller, and pelletizer. Salt transfer carried out by salt transfer equipment heated 500 .deg. C. The Cd concentration of final salt products distillated at 60 torr, 2 hrs, 600 .deg. C was 200 ppm from the ICP, XRD analysis. And pellet type salt products were fabricated by using the mould of pelletizer at 90∼130 .deg. C

  20. Recovery of plutonium from electrorefining anode heels at Savannah River

    International Nuclear Information System (INIS)

    Gray, J.H.; Gray, L.W.; Karraker, D.G.

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control

  1. Experiments in anodic film effects during electrorefining of scrap U-10Mo fuels in support of modeling efforts

    Energy Technology Data Exchange (ETDEWEB)

    Van Kleeck, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Willit, J.; Williamson, M.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fentiman, A.W. [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01

    A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling. In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.

  2. High-temperature distillation and consolidation of U–Zr cathode product from molten salt electrorefining of simulated metallic fuel

    International Nuclear Information System (INIS)

    Iizuka, Masatoshi; Akagi, Masaaki; Koyama, Tadafumi

    2014-01-01

    High-temperature distillation experiments were performed using U–Zr cathode products of various compositions to obtain knowledge on suitable operation conditions and equipment design such as the container material. The LiCl–KCl–UCl 3 electrolyte adhering to the U–Zr cathode products was almost completely vaporized at 1273–1573 K, under pressure of 10–300 Pa. Massive ingots were obtained from the remaining cathode products by heating them at 1573–1673 K. Three different phases were identified in a distillation product of a higher Zr content. A U-rich bulk (3.9 wt% Zr) and a deposit of a relatively low Zr content (17.2 wt% Zr) were considered to be formed during the cooling process of the distillation product. Another Zr-rich deposit (64.7 wt% Zr), which might cause the inhomogeneity of product ingots, was expected to result from Zr-rich spots that originally existed in the cathode product. The Cl content in the cathode product was decreased by distillation to less than 1/200 of that after electrorefining, while it was markedly larger at a higher Zr concentration. To limit the amount of Zr-rich deposit and the Cl content, the amount of Zr in the distillation product should be controlled to a sufficiently low level by optimization of the operating procedures and conditions in the electrorefining and distillation steps. The zirconia coating material developed in this study showed superior performance in inhibiting reaction between the melted U–Zr alloy melt and the graphite crucible and also in the easy release of the U–Zr ingot from the crucible

  3. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  4. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    International Nuclear Information System (INIS)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product

  5. Contribution to the knowledge of the mechanism of the electrorefining of uranium in fused salt baths (1961)

    International Nuclear Information System (INIS)

    Boisde, G.; Chauvin, G.; Coriou, H.; Hure, J.

    1961-01-01

    Very pure uranium can be obtained by electrorefining under the following conditions: electrolyte: UCl 3 (ca. 30 per cent wt.) dissolved in LiCl-KCl eutectic, cathode: molybdenum, atmosphere: argon, temperature: 400-450 deg. C. The detailed mechanism of the refining process has been hitherto unknown. Electrode-potential studies undertaken to fill this gap have shown that: 1. UCl prepared according to Newton contains an impurity (perhaps UH 3 ) that interferes with the yield of the cathode deposit. We propose a treatment to eliminate this impurity. 2. The quasi-reversible character of the system U +3 ↔U 0 is the principal reason for the production of high purity uranium. The cathodic deposition and anodic dissolution seem to be primary reactions. 3. The presence of moisture in the molten bath has a very harmful influence on the overall electrorefining process: the uranium obtained contains many impurities; the cathode current efficiency falls from 80 to about 10 per cent; and the anode is substantially corroded, the apparent anode current efficiency rising from 90 to about 120 per cent. An interpretation of these effects is given, based on the experimental polarization curves. (authors) [fr

  6. Direct plutonium oxide reduction/electrorefining interface program

    International Nuclear Information System (INIS)

    Baldwin, C.E.; Berry, J.W.; Giebel, R.E.; Long, J.L.; Moser, W.S.; Navratil, J.D.; Tibbitts, S.F.

    1986-01-01

    Research test work and production data evaluation were performed by the Direct Oxide Reduction (DOR)/Electrorefining (ER) Interface Task Team to determine the cause for poor efficiency and yields during ER of DOR metal product. Production data and preliminary test results provided a working hypothesis. Extremely high loadings of impurities (whatever their exact source and identity) in the DOR product metal may lead to failure of the metal to become a molten anode at ER operating temperatures. Moderate impurity levels permit attainment of a molten anode, but lead to low yields because of premature anode solidification. The test results did not conclusively prove the hypothesis or identify specific mechanisms, but were qualitatively supportive. By stirring the molten anode metal pool, as well as the molten salt phase, generally good ER runs were obtained with both DOR and non-DOR feeds. These limited preliminary results suggest that anode stirring decreases the sensitivity of the ER process to DOR-related impurities. Suggested corrective measures included: (1) minimizing impurities in DOR feed to ER and (2) continued evaluation of anode stirring along with run termination by back-EMF measurements. 1 ref., 3 figs., 13 tabs

  7. Recent advances during the treatment of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Westphal, B.R.; Mariani, R.D.; Vaden, D.E.; Sherman, S.R.; Li, S.X.; Keiser, D.D. Jr.

    2000-01-01

    Several recent advances have been achieved for the electrometallurgical treatment of spent nuclear fuel. In anticipation of production operations at Argonne National Laboratory-West, development of both electrorefining and metal processing has been ongoing in the post-demonstration phase in order to further optimize the process. These development activities show considerable promise. This paper discusses the results of recent experiments as well as plans for future investigations

  8. The application of electrorefining for recovery and purification of fuel discharged from the Integral Fast Reactor

    International Nuclear Information System (INIS)

    Burris, L.; Steunenberg, R.K.; Miller, W.E.

    1986-01-01

    An electrorefining process employing a molten salt electrolyte and a molten cadmium anode is proposed for the separation of uranium and plutonium from fission products and cladding material in discharged IFR driver fuel. The use of a liquid cadmium anode, which is the unique feature of the process, permits selective dissolution of the fuel from the cladding and prevents electrolytic corrosion of the steel container and contamination of the product by noble metal fission products

  9. Numerical simulation of minor actinide recovery behaviour in batch processing of spent metallic fuel by electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Nawada, H P; Bhat, N P [Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Balasubramanian, G R [Atomic Energy Commission, Mumbai (India)

    1994-06-01

    Numerical simulation of electro-transport of fuel actinides (FAs), minor actinides (MAs) and rare earths (REs) in the electro-refiner (ER) for pyrochemical reprocessing of a typical spent IFR metallic fuel has been attempted based on improved thermo-chemical model developed for application to multi-component system in the ER. Optimization of MA recovery and decontamination factors (DFs) for MAs and REs in batch processing is presented. (author). 7 refs., 4 figs., 1 tab.

  10. The application of electrorefining for recovery and purification of fuel discharged from the Integral Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burris, L.; Steunenberg, R.K.; Miller, W.E.

    1986-01-01

    An electrorefining process employing a molten salt electrolyte and a molten cadmium anode is proposed for the separation of uranium and plutonium from fission products and cladding material in discharged IFR driver fuel. The use of a liquid cadmium anode, which is the unique feature of the process, permits selective dissolution of the fuel from the cladding and prevents electrolytic corrosion of the steel container and contamination of the product by noble metal fission products.

  11. Electrorefining of Cerium in LiCl-KCl Molten Salts

    International Nuclear Information System (INIS)

    Campbell-Kelly, R.P.; Paget, T.J.

    2010-01-01

    Electrorefining of cerium from cerium-gallium alloys has been demonstrated in lithium chloride-potassium chloride salts at temperatures below 500 deg. C, with excellent current efficiencies and high product yields. These experiments are being carried out as non-active trials for a process for the purification of impure actinide metals. The results reported show anodic current efficiencies consistently close to 100%, and in several experiments complete oxidation of the cerium in the feed occurred. The cathodic product is hard and metallic, and incorporates a significant amount of salt into its structure. The product can be consolidated into a dense, pure metal by melting under calcium chloride at 850 deg. C. The yield of this consolidation step varies between 16 and 75%, seeming to depend on the total mass of metal being consolidated and the quality of inert atmosphere. A small-scale electrochemical cell has been demonstrated which will be used in initial active experiments. (authors)

  12. Impedimetric Thiourea Sensing in Copper Electrorefining Bath based on DC Magnetron Sputtered Nanosilver as Highly Uniform Transducer

    International Nuclear Information System (INIS)

    Mozaffari, S.A.; Amoli, H. Salar; Simorgh, S.; Rahmanian, R.

    2015-01-01

    Highlights: • Fabrication of a novel disposable impedimetric thiourea sensor based on nanostructured Ag film transducer. • Exploiting sputtering as a high-tech method for preparation of highly uniform nanostructured Ag film. • A wonderful combination of nanostructured Ag film and carbon paper substrate as remarkably stable and reproducible sensor for thiourea detection in copper electrorefining bath. • Application of impedimetric assessment for thiourea monitoring due to its rapidity, sensitivity, and repeatability. - Abstract: Highly uniform sputtered nanostructured silver (Nano-Ag) film on the conductive carbon paper (CP) substrate (Nano-Ag/CP) was applied as a novel approach for thiourea (TU) measurement in copper electrorefining bath. Nano-Ag film was achieved by direct current (DC) magnetron sputtering system at the optimized instrumental deposition conditions. Characterization of the surface structure of Nano-Ag film by field emission-scanning electron microscopy (FE-SEM), exhibits uniform Nano-Ag film as an effective transducer for TU sensing. Step by step monitoring of Nano-Ag/CP electrode fabrication were performed using electrochemical methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Fabricated Nano-Ag/CP electrode was used for TU determination using EIS assessment. The impedimetric results show high sensitivity for TU sensing within 2.0–250 ppm.

  13. Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining

    International Nuclear Information System (INIS)

    Herrmann, S.D.; Li, S.X.

    2010-01-01

    A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl - 1 wt% Li2O at 650 C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

  14. Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West

    International Nuclear Information System (INIS)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.; Turski, R.B.; Fujita, E.K.

    1993-01-01

    The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality

  15. Molten salt/metal extractions for recovery of transuranic elements

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed

  16. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  17. Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes

    International Nuclear Information System (INIS)

    Cassayre, L.; Malmbeck, R.; Masset, P.; Rebizant, J.; Serp, J.; Soucek, P.; Glatz, J.-P.

    2007-01-01

    This work concerned the electrorefining of UZr and UPuZr alloys on a solid aluminium cathode, in the LiCl-KCl eutectic melt containing U 3+ , Pu 3+ , Np 3+ , Zr 2+ or Zr 4+ , Am 3+ , Nd 3+ , Y 3+ , Ce 3+ and Gd 3+ chlorides. During constant current electrolyses, the use of a cathodic cut-off potential (-1.25 V versus Ag/AgCl) allowed to selectively deposit actinides (mainly U), while lanthanides remained in the salt. The aim was to determine the maximal load achievable on a single aluminium electrode. The total exchange charge was 4300 C, which represents the deposition of 3.72 g of actinides in 4.17 g Al, yielding a composition of 44.6 wt% An in Al. It was shown that the melting of the cathode contributed to increase the total amount of actinides deposited on the aluminium

  18. Advanced waste forms from spent nuclear fuel

    International Nuclear Information System (INIS)

    Ackerman, J.P.; McPheeters, C.C.

    1995-01-01

    More than one hundred spent nuclear fuel types, having an aggregate mass of more than 5000 metric tons (2700 metric tons of heavy metal), are stored by the United States Department of Energy. This paper proposes a method for converting this wide variety of fuel types into two waste forms for geologic disposal. The method is based on a molten salt electrorefining technique that was developed for conditioning the sodium-bonded, metallic fuel from the Experimental Breeder Reactor-II (EBR-II) for geologic disposal. The electrorefining method produces two stable, optionally actinide-free, high-level waste forms: an alloy formed from stainless steel, zirconium, and noble metal fission products, and a ceramic waste form containing the reactive metal fission products. Electrorefining and its accompanying head-end process are briefly described, and methods for isolating fission products and fabricating waste forms are discussed

  19. Advanced compiler design and implementation

    CERN Document Server

    Muchnick, Steven S

    1997-01-01

    From the Foreword by Susan L. Graham: This book takes on the challenges of contemporary languages and architectures, and prepares the reader for the new compiling problems that will inevitably arise in the future. The definitive book on advanced compiler design This comprehensive, up-to-date work examines advanced issues in the design and implementation of compilers for modern processors. Written for professionals and graduate students, the book guides readers in designing and implementing efficient structures for highly optimizing compilers for real-world languages. Covering advanced issues in fundamental areas of compiler design, this book discusses a wide array of possible code optimizations, determining the relative importance of optimizations, and selecting the most effective methods of implementation. * Lays the foundation for understanding the major issues of advanced compiler design * Treats optimization in-depth * Uses four case studies of commercial compiling suites to illustrate different approache...

  20. Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany); Malmbeck, R. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany)]. E-mail: rikard.malmbeck@cec.eu.int; Masset, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany); Rebizant, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany); Serp, J. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany); Soucek, P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany); Glatz, J.-P. [European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. 2340, 76125 Karlsruhe (Germany)

    2007-01-15

    This work concerned the electrorefining of UZr and UPuZr alloys on a solid aluminium cathode, in the LiCl-KCl eutectic melt containing U{sup 3+}, Pu{sup 3+}, Np{sup 3+}, Zr{sup 2+} or Zr{sup 4+}, Am{sup 3+}, Nd{sup 3+}, Y{sup 3+}, Ce{sup 3+} and Gd{sup 3+} chlorides. During constant current electrolyses, the use of a cathodic cut-off potential (-1.25 V versus Ag/AgCl) allowed to selectively deposit actinides (mainly U), while lanthanides remained in the salt. The aim was to determine the maximal load achievable on a single aluminium electrode. The total exchange charge was 4300 C, which represents the deposition of 3.72 g of actinides in 4.17 g Al, yielding a composition of 44.6 wt% An in Al. It was shown that the melting of the cathode contributed to increase the total amount of actinides deposited on the aluminium.

  1. Separation of adhered salt from uranium deposits generated in electro-refiner

    International Nuclear Information System (INIS)

    Kwon, S.W.; Park, K.M.; Lee, H.S.; Kim, J.G.; Ahn, H.G.

    2011-01-01

    It is important to increase a throughput of the salt removal process from uranium deposits which is generated on the solid cathode of electro-refiner in pyroprocess. In this study, it was proposed to increase the throughput of the salt removal process by the separation of the liquid salt prior to the distillation of the LiCl-KCl eutectic salt from the uranium deposits. The feasibility of liquid salt separation was examined by salt separation experiments on a stainless steel sieve. It was found that the amount of salt to be distilled could be reduced by the liquid salt separation prior to the salt distillation. The residual salt remained in the deposits after the liquid salt separation was successfully removed further by the vacuum distillation. It was concluded that the combination of a liquid salt separation and a vacuum distillation is an effective route for the achievement of a high throughput performance in the salt separation process. (author)

  2. Licensing and advanced fuel designs

    International Nuclear Information System (INIS)

    Davidson, S.L.; Novendstern, E.H.

    1991-01-01

    For the past 15 years, Westinghouse has been actively involved in the development and licensing of fuel designs that contain major advanced features. These designs include the optimized fuel assembly, The VANTAGE 5 fuel assembly, the VANTAGE 5H, and most recently the VANTAGE+ fuel assembly. Each of these designs was supported by extensive experimental data, safety evaluations, and design efforts and required intensive interaction with the US Nuclear Regulatory Commission (NRC) during the review and approval process. This paper presents a description of the licensing approach and how it was utilized by the utilities to facilitate the licensing applications of the advanced fuel designs for their plants. The licensing approach described in this paper has been successfully applied to four major advanced fuel design changes ∼40 plant-specific applications, and >350 cycle-specific reloads in the past 15 years

  3. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Iizuka, Masatoshi; Tanaka, Hiroshi; Tokiwai, Moriyasu; Shoji, Yuichi; Fujita, Reiko; Kobayashi, Tsuguyuki.

    1997-01-01

    Electrorefining of uranium was studied for developing pyrometallurgical reprocessing technology of metal fuel cycle. After concentration dependence of polarization curve was measured, uranium was electrodeposited either on solid iron cathode or in liquid cadmium cathode. Design and operational conditions of the cathode were improved for obtaining much greater quantity of deposit, resulting in recovery of 732g of dendritic uranium on a single solid cathode, and of 232g of uranium in 2,344g of a liquid cadmium cathode. The behaviors of electro-codeposition of rare earth elements with uranium were observed for liquid cadmium cathode, and were found to follow the local equilibrium between salt electrolyte and cathode. The decontamination factors of FP simulating elements from uranium were tentatively determined as >2,000 for deposition to solid cathode and as >7 for deposition to liquid cadmium cathode, respectively. (author)

  4. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-01-01

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ''Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a laser cutting

  5. Technical study report on reprocessing systems. The report of the feasibility study on commercialized FR cycle systems (phase I)

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Kawamura, Fumio; Kakehi, Isao

    2001-04-01

    As a part of the feasibility study (FS) on commercialized fast reactor (FR) cycle systems started on July 1999, the design studies and the technical assessments for various advanced reprocessing systems have been carried out. In this study, plant design for the advanced aqueous system and the three non-aqueous systems (oxide electrowinning method, metal electrorefining method, and fluoride volatility method) has been carried out, and each system has been evaluated mainly from the viewpoint of economics. The future R and D issues on the processes and systems have been also clarified. This report describes the results of the study for two years as final report of FS phase I. (1) The advanced aqueous system, based on the simplified PUREX process, has been shown to be much more economical than the conventional PUREX. The 200 tHM/y plant achieves the target of economics, but the 50 tHM/y plant can not achieve the target. (2) The promising alternative systems replaced for advanced aqueous are the supercritical fluid direct extraction method and amine extraction method from the economical viewpoint. The ion exchange method is promising as the process for minor actinide recovery. (3) For reprocessing MOX fuel, all non-aqueous plants with a capacity of 200 tHM/y achieve the economical target. For such a small capacity as 50 tHM/y, further rationalization of the process is required for the oxide electrowinning method and metal electrorefining method to attain the target, though they are more economical than the advanced aqueous system. (4) For metallic and nitride fuel reprocessing, a metal electrorefining system has been shown to be advantageous. (author)

  6. Intermediate/Advanced Research Design and Statistics

    Science.gov (United States)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  7. Nitridation of U and Pu recovered in liquid Cd cathode by molten salt electrorefining of (U,Pu)N

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takumi; Iwai, Takashi; Arai, Yasuo [Japan Atomic Energy Agency (Japan)

    2009-06-15

    Solid solutions of actinide mono-nitrides have been proposed as a candidate fuel of the accelerator-driven system (ADS) and Gen.IV-type fast reactors because the thermal conductivity and metal density are higher than those of actinide oxides and also they have high melting temperature. Pyrochemical process has several advantages over conventional wet process in treating of spent nitride fuel. One of the key technologies of the pyrochemical reprocessing of nitride fuel is the formation of the nitrides from actinides in the liquid Cd cathode. The nitridation-distillation combined method was developed and has been adopted to convert the actinides to the nitrides. In this method, the nitridation of actinides and the distillation of Cd occurred simultaneously by heating the actinide-Cd alloys in N{sub 2} gas stream. In the present study, the nitride formation behavior of U and Pu recovered in Cd cathode by molten salt electrorefining of (U,Pu)N was experimentally investigated. In addition, the nitride pellet was prepared form the powder obtained by the nitridation of U and Pu recovered in Cd cathode. (U,Pu)N (PuN = 80 mol %) was used as the starting material in the experiment. Molten salt electrorefining of (U,Pu)N pellet was carried out in the LiCl-KCl eutectic salt with 1.2 wt% PuCl{sub 3} and 0.3 wt% UCl{sub 3} of about 110 g at the constant anodic potential of -0.60 to -0.55 V vs. Ag/AgCl for about 9 hours at 773 K. After the electrorefining, about 42 % of U and Pu in the starting (U,Pu)N pellet was dissolved at the anode and recovered into the liquid Cd cathode. The recovered U-Pu-Cd alloy was heated in an alumina crucible at 973 K for 10 hours under N{sub 2} gas (99.999 %) stream (0.015 L/min). Fine black powder was recovered after heating the U-Pu-Cd alloy. The powder was identified as the single phase solid solution of (U,Pu)N by the XRD analysis. After milling in the agate mortar for 1 hour, the powder was compacted into green pellet under a pressure of about

  8. Preliminary Study on the High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2012-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes is compos- ed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt

  9. Advanced technologies for decomtamination and conversion of scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Valerie MacNair; Steve Sarten; Thomas Muth; Brajendra Mishra

    1999-05-27

    The Department of Energy (DOE) faces the task of decommissioning much of the vast US weapons complex. One challenge of this effort includes the disposition of large amounts of radioactively contaminated scrap metal (RSM) including but not limited to steel, nickel, copper, and aluminum. The decontamination and recycling of RSM has become a key element in the DOE's strategy for cleanup of contaminated sites and facilities. Recycling helps to offset the cost of decommissioning and saves valuable space in the waste disposal facilities. It also reduces the amount of environmental effects associated with mining new metals. Work on this project is geared toward finding decontamination and/or recycling alternatives for the RSM contained in the decommissioned gaseous diffusion plants including approximately 40,000 tons of nickel. The nickel is contaminated with Technetium-99, and is difficult to remove using traditional decontamination technologies. The project, titled ``Advanced Technologies for Decontamination and Conversion of Scrap Metal'' was proposed as a four phase project. Phase 1 and 2 are complete and Phase 3 will complete May 31, 1999. Stainless steel made from contaminated nickel barrier was successfully produced in Phase 1. An economic evaluation was performed and a market study of potential products from the recycled metal was completed. Inducto-slag refining, after extensive testing, was eliminated as an alternative to remove technetium contamination from nickel. Phase 2 included successful lab scale and pilot scale demonstrations of electrorefining to separate technetium from nickel. This effort included a survey of available technologies to detect technetium in volumetrically contaminated metals. A new process to make sanitary drums from RSM was developed and implemented. Phase 3 included a full scale demonstration of electrorefining, an evaluation of electro-refining alternatives including direct dissolution, melting of nickel into anodes, a

  10. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electrorefiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electrorefiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electrorefiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour

  11. Plant-scale anodic dissolution of unirradiated N-Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1995-01-01

    Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the fuel segment length, diameter, and shape required for high throughput electro-refiner treatment for ultimate disposal in a geologic repository. Based on these tests, a conceptual design was produced of an electro-refiner for a full-scale plant to process N-Reactor spent fuel. In this design, the diameter of an electrode assembly is about 0.6 m (25 in.). Eight of these assemblies in an electro-refiner would accommodate a 1.333-metric-ton batch of N-Reactor fuel. Electrorefining would proceed at a rate of 40 kg uranium per hour. (author)

  12. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  13. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J., E-mail: brian.riley@pnnl.gov; Lepry, William C.; Crum, Jarrod V.

    2016-01-15

    Chlorosodalite has the general form of Na{sub 8}(AlSiO{sub 4}){sub 6}Cl{sub 2} and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO{sub 2}, and either Si(OC{sub 2}H{sub 5}){sub 4} or Ge(OC{sub 2}H{sub 5}){sub 4}. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  14. Development of High Temperature Transport System for Molten Salt

    International Nuclear Information System (INIS)

    Lee, S. H.; Lee, H. S.; Kim, J. G.

    2011-01-01

    Pyroprocessing technology is one of the the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The electrorefining process, one of main processes which is composed of pyroprocess to recover the useful elements from spent fuel, is under development at the Korea Atomic Energy Research Institute as a sub process of the pyrochemical treatment of spent PWR fuel. High-temperature molten salt transport technologies are required because a molten salt should be transported from the electrorefiner to electrowiner after the electrorefining process. Therefore, in pyrometallurgical processing, the development of high-temperature molten salt transport technologies is a crucial prerequisite. However, there have been a few transport studies on high-temperature molten salt. In this study, an apparatus for suction transport experiments was designed and constructed for the development of high temperature transport technology for molten salt, and the performance test of the apparatus was performed. And also, predissolution test of the salt was carried out using the reactor with furnace in experimental apparatus

  15. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trone, Janis R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

  16. Design for manufacturability with advanced lithography

    CERN Document Server

    Yu, Bei

    2016-01-01

    This book introduces readers to the most advanced research results on Design for Manufacturability (DFM) with multiple patterning lithography (MPL) and electron beam lithography (EBL).  The authors describe in detail a set of algorithms/methodologies to resolve issues in modern design for manufacturability problems with advanced lithography.  Unlike books that discuss DFM from the product level, or physical manufacturing level, this book describes DFM solutions from a circuit design level, such that most of the critical problems can be formulated and solved through combinatorial algorithms. Enables readers to tackle the challenge of layout decompositions for different patterning techniques; Presents a coherent framework, including standard cell compliance and detailed placement, to enable Triple Patterning Lithography (TPL) friendly design; Includes coverage of the design for manufacturability with E-Beam lithography.

  17. The aerodynamic design of an advanced rotor airfoil

    Science.gov (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.

    1978-01-01

    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  18. Development of advanced retrofit FGD designs

    International Nuclear Information System (INIS)

    Dene, C.E.; Boward, W.L.; Noblett, J.G.; Keeth, R.J.

    1992-01-01

    The 1990 Clean Air Act Amendment is a dramatic departure from previous legislation in that it affords the electric utility industry the flexibility to achieve their portion of the sulfur dioxide reduction in a myriad of ways. Each utility must look at its system overall. One strategy which may prove beneficial is to remove as much SO 2 as possible at facilities where there is an existing flue gas desulfurization (FGD) system or where one is planned. In response to this need EPRI is developing a family of advanced retrofit FGD designs that incorporate recent advances in FGD technology. A range of design options are being investigated to determine both the SO 2 collection capability and the relative cost impacts of each option. Some of the design options considered include the use of trays, packing, additional liquid flow rate, and additives to boost the removal efficiency. These options are being investigated for limestone, and magnesium-enhanced lime systems. The sensitivity of these designs to changes in coal sulfur content, chloride content, unit size, gas velocity, and other factors are being investigated to determine how the performance of a designs is changed and the ability to meet compliance. This paper illustrates the type of analysis used to develop the advanced designs and presents the sensitivity of a Countercurrent spray tower design using limestone and forced oxidation to changes in specific design input parameters such as boiler load, tower height, and gas velocity

  19. Development of challengeable reprocessing and fuel fabrication technologies for advanced fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Nomura, S.; Aoshima, T.; Myochin, M.

    2001-01-01

    R and D in the next five years in Feasibility Study Phase-2 are focused on selected key technologies for the advanced fuel cycle. These are the reference technology of simplified aqueous extraction and fuel pellet short process based on the oxide fuel and the innovative technology of oxide-electrowinning and metal- electrorefining process and their direct particle/metal fuel fabrication methods in a hot cell. Automatic and remote handling system operation in both reprocessing and fuel manufacturing can handle MA and LLFP concurrently with Pu and U attaining the highest recovery and an accurate accountability of these materials. (author)

  20. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    Steinhauer, L.C.; Quimby, D.C.

    1978-01-01

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  1. Status of advanced light water reactor designs 2004

    International Nuclear Information System (INIS)

    2004-05-01

    The report is intended to be a source of reference information for interested organizations and individuals. Among them are decision makers of countries considering implementation of nuclear power programmes. Further, the report is addressed to government officials with an appropriate technical background and to research institutes of countries with existing nuclear programmes that wish to be informed on the global status in order to plan their nuclear power programmes including both research and development efforts and means for meeting future. The future utilization of nuclear power worldwide depends primarily on the ability of the nuclear community to further improve the economic competitiveness of nuclear power plants while meeting stringent safety requirements. The IAEA's activities in nuclear power technology development include the preparation of status reports on advanced reactor designs to provide all interested IAEA Member States with balanced and objective information on advances in nuclear plant technology. In the field of light water reactors, the last status report published by the IAEA was 'Status of Advanced Light Water Cooled Reactor Designs: 1996' (IAEA-TECDOC-968). Since its publication, quite a lot has happened: some designs have been taken into commercial operation, others have achieved significant steps toward becoming commercial products, including certification from regulatory authorities, some are in a design optimization phase to reduce capital costs, development for other designs began after 1996, and a few designs are no longer pursued by their promoters. With this general progress in mind, on the advice and with the support of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for Light Water Reactors (LWRs), the IAEA has prepared this new status report on advanced LWR designs that updates IAEA-TECDOC-968, presenting the various advanced LWR designs in a balanced way according to a common outline

  2. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  3. Quadruple suspension design for Advanced LIGO

    International Nuclear Information System (INIS)

    Robertson, N A; Cagnoli, G; Crooks, D R M; Elliffe, E; Faller, J E; Fritschel, P; Gossler, S; Grant, A; Heptonstall, A; Hough, J; Lueck, H; Mittleman, R; Perreur-Lloyd, M; Plissi, M V; Rowan, S; Shoemaker, D H; Sneddon, P H; Strain, K A; Torrie, C I; Ward, H; Willems, P

    2002-01-01

    In this paper, we describe the conceptual design for the suspension system for the test masses for Advanced LIGO, the planned upgrade to LIGO, the US laser interferometric gravitational-wave observatory. The design is based on the triple pendulum design developed for GEO 600 - the German/UK interferometric gravitational wave detector. The GEO design incorporates fused silica fibres of circular cross-section attached to the fused silica mirror (test mass) in the lowest pendulum stage, in order to minimize the thermal noise from the pendulum modes. The damping of the low-frequency modes of the triple pendulum is achieved by using co-located sensors and actuators at the highest mass of the triple pendulum. Another feature of the design is that global control forces acting on the mirrors, used to maintain the output of the interferometer on a dark fringe, are applied via a triple reaction pendulum, so that these forces can be implemented via a seismically isolated platform. These techniques have been extended to meet the more stringent noise levels planned for in Advanced LIGO. In particular, the Advanced LIGO baseline design requires a quadruple pendulum with a final stage consisting of a 40 kg sapphire mirror, suspended on fused silica ribbons or fibres. The design is chosen to aim to reach a target noise contribution from the suspension corresponding to a displacement sensitivity of 10 -19 m Hz -1/2 at 10 Hz at each of the test masses

  4. Advanced Concept Architecture Design and Integrated Analysis (ACADIA)

    Science.gov (United States)

    2017-11-03

    1 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) Submitted to the National Institute of Aerospace (NIA) on...Research Report 20161001 - 20161030 Advanced Concept Architecture Design and Integrated Analysis (ACADIA) W911NF-16-2-0229 8504Cedric Justin, Youngjun

  5. Advances in fusion reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.

    1987-01-01

    The author addresses the tokamak as a power reactor. Contrary to popular opinion, there are still a few people that think a tokamak might make a good fusion power reactor. In thinking about advances in fusion reactor design, in the U.S., at least, that generally means advances relevant to the Starfire design. He reviews some of the features of Starfire. Starfire is the last major study done of the tokamak as a reactor in this country. It is now over eight years old in the sense that eight years ago was really the time in which major decisions were made as to its features. Starfire was a tokamak with a major radius of seven meters, about twice the linear dimensions of a machine like TIBER

  6. A Post Closure Safety Assessment for Radioactive Wastes from Advanced nuclear fuel Cycle

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Hwang, Yong Soo

    2010-01-01

    KAERI has developed the KIEP-21 (Korean, Innovative, Environmentally Friendly, and Proliferation Resistant System for the 21st Century). It is an advanced nuclear fuel cycle option with a pyro-process and a GEN-IV SFR. A pyro-process consists of two distinctive processes, an electrolytic reduction process and an electro-refining and winning process. When the pyro-process is applied, it generates five streams of wastes. To compare pyro-process advantage over the direct disposal of Spent Nuclear Fuel (SNF), the PWR SNF of the 45,000 MWD burn-up has been assumed. A safety assessment model for pyro-process wastes and representative results are presented in this report

  7. Advanced hardware design for error correcting codes

    CERN Document Server

    Coussy, Philippe

    2015-01-01

    This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques.

  8. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  9. Design and analysis challenges for advanced nuclear fuel

    International Nuclear Information System (INIS)

    Klepfer, H.; Abdollahian, D.; Dias, A.; Durston, C.; Eisenhart, L.; Engel, R.; Gilmore, P.; Rank, P.; Kjaer-Pedersen, N.; Sorensen, J.; Yang, R.; Agee, L.

    2004-01-01

    Significant changes have been incorporated in the light water reactor (LWR) fuel designs now being offered, and advanced fuel designs are currently being developed for the existing and the next generation of reactor designs. These advanced fuel design configurations are intended to offer utilities major economic gains, including: (1) improved fuel characteristics through optimized hydrogen to uranium ratio within the core; (2) increased capacity factor by allowing longer operating cycles, which is implemented by increasing the fuel enrichment and the amount and distribution of burnable poison, gadolinia, boron, or erbium within the fuel assembly to achieve higher discharge burnup; and (3) increased plant power output, if it can be accommodated by the balance of plant, by increasing the power density of the fuel assembly. The authors report here work being done to identify emerging technical issues in support of utility industry evaluations of advanced fuel designs. (author)

  10. Designing Design into an Advanced Desktop Publishing Course (A Teaching Tip).

    Science.gov (United States)

    Guthrie, Jim

    1995-01-01

    Describes an advanced desktop publishing course that combines instruction in a few advanced techniques for using software with extensive discussion of such design principles as consistency, proportion, asymmetry, appropriateness, contrast, and color. Describes computer hardware and software, class assignments, problems, and the rationale for such…

  11. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant (NPP) control rooms. These developments may have significant implications for plant safety in that they will greatly affect the ways in which operators interact with systems. At present, however, the only guidance available to the US Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces, NUREG-0700, was written prior to these technological changes and is thus not designed to address them. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline for use in performing human factors reviews of advanced operator interfaces. This guideline will be implemented, in part, as a portable, computer-based, interactive document for field use. The paper describes the overall guideline development methodology, the present status of the document, and the plans for further guideline testing and development. 21 refs., 3 figs

  12. Preliminary design of the advanced quantum beam source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and {gamma}-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries.

  13. Preliminary design of the advanced quantum beam source

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Lee, Jong Min; Jeong, Young Uk; Cho, Sung Oh; Yoo, Jae Gwon; Park, Seong Hee

    2000-07-01

    The preliminary design of the advanced quantum beam source based on a superconducting electron accelerator is presented. The advanced quantum beams include: high power free electron lasers, monochromatic X-rays and γ-rays, high-power medium-energy electrons, high-flux pulsed neutrons, and high-flux monochromatic slow positron beam. The AQBS system is being re-designed, assuming that the SPS superconducting RF cavities used for LEP at CERN will revived as a main accelerator of the AQBS system at KAERI, after the decommissioning of LEP at the end of 2000. Technical issues of using the SPS superconducting RF cavities for the AQBS project are discussed in this report. The advanced quantum beams will be used for advanced researches in science and industries

  14. Relevant thermal hydraulic aspects of advanced reactors design: status report

    International Nuclear Information System (INIS)

    1996-11-01

    This status report provides an overview on the relevant thermalhydraulic aspects of advanced reactor designs (e.g. ABWR, AP600, SBWR, EPR, ABB 80+, PIUS, etc.). Since all of the advanced reactor concepts are at the design stage, the information and data available in the open literature are still very limited. Some characteristics of advanced reactor designs are provided together with selected phenomena identification and ranking tables. Specific needs for thermalhydraulic codes together with the list of relevant and important thermalhydraulic phenomena for advanced reactor designs are summarized with the purpose of providing some guidance in development of research plans for considering further code development and assessment needs and for the planning of experimental programs

  15. Advanced human-system interface design review guidelines

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1990-01-01

    Advanced, computer-based, human-system interface designs are emerging in nuclear power plant control rooms as a result of several factors. These include: (1) incorporation of new systems such as safety parameter display systems, (2) backfitting of current control rooms with new technologies when existing hardware is no longer supported by equipment vendors, and (3) development of advanced control room concepts. Control rooms of the future will be developed almost exclusively with advanced instrumentation and controls based upon digital technology. In addition, the control room operator will be interfacing with more intelligent systems which will be capable of providing information processing support to the operator. These developments may have significant implications for plant safety in that they will greatly affect the operator's role in the system as well as the ways in which he interacts with it. At present, however, the only guidance available to the Nuclear Regulatory Commission (NRC) for the review of control room-operator interfaces is NUREG-0700. It is a document which was written prior to these technological changes and is, therefore, tailored to the technologies used in traditional control rooms. Thus, the present guidance needs to be updated since it is inadequate to serve as the basis for NRC staff review of such advanced or hybrid control room designs. The objective of the project reported in this paper is to develop an Advanced Control Room Design Review Guideline suitable for use in performing human factors reviews of advanced operator interfaces. This guideline will take the form of a portable, interactive, computer-based document that may be conveniently used by an inspector in the field, as well as a text-based document

  16. Structural and piping issues in the design certification of advanced reactors

    International Nuclear Information System (INIS)

    Ali, S.A.; Terao, D.; Bagchi, G.

    1996-01-01

    The purpose of this paper is to discuss the design certification of structures and piping for evolutionary and passive advanced light water reactors. Advanced reactor designs are based on a set of assumed site-related parameters that are selected to envelop a majority of potential nuclear power plant sites. Multiple time histories are used as the seismic design basis in order to cover the majority of potential sites in the US. Additionally, design are established to ensure that surface motions at a particular site will not exceed the enveloped standard design surface motions. State-of-the-art soil-structure interaction (SSI) analyses have been performed for the advanced reactors, which include structure-to-structure interaction for all seismic Category 1 structures. Advanced technology has been utilized to exclude the dynamic effects of pipe rupture from structural design by demonstrating that the probability of pipe rupture is extremely low. For piping design, the advanced reactor vendors have developed design acceptance criteria (DAC) which provides the piping design analysis methods, design procedures, and acceptance criteria. In SECY-93-087 the NRC staff recommended that the Commission approve the approach to eliminate the OBE from the design of structures and piping in advanced reactors and provided guidance which identifies the necessary changes to existing seismic design criteria. The supplemental criteria address fatigue, seismic anchor motion, and piping stress limits when the OBE is eliminated

  17. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  18. Pyrometallurgical processing of Integral Fast Reactor metal fuels

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Gay, E.C.

    1991-01-01

    The pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor is now in an advanced state of development. This process involves electrorefining spent fuel with a cadmium anode, solid and liquid cathodes, and a molten salt electrolyte (LiCl-KCl) at 500 degrees C. The initial process feasibility and flowsheet verification studies have been conducted in a laboratory-scale electrorefiner. Based on these studies, a dual cathode approach has been adopted, where uranium is recovered on a solid cathode mandrel and uranium-plutonium is recovered in a liquid cadmium cathode. Consolidation and purification (salt and cadmium removal) of uranium and uranium-plutonium products from the electrorefiner have been successful. The process is being developed with the aid of an engineering-scale electrorefiner, which has been successfully operated for more than three years. In this electrorefiner, uranium has been electrotransported from the cadmium anode to a solid cathode in 10 kg quantities. Also, anodic dissolution of 10 kg batches of chopped, simulated fuel (U--10% Zr) has been demonstrated. Development of the liquid cadmium cathode for recovering uranium-plutonium is under way

  19. Advanced Solar Panel Designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  20. Recent advances in centrifugal contactors design

    International Nuclear Information System (INIS)

    Leonard, R.A.

    1987-10-01

    Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs

  1. Advances in passive cooling design and performance analysis

    International Nuclear Information System (INIS)

    Woodcock, J.

    1994-01-01

    The Third International Conference on Containment Design and Operation continues the trend of rapidly extending the state of the art in containment methodology, joining other conferences, OECD-sponsored International Standard Problem exercises, and vendor licensing submittals. Methodology developed for use on plants with passive features is under increasing scrutiny for advanced designs, since the passive features are often the only deviation from existing operating base of the past 30 years of commercial nuclear power. This session, 'Containment Passive Safety Systems Design and Operation,' offers papers on a wide range of topics, with authors from six organizations from around the world, dealing with general passive containments, Westinghouse AP600, large (>1400 MWe) passive plants, and the AECL advanced CANDU reactor. This level and variety of participation underscores the high interest and accelerated methods development associated with advanced passive containment heat removal. The papers presented in this session demonstrate that significant contributions are being made to the advancement of technology necessary for building a new generation of safer, more economical nuclear plants. (author)

  2. Architectural design of an advanced naturally ventilated building form

    Energy Technology Data Exchange (ETDEWEB)

    Lomas, K.J. [De Montfort University, Leicester (United Kingdom). Institute of Energy and Sustainable Development

    2007-02-15

    Advanced stack-ventilated buildings have the potential to consume much less energy for space conditioning than typical mechanically ventilated or air-conditioned buildings. This paper describes how environmental design considerations in general, and ventilation considerations in particular, shape the architecture of advanced naturally ventilated (ANV) buildings. The attributes of simple and advanced naturally ventilated buildings are described and a taxonomy of ANV buildings presented. Simple equations for use at the preliminary design stage are presented. These produce target structural cross section areas for the key components of ANV systems. The equations have been developed through practice-based research to design three large educational buildings: the Frederick Lanchester Library, Coventry, UK; the School of Slavonic and East European Studies, London, UK; the Harm A. Weber Library, Elgin, near Chicago, USA. These buildings are briefly described and the sizes of the as-built ANV features compared with the target values for use in preliminary design. The three buildings represent successive evolutionary stages: from advanced natural ventilation, to ANV with passive downdraught cooling, and finally ANV with HVAC support. Hopefully the guidance, simple calculation tools and case study examples will give architects and environmental design consultants confidence to embark on the design of ANV buildings. (author)

  3. Basic design decisions for advanced AST-type NHRs

    International Nuclear Information System (INIS)

    Gureyeva, L.V.; Egorov, V.V.; Malamud, V.A.

    1997-01-01

    On the basis of the AST-500 reference design decisions and of the experience gained in the RF during the pilot NDHPs development and construction, the advanced NHR AST-500M has been developed recently by OKB Mechanical Engineering, as well as a whole series of heating and co-generation reactor plants of various unit power. All the designs represent enhanced safety reactor plants meeting the contemporary national requirements and international recommendations for nuclear plants of the new generation. The main objectives for the advanced NHR development are considered. New design decisions and engineering improvements are described briefly. (author). 3 refs, 4 figs

  4. Basic design decisions for advanced AST-type NHRs

    Energy Technology Data Exchange (ETDEWEB)

    Gureyeva, L V; Egorov, V V; Malamud, V A [OKBM, Nizhny Novgorod (Russian Federation)

    1997-09-01

    On the basis of the AST-500 reference design decisions and of the experience gained in the RF during the pilot NDHPs development and construction, the advanced NHR AST-500M has been developed recently by OKB Mechanical Engineering, as well as a whole series of heating and co-generation reactor plants of various unit power. All the designs represent enhanced safety reactor plants meeting the contemporary national requirements and international recommendations for nuclear plants of the new generation. The main objectives for the advanced NHR development are considered. New design decisions and engineering improvements are described briefly. (author). 3 refs, 4 figs.

  5. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  6. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    Energy Technology Data Exchange (ETDEWEB)

    Rose, M.A., E-mail: marose@anl.gov [Department of Nuclear Engineering, Purdue University, West Lafayette, IN, 47907 (United States); Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Williamson, M.A.; Willit, J. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-15

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl{sub 3}. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U{sup 3+} ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl{sub 3} or in the case of the eutectic salt for K{sub 2}UCl{sub 5}. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K{sub 2}UCl{sub 5} is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  7. Design criteria for advanced reactors

    International Nuclear Information System (INIS)

    Dennielou, Y.

    1991-01-01

    Design criteria for advanced reactors are discussed, including safety aspects, site selection, problems related to maintenance and possibility of repairing or replacing structures or components of a nuclear power plant, the human factor considerations. Bearing in mind that some of these criteria are the subject of consensus at international level, the author suggests to establish a table of different operator requirements, to prepare a dossier on the comparison of input data for probabilistic risk analysis, to take into consideration the means to control a severe accident from the very start of the design

  8. Advanced nuclear reactor safety design technology research in NPIC

    International Nuclear Information System (INIS)

    Yu, H.

    2014-01-01

    After the Fukushima accident happen, Nuclear Power Plants (NPPs) construction has been suspended in China for a time. Now the new regulatory rule has been proposed that the most advanced safety standard must be adopted for the new NPPs and practical elimination of large fission product release by design during the next five plans period. So the advanced reactor research is developing in China. NPIC is engaging on the ACP1000 and ACP100 (Small Module Reactor) design. The main design character will be introduced in this paper. The Passive Combined with Active (PCWA) design was adopted during the ACP1000 design to reduce the core damage frequency (CDF); the Cavity Injection System (CIS) is design to mitigation the consequence of the severe accident. Advance passive safety system was designed to ensure the long term residual heat removal during the Small Module Reactor (SMR). The SMR will be utilized to be the floating reactors, district heating reactor and so on. Besides, the Science and Technology on Reactor System Design Technology Laboratory (LRSDT) also engaged on the fundamental thermal-hydraulic characteristic research in support of the system validation. (author)

  9. Core Thermal-Hydraulic Conceptual Design for the Advanced SFR Design Concepts

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Chang, Jin Wook; Yoo, Jae Woon; Song, Hoon; Choi, Sun Rock; Park, Won Seok; Kim, Sang Ji

    2010-01-01

    The Korea Atomic Energy Research Institute (KAERI) has developed the advanced SFR design concepts from 2007 to 2009 under the National longterm Nuclear R and D Program. Two types of core designs, 1,200 MWe breakeven and 600 MWe TRU burner core have been proposed and evaluated whether they meet the design requirements for the Gen IV technology goals of sustainability, safety and reliability, economics, proliferation resistance, and physical protection. In generally, the core thermal hydraulic design is performed during the conceptual design phase to efficiently extract the core thermal power by distributing the appropriate sodium coolant flow according to the power of each assembly because the conventional SFR core is composed of hundreds of ducted assemblies with hundreds of fuel rods. In carrying out the thermal and hydraulic design, special attention has to be paid to several performance parameters in order to assure proper performance and safety of fuel and core; the coolant boiling, fuel melting, structural integrity of the components, fuel-cladding eutectic melting, etc. The overall conceptual design procedure for core thermal and hydraulic conceptual design, i.e., flow grouping and peak pin temperature calculations, pressure drop calculations, steady-state and detailed sub-channel analysis is shown Figure 1. In the conceptual design phase, results of core thermal-hydraulic design for advanced design concepts, the core flow grouping, peak pin cladding mid-wall temperature, and pressure drop calculations, are summarized in this study

  10. GE's advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Berglund, R.C.

    1993-01-01

    The excess of US electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which open-quotes are designed to ensure that the nuclear power option is available to utilities.close quotes Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14-point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other open-quotes enabling conditions.close quotes GE is participating in this national effort and GE's family of advanced nuclear power plants feature two reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the US and worldwide. Both possess the features necessary to do so safety, reliably, and economically

  11. 50% Advanced Energy Design Guides: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bonnema, E.; Leach, M.; Pless, S.; Liu, B.; Wang, W.; Thornton, B.; Williams, J.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  12. Advanced customization in architectural design and construction

    CERN Document Server

    Naboni, Roberto

    2015-01-01

    This book presents the state of the art in advanced customization within the sector of architectural design and construction, explaining important new technologies that are boosting design, product and process innovation and identifying the challenges to be confronted as we move toward a mass customization construction industry. Advanced machinery and software integration are discussed, as well as an overview of the manufacturing techniques offered through digital methods that are acquiring particular significance within the field of digital architecture. CNC machining, Robotic Fabrication, and Additive Manufacturing processes are all clearly explained, highlighting their ability to produce personalized architectural forms and unique construction components. Cutting-edge case studies in digitally fabricated architectural realizations are described and, looking towards the future, a new model of 100% customized architecture for design and construction is presented. The book is an excellent guide to the profoun...

  13. Literature survey on metal waste form for metallic waste from electrorefiners for the electrometallurgical treatment of spent metallic fuels

    International Nuclear Information System (INIS)

    Nishimura, Tomohiro

    2003-01-01

    This report summarizes the recent results of the metal waste form development activities at the Argonne National Laboratory in the USA for high-level radioactive metallic waste (stainless-steel (SS) cladding hulls, zirconium (Zr), noble-metal fission products (NMFPs), etc.) from electrorefiners for the electrometallurgical treatment of spent metallic fuels. Their main results are as follows: (1) SS- 15 wt.% Zr- ∼4 wt.% NMFPs alloy was selected as the metal waste form, (2) metallurgical data, properties, long-term corrosion data, etc. of the alloy have been collected, (3) 10-kg ingots have been produced in hot tests and a 60-kg production machine is under development. The following research should be made to show the feasibility of the metal waste form in Japan: (1) degradation assessment of the metal waste form in Japanese geological repository environments, and (2) clarification of the maximum allowable contents of NMFPs. (author)

  14. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  15. Adapting advanced engineering design approaches to building design - potential benefits

    NARCIS (Netherlands)

    Hopfe, C.J.; Struck, C.; Hensen, J.L.M.; Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  16. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  17. WRAP 2A advanced conceptual design report comments

    International Nuclear Information System (INIS)

    Lamberd, D.L.

    1994-01-01

    This report contains the compilation of the 393 comments that were submitted during the review of the Advanced Conceptual Design Report for the Waste Receiving and Processing Facility Module 2A. The report was prepared by Raytheon Engineers and Constructors, Inc. of Englewood, Colorado for the United States Department of Energy. The review was performed by a variety of organizations identified in the report. The comments were addressed first by the Westinghouse cognizant engineers and then by the Raytheon cognizant engineers, and incorporated into the final issue of the Advanced Conceptual Design Report

  18. Conceptual design of ICF reactor SENRI, Part II. Advances in design and pellet gain scaling

    International Nuclear Information System (INIS)

    Ido, S.; Mima, K.; Nakai, S.; Tsuji, R.; Yamanaka, C.

    1984-01-01

    This chapter reviews the recent design studies on reactor concepts with magnetically guided lithium flow, SENRI-I, SENRI-IA and SENRI-II. The routes from the present status to power reactors and an advanced fuel pellet concept is also discussed. Topics covered include pellet design, magnetohydrodynamic design of liquid lithium flow; reactor cavity concepts with magnetically guided lithium flow, a thermo-hydraulic analysis, a tritium recovery system; and an advanced fuel pellet concept for an inertial confinement fusion (ICF) reactor without a tritium breeding blanket. An advanced fuel pellet for an ICF reactor without a T breeder was studied in the model calculations, which showed sufficiently high values of pellet gain. Includes a table and 8 diagrams

  19. Control system design specification of advanced spent fuel management process units

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. H.; Kim, S. H.; Yoon, J. S

    2003-06-01

    In this study, the design specifications of instrumentation and control system for advanced spent fuel management process units are presented. The advanced spent fuel management process consists of several process units such as slitting device, dry pulverizing/mixing device, metallizer, etc. In this study, the control and operation characteristics of the advanced spent fuel management mockup process devices and the process devices developed in 2001 and 2002 are analysed. Also, a integral processing system of the unit process control signals is proposed, which the operation efficiency is improved. And a redundant PLC control system is constructed which the reliability is improved. A control scheme is proposed for the time delayed systems compensating the control performance degradation caused by time delay. The control system design specification is presented for the advanced spent fuel management process units. This design specifications can be effectively used for the detail design of the advanced spent fuel management process.

  20. Core design methods for advanced LMFBRs

    International Nuclear Information System (INIS)

    Chandler, J.C.; Marr, D.R.; McCurry, D.C.; Cantley, D.A.

    1977-05-01

    The multidiscipline approach to advanced LMFBR core design requires an iterative design procedure to obtain a closely-coupled design. HEDL's philosophy requires that the designs should be coupled to the extent that the design limiting fuel pin, the design limiting duct and the core reactivity lifetime should all be equal and should equal the fuel residence time. The design procedure consists of an iterative loop involving three stages of the design sequence. Stage 1 consists of general mechanical design and reactor physics scoping calculations to arrive at an initial core layout. Stage 2 consists of detailed reactor physics calculations for the core configuration arrived at in Stage 1. Based upon the detailed reactor physics results, a decision is made either to alter the design (Stage 1) or go to Stage 3. Stage 3 consists of core orificing and detailed component mechanical design calculations. At this point, an assessment is made regarding design adequacy. If the design is inadequate the entire procedure is repeated until the design is acceptable

  1. Pyrometallurgical partitioning of uranium and transuranic elements from rare earth elements by electrorefining and reductive extraction

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Kinoshita, Kensuke; Inoue, Tadashi; Storvick, T.S.; Krueger, C.L.; Nabelek, C.R.

    2001-01-01

    High-level liquid waste generated from PUREX reprocessing contains a small amount of transuranic elements, such as Np, Pu, Am, and Cm, with long-lived radioactivities. A pyrometallurgical partitioning process is being developed to recover transuranic elements from such waste. Small amounts of U contained in the high-level liquid waste are also recovered in the process. A key issue for developing the process is effective separation of U and the transuranic elements from the rare-earth elements, because the two elemental groups are chemically analogous. A series of process tests were carried out in the present study to demonstrate that a combination of electrorefining and reductive extraction is useful for separating U and transuranic elements from the rare-earth elements. The results indicate that 99% of U and each transuranic elements is recovered by the combination process as a product, and that the quantity of rare-earth elements contained in the product is smaller than the transuranic elements by weight. The overall mass balance of U and transuranic elements in the system ranged within the experimental errors assigned to sampling and analysis. (author)

  2. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  3. Using electrochemical separation to reduce the volume of high-level nuclear waste

    International Nuclear Information System (INIS)

    Slater, S.A.; Gay, E.C.

    1998-01-01

    Argonne National Laboratory (ANL) has developed an electrochemical separation technique called electrorefining that will treat a variety of metallic spent nuclear fuel and reduce the volume of high-level nuclear waste that requires disposal. As part of that effort, ANL has developed a high throughput electrorefiner (HTER) that has a transport rate approximately three times faster than electrorefiners previously developed at ANL. This higher rate is due to the higher electrode surface area, a shorter transport path, and more efficient mixing, which leads to smaller boundary layers about the electrodes. This higher throughput makes electrorefining an attractive option in treating Department of Energy spent nuclear fuels. Experiments have been done to characterize the HTER, and a simulant metallic fuel has been successfully treated. The HTER design and experimental results is discussed

  4. Advanced solar panel designs

    Science.gov (United States)

    Ralph, E. L.; Linder, E.

    1995-01-01

    This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.

  5. Containment design, performance criteria and research needs for advanced reactor designs

    International Nuclear Information System (INIS)

    Bagdi, G.; Ali, S.; Costello, J

    2004-01-01

    This paper points out some important shifts in the basic expectations in the performance requirements for containment structures and discusses the areas where the containment structure design requirements and acceptance criteria can be integrated with ultimate test based insights. Although there has not been any new reactor construction in the United States for over thirty years, several designs of evolutionary and advanced reactors have already been certified. Performance requirements for containment structures under design basis and severe accident conditions and explicit consideration of seismic margins have been used in the design certification process. In the United States, the containment structure design code is the American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NE-Class MC for the steel containment and Section III, Division 2 for reinforced and prestressed concrete reactor vessels and containments. This containment design code was based on the early concept of applying design basis internal pressure and associated load combinations that included the operating basis and safe shutdown earthquake ground motion. These early design criteria served the nuclear industry and the regulatory authorities in maintaining public health and safety. However, these early design criteria do not incorporate the performance criteria related to containment function in an integrated fashion. Research in large scale model testing of containment structures to failure from over pressurization and shake table testing using simulated ground motion, have produced insights related to failure modes and material behavior at failure. The results of this research provide the opportunity to integrate these observations into design and acceptance criteria. This integration process would identify 'gaps' in the present knowledge and future research needs. This knowledge base is important for gleaning risk-informed insights into

  6. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  7. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  8. Update on quadruple suspension design for Advanced LIGO

    International Nuclear Information System (INIS)

    Aston, S M; Carbone, L; Cutler, R M; Hoyland, D; Barton, M A; Bland, B; Bell, A S; Beveridge, N; Cagnoli, G; Cantley, C A; Cumming, A V; Cunningham, L; Hammond, G D; Haughian, K; Hough, J; Brummitt, A J; Greenhalgh, R J S; Hayler, T M; Heptonstall, A; Heefner, J

    2012-01-01

    We describe the design of the suspension systems for the major optics for Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. The design is based on that used in GEO600—the German/UK interferometric gravitational wave detector, with further development to meet the more stringent noise requirements for Advanced LIGO. The test mass suspensions consist of a four-stage or quadruple pendulum for enhanced seismic isolation. To minimize suspension thermal noise, the final stage consists of a silica mirror, 40 kg in mass, suspended from another silica mass by four silica fibres welded to silica ears attached to the sides of the masses using hydroxide-catalysis bonding. The design is chosen to achieve a displacement noise level for each of the seismic and thermal noise contributions of 10 −19 m/√Hz at 10 Hz, for each test mass. We discuss features of the design which has been developed as a result of experience with prototypes and associated investigations. (paper)

  9. Performance and safety design of the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Berglund, R.C.; Magee, P.M.; Boardman, C.E.; Gyorey, G.L.

    1991-01-01

    The Advanced Liquid Metal Reactor (ALMR) program led by General Electric is developing, under U.S. Department of Energy sponsorship, a conceptual design for an advanced sodium-cooled liquid metal reactor plant. This design is intended to improve the already excellent level of plant safety achieved by the nuclear power industry while at the same time providing significant reductions in plant construction and operating costs. In this paper, the plant design and performance are reviewed, with emphasis on the ALMR's unique passive design safety features and its capability to utilize as fuel the actinides in LWR spent fuel

  10. Advanced nuclear plant design options to cope with external events

    International Nuclear Information System (INIS)

    2006-02-01

    With the stagnation period of nuclear power apparently coming to an end, there is a renewed interest in many Member States in the development and application of nuclear power plants (NPPs) with advanced reactors. Decisions on the construction of several NPPs with evolutionary light water reactors have been made (e.g. EPR Finland for Finland and France) and more are under consideration. There is a noticeable progress in the development and demonstration of innovative high temperature gas cooled reactors, for example, in China, South Africa and Japan. The Generation IV International Forum has defined the International Near Term Deployment programme and, for a more distant perspective, six innovative nuclear energy systems have been selected and certain R and D started by several participating countries. National efforts on design and technology development for NPPs with advanced reactors, both evolutionary and innovative, are ongoing in many Member States. Advanced NPPs have an opportunity to be built at many sites around the world, with very broad siting conditions. There are special concerns that safety of these advanced reactors may be challenged by external events following new scenarios and failure modes, different from those well known for the currently operated reactors. Therefore, the engineering community identified the need to assess the proposed design configurations in relation to external scenarios at the earliest stages of the design development. It appears that an early design optimization in relation to external events is a necessary requirement to achieve safe and economical advanced nuclear power plants. Reflecting on these developments, the IAEA has planned the preparation of a report to define design options for protection from external event impacts in NPPs with evolutionary and innovative reactors. The objective of this publication is to present the state-of-the-art in design approaches for the protection of NPPs with evolutionary and innovative

  11. TNO-ADVANCE: a modular power train simulation and design tool

    NARCIS (Netherlands)

    Venne, J.W.C. van de; Hendriksen, P.; Smokers, R.T.M.; Verkiel, M.

    1998-01-01

    To support its activities in the field of conventional and hybrid vehicles, TNO has developed ADVANCE, a modular simulation tool for the design and evaluation of advanced power trains. In this paper the various features and the potential of ADVANCE are described and illustrated by means of two case

  12. Design of DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Reis, E.; Schaffer, M.; Thruston, G.

    1989-01-01

    The Advanced Divertor is a modification being designed for the plasma chamber of the DIII-D tokamak in order to optimize the divertor configuration and allow a broader range of experiments to be carried out. The Advanced Divertor will enable two classes of physics experiments to be run in DIII-D: Divertor biasing and Divertor baffing. The Advanced Divertor has two principal components: ( 1) a toroidally symmetric baffle; and (2) a continuous ring electrode. The tokamak can be run in baffle, bias, or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D plasma control system. The baffle will contain approximately 50,000 l/s pumping for particle removal in the outer bottom corner of the vacuum vessel. The strike point will be positioned at the entrance aperture for the baffle mode. The aperture geometry is designed to facilitate a large particle influx plus a high probability that backstreaming particles will be reionized and redirected to the aperture. Where the baffling plates meet, gas sealing is required to prevent recycling of neutrals back into the plasma. The electrode is a continuous water-cooled ring, armored with graphite. The ring is electrically isolated from the vessel wall and is biasable to 1 kV and 20 kA. The outer leg of the divertor will be positioned on the graphite covered ring during biasing experiments. The supports for the ring are radially flexible to handle the differential thermal growth between the ring and the vessel wall but stiff in the vertical direction to restrain the ring against large disruption forces. The coolant and electrical feeds are designed in a similar manner. 2 refs., 4 figs

  13. Design of DIII-D Advanced Divertor

    International Nuclear Information System (INIS)

    Smith, J.P.; Baxi, C.B.; Reis, E.; Schaffer, M.; Thurston, G.

    1989-11-01

    The Advanced Divertor is a modification being designed for the plasma chamber of the DIII-D tokamak in order to optimize the divertor configuration and allow a broader range of experiments to be carried out. The Advanced Divertor will enable two classes of physics experiments to be run in DIII-D: Divertor biasing and Divertor baffling. The Advanced Divertor has two principal components: a toroidally symmetric baffle; and a continuous ring electrode. The tokamak can be run in baffle, bias, or standard DIII-D divertor modes by accurate positioning of the outer divertor strike point through the use of the DIII-D plasma control system. The baffle will contain approximately 50,000 l/s pumping for particle removal in the outer bottom corner of the vacuum vessel. The strike point will be positioned at the entrance aperture for the baffle mode. The aperture geometry is designed to facilitate a large particle influx plus a high probability that backstreaming particles will be reionized and redirected to the aperture. Where the baffling plates meet, gas sealing is required to prevent recycling of neutrals back into the plasma. The electrode is a continuous water-cooled ring, armored with graphite. The ring is electrically isolated from the vessel wall and is biasable to 1 kV and 20 kA. The outer leg of the divertor will be positioned on the graphite covered ring during biasing experiments. The supports for the ring are radially flexible to handle the differential thermal growth between the ring and the vessel wall but stiff in the vertical direction to restrain the ring against large disruption forces. The coolant and electrical feeds are designed in a similar manner. All the feeds are supported from and maintain a 5 kV isolation to the vessel wall. 2 refs., 4 figs

  14. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  15. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  16. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  17. Various advanced design projects promoting engineering education

    Science.gov (United States)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  18. Advanced stratified charge rotary aircraft engine design study

    Science.gov (United States)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  19. Advanced design cultures long-term perspective and continuous innovation

    CERN Document Server

    2015-01-01

    This book describes new thinking and practice in Advanced Design (ADD) – design that is not merely highly developed but anticipates the future by envisioning novel products and processes. The focus is especially on the front end of innovation and the search for solutions in complex pioneering processes using design-related tools and practices. The book opens by describing these tools, the approaches that characterize ADD, and its historical dimension. Specific fields in which ADD has flourished are then examined, exploring the dynamics between research and design. The coverage ranges from transportation, lighting, and electrical appliances through to business networks, technology parks, and the development of ground-breaking materials. AdvanceDesign is the name of the research group at the Politecnico di Milano (Italy’s largest technical university) of which the authors are members. It was chosen to reflect both the “advanced”, tangible dimension of design in terms of modern product development, mater...

  20. Advances in Analog Circuit Design 2015

    CERN Document Server

    Baschirotto, Andrea; Harpe, Pieter

    2016-01-01

    This book is based on the 18 tutorials presented during the 24th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of efficient sensor interfaces and low-power RF systems. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development. ·         Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; ·         Presents material in a tutorial-based format; ·         Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing.

  1. Evaluation of technical design of advanced information display(III)

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol; Park, Soon Hyuk

    2005-02-01

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines

  2. Evaluation of technical design of advanced information display(III)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Jung, Sung Hae; Park, Joon Yong; Kim, Nam Cheol [Kumoh National Institute of Technology, Gumi (Korea, Republic of); Park, Soon Hyuk [DNT Inc., Daejeon (Korea, Republic of)

    2005-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing digitalized information display by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices. The Design Review Supporting System for Advanced Information Display(DReSS-AID) was developed for the practical usage of evaluators-in-field, which was implemented with Hangul version guidelines.

  3. Design of the Advanced Virgo non-degenerate recycling cavities

    International Nuclear Information System (INIS)

    Granata, M; Barsuglia, M; Flaminio, R; Freise, A; Hild, S; Marque, J

    2010-01-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  4. The Advanced Neutron Source design: A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Nuetron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MW th . Safety, and especially passive safety features, have been emphasized throughout the design process

  5. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  6. Development of environmentally advanced hydropower turbine system design concepts

    International Nuclear Information System (INIS)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr.

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower''s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable

  7. Advanced Energy Design Guide K-12: Next Generation of School Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-01

    Driven by energy efficiency advances and renewable energy cost reductions, zero energy buildings are popping up all around the country. Although zero energy represents a bold paradigm shift - from buildings that consume energy to buildings that produce enough energy to meet their energy needs on an annual basis - it isn't a sudden shift. Zero energy buildings are the result of steady, incremental progress by researchers and building professionals working together to improve building energy performance. ASHRAE is taking the lead by publishing - in partnership with the American Institute of Architects (AIA), the Illuminating Engineering Society (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy (DOE) - a new series of advanced energy design guides (AEDGs) focused on zero energy buildings. The recently completed Advanced Energy Design Guide for K-12 School Buildings: Achieving Zero Energy (K-12 ZE AEDG) is the first in this series.

  8. Applicability of HRA to support advanced MMI design review

    International Nuclear Information System (INIS)

    Kim, Inn Seock

    2000-01-01

    More than half of all incidents in large complex technological systems, particularly in nuclear power or aviation industries, were attributable in some way to human erroneous actions. These incidents were largely due to the human engineering deficiencies of man-machine interface (MMI). In nuclear industry, advanced computer-based MMI designs are emerging as part of new reactor designs. The impact of advanced MMI technology on the operator performance, and as a result, on plant safety should be thoroughly evaluated before such technology is actually adopted in nuclear power plants. This paper discusses the applicability of human reliability analysis (HRA) to support the design review process. Both the first-generation and the second-generation HRA methods are considered focusing on a couple of promising HRA methods, i.e., ATHEANA and CREAM, with the potential to assist the design review process. (author)

  9. Development of advanced-RCCA in PWR (2). Design of advanced-RCCA and verification test

    Energy Technology Data Exchange (ETDEWEB)

    Kitagawa, T.; Naitou, T.; Suzuki, S.; Kawahara, H. [Mitsubishi Heavy Industries Ltd., Kobe (Japan); Tanaka, T. [Kansai Electric Power Co., Inc. (Japan); Kuriyama, H. [Hokkaido Electric Power Co., Inc., Sapporo (Japan); Fujii, S. [Shikoku Electric Power Co., Inc., Takamatsu (Japan); Murakami, S. [Kyusyu Electric Power Co., Inc. (Japan); Murota, M. [Japan Atomic Power Co., Tokyo (Japan)

    2001-07-01

    Advanced-RCCA enhances control rod worth by adopting boron carbide (B{sub 4}C) with enriched {sup 10}B (hybrid structure B{sub 4}C/Ag-In-Cd). In APWR, advanced-RCCA result in the reduction of the number of RCCA. In conventional PWR, large MOX or high burn-up fuel loading could be introduced without the additional RCCAs. The duplex cladding structure with Cr plating on each outside surface increases the reliability against the RCCA-wear and results in reduction of inspection cost (inspection-equipment, and inspection-interval). Design of advanced-RCCA and verification are also discussed. (author)

  10. Development and Optimization of Voltammetric Methods for Real Time Analysis of Electrorefiner Salt with High Concentrations of Actinides and Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael F.; Phongikaroon, Supathorn; Zhang, Jinsuo

    2018-03-30

    This project addresses the problem of achieving accurate material control and accountability (MC&A) around pyroprocessing electrorefiner systems. Spent nuclear fuel pyroprocessing poses a unique challenge with respect to reprocessing technology in that the fuel is never fully dissolved in the process fluid. In this case, the process fluid is molten, anhydrous LiCl-KCl salt. Therefore, there is no traditional input accountability tank. However, electrorefiners (ER) accumulate very large quantities of fissile nuclear material (including plutonium) and should be well safeguarded in a commercial facility. Idaho National Laboratory (INL) currently operates a pyroprocessing facility for treatment of spent fuel from Experimental Breeder Reactor-II with two such ER systems. INL implements MC&A via a mass tracking model in combination with periodic sampling of the salt and other materials followed by destructive analysis. This approach is projected to be insufficient to meet international safeguards timeliness requirements. A real time or near real time monitoring method is, thus, direly needed to support commercialization of pyroprocessing. A variety of approaches to achieving real time monitoring for ER salt have been proposed and studied to date—including a potentiometric actinide sensor for concentration measurements, a double bubbler for salt depth and density measurements, and laser induced breakdown spectroscopy (LIBS) for concentration measurements. While each of these methods shows some promise, each also involves substantial technical complexity that may ultimately limit their implementation. Yet another alternative is voltammetry—a very simple method in theory that has previously been tested for this application to a limited extent. The equipment for a voltammetry system consists of off-the-shelf components (three electrodes and a potentiostat), which results in substantial benefits relative to cost and robustness. Based on prior knowledge of electrochemical

  11. Project margins of advanced reactor design WWER-500

    International Nuclear Information System (INIS)

    Rogov, M.F.; Birukov, G.I.; Ershov, V.G.; Volkov, B.E.

    1994-01-01

    Project criteria for design of advanced WWER-500 reactor within design conditions are compared to the requirements of the Russian regulatory guides. Normal operation limits, safe operation limits for main anticipated operational occurrences and design limits accepted for design basis accidents are considered as in preliminary safety report. It is shown that the basic design criteria in the design of WWER-500 for the anticipated operational occurrences and for design basis accidents are more severe than required in the following regulatory guides General Safety Regulations for Nuclear Power Plants and Nuclear Safety Rules for Reactors of Nuclear Power Plants. This provides certain margins from safety point of view

  12. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  13. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  14. Requirements of Integrated Design Teams While Evaluating Advanced Energy Retrofit Design Options in Immersive Virtual Environments

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2015-12-01

    Full Text Available One of the significant ways to save energy use in buildings is to implement advanced energy retrofits in existing buildings. Improving energy performance of buildings through advanced energy retrofitting requires a clear understanding of the cost and energy implications of design alternatives from various engineering disciplines when different retrofit options are considered. The communication of retrofit design alternatives and their energy implications is essential in the decision-making process, as it affects the final retrofit selections and hence the energy efficiency of the retrofitted buildings. The objective of the research presented here was to identify a generic list of information requirements that are needed to be shared and collectively analyzed by integrated design teams during advanced energy retrofit design review meetings held in immersive settings. While identifying such requirements, the authors used an immersive environment based iterative requirements elicitation approach. The technology was used as a means to better identify the information requirements of integrated design teams to be analyzed as a group. This paper provides findings on information requirements of integrated design teams when evaluating retrofit options in immersive virtual environments. The information requirements were identified through interactions with sixteen experts in design and energy modeling domain, and validated with another group of participants consisting of six design experts who were experienced in integrated design processes. Industry practitioners can use the findings in deciding on what information to share with integrated design team members during design review meetings that utilize immersive virtual environments.

  15. Basic design study on plutonium electro-refining facility of oxide fuel pyroelectrochemical reprocessing

    International Nuclear Information System (INIS)

    Ogura, Kenji; Kondo, Naruhito; Kamoshida, Hiroshi; Omori, Takashi

    2001-02-01

    The test facility basic design, utility necessity and estimation cost of the Oxide Fuel Pyro-process for the use of Chemical Processing Facility (CPF) of JNC have been studied with the information of the previous year concept study and the additional conditions. Drastic down sizing design change or the building reconstruction is necessary to place the Oxide Fuel Pyro-process Facility in the laboratory ''C'', because it is not possible to reserve enough maintenance space and the weight of the facility is over the acceptable limit of the building. A further study such as facility down sizing, apparatus detail design and experiment detail process treatment has to be planned. (author)

  16. ADVANCES IN YUCCA MOUNTAIN DESIGN

    International Nuclear Information System (INIS)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-01-01

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield

  17. The advanced neutron source design - A status report

    International Nuclear Information System (INIS)

    West, C.D.

    1992-01-01

    The Advanced Neutron Source (ANS) facility is being designed as a user laboratory for all types of neutron-based research, centered around a nuclear fission reactor (D 2 O cooled, moderated, and reflected), operating at approximately 300 MWth. Safety, and especially passive safety features, have been emphasized throughout the design process. The design also provides experimental facilities for neutron scattering and nuclear and fundamental physics research, transuranic and other isotope production, radiation effects research, and materials analysis. (author)

  18. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

    2008-12-16

    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

  19. Human factors design review guidelines for advanced nuclear control room technologies

    International Nuclear Information System (INIS)

    O'Hara, J.; Brown, W.; Granda, T.; Baker, C.

    1991-01-01

    Advanced control rooms (ACRs) for future nuclear power plants are being designed utilizing computer-based technologies. The US Nuclear Regulatory Commission reviews the human engineering aspects of such control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported in order to protect public health and safety. This paper describes the rationale, general approach, and initial development of an NRC Advanced Control Room Design Review Guideline. 20 refs., 1 fig

  20. BASELINE DESIGN/ECONOMICS FOR ADVANCED FISCHER-TROPSCH TECHNOLOGY; FINAL

    International Nuclear Information System (INIS)

    None

    1998-01-01

    Bechtel, along with Amoco as the main subcontractor, developed a Baseline design, two alternative designs, and computer process simulation models for indirect coal liquefaction based on advanced Fischer-Tropsch (F-T) technology for the U. S. Department of Energy's (DOE's) Federal Energy Technology Center (FETC)

  1. Mechanical Design Optimization Using Advanced Optimization Techniques

    CERN Document Server

    Rao, R Venkata

    2012-01-01

    Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational ...

  2. Advances in product family and product platform design methods & applications

    CERN Document Server

    Jiao, Jianxin; Siddique, Zahed; Hölttä-Otto, Katja

    2014-01-01

    Advances in Product Family and Product Platform Design: Methods & Applications highlights recent advances that have been made to support product family and product platform design and successful applications in industry. This book provides not only motivation for product family and product platform design—the “why” and “when” of platforming—but also methods and tools to support the design and development of families of products based on shared platforms—the “what”, “how”, and “where” of platforming. It begins with an overview of recent product family design research to introduce readers to the breadth of the topic and progresses to more detailed topics and design theory to help designers, engineers, and project managers plan, architect, and implement platform-based product development strategies in their companies. This book also: Presents state-of-the-art methods and tools for product family and product platform design Adopts an integrated, systems view on product family and pro...

  3. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  4. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  5. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT; FINAL

    International Nuclear Information System (INIS)

    Albrecht H. Mayer

    2000-01-01

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions

  6. Advanced concepts, analysis approaches and criteria for nuclear piping system design

    International Nuclear Information System (INIS)

    Tang, H.T.; Tagart, S.W. Jr.; Tang, Y.K.

    1992-01-01

    Recent research in piping system design and analysis has resulted in advancements on damping values, independent support motion (ISM), static coefficient method, simplified inelastic method and ASME code criteria changes. In the support area, passive type of supports such as energy-absorbing device and gap stopper have been developed. These advancements provide bases for improved and cost-effective design of future nuclear piping systems. (author)

  7. Passive Solar still: Recent advancement in design and related Performance.

    Science.gov (United States)

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  8. Treatment of waste salt from the advanced spent fuel conditioning process (I): characterization of Zeolite A in Molten LiCl Salt

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Lee, Jae Hee; Yoo, Jae Hyung; Kim, Joon Hyung

    2004-01-01

    The oxide fuel reduction process based on the electrochemical method (Advanced spent fuel Conditioning Process; ACP) and the long-lived radioactive nuclides partitioning process based on electro-refining process, which are being developed ay the Korea Atomic Energy Research Institute (KAERI), are to generate two types of molten salt wastes such as LiCl salt and LiCl-KCl eutectic salt, respectively. These waste salts must meet some criteria for disposal. A conditioning process for LiCl salt waste from ACP has been developed using zeolite A. This treatment process of waste salt using zeolite A was first developed by US ANL (Argonne National Laboratory) for LiCl-KCl eutectic salt waste from an electro-refining process of EBR (Experimental Breeder Reactor)-II spent fuel. This process has been developed recently, and a ceramic waste form (CWF) is produced in demonstration-scale V-mixer (50 kg/batch). However, ANL process is different from KAERI treatment process in waste salt, the former is LiCl-KCl eutectic salt and the latter is LiCl salt. Because of melting point, the immobilization of eutectic salt is carried out at about 770 K, whereas LiCl salt at around 920 K. Such difference has an effect on properties of immobilization media, zeolite A. Here, zeolite A in high-temperature (923 K) molten LiCl salt was characterized by XRD, Ion-exchange, etc., and evaluated if a promising media or not

  9. Overview of advanced LMR design in the US

    International Nuclear Information System (INIS)

    Wade, D.C.

    1988-01-01

    The current generation of US advanced LMR conceptual designs have resulted from a goal to address the economic and institutional issues facing the US nuclear industry in the late 70's and early 80's. They are focused technically on achieving passive safety characteristics and favorable capital and operating costs. The design strategies which have been taken were motivated as well by the coal to favorably impact the institutional and public perception regimes regarding safety, diversion, nonproliferation, and waste. The rationales and tradeoffs influencing the resulting design decisions are discussed in this paper, with a focus on core design issues. 1 fig

  10. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  11. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2015-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  12. Advanced Topology Optimization Methods for Conceptual Architectural Design

    DEFF Research Database (Denmark)

    Aage, Niels; Amir, Oded; Clausen, Anders

    2014-01-01

    This paper presents a series of new, advanced topology optimization methods, developed specifically for conceptual architectural design of structures. The proposed computational procedures are implemented as components in the framework of a Grasshopper plugin, providing novel capacities...

  13. Mirror Advanced Reactor Study interim design report

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  14. Mirror Advanced Reactor Study interim design report

    International Nuclear Information System (INIS)

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  15. Design and installation of advanced computer safety related instrumentation

    International Nuclear Information System (INIS)

    Koch, S.; Andolina, K.; Ruether, J.

    1993-01-01

    The rapidly developing area of computer systems creates new opportunities for commercial utilities operating nuclear reactors to improve plant operation and efficiency. Two of the main obstacles to utilizing the new technology in safety-related applications is the current policy of the licensing agencies and the fear of decision making managers to introduce new technologies. Once these obstacles are overcome, advanced diagnostic systems, CRT-based displays, and advanced communication channels can improve plant operation considerably. The article discusses outstanding issues in the area of designing, qualifying, and licensing of computer-based instrumentation and control systems. The authors describe the experience gained in designing three safety-related systems, that include a Programmable Logic Controller (PLC) based Safeguard Load Sequencer for NSP Prairie Island, a digital Containment Isolation monitoring system for TVA Browns Ferry, and a study that was conducted for EPRI/NSP regarding a PLC-based Reactor Protection system. This article presents the benefits to be gained in replacing existing, outdated equipment with new advanced instrumentation

  16. Developing a Signature Based Safeguards Approach for the Electrorefiner and Salt Cleanup Unit Operations in Pyroprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Chantell Lynne-Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-27

    Traditional nuclear materials accounting does not work well for safeguards when applied to pyroprocessing. Alternate methods such as Signature Based Safeguards (SBS) are being investigated. The goal of SBS is real-time/near-real-time detection of anomalous events in the pyroprocessing facility as they could indicate loss of special nuclear material. In high-throughput reprocessing facilities, metric tons of separated material are processed that must be accounted for. Even with very low uncertainties of accountancy measurements (<0.1%) the uncertainty of the material balances is still greater than the desired level. Novel contributions of this work are as follows: (1) significant enhancement of SBS development for the salt cleanup process by creating a new gas sparging process model, selecting sensors to monitor normal operation, identifying safeguards-significant off-normal scenarios, and simulating those off-normal events and generating sensor output; (2) further enhancement of SBS development for the electrorefiner by simulating off-normal events caused by changes in salt concentration and identifying which conditions lead to Pu and Cm not tracking throughout the rest of the system; and (3) new contribution in applying statistical techniques to analyze the signatures gained from these two models to help draw real-time conclusions on anomalous events.

  17. Novelties in design and construction of the advanced reactors

    International Nuclear Information System (INIS)

    Acosta Ezcurra, T.; Garcia Rodriguez, B.M.

    1996-01-01

    The advanced pressurized water reactors (APWR), advanced boiling water reactors (ABWR), advanced liquid metal reactors (ALMR), and modular high temperature gas-cooled reactors (MHTGR), as well as heavy water reactors (AHWR), are analyzed taking into account those characteristics which make them less complex, but safer than their current homologous ones. This fact simplifies their construction which reduces completion periods and costs, increasing safety and protection of the plants. It is demonstrated how the accumulated operational experience allows to find more standardized designs with some enhancement in the material and component technology and thus achieve also a better use of computerized systems

  18. Westinghouse AP600 advanced nuclear plant design

    International Nuclear Information System (INIS)

    Gangloff, W.

    1999-01-01

    As part of the cooperative US Department of Energy (DOE) Advanced Light Water Reactor (ALWR) Program and the Electric Power Research Institute (EPRI), the Westinghouse AP600 team has developed a simplified, safe, and economic 600-megawatt plant to enter into a new era of nuclear power generation. Designed to satisfy the standards set by DOE and defined in the ALWR Utility Requirements Document (URD), the Westinghouse AP600 is an elegant combination of innovative safety systems that rely on dependable natural forces and proven technologies. The Westinghouse AP600 design simplifies plant systems and significant operation, inspections, maintenance, and quality assurance requirements by greatly reducing the amount of valves, pumps, piping, HVAC ducting, and other complex components. The AP600 safety systems are predominantly passive, depending on the reliable natural forces of gravity, circulation, convection, evaporation, and condensation, instead of AC power supplies and motor-driven components. The AP600 provides a high degree of public safety and licensing certainty. It draws upon 40 years of experience in light water reactor components and technology, so no demonstration plant is required. During the AP600 design program, a comprehensive test program was carried out to verify plant components, passive safety systems components, and containment behavior. When the test program was completed at the end of 1994, the AP600 became the most thoroughly tested advanced reactor design ever reviewed by the US Nuclear Regulatory Commission (NRC). The test results confirmed the exceptional behavior of the passive systems and have been instrumental in facilitating code validations. Westinghouse received Final Design Approval from the NRC in September 1998. (author)

  19. BWR 90: The ABB advanced BWR design

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced fight water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and the total power generation costs have been low. In the development of BWR 90 specific changes were introduced to the reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher dim that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Thus, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The work is scheduled for completion in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with the 'evolutionary' design BWR 90+. The primary design goal is to develop the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is

  20. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs

  1. Conceptual designs of advanced fast reactor. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    A Technical Committee meeting (TCM) was held on Conceptual Designs of Advanced Fast Power Reactors to review the lessons learned from the construction and operation of demonstration and near-commercial size plants. This TCM focused on design and development of advanced fast reactors and identified methodologies to evaluate the economic competitiveness and reliability of advanced projects. The Member States which participated in the TCM were at different stages of LMFR development. The Russian Federation, Japan and India had prototype and/or experimental LMFRs and continue with mature R and D programmes. China, the Republic of Korea and Brazil were at the beginning of LMFR development. Therefore the aims of the TCM were to obtain technical descriptions of different design approaches for experimental, prototype, demonstration and commercial LMFRs, and to describe the engineering judgements made in developing the design approaches. Refs, figs, tabs.

  2. Advanced Neutron Source: The designer's perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is a research facility based on a 350 MW beam reactor, to be brought into service at the Oak Ridge National Laboratory at the end of the century. The primary objective is to provide high-flux neutron beams and guides, with cold, thermal, hot, and ultra-cold neutrons, for research in many fields of science. Secondary objectives include isotopes production, materials irradiation and activation analysis. The design of the ANS is strongly influenced by the historical development of research and power reactor concepts, and of the regulatory infrastructure of the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). Current trends in reactor safety also impact the climate for the design of such a reactor

  3. 25th workshop on Advances in Analog Circuit Design

    CERN Document Server

    Harpe, Pieter; Makinwa, Kofi

    2017-01-01

    This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with specific contributions focusing on the design of continuous-time sigma-delta modulators, automotive electronics, and power management. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

  4. Design and validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.

    2007-01-01

    This thesis presents new tools and methods for the design and validation of advanced driver assistance systems (ADASs). ADASs aim to improve driving comfort and traffic safety by assisting the driver in recognizing and reacting to potentially dangerous traffic situations. A major challenge in

  5. Development of the advanced PHWR technology -Design and analysis of CANDU advanced fuel-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Shim, Kee Sub; Byun, Taek Sang; Park, Kwang Suk; Kang, Heui Yung; Kim, Bong Kee; Jung, Chang Joon; Lee, Yung Wook; Bae, Chang Joon; Kwon, Oh Sun; Oh, Duk Joo; Im, Hong Sik; Ohn, Myung Ryong; Lee, Kang Moon; Park, Joo Hwan; Lee, Eui Joon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    This is the `94 annual report of the CANDU advanced fuel design and analysis project, and describes CANFLEX fuel design and mechanical integrity analysis, reactor physics analysis and safety analysis of the CANDU-6 with the CANFLEX-NU. The following is the R and D scope of this fiscal year : (1) Detail design of CANFLEX-NU and detail analysis on the fuel integrity, reactor physics and safety. (a) Detail design and mechanical integrity analysis of the bundle (b) CANDU-6 refueling simulation, and analysis on the Xe transients and adjuster system capability (c) Licensing strategy establishment and safety analysis for the CANFLEX-NU demonstration demonstration irradiation in a commercial CANDU-6. (2) Production and revision of CANFLEX-NU fuel design documents (a) Production and approval of CANFLEX-NU reference drawing, and revisions of fuel design manual and technical specifications (b) Production of draft physics design manual. (3) Basic research on CANFLEX-SEU fuel. 55 figs, 21 tabs, 45 refs. (Author).

  6. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  7. Advanced thermionic reactor systems design code

    International Nuclear Information System (INIS)

    Lewis, B.R.; Pawlowski, R.A.; Greek, K.J.; Klein, A.C.

    1991-01-01

    An overall systems design code is under development to model an advanced in-core thermionic nuclear reactor system for space applications at power levels of 10 to 50 kWe. The design code is written in an object-oriented programming environment that allows the use of a series of design modules, each of which is responsible for the determination of specific system parameters. The code modules include a neutronics and core criticality module, a core thermal hydraulics module, a thermionic fuel element performance module, a radiation shielding module, a module for waste heat transfer and rejection, and modules for power conditioning and control. The neutronics and core criticality module determines critical core size, core lifetime, and shutdown margins using the criticality calculation capability of the Monte Carlo Neutron and Photon Transport Code System (MCNP). The remaining modules utilize results of the MCNP analysis along with FORTRAN programming to predict the overall system performance

  8. Advanced control room design for nuclear power plants

    International Nuclear Information System (INIS)

    Scarola, K.

    1987-01-01

    The power industry has seen a continuous growth of size and complexity of nuclear power plants. Accompanying these changes have been extensive regulatory requirements resulting in significant construction, operation and maintenance costs. In response to related concerns raised by industry members, Combustion Engineering developed the NUPLEX 80 Advanced Control Room. The goal of NUPLEX 80 TM is to: reduce design and construction costs; increase plant safety and availability through improvements in the man-machine interface; and reduce maintenance costs. This paper provides an overview of the NUPLEX 80 Advanced Control Room and explains how the stated goals are achieved. (author)

  9. Survey of advanced radiation technologies used at designated cancer care hospitals in Japan

    International Nuclear Information System (INIS)

    Shikama, Naoto; Tsujino, Kayoko; Nakamura, Katsumasa; Ishikura, Satoshi

    2014-01-01

    Our survey assessed the use of advanced radiotherapy technologies at the designated cancer care hospitals in Japan, and we identified several issues to be addressed. We collected the data of 397 designated cancer care hospitals, including information on staffing in the department of radiation oncology (e.g. radiation oncologists, medical physicists and radiation therapists), the number of linear accelerators and the implementation of advanced radiotherapy technologies from the Center for Cancer Control and Information Services of the National Cancer Center, Japan. Only 53% prefectural designated cancer care hospitals and 16% regional designated cancer care hospitals have implemented intensity-modulated radiotherapy for head and neck cancers, and 62% prefectural designated cancer care hospitals and 23% regional designated cancer care hospitals use intensity-modulated radiotherapy for prostate cancer. Seventy-four percent prefectural designated cancer care hospitals and 40% regional designated cancer care hospitals employ stereotactic body radiotherapy for lung cancer. Our multivariate analysis of prefectural designated cancer care hospitals which satisfy the institute's qualifications for advanced technologies revealed the number of radiation oncologists (P=0.01) and that of radiation therapists (P=0.003) were significantly correlated with the implementation of intensity-modulated radiotherapy for prostate cancer, and the number of radiation oncologists (P=0.02) was correlated with the implementation of stereotactic body radiotherapy. There was a trend to correlate the number of medical physicists with the implementation of stereotactic body radiotherapy (P=0.07). Only 175 (51%) regional designated cancer care hospitals satisfy the institute's qualification of stereotactic body radiotherapy and 76 (22%) satisfy that of intensity-modulated radiotherapy. Seventeen percent prefectural designated cancer care hospitals and 13% regional designated cancer care hospitals

  10. Advanced Technologies for Design Information Verification

    International Nuclear Information System (INIS)

    Watkins, Michael L.; Sheen, David M.; Rose, Joseph L.; Cumblidge, Stephen E.

    2009-01-01

    This paper discusses several technologies that have the potential to enhance facilities design verification. These approaches have shown promise in addressing the challenges associated with the verification of sub-component geometry and material composition for structures that are not directly accessible for physical inspection. A simple example is a pipe that extends into or through a wall or foundation. Both advanced electromagnetic and acoustic modalities will be discussed. These include advanced radar imaging, transient thermographic imaging, and guided acoustic wave imaging. Examples of current applications are provided. The basic principles and mechanisms of these inspection techniques are presented along with the salient practical features, advantages, and disadvantages of each technique. Other important considerations, such as component geometries, materials, and degree of access are also treated. The importance of, and strategies for, developing valid inspection models are also discussed. Beyond these basic technology adaptation and evaluation issues, important user interface considerations are outlined, along with approaches to quantify the overall performance reliability of the various inspection methods.

  11. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  12. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  13. Projecting regulatory expectations for advanced reactor designs

    International Nuclear Information System (INIS)

    Viktorov, A.

    2011-01-01

    This paper explores the overarching safety principles that will likely guide the safety design of advanced reactor technologies. As will be shown, the already established safety framework provides a solid foundation for the safety design of future nuclear power plants. As a specific example, the principle of 'proven technology' is presented in greater detail and its implications for a novel technology are discussed. Research, modeling and prototyping are shown to be components in satisfying this principle. While the fundamental safety principles are in place, their interpretation may depend both on the considered technology as well as the national context. Thus, the regulatory authority will need to be engaged, at an appropriate stage of the technology development, in specifying the regulatory requirements that will have to be met for a specific reactor design. (author)

  14. Advanced design of local ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, I. [VTT Manufacturing Technology, Espoo (Finland). Safety Technology

    1997-12-31

    Local ventilation is widely used in industry for controlling airborne contaminants. However, the present design practices of local ventilation systems are mainly based on empirical equations and do not take quantitatively into account the various factors affecting the performance of these systems. The aim of this study was to determine the applicability and limitations of more advanced fluid mechanical methods to the design and development of local ventilation systems. The most important factors affecting the performance of local ventilation systems were determined and their effect was studied in a systematic manner. The numerical calculations were made with the FLUENT computer code and they were verified by laboratory experiments, previous measurements or analytical solutions. The results proved that the numerical calculations can provide a realistic simulation of exhaust openings, effects of ambient air flows and wake regions. The experiences with the low-velocity local supply air showed that these systems can also be modelled fairly well. The results were used to improve the efficiency and thermal comfort of a local ventilation unit and to increase the effective control range of exhaust hoods. In the simulation of the interaction of a hot buoyant source and local exhaust, the predicted capture efficiencies were clearly higher than those observed experimentally. The deviations between measurements and non-isothermal flow calculations may have partly been caused by the inability to achieve grid independent solutions. CFD simulations is an advanced and flexible tool for designing and developing local ventilation. The simulations can provide insight into the time-averaged flow field which may assist us in understanding the observed phenomena and to explain experimental results. However, for successful calculations the applicability and limitations of the models must be known. (orig.) 78 refs.

  15. Preliminary design concepts of an advanced integral reactor

    International Nuclear Information System (INIS)

    Moon, Kap S.; Lee, Doo J.; Kim, Keung K.; Chang, Moon H.; Kim, Si H.

    1997-01-01

    An integral reactor on the basis of PWR technology is being conceptually developed at KAERI. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts of the reactor to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway for confirming the technical adoption of those concepts to the rector design. The power output of the reactor will be in the range of 100MWe to 600MWe which is relatively small compared to the existing loop type reactors. The detailed analysis to assure the design concepts is in progress. (author). 3 figs, 1 tab

  16. Incorporating full-scale experience into advanced limestone wet FGD designs

    International Nuclear Information System (INIS)

    Rader, P.C.; Bakke, E.

    1992-01-01

    Utilities choosing flue gas desulfurization as a strategy for compliance with Phase I of the 1990 Clean Air Act Amendments will largely turn to limestone wet scrubbing as the most cost-effective, least-risk option. State-of-the-art single absorber wet scrubbing systems can be designed to achieve: SO 2 removal efficiencies in excess of 95 %, system availabilities in excess of 98%, and byproducts which can be marketed or land filled. As a result of varying fuel characteristics, site considerations, and owner preferences, FGD plants for large central power stations are typically custom-designed. To avoid the risks associated with new, first-of-a-kind technologies, utilities have preferred to purchase FGD systems from suppliers with proven utility experience and reference plants as close as possible to the design envisioned. As the market for FGD systems is regulatory driven, the demand has shifted geographically in response to national environmental policies. Although limestone wet scrubbing has emerged as the overwhelming choice for SO 2 emission control in coal-fired power stations, the technology has evolved and been adapted to suit local and regional technical and economic situations. Global suppliers are able to benefit from experience and technological advances in the world market. With market units in the U.S., Denmark, Italy, Sweden, and Germany active in the design and supply of wet FGD plants, ABB has a unique ability to incorporate knowledge and experience gained throughout the industrialized world to acid rain retrofit projects in the U.S. This paper describes the design of advanced limestone wet scrubbing systems for application to acid rain retrofits. Specifically, the evolution of advanced design concepts from a global experience base is discussed

  17. Advanced PWR fuel design concepts

    International Nuclear Information System (INIS)

    Andersor, C.K.; Harris, R.P.; Crump, M.W.; Fuhrman, N.

    1987-01-01

    For nearly 15 years, Combustion Engineering has provided pressurized water reactor fuel with the features most suppliers are now introducing in their advanced fuel designs. Zircaloy grids, removable upper end fittings, large fission gas plenum, high burnup, integral burnable poisons and sophisticated analytical methods are all features of C-E standard fuel which have been well proven by reactor performance. C-E's next generation fuel for pressurized water reactors features 24-month operating cycles, optimal lattice burnable poisons, increased resistance to common industry fuel rod failure mechanisms, and hardware and methodology for operating margin improvements. Application of these various improvements offer continued improvement in fuel cycle economics, plant operation and maintenance. (author)

  18. Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study; November 1, 2000 -- February 28, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poore, R.; Lettenmaier, T.

    2003-08-01

    This report presents the Phase I results of the National Renewable Energy Laboratory's (NREL's) WindPACT (Wind Partnership for Advanced Component Technologies) Advanced Wind Turbine Drive Train Designs Study. Global Energy Concepts, LLC performed this work under a subcontract with NREL. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy (COE) from wind turbines to be reduced. Other parts of the WindPACT project have examined blade and logistics scaling, balance-of-station costs, and rotor design. This study was designed to investigate innovative drive train designs.

  19. Some points of advanced alarm system design

    International Nuclear Information System (INIS)

    Hollo, E.

    1977-01-01

    A description of some of the more relevant questions relating to advanced alarm systems for nuclear power plant installations. The development of such alarm systems embodies three main tasks: development of formal alarm handling methods, design of alarm patterns, development of alarm analysis systems. The major aspects of these tests are dealt with and the close relation between the alarm analysis and the plant disturbance analysis procedure is emphasized. (author)

  20. Design concepts and advanced manipulator development for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Feldman, M.J.

    1985-01-01

    In the Fuel Recycle Division, Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory, a comprehensive remote systems development program has existed for the past seven years. The new remote technology under development is expected to significantly improve remote operations by extending the range of tasks accomplished by remote means and increasing the efficiency of remote work undertaken. The application of advanced manipulation is viewed as an essential part of a series of design directions whose sum describes a somewhat unique blend of old and new technology. A design direction based upon the Teletec concept is explained and recent progress in the development of an advanced servomanipulator-based maintenance concept is summarized to show that a new generation of remote systems is feasible through advanced technology. 14 refs., 14 figs

  1. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  2. Evaluation of technical design of advanced information display

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2003-03-15

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  3. Evaluation of technical design of advanced information display

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae

    2003-03-01

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  4. Nuclear integrated database and design advancement system

    International Nuclear Information System (INIS)

    Ha, Jae Joo; Jeong, Kwang Sub; Kim, Seung Hwan; Choi, Sun Young.

    1997-01-01

    The objective of NuIDEAS is to computerize design processes through an integrated database by eliminating the current work style of delivering hardcopy documents and drawings. The major research contents of NuIDEAS are the advancement of design processes by computerization, the establishment of design database and 3 dimensional visualization of design data. KSNP (Korea Standard Nuclear Power Plant) is the target of legacy database and 3 dimensional model, so that can be utilized in the next plant design. In the first year, the blueprint of NuIDEAS is proposed, and its prototype is developed by applying the rapidly revolutionizing computer technology. The major results of the first year research were to establish the architecture of the integrated database ensuring data consistency, and to build design database of reactor coolant system and heavy components. Also various softwares were developed to search, share and utilize the data through networks, and the detailed 3 dimensional CAD models of nuclear fuel and heavy components were constructed, and walk-through simulation using the models are developed. This report contains the major additions and modifications to the object oriented database and associated program, using methods and Javascript.. (author). 36 refs., 1 tab., 32 figs

  5. Front end designs for the 7-GeV advanced photon source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Sanchez, T.; Nielsen, R.W.; Collins, J.T.; Kuzay, T.M.

    1992-01-01

    The conceptual designs for the insertion device (ID) and bending magnet (BM) front ends have been completed for the 7-GeV Advanced Photon Source (APS) under construction at Argonne National Laboratory. These designs satisfy the generic front end functions. However, the high power and high heat fluxes imposed by the X-ray sources of the 7-GeV APS have presented various design engineering challenges for the front end. Consideration of such challenges and their solutions have led to novel and advanced features including modularized systems, enhanced heat transfer concepts in the fixed mask and the photon shutter designs, a radiation safety philosophy based on multiple photon shutters for a fail-safe operation, a sub-micron resolution beam position monitor for beam monitoring and ring feedback information, and minimal beam filtering concepts to deliver maximized beam power and spectra to the experimenters. The criteria and special features of the front end design are discussed in this paper

  6. 23rd workshop on Advances in Analog Circuit Design

    CERN Document Server

    Baschirotto, Andrea; Makinwa, Kofi

    2015-01-01

    This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design.  Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.    • Includes coverage of high-performance analog-to-digital and digital to analog converters, integrated circuit design in scaled technologies, and time-domain signal processing; • Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; • Presents material in a tutorial-based format.

  7. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  8. Design process and philosophy of TVA's latest advance control room complex

    International Nuclear Information System (INIS)

    Owens, G.R.; Masters, D.W.

    1979-01-01

    TVA's latest nuclear power plant control room design includes a greater emphasis on human factors as compared to their earlier plant designs. This emphasis has resulted in changes in the overall design philosophy and design process. This paper discusses some of the prominent design features of both the control room and the surrounding control room complex. In addition, it also presents some of the important activities involved in the process of developing the advanced control room design

  9. Utility guidance to advanced LWR designers

    International Nuclear Information System (INIS)

    Yedidia, J.M.

    1990-01-01

    The purpose of this paper is to describe the process envisioned for the development of advanced reactors for future use by the utility industry. The role of the potential utility customer is gradually evolving from that of an owner-operator of such plants to that of a sponsor-participant in the actual design process. The author discusses development of a set of utility requirements, intended to describe in detail utility needs and expectations relative to the performance of future reactors. The reactor vendors, who participated actively in the preparation of the requirements documents, pledged to make every effort to meet them in their future designs. At that stage, when the requirements have been finalized and agreed to by all parties involved, including the Nuclear Regulatory Commission, the utilities were expected to move to the sidelines and wait for the reactor vendors to come up with the product

  10. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    International Nuclear Information System (INIS)

    Jiang, Guo Jin; Sun, Yong Bin; Tan, Ke; Zhang, Li Ming; Shi, Ji; Zhang, Xue Gang; Huang, Wei Jun; Mao, Ting; Liu Yanzi

    2011-01-01

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided

  11. Concept of Advanced Back-up Control Panel Design of Digital Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Guo Jin; Sun, Yong Bin; Tan, Ke; Zhang, Li Ming; Shi, Ji; Zhang, Xue Gang; Huang, Wei Jun; Mao, Ting; Liu Yanzi [China Nuclear Power Engineering Company, Shenzen (China)

    2011-08-15

    Back-up control panel (BCP) of digital main control room (DMCR) is the backup means for main computerized control means (MCM). This paper focus on technical issues for advanced design of Backup Panel (BCP) for CPR1000 using qualified computer-based video display unit to display plant process indication and alarms. HFE issues also have been considered in the BCP design. Then, mean to fulfill safety target of NPP, best ergonomic effect has been described. At last conclusion on advanced BCP design is provided.

  12. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  13. Two approaches to meeting the economic challenge for advanced BWR designs

    International Nuclear Information System (INIS)

    Arnold, H.; Rao, A.S.; Sawyer, C.D.

    1996-01-01

    In developing next generation nuclear power plants many economic challenges must be addressed before they become economically attractive to utilities. The economic challenges vary from country to country but have several common characteristics. First and foremost, a plant has to have the lowest construction (costs) to even be considered for design and construction. Additionally, the plant design has to a have a reasonable chance of being licensed by the regulatory authorities in order to minimize the financial risk to the constructing utility. With the long lead times involved in the design and development of advanced plants nowadays, the overall development costs have also become a key factor in the evolution of advanced plants. This paper presents the design overview and approach to addressing the aforementioned economic challenges for two Advanced Boiling Water Reactor (ABWR) designs. The first plant is the ABWR and the second is the European Simplified Boiling Water. The ABWR relies on proven technology and components and an extensive infrastructure that has been built up over the last 20 year. Because it has proven and standard safety systems, which have been licensed in two countries, it has very limited uncertainly regarding licensing. Finally, it relies on the economies of scale and design flexibility to improve the overall economics of power generation. The ESBWR on the other hand has taken an innovative approach to reduce systems and components to simplify the overall plant to improve plant economics. The overall plant design is indeed simpler, but improved economics required reliance on some economies of scale also. This design embodied in the ESBWR, also has minimized the overall development cost by utilizing features and components from the ABWR and Simplified Boiling Water Reactor technology programs. (authors)

  14. The ACR: Advanced design features for a short construction schedule

    International Nuclear Information System (INIS)

    Elgohary, M.; Fairclough, N.

    2003-01-01

    Building on the successful CANDU construction at Qinshan, the ACR-700 is designed with constructability considerations as a major requirement during all project phases from the concept design stage to the detail design stage. A project schedule of 48 months has been developed for the nth ACR unit with a 36 months construction period from First Concrete to Fuel Load. This paper describes some of the advanced design features implemented in the reactor building design in order to achieve this short construction period. These features include large volume concrete pours, prefabricated rebar, composite structures, prefabricated permanent formwork and significant modularization and prefabrication

  15. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  16. Recent Advances and Current Trends in Metamaterial-by-Design

    Science.gov (United States)

    Anselmi, N.; Gottardi, G.

    2018-02-01

    Thanks to their potential applications in several engineering areas, metamaterials gained much of attentions among different research communities, leading to the development of several analysis and synthesis tools. In this context, the metamaterial-by-design (MbD) paradigm has been recently introduced as a powerful tool for the design of complex metamaterials-based structures. In this work a review of the state-of-art, as well as the recent advancements of MbD-based methods are presented.

  17. Advances in Design and Fabrication of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2016-01-01

    The paper presents the advances in design and fabrication of free-form Reciprocal Structures, and their application a during a one-week long workshop with the students of the 1st semester of the Master of Science in Architecture and Design, fall 2015, at Aalborg University. Two new factors were...... introduced and tested: a new version of the software Reciprocalizer, and an evolution of the Reciprocalizer Robot. The workshop didactic framework Performance Aided/Assisted Design (PAD) is presented....

  18. Advanced Neutron Source radiological design criteria

    International Nuclear Information System (INIS)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design

  19. Advances in mechanisms, robotics and design education and research

    CERN Document Server

    Schmiedeler, James; Sreenivasan, S; Su, Hai-Jun

    2013-01-01

    This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into  five main categories headed ‘Historical Perspectives’, ‘Kinematics and Mechanisms’, ‘Robotic Systems’, ‘Legged Locomotion’, and ‘Design Engineering Education’. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education.   This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.

  20. 77 FR 56241 - Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000

    Science.gov (United States)

    2012-09-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0131] Notice of Withdrawal of Final Design Approval; Westinghouse Electric Company; Advanced Passive 1000 By letter dated December 10, 2010, Westinghouse Electric... final design approval (FDA) for the Advanced Passive 1000 (AP1000) design upon the completion of...

  1. Design requirement for electrical system of an advanced research reactor

    International Nuclear Information System (INIS)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S.

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system

  2. Design requirement for electrical system of an advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Kim, H. K.; Kim, Y. K.; Wu, J. S.; Ryu, J. S

    2004-12-01

    An advanced research reactor is being designed since 2002 and the conceptual design has been completed this year for the several types of core. Also the fuel was designed for the potential cores. But the process system, the I and C system, and the electrical system design are under pre-conceptual stage. The conceptual design for those systems will be developed in the next year. Design requirements for the electrical system set up to develop conceptual design. The same goals as reactor design - enhance safety, reliability, economy, were applied for the development of the requirements. Also the experience of HANARO design and operation was based on. The design requirements for the power distribution, standby power supply, and raceway system will be used for the conceptual design of electrical system.

  3. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  4. Advanced design of positive-ion sources for neutral-beam applications

    International Nuclear Information System (INIS)

    Marguerat, E.F.; Haselton, H.H.; Menon, M.M.; Schechter, D.E.; Stirling, W.L.; Tsai, C.C.

    1982-01-01

    The APIS ion source is being developed to meet a goal of producing ion beams of less than or equal to 200 keV, 100 A, with 10-30-s pulse lengths. In a continuing effort to advance the state of the art and to produce long pulse ion beams, APIS ion sources with grid dimensions of 10 x 25 cm, 13 x 43 cm, and 16 x 48 cm are being developed. In the past year, the 10- x 25-cm ion source has been operated to produce ion beams in excess of 100 keV for many seconds pulse length. An advanced design concept is being pursued with the primary objectives to improve radiation protection, reduce fabrication costs, and simplify maintenance. The source magnetic sheild will be designed as a vacuum enclosure to house all source components. The electrical insulation requirements of energy recovery are also considered. Because of the frequent maintenance requirements, the electron emitter assembly will be designed with a remote handling capability. A new accelerator design which incorporates the necessary neutron shielding and associated steering gimbal system is also described

  5. Updated Assessment of an Open Rotor Airplane Using an Advanced Blade Design

    Science.gov (United States)

    Hendricks, Eric S.; Berton, Jeffrey J.; Haller, William J.; Tong, Michael T.; Guynn, Mark D.

    2013-01-01

    Application of open rotor propulsion systems (historically referred to as "advanced turboprops" or "propfans") to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation's environmental impact have renewed interest in open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Over the last few years, NASA has revived and developed analysis capabilities to assess aircraft designs with open rotor propulsion systems. These efforts have been described in several previous papers along with initial results from applying these capabilities. The initial results indicated that open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicated that current noise regulations can be met with modern baseline blade designs. Improved blades incorporating low-noise features are expected to result in even lower noise levels. This paper describes improvements to the initial assessment, plus a follow-on study using a more advanced open rotor blade design to power the advanced singleaisle transport. The predicted performance and environmental results of these two advanced open rotor concepts are presented and compared.

  6. Trends in the design of advanced nuclear reactors

    International Nuclear Information System (INIS)

    Poong-Eil Juhn; Kupitz, Juergen

    1996-01-01

    Nuclear energy is an essentially unlimited energy source with the potential to provide energy in the form of electricity, district heat and process heat environmentally acceptable conditions. However, this potential will be realized only if nuclear power plants can meet the challenges of national safety requirements, economic competitiveness and public acceptance. Worldwide, a tremendous amount of experience has been accumulated during the development, licensing, construction and operation of nuclear power plants. This experience forms a sound basis for further improvements. Nuclear programmes in the IAEA Member States are addressing the development of advanced reactors, which are intended to have better economics, higher reliability and improved safety. The IAEA, as a global international governmental organization dealing with nuclear power, promotes international information exchange and international co-operation between all countries with their own advanced power programmes and offers assistance to countries with an interest in exploratory or research programmes. The paper gives an overview of global trends in the design of advanced nuclear reactors for electricity generation and heat production along with the role of IAEA. (author)

  7. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  8. Design and fabrication of advanced hybrid circuits for high energy physics

    International Nuclear Information System (INIS)

    Haller, G.M.; Moss, J.; Freytag, D.R.; Nelson, D.; Yim, A.; Lo, C.C.

    1987-10-01

    Current design and fabrication techniques of hybrid devices are explained for the Drift Chamber and the Liquid Argon Calorimeter for the Stanford Linear Collider Large Detector (SLD) at SLAC. Methods of developing layouts, ranging from hand-cut templates to advanced designs utilizing CAD tools with special hybrid design software were applied. Physical and electrical design rules for good yield and performance are discussed. Fabrication and assembly of the SLD hybrids are described. 7 refs., 10 figs

  9. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    International Nuclear Information System (INIS)

    Sholly, S.C.

    1990-01-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  10. Driving forces shaping advanced reactor designs: Near-term and long-term prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sholly, S C [MHB Technical Associates, San Jose, CA (United States)

    1990-07-01

    This paper explores the forces which have driven and which in the opinion of the author should be driving advanced reactor development programs. Four general driving forces are identified: cost, safety, environmental concerns, and non-proliferation concerns. It is suggested that the primary driving forces should be cost and safety concerns. It is suggested that advanced reactors need to demonstrate the following characteristics: (a) A design which explicitly accounts for severe accidents, including severe external events (not necessarily limited to contemporary design basis events) and which results in a frequency of severe core damage substantially lower than in current plants. The goal for the frequency of severe core damage should reflect a reasonable assurance that a severe core damage accident will not occur during the operating lifetime of a fleet' of such plants. (b) A design which explicitly accounts for severe accidents in terms of accident mitigation, resulting in a very low conditional likelihood of a substantial fission product release given a severe accident. (c) A design which utilizes near-passive and passive concepts (whose safety and reliability are demonstrable by experiment and/or full-scale test) for both accident prevention and accident mitigation to the maximum extent feasible. (d) A design which allows f a suitably long time between refueling outages, with a balance struck between refueling outage duration and refueling outage frequency so as to maximize availability and capacity factor. (e) A design which emphasizes modular construction and exceptional quality control. (f) A design which de emphasizes the importance of maintenance and human reliability more generally to assure that safety functions are performed with acceptable reliability, and to assure that passive safety characteristics are not compromised by design, manufacturing, or installation defects. It is further suggested that key factors in gaining public acceptance are the early

  11. Beamline standard component designs for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Barraza, J.; Brite, C.; Chang, J.; Sanchez, T.; Tcheskidov, V.; Kuzay, T.M.

    1994-01-01

    The Advanced Photon Source (APS) has initiated a design standardization and modularization activity for the APS synchrotron radiation beamline components. These standard components are included in components library, sub-components library and experimental station library. This paper briefly describes these standard components using both technical specifications and side view drawings

  12. Evaluation of technical design of advanced information display(II)

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae; Park, Hyun Jin

    2004-02-01

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal such as CRT. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  13. Evaluation of technical design of advanced information display(II)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae; Park, Hyun Jin [Kumoh National Univ., Gumi (Korea, Republic of)

    2004-02-15

    As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on visual display terminal such as CRT. This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues, and the relationship among the guidelines. The design issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  14. Conceptual study of advanced PWR core design

    International Nuclear Information System (INIS)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong.

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs

  15. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  16. Advanced 3D inverse method for designing turbomachine blades

    Energy Technology Data Exchange (ETDEWEB)

    Dang, T. [Syracuse Univ., NY (United States)

    1995-10-01

    To meet the goal of 60% plant-cycle efficiency or better set in the ATS Program for baseload utility scale power generation, several critical technologies need to be developed. One such need is the improvement of component efficiencies. This work addresses the issue of improving the performance of turbo-machine components in gas turbines through the development of an advanced three-dimensional and viscous blade design system. This technology is needed to replace some elements in current design systems that are based on outdated technology.

  17. Interim Service ISDN Satellite (ISIS) simulator development for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.

  18. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  19. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    YANG GYUN OH

    2013-11-01

    Full Text Available For the improvement of APR1400 Diverse Protection System (DPS design, the Advanced DPS (ADPS has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

  20. ADVANCED DESIGN SOLUTIONS FOR HIGH-PRECISION WOODWORKING MACHINES

    Directory of Open Access Journals (Sweden)

    Giuseppe Lucisano

    2016-03-01

    Full Text Available With the aim at performing the highest precision during woodworking, a mix of alternative approaches, fruitfully integrated in a common design strategy, is essential. This paper represents an overview of technical solutions, recently developed by authors, in design of machine tools and their final effects on manufacturing. The most advanced solutions in machine design are reported side by side with common practices or little everyday expedients. These design actions are directly or indirectly related to the rational use of materials, sometimes very uncommon, as in the case of magnetorheological fluids chosen to implement an active control in speed and force on the electro-spindle, and permitting to improve the quality of wood machining. Other actions are less unusual, as in the case of the adoption of innovative anti-vibration supports for basement. Tradition or innovation, all these technical solutions contribute to the final result: the highest precision in wood machining.

  1. Advanced Low-Noise Research Fan Stage Design

    Science.gov (United States)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  2. Interim Service ISDN Satellite (ISIS) hardware experiment design for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Hardware Experiment Design for Advanced Satellite Designs describes the design of the ISDN Satellite Terminal Adapter (ISTA) capable of translating ISDN protocol traffic into time division multiple access (TDMA) signals for use by a communications satellite. The ISTA connects the Type 1 Network Termination (NT1) via the U-interface on the line termination side of the CPE to the V.35 interface for satellite uplink. The same ISTA converts in the opposite direction the V.35 to U-interface data with a simple switch setting.

  3. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    Science.gov (United States)

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  4. Continuous extraction of molten chloride salts with liquid cadmium alloys

    International Nuclear Information System (INIS)

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1993-01-01

    A pyrochemical method is being developed at Argonne National Laboratory (ANL) to provide contnuous multistage extractions between molten chloride salts and liquid cadmium alloys at 500 degrees C. The extraction method will be used to recover transuranic (TRU) elements from the process salt in the electroretiner used in the pyrochemical reprocessing of spent fuel from the Integral Fast Reactor (IFR). The IFR is one of the Department of Energy's advanced power reactor concepts. The recovered TRU elements are returned to the electrorefiner. The extracted salt undergoes further processing to remove rare earths and other fission products so that most of the purified salt can also be returned to the electrorefiner, thereby extending the useful life of the process salt many times

  5. Conceptual design of the advanced marine reactor MRX

    International Nuclear Information System (INIS)

    1991-02-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at JAERI in order to develop attractive marine reactors for the next generation. At present, two marine reactor concepts are being formulated. One is 100 MWt MRX (Marine Reactor X) for an icebreaker and the other is 300 kWe DRX (Deep-sea Reactor X) for a deep-sea research vessel. They are characterized by an integral type PWR, built-in type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. This paper is a detailed report including all major results of the MRX design study. (author)

  6. INST7150 - Advanced Topics in Learning Object Design and Reuse, Fall 2005

    OpenAIRE

    Wiley, David

    2005-01-01

    This course is designed to help you understand and apply advanced topics in the design, creation, and reuse of learning objects. The course is structured around a practical, hands-on project using learning objects, intermingled with readings and discussion on a variety of topics.

  7. New or improved computational methods and advanced reactor design

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki; Takeda, Toshikazu; Ushio, Tadashi

    1997-01-01

    Nuclear computational method has been studied continuously up to date, as a fundamental technology supporting the nuclear development. At present, research on computational method according to new theory and the calculating method thought to be difficult to practise are also continued actively to find new development due to splendid improvement of features of computer. In Japan, many light water type reactors are now in operations, new computational methods are induced for nuclear design, and a lot of efforts are concentrated for intending to more improvement of economics and safety. In this paper, some new research results on the nuclear computational methods and their application to nuclear design of the reactor were described for introducing recent trend of the nuclear design of the reactor. 1) Advancement of the computational method, 2) Reactor core design and management of the light water reactor, and 3) Nuclear design of the fast reactor. (G.K.)

  8. Conceptual design study on advanced aqueous reprocessing system for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Takata, Takeshi; Koma, Yoshikazu; Sato, Koji; Kamiya, Masayoshi; Shibata, Atsuhiro; Nomura, Kazunori; Ogino, Hideki; Koyama, Tomozo; Aose, Shin-ichi

    2003-01-01

    As a feasibility study on commercialized fast reactor cycle system, a conceptual design study is being progressed for the aqueous and pyrochemical processes from the viewpoint of economical competitiveness, efficient utilization of resources, decreasing environmental impact and proliferation resistance in Japan Nuclear Cycle Development Institute (JNC). In order to meet above-mentioned requirements, the survey on a range of reprocessing technologies and the evaluation of conceptual plant designs against targets for the future fast reactor cycle system have been implemented as the fist phase of the feasibility study. For an aqueous reprocessing process, modification of the conventional PUREX process (a solvent extraction process with purification of U/Pu, with nor recovery of minor actinides (MA)) and investigation of alternatives for the PUREX process has been carried out and design study of advanced aqueous reprocessing system and its alternatives has been conducted. The conceptual design of the advanced aqueous reprocessing system has been updated and evaluated by the latest R and D results of the key technologies such as crystallization, single-cycle extraction, centrifugal contactors, recovery of Am/Cm and waste processing. In this paper, the outline of the design study and the current status of development for advanced aqueous reprocessing system, NEXT process, are mentioned. (author)

  9. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  10. Advanced dependent pressure vessel (DPV) nickel-hydrogen spacecraft battery design

    Energy Technology Data Exchange (ETDEWEB)

    Coates, D.K.; Grindstaff, B.; Swaim, O.; Fox, C. [Eagle-Picher Industries, Inc., Joplin, MO (United States). Advanced Systems Operation

    1995-12-31

    The dependent pressure vessel (DPV) nickel-hydrogen (NiH{sub 2}) battery is being developed as a potential spacecraft battery design for both military and commercial satellites. The limitations of standard NiH{sub 2} individual pressure vessel (IPV) flight battery technology are primarily related to the internal cell design and the battery packaging issues associated with grouping multiple cylindrical cells. The DPV cell design offers higher energy density and reduced cost, while retaining the established IPV technology flight heritage and database. The advanced cell design offers a more efficient mechanical, electrical and thermal cell configuration and a reduced parts count. The geometry of the DPV cell promotes compact, minimum volume packaging and weight efficiency. The DPV battery design offers significant cost and weight savings advantages while providing minimal design risks.

  11. Preliminary design concepts for the advanced neutron source reactor systems

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1988-01-01

    This paper describes the initial design work to develop the reactor systems hardware concepts for the advanced neutron source (ANS) reactor. This project has not yet entered the conceptual design phase; thus, design efforts are quite preliminary. This paper presents the collective work of members of the Oak Ridge National Laboratory, Martin Marietta Energy Systems, Inc., Engineering Division, and other participating organizations. The primary purpose of this effort is to show that the ANS reactor concept is realistic from a hardware standpoint and to show that project objectives can be met. It also serves to generate physical models for use in neutronic and thermal-hydraulic core design efforts and defines the constraints and objectives for the design. Finally, this effort will develop the criteria for use in the conceptual design of the reactor

  12. Advanced gas cooled reactors - Designing for safety

    International Nuclear Information System (INIS)

    Keen, Barry A.

    1990-01-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme

  13. Information management systems improve advanced plant design

    International Nuclear Information System (INIS)

    Turk, R.S.; Serafin, S.A.; Leckley, J.B.

    1994-01-01

    Computer-aided engineering tools are proving invaluable in both the design and operation of nuclear power plants. ABB Combustion Engineering's Advanced Light Water Reactor (ALWR) features a computerized Information Management System (IMS) as an integral part of the design. The System 80+IMS represents the most powerful information management tool for Nuclear Power Plants commercially available today. Developed by Duke Power Company specifically for use by nuclear power plant owner operators, the IMS consists of appropriate hardware and software to manage and control information flow for all plant related work or tasks in a systematic, consistent, coordinated and informative manner. A significant feature of this IMS is that it is primarily based on plant data. The principal design tool, PASCE (Plant Application and Systems from Combustion Engineering), is comprised of intelligent databases that describe the design and from which accurate plant drawings are created. Additionally the IMS includes, at its hub, a relational database management system and an associated document management system. The data-based approach and applications associated with the IMS were developed, and have proven highly effective, for plant modifications, configuration management, and operations and maintenance applications at Duke Power Company's operating nuclear plants. This paper presents its major features and benefits. 4 refs

  14. Advanced gas cooled reactors - Designing for safety

    Energy Technology Data Exchange (ETDEWEB)

    Keen, Barry A [Engineering Development Unit, NNC Limited, Booths Hall, Knutsford, Cheshire (United Kingdom)

    1990-07-01

    The Advanced Gas-Cooled Reactor Power Stations recently completed at Heysham in Lancashire, England, and Torness in East Lothian, Scotland represent the current stage of development of the commercial AGR. Each power station has two reactor turbo-generator units designed for a total station output of 2x660 MW(e) gross although powers in excess of this have been achieved and it is currently intended to uprate this as far as possible. The design of both stations has been based on the successful operating AGRs at Hinkley Point and Hunterston which have now been in-service for almost 15 years, although minor changes were made to meet new safety requirements and to make improvements suggested by operating experience. The construction of these new AGRs has been to programme and within budget. Full commercial load for the first reactor at Torness was achieved in August 1988 with the other three reactors following over the subsequent 15 months. This paper summarises the safety principles and guidelines for the design of the reactors and discusses how some of the main features of the safety case meet these safety requirements. The paper also summarises the design problems which arose during the construction period and explains how these problems were solved with the minimum delay to programme.

  15. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process.

  16. Basic requirements for a preliminary conceptual design of the Korea advanced pyroprocess facility (KAPF)

    International Nuclear Information System (INIS)

    Lee, Ho Hee; Ko, Won Il; Chang, Hong Lae; Song, Dae Yong; Kwon, Eun Ha; Lee, Jung Won

    2008-12-01

    Korea Atomic Energy Research Institute (KAERI) has been developing technologies for pyroprocessing for spent PWR fuels. This study is part of a long term R and D program in Korea to develop an advanced recycle system that has the potential to meet and exceed the proliferation resistance, waste minimization, resource minimization, safety and economic goals of approved Korean Government energy policy, as well as the Generation IV International Forum (GIF) program. To support this R and D program, KAERI requires that an independent estimate be made of the conceptual design and cost for construction and operation of a 'Korea Advanced Pyroprocessing Facility', This document describes the basic requirements for preliminary conceptual design of the Korea Advanced Pyroprocess Facility (KAPF). The presented requirements will be modified to be more effective and feasible on an engineering basis during the subsequent design process

  17. Operator model-based design and evaluation of advanced systems

    International Nuclear Information System (INIS)

    Schryver, J.C.

    1988-01-01

    A multi-level operator modeling approach is recommended to provide broad support for the integrated design of advanced control and protection systems for new nuclear power plants. Preliminary design should address the symbiosis of automated systems and human operator by giving careful attention to the roles assigned to these two system elements. A conceptual model of the operator role is developed in the context of a command control-communication problem. According to this approach, joint responsibility can be realized in at least two ways: sharing or allocation. The inherent stabilities of different regions of the operator role space are considered

  18. Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2011-01-01

    A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  19. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  20. Aircrew helmet design and manufacturing enhancements through the use of advanced technologies

    Science.gov (United States)

    Cadogan, David P.; George, Alan E.; Winkler, Edward R.

    1993-12-01

    With the development of helmet mounted displays (HMD) and night vision systems (NVS) for use in military and civil aviation roles, new methods of helmet development need to be explored. The helmet must be designed to provide the user with the most lightweight, form fitting system, while meeting other system performance requirements. This can be achieved through a complete analysis of the system requirements. One such technique for systems analysis, a quality function deployment (QFD) matrix, is explored for this purpose. The advanced helmet development process for developing aircrew helmets includes the utilization of several emerging technologies such as laser scanning, computer aided design (CAD), computer generated patterns from 3-D surfaces, laser cutting of patterns and components, and rapid prototyping (stereolithography). Advanced anthropometry methods for helmet development are also available for use. Besides the application of advanced technologies to be used in the development of helmet assemblies, methods of mass reduction are also discussed. The use of these advanced technologies will minimize errors in the development cycle of the helmet and molds, and should enhance system performance while reducing development time and cost.

  1. Probabilistic Durability Analysis in Advanced Engineering Design

    Directory of Open Access Journals (Sweden)

    A. Kudzys

    2000-01-01

    Full Text Available Expedience of probabilistic durability concepts and approaches in advanced engineering design of building materials, structural members and systems is considered. Target margin values of structural safety and serviceability indices are analyzed and their draft values are presented. Analytical methods of the cumulative coefficient of correlation and the limit transient action effect for calculation of reliability indices are given. Analysis can be used for probabilistic durability assessment of carrying and enclosure metal, reinforced concrete, wood, plastic, masonry both homogeneous and sandwich or composite structures and some kinds of equipments. Analysis models can be applied in other engineering fields.

  2. ASDA - Advanced Suit Design Analyzer computer program

    Science.gov (United States)

    Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min

    1992-01-01

    An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.

  3. Design of the PRIDE Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, Won Myung; Lee, Eun Pyo; Cho, Il Je; Kwon, Kie Chan; Hong, Dong Hee; Lee, Won Kyung; Ku, Jeong Hoe

    2009-01-01

    From 2007, KAERI is developing a PyRoprocess Integrated inactive DEmonstration facility (the PRIDE facility). The maximum annual treatment capacity of this facility will be a 10 ton-HM. The process will use a natural uranium feed material or a natural uranium mixed with some surrogate material for a simulation of a spent fuel. KAERI has also another plan to construct a demonstration facility which can treat a real spent fuel by pyroprocessing. This facility is called by ESPF, Engineering Scale Pyroprocess Facility. The ESPF will have the same treatment capability of spent fuel with the PRIDE facility. The only difference between the PRIDE and the ESPF is a radiation shielding capability. From the PRIDE facility designing works and demonstration with a simulated spent fuel after construction, it will be able to obtain the basic facility requirements, remote operability, interrelation properties between process equipment for designing of the ESPF. The flow sheet of the PRIDE processes is composed of five main processes, such as a decladding and voloxidation, an electro-reduction, an electrorefining, an electro-winning, and a salt waste treatment. The final products from the PRIDE facility are a simulated TRU metal and U metal ingot

  4. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    Science.gov (United States)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  5. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  6. Engineering design of advanced marine reactor MRX

    International Nuclear Information System (INIS)

    1997-10-01

    JAERI has studied the design of an advanced marine reactor (named as MRX), which meets requirements of the enhancement of economy and reliability, by reflecting results and knowledge obtained from the development of N.S. Mutsu. The MRX with a power of 100 MWt is intended to be used for ship propulsion such as an ice-breaker, container cargo ship and so on. After completion of the conceptual design, the engineering design was performed in four year plan from FY 1993 to 1996. (1) Compactness, light-weightiness and simplicity of the reactor system are realized by adopting an integral-type PWR, i.e. by installing the steam generator, the pressurizer, and the control rod drive mechanism (CRDM) inside the pressure vessel. Because of elimination of the primary coolant circulation pipes in the MRX, possibility of large-scale pipe break accidents can be eliminated. This contributes to improve the safety of the reactor system and to simplify the engineered safety systems. (2) The in-vessel type CRDM contributes not only to eliminate possibilities of rod ejection accidents, but also to make the reactor system compact. (3) The concept of water-filled containment where the reactor pressure vessel is immersed in the water is adopted. It can be of use for emergency core cooling system which maintains core flooding passively in case of a loss-of-coolant accident. The water-filled containment system also contributes essentially light-weightness of the reactor system since the water inside containment acts as a radiation shield and in consequence the secondary radiation shield can be eliminated. (4) Adoption of passive decay heat removal systems has contributed in a greater deal to simplification of the engineered safety systems and to enhancement of reliability of the systems. (5) Operability has been improved by simplification of the whole reactor system, by adoption of the passive safety systems, advanced automatic operation systems, and so on. (J.P.N.)

  7. Economical opportunities on advanced conventional island design for the European pressurized water reactor (EPR) based on Konvoi design. Annex 6

    International Nuclear Information System (INIS)

    Kremayr, A.; Wagner, K.; Schuberth, U.

    2002-01-01

    Design of the European Pressurized Water Reactor (EPR) has been finalized by the end of 1998. In parallel with these efforts, the German utilities group contracted the Siemens AG Power generation Group (KWU) to develop an advanced and optimized conventional island for the EPR. The main objectives for improving the conventional island design were determined on the basis of experience of the Konvoi series plants and advanced fossil plants. This paper describes the innovations introduced to the conventional island and presents the reasons for the resultant cost reductions. (author)

  8. Safety design analyses of Korea Advanced Liquid Metal Reactor

    International Nuclear Information System (INIS)

    Suk, S.D.; Park, C.K.

    2000-01-01

    The national long-term R and D program updated in 1997 requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self consistent design meeting a set of the major safety design requirements for accident prevention. Some of current emphasis include those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve supporting R and D programs of substance. This paper summarizes some of the results of engineering and design analyses performed for the safety of KALIMER. (author)

  9. Integral design concepts of advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-11-01

    Under the sub-programme on non-electrical applications of advanced reactors, the International Atomic Energy Agency has been providing a worldwide forum for exchange of information on integral reactor concepts. Two Technical Committee meetings were held in 1994 and 1995 on the subject where state-of-the-art developments were presented. Efforts are continuing for the development of advanced nuclear reactors of both evolutionary and innovative design, for electricity, co-generation and heat applications. While single purpose reactors for electricity generation may require small and medium sizes under certain conditions, reactors for heat applications and co-generation would be necessary in the small and medium range and need to be located closer to the load centres. The integral design approach to the development of advanced light water reactors has received special attention over the past few years. Several designs are in the detailed design stage, some are under construction, one prototype is in operation. A need has been felt for guidance on a number of issues, ranging from design objectives to the assessment methodology needed to show how integral designs can meet these objectives, and also to identify their advantages and problem areas. The technical document addresses the current status of the design, safety and operational issues of integral reactors and recommends areas for future development

  10. 22nd Workshop on Advances in Analog Circuit Design

    CERN Document Server

    Makinwa, Kofi; Harpe, Pieter

    2014-01-01

    This book is based on the 18 tutorials presented during the 22nd workshop on Advances in Analog Circuit Design.  Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including frequency reference, power management for systems-on-chip, and smart wireless interfaces.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.    ·         Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; ·         Presents material in a tutorial-based format; ·         Includes coverage of frequency reference, power management for systems-on-chip, and smart wireless interfaces.

  11. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  12. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  13. Laguna Verde nuclear power plant: an experience to consider in advanced BWR design

    International Nuclear Information System (INIS)

    Fuentes Marquez, L.

    2001-01-01

    Laguna Verde is a BWR 5 containment Mark II. Designed by GE, two external re-circulation loops, each of them having two speed re-circulation pump and a flow control valve to define the drive flow and consequently the total core flow an power control by total core flow. Laguna Verde Design and operational experience has shown some insights to be considering in design for advanced BRW reactors in order to improve the potential of nuclear power plants. NSSS and Balance of plant design, codes used to perform nuclear core design, margins derived from engineering judgment, at the time Laguna Verde designed and constructed had conducted to have a plant with an operational license, generating with a very good performance and availability. Nevertheless, some design characteristics and operational experience have shown that potential improvements or areas of opportunity shall be focused in the advanced BWR design. Computer codes used to design the nuclear core have been evolved relatively fast. The computers are faster and powerful than those used during the design process, also instrumentation and control are becoming part of this amazing technical evolution in the industry. The Laguna Verde experience is the subject to share in this paper. (author)

  14. Advanced game design with HTML5 and JavaScript

    CERN Document Server

    van der Spuy, Rex

    2015-01-01

    How do you make a video game? Advanced Game Design with HTML5 and JavaScript is a down to earth education in how to make video games from scratch, using the powerful HTML5 and JavaScript technologies. This book is a point-by-point round up of all the essential techniques that every game designer needs to know. You'll discover how to create and render game graphics, add interactivity, sound, and animation. You'll learn how to build your own custom game engine with reusable components so that you can quickly develop games with maximum impact and minimum code. You'll also learn the secrets o

  15. Advanced control room design review guidelines: Merging old and new

    International Nuclear Information System (INIS)

    Carter, R.J.; Wachtel, J.A.

    1992-01-01

    The nuclear power industry is currently developing operator interface systems based on innovative applications of digital computers. To assure that this advanced technology is incorporated in a way that maximizes the potential safety benefits of the technology and minimizes the potential negative effects on human performance, human factors principles must be considered. NUREG-0700 contains guidelines for the review of operator interfaces. However, in light of the rapid technological advances in digital technology which have taken place in the eleven years since its publication, it is no longer adequate to assess the rapidly changing human-system interfaces. A research program, the purpose of which is to upgrade NUREG-0700, has been initiated. Thus far a set of draft advanced control room design review (ACRDR) guidelines has been complied. Three tasks, which were oriented towards integrating the applicable guidelines in NUREG-0700 into the ACRDR document, are described in the paper

  16. A study on the thermal design of the advanced multi purpose canister

    International Nuclear Information System (INIS)

    Jun, Eun Ju; Chang, S. H.

    2004-01-01

    The storage, transportation and disposal of pressurized water reactor (PWR) spent fuel is an important issue in nuclear industry for safe and extended nuclear power plant operation. However, since wet-storage facilities almost reach to their capacity, dry-storage method, especially using a Multi Purpose Canister (MPC), has been highlighted because it gives better economic and safety point of view. In this study, an advanced design of MPC was proposed through an increase in storage capacity from 26 to 37 PWR fuel assemblies per MPC. Thermal analysis was also carried out by FLUENT 6 code to confirm the temperature criteria of the MPC. From the results, conceptual design of 37 PWR fuel assemblies can reduce the mass per fuel assembly ratio about 19 % compared to the 26 assemblies, and maximum temperature developed at the center of fuel assemblies shows within the range of design criteria. Based on the analysis, it is considered that the advanced MPC design well conforms to the safety requirement and it gives rise to economical gain because of reduction in mass per fuel assembly ratio

  17. Development of demonstration facility design technology for advanced nuclear fuel cycle process

    International Nuclear Information System (INIS)

    Cho, Il Je; You, G. S.; Choung, W. M.; Lee, E. P.; Hong, D. H.; Lee, W. K.; Ku, J. H.; Moon, S. I.; Kwon, K. C.; Lee, K. I. and other

    2012-04-01

    PRIDE Facility, pyroprocess mock-up facility, is the first facility that is operated in inert atmosphere in the country. By using the facility, the functional requirements and validity of pyroprocess technology and facility related to the advanced fuel cycle can be verified with a low cost. Then, PRIDE will contribute to evaluate the technology viability, proliferation resistance and possibility of commercialization of the pyroprocess technology. It is essential to develop design technologies for the advanced nuclear fuel cycle demonstration facilities and complete the detailed design of PRIDE facility with capabilities of the stringent inert atmosphere control, fully remote operation which are necessary to develop the high-temperature molten salts technology. For these, it is necessary to design the essential equipment of large scale inert cell structure and the control system to maintain the inert atmosphere, and evaluate the safety. To construct the hot cell system which is appropriate for pyroprocess, some design technologies should be developed, which include safety evaluation for effective operation and maintenance, radiation safety analysis for hot cell, structural analysis, environmental evaluation, HVAC systems and electric equipment

  18. Design of end magnetic structures for the Advanced Light Source wigglers

    International Nuclear Information System (INIS)

    Humphries, D.; Akre, J.; Hoyer, E.; Marks, S.; Minamihara, Y.; Pipersky, P.; Plate, D.; Schlueter, R.

    1995-01-01

    The vertical magnetic structures for the Advanced Light planar wiggler and 20 cm period elliptical hybrid permanent magnet design. The ends of these structures are characterized by diminishing scalar potential distributions the poles which control beam trajectories. They incorporate electromagnetic correction coils to dynamically correct for variations in the first integral of the field as a function of gap. A permanent magnet trim mechanism is incorporated to minimize the transverse integrated error field distribution. The ends were designed using analytic and computer modeling techniques. The design and modeling results are presented

  19. Comparison of advanced high power underground cable designs

    International Nuclear Information System (INIS)

    Erb, J.; Heinz, W.; Hofmann, A.; Koefler, H.J.; Komarek, P.; Maurer, W.; Nahar, A.

    1975-09-01

    In this paper, advanced high power underground cable designs are compared in the light of available literature, of reports and information supplied by participating industries (AEG, BICC, CGE, Pirelli, Siemens), spontaneous contributions by EdF, France, BBC and Felten and Guilleaume Kabelwerke A.G., Germany, and Hitachi, Furukawa, Fujikura and Sumitomo, Japan, and earlier studies carried out at German public research centres. The study covers cables with forced cooling by oil or water, SF 6 -cables, polyethylene cables, cryoresistive and superconducting cables. (orig.) [de

  20. ITER structural design criteria and their extension to advanced reactor blankets

    International Nuclear Information System (INIS)

    Majumdar, S.; Kalinin, G.

    2000-01-01

    Applications of the recent ITER structural design criteria (ISDC) are illustrated by two components. First, the low-temperature-design rules are applied to copper alloys that are particularly prone to irradiation embrittlement at relatively low fluences at certain temperatures. Allowable stresses are derived and the impact of the embrittlement on allowable surface heat flux of a simple first-wall/limiter design is demonstrated. Next, the high-temperature-design rules of ISDC are applied to evaporation of lithium and vapor extraction (EVOLVE), a blanket design concept currently being investigated under the US Advanced Power Extraction (APEX) program. A single tungsten first-wall tube is considered for thermal and stress analyses by finite-element method

  1. Progress in development and design aspects of advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-12-01

    The objective of the Technical Committee Meeting (TCM) was to provide an international forum for technical specialists to review and discuss technology developments and design work for advanced water cooled reactors, safety approaches and features of current water cooled reactors and to identify, understand and describe advanced features for safety and operational improvements. The TCM was attended by 92 participants representing 18 countries and two international organizations and included 40 presentations by authors of 14 countries and one international organization. A separate abstract was prepared for each of these presentations. Refs, figs, tabs

  2. Considerations for advanced reactor design based on EBR-II experience

    International Nuclear Information System (INIS)

    King, R. W.

    1999-01-01

    The long-term success of the Experimental Breeder Reactor-II (EBR-II) provides several insights into fundamental characteristics and design features of a nuclear generating station that enhance safety, operability, and maintainability. Some of these same characteristics, together with other features, offer the potential for operational lifetimes well beyond the current licensing time frame, and improved reliability that could potentially reduce amortized capital costs as well as overall operation and maintenance costs if incorporated into advanced plant designs. These features and characteristics are described and the associated benefits are discussed

  3. Advances in new WWER designs to improve operation and maintenance

    International Nuclear Information System (INIS)

    Dragunov, Y.G.; Ryzhov, S.B.; Podshibiakin, A.K.; Vasilchenko, I.N.; Repin, A.I.; Nikitenko, M.P.; Konoplev, N.P.; Fil, N.S.

    2000-01-01

    Economic operational indices of WWER-type reactors show their competitiveness in all the countries where these reactors operate. Advanced WWERs being designed and constructed now have the improved characteristics of economical efficiency and are more convenient for operation and maintenance. Many technical solutions aimed at improvement of the operational performance are implemented in the design of WWER-1000/V-392 and WWER-640/V-407, and these reactors are the important basis for the nuclear power expansion in Russia. Some of these solutions are considered in the present paper. (author)

  4. Development and design of advanced two-photon microscope used in neuroscience

    International Nuclear Information System (INIS)

    Doronin, M S; Popov, A V

    2016-01-01

    This work represents the real steps to development and design advanced two-photon microscope by efforts of laboratory staff. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. We are presenting here module-based microscopy system which provides an opportunity to looking for new applications of this setup depending on laboratories needs using with galvo and resonant scanners. (paper)

  5. Cyclic voltammetric study of the reduction of U(III) to uranium metal in molten LiCl-NaCl-CaCl2-BaCl2-UCl3

    International Nuclear Information System (INIS)

    Poa, D.S.; Tomczuk, Z.; Steunenberg, R.K.

    1986-01-01

    Cyclic voltammetry was used to investigate the electrochemistry of the reduction of UCl 3 to uranium metal in molten LiCl-NaCl-CaCl 2 -BaCl 2 (49.7-8.0-26.5-15.8 mol %) containing dissolved UCl 3 . The purpose of the study was to obtain information on the kinetics of the reaction, which will be used in the design of electrorefining equipment for the reprocessing of core and blanket fuel discharged from the Integral Fast Reactor (IFR). The electrorefining operation employs the above salt as the electrolyte and a liquid cadmium pool as the anode

  6. Design manual for management of solid by-products from advanced coal technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

  7. Design methodology for fault-tolerant control of advanced driver assistance systems

    NARCIS (Netherlands)

    Gietelink, O.J.; Ploeg, J.; Schutter, B. de; Verhaegen, M.H.G.

    2003-01-01

    The objective of this project is to develop a methodology for the design, testing, evaluation and implementation of control systems for Advanced Driver Assistance Systems (ADAS). Examples of ADAS are collision avoidance systems, lane departure warning systems, pre-crash sensing, and adaptive cruise

  8. Advanced technologies for decontamination and conversion of scrap metal

    International Nuclear Information System (INIS)

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-01-01

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products

  9. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hanford Waste Vitrification Plant Project advanced conceptual design summary report

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1988-11-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize Hanford defense liquid high-level waste in borosilicate glass in preparation for shipment to a geologic repository. The shipment of the waste to the repository will satisfy an objective in the President's Defense Waste Management Plan. The glass product will be cast into stainless steel canisters, which will be sealed and stored at Hanford until they are shipped. This document summarizes work performed during the Advance Conceptual Design (ACD) of the HWVP. In the Reference Conceptual Design phase, which preceded the ACD, a number of design issues were identified with the potential to improve cost effectiveness, safety, constructibility, and operability. The ACD addressed and evaluated these design issues. Implementation of recommendations derived from ACD work will occur in subsequent design phases. The next design phase is preliminary design which will be followed by detailed design and construction. Net potential cost improvements of more than $36.9M were identified along with improvements in safety, constructibility, and operability. No negative schedule impacts will result from implementation of the improvements. 11 refs., 5 figs., 3 tabs

  11. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  12. The conceptual design of the standard and the reduced fuel assemblies for an advanced research reactor

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Cho, Yeong Garp; Yoon, Doo Byung; Dan, Ho Jin; Chae, Hee Tack; Park, Cheol

    2005-01-01

    HANARO (Hi-flux Advanced Neutron Application Reactor), is an open-tank-in-pool type research reactor with a thermal power of 30MW. The HANARO has been operating at Korea Atomic Energy Research Institute since 1995. Based on the technical experiences in design and operation for the HANARO, the design of an Advanced Research Reactor (ARR) was launched by KAERI in 2002. The final goal of the project is to develop a new and advanced research reactor model which is superior in safety and economical aspects. This paper summarizes the design improvements of the conceptually designed standard fuel assembly based on the analysis results for the nuclear physics. It includes also the design of the reduced fuel assembly in conjunction with the flow tube as the fuel channel and the guide of the absorber rod. In the near future, the feasibility of the conceptually designed fuel assemblies of the ARR will be verified by investigating the dynamic and the thermal behaviors of the fuel assembly submerged in coolant

  13. Design and UV writing of advanced Bragg gratings in optical fibers

    DEFF Research Database (Denmark)

    Plougmann, Nikolai

    2004-01-01

    : · Development of a novel polarization control method for UV writing of advanced Bragg gratings with arbitrary refractive index modulation profile including multiple pi-phase shifts. · Development of a novel efficient technique for Bragg grating design which allows calculating an index modulation profile...

  14. Advancements in the design of safety-related systems and components of the MARS nuclear plant

    International Nuclear Information System (INIS)

    Caira, M.; Caruso, G.; Naviglio, A.; Sorabella, L.; Farello, C.E.

    1992-01-01

    In the paper, the advancements in the design of safety-related systems and components of the MARS nuclear plant, equipped with a 600 MW th PWR, are described. These advancements are due to the special safety features of this plant, which relies completely on inherent and passive safety. In particular, the new steps of the design of the innovative, completely passive, and with an unlimited autonomy Emergency core Cooling System are described, together with the characteristics of the last version of the steam generator, developed in a new design involving disconnecting components, for a fast erection and an easy maintenance. (author)

  15. Advanced Propfan Engine Technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design

    Science.gov (United States)

    Anderson, R. D.

    1985-01-01

    Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.

  16. Design description of the vacuum vessel for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Chipley, K.K.; Nelson, B.E.; Vinyard, L.M.; Williamson, D.F.

    1983-01-01

    The Advanced Toroidal Facility (ATF) will be a stellarator experiment to investigate improvements in toroidal confinement. The vacuum vessel for this facility will provide the appropriate evacuated region for plasma containment within the helical field (HF) coils. The vessel is designed to provide the maximum reasonable volume inside the HF coils and to provide the maximum reasonable access for future diagnostics. The vacuum vessel design is at an early phase and all of the details have not been completed. The heat transfer analysis and stress analysis completed during the conceptual design indicate that the vessel will not change drastically

  17. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    International Nuclear Information System (INIS)

    Ragusa, Jean; Vierow, Karen

    2011-01-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  18. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  19. Advanced conceptual design report. Phase II. Liquid effluent treatment and disposal Project W-252

    International Nuclear Information System (INIS)

    1995-01-01

    This Advanced Conceptual Design Report (ACDR) provides a documented review and analysis of the Conceptual Design Report (CDR), WHC-SD-W252-CDR-001, June 30, 1993. The ACDR provides further design evaluation of the major design approaches and uncertainties identified in the original CDR. The ACDR will provide a firmer basis for the both the design approach and the associated planning for the performance of the Definitive Design phase of the project

  20. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.; Brown, W.S. [Brookhaven National Lab., Upton, NY (United States); Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J. [Carlow International Inc., Falls Church, VA (United States)

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  1. Advanced human-system interface design review guideline. Evaluation procedures and guidelines for human factors engineering reviews

    International Nuclear Information System (INIS)

    O'Hara, J.M.; Brown, W.S.; Baker, C.C.; Welch, D.L.; Granda, T.M.; Vingelis, P.J.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support. NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  2. Advances in analog and RF IC design for wireless communication systems

    CERN Document Server

    Manganaro, Gabriele

    2013-01-01

    Advances in Analog and RF IC Design for Wireless Communication Systems gives technical introductions to the latest and most significant topics in the area of circuit design of analog/RF ICs for wireless communication systems, emphasizing wireless infrastructure rather than handsets. The book ranges from very high performance circuits for complex wireless infrastructure systems to selected highly integrated systems for handsets and mobile devices. Coverage includes power amplifiers, low-noise amplifiers, modulators, analog-to-digital converters (ADCs) and digital-to-analog converters

  3. A design basis for the development of advanced CANDU control centres

    Energy Technology Data Exchange (ETDEWEB)

    Feher, M P; Davey, E C; Lupton, L R [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    The basic design for current CANDU control centres was established in the early 1970`s. Plants constructed since then have, for the most part, retained the same basic design. Several factors have led to the need to re-examine CANDU control centre design for plants to be built beyond the year 2000. These factors include the changing roles and responsibilities for the operations staff, an improved understanding of operational issues associated with supervisory control, an improved understanding of human error in operational situations, the opportunity for improved plant performance through the introduction of new technologies, and marketing pressures. This paper describes the proposed design bases for the development of advanced control centres to be implemented in CANDU plants beyond the year 2000. Four areas have been defined covering design goals, design principles, operational bases, and plant functional bases. (author).

  4. A design basis for the development of advanced CANDU control centres

    International Nuclear Information System (INIS)

    Feher, M.P.; Davey, E.C.; Lupton, L.R.

    1995-01-01

    The basic design for current CANDU control centres was established in the early 1970's. Plants constructed since then have, for the most part, retained the same basic design. Several factors have led to the need to re-examine CANDU control centre design for plants to be built beyond the year 2000. These factors include the changing roles and responsibilities for the operations staff, an improved understanding of operational issues associated with supervisory control, an improved understanding of human error in operational situations, the opportunity for improved plant performance through the introduction of new technologies, and marketing pressures. This paper describes the proposed design bases for the development of advanced control centres to be implemented in CANDU plants beyond the year 2000. Four areas have been defined covering design goals, design principles, operational bases, and plant functional bases. (author)

  5. Liquid and solid rad waste treatment in advanced nuclear power plants. Application to the SBWR design

    International Nuclear Information System (INIS)

    Tielas Reina, M.; Asuar Alonso, O.

    1994-01-01

    Rad waste treatment requirements for the new generation of American advanced passive and evolutionary power plants are listed in the URD (Utility Requirements Document) of the EPRI (Electrical Power Research Institute). These requirements focus on: - Minimization of shipped solid wastes - Minimization of liquid effluents - Simplification of design and operation, with emphasis not only on waste treatment system design but also on general plant design and operation These objectives are aimed at: - Reducing and segregating wastes at source - Minimizing chemical contamination of these wastes System design simplification is completed by providing free space in the building for the use of mobile plants, either for special services not considered in the basic design or to accommodate future technical advances. (Author)

  6. Environmental performance evaluation of an advanced-design solid-state television camera

    Science.gov (United States)

    1979-01-01

    The development of an advanced-design black-and-white solid-state television camera which can survive exposure to space environmental conditions was undertaken. A 380 x 488 element buried-channel CCD is utilized as the image sensor to ensure compatibility with 525-line transmission and display equipment. Specific camera design approaches selected for study and analysis included: (1) component and circuit sensitivity to temperature; (2) circuit board thermal and mechanical design; and (3) CCD temperature control. Preferred approaches were determined and integrated into the final design for two deliverable solid-state TV cameras. One of these cameras was subjected to environmental tests to determine stress limits for exposure to vibration, shock, acceleration, and temperature-vacuum conditions. These tests indicate performance at the design goal limits can be achieved for most of the specified conditions.

  7. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  8. Advanced Space Suit Portable Life Support Subsystem Packaging Design

    Science.gov (United States)

    Howe, Robert; Diep, Chuong; Barnett, Bob; Thomas, Gretchen; Rouen, Michael; Kobus, Jack

    2006-01-01

    This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA s in-house 1998 study, which resulted in the "Flex PLSS" concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1. Bring the advanced space suit integrated Flex PLSS concept from its current state of development to a preliminary design level and build a proof of concept mockup of the proposed design, and; 2. "Design" a Design Process, which accommodates both the initial Flex PLSS design and the package modifications, required to accommodate new technology.

  9. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The integrated code system CASCADE-3D for advanced core design and safety analysis

    International Nuclear Information System (INIS)

    Neufert, A.; Van de Velde, A.

    1999-01-01

    The new program system CASCADE-3D (Core Analysis and Safety Codes for Advanced Design Evaluation) links some of Siemens advanced code packages for in-core fuel management and accident analysis: SAV95, PANBOX/COBRA and RELAP5. Consequently by using CASCADE-3D the potential of modern fuel assemblies and in-core fuel management strategies can be much better utilized because safety margins which had been reduced due to conservative methods are now predicted more accurately. By this innovative code system the customers can now take full advantage of the recent progress in fuel assembly design and in-core fuel management.(author)

  11. Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results

    Science.gov (United States)

    Diem, H. G.

    1980-01-01

    The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.

  12. Advanced Light Water Reactor Plants System 80+trademark Design Certification Program

    International Nuclear Information System (INIS)

    Davis, G.A.

    1992-01-01

    Since 1985, ABB Combustion Engineering Nuclear Power (CENP) and Duke Engineering ampersand Services, Inc. (DE ampersand S) have been developing the next generation of pressurized water reactor (PWR) plant for worldwide deployment. The goal is to make available a pre-licensed, standardized plant design that can satisfy the need for a reliable and economic supply of electricity for residential, commercial and industrial use. To ensure that such a design is available when needed, it must be based on proven technology and established licensing criteria. These requirements dictate development of nuclear technology that is advanced, yet evolutionary in nature. This has been achieved with the System 80+ Standard Plant Design

  13. Safety aspects of the US advanced LMR [liquid metal reactor] design

    International Nuclear Information System (INIS)

    Pedersen, D.R.; Gyorey, G.L.; Marchaterre, J.F.; Rosen, S.

    1989-01-01

    The cornerstones of the United States Advanced Liquid Metal Cooled Reactor (ALMR) program sponsored by the Department of Energy are: the plant design program at General Electric based on the PRISM (Power Reactor Innovative Small Module) concept, and the Integral Fast Reactor program (IFR) at Argonne National Laboratory (ANL). The goal of the US program is to produce a standard, commercial ALMR, including the associated fuel cycle. This paper discusses the US regulatory framework for design of an ALMR, safety aspects of the IFR program at ANL, the IFR fuel cycle and actinide recycle, and the ALMR plant design program at GE. 6 refs., 5 figs

  14. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  15. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    International Nuclear Information System (INIS)

    Shu, D.; Benson, C.; Chang, J.; Barraza, J.; Kuzay, T. M.; Alp, E. E.; Sturhahn, W.; Lai, B.; McNulty, I.; Randall, K.; Srajer, G.; Xu, Z.; Yun, W.

    1997-01-01

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National Laboratory, has many advantages. [Yun et al., Rev. Sci. Instrum. 67(9)(1996)CD-ROM] A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows us to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper

  16. Pyro processing technology at KAERI

    International Nuclear Information System (INIS)

    Lee, Hansoo; Kim, Eungho; Park, Seongwon

    2008-01-01

    KAERI has studied on the pyro processing as a spent fuel treatment method for more than decade. The process includes voloxidation, electroreduction, electrorefining with solid and liquid cathodes, and waste salt treatment. Each process has developed its own characteristics which are suitable for treating high mass flow. In the electroreduction process, a magnesia filter was used for integrated electrolytic reduction. More than 99% of reduction yield was achieved. Electrorefining process employs the continuous operation concept. Uranium deposits on the surface of graphite cathode and it is stripped off spontaneously to the bottom of the reactor, which allows continuous operation. Crystallization method was used for treating waste salt. Pure salt is recovered by Czochralski method or zone freezing method and subsequently recycled to the reactor. These advanced technologies ensure the operation of pyro processing in a larger scale

  17. Advanced reactors: the case for metric design

    International Nuclear Information System (INIS)

    Ruby, L.

    1986-01-01

    The author argues that DOE should insist that all design specifications for advanced reactors be in the International System of Units (SI) in accordance with the Metric Conversion Act of 1975. Despite a lack of leadership from the federal government, industry has had to move toward conversion in order to compete on world markets. The US is the only major country without a scheduled conversion program. SI avoids the disadvantages of ambiguous names, non-coherent units, multiple units for the same quantity, multiple definitions, as well as barriers to international exchange and marketing and problems in comparing safety and code parameters. With a first step by DOE, the Nuclear Regulatory Commission should add the same requirements to reactor licensing guidelines. 4 references

  18. Annex to 7-GeV Advanced Photon Source Conceptual Design Report

    International Nuclear Information System (INIS)

    1988-05-01

    The Annex to the 7-GeV Advanced Photon Source Conceptual Design Report updates the Conceptual Design Report of 1987 (CDR-87) to include the results of further optimization and changes of the design during the past year. The design changes can be summarized as affecting three areas: the accelerator system, conventional facilities, and experimental systems. Most of the changes in the accelerator system result from inclusion of a positron accumulator ring (PAR), which was added at the suggestion of the 1987 DOE Review Committee, to speed up the filling rate of the storage ring. The addition of the PAR necessitates many minor changes in the linac system, the injector synchrotron, and the low-energy beam transport lines. 63 figs., 18 tabs

  19. Measuring and Advancing Experimental Design Ability in an Introductory Course without Altering Existing Lab Curriculum

    Directory of Open Access Journals (Sweden)

    Ryan A. Shanks

    2017-05-01

    Full Text Available Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.

  20. Innovative grinding wheel design for cost-effective machining of advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Licht, R.H.; Kuo, P.; Liu, S.; Murphy, D.; Picone, J.W.; Ramanath, S.

    2000-05-01

    This Final Report covers the Phase II Innovative Grinding Wheel (IGW) program in which Norton Company successfully developed a novel grinding wheel for cost-effective cylindrical grinding of advanced ceramics. In 1995, Norton Company successfully completed the 16-month Phase I technical effort to define requirements, design, develop, and evaluate a next-generation grinding wheel for cost-effective cylindrical grinding of advanced ceramics using small prototype wheels. The Phase II program was initiated to scale-up the new superabrasive wheel specification to larger diameters, 305-mm to 406-mm, required for most production grinding of cylindrical ceramic parts, and to perform in-house and independent validation grinding tests.

  1. VVANTAGE 6 - an advanced fuel assembly design for VVER reactors

    International Nuclear Information System (INIS)

    Doshi, P.K.; DeMario, E.E.; Knott, R.P.

    1993-01-01

    Over the last 25 years, Westinghouse fuel assemblies for pressurized water reactors (PWR's) have undergone significant changes to the current VANTAGE 5. VANTAGE 5 PWR fuel includes features such as removable top nozzles, debris filter bottom nozzles, low-pressure-drop zircaloy grids, zircaloy intermediate flow mixing grids, optimized fuel rods, in-fuel burnable absorbers, and increased burnup capability to region average values of 48000 MWD/MTU. These features have now been adopted to the VVER reactors. Westinghouse has completed conceptual designs for an advanced fuel assembly and other core components for VVER-1000 reactors known as VANTAGE 6. This report describes the VVANTAGE 6 fuel assembly design

  2. A study of the advancement of a reactor core design environment

    International Nuclear Information System (INIS)

    Porsmyr, Jan; Kvilesjoe, Hans Oeyvind; Ijiri, Masanobu

    2004-01-01

    Full text: During the years from 2002 to 2004 a joint project has been performed by IFE, Halden and Yonden Engineering Corporation, Japan, to develop an advanced reactor core design environment based on a communication method for controlling a reactor core code system efficiently from PCs in a distributed network. The advanced reactor core design environment is realized by using Microsoft Visual Basic and communication software based on the IFE product SoftwareBus. The project has been carried out based on the fact that a computer-aided design system has been under development at Yonden Engineering Corporation in order to perform efficiently fuel replacement calculation by Yonden's reactor design code system. In this system, the structure is such that the physics calculation code system runs on UNIX workstations (in parallel) performing the calculations, while the Man-Machine Interface for controlling the calculation programs run on PCs in a distributed network. It has been emphasised to develop a reliable, flexible, adaptable and user-friendly system, which is easy to maintain. Therefore, a rather general communication tool (IFE's SoftwareBus) has been used for realizing communication of the n-pair n-node between the reactor core design code system and the PC applications. Further, a method of improvement in the speed of the optimal pattern calculation has been implemented by assigning each examination pattern to two or more computers distributed in the network and assigning the next pattern calculation to the computer, where the calculation has ended or has the lowest workload. The high-speed technology of the pattern survey by network distributed processing is based on SoftwareBus. The reactor core design code system is developed in FORTRAN running on a UNIX workstation (Solaris). The PC applications have been developed by using Microsoft Visual Basic on Windows 2000 platform. The first step of the verification and validation process was carried out in March

  3. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs

  4. Progress in design, research and development and testing of safety systems for advanced water cooled reactors. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The meeting covered the following topics: Developments in design of safety-related heat removal components and systems for advanced water cooled reactors; status of test programmes on heat removal components and systems of new designs; range of validity and extrapolation of test results for the qualification of design/licensing computer models and codes for advanced water cooled reactors; future needs and trends in testing of safety systems for advanced water cooled reactors. Tests of heat removal safety systems have been conducted by various groups supporting the design, testing and certification of advanced water cooled reactors. The Technical Committee concluded that the reported test results generally confirm the predicted performance features of the advanced designs. Refs, figs, tabs.

  5. VIM Monte Carlo versus CASMO comparisons for BWR advanced fuel designs

    International Nuclear Information System (INIS)

    Pallotta, A.S.; Blomquist, R.N.

    1994-01-01

    Eigenvalues and two-dimensional fission rate distributions computed with the CASMO-3G lattice physics code and the VIM Monte Carlo Code are compared. The cases assessed are two advanced commercial BWR pin bundle designs. Generally, the two codes show good agreement in K inf , fission rate distributions, and control rod worths

  6. Development of the advanced CANDU technology -Development of basic technology for HWR design

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Seok, Soo Dong; Lee, Sang Yong

    1996-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR's that are now being operated or constructed in Korea. It is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 71 tabs., 147 figs., 143 refs. (Author)

  7. Development of the advanced CANDU technology -Development of basic technology for HWR design-

    Energy Technology Data Exchange (ETDEWEB)

    Suk, Hoh Chun; Lee, Sang Yong; Suk, Soo Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR`s that are now being operated or constructed in Korea, it is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, by performing in-depth studies especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 90 figs, 50 tabs, 38 refs. (Author).

  8. Development of the advanced CANDU technology -Development of basic technology for HWR design-

    International Nuclear Information System (INIS)

    Suk, Hoh Chun; Lee, Sang Yong; Suk, Soo Dong

    1995-07-01

    It is believed that it is easier for Korea to become self-reliant in PHWR technology than in PWR technology, mainly because of the lower design pressure and temperature and because of the simplicity, economy, flexibility of the fuel cycle in comparison with PWR systems. Even though one has no doubt about the safety and the economics of the PHWR's that are now being operated or constructed in Korea, it is necessary to develop the advanced design technology for even safer and more economical PHWR systems to overcome the ever growing international resistance to sharing of nuclear technology and to meet the even more stringent requirements for the future public acceptance of nuclear power. This study is to develop the more advance design technology compared to the existing one, by performing in-depth studies especially in the field of reactor physics, safety systems and safety evaluation to realize the above requirements. 90 figs, 50 tabs, 38 refs. (Author)

  9. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...

  10. Design of an advanced human-centered supervisory system for a nuclear fuel reprocessing system

    International Nuclear Information System (INIS)

    Riera, B.; Lambert, M.; Martel, G.

    1999-01-01

    In the field of highly automated processes, our research concerns supervisory system design adapted to supervisory and default diagnosis by human operators. The interpretation of decisional human behaviour models shows that the tasks of human operators require different information, which has repercussions on the supervisory system design. We propose an advanced human-centred supervisory system (AHCSS) which is more adapted to human-beings, because it integrates new representation of the production system,(such as functional and behavioural aspects) with the use of advanced algorithms of detection and location. Based on an approach using these new concepts, and AHCSS was created for a nuclear fuel reprocessing system. (authors)

  11. Mirror mounts designed for the Advanced Photon Source SRI-CAT

    International Nuclear Information System (INIS)

    Shu, D.; Benson, C.; Chang, J.; Barraza, J.; Kuzay, T.M.; Alp, E.E.; Sturhahn, W.; Lai, B.; McNulty, I.; Randall, K.; Srajer, G.; Xu, Z.; Yun, W.

    1997-01-01

    Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National Laboratory, has many advantages. [Yun et al., Rev. Sci. Instrum. 67(9)(1996)CD-ROM] A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows us to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper. copyright 1997 American Institute of Physics

  12. Design related aspects in advanced nuclear fission plants

    International Nuclear Information System (INIS)

    Hoffelner, Wolfgang

    2011-01-01

    Important issues to be considered for design of future reactors are: extrapolation of stress rupture data, creep-fatigue, negligible creep, damage monitoring. The paper highlights some new developments taking examples from a martensitic steel (mod 9% Cr), oxide dispersion strengthened (ODS) steels and nickel-base superalloys. Traditional approaches to extrapolation of (thermal) stress rupture data like Larson-Miller Parameter or Monkman-Grant rule seem to be valid concepts also for advanced reactors. However, a significant influence of cyclic softening on creep rates and stress rupture data can be expected as shown for grade 91. This is particularly true for creep-fatigue interactions. Based on cyclic stress-strain behaviour it is also possible to get very good life-time predictions under creep-fatigue with a strain range separation (inelastic fatigue and creep ranges) technique which could replace the currently used linear life fraction rule. Results from in-beam irradiation creep reveal no significant influence of dispersoid size. It can be assumed that irradiation creep is a matrix property. Finally it is shown that micro-sample testing of exposed material could be used as an advanced method for damage assessment in future nuclear power plants.

  13. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  14. Conceptual safety design analysis of Korea advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Suk, S. D.; Park, C. K.

    1999-01-01

    The national long-term R and D program, updated in 1977, requires Korea Atomic Energy Research Institute (KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor (KALIMER), along with supporting R and D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 Mwe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R and D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of KALIMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation. (author)

  15. Advancing Control for Shield Tunneling Machine by Backstepping Design with LuGre Friction Model

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2014-01-01

    Full Text Available Shield tunneling machine is widely applied for underground tunnel construction. The shield machine is a complex machine with large momentum and ultralow advancing speed. The working condition underground is rather complicated and unpredictable, and brings big trouble in controlling the advancing speed. This paper focused on the advancing motion control on desired tunnel axis. A three-state dynamic model was established with considering unknown front face earth pressure force and unknown friction force. LuGre friction model was introduced to describe the friction force. Backstepping design was then proposed to make tracking error converge to zero. To have a comparison study, controller without LuGre model was designed. Tracking simulations of speed regulations and simulations when front face earth pressure changed were carried out to show the transient performances of the proposed controller. The results indicated that the controller had good tracking performance even under changing geological conditions. Experiments of speed regulations were carried out to have validations of the controllers.

  16. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    Science.gov (United States)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  17. Advanced control and instrumentation systems in nuclear power plants. Design, verification and validation

    International Nuclear Information System (INIS)

    Haapanen, P.

    1995-01-01

    The Technical Committee Meeting on design, verification and validation of advanced control and instrumentation systems in nuclear power plants was held in Espoo, Finland on 20 - 23 June 1994. The meeting was organized by the International Atomic Energy Agency's (IAEA) International Working Group's (IWG) on Nuclear Power Plant Control and Instrumentation (NPPCI) and on Advanced Technologies for Water Cooled Reactors (ATWR). VTT Automation together with Imatran Voima Oy and Teollisuuden Voima Oy responded about the practical arrangements of the meeting. In total 96 participants from 21 countries and the Agency took part in the meeting and 34 full papers and 8 posters were presented. Following topics were covered in the papers: (1) experience with advanced and digital systems, (2) safety and reliability analysis, (3) advanced digital systems under development and implementation, (4) verification and validation methods and practices, (5) future development trends. (orig.)

  18. Conceptual structure design of experimental facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Joo, J. S.; Koo, J. H.; Jung, W. M.; Jo, I. J.; Kook, D. H.; Yoo, K. S.

    2003-01-01

    A study on the advanced spent fuel conditioning process (ACP) is carring out for the effective management of spent fuels of domestic nuclear power plants. This study presents basic shielding design, modification of IMEF's reserve hot cell facility which reserved for future usage, conceptual and structural architecture design of ACP hot cell and its contents, etc. considering the characteristics of ACP. The results of this study will be used for the basic and detail design of ACP demonstration facility, and utilized as basic data for the safety evaluation as essential data for the licensing of the ACP facility

  19. The effects of advanced digital signal processing concepts on VLSIC/VHSIC design

    Science.gov (United States)

    Jankowski, C.

    Implementations of sophisticated mathematical techniques in advanced digital signal processors can significantly improve performance. Future VLSI and VHSI circuit designs must include the practical realization of these algorithms. A structured design approach is described and illustrated with examples from a RNS FIR filter processor development project. The CAE hardware and software required to support tasks of this complexity are also discussed. An EWS is recommended for controlling essential functions such as logic optimization, simulation and verification. The total IC design system is illustrated with the implementation of a new high performance algorithm for computing complex magnitude.

  20. Conceptual design report on advanced marine reactor MRX of Japan

    International Nuclear Information System (INIS)

    Wang Shengguo

    1995-01-01

    Design studies on the advanced marine reactors have been done continuously since 1983 at Japan Atomic Energy Institute (JAERI) in order to develop attractive marine reactors for the next generation. At present, two concepts of marine reactor are being formulated. One is 100 MWt MRX (marine Reactor X) for the marine reactor and the other is 150 kWe DRX (Deep Sea-Reactor X) for a deep-sea research vessel. They are characterized by an integral type PWR, built-type control rod drive mechanisms, a water-filled container and a passive decay heat removal system, which realize highly passive safe and compact reactors. The paper is a report about all major results of the MRX design study

  1. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1998-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  2. Advanced in-vessel retention design for next generation risk management

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Y.; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    1997-12-31

    In the TMI-2 accident, approximately twenty (20) tons of molten core material drained into the lower plenum. Early advanced light water reactor (LWR) designs assumed a lower head failure and incorporated various measures for ex-vessel accident mitigation. However,one of the major findings from the TMI-2 Vessel Investigation Project was that one part of the reactor lower head wall estimated to have attained a temperature of 1100 deg C for about 30 minutes has seemingly experienced a comparatively rapid cooldown with no major threat to the vessel integrity. In this regard, recent empirical and analytical studies have shifted interests to such in-vessel retention designs or strategies as reactor cavity flooding, in-vessel flooding and engineered gap cooling of the vessel. Accurate thermohydrodynamic and creep deformation modeling and rupture prediction are the key to the success in developing practically useful in-vessel accident/risk management strategies. As an advanced in-vessel design concept, this work presents the COrium Attack Syndrome Immunization Structures (COASIS) that are being developed as prospective in-vessel retention devices for a next-generation LWR in concert with existing ex-vessel management measures. Both the engineered gap structures in-vessel (COASISI) and ex-vessel (COASISO) are demonstrated to maintain effective heat transfer geometry during molten core debris attack when applied to the Korean Standard Nuclear Power Plant (KSNPP) reactor. The likelihood of lower head creep rupture during a severe accident is found to be significantly suppressed by the COASIS options. 15 refs., 5 figs., 1 tab. (Author)

  3. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  4. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  5. Balanced Design of Safety Systems of CAREM Advanced Reactor

    International Nuclear Information System (INIS)

    Grinblat, Pablo; Gimenez, Marcelo; Schlamp, Miguel

    2003-01-01

    Nuclear Power Plants must meet the performance that the market and the population demand in order to be part of the electricity supply industry.It is related mainly with the results of reactor's economy and safety.New advances in the methodology developed for reactor economic optimization analyzing its safety at an early engineering stage, aiming at balancing these important features of the design, are presented in this work.In particular, the coupling that appears when dimensioning the Emergency Injection System, the Residual Heat Removal System and the containment height of CAREM reactor is described.The new models appended to the computer code that embodies the methodology to balance de designs are shown.Finally the results obtained with the optimizations when applying it are presented.Furthermore, a criterion to establish the maximal diameter for acceptable breaks in RPV's penetrations arises from this work.The application of the methodology and the computer code developed turns out to prove the advantages they provide to reactor design so that the plants are properly balanced and optimized

  6. Advanced neutron source design: burnout heat flux correlation development

    International Nuclear Information System (INIS)

    Gambill, W.R.; Mochizuki, T.

    1988-01-01

    In the advanced neutron source reactor (ANSR) fuel element region, heat fluxes will be elevated. Early designs corresponded to average and estimated hot-spot fluxes of 11 to 12 and 21 to 22 MW/m 2 , respectively. Design changes under consideration may lower these values to ∼ 9 and 17 MW/m 1 . In either event, the development of a satisfactory burnout heat flux correlation is an important element among the many thermal-hydraulic design issues, since the critical power ratio will depend in part on its validity. Relatively little work in the area of subcooled-flow burnout has been published over the past 12 yr. The authors have compared seven burnout correlations and modifications therefore with several sets of experimental data, of which the most relevant to the ANS core are those referenced. The best overall agreement between the correlations tested and these data is currently provided by a modification of Thorgerson et al. correlation. The variable ranges of the experimental data are outlined and the results of the correlation comparisons are summarized

  7. Effect of LEO cycling on 125 Ah advanced design IPV nickel-hydrogen battery cells

    Science.gov (United States)

    Smithrick, John J.; Hall, Stephen W.

    1990-01-01

    An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, low earth-orbit (LEO) spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte, (2) use of a patented catalyzed wall wick, (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management, and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion. Six 125-Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they don't have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test. The cells have accumulated about 4700 LEO cycles (60 percent DOD 10 C). There have been no cell failures; the catalyzed wall wick cells, however, are performing better.

  8. Development of a metal-clad advanced composite shear web design concept

    Science.gov (United States)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  9. Advances in fuel cell vehicle design

    Science.gov (United States)

    Bauman, Jennifer

    Factors such as global warming, dwindling fossil fuel reserves, and energy security concerns combine to indicate that a replacement for the internal combustion engine (ICE) vehicle is needed. Fuel cell vehicles have the potential to address the problems surrounding the ICE vehicle without imposing any significant restrictions on vehicle performance, driving range, or refuelling time. Though there are currently some obstacles to overcome before attaining the widespread commercialization of fuel cell vehicles, such as improvements in fuel cell and battery durability, development of a hydrogen infrastructure, and reduction of high costs, the fundamental concept of the fuel cell vehicle is strong: it is efficient, emits zero harmful emissions, and the hydrogen fuel can be produced from various renewable sources. Therefore, research on fuel cell vehicle design is imperative in order to improve vehicle performance and durability, increase efficiency, and reduce costs. This thesis makes a number of key contributions to the advancement of fuel cell vehicle design within two main research areas: powertrain design and DC/DC converters. With regards to powertrain design, this research first analyzes various powertrain topologies and energy storage system types. Then, a novel fuel cell-battery-ultracapacitor topology is presented which shows reduced mass and cost, and increased efficiency, over other promising topologies found in the literature. A detailed vehicle simulator is created in MATLAB/Simulink in order to simulate and compare the novel topology with other fuel cell vehicle powertrain options. A parametric study is performed to optimize each powertrain and general conclusions for optimal topologies, as well as component types and sizes, for fuel cell vehicles are presented. Next, an analytical method to optimize the novel battery-ultracapacitor energy storage system based on maximizing efficiency, and minimizing cost and mass, is developed. This method can be applied

  10. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    Science.gov (United States)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  11. Advanced CANDU reactors

    International Nuclear Information System (INIS)

    Dunn, J.T.; Finlay, R.B.; Olmstead, R.A.

    1988-12-01

    AECL has undertaken the design and development of a series of advanced CANDU reactors in the 700-1150 MW(e) size range. These advanced reactor designs are the product of ongoing generic research and development programs on CANDU technology and design studies for advanced CANDU reactors. The prime objective is to create a series of advanced CANDU reactors which are cost competitive with coal-fired plants in the market for large electricity generating stations. Specific plant designs in the advanced CANDU series will be ready for project commitment in the early 1990s and will be capable of further development to remain competitive well into the next century

  12. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  13. Advances in Photonics Design and Modeling for Nano- and Bio-photonics Applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2010-01-01

    In this invited paper we focus on the discussion of two recent unique applications of the Finite-Difference Time-Domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. We will first discuss the application of a traditional formulation of the FDTD...

  14. Two approaches to meeting the economic challenge for advanced BWR designs

    International Nuclear Information System (INIS)

    Rao, A.S.; Sawyer, C.D.

    1997-01-01

    This paper presents the design overview and approach to addressing the aforementioned economic challenges for two Advanced BWR designs. The first plant is the ABWR and the second is the ESBWR. The ABWR relies on proven technology and components and an extensive infrastructure that has been built up over the last 20 years. Because it has proven and standards safety systems it has very limited uncertainty regarding licensing. Finally, it relies on the economies of scale and overall design flexibility to improve the overall economics of power generation. The ESBWR on the other hand has taken an innovative approach to reduce systems and components to simplify the overall plant to improve plant economics. The overall plant design is indeed simpler, but improved economics required reliance on some economies of scale also. This design embodied in the ESBWR, also has minimized the overall development cost by utilizing features and components from the ABWR and SBWR technology programs

  15. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    International Nuclear Information System (INIS)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin

    2014-01-01

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  16. Development of High-Temperature Transport System for Molten Salt in Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Kim, In Tae; Park, Sung Bin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The electrorefining process, which is a key process in pyroprocessing, is composed of two parts, electrorefining to deposit a uranium with a solid cathode and electrowinning to co-deposit TRU and RE with a liquid cadmium cathode (LCC). As the electrorefining operation proceedes, TRU and RE are accumulated in electrolyte LiCl-KCl salt, and after the electrorefining process, the molten salt used in an electrorefining reactor should by transported to the next process, the electrowinning process, to recover U/TRU/RE; Thus, a molten salt transfer system by suction is now being developed. An apparatus for suction transport experiments was designed and constructed for the development of high- temperature molten salt transport technology. Suction transport experiments were performed using LiC-KCl eutectic salt. The feasibility of pyro-reprocessing has been demonstrated through many laboratory-scale experiments. In pyroprocessing, a eutectic LiCl-KCl salt was used as a liquid elextrolyte for a recovery of actinides. However, reliable transport technologies for these high temperature liquids have not yet been developed. A preliminary study on high-temperature transport technology for molten salt by suction is now being carried out. In this study, three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated to select the most suitable method for molten salt transport. An apparatus for suction transport experiments was designed and installed for the development of high-temperature molten salt transport technology. Basic preliminary suction transport experiments were carried out using the prepared LiC-KCl eutectic salt at 500 .deg. C to observe the transport behavior of LiCl-KCl molten salt. In addition, a PRIDE salt transport system was designed and installed for an engineering-scale salt transport demonstration. Several types of suction transport experiments using molten salt (LiCl-KCl eutectics) for the development of a high

  17. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  18. Key developments in the advanced NPP with WWER-640/V-407 reactor plant design

    International Nuclear Information System (INIS)

    Dragunov, Yu.G.; Mokhov, V.A.; Nikitenko, M.P.; Afrov, A.M.

    1999-01-01

    The report covers the main design features of advanced NPP equipped with WWER-640 reactor, that take into account the up-to-date approaches in the process of forming safety concepts. An approach to accident management has been analysed, beyond design-basis accidents included. A description of principal safety systems has been presented as well as the interrelation of their operation. The principal features of the systems design have been shown. (author)

  19. Utilization of MCNP code in the research and design for China advanced research reactor

    International Nuclear Information System (INIS)

    Shen Feng

    2006-01-01

    MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)

  20. Fast-neutron coincidence-counter manual

    International Nuclear Information System (INIS)

    Ensslin, N.; Atwell, T.L.; Lee, D.M.; Erkkila, B.; Marshall, R.S.; Morgan, A.; Shonrock, C.; Tippens, B.; Van Lyssel, T.

    1982-03-01

    The fast neutron counter (FNC) described in this report is a computer-based assay system employing fast-pulse counting instrumentation. It is installed below a glove box in the metal electrorefining area of the Los Alamos National Laboratory Plutonium Processing Facility. The instrument was designed to assay plutonium salts and residues from this process and to verify the mass of electrorefined metal. Los Alamos National Laboratory Groups Q-1, Q-3, and CMB-11 carried out a joint test and evaluation plan of this instrument between May 1978 and May 1979. The results of that evaluation, a description of the FNC, and operating instructions for further use are given in this report

  1. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  2. Design studies for an advanced ECR ion source for multiply charged ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1994-01-01

    An innovative technique: for increasing ion source intensity is described which, in principle, could lead to significant advances in ECR ion source technology for multiply charged ion beam formation. The advanced concept design uses a minimum-B magnetic mirror geometry which consists of a multi-cusp, magnetic field, to assist in confining the plasma radially, a flat central field for tuning to the ECR resonant condition, and specially tailored min-or fields in the end zones to confine the plasma in the axial direction. The magnetic field is designed to achieve an axially symmetric plasma ''volume'' with constant mod-B, which extends over the length of the central field region. This design, which strongly contrasts w h the ECR ''surfaces'' characteristic of conventional ECR ion sources, results in dramatic increases in the absorption of RF power, thereby increasing the electron temperature and ''hot'' electron population within the ionization volume of the source

  3. Evaluation of chloride-ion-specific electrodes as in situ chemical sensors for monitoring total chloride concentration in aqueous solutions generated during the recovery of plutonium from molten salts used in plutonium electrorefining operations

    International Nuclear Information System (INIS)

    Smith, W.H.

    1992-10-01

    Two commercially available chloride-ion-specific electrodes (CLISEs), a solid-state type and a membrane type, were evaluated as potential in situ chemical sensors for determining total chloride ion concentration in mixed sodium chloride/potassium chloride/hydrochloric acid solutions generated during the recovery of plutonium from molten salts used in plutonium electrorefining operations. Because the response of the solid-state CLISE was closer than was the response of the membrane-type CLISE to the theoretical response predicted by the Nernst equation, the solid-state CLISE was selected for further evaluation. A detailed investigation of the characteristics of the chloride system and the corresponding CLISE response to concentration changes suggested four methods by which the CLISE could be used either as a direct, in situ sensor or as an indirect sensor through which an analysis could be performed on-line with a sample extracted from the process solution

  4. Safety design features for current UK advanced gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yellowlees, J. M.; Cobb, E. C. [Nuclear Power Co. (Risley) Ltd. (UK)

    1981-01-15

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed.

  5. Safety design features for current UK advanced gas-cooled reactors

    International Nuclear Information System (INIS)

    Yellowlees, J.M.; Cobb, E.C.

    1981-01-01

    The nuclear power stations planned for Heysham II and Torness will each have twin 660 MW(e) Advanced Gas-cooled Reactors (AGR) based on the design of those which have been operating at Hinkley Point 'B' and Hunterston 'B' since 1976. This paper has described the way in which the shutdown and cooling systems for the Heysham II and Torness AGRs have been selected in order to meet current UK safety requirements. Fault tree analyses have been used to identify the credible fault sequences, the probabilities of which have been calculated. By this means the relative importance of the various protective systems has been established and redundancy and reliability requirements identified. This systematic approach has led to a balanced design giving protection over the complete spectrum of fault sequences. Current safety requirements for thermal reactors in the UK and particular requirements in the design of the Heysham II and Torness reactors are discussed

  6. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  7. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, Heather Jean MacLean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hayes, Steven Lowe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dempsey, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  8. Advanced Reactor Fuels Irradiation Experiment Design Objectives

    International Nuclear Information System (INIS)

    Chichester, Heather Jean MacLean; Hayes, Steven Lowe; Dempsey, Douglas; Harp, Jason Michael

    2016-01-01

    This report summarizes the objectives of the current irradiation testing activities being undertaken by the Advanced Fuels Campaign relative to supporting the development and demonstration of innovative design features for metallic fuels in order to realize reliable performance to ultra-high burnups. The AFC-3 and AFC-4 test series are nearing completion; the experiments in this test series that have been completed or are in progress are reviewed and the objectives and test matrices for the final experiments in these two series are defined. The objectives, testing strategy, and test parameters associated with a future AFC test series, AFC-5, are documented. Finally, the future intersections and/or synergies of the AFC irradiation testing program with those of the TREAT transient testing program, emerging needs of proposed Versatile Test Reactor concepts, and the Joint Fuel Cycle Study program’s Integrated Recycle Test are discussed.

  9. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  10. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    International Nuclear Information System (INIS)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized

  11. Nuclear heat source design for an advanced HTGR process heat plant

    International Nuclear Information System (INIS)

    McDonald, C.F.; O'Hanlon, T.W.

    1983-01-01

    A high-temperature gas-cooled reactor (HTGR) coupled with a chemical process facility could produce synthetic fuels (i.e., oil, gasoline, aviation fuel, methanol, hydrogen, etc.) in the long term using low-grade carbon sources (e.g., coal, oil shale, etc.). The ultimate high-temperature capability of an advanced HTGR variant is being studied for nuclear process heat. This paper discusses a process heat plant with a 2240-MW(t) nuclear heat source, a reactor outlet temperature of 950 0 C, and a direct reforming process. The nuclear heat source outputs principally hydrogen-rich synthesis gas that can be used as a feedstock for synthetic fuel production. This paper emphasizes the design of the nuclear heat source and discusses the major components and a deployment strategy to realize an advanced HTGR process heat plant concept

  12. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  13. Evaluation of the trial design studies for an advanced marine reactor, (3)

    International Nuclear Information System (INIS)

    Ambo, Noriaki; Yokomura, Takeyoshi.

    1988-03-01

    JAERI have carried out four core designs for three different type reactors (Semi-Integrated, Integrated and Integrated (self-pressured) type reactors), as the trial designs of an Advanced Marine Reactor for three years (1983 ∼ 1985). This report describes the result of comparison and studies of the core specific characteristics of these four cores, which include core concept, specifications, core life, specific power density, burn-up, reactivity control and etc. In conclusion, it was found that the Integrated type reactor core and the Semi-Integrated type reactor core designs satisfy the conditions of long core life (four years), high specific power density (50 ∼ 61 kw/l) and high burn-up (30,000 ∼ 32,000 MWD/t), so these two cores will be optimum designs based on the present technologies. (author)

  14. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  15. Design of integral shutters for the beamlines at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Chang, J.; Shu, D.; Nian, H.L.; Kuzay, T.M.; Job, P.K.

    1994-01-01

    An integral shutter is a device that integrates a white-beam stop, monochromatic-beam (mono-beam) shutters, a safety stop, and a collimator into one assembly to save space in the photon beamline. Various integral shutters have been developed as standard components for the beamlines at the Advanced Photon Source. The integral shutters are designed to be operated in white-beam mode or mono-beam mode. With regard to safety, each mode of operation is secured by locking certain devices in their up or down positions. Some of the components of the integral shutters share designs similar to the front-end shutters or fixed masks. Design details of the integral shutters are presented

  16. The application of advanced rotor (performance) methods for design calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bussel, G.J.W. van [Delft Univ. of Technology, Inst. for Wind Energy, Delft (Netherlands)

    1997-08-01

    The calculation of loads and performance of wind turbine rotors has been a topic for research over the last century. The principles for the calculation of loads on rotor blades with a given specific geometry, as well as the development of optimal shaped rotor blades have been published in the decades that significant aircraft development took place. Nowadays advanced computer codes are used for specific problems regarding modern aircraft, and application to wind turbine rotors has also been performed occasionally. The engineers designing rotor blades for wind turbines still use methods based upon global principles developed in the beginning of the century. The question what to expect in terms of the type of methods to be applied in a design environment for the near future is addressed here. (EG) 14 refs.

  17. Preliminary Study for Conceptual Design of Advanced Long Life Small Modular Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, T. K. [Argonne National Laboratory, Argonne (United States)

    2015-05-15

    As one of the non-water coolant Small-Modular Reactor (SMR) core concepts for use in the mid- to long-term, ANL has proposed a 100 MWe Advanced sodium-cooled Fast Reactor core concept (AFR-100) targeting a small grid, transportable from pre-licensed factories to the remote plant site for affordable supply. Various breed-and-burn core concepts have been proposed to extend the reactor cycle length, which includes CANDLE with a cigar-type depletion strategy, TerraPower reactors with fuel shuffling for effective breeding, et al. UNIST has also proposed an ultra-long cycle fast reactor (UCFR) core concept having the power rating of 1000 MWe. By adopting the breed-and-burn strategies, the UCFR core can maintain criticality for a targeting reactor lifetime of 60 years without refueling. The objective of this project is to develop an advanced long-life SMR core concept by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. A conceptual design of long life small modular fast reactor is under development by adopting both the small modular design features of the AFR-100 and the long-life breed-and-burn concept of the UCFR. The feasibility of the long-life fast reactor concepts was reviewed to obtain the core design guidelines and the reactor design requirements of long life small modular fast reactor were proposed in this study.

  18. Performance Test of the Salt transfer and Pellet fabrication of UCl{sub 3} Making Equipment for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2}. Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl{sub 2} - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl{sub 3} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer.

  19. Design of radio-frequency cavities and Tera-Hertz electron injectors for advanced applications

    International Nuclear Information System (INIS)

    Seyedfakhari, Seyedmoein

    2016-06-01

    Design of three accelerator components including a buncher cavity for REGAE, a normal conducting cavity for arrival time stabilization at FLASH and ultra-fast guns for the AXSIS project is presented in this thesis. Using RF cavities caused a revolution in accelerators and made it possible to generate high energy particle beams. In advanced accelerators, cavities are not only used to increase the particle energy but they are also widely used to improve the beam quality and additionally for beam diagnostic purposes. In the present dissertation, such applications are discussed. First, design of a buncher cavity which compresses the bunch at the REGAE facility is presented. The design pursues improving the mode separation of the cavity. The simulation result illustrates that the difference between the operating mode and its adjacent mode has been increased from 2 MHz for the existing cavity to 9.5 MHz for the new design. In the second part, a normal conducting cavity is discussed, which will be used to regulate the arrival time ofthe bunches at FLASH and at the European XFEL. The designed cavity is able to correct the arrival time jitter of ± 150 fs in order to provide femtosecond precision synchronization between the electron beam and the external laser pulses. Thermal, wakefield and multipacting simulations have also been performed for the designed cavity in order to evaluate its operation efficiency. In advanced accelerators however RF cavities should be replaced by novel structures to accelerate the particles in shorter distances using higher operating frequency. To this end, ultra-fast guns are designed which will be discussed in the last part of this work. The designed guns accelerate the electrons from their rest mass up to 2 MeV using a single cycle THz signal with a total energy of 2 mJ.

  20. Design of radio-frequency cavities and Tera-Hertz electron injectors for advanced applications

    Energy Technology Data Exchange (ETDEWEB)

    Seyedfakhari, Seyedmoein

    2016-06-15

    Design of three accelerator components including a buncher cavity for REGAE, a normal conducting cavity for arrival time stabilization at FLASH and ultra-fast guns for the AXSIS project is presented in this thesis. Using RF cavities caused a revolution in accelerators and made it possible to generate high energy particle beams. In advanced accelerators, cavities are not only used to increase the particle energy but they are also widely used to improve the beam quality and additionally for beam diagnostic purposes. In the present dissertation, such applications are discussed. First, design of a buncher cavity which compresses the bunch at the REGAE facility is presented. The design pursues improving the mode separation of the cavity. The simulation result illustrates that the difference between the operating mode and its adjacent mode has been increased from 2 MHz for the existing cavity to 9.5 MHz for the new design. In the second part, a normal conducting cavity is discussed, which will be used to regulate the arrival time ofthe bunches at FLASH and at the European XFEL. The designed cavity is able to correct the arrival time jitter of ± 150 fs in order to provide femtosecond precision synchronization between the electron beam and the external laser pulses. Thermal, wakefield and multipacting simulations have also been performed for the designed cavity in order to evaluate its operation efficiency. In advanced accelerators however RF cavities should be replaced by novel structures to accelerate the particles in shorter distances using higher operating frequency. To this end, ultra-fast guns are designed which will be discussed in the last part of this work. The designed guns accelerate the electrons from their rest mass up to 2 MeV using a single cycle THz signal with a total energy of 2 mJ.

  1. The role of advanced nuclear power technologies in developing countries: Criteria and design requirements

    International Nuclear Information System (INIS)

    1990-02-01

    The document includes the papers presented at the following two technical committee meetings organized by the IAEA: Technical Committee Meeting and Workshop on Criteria for the Introduction of Advanced Nuclear Power Technologies for Specific Applications in Developing Countries, Vienna, 27-30 June 1988 (14 papers) and Technical Committee Meeting and Workshop on Design Requirements for the Application of Advanced Concepts in Developing Countries, Vienna, 6-9 December 1988 (16 papers). A separate abstract was prepared for each of these papers

  2. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    International Nuclear Information System (INIS)

    Park, Yong Chul; Ryu, Jeong Soo

    2007-12-01

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  3. Nyquist AD Converters, Sensor Interfaces, and Robustness Advances in Analog Circuit Design, 2012

    CERN Document Server

    Baschirotto, Andrea; Steyaert, Michiel

    2013-01-01

    This book is based on the presentations during the 21st workshop on Advances in Analog Circuit Design.  Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity.  This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.  Provides a state-of-the-art reference in analog circuit design, written by experts from industry and academia; Presents material in a tutorial-based format; Includes coverage of Nyquist A/D converters, capacitive sensor interfaces, reliability, variability, and connectivity.

  4. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Science.gov (United States)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  5. Advanced discrete-time control designs and applications

    CERN Document Server

    Abidi, Khalid

    2015-01-01

    This book covers a wide spectrum of systems such as linear and nonlinear multivariable systems as well as control problems such as disturbance, uncertainty and time-delays. The purpose of this book is to provide researchers and practitioners a manual for the design and application of advanced discrete-time controllers.  The book presents six different control approaches depending on the type of system and control problem. The first and second approaches are based on Sliding Mode control (SMC) theory and are intended for linear systems with exogenous disturbances. The third and fourth approaches are based on adaptive control theory and are aimed at linear/nonlinear systems with periodically varying parametric uncertainty or systems with input delay. The fifth approach is based on Iterative learning control (ILC) theory and is aimed at uncertain linear/nonlinear systems with repeatable tasks and the final approach is based on fuzzy logic control (FLC) and is intended for highly uncertain systems with heuristi...

  6. Standards and the design of the advanced photon source control system

    International Nuclear Information System (INIS)

    McDowell, W.P.; Knott, M.J.; Lenkszus, F.R.

    1992-01-01

    The Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), is a 7 GeV positron storage ring dedicated to research facilities using synchrotron radiation. This ring, along with its injection accelerators is to be controlled and monitored with a single, flexible, and expandable control system. This paper will cover the present status of the APS control system as well as discuss the design decisions which led us to use industrial standards and collaborations with other laboratories whenever possible to develop a control system. It will explain the APS control system and illustrate how the use of standards has allowed APS to design a control system whose implementation addresses these issues. (J.P.N.)

  7. Wideband continuous-time ΣΔ ADCs, automotive electronics, and power management : advances in analog circuit design 2016

    NARCIS (Netherlands)

    Baschirotto, A.; Harpe, P.J.A.; Makinwa, K.A.A.

    2017-01-01

    This book is based on the 18 tutorials presented during the 25th workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, including low-power and energy-efficient analog electronics, with

  8. BWR 90 and BWR 90+: Two advanced BWR design generations from ABB

    International Nuclear Information System (INIS)

    Haukeland, S.; Ivung, B.; Pedersen, T.

    1999-01-01

    ABB has two evolutionary advanced light water reactors available today - the BWR 90 boiling water reactor and the System 80+ pressurised water reactor. The BWR 90 is based on the design, construction, commissioning and operation of the BWR 75 plants. The operation experience of the six plants of this advanced design has been very good. The average annual energy availability is above 90%, and total power generation costs have been low. When developing the BWR 90 specific changes were introduced to a reference design, to adapt to technological progress, new safety requirements and to achieve cost savings. The thermal power rating of BWR 90 is 3800 MWth (providing a nominal 1374 MWe net), slightly higher than that of the reference plant ABB Atom has taken advantage of margins gained using a new generation of its SVEA fuel to attain this power rating without major design modifications. The BWR 90 design was completed and offered to the TVO utility in Finland in 1991, as one of the contenders for the fifth Finnish nuclear power plant project. Hence, the design is available today for deployment in new plant projects. Utility views were incorporated through co-operation with the Finnish utility TVO, owner and operator of the two Olkiluoto plants of BWR 75 design. A review against the European Utility Requirement (EUR) set of requirements has been performed, since the design, in 1997, was selected by the EUR Steering Committee to be the first BWR to be evaluated against the EUR documents. The review work was completed in 1998. It will be the subject of an 'EUR Volume 3 Subset for BWR 90' document. ABB is continuing its BWR development work with an 'evolutionary' design called BWR 90+, which aims at developing the BWR as a competitive option for the anticipated revival of the market for new nuclear plants beyond the turn of the century, as well as feeding ideas and inputs to the continuous modernisation efforts at operating plants. The development is performed by ABB Atom

  9. Design of a thorium fuelled Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Krishnani, P.D.

    2009-01-01

    Full text: The main objective for development of Advanced Heavy Water Reactor (AHWR) is to demonstrate thorium fuel cycle technologies, along with several other advanced technologies required for next generation reactors, so that these are readily available in time for launching the third stage. The AHWR under design is a 300 MWe vertical pressure tube type thorium-based reactor cooled by boiling light water and moderated by heavy water. The fuel consists of (Th-Pu)O 2 and ( 233 ThU)O 2 pins. The fuel cluster is designed to generate maximum energy out of 233 U, which is bred in-situ from thorium and has a slightly negative void coefficient of reactivity, negative fuel temperature coefficient and negative power coefficient. For the AHWR, the well -proven pressure tube technology and online fuelling have been adopted. Core heat removal is by natural circulation of coolant during normal operation and shutdown conditions. Thus, it combines the advantages of light water reactors and PHWRs and removes the disadvantages of PHWRs. It has several passive safety systems for reactor normal operation, decay heat removal, emergency core cooling, confinement of radioactivity etc. The fuel cycle is based on the in-situ conversion of naturally available thorium into fissile 233 U in self sustaining mode. The uranium in the spent fuel will be reprocessed and recycled back into the reactor. The plutonium inventory will be kept a minimum and will come from fuel irradiated in Indian PHWRs. The 233 U required initially can come from the fast reactor programme or it can be produced by specially designing the initial core of AHWR using (Th,Pu)MOX fuel. There will be gradual transition from the initial core which will not contain any 233 U to an equilibrium core, which will have ( 233 U, Th) MOX fuel pins also in a composite cluster. The self sustenance is being achieved by a differential fuel loading of low and a relatively higher Pu in the composite clusters. The AHWR burns the

  10. Development of design and analysis software for advanced nuclear system

    International Nuclear Information System (INIS)

    Wu Yican; Hu Liqin; Long Pengcheng; Luo Yuetong; Li Yazhou; Zeng Qin; Lu Lei; Zhang Junjun; Zou Jun; Xu Dezheng; Bai Yunqing; Zhou Tao; Chen Hongli; Peng Lei; Song Yong; Huang Qunying

    2010-01-01

    A series of professional codes, which are necessary software tools and data libraries for advanced nuclear system design and analysis, were developed by the FDS Team, including the codes of automatic modeling, physics and engineering calculation, virtual simulation and visualization, system engineering and safety analysis and the related database management etc. The development of these software series was proposed as an exercise of development of nuclear informatics. This paper introduced the main functions and key techniques of the software series, as well as some tests and practical applications. (authors)

  11. Control Design for an Advanced Geared Turbofan Engine

    Science.gov (United States)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  12. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  13. IRIS-50. A 50 MWe advanced PWR design for smaller, regional grids and specialized applications

    International Nuclear Information System (INIS)

    Petrovic, Bojan; Carelli, Mario; Conway, Larry; Hundal, Rolv; Barbaso, Enrico; Gamba, Federica; Centofante, Mario

    2009-01-01

    IRIS is an advanced, medium-power (1000 MWt or ∼335 MWe) advanced PWR design of integral configuration, that has gained wide recognition due to its innovative 'safety-by-design' safety approach. In spite of its smaller size compared to large monolithic nuclear power plants, it is economically competitive due to its simplicity and advantages of modular deployment. However, the optimum power level for a class of specific applications (e.g., power generation in small regional isolated grids; water desalination and biodiesel production at remote locations; autonomous power source for special applications, etc.) may be even lower, of the order of tens rather than hundreds of MWe. The simple and robust IRIS 335 MWe design provides a solid basis for establishing a 20-100 MWe design, utilizing the same safety and economics principles, so that it will retain economic attractiveness compared to other alternatives of the same power level. A conceptual 50 MWe design, IRIS-50, was initially developed and then assessed in a 2001 report to the US Congress on small and medium reactors, as a design mature enough to have deployment potential within a decade. In the meantime, while the main efforts have focused on the 335 MWe design completion and licensing, parallel efforts have progressed toward the preliminary design of IRIS-50. This paper summarizes the main IRIS-50 features and presents an update on its design status. (author)

  14. Advances in the FDTD design and modeling of nano- and bio-photonics applications

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Tuchin, Valery; Cheben, Pavel

    2011-01-01

    In this paper we focus on the discussion of two recent unique applications of the finite-difference time-domain (FDTD) simulation method to the design and modeling of advanced nano- and bio-photonic problems. The approach that is adopted here focuses on the potential of the FDTD methodology...

  15. Defence in Depth by Design for the Advanced GIII NPP in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Zhang, Y.; Zhang, X., E-mail: liusongtao.npic@gmail.com [Science and Technology on Reactor System Design Technology Laboratory Chengdu, Sichuan (China)

    2014-10-15

    This paper describes the design of the advanced nuclear power plant ACP1000 in China that keeps the principle of defence in depth. To enhance the safety of the new generation NPPs, passive and active engineering safety features are used. The reactor will be kept safe under design basis accidents by using active engineering safety features, such as the medium and low pressure safety injection systems, and the emergency feedwater system. Under beyond DBAs, the passive safety systems will be actuated to keep removing residual heat for more than 72 hours, and to keep the core melt retained and cooled in the vessel. After the Fukushima nuclear accident, there are six main design enhancements in ACP1000 to meet the demands of the China authorities. (author)

  16. Advanced High and Low Fidelity HPC Simulations of FCS Concept Designs for Dynamic Systems

    National Research Council Canada - National Science Library

    Sandhu, S. S; Kanapady, R; Tamma, K. K

    2004-01-01

    ...) resources of many Army initiatives. In this paper we present a new and advanced HPC based rigid and flexible modeling and simulation technology capable of adaptive high/low fidelity modeling that is useful in the initial design concept...

  17. Evaluation of the trial design studies for an advanced marine reactor, (2)

    International Nuclear Information System (INIS)

    Ambo, Noriaki; Yokomura, Takeyoshi.

    1988-03-01

    As for the CARAMEL fuel (plate-type fuel) that was the fuel of the integrated-type reactor which was one of the trial design studies for an Advanced Marine Reactor, its structure and its fuel specific characteristics were studied and compared with a fuel rod (cylindrical fuel), and the total characteristics of the caramel fuel was reviewed and evaluated. (author)

  18. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    Science.gov (United States)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  19. Design of an Advanced Wood Composite Rotor and Development of Wood Composite Blade Technology

    Science.gov (United States)

    Stroebel, Thomas; Dechow, Curtis; Zuteck, Michael

    1984-01-01

    In support of a program to advance wood composite wind turbine blade technology, a design was completed for a prototype, 90-foot diameter, two-bladed, one-piece rotor, with all wood/epoxy composite structure. The rotor was sized for compatibility with a generator having a maximum power rating of 4000 kilowatts. Innovative features of the rotor include: a teetering hub to minimize the effects of gust loads, untwisted blades to promote rotor power control through stall, joining of blades to the hub structure via an adhesive bonded structural joint, and a blade structural design which was simplified relative to earlier efforts. The prototype rotor was designed to allow flexibility for configuring the rotor upwind or downwind of the tower, for evaluating various types of teeter dampers and/or elastomeric stops, and with variable delta-three angle settings of the teeter shaft axis. The prototype rotor was also designed with provisions for installing pressure tap and angle of attack instrumentation in one blade. A production version rotor cost analysis was conducted. Included in the program were efforts directed at developing advanced load take-off stud designs for subsequent evaluation testing by NASA, development of aerodynamic tip brake concepts, exploratory testing of a wood/epoxy/graphite concept, and compression testing of wood/epoxy laminate, with scarf-jointed plies.

  20. Development of Pyro-separation Technology Based on Molten Salt Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon Bo; Kim, E. H.; Yoo, J. H. (and others)

    2007-06-15

    The focus of this study was to develop recovery technologies in the pyroprocessing. The unit processes of the project can be classified into two groups; electro-refining process to recover uranium and long-lived nuclides, and cathode processing to produce a metal ingot both from a salt-contained metal and from Cd-contained metal. This project has been carried out for the third phase period of the long-term nuclear R and D program, and focused on the development of key technologies of the pyroprocessing such as electrorefining, draw down and cathode processing. Mock-up system of 1 kg-U/batch was built for performance tests which were conducted to ensure the adequacy of the research and development of the pyroprocessing technology. The experiments were carried out through bench-scale inactive tests except for uranium. In particular, the sticking problem was inevitable in the US's Mark-V and PEER electrorefiner. As a result of this study, a graphite cathode was developed, which exhibited self-scraping behavior and did not need scraping step. The design of an electrorefiner could be simplified, and the throughput was enhanced due to an increased cathode area. A long-term R and D plan was established to develop pyroprocessing technology. In the near term, the results of the current project will be utilized in the next phase of the R and D plan ('07 - '10), and long-term wise, is expected to contribute to recovering fuel materials for transmutation in a Gen-IV reactor.

  1. Development of Pyro-separation Technology Based on Molten Salt Electrolysis

    International Nuclear Information System (INIS)

    Shim, Joon Bo; Kim, E. H.; Yoo, J. H.

    2007-06-01

    The focus of this study was to develop recovery technologies in the pyroprocessing. The unit processes of the project can be classified into two groups; electro-refining process to recover uranium and long-lived nuclides, and cathode processing to produce a metal ingot both from a salt-contained metal and from Cd-contained metal. This project has been carried out for the third phase period of the long-term nuclear R and D program, and focused on the development of key technologies of the pyroprocessing such as electrorefining, draw down and cathode processing. Mock-up system of 1 kg-U/batch was built for performance tests which were conducted to ensure the adequacy of the research and development of the pyroprocessing technology. The experiments were carried out through bench-scale inactive tests except for uranium. In particular, the sticking problem was inevitable in the US's Mark-V and PEER electrorefiner. As a result of this study, a graphite cathode was developed, which exhibited self-scraping behavior and did not need scraping step. The design of an electrorefiner could be simplified, and the throughput was enhanced due to an increased cathode area. A long-term R and D plan was established to develop pyroprocessing technology. In the near term, the results of the current project will be utilized in the next phase of the R and D plan ('07 - '10), and long-term wise, is expected to contribute to recovering fuel materials for transmutation in a Gen-IV reactor

  2. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    Science.gov (United States)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  3. A level playing field: Obtaining consistent cost estimates for advanced reactor designs

    International Nuclear Information System (INIS)

    Hudson, C.R. II; Rohm, H.H.; Humphreys, J.R. Jr.

    1987-01-01

    Rules and guidelines for developing cost estimates are given which provide a means for presenting cost estimates for advanced concepts on a consistent and equitable basis. For advanced reactor designs, the scope of a cost estimate includes the plant capital cost, the operating and maintenance cost, the fuel cycle cost, and the cost of decommissioning. Each element is subdivided as is necessary to provide a common reporting format for all power plant concepts. The total generation cost is taken to be a suitable choice for a summary figure of merit. To test the application of the rules and guidelines as well as developing reference costs for current technologies, several different sized coal and pressurized water reactor plant cost estimates have been prepared

  4. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    International Nuclear Information System (INIS)

    Smith, K.E.

    1994-01-01

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design

  5. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  6. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

  7. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  8. Advanced engineering design program at the University of Illinois for the 1987-1988 academic year

    Science.gov (United States)

    Sivier, Kenneth R.; Lembeck, Michael F.

    1988-01-01

    The participation of the University of Illinois at Urbana-Champaign in the NASA/USRA Universities Advanced Engineering Design Program (Space) is reviewed for the 1987 to 88 academic year. The University's design project was the Manned Marsplane and Delivery System. In the spring of 1988 semester, 107 students were enrolled in the Aeronautical and Astronautical Engineering Departments' undergraduate Aerospace Vehicle Design course. These students were divided into an aircraft section (responsible for the Marsplane design), and a spacecraft section (responsible for the Delivery System Design). The design results are presented in Final Design Reports, copies of which are attached. In addition, five students presented a summary of the design results at the Program's Summer Conference.

  9. Training reactor deployment. Advanced experimental course on designing new reactor cores

    International Nuclear Information System (INIS)

    Skoda, Radek

    2009-01-01

    Czech Technical University in Prague (CTU) operating its training nuclear reactor VR1, in cooperation with the North West University of South Africa (NWU), is applying for accreditation of the experimental training course ''Advanced experimental course on designing the new reactor core'' that will guide the students, young nuclear engineering professionals, through designing, calculating, approval, and assembling a new nuclear reactor core. Students, young professionals from the South African nuclear industry, face the situation when a new nuclear reactor core is to be build from scratch. Several reactor core design options are pre-calculated. The selected design is re-calculated by the students, the result is then scrutinized by the regulator and, once all the analysis is approved, physical dismantling of the current core and assembling of the new core is done by the students, under a close supervision of the CTU staff. Finally the reactor is made critical with the new core. The presentation focuses on practical issues of such a course, desired reactor features and namely pedagogical and safety aspects. (orig.)

  10. Recovery of plutonium by pyroredox processing

    International Nuclear Information System (INIS)

    McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

    1985-09-01

    Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 7 figs., 4 tabs

  11. Recovery of plutonium by pyroredox processing

    International Nuclear Information System (INIS)

    McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

    1985-01-01

    Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 2 figs., 5 tabs

  12. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  13. Design and properties of advanced {gamma}(TiAl) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Appel, F; Clemens, H; Oehring, M [Institute for Materials Research, GKSS Research Centre, Max-Planck-Strasse, D-21502 Geesthacht (Germany)

    2001-07-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  14. Design and properties of advanced γ(TiAl) alloys

    International Nuclear Information System (INIS)

    Appel, F.; Clemens, H.; Oehring, M.

    2001-01-01

    Intermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through global commentary on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is paid on recent developments of TiAl alloys with enhanced high-temperature capability. (author)

  15. Operating experience with Exxon nuclear advanced fuel assembly and fuel cycle designs in PWRs

    International Nuclear Information System (INIS)

    Skogen, F.B.; Killgore, M.R.; Holm, J.S.; Brown, C.A.

    1986-01-01

    Exxon Nuclear Company (ENC) has achieved a high standard of performance in its supply of fuel reloads for both BWRs and PWRs, while introducing substantial innovations aimed at realization of improved fuel cycle costs. The ENC experience with advanced design features such as the bi-metallic spacer, the dismountable upper tie plate, natural uranium axial blankets, optimized water-to-fuel designs, annular pellets, gadolinia burnable absorbers, and improved fuel management scenarios, is summarized

  16. Explosive bonding and its application in the Advanced Photon Source front-end and beamline components design

    International Nuclear Information System (INIS)

    Shu, D.; Li, Y.; Ryding, D.; Kuzay, T.M.

    1994-01-01

    Explosive bonding is a bonding method in which the controlled energy of a detonating explosive is used to create a metallurgical bonding between two or more similar or dissimilar materials. Since 1991, a number of explosive-bonding joints have been designed for high-thermal-load ultrahigh-vacuum (UHV) compatible components in the Advanced Photon Source. A series of standardized explosive bonded joint units has also been designed and tested, such as: oxygen-free copper (OFHC) to stainless-steel vacuum joints for slits and shutters, GlidCop to stainless-steel vacuum joints for fixed masks, and GlidCop to OFHC thermal and mechanical joints for shutter face-plates, etc. The design and test results for the explosive bonding units to be used in the Advanced Photon Source front ends and beamlines will be discussed in this paper

  17. Development of interface technology between unit processes in E-Refining process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Lee, H. S.; Kim, J. G. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The pyroprocessing is composed mainly four subprocesses, such as an electrolytic reduction, an electrorefining, an electrowinning, and waste salt regeneration/ solidification processes. The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, is under development by Korea Atomic Energy Research Institute as a sub process of pyrochemical treatment of spent PWR fuel. The CERS(Continuous ElectroRefining System) is composed of some unit processes such as an electrorefiner, a salt distiller, a melting furnace for the U-ingot and U-chlorinator (UCl{sub 3} making equipment) as shown in Fig. 1. In this study, the interfaces technology between unit processes in E-Refining system is investigated and developed for the establishment of integrated E-Refining operation system as a part of integrated pyroprocessing

  18. Design and analysis of CANDU advanced fuel -Development of the advanced CANDU technology-

    International Nuclear Information System (INIS)

    Seok, Ho Cheon; Shim, Ki Seop; Byeon, Taek Sang; Park, Kwang Seok; Kim, Bong Ki; Lee, Yeong Uk; Jeong, Chang Joon; Oh, Deok Joo; Lee, Ui Joo; Park, Joo Hwan; Lee, Sang Yong; Jeong, Beop Dong; Choi, Han Rim; Lee, Yeong Jin; Choi, Cheol Jin; Choi, Jong Ho; Lee, Kwang Won; Cho, Cheon Hyi; On, Myeong Ryong; Kim, Taek Mo; Lim, Hong Sik; Lee, Kang Moon; Lee, Nam Ho; Lee, Kyu Hyeong

    1994-07-01

    It has been projected that a total of 5 pressurized heavy water reactors (PHWR) including Wolsong 1 under operation and Wolsong 2, 3 and 4 under construction will be operated by 2006, and so about 500 ton of natural uranium will be consumed every year and a lot of spent fuels will be generated. Therefore, the ultimate goal of this R and D project is to develop the CANDU advanced fuel having the following capabilities compared with existing standard fuel: (1) To reduce linear heat generation rating by more than 15% (i.e., less than 50 kW/m), (2) To extend fuel burnup by more than 3 times (i.e., higher than 21,000 MWD/MTU), and (3) To increase critical channel power by more than 5%. In accordance, the followings are performed in this fiscal year: (1) Undertake CANFLEX-NU design and thermalmechanical performance analysis, and prepare design documents, (2) Establish reactor physics analysis code system, and investigate the compativility of the CANFLEX-NU fuel with the standard 37-element fuel in the CANDU-6 reactor. (3) Establish safety analysis methodology with the assumption of the CANFLEX-NU loaded CANDU-6 reactor, and perform the preliminary thermalhydraulic and fuel behavior for the selected DBA accidents, (4) Investigate reactor physics analysis code system as pre-study for CANFLEX-SEU loaded reactors

  19. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  20. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  1. Advanced analysis and design for fire safety of steel structures

    CERN Document Server

    Li, Guoqiang

    2013-01-01

    Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges th...

  2. Mechanical design of a pinger system for the LBNL Advanced Light Source Accelerator

    International Nuclear Information System (INIS)

    Thur, W.; Akre, J.; Gavidia, A.; Guigli, J.

    1997-05-01

    A fast magnet ''Pinger System'' has been designed for the Advanced Light Source 1.9 GeV electron Storage Ring. Intended for beam dynamics studies, its purpose is to provide a fast (< 600 ns) transverse magnetic field pulse to perturb the orbit of an electron bunch in a single turn. A key component is the special resistive-coated ceramic beam tube which is needed for fast magnetic field penetration. The evolution of the design concept is described, with emphasis on simplifications to provide an economical and mechanically robust device

  3. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  4. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  5. Evolutionary optimization and game strategies for advanced multi-disciplinary design applications to aeronautics and UAV design

    CERN Document Server

    Periaux, Jacques; Lee, Dong Seop Chris

    2015-01-01

    Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...

  6. Advances in nuclear medicine instrumentation: considerations in the design and selection of an imaging system

    International Nuclear Information System (INIS)

    Links, J.M.

    1998-01-01

    Nuclear medicine remains a vibrant and dynamic medical specialty because it so adeptly marries advances in basic science research, technology, and medical practice in attempting to solve patients' problems. As a physicist, it is my responsibility to identify or design new instrumentation and techniques, and to implement, validate, and help apply these new approaches in the practice of nuclear medicine. At Johns Hopkins, we are currently in the process of purchasing both a single-photon/coincidence tomographic imaging system and a dedicated positron emission tomography (PET) scanner. Given the exciting advances that have been made, but the conflicting opinions of manufacturers and colleagues alike regarding ''best'' choices, it seemed useful to review what is new now, and what is on the horizon, to help identify all of the important considerations in the design and selection of an imaging system. It is important to note that many of the ''advances'' described here are in an early stage of development, and may never make it to routine clinical practice. Further, not all of the advances are of equal importance, or have the same degree of general clinical applicability. Please also note that the references contained herein are for illustrative purposes and are not all-inclusive; no implication that those chosen are ''better'' than others not mentioned is intended. (orig.)

  7. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  8. Vibration analysis of the photon shutter designed for the advanced photon source

    International Nuclear Information System (INIS)

    Wang, Z.; Shu, D.; Kuzay, T.M.

    1992-01-01

    The photon shutter is a critical component of the beamline front end for the 7 GeV Advanced Photon Source (APS) project, now under construction at Argonne National Laboratory (ANL). The shutter is designed to close in tens of milliseconds to absorb up to 10 kW heat load (with high heat flux). Our shutter design uses innovative enhanced heat transfer tubes to withstand the high heat load. Although designed to be light weight and compact, the very fast movement of the shutter gives rise to concern regarding vibration and dynamic sensitivity. To guarantee long-term functionality and reliability of the shutter, the dynamic behavior should be fully studied. In this paper, the natural frequency and transient dynamic analysis for the shutter during operation are presented. Through analysis of the vibration characteristics, as well as stress and deformation, several options in design were developed and compared, including selection of materials for the shutter and structural details

  9. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team

  10. Design of the advanced divertor pump cryogenic system for DIII-D

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Baxi, C.B.; Campbell, G.L.; Gootgeld, A.M.; Langhorn, A.R.; Laughon, G.J.; Smith, J.P.; Anderson, P.M.; Menon, M.M.

    1991-11-01

    The design of the cryogenic system for the D3-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the D3-D vacuum vessel. A 50,000 l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid helium cooled tube operating at 4.3 degrees K and a liquid nitrogen cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high pressure gaseous helium is than liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller

  11. Technology-design-manufacturing co-optimization for advanced mobile SoCs

    Science.gov (United States)

    Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey

    2014-03-01

    How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.

  12. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  13. Design optimization of JT-60SU for steady-state advanced operation

    International Nuclear Information System (INIS)

    Ushigusa, K.; Kurita, G.; Toyoshima, N.

    2001-01-01

    Design optimization of JT-60SU has been done for a steady-state advanced operation. A transport code simulation indicates that a fully non-inductive reversed shear plasmas with fractions of 70% of the bootstrap current and 30% of beam driven current can be sustained for more than 1,000s without any additional control. Investigations have been progressed on MHD stability, vertical positional stability and dynamics of the vertical displacement events. Significant progress has been achieved in the R and D of Nb 3 Al superconducting wires, low induced activation material (Fe-Cr-Mn steel). A design improvement has been made in TF coils to reduce a local stress on radial disk. Dynamic behaviors of the tokamak machine have been analyzed at emergency events such as an earthquake. (author)

  14. Statistical metrology - measurement and modeling of variation for advanced process development and design rule generation

    International Nuclear Information System (INIS)

    Boning, Duane S.; Chung, James E.

    1998-01-01

    Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of 'dummy fill' or 'metal fill' to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal

  15. Design and fabrication of the vacuum vessel for the Advanced Toroidal Facility

    International Nuclear Information System (INIS)

    Chipley, K.K.; Frey, G.N.

    1985-01-01

    The vacuum vessel for the Advanced Toroidal Facility (ATF) is a heavily contoured and very complex formed vessel that is specifically designed to allow for maximum plasma volume in a pure stellarator arrangement. The design of the facility incorporates an internal vessel that is closely fitted to the two helical field coils following the winding law theta = 1/6phi. Metallic seals have been incorporated throughout the system to minimize impurities. The vessel has been fabricated utilizing a comprehensive set of tooling fixtures specifically designed for the task of forming 6-mm stainless steel plate to the complex shape. Computer programs were used to develop a series of ribs that essentially form an internal mold of the vessel. Plates were press-formed with multiple compound curves, fitted to the fixture, and joined with full-penetration welds. 7 refs., 8 figs

  16. Advanced operator interface design for CANDU-3 fuel handling system

    Energy Technology Data Exchange (ETDEWEB)

    Arapakota, D [Atomic Energy of Canada Ltd., Saskatoon, SK (Canada)

    1996-12-31

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System`. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author).

  17. Advanced operator interface design for CANDU-3 fuel handling system

    International Nuclear Information System (INIS)

    Arapakota, D.

    1995-01-01

    The Operator Interface for the CANDU 3 Fuel Handling (F/H) System incorporates several improvements over the existing designs. A functionally independent sit-down CRT (cathode-ray tube) based Control Console is provided for the Fuel Handling Operator in the Main Control Room. The Display System makes use of current technology and provides a user friendly operator interface. Regular and emergency control operations can be carried out from this control console. A stand-up control panel is provided as a back-up with limited functionality adequate to put the F/H System in a safe state in case of an unlikely non-availability of the Plant Display System or the F/H Control System'. The system design philosophy, hardware configuration and the advanced display system features are described in this paper The F/H Operator Interface System developed for CANDU 3 can be adapted to CANDU 9 as well as to the existing stations. (author)

  18. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias C.; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  19. Sodium effects on mechanical performance and consideration in high temperature structural design for advanced reactors

    Science.gov (United States)

    Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.

    2009-07-01

    Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.

  20. Design of a high-magnification and low-aberration compact catadioptric telescope for the Advanced Virgo gravitational-wave interferometric detector

    International Nuclear Information System (INIS)

    Buy, C; Barsuglia, M; Tacca, M; Genin, E; Gouaty, R

    2017-01-01

    Advanced Virgo is a major upgrade of the Virgo gravitational-wave detector, aiming to increase its sensitivity by an order of magnitude. Among the main modifications of the instrument, the size of the laser beam inside the central area has been roughly doubled. Consequently, the input/output optics systems have been re-designed. Due to the overall Advanced Virgo optical scheme, high-magnification and compact telescopes are needed. These telescopes also have to fulfill stringent requirements in terms of aberrations, separation of secondary beams and scattered light. In this paper we describe the design of the Advanced Virgo telescopes and their estimated performances in terms of tuning capability and optical properties. (paper)

  1. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Yoshiuji, Takahiro

    1998-12-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  2. Design study on advanced nuclear fuel recycling system by pyrometallurgical reprocessing technology

    International Nuclear Information System (INIS)

    Kasai, Yoshimitsu; Kakehi, Isao; Moro, Satoshi; Tobe, Kenji; Kawamura, Fumio; Higashi, Tatsuhiro; Yonezawa, Shigeaki; Yoshiuji, Takahiro

    1998-01-01

    The Japan Nuclear Fuel Cycle Development Institute is conducting research and development on the nuclear fuel recycling system, which will improve the economy, safety, and environmental impact of the nuclear fuel recycling system in the age of the FBR. The System Engineering Division in the O-arai Engineering Center has conducted a design study on an advanced nuclear fuel recycling system for FBRs by using pyrometallurgical reprocessing technology. The system is an economical and compact module-type system, and can be used for reprocessing oxide fuel and also new types of fuel (metal fuel and nitride fuel). This report describes the concept of this system and results of the design study. (author)

  3. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  4. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    International Nuclear Information System (INIS)

    Ingersoll, D.T.

    2004-01-01

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  5. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  6. Development of an U and Pu recovery process by molten salt electrorefining. Behavior of U and Pu at simultaneous recoveries into liquid cadmium cathodes

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Shirai, Osamu; Arai, Yasuo

    2003-01-01

    In order to study behaviors of U and Pu at simultaneous recoveries into liquid cadmium cathodes (LCCs) in the electrorefining of pyrometallurgical reprocessing, several experiments were conducted to recover U and Pu into LCCs at different U/Pu ratios in the salt phase. The major results were as follows: (1) The weight ratios of U and Pu in 120 g LCCs reached 10 wt.% (the tentative target), with current efficiencies higher than 80 %. (2) Under the conditions of U/Pu ratios in the initial salt phase less than 1/4.3, the amounts of recovered U and Pu were proportional to the passed electric charges, with the separation factors of U to Pu (= (U/Pu ration in the recovered product)/(U/Pu ratio in the salt)) between 1.2 and 2.0. (3) On the other hand, under the condition of U/Pu ratio in the initial salt phase at 1/1.73, only U was recovered into the LCC after the saturation of LCC with U and Pu. Accordingly, there will be a threshold in the U/Pu ratio of the salt phase for the simultaneous recovery of U and Pu. (4) Am showed a similar behavior to Pu. The separation factors of Am to Pu (=(AM/Pu ratio in the recovered product)/(Am/Pu ratio in the salt)) was 0.78, which means that Am is co-recovered with Pu into LCC. (author)

  7. The AP600 advanced simplified nuclear power plant. Results of the test program and progress made toward final design approval

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1996-01-01

    At the 1994 Pacific Basin Conference, Mr. Bruschi presented a paper describing the AP600, Westinghouse's advanced light water reactor design with passive safety features. Since then, a rigorous test program was completed and AP600 became the most thoroughly tested advanced reactor system design in history. Westinghouse is now well on its way toward receiving Final Design Approval from the U.S. Nuclear Regulatory Commission for AP600. In this paper, the results of the test program will be discussed and an update on prospects for building the plant will be covered. (author)

  8. The AP600 advanced simplified nuclear power plant. Results of the test program and progress made toward final design approval

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, H.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-10-01

    At the 1994 Pacific Basin Conference, Mr. Bruschi presented a paper describing the AP600, Westinghouse`s advanced light water reactor design with passive safety features. Since then, a rigorous test program was completed and AP600 became the most thoroughly tested advanced reactor system design in history. Westinghouse is now well on its way toward receiving Final Design Approval from the U.S. Nuclear Regulatory Commission for AP600. In this paper, the results of the test program will be discussed and an update on prospects for building the plant will be covered. (author)

  9. A double-multilayer monochromator using a modular design for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Shu, D.; Yun, W.; Lai, B.; Barraza, J.; Kuzay, T.M.

    1994-01-01

    A novel double-multilayer monochromator has been designed for the Advanced Photon Source X-ray undulator beamline at Argonne National Laboratory. The monochromator consists of two ultra high-vacuum (UHV) compatible modular vessels, each with a sine-bar driving structure and a water-cooled multilayer holder. A high precision Y-Z stage is used to provide compensating motion for the second multilayer from outside the vacuum chamber so that the monochromator can fix the output monochromatic beam direction and angle during the energy scan in a narrow range. The design details for this monochromator are presented in this paper

  10. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  11. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  12. The application of mechanical desktop in the design of the reactor core structure of China advanced research reactor

    International Nuclear Information System (INIS)

    Lang Ruifeng

    2002-01-01

    The three-dimensional parameterization design method is introduced to the design of reactor core structure for China advanced research reactor. Based on the modeling and dimension variable driving of the main parts as well as the modification of dimension variable, the preliminary design and modification of reactor core is carried out with high design efficiency and quality as well as short periods

  13. Preliminary conceptual design and cost estimation for Korea Advanced Pyroprocessing Facility Plus (KAPF+)

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il, E-mail: nwiko@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Ho Hee, E-mail: nhhlee@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Choi, Sungyeol, E-mail: csy@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Sung-Ki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Park, Byung Heung, E-mail: b.h.park@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Hyo Jik, E-mail: hyojik@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, In Tae, E-mail: nitkim@kaeri.re.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju-si, Chungbuk, 380-702 (Korea, Republic of); Lee, Han Soo, E-mail: hslee5@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-10-01

    Highlights: • Conceptual design is created for a pilot pyroprocessing plant treating PWR spent fuel. • Pilot-scale design is based on a capacity of 400 tHM/yr with 60 years lifetime. • All individual processes are integrated into a single system from feed to products. • Overall facility design is developed for a pilot pyroprocessing plant. • Unit process cost is estimated for pyroprocessing with uncertainties. - Abstract: Korea has developed pyroprocessing technology as a potential option for recycling spent fuels (SFs) from pressurized water reactors (PWRs). The pyroprocessing consists of various key unit processes and a number of research activities have been focused on each process. However, to realize the whole pyroprocessing concept, there is a critical need for integrating the individual developments and addressing a material flow from feed to final products. In addition, the advancement on overall facility design is an indispensable aspect for demonstration and commercialization of the pyroprocessing. In this study, a facility named as Korea Advanced Pyroprocess Facility Plus (KAPF+) is conceptualized with a capacity of 400 tHM/yr. The process steps are categorized based on their own characteristics while the capacities of process equipment are determined based on the current technical levels. The facility concept with a site layout of 104,000 m{sup 2} is developed by analyzing the operation conditions and materials treated in each process. As an economic approach to the proposed facility, the unit cost (781 $/kgHM denominated in 2009 USD) for KAPF+ is also analyzed with the conceptual design with preliminary sensitivity assessments including decontamination and decommissioning costs, a discount rate, staffing costs, and plant lifetime. While classifying and describing cost details of KAPF+, this study compares the unit cost of KAPF+ treating PWR SF to that of the pyroprocessing facility treating sodium-cooled fast reactor (SFR) SF.

  14. Use of advanced modeling techniques to optimize thermal packaging designs.

    Science.gov (United States)

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  15. Advances in chemical product design

    DEFF Research Database (Denmark)

    Zhang, Lei; Fung, Ka Yip; Wibowo, Christianto

    2018-01-01

    The nature of chemical product design problems is diverse and multidisciplinary. It involves many design issues such as project management, market study, product design, process design, and economic analysis for better organizing the product design project and achieving better products. This arti......The nature of chemical product design problems is diverse and multidisciplinary. It involves many design issues such as project management, market study, product design, process design, and economic analysis for better organizing the product design project and achieving better products....... This article provides an overview of chemical product design with a multidisciplinary hierarchical framework including all the design issues and tasks. Each of the design issues and tasks are introduced and discussed, methods and tools are summarized and compared, challenges and perspectives are presented...... to help the chemical product design researchers on finding more novel, innovative and sustainable products, by the combined effort from academia and industry to develop a systematic generic framework, and tools including product simulator, process simulator, database manager, modeling tool, and templates...

  16. Development of advanced design features for KNGR reactor vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new.

  17. Development of advanced design features for KNGR reactor vessel and internals

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new

  18. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    International Nuclear Information System (INIS)

    Zink, Peter A.; Jue, Jan-Fong; Serrano, Brenda E.; Fredrickson, Guy L.; Cowan, Ben F.; Herrmann, Steven D.; Li, Shelly X.

    2010-01-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-β(double p rime)-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-β(double p rime)-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in

  19. Recent advances in design and fabrication of on-chip micro-supercapacitors

    Science.gov (United States)

    Beidaghi, Majid; Wang, Chunlei

    2012-06-01

    Recent development in miniaturized electronic devices has increased the demand for power sources that are sufficiently compact and can potentially be integrated on a chip with other electronic components. Miniaturized electrochemical capacitors (EC) or micro-supercapacitors have great potential to complement or replace batteries and electrolytic capacitors in a variety of applications. Recently, we have developed several types of micro-supercapacitors with different structural designs and active materials. Carbon-Microelectromechanical Systems (C-MEMS) with three dimensional (3D) interdigital structures are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of pseudo-capacitive materials. More recently, we have also developed microsupercapacitor based on hybrid graphene and carbon nanotube interdigital structures. In this paper, the recent advances in design and fabrication of on-chip micro-supercapacitors are reviewed.

  20. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  1. Identification of advanced human factors engineering analysis, design and evaluation methods

    International Nuclear Information System (INIS)

    Plott, C.; Ronan, A. M.; Laux, L.; Bzostek, J.; Milanski, J.; Scheff, S.

    2006-01-01

    NUREG-0711 Rev.2, 'Human Factors Engineering Program Review Model,' provides comprehensive guidance to the Nuclear Regulatory Commission (NRC) in assessing the human factors practices employed by license applicants for Nuclear Power Plant control room designs. As software based human-system interface (HSI) technologies supplant traditional hardware-based technologies, the NRC may encounter new HSI technologies or seemingly unconventional approaches to human factors design, analysis, and evaluation methods which NUREG-0711 does not anticipate. A comprehensive survey was performed to identify advanced human factors engineering analysis, design and evaluation methods, tools, and technologies that the NRC may encounter in near term future licensee applications. A review was conducted to identify human factors methods, tools, and technologies relevant to each review element of NUREG-0711. Additionally emerging trends in technology which have the potential to impact review elements, such as Augmented Cognition, and various wireless tools and technologies were identified. The purpose of this paper is to provide an overview of the survey results and to highlight issues that could be revised or adapted to meet with emerging trends. (authors)

  2. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  3. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  4. The advanced neutron source--designing to meet the needs of the user community

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1989-01-01

    The Advanced Neutron Source (ANS) is to be a multi-purpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotopes production, materials irradiation, and analytical chemistry. The Advanced Neutron Source will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high intensity research reactor. But that reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users coming from all parts of the nation, and the world, placed in a simulating environment in which experiments can be effectively conducted, and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use. 5 refs., 4 figs

  5. Human-machine communication for educational systems design : NATO Advanced Study Institute proceedings, Eindhoven August 16-26, 1993

    NARCIS (Netherlands)

    Janse, M.D.; Harrington, T.L.

    1994-01-01

    This book contains the papers presented at the NATO Advanced Study Institute (ASI) on the Basics of Man-Machine Communication for the Design of Educational Systems, held August 16-26, 1993 in Eindhoven, The Netherlands. The ASI addressed the state of the art in the design of educational systems with

  6. Advanced accumulator for PWR

    International Nuclear Information System (INIS)

    Ichimura, Taiki; Chikahata, Hideyuki

    1997-01-01

    Advanced accumulators have been incorporated into the APWR design in order to simplify the safety system configuration and to improve reliability. The advanced accumulators refill the reactor vessel with a large discharge flow rate in a large LOCA, then switch to a small flow rate to continue safety injection for core reflooding. The functions of the conventional accumulator and the low head safety injection pump are integrated into this advanced accumulator. Injection performance tests simulating LOCA conditions and visualization tests for new designs have been carried out. This paper describes the APWR ECCS configuration, the advanced accumulator design and some of the injection performance and visualization test results. It was verified that the flow resistance of the advanced accumulator is independent of the model scale. The similarity law and performance data of the advanced accumulator for applying APWR was established. (author)

  7. Single-earthquake design for piping systems in advanced light water reactors

    International Nuclear Information System (INIS)

    Terao, D.

    1993-01-01

    Appendix A to Part 100 of Title 10 of the Code of Federal Regulations (10 CFR Part 100) requires, in part, that all structures, systems, and components of the nuclear power plant necessary for continued operation without undue risk to the health and safety of the public shall be designed to remain functional and within applicable stress and deformation limits when subject to an operating basis earthquake (OBE). The US Nuclear Regulatory Commission (NRC) is proposing changes to Appendix A to Part 100 to redefine the OBE at a level such that its purpose can be satisfied without the need to perform explicit response analyses. Consequently, only the safe-shutdown earthquake (SSE) would be required for the seismic design of safety-related structures, systems and components. The purpose of this paper is to discuss the proposed changes to existing seismic design criteria that the NRC staff has found acceptable for implementing the proposed rule change in the design of safety-related piping systems in the advanced light water reactor (ALWR) lead plant. These criteria apply only to the ALWR lead plant design and are not intended to replace the seismic design criteria approved by the Commission in the licensing bases of currently operating facilities. Although the guidelines described herein have been proposed for use as a pilot program for implementing the proposed rule change specifically for the ALWR lead plant, the NRC staff expects that these guidelines will also be applied to other ALWRs

  8. Advances in Residential Design Related to the Influence of Geomagnetism

    Science.gov (United States)

    Arnedo, Israel; Sánchez-Ostiz, Ana

    2018-01-01

    Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing. PMID:29473902

  9. Advances in Residential Design Related to the Influence of Geomagnetism

    Directory of Open Access Journals (Sweden)

    Francisco Glaria

    2018-02-01

    Full Text Available Since the origin of the Modern Movement, there has been a basic commitment to improving housing conditions and the well-being of occupants, especially given the prediction that 2/3 of humanity will reside in cities by 2050. Moreover, a compact model of the city with tall buildings and urban densification at this scale will be generated. Continuous constructive and technological advances have developed solid foundations on safety, energy efficiency, habitability, and sustainability in housing design. However, studies on improving the quality of life in these areas continue to be a challenge for architects and engineers. This paper seeks to contribute health-related information to the study of residential design, specifically the influence of the geomagnetic field on its occupants. After compiling information on the effects of geomagnetic fields from different medical studies over 23 years, a case study of a 16-story high-rise building is presented, with the goal of proposing architectural design recommendations for long-term occupation in the same place. The purpose of the present work is three-fold: first, to characterize the geomagnetic field variability of buildings; second, to identify the causes and possible related mechanisms; and third, to define architectural criteria on the arrangement of uses and constructive elements for housing.

  10. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report

  11. Data Acquisition System Design for Advanced Core-Cooling Mechanism Experiment

    International Nuclear Information System (INIS)

    Zhang, Ziyang; Tian, Fang; Zhang, Tao; Wang, Shen

    2011-01-01

    Data Acquisition System (DAS) design for Advanced Core-Cooling Mechanism Experiment(ACME) is studied in the paper. DAS is an important connection between test facility and result analysis. Firstly, it introduces DAS and its design requirement for ACME. Nearly one thousand data resources need record in ACME. They have different types and acquisition frequencies. In order to record these data, a large scale and high speed layered data acquisition system is developed. Secondly, it discusses the DAS design for ACME, including the analog signal adjusting circuits, clock circuit design, sampling frequencies, data storage and transmission by large database system, anti-interference and etc. Analog signal adjusting circuits are necessary to deal with different kinds of input data to gain standard data resources. Some data change slowly and others change in several seconds according to the test performed on ACME. So it is difficult to use uniform sampling frequencies, and a layered data acquisition system is introduced. A large database is built to store data for ACME test, which keeps data safer and makes subsequent data handling more convenient. A database hot backup is also applied to ensure data safety. The software of DAS is built by Labview, which can provide intuitionist result and friendly interface. Another important function of DAS is the ACME safety protection. Finally, the characteristics and improvement of DAS for ACME is analyzed compared to other test facility. Besides friendly user interface, DAS of ACME can also assure higher data precision and sampling frequency

  12. Achieving 50% Energy Savings in New Schools, Advanced Energy Design Guides: K-12 Schools (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-09-01

    This fact sheet summarizes recommendations for designing elementary, middle, and high school buildings that will result in 50% less energy use than conventional new schools built to minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for K-12 School Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use school buildings (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller schools with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of schools.

  13. Some preliminary design considerations for the ANS [Advanced Neutron Source] reactor cold source

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-01-01

    Two areas concerned with the design of the Advanced Neutron Source (ANS) cold source have been investigated by simple one-dimensional calculations. The gain factors computed for a possible liquid nitrogen-15 cold source moderator are considerably below those computed for the much colder liquid deuterium moderator, as is reasonable considering the difference in moderator temperature. Nevertheless, nitrogen-15 does represent a viable option should safety related issues prohibit the use of deuterium as a moderating material. The slab geometry calculations have indicated that reflection of neutrons may be the dominant moderating mechanism and should be a consideration in the design of the cold source. 9 refs., 2 figs

  14. Conceptual study of advanced PWR systems. A study of passive and inherent safety design concepts for advanced light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; No, Hee Cheon; Baek, Won Pil; Jae, Shim Young; Lee, Goung Jin; Na, Man Gyun; Lee, Jae Young; Kim, Han Gon; Kang, Ki Sig; Moon, Sang Ki; Kim, Yun Il; Park, Jae Wook; Yang, Soo Hyung; Kim, Soo Hyung; Lee, Seong Wook; Kim, Hong Che; Park, Hyun Sik; Jeong, Ji Hwan; Lee, Sang Il; Jung, Hae Yong; Kim, Hyong Tae; Chae, Kyung Sun; Moon, Ki Hoon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1995-08-01

    The five thermal-hydraulic concepts chosen for advanced PWR have been studied as follows: (1) Critical Heat Flux: Review of previous works, analysis of parametric trends, analysis of transient CHF characteristics, extension of the CHF date bank, survey and assessment of correlations, design of a intermediate-pressure CHF test loop have been performed. (2) Passive Cooling Concepts for Concrete Containment system: Review of condensation phenomena with noncondensable gases, selection of a promising concept (i.e., use of external condensers), design of test loop according to scaling laws have been accomplished. and computer programs based on the control-volume approach, and the conceptual design of test loop have been accomplished. (4) Fluidic Diode Concepts: Review of previous applications of the concept, analysis major parameters affecting the performance, development of a computational code, and conceptual investigation of the verification test loop have been performed. (5) Wet Thermal Insulator: Review of previous works, selection of promising methods ( i.e. ceramic fiber in a steel case and mirror-type insulator), and conceptual design of the experimental loop have been performed. (author). 9 refs.

  15. Status and design of the Advanced Photon Source control system

    International Nuclear Information System (INIS)

    McDowell, W.; Knott, M.; Lenkszus, F.; Kraimer, M.; Arnold, N.; Daly, R.

    1993-01-01

    This paper presents the current status of the Advanced Photon Source (APS) control system. It will discuss the design decisions which led us to use industrial standards and collaborations with other laboratories to develop the APS control system. The system uses high performance graphic workstations and the X-windows Graphical User Interface (GUI) at the operator interface level. It connects to VME/VXI-based microprocessors at the field level using TCP/IP protocols over high performance networks. This strategy assures the flexibility and expansibility of the control system. A defined interface between the system components will allow the system to evolve with the direct addition of future, improved equipment and new capabilities

  16. Stability of yttria-stabilized zirconia during pyroprocessing tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr; Lee, Jeong; Lee, Sung-Jai; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Soo Haeng; Oh, Seung Chul; Jeon, Min Ku; Lee, Sang Kwon; Kang, Hyun Woo; Hur, Jin-Mok

    2016-07-15

    In this study, the feasibility of yttria-stabilized zirconia (YSZ) was investigated for use as a ceramic material, which can be commonly used for both electrolytic reduction and electrorefining. First, the stability of YSZ in salts for electrolytic reduction and electrorefining was examined. Then, its stability was demonstrated by a series of pyroprocessing tests, such as electrolytic reduction, LiCl distillation, electrorefining, and LiCl−KCl distillation, using a single stainless steel wire mesh basket containing fuel and YSZ. A single basket was used by its transportation from one test to subsequent tests without the requirements for unloading.

  17. Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    International Nuclear Information System (INIS)

    Sannibale, V; Abbott, B; Boschi, V; Coyne, D; DeSalvo, R; Aso, Y; Marka, S; Ottaway, D; Stochino, A

    2008-01-01

    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed

  18. Validation of the USNTPS simulator for the advanced flight controls design exercise

    OpenAIRE

    Jurta, Daniel S.

    2005-01-01

    This thesis explores the fidelity of the ground based simulator used at USNTPS during the Advanced Flight Controls Design exercise. A Simulink model is developed as a test platform and used to compare the longitudinal flight characteristics of the simulator. The model is also compared to the same characteristics of a Learjet in the approach configuration. The Simulink model is modified with the aim of yielding a better training aid for the students as well as providing a means of comparison b...

  19. Design features of Advanced Power Reactor (APR) 1400 steam generator

    International Nuclear Information System (INIS)

    Park, Tae-Jung; Park, Jun-Soo; Kim, Moo-Yong

    2004-01-01

    Advanced Power Reactor 1400 (APR 1400) which is to achieve the improvement of the safety and economical efficiency has been developed by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) with the support from industries and research institutes. The steam generator for APR 1400 is an evolutionary type from System 80 + , which is the recirculating U-tube heat exchanger with integral economizer. Compared to the System 80 + steam generator, it is focused on the improved design features, operating and design conditions of APR 1400 steam generator. Especially, from the operation experience of Korean Standard Nuclear Power Plant (KSNP) steam generator, the lessons-learned measures are incorporated to prevent the tube wear caused by flow-induced vibration (FIV). The concepts for the preventive design features against FIV are categorized to two fields; flow distribution and dynamic response characteristics. From the standpoint of flow distribution characteristics, the egg-crate flow distribution plate (EFDP) is installed to prevent the local excessive flow loaded on the most susceptible tube to wear. The parametric study is performed to select the optimum design with the efficient mitigation of local excessive flow. ATHOS3 Mod-01 is used and partly modified to analyze the flow field of the APR 1400 steam generator. In addition, the upper tube bundle support is designed to eliminate the presence of tube with a low natural frequency. Based on the improved upper tube bundle support, the modal analysis is performed and compared with that of System 80 + . Using the results of flow distribution and modal analysis, the two mechanisms of flow-induced vibration are investigated; fluid-elastic instability (FEI) and random turbulence excitation (RTE). (authors)

  20. [Research advances in secondary development of Chinese patent medicines based on quality by design concept].

    Science.gov (United States)

    Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin

    2017-03-01

    Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.